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The structure M = (M, <, R,, R,, .) is o-minimal if every definable set XC M is a finite 

union of intervals (a, b) and points. Let G be a group definable in M (i.e. G is a definable 

subset of M” and the graph of multiplication is also definable). We show that G can be 

definably equipped with the structure of a ‘manifold’ over M in which multiplication and 

inversion are continuous. In the special case M = ([w, <, +, .) our construction gives G the 

structure of a Nash group. These results are also used to show that an infinite field definable in 

an o-minimal structure is real closed or algebraically closed. 

0. Introduction 

We say the group G is definable in the o-minimal structure M if G and the 

graph of the group operation are definable subsets of Mk and A43k respectively, 

for some k 2 1. We show that such a group G can be definably equipped with 

topological structure making G a topological group. Moreover, G can be covered 

by a finite number of open sets, each homeomorphic to an open subset of M” 

(suitable n). (In particular if the underlying order of M is (R, <), then G is a Lie 

group.) The same construction works for a field K definable in M, and we use this 

to show that such a field must be real closed or algebraically closed. 

In Section 1 we fix notation concerning the important notion of dimension. In 

Section 2, we first make some preliminary observations on groups G definable in 

o-minimal structures. Quite a lot of ‘w-stable group theory’ goes through. 

In particular for X a ‘large’ subset of G, finitely many translates of X cover G. 

We then show that G can be definably made into a topological group. Basically 

the Weil theory of group chunks applies to our situation. Once this is done we can 

use connectedness arguments in addition to dimension arguments, and in Section 

3 the results on fields are obtained. 

M is throughout a model (M, <, . . .) where < is a dense linear order without 

endpoints, and M is o-minimal, i.e. every definable XC M is a finite union of 

intervals (a, 6) (where a E M U {-co}, b E M U { +m}) and points. 

M is equipped with the interval topology and M” with the product topology. 

Unless otherwise stated, these are the topologies referred to. 

* Research supported by NSF grant DMS 8601289. 

0022-4049/88/$3.50 0 1988, Elsevier Science Publishers B.V. (North-Holland) 



240 A. Pillay 

We will continually refer to previous works on the subject, mainly [3] and [6]. 

Without recalling the definition of cells, let me mention some crucial properties. 

Fact 0.1. (i) Any A-definable XC M” (A C M) is a finite disjoint union of 

A-definable cells. 
(ii) Any cell XC M” is definably connected (i.e. has no proper clopen 

definable subset). 

(iii) For any cell XC M” there is k I n such that if rr is the projection on k 
suitable coordinate axes, then r(X) is open in Mk and r is a homeomorphism 

between X and r(X). 

For A C M, dcl(A) = acl(A) = {b E M: b is definable from A}. 

(iv) So dcl( ) ’ t IS ransitive, and by [8] if a E dcl(b U A) and a @dcl(A), then 

b E dcl(a U A). 
Thus we also have 

(v) If X C M” is an A-definable cell and k 5 n is as in (iii), then for suitable 

19 i, < i, * * e<i,5n,foranyZ=(a ,,..., a,)EX,GEdcl({ail ,..., a,,}UA). 

(ir, i,, . . . , i, are the coordinate axes on which the projection rr of (iii) is). 

For convenience sake we will assume that M is very saturated. All our results, 

however, hold for arbitrary M. 

1. Dimension 

Definition 1.1. (i) Let ti E M”, AC M. Then dim(ZlA) = least cardinality of a 

subtuple a’ of a such that G C dcl(A U a’). 

(ii) Let p(X) E S,(A). Then dim p = dim(alA) for some (any) 5 E M” realising 

P. 

Lemma 1.2. (i) dim(Z/A) = the cardinality of any maximal algebraically indepen- 
dent over A, subtuple of a. 

(ii) A C B + dim(alA) 2 dim(GlB). 

(iii) dim(&lA) = dim(alA U 6) + dim(blA). 

(iv) dim(alb U A) = dim(alA, iff dim(blA U a) = dim(blA). 

(v) If ~(4 E K(A) and A C B, then there is p E S,(B) with p C p’ and 
dim p = dim p’. 

Proof. (i)-(iv) follow by Fact O.l(iv). 

For (v) it is enough by (ii) to find p’ E S,(B) with dim p’ 2 dim p. Suppose 

dim p = k. Let ti realize p. Without loss of generality a,, _ . . , ak are algebraically 

independent over A. By the saturation of M we can find inductively a;, . . . , a; E 
M, algebraically independent over B with tp(ai, . . . , aLlA) = tp(a,, . . , a,lA). 
This is clearly sufficient. 0 
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We will say a and b are independent over A if the equivalent conditions of 

Lemma 1.2(iv) are satisfied. 

Definition 1.3. Let XC M” be A-definable (A C M). Then dim X = 

max{dim(tilA): ti E X} (=max{dim p: p E S,(A), and p is realized in X}). 

