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Introduction

0.1. Subject of the deformation theory can be defined as “study of moduli
spaces of structures”. This general definition includes large part of mathematics.

For example one can speak about the “moduli space” of objects or morphisms
of a category, as long as one can give a meaning to a “variation” of either of them.

Homotopy theory is a deformation theory, since we study “variations” of topo-
logical spaces under homotopies. Moduli of smooth structures, complex structures,
etc. are well-known examples of the problems of deformation theory.

In algebra one can study moduli spaces of algebraic structures: associative
multiplications on a given vector space, homomorphisms between two given groups,
etc.

Rephrasing the well-known quote of I. Gelfand one can say that any area of
mathematics is a kind of deformation theory. In addition, a typical theory in physics
depends on parameters (masses, charges, coupling constants). This leads physicists
to believe that the concept of the “moduli space of theories” can be useful. For
example, correlators can be computed as integrals over the moduli space of fields,
dualities in the string theory can be explained in terms of special points (“cusps”) of
the compactified moduli spaces of certain theories, etc. In other words, deformation
theory can have applications in theoretical physics.

It is quite surprising that despite the importance of the subject, there is no
“general” deformation theory. At the same time it is clear that there is a need
in such a theory. This feeling was supported by a number of important examples
which has been worked out in algebra and geometry starting from the end of 50’s.
Some concepts suggested by Grothendieck, Illusie, Artin, Chevalley and others
seemed to be pieces of the “general” deformation theory. Role of functorial and
cohomological methods became clear. In particular, “moduli space” appeared as
a functor from an appropriate category of “parameter spaces” to the category of
sets. The question of whether the moduli space is “good” became a separate issue
dealing with representability and smoothness of this functor.

In 1985 V. Drinfeld wrote a letter which had started to circulate under the
title “Some directions of work”. In the letter, among other things, he suggested to
develop such a “general” deformation theory. These words mean that one should
develop a language and concepts sufficient for most of the existing applications
(at least in algebra and geometry). Although this goal has not been achieved yet,
some progress has been made. It becomes clear that, at least in characteristic
zero case, the appropriate language of the local deformation theory is the language
of differential-graded manifolds (dg-manifolds for short). The latter notion is the
formal version of that of a Q-manifold introduced in physics (A. Schwarz). Math-
ematically, a dg-manifold is a smooth scheme in the category of Z-graded vector
spaces equipped with a vector field dX of degree +1, such that [dX, dX ] = 0. One of
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12 INTRODUCTION

the purposes of this book is to develop local deformation theory in the framework
of formal pointed dg-manifolds (which are dg-manifolds with marked points).

0.2. What properties should satisfy the “moduli space” of some structures?
Let us consider an example of the moduli space of complex structures on a

complex manifold. We should prove first that our moduli space is non-empty.
Then we want to equip it with some additional structures, for example, a structure
of an algebraic or complex variety. Then we want to study the moduli space locally
and globally.

The following two questions are fundamental:
1) Is the moduli space smooth?
2) Is it compact?
First question is of local nature while the second one is global. Our point of

view is that answers to the both questions are in a sense always positive. This
point of view needs a justification, because a typical moduli space is a “space with
singularities”, not a manifold. Moduli spaces considered as sets often arise as sets
of equivalence classes.

Here are few examples:
a) equivalence classes of finite sets, where equivalence is a bijection;
b) finite simple groups with the equivalence given by an isomorphism;
c) moduli space of curves of genus g (notation Mg), with an equivalence given

by an algebraic automorphism. The spaces Mg are not smooth, but the non-
smoothness is controlled, so one can say that “essentially” Mg is smooth;

Suppose that we have a space which is defined as a “set of equivalence classes”.
We need tools to prove compactness and smoothness of such a space. Tools come
from algebraic geometry (geometric invariant theory for smoothness) and analysis
(compactness theorems, Fredholm properties and the like). For smoothness, one
also has the resolution of singularities (which changes the space), Lie groups and
homogeoneous spaces methods, general position arguments, Sard lemma, etc.

0.3. Let us discuss the intuitive picture of a moduli space of structures (we do
not specify the type of structures).

Let V be a (possibly infinite-dimensional) vector space containing a closed
subspace S of “structures given by some equations”.

Example 7.0.1. Let A be a vector space, V consists of all linear maps m :
A⊗A→ A, and S is a subspace of such maps m that m(m⊗ id) = m(id⊗m) (as
maps A⊗3 → A). Then S is the space of all structures of an associative non-unital
algebra on A.

Example 7.0.2. Let X be a closed smooth manifold, V be the space of almost
complex structures (locally it is a vector space), S be the subspace of integrable
complex structures.

Next, one has a (generally infinite-dimensional) Lie group acting on V and pre-
serving S. In the first of the above examples it is the group of linear automorphisms
m→ m′ of V which induce isomorphisms of algebras (A, m)→ (A, m′). In the sec-
ond example it is the infinite-dimensional group of diffeomorphisms of X (it acts
on the space of almost complex structures preserving the integrability condition).

One can define the moduli space of the structures as M = S/G (e.g. equivalence
classes of complex structures in the second example).
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Let us fix a point m in the moduli space M and pick a representative m̃ in
S. Then we consider the orbit Gm̃, which is a smooth manifold, pick a transversal
manifold (“slice”) T , and intersect it with S to get a space whose germ at m̃ is
called a miniversal (or transversal) deformation.

Then one can prove the following result.

Theorem 7.0.3. Any family of structures containing m̃ is induced from the
miniversal deformation. Any two miniversal deformations are isomorphic.

Here we understand the words “family of structures” as a smooth map Λ→ S.
The space Λ is called the base of family. Two families with the same base Λ are
equivalent if there is a smooth family of elements g(λ) ∈ G, λ ∈ Λ which transforms
one into another one. There is an obvious notion of a pull-back of a family under
a morphism of bases. Then the Theorem means that one can project an arbitrary
family along the orbits of G onto a transversal slice.

If the stabilizer of m̃ is discrete then the miniversal deformation is the univer-
sal deformation, which means that it is unique (the equivalence between any two
realizations is canonical).

0.4. Let us return to the “general” deformation theory. Suppose we have some
class C of mathematical structures and a category of “parameter spaces” W, such
that each space Λ ∈ Ob(W) has a “marked point” w0. Appropriate definitions can
be given in a very general framework. Suppose that we can speak about families of
structures of type C parametrized by a parameter space Λ. Finally, suppose we can
define the fiber of such a family over the marked point. Then we can state “naively”
the problem of deformation of a given structure X0 of type C (if C is a category
then X0 is an object of the category). Namely, we define the “naive” deformation
functor DefX0 : W → Sets such that DefX0 (Λ) is the set of equivalence classes
of families of objects of type C parametrized by Λ and such that the fiber over
the marked point w0 is equivalent to X0 (for example isomorphic to X0, if C is a
category). The deformation problem is, by definition, the same thing as the functor
DefX0 , which is called the deformation functor.

According to A. Grothendieck a functor from the category W to the category
Sets should be thought of as a “generalized space”. One can ask whether this
functor is representable. If the answer is positive, we call the representing object
M ∈W the moduli space of the deformation problem. If the answer is negative, we
still can hope that the deformation functor is ind-representable or pro-representable.
For example if W is the category of schemes, we can hope that M is an ind-scheme,
if it is not an ordinary scheme.

Subject of this book is the formal deformation theory. This means that M
will be a “formal space ” (e.g. a formal scheme). A typical category W will be
the category of affine schemes which are spectra of local Artin algebras. Such an
algebra R has the only maximal ideal mR, which is nilpotent. Then k = R/mR and
the natural embedding Spec(k) → Spec(R) defines a marked point w0 ∈ Spec(R).
This situation was studied in the literature in 60’s. A typical result says that M
exists as a formal scheme.

Looking at the naive picture of the moduli space discussed in the previous
subsection we see that the quotient space S/G can be “bad” (for example, can
have singularities, even if S is smooth). This complicates the study. The idea
which emerged later (P.Deligne) was to avoid factorization by the action of G.
One can think of S as of groupoid, i.e. a category (points of S are objects,
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Hom(s1, s2) = {g ∈ G|g(s1) = s2}) such that all morphisms are isomorphisms.
Moreover, returning to the deformation functor DefX0 , we see that DefX0 (Λ) is
a groupoid of equivalence classes. In this way we avoid complications typical for
the geometric invariant theory, i.e. we do not need to define “bad quotients”. On
the other hand, we are losing the notion of the moduli space, which makes the
deformation theory complicated. For example: can we say when two deformation
problems are equivalent, in a sense that they define isomorphic moduli spaces?

The point of view presented in this book (it goes back to the ideas of Deligne,
Drinfeld, B. Feigin) is that one can overcome the difficulties at least in the case of
formal deformation theory in characteristic zero case. It is based on the observation
that to a formal pointed dg-manifold N one can assign a functor DefN : Artink →
Sets, where Artink is the category of Artin local algebras over the ground field k
of characteristic zero. we discuss the construction in Chapter 3. Roughly speak-
ing DefN (R) consists of solutions to a differential equation, modulo symmetries.
An experimental fact (and, perhaps, a meta-theorem) is that for any deformation
problem in characteristic zero case one can find a formal pointed dg-manifold N
such that DefX0 is isomorphic to DefN . Replacing DefX0 by DefN we simplify
the deformation problem by linearizing it. In fact N is modeled by (generalization)
of a differential-graded Lie algebra (DGLA for short). One says that this DGLA
controls the deformation theory of X0. All equivalence problems for the deforma-
tion theory now can be solved in terms of quasi-isomorphism classes of DGLAs.
In particular, we can study the question of smoothness of the moduli space at a
given point by chosing a simple representative of the quasi-isomorphism class of
the DGLA controlling the deformation problem. Main theorem of the deforma-
tion theory proved in Chapter 3 asserts that the deformation functor DefN gets
replaced to isomorphic one, if we replace N by a quasi-isomorphic formal pointed
dg-manifold (basically, it is the same as a quasi-isomorphic DGLA).

0.5. Let us say few words about the history of this book. It goes back to the
lecture course given by the first author at the University of California (Berkeley)
in 1994. The lectures were word processed by Alan Weinstein and later converted
into TEX format. Second author used those notes in his graduate course at Kansas
State University in 1997. Numerous improvements and new results were added at
that time. Subsequently, we decided to write a book on deformation theory. In the
course of writing we used Lectures-94 along with improvements and additions of
Lectures-97. We added new results, mostly ours. We revisited the main concept of
formal pointed dg-manifold from the point of view of algebraic geometry in tensor
categories. We found the relationship of main structures of the deformation theory
with quantum field theory. After all we realized that the project “Deformation
theory” became too large to be covered in one book. We decided to split it into (at
least) two volumes.

0.6. About contents of the book. Chapter 1 is devoted to the elementary
examples of deformation problems. We will see how homological algebra appears as
a tool for describing answers. We also discuss two important points: Schlessinger’s
representability theorem and Deligne’s approach via DGLAs.

In Chapter 2 we review some aspects of tensor categories. We believe that many
constructions of this book can be generalized to a wide class of tensor categories
which are “similar” to the category of vector spaces. An example is the formal
differential geometry of schemes. In Chapter 2 we briefly discuss supermanifolds.
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We remark that supermanifolds equipped with the action of the group U(1) = S1

are prototypes of formal pointed dg-manifolds.
Chapter 3 is devoted to systematic study of formal pointed dg-manifolds. We

start with brief discussion of formal manifolds. Main idea is to consider Z-graded
ind-schemes which correspond to cocommutative coalgebras. We call such ind-
schemes small. Smooth small schemes correspond to cofree tensor coalgebras, i.e.
as graded vector spaces they are isomorphic to ⊕n≥1V ⊗n for some graded vector
space V . We discuss formal differential geometry of smooth small schemes (i.e.
formal pointed manifolds). In particular, we prove inverse function theorem and
implicit function theorem. Vector fields on such a manifold form a graded Lie
algebra. Since the manifold is Z-graded, we can speak about degree of a vector
field. In this way we arrive to the notion of formal dg-manifold and formal pointed
dg-manifold. We discuss the theory of minimal models and homotopy classification
of formal pointed dg-manifolds. Tangent space to a formal pointed dg-manifold
at the marked point carries a structure of complex (tangent complex). Moreover,
if V is the tangent space, then we have an infinite number of polylinear maps
bn :

∧n → V [2− n], satisfying a system of quadratic relations. If bn = 0 for n ≥ 3
we get a structure of DGLA on V . In general V becomes a so-called L∞-algebra.
Finally, we explain how to associate a deformation functor with a formal pointed
dg-manifold. In particular, any DGLA (or L∞-algebra) gives rise to a deformation
functor.

Chapter 4 is devoted to examples of deformation problems, both of algebraic
and geometric nature. In particular, we return to the examples of Chapter 1 and
discuss them in full generality, constructing formal pointed dg-manifolds, which
control corresponding deformation theories.

Chapter 5 is devoted to the deformation theory of algebras over operads and
PROPs. This theory covers most of algebraic examples considered previously.
There are three approaches to the deformation theory of algebras over operads:

a) the “naive” one, as we discussed above;
b) the one via resolutions of algebras;
c) the one via resolution of the operad itself.
Comparing b) and c) we stress that the approach c) is more general. In partic-

ular it works in the case of PROPs as well.
There is natural resolution of any operad, so-called Boardman-Vogt resolution.

We explain the construction and illustrate it in the case of associative algebras.
Boardman-Vogt resolution plays an important role in the proof of Deligne conjec-
ture about the Hochschild complex of an associative algebra. We do not discuss
the proof in this book, although we state the result.

