Indecomposability Theorem (IT) | Let G be a group definable in a supersimple structure of finite

SU — rank. Let {Xl. L1 E I} be a collection of definable subsets of G. T hen there exists a definable
subgroup H < <Xl. = I> < G such that . (i) every element of H is a product of a bounded
finite number of elements of the X ,'s and their inverses (ii) X./H is finite for each i.

If (Xl.)g = X, foreveryi € I and g € G, then H can be chosen to be normal in G.

Fact1| (i) If Gis a group of finite SU — rank and H < G is a definable subgroup of infinite
index, then SU (H) < SU(G).
(ii) If H,K are definablethen SU (HX K) > SU(H) + SU(K).

Fact2| If Gisa BFC — group,i.e.3n € wVg € G 1g°| < n, then G’ is finite.

Minimal normal subgroups and the socle

Let G be a group definable in a supersimple structure of finite SU — rank. (So SU=D= 51)

Definition| A minimal (definable) normal subgroup of a group G is a nontrivial proper (definable)

normal subgroup of G containing no other (definable) normal subgroup of G. T he socle soc (G)
of G isthe subgroup of G generated by all minimal normal subgroups of G.

Lemma 1

If G has no finite conjugacy classes, then minimal normal subgroups of G exist and are definable.

Proof | Let H be a minimal normal subgroup of G, and take x € H\{e}. By I'T applied to the infinite

set x©, there is an infinite definable N < H normal in G. By minimality of H, H= N is definable.

Existence . Let W be a definable normal subgroup of G of minimal rank.

Suppose W =W > W, > ... is adescending chain of normal subgroups of G all definable over some A.
It is enough to show it stabilises. As SUW ) = SU(W), we have [W : Wl} < o0 foreveryi<m.

Hence W . 2 Wi = N{Z : Z<W,[W: Z]<w, Z definable over A}. Note Wg is infinite as Wis.
Also, we know Wg is normal in G, so fory € W%\ {e} we have (yG) < Wi. Note yG is infinite.

By IT applied to yG there is an infinite definable N < (yG) normal inG. If W,> W, > ... does not
stabilise, then |[W : Wa] = 00,50 [W : N]=00,50SU(N) < SU(W), a contradiction to the choice of W.

Lemma 2| 1.Any two distinct minimal normal subgroups of any group centralise each other.

2. If G has no nontrivial finite conjugacy classes, then the socle of G is definable

and is a finite direct product of minimal normal groups.

Proof| 1.1f H and K are distinct minimal normal sugroups of a group G, then [H,K] is normal in G
and [H. K] C HNnK ([h,k] =h'h*e Hand [hk]=k k" € K) But HN K = {e} by minimality.
2. Inductively, if H,,...,H are minimal normal subgroups of G,then (H, : i <n) = Hl.1 X ... X Hz‘,

forsomei, <..<i,<n: indeed,if this holds and H, _ , is another minimal normal subgroup, then
(H, : i<n)nH, _, iseithertrivial or equal to H, .. Inthe former case
(H, :i<n+1)=H, X..XH, XH, _,, andinthelatter case (H, : i<n+1)=H, X...XH,.
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As G has no nontrivial finite conjugacy classes, every minimal normal subgroup of G is infinite and

definable by Lemma 1. As SU(H1 X ... X Hl> > 1 forinfnite H,,....H,, we conclude that
Soc(G)=H, X ... X H, for some minimal normal subgroups H, X ... X H, of G.

Fact3| If A is an Abelian group with no nontrivial proper defianble characteristic subgroups,

then either A is an elementary p — group for some prime p, or A is torsion — free and divisible.

Proposition 1| Syppose that G eliminiates 3%°. Let M be a minimal definable normal subgroup of G.
If M isinfinite, then one of the following holds

1) M is an elementary p — group. 2) M is a Q) — vector space. 3) M is a minimal normal

subgroup of G, and is a finite direct product of isomorphic, definable, simple groups.

Proof| Put B := {a eM: lal< a)} B is adefinable normal subgroup of G (as G eliminates E|°°>,
SoB={e} orB=M.If B= M, then, by Fact 2, M’ =is finite (so definable), and normal in G

(as it is characteristic in M and M is normal in G), so M' = {e},i.e. M is abelian.

As M has no definable characteristic proper nontrivial subgroups, M satisfies 1) or 2) by Fact 3.
If B={e},then by Lemma 1 there is a minimal normal subgroup T of M, and T is definable.

T* is also a minimal normal subgroup of M for any x€ G,so T* NTY = {e} or T* =T’ whenever x,y € G.
T hus €2 := {Tx . x € Grisa family of pairwise commuting minimal normal subgroups of M.

