```
Indecomposability Theorem (IT) \mid Let G be a group definable in a supersimple structure of finite
SU-rank. Let \{X_i: i \in I\} be a collection of definable subsets of G. Then there exists a definable
subgroup H \leq \langle X_i : i \in I \rangle \leq G such that : (i) every element of H is a product of a bounded
finite number of elements of the X_i's and their inverses (ii) X_i/H is finite for each i.
If (X_i)^g = X_i for every i \in I and g \in G, then H can be chosen to be normal in G.
           (i) If G is a group of finite SU – rank and H \leq G is a definable subgroup of infinite
           index, then SU(H) < SU(G).
       If H,K are definable then SU(H \times K) \geq SU(H) + SU(K).
           If G is a BFC – group, i.e. \exists n \in \omega \forall g \in G | g^G | \leq n, then G' is finite.
 Fact 2
                                  Minimal normal subgroups and the socle
  Let G be a group definable in a supersimple structure of finite SU – rank. (So SU = D = S_1)
             A minimal (definable) normal subgroup of a group G is a nontrivial proper (definable)
 Definition
normal subgroup of G containing no other (definable) normal subgroup of G. The socle soc(G)
of G is the subgroup of G generated by all minimal normal subgroups of G.
Lemma 1
If G has no finite conjugacy classes, then minimal normal subgroups of G exist and are definable.
         Let H be a minimal normal subgroup of G, and take x \in H \setminus \{e\}. By IT applied to the infinite
Proof
set x^G, there is an infinite definable N \leq H normal in G. By minimality of H, H = N is definable.
Existence: Let W be a definable normal subgroup of G of minimal rank.
Suppose W = W_0 > W_1 > \dots is a descending chain of normal subgroups of G all definable over some A.
It is enough to show it stabilises. As SU(W_i) = SU(W), we have [W:W_i] < \infty for every i < \omega.
Hence W_i \supseteq W_A^0 = \bigcap \{Z : Z \leq W, [W : Z] < \omega, Z \text{ definable over } A\}. Note W_A^0 is infinite as W is.
Also, we know W_A^0 is normal in G, so for \gamma \in W_A^0 \setminus \{e\} we have \langle \gamma^G \rangle \leq W_A^0. Note \gamma^G is infinite.
By IT applied to \gamma^G there is an infinite definable N \leq \langle \gamma^G \rangle normal in G. If W_0 > W_1 > \dots does not
stabilise, then [W:W^0_A] = \infty, so [W:N] = \infty, so SU(N) < SU(W), a contradiction to the choice of W.
             1. Any two distinct minimal normal subgroups of any group centralise each other.
2. If G has no nontrivial finite conjugacy classes, then the socle of G is definable
  and is a finite direct product of minimal normal groups.
         1. If H and K are distinct minimal normal sugroups of a group G, then [H,K] is normal in G
and [H,K] \subseteq H \cap K([h,k] = h^{-1}h^k \in H \text{ and } [h,k] = k^{-1}k^h \in K.) But H \cap K = \{e\} by minimality.
 2. Inductively, if H_1, ..., H_n are minimal normal subgroups of G, then \langle H_i : i \leq n \rangle = H_{i_1} \times ... \times H_{i_l}
for some i_1 < \ldots < i_l \le n: indeed, if this holds and H_{n+1} is another minimal normal subgroup, then
\langle H_i : i \leq n \rangle \cap H_{n+1} is either trivial or equal to H_{n+1}. In the former case
\langle H_i: i \leq n+1 \rangle = H_{i_1} \times \ldots \times H_{i_l} \times H_{n+1}, \ and \ in \ the \ latter \ case \ \langle H_i: i \leq n+1 \rangle = H_{i_1} \times \ldots \times H_{i_l}.
As G has no nontrivial finite conjugacy classes, every minimal normal subgroup of G is infinite and
definable by Lemma 1. As SU(H_1 \times ... \times H_l) \ge l for infinite H_1,...,H_l, we conclude that
Soc(G) = H_1 \times ... \times H_l for some minimal normal subgroups H_1 \times ... \times H_l of G.
Fact 3 \mid If \mid A \mid is an Abelian group with no nontrivial proper defianble characteristic subgroups,
 then either A is an elementary p – group for some prime p, or A is torsion – free and divisible.
 Proposition 1 Suppose that G eliminiates \exists^{\infty}. Let M be a minimal definable normal subgroup of G.
If M is infinite, then one of the following holds:
1) M is an elementary p – group. 2) M is a \mathbb{Q} – vector space. 3) M is a minimal normal
 subgroup of G, and is a finite direct product of isomorphic, definable, simple groups.
 Proof Put B := \{a \in M : |a^G| < \omega\}. B is a definable normal subgroup of G (as G eliminates \exists^{\infty}),
