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Motivation

Motivation:

• Uniformity results for finite fields Fq

• What can we recover from the counting measure on finite fields?

( e.g. Is there a Formula 41×1 in hiding that defines FQ2 in tFq For all 9- ?
(Felgner)

Let f- be pseudofinite , then Felt. embeds in an UP of finite fields
,
i. e.

FFPF ⇒ FIT#qifui c- I

tÉ% F is pseudofinite it is elt. equiv to an ultraproduct of finite fields .

Now we can find (e.g . using the Kreisler - Shelah theorem) an ultraponer Of F
isomorphic to an ultrapower of the ultraeproduct of finite fields which is again
an ultraproduct of finite fields .
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Lang-Weil bounds

Theorem (Lang-Weil)

For every positive integers n, d , there is positive constant C (n, d) such

that for every finite field Fq and variety V defined by polynomials in

Fq [X1, . . . ,Xn]≤d

�

�

�
|V (Fq) |� qdim(V )

�

�

�
 Cqdim(V )−1/2

Goal : Extend this to definable sets
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Main theorem

Theorem

Let ϕ(x , y) be a formula and x , y tuples of variables. Then there is a

finite set D ⇢ {0, 1, . . . , n}⇥Q>0 [ {(0, 0)} of pairs (d , µ), a constant

C > 0, and formulas ϕd ,µ(y) for (d , µ) 2 D such that:

If Fq is a finite field and a an m -tuple in Fq, then there is some

(d , µ) 2 D such that

�

�

�
|ϕ (Fq, a) |� µqd

�

�

�
< Cqd−1/2 (⇤)

The formula ϕd ,µ(y) defines in each Fq the set of tuples a such that (⇤)
holds.

• Here YLFQ , at :={ be #q
" I#qFYlb , a) }

• We add ( 0,0) for the case of 41×1 at defining an empty set.
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Main theorem

Theorem

Let ϕ(x , y) be a formula and x , y tuples of variables. Then there is a

finite set D ⇢ {0, 1, . . . , n}⇥Q>0 [ {(0, 0)} of pairs (d , µ), a constant

C > 0, and formulas ϕd ,µ(y) for (d , µ) 2 D such that:

If Fq is a finite field and a an m -tuple in Fq, then there is some

(d , µ) 2 D such that

�

�

�
|ϕ (Fq, a) |� µqd

�

�

�
< Cqd−1/2 (⇤)

The formula ϕd ,µ(y) defines in each Fq the set of tuples a such that (⇤)
holds.
Observations :

• If y(✗ ia ) defines a variety V, this reduces to Lang-Weil
- If ya, a) defines an algebraic set W, with all irreducible components V1 , - . .vn

defined over Fq , then D= Max dim ( Vi) and µ the number of the components
7 -<iEn

of maximal dimension
.



Motivation and main theorem Applications I The measure Applications II

Main theorem

Theorem

Let ϕ(x , y) be a formula and x , y tuples of variables. Then there is a

finite set D ⇢ {0, 1, . . . , n}⇥Q>0 [ {(0, 0)} of pairs (d , µ), a constant

C > 0, and formulas ϕd ,µ(y) for (d , µ) 2 D such that:

If Fq is a finite field and a an m -tuple in Fq, then there is some

(d , µ) 2 D such that

�

�

�
|ϕ (Fq, a) |� µqd

�

�

�
< Cqd−1/2 (⇤)

The formula ϕd ,µ(y) defines in each Fq the set of tuples a such that (⇤)
holds.

☐ 0

We have to allow for rational values and more then one pair :

E×anple_ : consider 41×7=-74 YZ=✗
,

then

• if Charl g-7=2 we have 141#q ) / = of us µ ,
= >

• if char (f) =/ 2 we have IY1#g) 1=7214+11 → µz=7z
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Some consequences

1 If q is sufficiently large, the formulas ϕd ,µ(y) will define a partition
of the parameter set Fm

a .

2 If φ(x , y) with |x | = 1, then there are positive numbers A 2 N and
r 2 Q such that for every Fq and tuple a in Fq

either |ϕ (Fq, a)| < A or |ϕ (Fq, a)| � rq

3 If q >> 0 and (0, µ) 2 D and Fq |= ϕ0,µ(a), then q−1/2 ! 0, thus
µ = |ϕ (Fq, a)|

IF ( In ,µi ) =/ (dz,µz ) then
for d> =/ dz this is obvious .

For µ , -4µs choose of >> 0
Such that /µ,

-

µ > I qd > C qd
-%

Let D be the pairs associated to YA - y ) .

Let B= sup IN 1101µL c-D) , ro = inf SM1 Him > c- b) and then set

r=ro/z and A- = Sup Stoic , 4%2 )
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Some (non)-definability results for finite fields

Theorem

There is no formula φ in the language of rings which defines in each field

Fq2 the subfield Fq.

tEf :

Assume such a formula YH1 would exist .