Chapter 6 is devoted to A∞-algebras. In a sense, this chapter is a non-
commutative version of Chapter 3. In particular, we have the notion of non-
commutative small scheme and non-commutative formal pointed dg-manifold. Then
A∞-algebras appear in the same way as L∞-algebras appeared in Chapter 3. In
the second volume of the book we are going to discuss more general notion of
A∞-category. From this point of view, Chapter 6 can be thought of as a theory
of A∞-category with one object. Among the topics which we omitted in the last
moment was the non-commutative version of Hodge-de Rham theorem (or, rather
conjecture). We decided not to include it in the first volume of the book because
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the notion of saturated A∞-category (non-commutative analog of a smooth pro-
jective variety) needs more explanations than we can present here. We conclude
the chapter with the discussion of non-commutative volume forms and symplectic
manifolds.

Appendix contains some technique and language used in the book. In particular
we discuss the terminology of ind-schemes and non-commutative schemes used in
Chapters 3 and 6.

About the style of the book. All new concepts (and some old ones as well) are
carefully defined. At the same time, in order to save the space, we made many
technical results into exercises. The reader can either accept them without proofs
or (better) try to do them all. Many concepts are discussed in different parts of
the book from different points of view. We believe that such a repetition will help
the reader in better understanding of the topic.

Acknowldegments. We thank to Pierre Deligne for comments on the manuscript.
Second author thank Clay Mathematics Institute for financial support of him as a
Book Fellow. He is also grateful to IHES for excellent research conditions.



CHAPTER 1

Elementary deformation theory

1. Algebraic examples

1.1. Associative algebras. Let k be a field and A an n-dimensional associa-
tive algebra over k. For a chosen basis (ei)1≤i≤n of a vector space A we define the
structure constants cm

ij ∈ k as usual:

eiej =
∑

1≤m≤n

cm
ij em.

The vector space V of structure constants has dimension n3. Let S ⊂ V be the
subvariety of associative products on the vector space A. The associativity of the
product gives rise to the following system of quadratic equations, which define S
as an algebraic subvariety of V :

∑

p

cp
ijc

t
pm =

∑

p

ct
ipc

p
jm

Here 1 ≤ i, j, m, t ≤ n.
The group G acting on V (see Introduction) coinsides with the group Aut(A)

of automorphisms of A as a vector space: we can change a linear basis without
changing the isomorphism class of the algebra. The “moduli space” of associative
product on A is M = S/G. Let us describe the tangent space T[A]M at a given
point [A] = (A, (cm

ij )).
For a one-parameter first order deformation of an associative product we can

write cm
ij (h) = cm

ij + c̃m
ijh +O(h2). In order to describe the set of such deformations

we impose the associativity conditions modulo h2 and factorize by the action of the
group linear transformations of the type ei )→ gijej , where gij = δij +hg̃ij +O(h2),
g̃ij ∈ Endk(A).

Equivalently, we can consider all associative algebra structures on the k[h]-
module Ah = A[h]/(h2), which extend the given one.

Let us denote by a∗b = ab+hf(a, b)+O(h2) such a product. The associativity
condition leads to the following equation on f :

f(ab, c) + f(a, b)c = f(a, bc) + af(b, c).

The group of symmetries consists of k[h]-linear automorphisms of the k[h]-
module Ah which reduce to the identity map when h = 0. Such automorphisms are
of the form T (a) = a + hg(a), where g : A→ A is an arbitrary linear map. Clearly
T is invertible with the inverse given by T (a) = a− hg(a).

The new product a ∗′ b = T (T−1(a) ∗T−1(b)) is given by a ∗′ b = ab +hf
′
(a, b),

where

17



18 1. ELEMENTARY DEFORMATION THEORY

f
′
(a, b) = f(a, b) + g(a)b + ag(b)− g(ab).

We can organize these equations into a complex of vector spaces

Hom(A, A) d1−→Hom(A ⊗A, A) d2−→Hom(A⊗A ⊗A, A),
where

d1(g)(a, b) = g(a)b + ag(b) − g(ab),

(d2f)(a, b, c) = f(ab, c) + f(a, b)c − f(a, bc) − af(b, c).
Summarizing the above discussion, we conclude that there is a bijection
T[A]M = {equivalence classes of 1st order deformations} ≃ kerd2/imd1.
We can extend the above complex by adding one term to the left, d0 : A →

Hom(A, A) such that d0(a)(x) = ax−xa. Then the space kerd1/imd0 is isomorphic
to the space {derivations /inner derivations}.

The above complex coincides with the first few terms of the Hochschild complex.
Its cohomology groups are called Hochschild cohomology of A with the coefficients
in A. We will denote them by HH∗(A). We have defined only lower cohomology.
The general case plays an important role in the deformation theory. We will study
it later from various points of view.

Remark 1.1.1. The reader should notice that we use the same name for the ex-
tended Hochschild complex (with d0) and for the ordinary (or truncated) Hochschild
complex (without d0). We hope this terminology will not lead to a confusion. We
will make it more precise later.

First few Hochschild cohomology groups admit natural interpretation:

HH0(A) = center of A,

HH1(A) = exterior derivations of A,

HH2(A) = 1st order deformations of A.

Moreover, later will will define Hochschild comology of all orders. Then one
will see that

HH3(A) = obstructions to deformations of A.

More precisely, trying to extend the first order associative product to the product
modulo h3 one gets an obstruction element in HH3(A). It can be shown that if the
obstruction vanishes, then every first order deformation of an associative product
on A can be extended to a formal series deformation which gives an associative
product modulo O(hn), n ≥ 1.

Exercise 1.1.2. Derive the formula for the obstruction and prove the latter
statement.

What is the meaning of the higher cohomology? The following analogy was
suggested by I.M.Gelfand. We know the geometric meaning of the first derivative
(slope) and of the second derivative (curvature), and of the vanishing of the second
derivative (inflection). The higher derivatives do not have individual meanings, but
they are coefficients of the Taylor series. In the same way, one can think of all the
cohomology groups as the “Taylor coefficients” of a single object. As we will see
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later, higher cohomology groups are encoded in the structure of the (super) moduli
space of associative algebras. This super (or rather Z-graded) moduli space is an
example of a differential-graded manifold. We will study dg-manifolds in detail in
Chapter 3.

1.2. Deformations of Lie algebras. Let g be a finite-dimensional Lie al-
gebra over the field k. We will assume that char k = 0. In order to develop the
deformation theory of the Lie algebra structure on g one can proceed similarly to
the case of associative algebras. The corresponding complex is called Chevalley
complex of the Lie algebra g.

Exercise 1.2.1. Write down first few terms of the Chevalley complex and
interpret its cohomology groups H∗(g, g).

In particular, first order deformations of g are in one-to-one correspondence
with the elements of the cohomology group H2(g, g). This classical result goes
back to Eilenberg and MacLane.

1.3. Deformations of commutative algebras. Let us consider the defor-
mation theory of non-unital commutative associative algebras. Again, the consid-
erations are similar to the associative case. As a result we obtain the complex
(called Harrison complex of a commutative algebra) which plays the same role as
the Hochschild complex for associative algebras. Its cohomology H∗(A) are called
Harrison cohomology of the commutative algebra A.

Exercise 1.3.1. Write down first few terms of the Harrison complex and in-
terpret its cohomology groups.

Not surprisingly, the second cohomology group H2(A) parametrizes the first
order deformations of A. Thus we have the deformation theory which is similar to
the case of associative algebras.

At this point the reader might think that the formal deformation theory we
have started to discuss will be sufficient for all purposes.

We would like to warn such a reader that some interesting structures are missing
in formal deformation theory.

For example, let A = C[x1, ...., xn]/(f1, ..., fm) where fi, 1 ≤ i ≤ m are some
polynomials. Suppose that the algebraic variety given by the equations fi = 0, 1 ≤
i ≤m is smooth. “Closed points” of this smooth affine algebraic variety are homo-
morphisms from A to C.

For such varieties, the Harrison cohomology groups of the function algebra is
zero in all degrees greater than 1. But the varieties are deformable in general.
This means that the Harrison cohomology “feels” only the singularities. This ex-
ample demonstrates limitations of the formal deformation theory. An example of a
different kind is given in the next subsection.

1.4. Exercise. Let Aλ be C[x1, x2, x3, x4] with the relations

x2x1 = 1,

x3(x1 − 1) = 1,

x4(x1 − λ) = 1.

1. Construct a basis ei(λ) of Aλ (λ ∈ C) such that the structure constants are
rational functions in λ.
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2. Prove that HH2(Aλ) = 0, i.e. the formal first order deformation theory is
trivial for each value of λ.

3. Prove that Aλ and Aµ are isomorphic iff µ belongs to the set {λ, 1/λ, 1−
λ, 1/(1− λ), λ/(1− λ), (λ− 1)/λ}.

Thus, fixing λ = λ0 appropriately, we can construct a large family of non-
equivalent deformations of Aλ0 , which are not visible at the level of formal defor-
mation theory.

We conclude that the formal deformation theory has limitations for infinite
dimensional algebras. More sophisticated example of this kind is provided by vari-
ations of Hodge structures (or deformations of pure motives) which is not covered
by the general approach advocated in this book.

Summarizing the discussion of all algebraic examples discussed above we can
say that the deformation theories of associative, Lie and commutative algberas have
many common features. In particular in all three cases the first order deformations
are parametrized by the second cohomology of some standard complex, which can
be explicitely constructed in each case. First order deformations describes the
tangent space to the moduli space of structures. Hence the second cohomology of
the standard complex can be thought of as the tangent space to the moduli space.
We will see later that it is more natural to shift the grading so that the tangent
space is given by the first cohomology group.

2. Geometric examples

In this section we are going to consider some geometric examples. We will see
that typically the moduli space can be described (locally) in terms of the Maurer-
Cartan equation.

2.1. Local systems. Let X be a topological space (say, a CW complex), G a
Lie group. We denote by Gδ the group G equipped with the discrete topology. We
will refer to Gδ-bundles as “local systems”.

One can see three different descriptions of local systems.
A. Sheaf theoretic. A local system is given by a covering Ui of X by open

sets, transition functions γij : Ui ∩ Uj → G which are locally constant and satisfy
the 1-cocycle condition gijgjkgki = id. Equivalence of local systems is given by a
common refinement of two coverings and a family of maps to G which conjugate
one system of transition functions to the other.

B. Group theoretic. Suppose that X is connected. Then equivalence classes
of local systems are in one-to-one correspondence with the equivalence classes of
homomorphisms of the fundamental group π1(X) to G. (If X is not connected, one
can use the fundamental groupoid instead of the fundamental group.)

C. Differential geometric. If X is a smooth manifold, the equivalence classes of
local systems on X are in one-to-one correspondence with the points of the quotient
space of the space of flat connections on G-bundles modulo gauge transformations.

These three pictures give rise to three pictures of the deformation theory of
local systems.

Since G is a Lie group, one can speak about local system depending smoothly
on parameters, thus we have a well-defined notion of the first order deformation of
a local system.

In terms of the description A, first order deformations of a local system E are in
one-to-one correspondence with the equivalence classes of pairs (Ẽ, i), where Ẽ is a
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TG-local system (TG is the total space of the tangent bundle of G), and i is an iso-
morphism between E and the G-local system induced from Ẽ. Let us comment on
this from the algebraic point of view. Points of G are continuous homomorphisms
from C∞(G) to R. Points of TG are continuous homomorphisms of C∞(TG) to
the ring of dual numbers R[h]/(h2). This argument becomes even more trans-
parent when G is an algebraic group. Then we can take K-points G(K) for any
commutative ring K. The description A gives the first order deformation theory of
a local system in the form of transition functions γij : Ui ∩ Uj → G(R[h]/(h2))=
Hom(Spec(R[h]/(h2)), G) = TG. The cocycle conditions give rise to a local system
on TG.

Exercise 2.1.1. Let A be any commutative associative R-algebra of finite
dimension containing a nilpotent ideal of codimension 1. Then continuous functions
from C∞(G) to A naturally form the algebra of functions on a Lie group.

The description A gives the first order deformations as the Čech cohomology
H1(X, adE), where adE is the sheaf of Lie algebras associated with the principal
G-bundle E.

The description B gives first order deformations of a homomorphism ρ as the
first cohomology of π = π1(X, x) with coefficients in adρ.

The description C gives first order deformations as the first de Rham cohomol-
ogy of X with coefficients in the flat bundle adE.

2.2. Holomorphic vector bundles. Let X be a complex manifold. We can
describe a complex structure on a smooth vector bundle E → X in two different
ways.

Description A. Here we have an open cover X = ∪iUi, with holomorphic tran-
sition functions gij : Ui ∩ Uj → GL(N, C) satisfying the 1-cocycle condition on
Ui ∩ Uj ∩ Uk, namely gijgjkgki = id

Description B. Here we have flat connections in ∂̄-directions. Suppose that E
is a smooth vector bundle over X. The complexified tangent bundle TX ⊗C splits
canonically into a direct sum of smooth sub-bundles T 1,0 ⊕ T 0,1 (called holomor-
phic and antiholomorphic sub-bundles respectively). Moreover, the antiholomor-
phic subbundle T 0,1 is a formally integrable distribution: if vector fields v1, v2 are
section of T 0,1 then the Lie bracket [v1, v2] is also a section of this bundle.

The decomposition TX ⊗C = T 1,0⊕T 0,1 gives rise to the decomposition of the
space of de Rham 1-forms: Ω1(X) = Ω1,0⊕Ω0,1. A connection in the ∂̄-direction is
by definition a C-linear map from the space of sections of E to the space of sections
of E ⊗ Ω0,1 satisfying the Leibniz formula

∇̄(fξ) = f∇̄ξ + ξ ⊗ ∂̄f,

for an arbitrary smooth function f .
Now we can extend ∇̄ to a differential on ⊕k≥0Γ(X, E) ⊗ Ω0,k (flatness guar-

antees that the square of this differential is zero).

Theorem 2.2.1. (corollary of the Newlander-Nirenberg theorem). Holomor-
phic structures on a smooth vector bundle are in 1-1 correspondence with flat ∂̄-
connections.