 So B = \{e\} or B = M. If B = M, then, by Fact 2, M' = is finite (so definable), and normal in G
 (as it is characteristic in M and M is normal in G), so M' = \{e\}, i.e. M is abelian.
 As M has no definable characteristic proper nontrivial subgroups, M satisfies 1) or 2) by Fact 3.
         If B = \{e\}, then by Lemma 1 there is a minimal normal subgroup T of M, and T is definable.
 T^x is also a minimal normal subgroup of M for any x \in G, so T^x \cap T^y = \{e\} or T^x = T^y whenever x, y \in G.
Thus \Omega := \{T^x : x \in G\} is a family of pairwise commuting minimal normal subgroups of M.
As in the proof of Lemma 2 we get that T_0 := \langle \cup \Omega \rangle = T^{x_1} \times ... \times T^{x_n} for some x_1, ..., x_n \in G.
Hence T_0 is definable, normal in G and contained in M, so T_0 = M by minimality of M.
 It remains to show that T is simple. If S is a normal subgroup of T, then, as M = T_0 = T \times Y
for some Y \leq M, we get that S is normal in M, By minimality of T, S = T or S = \{e\}.
                                            Measurable group actions
 Recall a structure M is measurable if there is a function h = (dim, \mu) : Def(M) \to \mathbb{N} \times \mathbb{R}^{>0} \cup \{(0,0)\}
    which assumes finitely many values on definable families of sets, h(X) = (0, |X|) for finite X,
   h is \emptyset – definable, and satisfies "Fubini Property". In particular, if d = dim(X) = dim(Y) then
                     dim(X \cup Y) = d and if X \cap Y = \emptyset then \mu(X \cup Y) = \mu(X) + \mu(Y).
Let (G,X) be a transitive action of a group G on a set X, all definable in some measurable structure.
If \ x \in X \ and \ Y \subseteq X^n, \ put \ G_x \coloneqq \{g \in G : gx = x\}, \ Gx = \{gx : g \in G\} \ \ and \ G_Y = \{g \in G : g[Y] = Y\}.
Note G_{gx} = gG_xg^{-1} = G_x^{g^{-1}}.
 If K,H \leq G, write K \leq \sim H if [K:K \cap H] < \omega, and K \approx H if K \leq \sim H \leq \sim K (commensurability)
             The action (G,X) is [definably] primitive if there is no proper nontrivial [definable]
 Definition
  equivalence relation E on X preserved by G (i.e. \forall x,y \in X \forall g \in G \ E(x,y) \Rightarrow E(gx,gy)).
 Equivalently, for any x \in X there is no [definable] group H with G_x < H < G (proper inductions).
 Proposition 2 Let G be a measurable group acting definably and transitively on a definable set X.
 Define \sim on X by x \sim y \Leftrightarrow G_x \leq \sim G_y. Then \sim is a definable G – invariant equivalence relation.
         As G is measurable, there are only finitely many possibilities on \left[G_x:G_x\cap G_y\right]<\omega
 (as there are finitely many possiblities on \mu(G_x \cap G_y), and \mu(G_x) = [G_x : G_x \cap G_y] \mu(G_x \cap G_y)
 Thus \sim is definable. Transitivity of \sim follows from transitivity of \approx.
 \sim is G - invariant, as \left[G_x : G_x \cap G_y\right] = \left[(G_x)^{g^{-1}} : (G_x)^{g^{-1}} \cap (G_y)^{g^{-1}}\right] = \left[G_{gx} : G_{gx} \cap G_{gy}\right] for \ x, y \in X, g \in G.
 Symmetry: As \dim(G_x) = \dim(G_x)^{g^{-1}} = \dim(G_{gx}) for any g \in G and x \in X, we get by transitivity
 of the action that \dim(G_x) = \dim(G_y) for any x, y \in X. Now if x \sim y, then [G_x : G_x \cap G_y] < \omega
 so dim(G_x \cap G_y) = dim(G_x) = dim(G_y), hence [G_y : G_x \cap G_y] < \omega, hence y \sim x.
             Suppose (G,X) is a measurable group action and G an infinite group, which acts
  Theorem
  transitively, faithfully, and definably primitively on X. Let B = \{g \in G : |g^G| < \omega\}. Then:
  1a) If dim(G) = dim(X) and B \neq \{e\}, then B is a definable divisible torsion – free Abelian
      subgroup of G of finite index and acts regularly on X. Also, B is a minimal normal subgroup of G.
  1b) If dim(G) = dim(X) and B = \{e\}, then there is a unique minimal definable normal subgroup
      H of G. [G:H] < \omega, and H = T^n for a simple group T and n \in \omega.
  2) If Dim(G) > dim(X), then B = \{e\} and G acts primitively on X.
         Note that by definable primitivity, if N is a nontrivial definable normal subgroup of G then
  N acts transitively on X, as otherwise E(x,y) given by Nx = Ny is a definable nontrivial equivalence
  relation on X invariant under the action of G (by normality of N).
  Assume first that dim(X) = dim(G). Then \forall x \in X | G_x| < \omega by Fubini applied to G \ni g \mapsto gx \in X.