Note. (i) By Lemma 1.2(v), dim X does not depend on A. 
(ii) Let X be A-d e na fi bl e and a E X. We will say that a is a generic point of X 

over A if dim(tilA) = dim X. 

Lemma 1.4. Let XC M” be definable. Then (for k 5 n) dim X 2 k iff some 
projection of X onto Mk has interior in Mk. 

Proof. Suppose X is A-definable and dim XL k (so k I n). Let a = (a,, . . . , a,) 
be a generic point of X over A. 

Without loss of generality, a,, . . . , ak are algebraically independent over A. 
Let Y be the projection of X onto the first k coordinate axes. So Y c Mk is 

A-definable and contains the point (a,, . . . , ak). By Lemma 1.4 of [6], Y has 

interior in Mk. 
Conversely, suppose some projection Y of X onto Mk has interior. Let X (and 

so Y) be A-definable, Now Y contains an open B-definable box (i.e., product of 

intervals) Z in Mk (B 3 A). By saturation of M it is easy to find inductively 

a,, . . . , ak such that (a,, . . . , ak) E Z and a,, . . . , ak are algebraically indepen- 

dent over B. So dim(a,, . . . , a,lB) = k, and if a is a point in X extending 

(a, .. . ak) we see that dim(alB) 2 k. So dim X2 k. 0 

The following is an immediate consequence of the definition of dim X: 

Lemma 1.5. (i) Let XC M” be definable and let f : X-+ Y be a definable bijection, 
where Y C Mk. Then dim X = dim Y. 

(ii) Zf X,, . . . , X, are definable subsets of M”, then dim( ui Xi) = 

max{ dim Xi : i < r} . 

Proof. (i) Let A be a set over which X and f are defined. Let ti E X. SO 

(a, f(a)) C dcl(a U A) and (a, f(C)) C dcl( f(G) U A). ’ Thus dim(alA) = 

dim( f(a) /A). 
(ii) Immediate. Cl 

Lemma 1.6. Let fi(xl * + * x,, j) be a formula (without parameters say) and for any 
6 let Xi be the subset of M” defined by 6(X, 6). Then for any k 5 n there is a 
formula I/J~( y) without parameters such that for any 6, dim XL = k iff I+!J~(~). 

Proof. An immediate consequence of Lemma 1.4. q 

Lemma 1.7. Let Xc M” be definable. Then dim X = n iff X has interior in M”. 

Proof. Again, this follows by Lemma 1.4. 0 
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The following characterization of dimension in terms of definable equivalence 

relations will be useful when studying definable groups: 

Proposition 1.8. dim X 2 k + 1 iff there is a de$nable equivalence relation E on X 
infinitely many classes of which have dimension 2 k. 

Proof. If dim X 2 k + 1, then by Lemma 1.4 some projection of X onto Mk 
contains an open box B. Define an equivalence relation on B by X - p iff X and j 

have the same first coordinate. Lifting this equivalence relation to X gives us the 

required E. 
Conversely, assume the right-hand side holds. By Fact 0.1(i) and Lemma 

lS(ii) we may assume that X is a cell. Suppose by way of contradiction that 

dim X = k. Then clearly k is as in Fact O.l(iii). Let E1 be the equivalence relation 

on n(X) induced by E. 
Now let C be a class of E with dim C 2 k. So clearly dim C = k. By Lemma 1.5, 

dim r(C) = k, and so by Lemma 1.7, r(C) has interior in Mk. Thus, infinitely 

many classes of E1 have interior in Mk. This contradicts [6, Proposition 2.11. q 

We now give a rather more difficult characterization of dimension, which, 

although not strictly required for the main line of this paper, is interesting in its 

own right and in terms of the axiomatic notion of dimension given in [7]. 

Proposition 1.9. Let Xc M” be definable. Then dim X 2 k + 1 if and only if there 
is a definable Y c X such that dim Y 2 k and Y has no interior in X. 

Proof. The left to right direction is easy and is proved as in the left to right 

direction of Proposition 1.8. 

Conversely, suppose that Y C X, Y has no interior in X and dim Y 2 k. We 

may assume that dim Y = k and Y is a cell. We may also assume, without loss of 

generality, that Y is homeomorphic to rr(Y), the projection of Y on the first k 
coordinate axes, and n(Y) is open in Mk. Let a= (a,, . . . , ak, ak+l, . . . , a,) be a 

generic point of Y over A (where X, Y are A-definable). So a,, . . . , ak are 

independent over A. 
Now for each j = k + 1, . . . , n, let $j(a,, . . . , ak, xi) be the formula 

3X kfl . . . xj-lxj+, . . . x, [(a,, a*, . . . , ak, x~+~, . . . , xn) E X] . 

Claim. For some j, $tj(a,, . . . , ak, x,) is infinite. 