So we find that the first order deformations in the picture B are given by the
first Dolbeault cohomology of H0,1(X, EndE).
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2.3. Deformations of complex structures. Let X be a smooth manifold
equipped with a complex structure.

Description A. In this description we use the language of charts and transition
functions. Thus we have homeomorphisms fi : Ui → Cn with transition functions
gij : Cn → Cn given by holomorphisms (i.e. isomorphisms in the category of
complex manifolds) satisfying the 1-cocycle condition gijgjkgik = id.

Description B. Here we start with a smooth manifold X with integrable almost
complex structure. By definition, an almost complex structure on X is given by
a decomposition TX ⊗ C = T 1,0 ⊕ T 0,1 of the complexified tangent bundle. The
integrability of T 0,1 is equivalent (Newlander-Nirenberg theorem) to the fact that
our almost complex structure is in fact a complex one. Equivalently, one defines a
∂-linear operator acting from the sheaf C∞

X to the sheaf C∞
X ⊗(T 0,1)∗ (it is given by

the composition of the de Rham differential with the projection to C∞
X ⊗ (T 0,1)∗).

Integrability is equivalent to the condition ∂
2

= 0. Deformation of a complex struc-
ture is given by a map to the tangent space of the appropriate Grassmannian. In
particular, first order deformations are sections γ of the bundle Hom(T 0,1, T 1,0).
In other words, they are “Beltrami differentials” i.e. (0, 1)-forms with values in
the holomorphic tangent bundle T 1,0. Indeed, let {∂/∂zj}j=n

j=1 be the basis of T 0,1

corresponding to a choice of local coordinates (zj , zj), 1 ≤ j ≤ n. It is easy to see
that a “small perturbation” of this almost complex structure can be transformed by
the group of diffeomorphisms Diff(X) into a distribution of subspaces in the com-
plexified tangent bundle of X spanned by {∂/∂zj +

∑
i νji(z, z)∂/∂zi}j=n

j=1 , where
νji(z, z) are smooth functions. The formal integrability condition of this distribu-
tion becomes ∂̄γ = 0. Solutions to this equation give rise to first order deforma-
tions of the complex structure. In order to obtain the set of equivalence classes of
such deformations one has to factorize by the image of ∂̄. Indeed, the deformed
complex structure is given by new ∂-operator of the form ∂ +

∑
i γi∂/∂zi, where

γi =
∑

j νji(z, z)dzj . The integrability condition for the deformed structure can be
written in the form (∂ +

∑
i γi∂/∂zi)2 = 0. Let us denote

∑
i γi∂/∂zi by γ. Then

we arrive to the Maurer-Cartan equation

∂γ +
1
2
[γ, γ] = 0,

where the Lie bracket is defined naturally by means of the commutator of vector
fields and the wedge product of differential forms.

In the first order deformation theory we can forget about the quadratic term
[γ, γ]. Then we arrive to the holomorphicity condition ∂γ = 0 for γ ∈ Ω0,1 ⊗ T 1,0.
Clearly for a smooth function ε, the form γ + ∂ε defines an equivalent complex
structure.

Thus one represents the tangent space to the moduli space of deformations
of a given complex structure as the first Dolbeault cohomology of X with values
in the holomorphic tangent sheaf T 1,0

X = T 1,0. The Description A gives the Čech
cohomology with values in the same sheaf.

We see that in the last two examples the tangent space is of the form H1(X, F ),
where F is a sheaf of Lie algebras. Moreover, we have an explicit complex computing
this cohomology. In all situations (algebraic and geometric), the explicit complex
which computes the cohomology is a differential graded Lie algebra (DGLA for
short).
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Although we will discuss the approach via DGLAs Chapter 3, it might be
convenient to give the definition now.

Definition 2.3.1. A differential graded Lie algebra (DGLA for short) over a
field k is given by the following data:

a) Z-graded k-vector space g = ⊕n∈Zgn;
b) brackets (a, b) )→ [a, b] from gn × gl to gn+l;
c) linear maps dn from gn to gn+1, such that d =

∑
n dn satisfies the condition

d2 = 0;
d) graded antisymmetry and graded Jacobi identity for the brackets;
e) graded derivation formula d[a, b] = [da, b] + (−1)|a|[a, db],
where a, b are homogeneous elements of g of degrees |a|, |b| respectively.

General idea is that (locally) any kind of moduli space can be described as
a quotient of the set of elements γ ∈ g1 satisfying the Maurer-Cartan equation
dγ+ 1

2 [γ, γ] = 0 by the action of the group corresponding to the Lie algebra g0. All
algebraic and geometric examples discussed above (as well as many other which we
will discuss later) are special cases of this approach.

3. Schlessinger’s axioms

In this section we are going to sketch an approach to the deformation theory
which goes back to Grothendieck and was further developed in the paper by Michael
Schlessinger “Functors of Artin rings”, Transactions of AMS, 130:2 (1968), 208-222.
Notice that in this approach we are not required to work over a field of characteristic
zero.

Definition 3.0.2. A commutative unital associative ring A is called Artin if
every descending chain of ideals in A stabilizes.

Then one has the following result (the proof is left to the reader)

Proposition 3.0.3. a) An Artin ring A is a finite direct sum of Artin rings
A = ⊕iAi such that:

a) every Ai is a local ring;
b) the maximal ideal mi ⊂ Ai is nilpotent;
c) for any N ≥ 1 the quotient space Ai/mN

i is a finite dimensional vector space
over the field ki = Ai/mi.

Let us fix an arbitrary ground field k and denote by Artink the category of
Artin local k-algebras. Objects of Artink are, by definition, Artin local k-algebras
A such that

a) A/m ≃ k where m = mA is the maximal ideal of A;
b) A ≃ k ⊕m as a k-vector space;
c) the ideal m is nilpotent.
Morphisms in the category Artink are homomorphisms of unital k-algebras.

Example 3.0.4. Let A = k[h]/(hn), n ≥ 1. Then A is an Artin local k-algebra
with the maximal ideal (h). Similarly A = k[h1, ..., hl]/(h1, ..., hl)n is the local
Artin k-algebra with the maximal ideal (h1, ..., hl).

In general, if we deform a mathematical structure X0 , we have a family of
structures Xt parametrized by a parameter t, so that Xt=0 ≃ X0. In fact, if we
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consider the formal picture (“formal moduli space”) then t is a formal parameter.
For example one can have t ∈ k[[h]]. If we are interested in the local structure of the
formal “moduli space of structures” at the point corresponding to X0, then we can
approximate it by a sequence of “jets” HomAlgk (R, An), where An = k[[h]]/(hn)
and R is the completion of the local ring of the moduli space at X0. This sequence
should be compatible with the natural homomorphisms An+1 → An. The projective
system (An)n≥1 gives rise to a functor F : Artink → Sets such that F (B) =
lim←−nHomAlgk (B, An). Summarizaing, we can say that the local structure of the
moduli space at X0 is completely described by the functor F : Artink → Sets.
Moreover, there exists a complete Noetherian local k-algebra R such that we have
a functorial isomorphism

F (A) ≃ HomAlgk,top(R, A),

where in the RHS we take all topological homomorphisms of algebras R→ A.
This observation suggests the following strategy. First one defines the functor

of “deformations of X0 parametrized by a Artin local k-algebra A”. Then one tries
to prove that that it is pro-representable, i.e. there exists a complete local k-algebra
R such that the above isomorphism holds. Then the algebra R is the completion
of the local ring of the moduli space at the point [X0].

In the case of schemes Schlessinger suggested a list of properties (axioms) which
one should check in order to prove that the formal moduli space of deformations
exists.

Let X be a scheme over the field k. Then the deformation functor D in the sense
of Schlessinger assigns to an Artin local k-algebra A the isomorphism class of pairs
(Y, i) such that Y is a flat scheme over Spec(A) and i : X → Y is a closed immersion
of X as a fiber over Spec(k) (to say it differently, X ≃ Y ×Spec(A) Spec(k)). It is
clear how to define D on morphisms.

In general, this functor is not pro-representable. Nevertheless it often satisfies
certain properties which “almost” imply pro-representability (at least they imply
existence of R).

Here is the list of properties:
(Sch1) Let 0 → (x) → B → A → 0 be an exact sequence such that (B, mB)

and (A, mA) are Artin local rings, and (x) is a prinicipal ideal such that mBx = 0.
Then for any morphism (B′, mB′ ) → (A, mA) the natural map D(B ×A B′) →
D(B) ×D(A) D(B′) is surjective.

(Sch2) The above-mentioned surjection is a bijection when A = k, B′ = k[ϵ]/(ϵ2).
(Sch3) dimkD(k[ϵ]/(ϵ2)) <∞.
In algebraic geometry the tangent space to a scheme X at a smooth point

x ∈ X is given by the set of morphisms Spec(k[ϵ]/(ϵ2)) → X such that Spec(k) is
mapped into x. Indeed, homomorphisms of k-algebras R → k[ϵ]/(ϵ2) correspond
to derivatives of R, hence vector fields on Spec(R). More formally, let us fix a
complete Noetherian local k-algebra R and consider a functor hR : Artink → Sets
such that hR(A) = HomAlgk (R, A). Then hR(k[ϵ]/(ϵ2)) is naturally isomorphic to
HomAlgk (R, k[ϵ]/(ϵ2)). For this reason the set D(k[ϵ]/(ϵ2)) is called the tangent
space to the functor D. Then the property (Sch3) says that the tangent space to
D is finite-dimensional.
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If a functor D satisfies the properties (Sch1)-(Sch3) then it is not necessarily
pro-representable. But it is pro-representable, if an addition one has the following
property

(Sch4) Let B → A be as in (Sch1). Then the natural map D(B ×A B) →
D(B) ×D(A) D(B) is a bijection.

The properties (Sch1)-(Sch3) hold for the deformation functor D associated
with a scheme X, which is proper over k. Some additional restrictions on X force
D to be pro-representable. One can check that this approach agrees with the
geometric intuition. For example, the tangent space to the deformation functor
associated with a smooth scheme is naturally isomorphic to H1(X, TX), where TX

is the tangent sheaf of X.
This approach works in the examples of Sections 1.1 and 1.2 as well. According

to Grothendieck any functor from the category of schemes to the category Sets
should be thought of as “generalized scheme”. Formal schemes, as functors, are
non-trivial on finite-dimensional algebras only. Suppose we want to describe the
formal deformation theory of a certain mathematical structure X0 defined over a
field k (algebras of any sort, complex structures, flat bundles, etc.). This means
that we classify flat families Xs, s ∈ Spec(R), where R is a local Artin algebra,
such that fiber over s0 = Spec(k) is isomorphic to X0. This gives rise to a “naive”
deformation functor DefX0 : Artink → Sets. The question is when DefX0 is
represented by a pro-object in the category Artink (i.e. when it give rise to a
formal scheme with marked point). We will see that this is the case in all examples
from Sections 1.1 and 1.2. In the next section we will see that there is a general way
to construct functors from Artin algebras to Sets, starting with differential-graded
Lie algebras. Later we will describe differential-graded Lie algebras for all examples
of Sections 1.1 and 1.2.

4. DGLAs and Deligne’s groupoids

Naive approach to the deformation theory discussed in the Introduction de-
scribes the moduli space of some structures as a quotient space S/G. The latter
space can be singular even if S is smooth. One should take care about “bad action”
of G on S. This is the subject of the Geometric Invariant Theory. Alternatively,
one can think of S/G as of groupoid. In other words, one does not factorize by the
action of G but remembers that certain points of S are equivalent.

Definition 4.0.5. Groupoid is a category such that every morphism in it is
an isomorphism.

For example, a group G gives rise to a groupoid with one object e such that
Hom(e, e) = G. This example can be generalized.

Example 4.0.6. If S is a set and a group G acts on S, one can define an
“action” groupoid in the natural way: objects are points of S, and Hom(x, y)
consists of all g ∈ G such that gx = y.

Pierre Deligne suggested in 80’s the following approach to the deformation
theory in characteristic zero case.

One considers a category of all possible deformations of a given structure. Mor-
phisms between objects are equivalences of deformations. Then one has a groupoid
S “controlling” the deformation problem. Two deformation problems are equiv-
alent if the corresponding groupoids are equivalent (as categories). The “naive”
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moduli space of deformations is the set of isomorphism classes Iso(S). This space
can be singular, but the idea is that all the information about the space is encoded
in the groupoid S. One can go one step further and consider sheaves of groupoids
(an important special case of the latter is called gerbe).

The question is how to use this general approach in practice. At the end of 80’s
Deligne, Vladimir Drinfeld and Boris Feigin suggested that for a given deformation
problem one can find a DGLA which “controlls” it. Forgetting about groupoid
structure this means that the “naive” deformation functor DefX0 (see previous
section) is isomorphic to another one, constructed canonically from some DGLA
(depending on X0). It turns out that the approach via DGLAs automatically gives
groupoids. Deligne’s groupoid can be described explicitely in terms of the DGLA.
It will be explained in geometric terms in Chapter 3.

Let us start with a DGLA g = ⊕n≥0gn over a field k of characteristic zero. (i.e.
it is Z-graded without negative degree components).

Let V = g1, and S be the subset of V consisting of elements γ satisfying the
equation dγ + 1

2 [γ, γ] = 0.
Instead of a group G acting on S, we have the Lie algebra g = g0 acting on g1

by affine vector fields. Namely, α ∈ g0 corresponds to the following affine vector
field on g1

γ̇ = [α, γ]− dα.

Proposition 4.0.7. In this way we obtain a Lie algebra homomorphism g0 →
V ect(g1) such that the image of g0 preserves the equation for S.

Proof. We will check the last condition. The first one is left to the reader as an
exercise. Let K(γ) = dγ + 1

2 [γ, γ] = 0. Then we would like to show that K̇(γ) = 0
for every α.