         Case 1a): B \neq \{e\}. By measurability, B is a definable normal subgroup of G, so it acts
  transitively on X, so G = BG_x and [G:B] \le |G_x| < \omega. As B is BFC, B' is a finite normal subgroup
  of G. It cannot act transitively on X, so B' = \{e\}, i.e. B is abelian, hence divisible torsion – free or
  or an elementary p – group. By abelianity, B acts regularly on X(b(gx) = g(bx)) is determined by bx).
  If B is an elementary p – group then for any b \in B \setminus \{e\} we have a finite normal subgroup \langle b^G \rangle of B,
  so it cannot act transitively on X, a contradiction. So B is divisible and torsion—free.
          Case 1b) B = \{e\}. As above, if N is a nontrivial definable normal subgroup, then G = NG_x,
  so [G:N] \leq |G_x| < \omega. Thus there can be at most one minimal definable normal subgroup of G.
  But by Lemma 1 there is a minimal normal subgroup H of G and it is definable; it must be unique.
  By Proposition 1, H is a product of finitely many isomorphic simple groups.
         Case 2: dim(G) > dim(X). Then G_x is infinite for every x \in X. Recall x \sim y \Leftrightarrow G_x \approx G_y
   is a definable G – invariant equivalence relation, so, by definable primitivity, it has only one class or
   all its classes are trivial. If there is only one \sim -classs, i.e. all G_x, x \in X are commensurable,
  then, as (G_x)^g = G_{g^{-1}x} for all g \in G, x \in X, Schlichting's theorem yields a definable normal
  sugroup N of G commensurable with G_x for every x \in X. In particular, N is infinite so nontivial, so it acts
  transitively on X. But Nx is finite as N/G_x is finite, a contradiction. So all \sim -classes have size 1.
   Claim 1 If W \leq G (not necessarily definable), H,K \leq W are definable with m = dim(H) = dim(K)
   and dim(H \cap K) < m, then W contains a definable subgroup S with dim(S) > m, and H,K \leq \sim S.
            pf. By IT there is a definable S \leq \langle K, H \rangle \leq W with H, K \leq \sim S. If dim(S) = m then K \approx H,
            so we must have dim(S) > m.
   Now suppose for a contradiction that there is x \in X such that G_x is not maximal, so there is W with
   G_x < W < G. Let H \le G be of maximal possible dimension satisfying:
   i) H is a definable subgroup of W ii) G_x \leq \sim H.
   Claim 2 If g \in G_x, then H \approx H^g.
             pf. If not, then \dim(H \cap H^g) < \dim(H). Then by Claim 1 there is a definable S \leq W with
             dim(S) > dim(H) and H \leq \sim S, so G_x \leq \sim H \leq \sim S, so S satisfies i) and ii), a contradiction.
  Pick a \in W \setminus G_x. Then y := ax \neq x, and dim(G_x \cap G_y) < dim(G_x) as G_x is not commensurable with G_y.
  Then by Claim 1 there is S satisfying i), ii) with dim(S) > dim(G_x). Hence dim(H) > dim(G_x).
  Now if g_1, g_2 \in G_x and g_1(G_x \cap H) = g_2(G_x \cap H), then g_2^{-1}g_1 \in H, so g_2^{-1}g_1H = Hg_2^{-1}g_1
  so g_1Hg_1^{-1} = g_2Hg_2^{-1}. As \left[G_x : G_x \cap H\right] < \omega and conjugates of H by elements of G_x are commensurable
  it follows that for H_0 := \bigcap_{g \in G_x} H^g we have \dim(H_0) = \dim(H) > \dim(G_x). As H_0 is normalised by G_x,
  H_1 := \langle G_x, H_0 \rangle = \{gh : g \in G_x, h \in H_0\} is definable. As H_0 \le H \le W and G_x \le W we get
  G_x \le H_1 \le W, and G_x \ne H_1 as dim(H_1) \ge dim(H_0) = dim(H) > dim(G_x). This contradicts
  definable maximality of G_x in G.
             It is left to show that B = \{e\}. As before, B' is finite and if it were nontrivial then it would
   act transitively on X, a contradiction. So B' = \{e\} and B is abelian. As B acts transitively
  faithfully on X, it acts regularly.
  Let b \in B \setminus \{e\} and x \in X. Then bx \neq x and for any g \in G_x we have g(bx) = (gbg^{-1})gx = b^{g^{-1}}x \in b^G \cdot x
   so G_x \cdot b is finite. Hence \left[G_x : G_x \cap G_b\right] < \omega, contradicting \sim having only trivial classes.
                    Let (G,X) = \prod_{i=1}^{n} (G_i,X_i)/U be a (measurable) nonprincipal ultraproduct of finite
   group actions. Suppose the action is transitive, faithful, and dim(G) > dim(X). Then:
       1. (G,X) is a primitive group action if f for all J \in U there is j \in J such that (G_j, X_j) is primitive
       2. Suppose (G,X) is primitive.
         Then there is J \in U and a formula S(x, \overline{m}) such that S(x, m_j) defines soc(G_j) for all j \in J.
```