If the claim holds, then we can choose bj satisfying tij(a,, . . . , ak, x,) with 

bj gdcl(a, . . . ak U A). This clearly gives rise to a point C= (c,, . . . , cn) with 

c,=a ,,..., ck=ak, cj = b,, which is in X and such that dim (c/A) 2 k + 1. So 

dim X 2 k + 1 as required. 
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Proof of Claim. If not, then, as dim(a, . . . a,lA) = k, then there is, by [3] an open 

box Z C n(Y) containing (a,, . . . , uk) such that for all (x1, . . . , xk) E Z, 

$j(xl, . . . > xk, xi) is finite, for all j. 

Nowfor(x,,. . . , x,)EZandk+15jIn,letg,(x,,...,x,)=thejthcoordi- 

nate of K’(x,, . . . ,x,),anddefinefi(x,,. . . ,x,)=greatestxj<gj(xl,.. . ,x,) 

such that Ic;(x,, . . . , xk, x,). ff(x,, . . . , xk) = least xi > gj(x,, . . . , xk) such that 

$j(xI> ” ’ 3 ‘k> x,). Again using [3] and the fact that dim(a, . . . a,/A) = k (so any 

A-definable cell in Mk containing (a,, . . , ak) must be open), we may assume 

thatforj=k+l,..., II, the functions g,, f,! , f: are continuous on Z. 

Then clearly we can find an open box W in M” containing 

(a,, . , uk, uk+,, . . , a,) such that for any xi,. . . , xk, (x1,. . . , xk, 

f:+l(xP.. .,x,) ,..., f:,(x, ,..., xk))CWfori=1,2.ThenclearlyXnW=Y 

and so Y has interior in X, contradicting our assumption and proving the claim, 

and the proposition. 00 

Remark 1.10. Let X be a set, equipped with a topology t. Suppose that X is 

covered by open subsets U,, . . . , U,. Suppose, moreover, that for each i = 

1, . . . , s there is a homeomorphsim rr, between U, and V, where V, is a definable 

subset of M”’ with its induced topology, and that for each i, j the induced 

homeomorphism between 7~,( U, f’ U,) C V, and rj(U, n U,) C y. is definable. 

Equip X with all the definable structure induced from M by the v(‘s. So X is a 

kind of ‘manifold’ over M, and satisfies the following: 

(i) Every d fi bl e na e subset of X is a Boolean combination of closed definable 

sets; 

(ii) For every definable Y C X, dim Y is defined and satisfies dim Y 2 k + 1 iff 

there is definable Z C Y with no interior in Y and dim Z 2 k; 
(iii) Every definable Y C X is a finite disjoint union of definably connected 

definable sets; 

(iv) The topology on X is explicitly definable. 

(i), (iii) and (’ ) iv are easy and (ii) follows from Proposition 1.9. So X with its 

topology and all its definable structure is an example of what we called a 

topologically totally transcendental structure in [7]. 

Finally, in this section we introduce large sets. 

Definition 1.11. Let Y C XC M” be definable. We say that Y is large in X if 

dim(X - Y) < dim X. 

The following is an easy consequence of the definitions: 

Lemma 1.12. Let Y C X be definable. Then Y is large in X if and only if for every 
A over which X and Y are defined, every generic point Z of X over A is in Y. q 
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Proposition 1.13. Let XC M” be A-dejinable. Let 4(x,, . . . , x,, 9) be a formula 
over 0. Then (6: 4(X, b)M n X is large in X} is A-definable. 

Proof. By Lemma 1.6. 0 

Remark 1.14. Note that Proposition 1.13 is a kind of definability of types for 

o-minimal structures. For 

{b: 4(X, 6) fI X is large in X} 

= {b: for every generic point a of X over b, k 4(5, 6)) 

={b:foreveryp~S,(M)withX~panddimp=dimX, 

44-C b)EP). 

The only difference with o-stable theories is that in our context a definable set X 

may have many generics over A up to A-isomorphism. 

Note. An equivalent definition of dimension in o-minimal structures was given by 

van den Dries [lo] who also observed many of the facts in this section. 

2. Definable groups 

G is here a group definable in M. Namely the universe of G is a definable 

subset of M”, some n, and the group operation is also definable. We assume that 

G is defined over 0. 

Lemma 2.1. (i) Let b E G and let a be a generic of G over b. Then b . a is a generic 
of G (over b). 

(ii) For any b E G there are generics b, , b, of G such that b = b, . b,. 

Proof. (i) dim G = dim(alb) = dim(b * a/b). 
(ii) Let b, be generic over b. So by’ is generic over b and by (i) so is 

b,‘*b. 0 

We include the following lemma for interest, and the proof is left to the reader. 

Lemma 2.2. Let X be a definable subset of G. Then {a E G: a . X 17 X is large in 
X} is a definable subgroup of G. II! 

Lemma 2.3. Let H be a definable subgroup of G. Then dim H = dim G if and only 
if H has finite index in G. 
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Proof. By Lemma 1.5(i), dim H = dim a. H for any a E G. So by Proposition 1.8, 
if dim H = dim G, then H has finite index in G. Conversely if H has finite index in 
G then G = a, . H U - * * U a,. H so by Lemma 1.5(ii), dim G = dim H. cl 

The following crucial lemma was also proved (independently) by van den Dries 
(different proof). 