We use the chain rule: K̇(γ) = dγ̇ + [γ̇, γ] = d([α, γ]− dα) + [[α, γ]− dα, γ] =
[dα, γ] + [α, dγ] − ddα + ... = [α, dγ] + [[α, γ], γ] = −1

2 [α, [γ, γ]] + 1
2 [[α, γ], γ] +

1
2 [[α, γ], γ] = 0. We used here the curvature zero condition for γ plus the Jacobi
identity. !

We would like to have a groupoid, but we do not have a group. We have a Lie
algebra g0, but the notion of the orbit space for infinite-dimensional Lie algebras
is complicated. In order to overcome the difficulty we are going to use local Artin
k-algebras. Namely, to a DGLA g we can associate a functor Defg from local Artin
k-algebras to groupoids.

The objects of the groupoid corresponding to a local Artin k-algebra A with the
maximal ideal m are elements γ ∈ g1 ⊗m satisfying the Maurer-Cartan equation
dγ + 1

2 [γ, γ] = 0.
In order to describe morphisms, we consider the nilpotent Lie algebra g0 ⊗m.

To every nilpotent Lie algebra g over k we can associate the group of formal symbols
exp(x), x ∈ g, with multiplication given by the Campbell-Baker-Hausdorff formula.
Proof of the following Proposition is left to the reader.

Proposition 4.0.8. The group exp(g0 ⊗m) acts on the set of objects of our
category. Namely, an element φ of the group acts by the formula

γ )→ φγφ−1 − (dφ)φ−1

(compare with the action of gauge transformations on connections).



4. DGLAS AND DELIGNE’S GROUPOIDS 27

Here we use the notation

exp(α)γexp(−α) =
∑

n≥0

(adα)n(γ)/n!

Also,

(dφ)φ−1 = (dexpα)exp(−α)
is defined by

(dφ)φ−1 =
∑

n≥0

(1/(n + 1)!)(adα)n(dα).

For φ = etα we obtain

γ )→ etadα(γ) +
(Id − etadα)

adα
(dα)

One can generalize the action to the case of finite characteristic. In order to
do that one has to use divided powers in the above definitions. We are not going
to do that since we are interested in the case char(k) = 0.

The above formula is very transparent in the case of real numbers. Indeed
if A : V → V is a linear endomorphism of a vector space V , b ∈ V then the
differential equation Ẋ = AX + b with the initial condition X(0) = X0 has a
solution X(t) = A−1(etA(AX0 + b) − b). If we understand both sides as formal
power series in t, then the formula makes sense over a field of characteristic zero
and any A.

Now we define a groupoid as the action groupoid of this action. In other
words, Hom(γ1 , γ2) = {φ|φ(γ1) = γ2}. The composition of morphisms is given by
the group product.

Remark 4.0.9. As we will see later, sometimes it is convenient to consider
graded nilpotent commutative algebras without the unit instead of Artin local al-
gebras.

The reader has noticed that we have constructed not just a groupoid, but a
functor from the category of Artin local k-algebras to the 2-category of groupoids
(the notion of such a functor can be made precise, but we don’t need it in this
book). We say that two deformation problems are equivalent if the corresponding
functors are isomorphic. In this book we do not stress the groupoid structure,
thinking about Defg as a functor from Artink to Sets.





CHAPTER 2

Tensor categories

1. Language of linear algebra

Traditionally mathematical structures are defined as collections of sets together
with certain relations between them (see [Bou]). In many cases there is an alterna-
tive way to define structures using as the basic building blocks vector spaces over
some base field k. In this book we assume that the characteristic of k is zero.

In analytic questions field k is usually R or C, and one has to put some topology
on infinite-dimensional vector spaces over k. In algebraic geometry k could be
arbitrary, or a non-archimedian topological field in analysis.

Here we will show several classical examples of the use of the language of linear
algebra instead of set theory.

1.1. From spaces to algebras. Sets in general should be replaced (as far as
possible) by “spaces” (topological spaces, manifolds, algebraic varieties, ...). As for
the notion of a “space”, one of ways to encode it is via the correspondence

Space X ↔ commutative associative unital algebra O(X)

Often, it is not enough to have just one algebra, but one need a sheaf of algebras
OX on the “underlying topological space” of X.

1.1.1. Smooth and real-analytic manifolds. Any C∞-manifold X can be en-
coded by the topological algebra O(X) := C∞(X) over k = R. Analogously,
a real-analytic manifold X is encoded by the algebra of real-analytic functions
Cω(X).

One can complexify these algebras. For real-analytic X we consider Cω(X)⊗C
as the algebra of functions on a “degenerate complex manifold”, the germ of XC

of the complexification of X. Analogusly, for a smooth manifold X the algebra
C∞(X)⊗C could be viewed as the algebra of holomorphic functions on a “formal
neighborhood” Xformal

C of X in non-existing complexification XC.
1.1.2. Complex-analytic spaces. Obviously a complex-analytic space X gives a

sheaf OX of algebras over C on the underlying topological space (which is usually
denoted again by X). A Stein space X can be reconstructed just from one (topo-
logical) algebra O(X) := OX(X) (topology is defined by the uniform convergence
on compact subsets).

1.1.3. Schemes. The category of affine schemes over Spec(k) is opposite to the
category of unital commutative associative k-algebras.

In general, a scheme X over Spec(k) is by definition a topological space en-
dowed with the sheaf of k-algebras OX which is locally isomorphic to the standard
structure sheaf on the spectrum Spec(A) of a k-algebra A.

In essentially all applications one uses separated schemes (analogous to Haus-
dorff spaces in the usual topology). A separated scheme X is automatically quasi-separated,

29
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which means that the intersection of any two open affine subschemes in X is a union
of finitely many affine open sets. One can show that if (Ui)i∈I is an affine covering
of a quasi-separated scheme X, then the pair (X, (Ui)i∈I ) is completely encoded by
the following:

Data: • a set I,
• a k-algebra AS for every finite nonempty subset S ⊂ I,
• a morphism iS1,S2 : AS1 −→ AS2 for S1 ⊂ S2

Axioms: • iS,S = idAS , iS1,S3 = iS2,S3 ◦ iS1,S2 (i.e. we get a functor),

• if S1∩S2 ̸= ∅ then AS1∩S2 is equal to the tensor product AS1

⊗
AS1∪S2

AS2 ,
i.e. the functor S )→ AS from the poset of finite nonempty subsets
in I to the cateory of algebras preserves cartesian coproducts,

• homomorphisms iS1,S2 are localizations

For the covering (Ui)i∈I the correpsonding algebras AS are defined asO(∪i∈SUi),
and iS1,S2 as restriction morphisms. Conversely, any diagram of algebras (AS) sat-
isfying axioms as above gives an affine covering of a quasi-separated scheme. Thus,
we can hide the theory of prime ideals and Zariski topology, and give an “elemen-
tary” definition of a (quasi-separated) scheme. In fact, it is enough to consider only
subsets S ⊂ I with at most 3 elements.

1.1.4. A bad example: Topological spaces. Classical theorem of I. M. Gelfand
says that compact Hausdorff topological spaces are in one-to-one correspondence
with commutative unital C∗-algebras over k = C (more precisely, we have an
anti-equivalence of categories). Although this fact was extremely influential in the
history of the algebraization of spaces, for purposes of deformation theory algebras
of the type C(X) are not good (for example, they do not admit derivations). From
our point view, topological spaces are better described in the classical set-theoretic
way.

1.1.5. Dictionary between geometry and algebra. Here are some standard cor-
respondences (in the “affine case”):

Maps f : X −→ Y morphisms of algebras f∗ : O(Y ) −→ O(X)

points of X (or k-points Homk−alg(O(X), k)
in the case of affine schemes )

closed embedding i : X ↪→ Y epimorphism of algebras i∗ : O(Y ) " O(X),
equivalently, an ideal IY ⊂ O(Y ) and
an isomorphism O(X) ≃ O(Y )/IY

finite product
∏

i∈I Xi tensor product
⊗

i∈I O(Xi)
(completed if we are not in purely
algebraic situation)

finite disjoint union
∐

i∈I Xi direct sum
⊕

i∈I O(Xi)

vector bundle E on X finitely generated projective
O(X)-module Γ(E)
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1.2. Linearization of differential geometry. Here are translations of some
notions of differential geometry (again in the “affine case”):

X is smooth A = O(X) is formally smooth, i.e. for any
nilpotent extension of algebras
f : B " B/I, with In = 0 for n≫ 0
the induced map f∗ : Hom(A, B) −→ Hom(A, B/I)
is surjective

total space tot E of the symmetric algebra generated by the O(X)-module
vector bundle E on X, M := Γ(E∗) = HomO(X)−mod(Γ(E),O(X))
considered as manifold in the SymO(X)−mod(M) =

⊕
n≥0 Symn

O(X)−mod(M)
category of affine schemes

a vector field on X a derivation of O(X)

tangent bundle TX space of derivations Der(O(X))
considered as O(X)-module

cotangent bundle T ∗
X an O(X)-module Ω1(O(X)) := HomO(X)−mod(DerO(X),O(X))

differential forms Ω•
X ∧•O(X)−mod(Ω1(O(X)))

Lie group (or an affine commutative Hopf algebra
algebraic group)

1.2.1. Notations in differential geometry. If E is a vector bundle on X, we
consider E also as a sheaf of OX-modules.

Thus, Γ(E) = E(X) is the space of sections of E.
The tangent and cotangent bundle are denoted by TX and T ∗

X respectively. The
space Γ(TX) = TX(X) is also denoted by V ect(X). Thus, V ect(X) = Der(O(X)).
Spaces Γ(∧kT ∗

X) are denoted by Ωk(X).
For vector bundle E on manifold X we denote by tot E the total space of E

considered as a manifold. Again, for the special case E = TX (or E = T ∗
X) we

denote tot E simply by TX (or by T ∗X).

1.3. Less trivial example: space of maps. We assume that we are working
in some category of spaces, with sets of morphisms denoted by Hom(X, Y ). In many
cases for two spaces X and Y one can define a new space Maps(X, Y ) (called inner
Hom) by the usual categorical property:

Hom(Z, Maps(X, Y )) = Hom(Z ×X, Y )) as functors in Z (2.1)

The most clean situation appears in the category of affine schemes over k.

Theorem 1.3.1. Let X be a finite scheme, i.e. O(X) is a finite-dimensional
algebra, and Y be an arbitrary affine scheme. Then there exists an affine scheme
Maps(X, Y ) satisfying the property (2.1) .

Proof. Denote algebras of functions O(X) and O(Y ) simply by A and B.
The algebra C := O(Maps(X, Y )) should be such that we have an isomorphism
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functorial in R ( R = O(Z) in the notation of (2.1))

Hom(C, R) ≃ Hom(A, R⊗B) (2.2)

Let {bi} be a basis of of k-vector space B with b0 = 1. Then a homomorphism
from A to R ⊗ B is of the form a )→

∑
fi(a) ⊗ bi where fi : A −→ R are linear

maps. Since 1A )→ 1R⊗B , we have

f0(1A) = 1R, fi(1A) = 0 for i ̸= 0 (2.3)

The multiplicativity of the homomorphisms gives:
∑

i

fi(a1a2)⊗ bi =
∑

j,k

fj(a1)fk(a2) ⊗ bjbk

If the structure constants of B are given by bjbk =
∑

i cijkbi we find the relations

fi(a1a2) =
∑

j,k

fj(a1)fk(a2)cijk. (2.4)

Now it is clear that if we define an algebra C generated by symbols fi(a) satisfying
the relations (2.3) and (2.4), together with the relations

fi(λa1 + µa2) = λfi(a1) + µfi(a2) for λ, µ ∈ k (2.5)

then the functorial property 2.1 holds.!
Example 1.3.2. If X = Spec(k) is a point then Maps(X, Y ) = Y . If X =

Spec(k[t]/(t2)) and Y is smooth then Maps(X, Y ) coincides with TY , the total
space of the tangent bundle to Y .

Exercise 1.3.3. Let us work in the category of associative unital k-algebras,
not necessarily commuttative. Prove the following version of the theorem 1.3.1: for
a finite-dimensional algebra B and an arbitrary algebra A there exists a canonical
algebra C such that (2.2) holds. What happens if B = k[t]/(t2)?

1.4. Avoiding individual vectors. In essentially all definitions of mathe-
matical structures given in terms of linear algebra, one can restrict oneself only to
formulas containing symbols Hom, Ker, ⊕, ⊗, and so on. Also, it is convenient to
denote by 1 the standard 1-dimensional vector space k1 = k. Elements of vector
space V are the same as morphisms 1 −→ V .

For example, an associative algebra is a pair A = (V, m) where V is a vector
space and m ∈ hom(V ⊗ V, V ) is a map such that

m ◦ (m⊗ idV ) = m ◦ (idV ⊗m) ∈ Hom(V ⊗ V ⊗ V, V )

A unital associative algebra is a triple (V, m, u) where V and m are as before, and
u is not simply an element of V , but a map u ∈ Hom(1, V ) satisfying additional
axioms: both compositions

V ≃ V ⊗ 1 m−→ V, V ≃ 1⊗ V
m−→ V

coincide with the identity morphism idV , where isomorphisms V ≃ V ⊗ 1 ≃ 1⊗ V
are standard “identity” isomorphisms.

A commutative unital associative algebra is a triple (V, m, u) as before such
that

m = P(21) ◦m
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where P(21) : V ⊗ V −→ V ⊗ V is the permutation u⊗ v )→ v ⊗ u. In general, for
any finite n ≥ 0 and a permutation σ ∈ Σn we denote by Pσ the corresponding
operator on V ⊗n:

Pσ(v1 ⊗ · · ·⊗ vn) := vσ−1(1) ⊗ · · ·⊗ vσ−1(n)

Exercise 1.4.1. Rewrite the description of the algebra C in the proof of the-
orem 1.3.1 without using basis of B.

1.5. Graphs and acyclic tensor calculus. Here we introduce a class of
graphs which will be used widely in the book. These graphs depict ways to “contract
incdices” (or “compose”) several tensors.