By② either I ylFqz1KA or 14 / Fqz ) / > rq For some A > 0 , re
so

But Fq is OF size ☒ in Fay . §
Remar
One can even prove :

The field Eq is not uniformly interpretable in top .

ld Extend the main theorem to the context of definable equivalence relations
and then use the argument from

above
.
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Some (non)-definability results for finite fields

Theorem

There is no formula which defines in all fields Fq the set of generators of

the multiplicative group F×
q .

Proof :

Teese "

Euler 's totient function
"

10th ) := # {Ken / krel . prime }
1-on

which has the properties :

• ftp.j-pn-p" for p prime
• & (nm ) = of list of (m ) for him coprime ( Chinese - remainder - theorem )

⑦ . p
"
>2 ⇒ 101pm 17Th

*① . 4th ) = h . IT 11 - £ ) (
"

Euler 's product formula
"

)

ein
C primeF" " ⑦ it already follows that FC > 0 # In tons)< c)

< • whence

it remains to show that we can find arbitrarily Small values of "Tn
.
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Some (non)-definability results for finite fields

Theorem

There is no formula which defines in all fields Fq the set of generators of

the multiplicative group F×
q .

Fix some prime p and distinct primes en . . .
. em and define

M = FT ( ( i - 7) then pm 7 mod ei for all Kien
i=n

×
⇒ 011pm - 1) EÉ 11 - %;)

see for example
Euler 's proof OF the existence

Of infinitely many primes .

→ I
Now since IT

ppn.me
( I - É ) ⑦ {

n= >

I → •

and we can choose the Lt , . . >
Cm arbitrarily we can

find IT 11 - %) arbitrarily small
. g-

i= -
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Dimension and measure on pseudofinite fields

Let ycx , y)
be a formula and D , 4am 141 given

as in the main theorem . Using ⑦ (partition) and the fact
that a pseudo finite field F is elementary embedded in an ultraproduct
Of finite fields we get that for any AEF there is a unique pair

cdimltb Such that F- f- Ya ,µ /a) .

We then define dim ( q( a) ) - d l Dimension )

and
µ LY1X a) )=µ (Measure )
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Additivity + Fubini

Let F be a pseudofinite field, S ,T two definable sets.

1 Assume that T \ S = ;. Then

µ(S [ T ) =

8

<

:

µ(S) + µ(T ) if dim(S) = dim(T )
µ(S) if dim(S) > dim(T )
µ(T ) if dim(S) < dim(T )

2 Assume that f : S ! T is a definable function, which is onto. If for
all y 2 T dim

�

f −1(y)
�

= d then dim(S) = dim(T ) + d . If moreover
for every y 2 T , µ

�

f −1(y)
�

= m then µ(S) = mµ(T ).

proofldeai~wehav-e.FI/T#qify .

Now let S be given byi c-E

ya , a) in F. Write a =L 9qi]u and define Sq := ✗ IX. dq ) = #q
"

¥) For almost all of we have #
of 1=4 d.µ I QQ ) .

Analogously define Tq .

Then it is enough to show that the equalities hold for almost all of and Tqvsq which follows

using the main theorem .

For the Fubini statement proceed in the same manner
.
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Measure on definable sets

Theorem

Let S be a definable set. Define a function mS on definable subsets of S

as follows. Assume that T ⇢ S is definable, and let

(d , µ) = (dim(S), µ(S)), (e, ν) = (dim(T ), µ(T )). Then

mS(T ) =

⇢

0 if e < d

ν/µ if d = e

Then mS is a finitely additive measure on the set of definable subsets of

S .
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Relation to algebraic dimension

Theorem

Let S̄ be the Zariski closure of S in F alg . Then dim(S) = dim(S̄). Here

the second dimension is the algebraic dimension of the algebraic set S̄ .

proofsketchi.ve
want to reduce to the case of S being an algebraic set . If this algebraic set has definable

irreducible components we have already seen this as a consequence of the main theorem . Otherwise it
will be seen in the proof of the main theorem that we can always reduce to that case .

Now by the previous talks we have seen that we can find an F- algebraic set W1T-1EF
""

such that ITIWCFI )=S for the projection IT : F
" "

→ F
"
and such that thefibers IT

-1

(g) n VVCF) for yes are finite and bounded by the same KE1N
.

Now using Fubini it follows that dim (g) = dim LW1E ) ) and by the above described
case this coincides with the algebraic dimension of w( F) which can be assumed to be
hyuk to dimcw) (algebraic dimension ) because we can assume that ✓ (F) is Zariski dense in W (usingparts of the proof of the main theorem

again ) . [Note : W denotes the vespertine set in f-"5 defined by thecorresponding equations of WCF))
Thus it remains to show that dima

,g
(5) = dismay (W ) .

.