Lemma 2.4. LA X be a large de~nubZe subset of G. Then ~n~teiy zany translates of 

X cover G. 

Proof. Let MO < h4 be a small model over which X is defined. We will show 

(*) For any aEG there is NEGRO such that a~b.X. 

It will follow by compactness that there are b,, . . . , b, E GM0 such that every 
aE G is in bj*Xfor some i= 1,. . . , P. 

So to prove (*), first let c be a generic point of G over M, such that moreover 
tp(c/&, U a) is finitely satisfiable in M,. It follows that c is a generic of G over 
M, U a. (For let cI be a maximal subtuple of c algebraically independent over M,, 
and a, a maximal subtuple of a algebraically independent over iLI,. Then easily 
a, -cl is algebraically independent over M,, so dim(a *c/M,) = dim(a/~~~) + 
dim(c/h/l,) and so dim(clM,) = dim(clllrl,, U a).) 

Now as X is large in G it follows from Lemma 1.5(i) that X. a-’ is large in G. 
So by Lemma 1.13, CE X. a-‘. Thus a E c--I. X. As tp(clM, U a) is finitely 
satisfiable in M,, there is b E GM” such that a E b * X. This proves (*) and thus 
also the proposition. q 

We will now show that G can be definably made into a topological group which 
is ‘locally Euclidean’. Weil [ll] showed that an algebraic group over an algebrai- 
cally closed field can be recovered or defined from ‘birational data’, i.e., from a 
variety on which an algebraic group structure is given only gener~caZZy. The second 
part of his proof consists in showing that from a group chunk (previously 
obtained), which is an open set of the variety with various desirable properties, an 
enveloping algebraic group can be defined. Van den Dries observed that this 
result can be used to show that a group definable in an algebraically closed field 
(characteristic 0) can be definably given geometric structure making it an alge- 
braic group. Hrushovsky [2] gave an elegant proof of this last result of Weil’s in 
the special case that the group chunk is a set of maximal Morley rank and degree 
in an already given definable group. It is this proof of Hrushovsky which applies 
almost word for word to the present context, given the machinery developed so 
far and results in [3]. 

Proposition 2.5. Let G be a group 0 de~nab~e in M with dim G = a. Then there are 
a large O-definable subset V of G and a topology t on G such that 
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(i) G with the topology t is a topological group (i.e. inversion and multiplica- 
tion are continuous operations); 

(ii) V ji d’ 1s a mte lsjoint union of 0-definable sets U,, . . . , U, such that for each 
i=l,..., r, 17, is t-open in G and there is a @definable (in M) homeomorphism 
between U, (with its t-topology) and some open subset v of M”. 

Note. By Lemma 2.4, finitely many translates of V cover G. Thus the topology t 

on G is explicitly definable, and also G fits into the set-up described in Remark 

1.10. 

Proof. First we can by [3] write G as a finite disjoint union of O-definable cells. Let 

U,, . . , U, be the cells of dimension n. Thus I$ = U, W . . . W U, is large in G. 

Each U, is, by Fact 0.1, O-definably homeomorphic with an open set in M”, and 

we will identify U, with this open set. Moreover, we will identify V, topologically 

with the disjoint union of these open sets U,. Now for each i, j we can by [3] write 

Vi as a finite disjoint union of (d-definable cells on each of which either inversion is 

not a map into U,, or inversion is a continuous map into U,. Noting that 

(a) For each generic a of G over 0 there are i, j with a E U,, a- ’ E U, (by 

Lemma 1.12), and 

(b) Every O-definable subset (of G) of dimension n contains a generic of G over 

0, 

we see that for each i there are open subsets of U,, Ul, . . , l.Jl such that 

U y-l lJi is large in U, and inversion is a continuous map from Ui+ U, for every 

J 
Put V, = 0 r,i Ui (with induced topology), then summing up 

(i) VI is large and open in V, and inversion is a continuous map VI -+ V,. 
Similarly by [3] we can find an open large O-definable Y,, C V, X V, such that 

(ii) Multiplication is a continuous map from Y, + V,. 
(As above Y, is obtained as a disjoint union of open sets Yilj C U, X Uj such 

that multiplication is continuous from YF, j ---f U,. We use the fact that for mutually 

generic a, b of G, (a, b) is a generic of G x G and a. b is a generic of G, and use 

again Lemma 1.12). Note also that Y, is large in G X G. 

Now define Vi = {a E VI : for every generic b of G over a, (b, a) E Y,, and 

(b-l, b. a) E Y,}. 
By Proposition 1.13 (and Remark 1.14), Vi is O-definable. We claim, in fact, 

that Vi is large in G. For this, it is enough, by Lemma 1.12 to show that Vi 

contains every generic a of G over 0. But if a is a generic of G, then a E VI (as VI 
is large and O-definable), and moreover for b generic of G over a, it is easy to see 

that both (b, a) and (b-l, b . a) are generics of G X G, so in Y,. 