As in the proof of Lemma 2 we get that T ;= (U Q) = T % ...xT" for some Xq5e.0X, €G.

Hence T ; is definable, normal in G and contained in M, so T y= M by minimality of M.

It remains to show that T is simple. If S is a normal subgroup of T, then,as M=T,=T XY

for someY < M, we get that S is normal in M, By minimality of T, S=T or S ={e}.

Measurable group actions

Recall a structure M is measurable if there is a function h = (dim,u) . Def (M) — N X R>9y {(0,0)}
which assumes finitely many values on definable families of sets, h (X) = (0,1X]) for finite X,
his @ — definable, and satisfies "Fubini Property". In particular, if d =dim(X)=dim(Y) then

dim(XUY)=dandif XNY=then uy(XUY)=u(X)+ u(Y).

Let (G,X) be atransitive action of a group G on a set X, all definable in some measurable structure.

IfxeXandYC X", putG_={g€G:gx=x},Gx={gx : g€CG}and G,={ge G :glY]=Y}.
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Note G, = ngg_1 =G¢
If K.HL G,write K<~ Hif [K: KNH]|<w,and K~ Hif K <~ H <~ K (commensurability)

Definition| T he action (G,X) is [definably] primitive if there is no proper nontrivial [definable]

equivalence relation E on X preserved by G (i.e.Vx,y € XVg e G E(x,y) > E(gx,gy)).

Equivalently, for any x € X there is no [definable] group H with G_< H < G (proper inlucsions).

Proposition 2| Let G be a measurable group acting definably and transitively on a definable set X.

Define ~on X byx~y & G <~ Gy. Then ~isadefinable G — invariant equivalence relation.

Proof| As G is measurable, there are only finitely many possibilities on [Gx G, N Gy} <w

(as there are finitely many possiblities on u(G N Gy), and M(Gx> = [Gx G N Gy},u(Gx N Gy)

Thus ~ isdefinable. Transitivity of ~ follows from transitivity of ~ .

~ is G — invariant, as |G, 1 G 0 G,|=|(G ¥ 1 (GYF n (Gy)g_T: G,.:G,.nG,|forxyeXgeG.
Symmetry . As dim(Gx> = dim((Gx)g_1) = dim(ng> forany g € G and x € X, we get by transitivity

of the action that dim(Gx> = dim(Gy) forany x,y € X. Now if x~ Yy, then [Gx G, N Gy} <w

S0 dim(Gx N Gy) = dim(Gx> = dim(Gy), hence [Gy G, N Gy] < w, hencey ~ x.

Theorem| Suppose (G,X) is a measurable group action and G an infinite group, which acts

transitively, faithfully, and definably primitively on X. Let B= {g eG:lgf< a)} Then :

la) If dim(G)=dim(X) and B # {e},then Bis a definable divisible torsion — free Abelian
subgroup of G of finite index and acts regularly on X. Also, B is a minimal normal subgroup of G.

1) If dim(G)=dim(X) and B = {e}, then there is a unique minimal definable normal subgroup

Hof G. |G : Hl<w,and H=T" for a simple group T and n € w.
2)I1f Dim(G)>dim(X), then B = {e} and G acts primitively on X.

Proof| Note that by definable primitivity, if N is a nontrivial definable normal subgroup of G then

N acts transitively on X, as otherwise E(x,y) given by Nx = Ny is a definable nontrivial equivalence

relation on X invariant under the action of G (by normality of N).

Assume first that dim(X) = dim(G). ThenVx € X |G _| < by Fubini appliedto G 5 g — gx € X.
Case 1a) . B # {e}. By measurability, B is a definable normal subgroup of G, so it acts

transitively on X, s0 G=BG _and [G : B] LG | <w. As Bis BFC, B’ is a finite normal subgroup

of G. It cannot act transitively on X, so B’ = {e}, i.e. B is abelian, hence divisible torsion — free or

or an elementary p — group. By abelianity, B acts regularly on X (b(gx) = g(bx) is determined by bx).
If Bis an elementary p — group then for any b € B\{e} we have a finite normal subgroup (bG) of B,

so it cannot act transitively on X, a contradiction. So B is divisible and torsion— free.
Case 1) B ={e}. As above, if N is a nontrivial definable normal subgroup,then G= NG _,

so [G : N] ZIG | <w. Thus there can be at most one minimal definable normal subgroup of G.
But by Lemma 1 there is a minimal normal subgroup H of G and it is definable; it must be unique.
By Proposition 1, H is a product of finitely many isomorhpic simple groups.
Case?2 : dim(G)>dim(X).Then G _isinfinite for every x € X. Recallx ~y & G _=~ Gy
is a definable G — invariant equivalence relation, so, by definable primitivity, it has only one class or

all its classes are trivial. I f there is only one ~ —classs, i.e. all G_, x € X are commensurable,

then,as (G )*=G _, forallge€ G,x € X, Schlichting's theorem yields a definable normal
sugroup N of G comgmexnsurable with G for every x € X. In particular, N is infinite so nontivial, so it acts
transitively on X. But Nx is finite as N/G _ is finite, a contradiction. So all ~ —classes have size 1.
Clam1| If W < G (not necessarily definable), H K < W are definable with m = dim(H) = dim(K)
and dim(H N K) < m, then W contains a definable subgroup S with dim(S) > m, and H . K <~ §S.