by a block (nontrivial equivalence class of a G – invariant equivalence relation) B_j , then $\prod B_j/U$ is a block for (G,X) (by Łoś' Theorem). Right to left: If (G,X) is imprimitive, then by the theorem above it is definably imprimitive, witnessed by some $\overline{x} \in X$ and definable $H = \phi(G)$ with $G_{\overline{x}} < H < G$. Applying Łoś' Theorem, we obtain the same on U – many coordinates.

1. Left to right: If $J \in U$ and (G_j, X_j) is imprimitive for every $j \in J$, witnessed

Sketch of a proof

for U – many j's.

the theorem $(M \coloneqq B \text{ when } B \neq \{e\})$ M exists and is definable by a formula $\phi(x,\overline{m})$. By compactness there is $n < \omega$ such that for every $x \in X$, $M = \{x_1...x_n : x_i \in X \cup X^{-1}\}$, which can be expressed by a sentence $\psi(\overline{m})$. By Łoś' Theorem, $\phi(G_j)$ is a normal subgroup of G_j and $G_j \models \psi(m_j)$ for U – many j's, so $\phi(G_j,m_j)$ is a minimal normal subgroup of G_j .

Also, by Part 1, (G_j, X_j) is primitive for U – many j's. Now we will use:

2. Consider a minimal normal subgroup M of G. By Lemma $1(when B = \{e\})$ and

Fact: (if G^*, X^*) is finite primitve action, then either $soc(G^*)$ is minimal normal, or $soc(G^*)$ is a product of a minimal normal H and $C_G(H)$.

One of these two possibilities holds for U – many j's; in the first case $\phi(x, m_j)$ defines the $soc(G_j)$ and in the second case, the formula defining the product of $\phi(G_j, m_j)$ with the centraliser of $\phi(G_j, m_j)$ in G_j defines $soc(G_j)$

Created with IDroo.com