Definition 1.5.1. An oriented graph Γ consists of the following data:
• finite set V (Γ), its elements are vertices of Γ
• finite set E(Γ), elements are edges of Γ,
• two maps head, tail : E(Γ) −→ V (Γ),
• decomposition of V (Γ) into a disjoint union of three sets

V (Γ) = Vin(Γ) 8 Vinternal(Γ) 8 Vout(Γ)

satisfying the axioms:
• for any edge e ∈ E(Γ) we have

head(e) ̸∈ Vout, tail(e) ̸∈ Vin

• for any v ∈ Vin(Γ) there exists unique e ∈ E(Γ) such that head(e) = v,
• for any v ∈ Vout(Γ) there exists unique e ∈ E(Γ) such that tail(e) = v.

Remark 1.5.2. We think of an edge e as being oriented from the head(e) to
the tail(e).

For any oriented graph Γ we denote by Ein the set of edges with the head in
Vin, and by Eout the set of edges with the tail in Vout. Edges which do not belong
to Ein 8Eout are called internal. Notice that there could be edges which belong to
both sets Ein and Eout simultaneously. Such an edge starts at a vertex in Vin and
end at vertex in Vout.

For vertex v ∈ V (Γ) we denote by Starin the set of edges e ∈ E(Γ) such that
tail(e) = v. We say that such e ends at v. Analogously, by Starout(v) we denote
the set of edges e such that head(e) = v, and we say that e ends at v.

Suppose that with every edge e of oriented graph Γ we associate a finite-
dimensional vector space Ue, and with every internal vertex v ∈ Vinternal(Γ) we
associate a linear map

Tv ∈ Hom(⊗e∈Starin(v)Ue,⊗e∈Starout(v)Ue)

Then one can define a “composition” of tensors Tv given by Γ:

compΓ((Tv)v∈Vinternal(Γ)) ∈ Hom(⊗e∈Ein(Γ)Ue,⊗e∈Ein(Γ)Ue)

The defintion is obvious: maps Tv can be considered as elements of tensor products,

Tv ∈ (⊗e∈Starin(v)U
∗
e ) ⊗ (⊗e∈Starout(v)Ue)

Graph Γ defines a way to contract some indices in ⊗v∈Vinternal(G)Tv and get the
result.
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For infinite-dimensional spaces linear maps can not be always identified with
elements of tensor products. To compose polylinear maps in arbitrary dimensions
one has to reduce the class of graphs under consideration:

Definition 1.5.3. An oriented graph Γ is acyclic if there is no cyclic sequence
of edges (ei)i∈Z/nZ, n ≥ 1, such that tail(ei) = head(ei+1) for all i ∈ Z/nZ.

It is obvious how to define composition given by an acyclic graph for polylinear
maps of arbitrary vector spaces. One should just choose a grading gr : V (Γ) → Z
on the set of vertices in such a way that for any e ∈ E(Γ) we have gr(head(e)) <
gr(tail(e)).

Trees form a particualr class of acyclic oriented graphs:

Definition 1.5.4. A tree is an oriented graph T such that Vout(T ) consists of
one element, which is denoted by rootT , and such that for any v ∈ V (T ), v ̸= rootT

there exists unique path (e1, . . . , en), n ≥ 1 from v to rootT :

head(e1) = v, tail(e1) = head(e2), . . . , tail(en) = rootT

1.6. Why it is useful to speak algebraically? There are two basic reasons:
• Structures defined linear algebraically can be transformed to a larger realm

of tensor categories (see the next section),
• Deformation theory is naturally defined for things described in terms of

linear algebra.

2. Definition of a tensor category

We are going to give a definition of tensor categories, and of various facultative
properties of them. Our terminology is slightly different from the standard one. In
[Deligne]??? the name “tensor catgeories” is used for what we will call rigid tensor
categories (see defintion 2.1.5). In what follows it is convenient to have in mind
that the typical example of a tensor category is the category Reprk,G of k-linear
representation of a given abstract group G (which is the same as the category V ectk
of vector spaces over k if G = {id}). Morally, one can think about tensor categories
as about “categories of representations without the group”.

Definition 2.0.1. A k-linear tensor category is given by the following data:
(1) a k-linear category C (which means that all morphism spaces are k-vector

spaces, and compositions are bilinear),
(2) a bilinear bi-functor ⊗ : C × C −→ C,
(3) an object 1C (denoted often simply by 1),
(4) a functorial in V1, V2, V3 ∈ Ob(C) isomorphism

a = assoc : V1 ⊗ (V2 ⊗ V3) ≃ (V1 ⊗ V2)⊗ V3)

(5) a functorial in V1, V2 ∈ Ob(C) isomorphism

c = comm : V1 ⊗ V2 ≃ V2 ⊗ V1

(6) an functorial in V ∈ Ob(C) isomorphism

u = un : V ⊗ 1 ≃ V

satisfying the following axioms:
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(1) category C is abelian, i.e. it contains finite direct sums, kernels and cok-
ernels of morphisms, and the coimages are isomorphic to images,

(2) data 2.-6. give a structure of a symmetric monoidal category on C (see
Appendix to this Chapter,

(3) morphisms of functors in data 4,5,6 are k-linear on morphisms of objects,
(4) Hom(1, 1) = k · id1

(5) for any object V ∈ Ob(C) the functor V ⊗ • : C −→ C is exact

We will describe in details the notion of a symmetric monoidal category (i.e.
data 2.-6. and axiom 2 from above) in the Appendix 9. Morally, these axiom mean
that for any finite collection of objects (Vi)i∈I one can make functorially the tensor
product ⊗i∈IVi, which is isomorphic to

V1 ⊗ · · ·⊗ Vn := V1 ⊗ (V2 ⊗ · · ·⊗ (Vn−1 ⊗ Vn) . . . )

if I = {1, . . . , n}. In particular, on

V ⊗n := V ⊗{1,...,n} = V ⊗ · · ·⊗ V (n times)

acts the symmetric group Σn. The action of σ ∈ Σn we will denote by Pσ.
Notice that the data 2.-4. in the definition of a tensor category are completely

parallel to the axioms in the definition of a unital commutative associative algebra
(see 1.4).

Remark 2.0.2. It is clear from the definitions that one can perform acyclic
tensor calculus in an arbitrary tensor category. In particular, if Γ is a graph, and
we are given a map E(Γ) → Ob(C), then the composition maps described in the
Section 1.5 can be defined by the same formulas.

Finally, we would like to mention that one can drop the requirement for C to be
k-linear. In that case we arrive to the notion of symmetric monoidal category con-
sidered in the Appendix. Most of the properties and constructions of this Chapter
can be generalized to the case of symmetric monoidal categories.

2.1. Facultative properties of tensor categories.

Definition 2.1.1. A tensor category C has Hom-s (inner homomorphisms) and
called inner if for any two objects U, V ∈ Ob(C) there exists an object Hom(U, V )
and a functorial in W ∈ Ob(C) isomorphism

Hom(W, Hom(U, V )) ≃ Hom(W ⊗ U, V ))

If C has Hom-s then the construction (U, V ) )→ Hom(U, V ) can be canonically
amde into a bilinear functor Cop × C −→ C. Applying the universal property to
the case W := Hom(U, V ) mapped identically to itself, we get canonical morphism

U ⊗ Hom(U, V ) −→ V

Example 2.1.2. In the category Repk,G, for two representations U and V
vector space Hom(U, V ) is the space of interwinning operators. Object Hom(U, V )
is the representation of G in the space Hom(forget(U), forget(V )) where

forget : Repk,G −→ V ectk

is the functor associating with a representation the underlying vector space. Notice
that we have a canonical identification

Hom(U, V ) ≃ Hom(1, Hom(U, V ))
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which holds in fact in general tensor category.

Tensor categories with Hom-s and infinite sums and products behave in almost
all respects exactly as the category V ectk.

Definition 2.1.3. Let C be an inner tensor category. An object U of C is called
finite iff there exists an object U∗ and a homorphism U ⊗ U∗ −→ 1 such that for
any V ∈ ObC induced maps

U∗ ⊗ V −→ Hom(U, V ), U ⊗ V −→ Hom(U∗, V )

are isomorphisms.

It follows immediately that U∗ is functorially isomorphic to Hom(U, 1). For
example, in tensor category Repk,G finite objects are exactly finite-dimensional
representations. We adopt notation U∗ := Hom(U, 1) also for non-finite objects in
tensor categories with Hom-s.

For a finite U we have canonical maps

U ⊗ U∗ −→ 1 and 1 −→ U∗ ⊗ U

The first morphism comes from the evaluation morphism U ⊗ Hom(U, 1) −→ 1,
and the second morphism comes from the identity morphism

idU ∈ Hom(U, U) = Hom(1, Hom(U, U)) = Hom(1, U∗ ⊗ U)

Thus, we can form the composition

1 −→ U∗ ⊗ U ≃ U ⊗ U∗ −→ 1

which is an element of Hom(1, 1) = k called the rank of V and is denoted by
rank (V ).

Example 2.1.4. In the category of vector spaces the rank rank (V ) coincides
with the usual dimension dim (V ) ∈ N considered as an element of k.

Definition 2.1.5. An inner tensor category is called rigid if all its objects are
finite.

An example of a rigid tensor category is the category of finite-dimensional
vector spaces, or of finite-dimensional representations of a group.

3. Examples of tensor categories

3.1. Classical examples. In classical examples objects are vector spaces en-
dowed with an additional structure, and the ternsor product, commutativity and
associativity morphisms are the same as in the the category of vector spaces. In
other words, tensor category C is considered together with a faithful symmetric
monoidal functor F : C −→ V ectk. Such a functor is called fiber functor.

• the basic example: tensor category V ectk of vector spaces,
• the category Repk,G of k-linear representations of an abstract group G,
• category A −mod of modules over a cocommutative bialgebra A over k,
• category A − comod of comodules over a commutative bialgebra A.
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The second example contains in the third: one takes A be equal to the group
algebra k[G] of an abstract group G.

Notice that if k is not algebarically close, there could be several non-isomorphic
fiber functors for the same tensor category C. For example, if G1, G2 are two affine
algebraic groups over k which are inner twisted forms of each other, then Repk,G1

is equivalent to Repk,G2 .

3.2. Supervector spaces. Tensor category Superk of supervector spaces over
k is defined as follows: as monoidal category it is identified with the category
Repk,Z/2Z of representations of Z/2Z, i.e. Z/2Z-graded vector spaces. The com-
mutativity morphism

comm : V ⊗ U −→ U ⊗ V

on homogeneous elements is

comm(v ⊗ u) =

{
−u ⊗ v if both u and v are odd,

u⊗ v otherwise

The check of axioms of a tensor category is straightforward. If a choice of the
ground field k is clear, we will skip it from the notation.

Another way is to define Super using the axiomatics of acylic tensor calculus.
Namely, the space Hom((Vi)i∈I , (Uj)j∈J) for two finite collections of Z/2Z-graded
vector spaces can be defined as

⊕

ϵ:I−→{0,1}
ϵ′:J−→{0,1}∑

ϵ(i)=
∑

ϵ′(j)(mod2)

HomV ect(⊗i∈IV
ϵ(i)

i ,⊗j∈JU ϵ′(j)
j ) ⊗D(ϵ, ϵ′)

where D(ϵ, ϵ′) is one dimensional vector space equal to the top exterior power of

k{i∈I|ϵ(i)=1}+{j∈J|ϵ′(j)=1}

There are no artificial signs in the definition of tensor products and compositions
of polymorphisms.

The tensor category Superk is “almost” the representations of Z2:

Exercise 3.2.1. Constructions of categories Repk,G where G is a group, or
Superk can be performed in arbitrary tensor category. Check that the category
of supervector spaces in Superk is equivalent to the category of representations of
Z/2Z in Superk.

3.3. Z-graded spaces, complexes. (4) The category V ectZk . This is a gen-
eralization of the previous example. Objects of the category V ectZ are infinite
sums V = ⊕n∈ZV n of k-vector spaces. We assign the grading n to all elements of
V n. The tensor product is the natural one: for two graded spaces V, W we define
V ⊗W = ⊕nUn, where Un = ⊕i+j=nV i⊗W j . Then the associativity constraint is
given by the identity map, and the commutativity morphism is completely deter-
mined on the graded components: V n ⊗Wm →Wm⊗ V n is given by the flip map
multiplied by (−1)nm. One can check that in this way we obtain a tensor category
with the unit object 1 given by the graded space which has all zero components,
except 10 = k. Sometimes we will denote it simply by k.

For a graded vector space V and an integer i we denote by V [i] the new graded
vector space, such that (V [i])n = V n+i.
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Let k[−1] denotes the graded vector space 1[−1]. Then V [−i] = V ⊗ k[−1]⊗i.
To be pedantic, we will sometimes write V = ⊕n∈ZV n[−n]. This means that we
consider the graded components V n as vector spaces having degrees zero. We hope
such a notation will not lead to a confusion.

(5) The category of complexes K of vector spaces is a tensor category. We leave
to the reader to work out the details similarly to the previous example. There are
natural tensor functors K → V ectZk (forgetful functor), V ectZk → Superk (all V 2n

receive degree zero, all V 2n+1 receive degree one).
There are plenty of geometric examples of symmetric monoidal and tensor

categories.
(6) The category of topological spaces with the operation of disjoint union as

a tensor product, and the empty space as the unit object. One can make similar
categories of smooth manifolds, algebraic varieties, smooth projective varieties, etc.
All those are symmetric monoidal categories.

(7) The category of topological spaces with the Cartesian product as a tensor
product is a symmetric monoidal category. There is no canonically defined unit
object. But all unit objects (points) are naturally isomorphic.

An important class of tensor categories consists of semi-simple ones.
Each object of a semi-simple category is, by definition, a finite sum of simple

objects. A tensor category is called semi-simple if it is semi-simple as a category.
If C is a semi-simple tensor category, then the tensor product of two objects

X ⊗ Y is a finite sum of some other objects.
The category of vector spaces V ectk and all its cousins (like Superk, V ectZk ,

K are semi-simple. Hovewer, there are many tensor categories which are not semi-
simple. For example Repk,G is not always semisimple (it is such, if G is a reductive
group).