Again, by partitioning Vi into 0-definable subcells of the U, and throwing away 
cells of dimension less than n, we obtain O-definable V, C Vl which is open in V, 
and large in G. Now by (i) V, -’ is also open in V,, and clearly large in G. 

Put V= V, fl V,‘. Then V is open in V,, large in G and V= V-‘. 
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Thus, also V x V is open in V, x V, and large in G x G. 

Let Y = (V x V) II {(a, b) E Y,: a . b E V} . By (ii) above and the openness of 

V in V,, Y is open in V, x V, and moreover, as for mutually generic a, b of G, 

(a, b) E Y,, and a. b is generic, so in V, we see that Y is large in G X G. 

So without loss of generality, we have: 

(iii) V= U, W . . . 0 U, where the U, are open O-definable subsets of M”, and V 
has the induced topology. 

(iv) V is large in G. 

(v) Y is large in G X G (and O-definable). 

(vi) Inversion is a continuous map from V onto V. 
(vii) Y is dense open in V x V and multiplication is a continuous map from Y 

to v. 

(viii) For any a E V, if b is a generic of V over a, then (b, a) E Y and 

(b-‘, b . u) E Y. 
((vi), (vii), ( vm are the group chunk axioms). At this point we copy Hrushovsky “‘) 

and so we are brief. 

Lemma. (a) For any a, b E G, the set 2 = {x E V: a. x. b E V} is open in V, and 
the map x -+ a . x . b is a homeomorphism (in V) Z -+ a . Z * b. 

(b) For any a, b E G, the set Z = {(x, y) E V x V: a. x. b. y E V} is open in 
V X V and the corresponding map Z+ V is continuous. 

Proof. (a) Let xO E Z. We show that x,) is in some open set Z, of V with Z,, C Z, 

and that moreover the map x-+ a . x . b is continuous on Z,. First write b = 6, . h, 

with b,, b, E V (by Lemma 2.1, as every generic is in V). Let c E G, with c 

generic over {a, xO, b,, b2}. So cEV and C.UEV. 

Let Z,={xEV:(c*a,x)EY,(c~~~~,b,)EY,(~~u~x~b,,b~)~Y 

and (c-‘, c.u.x.b,.b,)E Y}. 

Then by (vii), Z, is open in V, Z, C Z and multiplication .Y + 

a. x . b(=c? . c . a. x . b, . b2) is continuous from Z,-+ V. By (viii) moreover 

xO E Z,. This is sufficient. (b) is proved likewise. 0 

Now, define the topology t on G by: Z C G is t-open iff for all g E G, g. Z n V 
is open. Clearly this topology is explicitly definable (in M). 

To finish the proof of Proposition 2.5, 

Claim I. Let Z C V and a E G. Then a. Z is t-open iff Z is open in V. (So in 
particular Z is t-open iff Z is open). 

Proof. If a. Z is t-open, then am1 . (a . Z) II V= Z is open in V. Conversely, if Z is 

openinV,thenforanygEG,g.(u.Z)nV=(g.a).ZnVisopeninVbypart 

(a) of the above lemma, so a. Z is t-open. 0 
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Claim II. Inversion is a t-homeomorphism on G. 

Proof. Let W be t-open in G. As finitely many translates of V cover G, we may 

assume (by Claim I) that W C a * V for some a E G. By Claim I, a-’ . W is open in 

V, and so by (vi) (a-‘. W)-’ = W-l. a is open in V. Then for any g E G, 

g*W-’ nV=g.(WP1*a)a-’ n V is open in V by part (a) of the lemma. So W- ’ 

is t-open. 0 

Claim III. Multiplication is t-continuous on G. 

Proof. Let W C G be t-open. We must show that {(x, y) E G x G: ,x. y E W} is 

t-open in G X G. As finitely many translates of V cover G, we may assume that 

W C c * V for some c E G and just show that for any a, b E G, Z = {(x, y) E a. V: 
x. y E W} is t-open. But Z = {a. w, b. z) E G X G: (w, z) E V x W and c-l. a * 
x . b . y E c-l . W}. By Claim I and part (b) of the lemma, Z is t-open. 0 

Claims I, II and III, together with (iii) above complete the proof of Proposition 

2.5. 0 

Remark 2.6. It is easy to see that Proposition 2.5 is valid for any o-minimal M 
(not only saturated M). In particular, if the order type of M is (R, <), then G 

with the topology t is a locally Euclidean topological group, and thus by 

Montgomery, Zippin and Gleason’s solution to Hilbert’s 5th problem, a Lie 

group. 