pf. By IT thereis a definable S < (K,H) < Wwith H. K <~ S.1f dim(S)=mthen K ~ H,

so we must have dim(.S) > m.

Now suppose for a contradiction that there is x € X such that G _ is not maximal, so there is W with
G <W<G. Let H< G beof maximal possible dimension satisfying
i) H is a definable subgroup of W ii) G <~ H.
Claim2| Ifge G _,then H~ H".
pf. 1f not, then dim (Hn Hg> <dim(H). Then by Claim 1 there is a definable S < W with
dim(S) > dim(H) and H <~ §,50 G <~ H <~ §, so S satifies i) and ii), a contradiction.

Pick a € W\G _. Then y := ax # x, and dim(Gx N Gy) <dim(G ) as G is not commensurable with Gy.
Then by Claim 1 there is S satisfying i), ii) with dim(S) > dim(G ). Hence dim (H) > dim(G ).

Now if g,.8, € G, and g1<Gx ﬂH)=g2(Gx N H), then g;g1 € H, so g;1g1H= Hg;g1

SO g1Hg1_1 = ngg;. As [Gx :G.N H} < w and conjugates of H by elements of G _ are commensurable
gerHg we have dim(H ) = dim(H) > dim(G ). As H , is normalised by G _,
H, :=(G_,H,) ={gh g€G _,he HO} isdefinable. As Hy < H < Wand G_< W we get

G <H , <W,and G_# H, asdim(H,) > a’im(Ho) =dim(H) > dim(G ). This contradicts

definable maximality of G _inG.
Itislefttoshow that B={e}. As before, B' is finite and if it were nontrivial then it would

it follows that for H,:=N

act transitively on X, a contradiction. So B’ = {e} and B is abelian. As B acts transitively
faithfully on X, it acts regularly.
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Let b € B\{e} and x € X. Then bx # x and for any g € G we have g(bx) = (gbg_1>gx =b¢ x e b’

so G- bis finite. Hence [Gx G, N Gb] < w, contradicting ~ having only trivial classes.

Proposition3| Let (G,X) = H (G..X,)/U bea (measurable) nonprincipal ultraproduct of finite

group actions. Suppose the action is transitive, faithful, and dim(G) > dim(X). T hen
1. (G,X) is a primitive group action iff for all J € U thereis j € J such that (Gj, Xj) is primitive
2. Suppose (G,X) is primitive.
Then thereis J € U and a formula S (x,m) such that S(x,mj) defines soc (Gj> forall jeJ.

Sketch of aproof| 1. Lefttoright : 1fJ € U and (G X)) is imprimitive for every j € J, witnessed

by a block (nontrivial equivalence class of a G — invariant equivalence relation) Bj,

then H B]./U is a block for (G,X) (by L.oS" T heorem).

Right toleft . If (G,X) isimprimitive, then by the theorem above it is definably imprimitive,
witnessed by some x € X and definable H = ¢ (G) with G.< H<G. Applying L.oS" T heorem,

we obtain the same on U — many coordinates.
2. Consider a minimal normal subgroup M of G. By Lemma 1(when B = {e}) and
the theorem (M := B when B # {e}) M exists and is definable by a formula ¢ (x,m).
X, EXUX _1},
which can be expressed by a sentence w (m). By L.o§' Theorem, gb(Gj) is a normal subgroup of GJ.

By compactness there is n < w such that for every x € X, M= {x1 co X

n

and GJ. = 1//(mj) for U — many j's, so q')(Gj,mj) is a minimal normal subgroup of Gj.
Also, by Part 1, (Gj,Xj) is primitive for U — many j's. Now we will use

Fact : (if G*,X7) is finite primitve action, then either soc(G ™) is minimal normal, or

soc(G™) is a product of a minimal normal H and C.(H).

One of these two possibilities holds for U — many j's; in the first case ¢p(x,m j) defines the soc(G J.)

and in the second case,
the formula defining the product of qb(Gj,mj) with the centraliser of qb(Gj,mj) in G]. defines soc(Gj)

for U — many j's. Created with IDroo.com