Exercise 3.3.1. Define a tensor product of two semi-simple tensor categories
over a field of characteristic zero in such a way that the tensor product of the
representation categories of two finite groups becomes the representation category
of their product.

Then show that
Superk ⊗ Repk,Z2

= Superk ⊗ Superk.
This result means, that in some sense, Superk is the representations of a

“twisted form of Z2.”

An analog of the category of finite-dimensional spaces is given by rigid tensor
categories.

A rigid tensor category is a tensor category C together with a duality functor
∗ : Cop → C together with functorial morphisms 1 → V ⊗ V ∗, V ∗ ⊗ V → 1. There
are natural axioms for these morphisms. It is also required that any object is a
dual to some. It implies that there is a functorial isomorphism V → V ∗∗.

The rigidity of C gives rise to a map rank: Ob C → k = Hom(1,1). First
we define the trace map TrV of as a composition Hom(V, V ) → Hom(1, V ∗ ⊗
V ) → Hom(1, 1) = k. Then we define rank(V ) as TrV (idV ). It is easy to see
that rank(V ⊗ W ) = rank(V )rank(W ) and rank(1) = 1. In V ectk we have:
rank(V ) = dim(V ).

In the rigid tensor category of supervector spaces, the rank of (V0, V1) is dimV0−
dimV1. We will call the pair (dimV0|dimV1) the superdimension of V .
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Since the rank can be negative, the category Superk is not equivalent to the
category Repk,G for any G.

The following theorem was proved by Deligne (see his paper in Grothendieck
Festschrift, vol.2).

Theorem 3.3.2. Let k be an algebraically closed field of characteristic zero, C
a rigid tensor category. If ranks of all objects are non-negative integers then there
is a fiber functor

F : C → Vectk (this means that F is faithful and commuting with the tensor
structures).

Corollary 3.3.3. There is a commutative Hopf algebra A over k such that C
is the category of comodules over A.

Having this result we can in fact reconstruct an affine pro-algebraic group G,
such that A is the algebra of functions on it. Roughly speaking, G is the group
Aut(F ) of automorphisms of F as a tensor functor.

Let us say few more words about the proof and the reconstruction of G. Since
the latter can be infinite-dimensional, one has to be careful. First one takes End(F ),
which is the Hopf algebra of endomorphisms of the tensor functor F . It is easy to
see that it is a cocommutative Hopf algebra. Thus the dual to it is the algebra we
need. The rest of the proof follows from the general fact about commutative Hopf
algberas.

Proposition 3.3.4. Then A is an inductive limit of Aα, where Aα is finitely
generated, i.e. functions on an affine scheme of finite type which is in fact an
algebraic group.

Thus C is the category of representations of an affine pro-algebraic group.
Deligne and Milne gave an example of a rigid tensor category in which the

rank takes noninteger values. This semisimple rigid abelian category is denoted by
GLt. It can be considered as a “continuation” of the category RepQ,GLn of the
finite-dimensional representations of the linear group GLn to non-integer n. Base
field for GLt is the field of rational functions Q(t). There is an object T in the
category with the rank equal to t. Therefore GLt is not a category of the type
Repk,G. More details will be given in the next subsection.

We would like to finish this subsection with the following

Conjecture 3.3.5. Rigid tensor categories with ranks in Z can be of two types:
comodules over commutative Hopf algebras or comodules over supercommutative
Hopf algebras.

4. Tensor category GLt

Let us consider the category A such that its objects are : empty set, or finite
collections S of 0-dimensional oriented manifolds together with a partition S =
S+∪S− into two subsets. In other words, objects are pairs (m, n) ∈ Z2

+. We define
Hom(S1, S2) as the set of classes of diffeomorphisms of oriented 1-dimensional
manifolds L such that ∂L = S1 ∪ S2. We equip the category with a symmetric
monoidal structure, which is induced by the operation of disjoint union of objects.
The unit object 1 corresponds to the empty set with the identity morphism. We
can make A into a Q-linear category, taking formally Q-linear combinations of
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morphisms. Then End(1) is isomorphic to Q[t] where t is the diffeomorphism class
of the unit circle S1 . Moreover, A is a rigid tensor category with (m, n)∗ = (n, m)
(taking the opposite orientation).

Suppose that C is a rigid tensor category, V ∈ Ob(C). Then there is a tensor
functor F : A → C such that F (m, n) = V ⊗m ⊗ V ∗⊗n. We will denote the RHS
of this formula by T (m,n)(V ). Let us take C to be the category V ectf of finite-
dimensional C-vector spaces. Then for fixed m, n, and rk(V ) = dimC(V ) ≥ n + m
we have: End(T (m,n)(V )) ≃ C[Sm+n ] (group algebra of the symmetric group).
In particular , it does not depend on V . It implies that the algebra Am,n =
End(T (m,n)(V )) is semisimple (finite sum of matrix algebras). We can extend A
in two steps: a) extending scalars to rational functions Q(t), so that End(m, n) is
replaced by End(m, n) ⊗Q(t); b) adding idempotents corresponding to the pro-
jectors to the irreducible components of T (m,n)(V ) (the latter extension is called
Karoubian envelope). The resulting tensor category is called GLt. It contains
objects with the rank which is not an integer, but a rational function in t.

5. Signs and orientations

6. Applications of supermathematics

6.1. Identification of symplectic and orthogonal geometry. Let V be
a supervector space, B a bilinear form on V with values in 1=k (the unit object
in the tensor category Superk). Then we can apply the functor of changing the
parity ΠV = V ⊗ k0|1. In this way we get a new bilinear form B̃ on ΠV . It is
given by B̃ = B ⊗ ν , where ν : k0|1 ⊗ k0|1 → 1 is the bilinear form such that
ν(aε, bε) = ab, a, b ∈ k, ε is the fixed base element of k0|1. If B is a skew-symmetric
form than B̃ is symmetric (in graded sense).

Then we have the following informal observation: Sp(2n) ≃ O(−2n).
We are going to interpret this isomorphism in purely classical terms (i.e. with-

out supermathemtics).
Let g be a Lie subalgebra of gl(V ), where V is a finite-dimensional vector space.

Suppose that the bilinear form tr(XY ) is nondegenerate on g. This leads to many
numerical invariants of g as follows. Let us choose an orthonormal base {Xi} of g.
Then the structure constants cijk of g in this base are totally skew symmetric.

Now let us fix a word in some alphabet, and divide it into three letter subwords.
Suppose that each letter appears twice in the word. For instance: ijk jik. Then
we can construct the sum

I =
∑

i,j,k

cijkcjik.

This number is independent of the choice of orthonormal basis.
For example if g is semisimple Lie algebra then it carries the Killing form

⟨x, y⟩ = tr(adx · ady). Then in the orthonormal base as above we can write for the
trace of the identity operator acting in g:

dimg =
∑

i

⟨Xi, Xi⟩ =
∑

i

tr(adXi)2 =
∑

i,j,k

cijkcikj

Hence I = dimg depends on g only.
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All such words are labeled by trivalent graphs (vertex = subword, edge =
letter).

Now look at the algebras

−4 −3 −2 −1 0 1 2 3
Sp(4) 0 Sp(2) 0 0 0 o(2) o(3)

Exercise 6.1.1. Any of the invariants above is given by the values of a poly-
nomial in n.

Example 6.1.2. Dimension of o(n) = n(n− 1)/2, of sp(m) is m(m + 1)/2.

The best solution of this problem uses the functor Π in supermathematics, if
one observes that o(1 − 2n) ≃ osp(1, 2n). More generally, one could also look at
osp(n|2m). This is a Lie superalgebra defined by a nondegenerate even bilinear
form.

6.2. Where does the De Rham complex come from? The following idea
has been already discussed.

Let A0|1 be the superscheme whose function ring is the symmetric algebra
S((k0|1)∗) = k1|1 = k[ϵ] where ϵ is an odd variable (ϵ2 = 0).

Aut(A0|1) is the function algebra of a supergroup scheme of automorphisms of
A0|1. Its comodules are Z-graded complexes.

On a manifold X, we have the scheme of maps from A0|1 to X. The auto-
morphism group of A0|1 acts on it. We have shown that it leads to the De Rham
complex of X.

7. Pseudo-tensor categories, operads, PROPs

In [BD] the notion of pseudo-tensor category was introduced as a generaliza-
tion of the notion of symmetric monoidal (=tensor) category. Similar notion was
introduced by Borcherds under the name multi-linear category.

This notion is essentially equivalent to the notion of colored operad (see Chapter
5).

Definition 7.0.1. A pseudo-tensor category is given by the following data:
1. A class A called the class of objects, and a symmetric monoidal category V

called the category of operations.
2. For every finite set I, a family (Xi)i∈I of objects, and an object Y , an object

PI((Xi), Y ) ∈ V called the space of operations from (Xi)i∈I to Y .
3. For any map of finite sets π : J → I , two families of objects (Yi)i∈I , (Xj)j∈J

and an object Z, a morphism in V

PI((Yi), Z)⊗ (⊗iPπ−1(i)((Xji), Yi))→ PJ((Xj), Z)

called composition of operations. Here we denote by ⊗ the tensor product in M.
4. For an 1-element set • and an object X, a unit morphism 1V → P•((X), X).
These data are required to satisfy natural conditions. In particular, composi-

tions of operations are associative with respect to morphisms of finite sets, and the
unit morphisms satisfy the properties analogous to those of the identity morphisms
(see [BD96] for details).
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If A is a set, then a pseudo-tensor category is exactly the same as an A-colored
operad in the tensor category V.

If we take V to be the category of sets, and take I above to be 1-element sets
only, we obtain a category with the class of objects equal to A.

Pseudo-tensor category with one object is called an operad. We will study
operads in Chapter 5.

A symmetric monoidal category A (see Appendix) produces the symmetric
monoidal category with PI((Xi), Y ) = HomA(⊗iXi, Y ).

The notion of pseudo-tensor category admits a generalization to the case when
no action of symmetric group is assumed. This means that we consider sequences
of objects instead of families (see [So99]). The new notion generalizes monoidal
categories.

Finally, we mention that small symmetric monoidal categories are closely re-
lated to PROPs. One can describe PROPs similarly to pseudo-tensor categories.
Namely a k-linear PROP is given by a class of objects A, and for any finite sets
I, J , families of objects (Xi)i∈I , (Yj)j∈J a vector space PI,J((Xi)i∈I , (Yj)j∈J). Col-
lections PI,J satisfy natural properties which generalize those for k-linear pseudo-
tensor categories. For example, a PROP with one object X is determined by the
collection of sets Pn,m = Hom(X⊗n , X⊗m), as well we natural compositions be-
tween them.

PROPs form a category with the naturally defined morphisms.
The following result describes the relationship of PROPs with tensor categories.

Proposition 7.0.2. Category of PROPs is equivalent to the category formed
by objects given by the data a) and b) below:

a) it is a tensor category C such that Ob(C) = (E0, ..., En, ...) are in one-to-one
correspondence with non-negative integers.

b) isomorphisms En ≃ E⊗n
1 (in particular, E0 ≃ 1).

Proof. We define P{1,...,n},{1,...,m} = HomC(En, Em). It is easy to check that
this is the desired equivalence. !

Let I be a set. One defines I-colored PROPs similarly to the ordinary PROPs
replacing finite sets by finite I-sets. Recall that a finite I-set is a finite set J
plus a map J → I. We leave to the reader to work out the definition of the I-
colored PROP and prove, that to have an I-colored PROP is the same as to have
a tensor category C with objects Xn1,...,nk, ni ≥ 0 such that introducing objects
Xei , i ≥ 0, ei = (0, ..., 1, ..., 0) (1 on the ith place) one has isomorphisms Xn1,...,nk ≃
X⊗n1

e1
⊗ ...⊗X⊗nk

ek
.

PROPs can be used to encode data of linear algebra.

Example 7.0.3. Let G be an affine group scheme over a field k, V = O(G)
algebra of regular functions on G. Then we have a PROP generated by the following
data:

a) k → V (unit);
b) V ⊗ V → V (product);
c) V → V ⊗ V (coproduct);
d) V → V (antipode).
These data are subject to the well-known Hopf algebra axioms (associtivity of

the product, coassociativity of the coproduct, etc.).
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In this way we obtain a PROP, which encodes in terms of linear algebra the
affine group structure.

Example 7.0.4. Suppose that an affine group G acts on an affine scheme X.
Then, in addition to a)-d) from the previous example, we have a)-b) for W = O(X)
as well as the homomorphism of algebras W → V ⊗W which encodes the group
action. These data satisfy well-known axioms, which gives rise to a PROP, which
encodes in terms of linear algebra the group action.

Example 7.0.5. Let V be a vector space over k. Then we have the endomor-
phism PROP End(V ) such that End(V )(n, m) = Hom(V ⊗n, V ⊗m). Using this
example one can define a representation of an arbitrary PROP H as a morphism of
PROPs H → End(V ). Sometimes, we will say that V is an algebra over the PROP
H .

Concerning the last example, we remark that for an I-colored PROP H one
can say what is the representation of H in V ectk. In this case one assigns an
object V ∈ V ectk to each color (i.e. element of I). It is easu to see that to have a
representation of H in V ectk is teh same as to have a tensor functor C → V ectk,
where C is the tensor category associated to the PROP H (see above).

8. Supermanifolds

8.1. Definitions. So far we have been doing linear algebra in tensor cate-
gories. Our main example was the category of supervector spaces and its immedi-
ate generalizations. We would like to do some differential and algebraic geometry
within the same framework. For example we want to have “manifolds” which locally
look as commutative superalgebras. We do not want to go into detailed discussion
of the topic. There are several books devoted to what is called “supergeometry”.
We briefly recall main ideas.