In the special case where M = (R, <, + , .), it is known that if U is an open 

definable subset of M” and f : lJ+ Mk is definable, then there is an open dense 

definable subset U’ of U on which f is analytic. Thus in this case, we could in the 

proof of Proposition 2.5 choose V and Y such that multiplication Y+ V, and 

inversion V+ V are analytic functions. The proof of Proposition 2.5 then defin- 

ably presents G as an analytic group. That is, a semialgebraic group (i.e. a group 

definable in the field of real numbers) can be semialgebraically equipped with 

analytic structure making G a Lie group. 

We now use Proposition 2.5 to show that certain ‘Morley degree’ style 

arguments go through for G. G remains a group definable in M. We let t be the 

topology on G given by Proposition 2.5 and V the large subset of G also given by 

Proposition 2.5. In the following, by definable we will mean definable in M, 
although we will make subsequent comments about what happens when we 

restrict ourselves to sets definable only in the structure (G, v). 

Lemma 2.7. Any dejinable set Z C G is a finite union of t-locally closed definable 
subsets of G. 
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Proof. First, any definable subset of V is a finite union of definable cells, each of 

which is locally closed (i.e. the intersection of an open set and a closed set) in Mk. 
As finitely many translates of V cover G, we obtain the lemma. 0 

Corollary 2.8. Any definable subgroup H of G is t-closed. 

Proof. Easy, as in [7, Proposition 2.71. 0 

Lemma 2.9. Any definable subset X of G is a finite disjoint union of definably 
t-connected definable sets. 

Proof. As finitely many translates of V cover G, we can write X as a disjoint union 

x, 0 . . . W X, where each Xi C ai . V for some ai. Translating back to V and using 

Fact 0.1(i) and (ii) gives us the conclusion. 0 

Corollary 2.10. For any definable subset X of G and a E X there is a unique 
maximal definably t-connected definable subset of X containing a, which we call the 
definably t-connected component of a in X. The definably t-connected components 
of elements of X in X form a finite partition of X. 

Proof. An easy consequence of Lemma 2.9. 0 

Lemma 2.11. Let H C K be definable subgroups of G. Then the following are 
equivalent: 

(i) H is t-open in K; 
(ii) H has finite index in K; 

(iii) dim H = dim K. 

Proof. (ii) and (iii) were proved equivalent in Lemma 2.3. 

If H is t-open in K, then H is t-clopen in K, so by Corollary 2.10, H has finite 

index in K. Conversely, if H has finite index in K, then by Lemma 2.7 and [7, 

Fact 2.21, some coset of H in K has t-interior in K, and thus H is t-open in K. 0 

Proposition 2.12. Let H be a definable subgroup of G. Let X be the definably 
t-connected component of the identity in H. Then X is the smallest definable 
subgroup of H of finite index in H. 

Proof. By Corollary 2.10, X = aX for any a E H. Thus X is a subgroup. Again by 

Corollary 2.10, X has finite index in G, and by Lemma 2.11, as X is definably 

connected, X has no proper definable subgroup of finite index. •i 

Remark 2.13. (i) The above results 2.8-2.12 remain valid, if we interpret 

‘definable’ as definable in (G, .) and ‘definably t-connected’ by having no proper 

t-clopen definable (in (G, .)) subset. 
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(ii) By Lemma 2.11 and Proposition 2.12, G has the DCC on definable 

subgroups. 

To show that all our results from [7] apply to G, we point out 

Lemma 2.14. Let X be a definable subset of G. Then dim X 2 k + 1 iff there is 
definable Y C X such that dim Y 2 k and Y has no t-interior in X. 

Proof. By Proposition 1.9 and the fact that G is covered by finitely many 

translates of V. 0 

So, as G with the topology t satisfies Lemmas 2.7, 2.9 and 2.14, G is 

‘topologically totally transcendental’ (in the language of [7]) and from [7] we 

conclude 

Corollary 2.15. (i) G has an infinite definable abelian subgroup. 
(ii) If dim G = 1, then G is abelian-by-finite. 0 

Corollary 2.16. An o-minimal group (i.e. an o-minimal structure (G, <, *) such 
that . is a group operation) is abelian-by-finite. 0 

We expect that Cherlin’s description [l] of nonnilpotent groups of Morley rank 

2 will go through for G with dim G = 2 (and with the field K real closed instead of 

algebraically closed). However, at dimension 3, the similarity breaks down, as Ali 

Nesin’s analysis of SO,(R) [5] has shown. 

3. Definable fields 

Proposition 3.1. Let (K, +, *) be a field definable in M with dim(K) = n. Then 
there are a large definable subset V of K and a topology t on K such that V is t-open 
in K is definable to an open subset, and such that with respect to t, K is a 
topological field (addition and multiplication are t-continuous K X K -+ K, additive 
inversion is t-continuous K+ K, and multiplicative inversion is t-continuous 
K*+ K*), and V satisfies Proposition 2.5(ii) (for K in place of G). (K* denotes 

K-10)). 

Proof. We start by modifying the argument in the first part of the proof of 

Proposition 2.5 to obtain @definable V C K, and @definable Y C V X V satisfying 

(iii) V= U, 0 . . . 0 U, where U, are open e-definable subsets of M” and V has 

the induced topology. 