But how 5=11-1✓ (F) ) is Zariski dense in IT1W) and IT is finite - to - one on a Zariski
dense open subset of W , so dirhaig (5) = Chimay (w, fellows

.

he
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Application on definable groups

Theorem

Let G ,H be groups definable in the pseudo-finite field F , and assume

that f : G ! H is a definable morphism, Ker(f ) is finite, and

dim(G ) = dim(H) = d . Then

µ(G )[H : f (G )] = µ(H)|Ker(f )|.

Proofing Again use FkF* =

, Fatih
.

Let q= caign be the parameter tuple for formulas defining Hog .

their group law and the graph of f.
[Note that we can indeed express that f is a morphism of groups
with kernel of fixed size MEN

Now we consider the respective formulas using aq and by E0S We

get for almost all of definable groups gq.lt, over Eq and a

morphism fq : by → Hq with kernel of size MEN
.



Motivation and main theorem Applications I The measure Applications II

Application on definable groups

Theorem

Let G ,H be groups definable in the pseudo-finite field F , and assume

that f : G ! H is a definable morphism, Ker(f ) is finite, and

dim(G ) = dim(H) = d . Then

µ(G )[H : f (G )] = µ(H)|Ker(f )|.

Since Gq and Hq are finite we directly get

IG41 1HQ
: Fqlbq ) ] = I Hql lkerlfqdl

.

Now we can deduce (by only considering large enough of)

by dividing of qd that
µ ( Gg ) ( Hg :-[ lgql ]=µlHq ) lkerlfq > I

The theorem holds in F* whence in F.

Using that Ya ,µ LU41 then
holds for almost all of /When

µ full fills the above equation
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Not the strict order property

Theorem

Let ϕ(x , y) be a formula. There is a number M such that in any finite or

pseudo-finite field F , the length of a chain of definable subsets of F n

defined by formulas ϕ(x , a) for some tuples a in F , is bounded by M.

Proof:
A⇒ that does not hold ,

then by going over to a sufficiently saturated pseudofin.ie
Field F we can obtain a sequence (a ;) ,.tw of tuples in F. such that Si : -_ 41×9:) £41K a;) fig

.

Now let ☐ be the set of pairs associated to @ A. y ) then we can assume than
dim (f) =D , Tulsi )=M For all IE1N [ by possibly going over to a subsequence]
Now we show by induction on the dimension d. that any such sequence alreadyhad to be finite :

For d=O_ this follows from the fact that µ denotes the size of the
set Si and the sequence could only be of length one .

For d we consider the sets T,
= So Is , . Then the sets Ti Form a strictly

increasing sequence and we have dim (T;) < d using the adclitirity
Of the measure and that µCSi ) is constantly µ For all iEM
Now this contradicts the induction hypothesis .

←
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Not the strict order property

Theorem

Let ϕ(x , y) be a formula. There is a number M such that in any finite or

pseudo-finite field F , the length of a chain of definable subsets of F n

defined by formulas ϕ(x , a) for some tuples a in F , is bounded by M.

Note that in the proof we only used the existence

of measure & dimension and its properties .
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Finite Shelah-rank

Theorem

Let ϕ(x , y) be a formula. There is a number M such that in any finite

field or pseudo-finite field F , if S is a definable set and (ai )i∈I is a set of

tuples such that each ϕ (x , ai ) defines a subset of S of the same dimension

d as S , and for i 6= j , dim (ϕ (x , ai ) ^ ϕ (x , aj)) < d , then |I |  M.

Proof:
⇒ be the set of pairs associated to the formula yay,
and let u := inf Gµ 1 (dim) c- D) .

Now if iflxiai ) define subsets Si of S such that dim (5) =D

and dim [Sins;) and then we get mglsi ) ? 4µs, and

Msc Sins;) =D .

Thus the length OF E is bounded by MC5Y . @
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Finite Shelah-rank

Theorem

Let ϕ(x , y) be a formula. There is a number M such that in any finite

field or pseudo-finite field F , if S is a definable set and (ai )i∈I is a set of

tuples such that each ϕ (x , ai ) defines a subset of S of the same dimension

d as S , and for i 6= j , dim (ϕ (x , ai ) ^ ϕ (x , aj)) < d , then |I |  M.

Note that it follows from the theorem that the

G- rank is bounded by the dimension .

As a result we get that the pseudofinite fields are

supersimple .

[Thus it would already Follow from this theorem than the

theory PF does not have the strict order property]
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Finite Shelah-rank

Theorem

Let ϕ(x , y) be a formula. There is a number M such that in any finite

field or pseudo-finite field F , if S is a definable set and (ai )i∈I is a set of

tuples such that each ϕ (x , ai ) defines a subset of S of the same dimension

d as S , and for i 6= j , dim (ϕ (x , ai ) ^ ϕ (x , aj)) < d , then |I |  M.
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