We use with the standard convention about signs which was suggested by
Quillen. Namely, we write ± for

(−1)sign of permutation of odd symbols,

and ∓ for −±.
For example, in a super Lie algebra case we write [x, y] = ∓[y, x], [x, [y, z]] =

[[x, y], z]± [y, [x, z]].

Definition 8.1.1. A supermanifold of superdimension n|m is a topological
space X equipped with a sheaf of topological supercommutative associative algebras
with unit, which is locally isomorphic to the standard model Rn|m. This means
that its underlying space is Rn, and the functions on an open subset are elements
of C∞(U)⊗ S((R0|m)∗) (we write it this way rather than as a wedge product).

Then locally X has n “even” and m “odd” coordinates.

Theorem 8.1.2. Every n|m-dimensional supermanifold Y is isomorphic to the
one coming from a vector bundle V of rank m on an ordinary n-dimensional man-
ifold X. The latter defines a supermanifold for which the functions are sections of
the wedge powers of V ∗.

We denote the algebra of functions on a supermanifold X by O(X). It is clear
how to make supermanifolds into a symmetric monoidal category. For this we define
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a morphism of a category of supermanifolds. A morphism X → Y in this category
is a morphism of ringed spaces. Then (locally) it is a pair (φ,ψ) such that φ is
a morphism of underlying usual (even) smooth manifolds and ψ : O(Y ) → O(X)
is a homomorphism of supercommutative algebras with unit such that ψ(f)(x) =
f(φ(x)) for any f ∈ O(Y ), x ∈ X.

This definition works for superschemes as well.

Exercise 8.1.3. (on composition of maps). Consider R1|2k, mapped to R by
the formula

y = x + ξ1η1 + ... + ξkηk.

Here x is the even coordinate and ξi, ηi are odd coordinates.
Now let z = sin(y). What is z(x, ξ, η)?

Definition 8.1.4. Supervector bundle over supermanifold Y is a sheaf of OY -
modules which is locally free and finitely generated (i.e.locally is OY ⊗Rk|l).

If V is a super vector bundle, we denote by totV is its total space considered
as a supermanifold.

We have all standard operations on vectors bundles over supermanifolds:
direct sum, tensor product, dual, change of parity operator Π (defined as the

tensor product with R0|1).
There are four bundles naturally associated with a supermanifold Y :

TY Y, ΠTY , T ∗
Y , ΠT ∗

Y .

Exercise 8.1.5. 1. Define a structure of Lie superalgebra on the sections of
TY .

2. Define an odd vector field D on the total space ΠTY of ΠTY such that
[D, D] = 0. Note that the functions on ΠTY are called differential forms on Y .

There are 3 versions of differential forms. Let xi, ξj be coordinates on Y .
(a) all C∞ functions in Dξj ;
(b) all polynomials in Dξj ;
(c) all distributions in Dξj .
We will use only the choice (b) (If Y is an ordinary manifold, this problem does

not arise.)
3. Define a closed (even) non-degenerate 2-form ω on T ∗Y . Its inverse is a

bivector field on T ∗Y , which gives a Poisson bracket on functions on T ∗Y , making
them a Lie superalgebra.

If Y is even then it is the standard symplectic structure on T ∗Y .
4. Define an odd closed 2 form on ΠT ∗Y to get an odd Poisson structure, and

get again a Lie superalgebra structure which in the case where Y is even is the
Schouten bracket on the polyvector fields.

Remark 8.1.6. In the presence of odd coordinates, one cannot integrate differ-
ential forms. One can see this by looking at changes of coordinates. To solve this
problem one introduces a new concept of integral. It is called Berezin integral. The
new theory ofintegration requires “integral forms” which can be integrated, but not
multiplied.
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8.2. Superschemes. Here we briefly recall how to define the notion of a
scheme in the framework of supermathematics. Most of what we say should work
in arbitrary tensor category.

Let us recall the standard case. Affine schemes over k are commutative associa-
tive algebras with unit, but with arrows reversed. We denote by O(S) the algebra
of functions on an affine scheme S. We denote by Spec(A) (or SpecA) the affine
scheme corresponding to a commutative k-algebra A.

There is a notion of L-points of an affine scheme Spec(A) where L is another
commutative unital k-algebra. By definition points are homomorphisms of unital
k-algebras A → L. In particular k-points of Spec(A) are algebra homomorphisms
A→ k,

One can “superize” the above definitions in the obvious way using supercom-
mutative algebras instead of commutative ones. What we get is the notion of affine
superscheme.

Example 8.2.1. Let V be a supervector space. Consider S(V ), which is the
direct sum of symmetric powers of V . The latter is defined as the coinvariants of
the (super) action of the symmetric groups on the tensor powers of V .

Notation: when dimV = n|m , we write Spec(S(V ∗)) = An|m.
A general finitely generated affine superscheme corresponds to the quotient of

such an algebra by a Z2-graded ideal.

8.3. Diffeomorphisms of 0|1-dimensional space. Let S = Maps(A0|1, A0|1).
We put A = B = O(A0|1) = k1|1. Let ξ be the odd coordinate on A0|1. For f ∈ S
we have: f(ξ) = a + bξ. The generators are a = a(f) (odd) and b = b(f) (even).

The function ring O(S) is isomorphic to k[b]⊗ k[a]/(a2).
Composition of functions gives us the coproduct on this algebra. If f1(ξ) =

a1 + b1ξ and f2(ξ) = a2 + b2ξ then f1(f2(ξ)) = a2 + b2a1 + b1b2ξ. Therefore:
∆(b) = b⊗ b,
∆(a) = a⊗ 1 + b⊗ a.
Let us denote by S∗ the set of automorphisms of A0|1, i.e. invertible elements

of S.
This is a closed supersubscheme of S × S (pairs of automorphisms with their

inverses). Clearly S∗ is a group object in the category of superschemes. Then
O(S∗) is a Hopf algebra.

We write S∗ = Gm ×Ga, where Gm is Spec[b, b−1] and Ga is A0|1.

8.4. Representations of the group scheme S∗. A representation of S∗

is a supervector space V with a right comodule structure ρ : V → V ⊗ O(S∗) =
V ⊗ k[b, b−1, a]/(a2).

We can write it as v )→
∑

n(Pn(v)⊗ bn ±Qn(v)⊗ abn), where almost all Pn(v)
and Qn(v) are equal to zero for any given v. Here Pn, Qn are linear morphisms of
V .

Now we need commutativity of some diagrams to specify that we have a coalge-
bra action (compatibility with coproduct and counit). These give rise to identities
for Pn and Qn. Namely, let ∆ be the coproduct of the Hopf superalgebra O(S∗).
Then ∆(b) = b ⊗ b, ∆(a) = a ⊗ 1 + b ⊗ a. Compatibility of ρ with ∆ means that
(id⊗∆)ρ = (ρ⊗ id)ρ. Then we have

(id⊗∆)ρ(v) =
∑

n

Pn(v) ⊗ bn ⊗ bn ±
∑

n

Qn(v) ⊗ (abn ⊗ bn + bn+1 ⊗ abn)
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and
(ρ⊗ id)ρ(v) =

∑
m,n(PmPn(v)⊗ bm⊗ bn ± PmQn(v)⊗ abm⊗ bn ±QmPn(v)⊗

bm ⊗ abn + QmQn(v) ⊗ abm ⊗ abn).
Comparing these equations we obtain:
PnPm = δnmPn, PmQn = δm,n+1Qn, QmPn = δmnQn, QmQn = 0.
We also remark that the coaction ρ is given by the formula f(v) )→ f(gv)

where g is an element of the supergroup. In particular if g is the unit element then
f(gv) = f(v). It corresponds to a = 0, b = 1 in the formulas for ρ, and hence∑

n Pn(v) = v for any vector v (equivalently it follows from the diagram for the
compatibility of ρ and the counit).

From these considerations we obtain the following equations for Pn:
Pk ◦ Pl = 0, k ̸= l,
Pn ◦ Pn = Pn,∑

n Pn = IdV .
In other words, we have commuting projections which give a direct sum de-

composition of V making it into a Z-graded vector space V = ⊕kV k.
We also conclude that Qk maps V k to V k+1 and Q2

k = 0.
So we get exactly complexes!

Remark 8.4.1. “Correct category” which arises in practice is not the full tensor
category of complexes of supervector spaces, but its tensor subcategory, consisting
of those complexes, for which V even is even and V odd is odd. If we forget the
differential of a complex, then we obtain an object of the tensor category V ectZk .

8.5. Another remark on the origin of De Rham complex. Let X be an
affine superscheme. It is easy to see that ΠTX = Maps(A0|1, X). Then O(ΠTX)
is the algebra generated by a and da, for a ∈ O(X), with relations given by those
in the ordinary algebra of functions, together with d(ab) = (da)b ± a(db).

By general nonsense, the scheme S∗ = Aut(A0|1) acts on Maps(A0|1, X) mak-
ing it into a differential graded algebra. In this way we obtain the algebra of
differential forms on X.

9. Appendix: Symmetric monoidal categories

9.0.1. A glimpse of the classical definition. Tensor category is a “linear” version
of a more general notion of symmetric monoidal category. A symmetric monoidal
category consists of a category C, a functor ⊗ : C × C −→ C, the unit object
1 ∈ Ob(C), and associativity, commutativity and unit morphisms as in the defini-
tion 2.0.1 satysfying certain coherence axioms (see [MacLane]???). These axioms
(pentagon axiom, hexagon axiom etc.) are quite complicated.

Here we will use a different approach which seems to be more transparent. The
idea is to change slightly the data putting inside all possible universal constructions.

Later we will see an analogous of algebraic structures in terms of operads (see
Chapter 5).

Definition 9.0.1. A symmetric monoidal category C is the following data:
(1) a class Ob(C) called the class of objects
(2) a set Hom((X1 , . . . , Xn), (Y1, . . . , Ym)) (of polymorphisms) for any non-

negative integers n, m ≥ 0, objects X1, . . . , Xn ∈ Ob(C) and Y1, . . . , Ym ∈
Ob(C)
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(3) a bijection

: iσ,σ′ : Hom((X1, . . . , Xn), (Y1, . . . , Ym)) ≃ Hom(Xσ(1), . . . , Xσ(n); (Ysigma′(1), . . . , Yσ′(m))

for any permutations σ ∈ Σn, σ′ ∈ Σm and any (Xi), (Yj) ∈ Ob(C)
(4) an element idX ∈ Hom(X; X) for any X ∈ Ob(C)
(5) a map (called composition)

Hom((X1, . . . , Xn), (Y1, . . . , Ym)) ×Hom((X′
1 , . . . , X

′
n′), (Y ′

1 , . . . , Y ′
m′))

−→ Hom((X1, . . . , Xn, X′
2, . . . , X

′
n′), (Y − 2, . . . , Yn, Y ′

1 , . . . , Y
′
m′)

for any n, m′ ≥ 0, n′, m ≥ 1 and any (Xi), (X′
i), (Yi), (Y ′

i ) such that X′
1 =

Y1

(6) a map (called tensor product of polymorphisms)

Hom((X1, . . . , Xn), (Y1, . . . , Ym)) ×Hom((X′
1 , . . . , X

′
n′), (Y ′

1 , . . . , Y ′
m′))

−→ Hom((X1, . . . , Xn, X′
1, . . . , X

′
n′), (Y1, . . . , Ym, Y ′

1 , . . . , Y
′
m′))

satisfying axioms
(1) ıσ2,σ′

2
◦ıσ1,σ′

1
= ıσ2◦σ1,σ′

2◦σ′
1
, which means that we can associate canonically

the set Hom((Xi)i∈I , (Yj)j∈J) with any finite collections (Xi)i∈I , (Yj)j∈J

of objects,
(2) composition of any polymorphism f with the identity morphism on the

left and on the right coincides with f ,
(3) (associativity of compositions) Let Γ be an oriented acyclic graph and for

each edge e ∈ E(Γ) we choose an object Xe ∈ Ob(C). Using numerations
of some sets of edges, and compositions and tensor prodcuts in some order,
one can define subsequently contract internal edges of Γ, and obtain a map

∏

v∈Vint(Γ)

Hom((Xe)e∈Starin(v), XStarout(v)) −→ Hom((Xe)e∈Ein(Γ), (Xe)Eout(Γ))

The axiom is that this map should not depend on numerations, and on
the order in which we perform compositions and tensor products.

(4) for any finite collection of objects (Xi)i∈I there exists an object Y ∈
Ob(C) and morphisms f ∈ Hom((Xi)i∈I , Y ), g ∈ Hom(Y, (Xi)i∈I) such

that composition f ◦ g is equal to idY , and composition g ◦ f is equal to
the tensor product of (idXi)i∈I .

The structure of a category is given by polymorphisms betwen one-element
families. The object Y in the last axiom is defined uniquely up to a canonical
isomorphism. We denote it by ⊗i∈IXi. The identity object 1C is defined as the
tensor product of the empty family of objects.

If one omits the last axiom, one get a weaker structure which arises if one pick
an arbitrary subclass (and denote it by Ob(C) in Ob(C̃) where C̃ is a symmetric
monoidal category.

9.0.2. Examples. Here we show few examples of “non-linear” symmetric monoidal
categories:

Example 9.0.2. Let C = Sets be the category of sets, the tensor product is
defined as X ⊗ Y := X × Y , the unit object is the one-element set. Morphisms
of associativity, commutativity and unit are obvious. Analogous definitions can
be done in arbitrary category with finite products, e.g. for groups, vector spaces,
topological spaces, etc.
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Example 9.0.3. Again in the category Sets , we define the tensor product as
X ⊗ Y := X 8 Y , the unit object is the empty set. Analogous definition works in
any category with finite sums.

Example 9.0.4. C is the category of A-modules where A is a commutative
associative unital ring. The tensor product is the usual tensor product over A.