(iv) V is iarge in K. 
(v) YislargeinKxK. 
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(vi) Both additive and multiplicative inversion are continuous maps from V 

onto V. 
(vii) Y is dense open in V x V and both addition and multiplication are 

continuous maps Y-+ V. 
(viii) If a E V and b is a generic of V over a, then (b, u) E Y, (b, b + u) E Y 

and (b , --I b.a)E Y. 
V is easily obtained, by first choosing V,, as in the proof of Proposition 2.5, 

using o-minimality to find open large Y, C V, x V,, such that both addition and 

multiplication are continuous Y, + V,, and finding open large V, C V, such that 

both additive and multiplicative inversion are continuous V, + V,,. Define 

V; = {a E V,: for every generic b of K over a, (b, a) E Y,), 

(-b, b + a) E Y,,, (b-l, b . a) E Y,} . 

Choose V, as in the proof of Proposition 2.5, and then put 

v= v, n -v* II (VJl n -(If*)- 

Define Y = (V x V) fl {(a, b) E Y,: a + b E V and a. b E V}. Then (iii)-(viii) are 

satisfied. Define the topology t on K by additive translates of V, i.e. XC K is 

t-open iff for all k E K, (k + X) fl V is open in V. Then by the proof of 

Proposition 2.5 and (iii)-(viii) above (K, +) is a topological group with respect to 

t, and the t-topology on 

need: 

Lemma. (a) Let a E K. 
x-+ a . x is continuous 
X+u.X. 

V agrees with the original topology on V. To continue we 

Then X= {xEV: u.xEV} is open in V and the map 
X+ V. Zf a # 0, then this map is a homeomorphism 

(b) Let a, 6, c E K. Then 2 = {(x, y) E V x V: c + a. x + b. y + x *y E V} is 
openinVundthemup(x,y)~c+u.x+b.y+x.yiscontinuousfromZ~V. 

Proof. (a) is proved as in Proposition 2.5. 

(b) Let (x0, y,) E Z. Let d E K be generic over {a, b, c, x0, yO}. Let 

Z,) = {(x, y) E V x V: (d. a, x) E Y, (d. 6, y) E Y, (4 x> E Y > 

(d.x,y)EY,d.c+d.u.x+d.b.y+d.x.yEV, and 

(d~‘,d~c+d~u~x+d~b~y+d~x~y)EY}. 

Then Z, C Z (easily), Z, is open in V (by (vii), (viii), part (a) and the fact that 

addition is t-continuous). 

The map (x, y) + c + a . x + b . y + x . y is continuous Z,-, V. Moreover 
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(x,, y,) E 2, (by (viii) and the fact that d is generic over anything @definable 

from a, b, c, x0, yO). So this proves part (b) of the lemma. 0 

To finish: 

Claim I. Multiplication is t-continuous from K x K+ K. 

Proof. Again, as finitely many additive translates of V cover K it is enough to 

show that for t-open W C c + V and a, b E K, {(x, y) E (a + V) X (b + V): x. y E 

W} is t-open. This amounts to showing that 

{(w,z)EVxV:(a+w).(b+z)EW} 

= {(w, 2) E v X v: (-c + a.b)+a.z+b.w+w.zE-c+W} 

is open in V, which is given by (b) of the above lemma. 0 

Claim II. Multiplicative inversion is a t-homeomorphism K* + K*. 

Proof. Like Claim II in the proof of Proposition 2.5, using here the fact that 

multiplicative translation is continuous (Claim I above) and that finitely many 

multiplicative translates of V cover K* (Lemma 2.4). 0 

So Proposition 3.1 is proved. 0 

We now work towards showing that K is real closed or algebraically closed. 

Lemma 3.2. Let G be a group definable in M. Let f : G+ G be a definable 
endomorphism of G with finite kernel. Then Im f has finite index in G. 

Proof. Let a be a generic of G over the parameters A needed to define f. Then a is 
algebraic over {f(a)} U A, so dim(alA) = dim( f(a)lA). So dim(Im f) = dim G, 

and so by Lemma 2.3, Im f has finite index in G. 0 

Let now K be an infinite definable field in M, equipped with the topology t 

given by Proposition 3.1. 

Lemma 3.3. K has no proper definable additive subgroup of finite index. 

Proof. As for stable fields, using the fact (Proposition 2.12) that K has a smallest 

definable additive subgroup of finite index, (namely if H has finite index in K, 
then n { k. H: k E K*} is a definable ideal of K of finite index, so equals K). 0 
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Corollary 3.4. K is definably t-connected. 

Proof. By Proposition 2.12. 0 

Lemma 3.5. Let dim K = n 2 2. Then K* is definably t-connected. 

Proof. If not, then there is a definable XC K*, t-clopen in K*. Now 0 must be a 

boundary point of X in K, otherwise X is t-clopen in K, contradicting Corollary 

3.4. So we may identify (definably) some t-neighborhood of 0 in K with an open 

box in M”, say B. But then XII B is a proper nonempty definable clopen subset 

of B - (0). It is easy to check that if n 2 2, then any open box in M” with a point 

missing is definably connected. SO we have a contradiction, proving the 

lemma. 0 

Corollary 3.6. Zf dim K 2 2, then K* has no proper definable multiplicative 

subgroup of finite index. 

Proof. By Lemma 3.5 and Proposition 2.12. Cl 

Lemma 3.7. Let the infinite field K be definable in M. Let K’ be a field which is a 
proper finite extension of K. Then K’ can also be defined in M and moreover 
dim K’ > dim K. 

Proof. The field structure of K’ can easily be defined (from K) on K’ where 

r = vector space dimension of K’ over K, and it is easy to see that the dimension 

of K’in M=r*dimK(andrr2). 0 

Corollary 3.8. Zf dim K P 2, then K is algebraically closed. 

Proof. By Lemmas 3.2, 3.3, 3.6, 3.7 and Macintyre’s argument [4]. Namely by the 

above lemmas, for any n, the map x+x n is onto and if char K = p, the map 

x+x” - x is onto. Moreover the same is true for any finite extension of K. By 

Galois theory K is algebraically closed. 0 

We can now prove 

Theorem 3.9. Zf the infinite field K is definable in an o-minimal structure M, then K 
is real closed or algebraically closed. 

Proof. If K is not algebraically closed, then K has a finite extension K’. By 

Lemma 3.7, K’ is definable in M and dim K’ > dim K 2 1. By Corollary 3.8, K’ is 

algebraically closed. But by Artin and Schreier, any field with an algebraically 

closed finite extension is real closed. So K is real closed. 0 
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Remark 3.10. In the special case when M has order type (R, <), then Proposition 

3.1 and Corollary 3.4 show that K with the topology t is a connected, locally 
compact topological field. By Pontrjagin [9], K is homeomorphic to R or to @ with 

their natural topologies. Thus, by the way the topology was defined on K and the 

invariance of dimension, we see that dim K = 1 iff K = R, and dim K = 2 iff 

K=@. 

As a weak version of this for arbitrary M, we have 

Proposition 3.11. Let the field K be definable in o-minimal M. Then K is real 
closed iff dim K = 1, and K is algebraically closed iff dim K 2 2. 

Proof. By Corollary 3.8 and Theorem 3.9 all we need to show is that if dim K = 1, 

then K is not algebraically closed. 

So let dim K = 1, and equip K with its topology t from Proposition 3.1. Now 

note that every point a of K has a t-neighborhood which is definably homeomor- 

phic with an open interval in M. 

Lemma A. Char K # 2. 

Proof. Suppose otherwise. Let a be a generic of K over $3. So a + a = 0. Let Z be a 

neighborhood of 0 (we assume Z is an interval in M) and J a neighborhood of a 
(similarly) such that addition takes J x J+ I. Now for x E .Z the function l,, 

where l,(y) = x + y is a homeomorphism from J into a subinterval of I, so is 

order preserving or reversing. In particular 1, is order preserving or reversing. 

Suppose 1, is order preserving, so, as a is generic over 0, there is a subinterval J’ 

of J containing a such that for all x E .Z’, lx is order preserving J+ I. Now let 

x, yEJ’, y>x. so o=x+x=l,(x)<l,(y)=x+y=y+x=l,(x)<l,(y)= 

Y + Y. 
So y + y E I, y + y > 0, contradicting char K = 2. Similarly the assumption that 

1, is order reversing leads to a contradiction. 0 

Lemma B. Not every element of K is a square. 

Proof. Again, work in a neighborhood Z of 0 which we assume to be an interval in 

M. Let J be an open subinterval of Z of the form (0, a), a E I, such that -.Z C I. 

So -.Z is an interval with left or right endpoint 0. If -.Z is of the form (0, b), then 

we may assume, by o-minimality and Lemma A, that for all x E J, x < -x, or for 

all x E .Z, x > --x. 

Suppose the first holds. Choose x E .Z small enough that -x E J, then x < -x < 

- -x, contradiction. Similarly if the second holds. 

So we have established that - J is of the form (b, 0), b E I. 
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Now the function x+ x2 is continuous on K. So by o-minimality there is a 

sub-interval J, = (0, c) of J such that (Ji) * is a subinterval of I with one endpoint 

0. Suppose first that (Ji)’ = (0, d). (So J, consists of ‘positive’ elements.) Then 

-J, = (e, 0), and (-J,)* = (J,)2 = (0, d). S o no square of an element in the 

neighborhood (e, c) of 0 is in the interval (e, 0). If all elements of (e, 0) were 

squares, then by continuity of the squaring function, and o-minimality vm 

would contain some interval with boundary point 0, contradicting the above. 

Similarly, if (J,)’ = (a, 0). Cl 

So by Lemma B, K is not algebraically closed, completing the proof of 

Proposition 3.11. 0 
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