9.0.3. Monoidal categories. This is a weakened notion relative to symmetric
monoidal categories. One should remove permutations of indices from the data,
and consider graphs Γ endowed with complete orderings on the sets Starin(v),
Starout(v) for all vertices. The tensor product ⊗i∈IXi is defined in monoidal cat-
egory if the labeling set I is totally ordered.

Example 9.0.5. Let C be a small category (i.e. the class of objects is in
fact a set). Then the category of functors Funct(C, C) is a monoidal category.
Morphisms are natural transformations of functors, monoidal structure is given by
the composition, the unit object is the identity functor IdC .

Example 9.0.6. Let A be an associative unital algebra. The category C of
bimodules over A, (i.e. A ⊗Aop-modules is a monoidal category.

9.0.4. Braided monoidal categories. This is an intermediate notion between
monoidal and symmetric monoidal categories. The tensor product ⊗i∈IXi is de-
fined if the labeling set I is a subset of R2. Let I1 and I2 be two n-element
subsets of R2. Any homotopy class of paths between I1 and I2 in the space
{n − element subsets of R2} should give a canonical isomorphism between corre-
sponding tensor products. In particular, for any object X on its n-th tensor power
corresponding to the subset {(1, 0, (2, 0), . . . , (n, 0} ⊂ R2 acts the braid group Bn

(nad not Σn as for symmetric monoidal categories). We will not discuss here in
details the notion of a braided monoidal category because it will be not used further.

9.0.5. Functors between symmetric monoidal categories.

Definition 9.0.7. Let C and C′ be two symmetric monoidal categories. A
symmetric monoidal functor from C to C′ consists of a map F : Ob(C) −→ Ob(C′),
and maps

HomC((Xi)i∈I , (Yj)j∈J)) −→ HomC′ (((F (Xi))i∈I , (F (Yj))j∈J ))

such that permutations, identity morphisms, tesnor products and compositions in
C go to analogous operations in C′.

One can also define the notion of a natural transformation between two sym-
metric monoidal functors. Also, one can drop the commutativity and speak about
monoidal functors between monoidal categories.

Exercise 9.0.8. Fill the detailes in definitions and prove if C is a monoidal
category then the category of monoidal endofunctors of C carries a natural structure
of a braided monoidal category.

9.0.6. Enrichment by symmetric monoidal categories. In many definition in
category theory one can replace sets by objects of symmetric monoidal categories.
For example, see what happens if one tries to replace sets of morphisms in categories
by something else:
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Definition 9.0.9. Let C be a symmetric monoidal category. A C-enriched
category B consists of a class of objects Ob(B), an object Hom(X, Y ) ∈ Ob(C) for
any X, Y ∈ Ob(B), the unit idX : 1C −→ Hom(X, X) (a morphism in C) for any
X ∈ C and the composition compX,Y,Z : Hom(X, Y ) ⊗ Hom(Y, Z) −→ Hom(X, Z)
(another morphism in C) satisfying obvious analogs of the usual axioms.

Any category is automatically Sets-enriched with the monoidal structure on
Sets given by the cartesian product. Conversely, for any C-enriched category one
can define a usual category structure, with the same class of objects and with the
sets of morphisms given by

Hom(X, Y ) := HomC(1, Hom(X, Y ))

A k-linear category is the same as V ectk-enriched category. Analogously, one
can defined categories whose morphism sets are topological spaces, simplicial stes,
etc.

The same can be done with definition of a symmetric monoidal category. In
particular, tensor k-linear categories are V ectk-enriched symmetric monoidal cat-
egories (satisfying some additional properties such as to be abelian, etc.). Any
symmetric monoidal category C with Hom-s can be enriched by itself.





CHAPTER 3

Differential-graded manifolds

1. Formal manifolds in tensor categories

1.1. Formal manifolds and coalgebras. Let k be a field of characteristic
zero, C be a k-linear abelian tensor category, which we will assume to be either
V ectk, Superk or V ectZk . Then for any object V ∈ Ob(C) and n ≥ 0 we have a
natural action of the symmetric group Sn on V ⊗n (by definition S0 and S1 are
trivial groups). In particular, we can define the vector space of symmetric tensors
Sn(V ) = (V ⊗n)Sn . More generally, we can do linear algebra in C. In particular we
have the notions of associative, commutative or Lie algebra in the category C (we
will explain later how to define more general notion of an algebra over an operad).
One has also the notion of coalgebra in C. Coalgebras with S2-invariant coproducts
are called cocomutative. In this chapter we are going to consider cocomutative
coalgebras only.

Let A be a cofree coassociative cocommutative coalgebra in C. We assume that
A does not have a counit. Then by definition, there exists V ∈ Ob(C) such that

A ≃ C(V ) := ⊕n≥1S
n(V ),

The coalgebra structure on C(V ) is given by the coproduct ∆ : C(V )→ C(V )⊗
C(V ) such that ∆(v) = 0, for v ∈ V , and

∆(v1⊗ ...⊗vn) =
∑

σ∈Sn

∑
1≤i≤n−1

1
n!(vσ(1)⊗ ...⊗vσ(i))⊗(vσ(i+1)⊗ ...⊗vσ(n)).

Definition 1.1.1. We say that A is conilpotent if for some n ≥ 2 the iterated
coproduct ∆(n) : A→ A⊗n is equal to zero. We say that A is locally conilpotent if
for any a ∈ A there exists n ≥ 1 such that ∆(n)(a) = 0.

Recall that the iterated coproducts are defined by the formulas ∆(2) = ∆, ∆(n) =
(∆⊗ id⊗n)∆(n−1).

The union of locally conilpotent coalgebras is a locally conilpotent coalgebra.
For coalgebras of finite length (i.e. they are Artin objects in C) local conilpotency
and conilpotency coincide. From now on, unless we say otherwise, all our coalgebras
will be locally conilpotent.

Exercise 1.1.2. a) Any locally conilpotent coalgebra in the category of vector
spaces is a union of finite-dimensional conilpotent coalgebras.

b) Let V )→ Coalg+(V ) := C(V ) be the functor which assigns to a graded
vector space V the cofree coassociative cocommutative coalgebra without counit
generated by V . Then Coalg+ is the left adjoint to the forgetful functor from the
category of conilpotent cocommutative coalgebras without counit to V ectZk .

Clearly, coalgebras without counit form a category, which we will denote by
CoalgC . Counital coalgebras form a category which will be denoted by (Coalg1)C .
We will usually skip C from the notation.

51
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Definition 1.1.3. Formal pointed manifold in the category C is an object of
the category of cofree conilpotent coalgebras without counit.

An isomorphism of the coalgebra with C(V ) is not a part of the data. We
will denote a formal pointed manifold by (X, x0) or by (X, pt). The corresponding
coalgebra C = CX should be thought of as the coalgebra of distributions on X
supported at the marked point.

Definition 1.1.4. Formal pointed manifold in the tensor category V ectZk of
Z-graded k-vector spaces is called formal pointed graded (or Z-graded) manifold.

The case of formal pointed graded manifolds will be especially interesting for
us. At the same time, we would like to stress that many facts remain true for
general abelian tensor categories.

Formal pointed manifolds form a category. Morphisms of formal pointed man-
ifolds correspond to homomorphisms of coalgebras. Geometrically morphisms can
be thought of as formal maps preserving based points.

Let us assume that C is a rigid category (which is true for all three examples we
have in mind). Then for any object V we can canonically define the dual object V ∗.
In particular, we have the dual object C(V )∗ :=

∏
n≥1(S

n(V ))∗. If B is a cofree
locally conilpotent coalgebra, then B∗ is a projective limit of finite-dimensional
nilpotent algebras. In the case B = CX call it the algebra of functions on the
formal neighborhood of the marked point x0 vanishing at x0.

Example 1.1.5. Let V be a vector space. Then the dual algebra (C(V ))∗ =∏
n≥1(S

n(V ))∗ is isomorphic to the algebra of formal power series k[[ti]]i∈I vanish-
ing at zero. Here the cardinality of I is equal to the dimension of V . This example
explains our terminology. The coalgebra C(V ) corresponds to the formal affine
space with a marked base point: X = (Vform , 0).

Recall that in general we do not fix an isomorphism between A and C(V ). In
geometric language of the previous example this means that we do not fix affine
coordinates on (Vform , 0). Fixing affine coordinates is equivalent to a choice of an
isomorphism of coalgebras A ≃ C(V ).

If A ≃ C(V ) is a cofree coalgebra without counit, then one can canonically
construct a cofree coalgebra with the counit ϵ. As a vector space it is given by
Â := A ⊕ k. The coalgebra structure on Â is uniquely defined by the formulas
∆(1) = 1 ⊗ 1, ∆(v) = v ⊗ 1 + 1 ⊗ v, where v ∈ V . The counit is defined by
ϵ(1) = 1, ϵ(v) = 0. The counital free coalgebras correspond to the objects which
we will call formal manifolds in C (or, simply, formal manifolds, if it will not lead
to a confusion). We use the same terminology (algebra of functions, coalgebra of
distributions, etc.) as before, omitting the conditions at the marked point.

We prefer to work with coalgebras rather than algebras. It simplifies the treat-
ment of the case dim(V ) = ∞. The definition of C(V ) is pure algebraic (it uses
direct sums), so it can be dualized. If we start with the algebra of formal power
series then dualization is a more delicate issue. On the other hand, as long as we
work with cocommutative counital coalgebras, we are close to the finite-dimensional
situation. Indeed, the following proposition holds.

Proposition 1.1.6. Any cocommutative counital coalgebra A in the category
of k-vector spaces is a union of finite dimensional subcoalgebras. If A is locally
conilpotent then the finite-dimensional subcoalgebras can be chosen conilpotent.



1. FORMAL MANIFOLDS IN TENSOR CATEGORIES 53

Proof. Second part of the Proposition coinsides with the part a) of the Ex-
ercise 3.2. Let us proof the first part. We have: ∆(a) =

∑
i xi ⊗ yi. The linear

span Aa of the xi (which equals by cocommutativity to the linear span of yi) is
finite-dimensional. We can choose the vectors xi to be linearly independent, and
the vectors yi to be linearly independent. Let ε : A → k be the counit. Then
(ε ⊗ id)∆(a) = a and hence a =

∑
i ε(xi)yi ∈ Aa. Let us prove that Aa is a sub-

scoalgebra. We need to prove that ∆(Aa) ⊂ Aa ⊗ Aa. Coassociativity condition
implies that

∑
i ∆(xi) ⊗ yi =

∑
i xi ⊗ ∆(yi). We can write ∆(yi) =

∑
j y1

ij ⊗ y2
ij

where vectors y1
ij (resp. y2

ij) are linearly independent. Any vector v ∈ A⊗3 admits
a unique presentation in the form v =

∑
i mi ⊗ ni ⊗ li with each group mi, ni and

li to be linearly independent. Hence we have Span{y1
ij} = Span{y2

ij} = Span{yi}
(first equality follows from the cocommutativity condition). Therefore Aa is a sub-
coalgebra of A. The sum of such subcoalgebras is clearly a subcoalgebra. Obviously
we can represent A as a union of such sums. !

Remark 1.1.7. The Proposition holds for non-counital algebras. Moreover,
later we will prove it for non-cocommutative coalgebras as well.

Using last Proposition we can offer a more conceptual point of view on for-
mal pointed manifolds. Indeed, we see that a cocommutative non-unital coal-
gebra B gives rise to an ind-object in the category of finite-dimensional cocom-
mutative non-counital coalgebras in V ectk. If we write B = lim−→ IBi, where Bi

are finite-dimensional cocommutative coalgebras, then we have a covariant functor
FB : Artink → Sets such that FB(R) = lim−→ IHomCoalgk (B∗

i , R∗). The functor FB

commutes with finite projective limits. The converse is also true. We will formulate
below the result for counital cocommutative coalgebras, skipping the proof. More
general result for arbitrary coalgebras will be proved in Chapter 6.

Proposition 1.1.8. Let F : Artink → Sets be a covariant functor commuting
with finite projective limits. Then there exists a counital coalgebra B such that F
is isomorphic to the functor R )→ HomCoalgk (R∗, B).

It is easy to show that the category of counital coalgebras is equivalent to
the category of functors described in the above Proposition. We see that counital
coalgebras in C give rise to ind-schemes in this tensor category (see Appendix for the
terminology of ind-schemes). We are going to call them small schemes. In Chapter
6 we are going to generalize these considerations to the case of not necessarily
cocommutative coalgebras. It will be achieved by considering functors to Sets
from the category of Artin algebras, which are not-necessarily commutative. In
particular, we are going to discuss the notion of smoothness. All the proofs from
Chapter 6, Section 2.3 admit straightforward versions IN the cocommutative case,
so we omit them here.

Definition 1.1.9. A cocommutative coalgebra B (or the corresponding small
scheme) is called smooth, if for any morphism A1 → A2 of finite-dimensional
cocommutative coalgebras the corresponding map of sets HomCoalg(A2, B) →
HomCoalg(A1, B) is surjective.

Let A be a locally conilpotent cocommutative coalgebra without counit. It is
natural to ask under which conditions it defines a formal pointed manifold. We
present below without a proof the answer for the category V ectk of vector spaces.
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Theorem 1.1.10. Let Fn(A) be a filtration of A defined by the kernels of the
iterated coproducts ∆(n) : A→ A⊗n. Suppose that A = lim−→Fn(A). Then A is cofree
if gr(A) = ⊕n≥0Fn(A)/Fn+1(A) is cofree (i.e. gr(A) ≃ ⊕n≥0Sn(F1(A))).

In this case A is smooth. Conversely, if A is smooth then it is isomorphic to
the coalgebra C(V ) for some vector space V .

Dual result in the category of vector spaces is the Serre’s theorem (criterium
of smoothness of a formal scheme).

1.2. Vector fields, tangent spaces. Let us return to the case of an arbitrary
k-linear tensor category. One can translate from algebraic to geometric language
and back many structures of formal geometry.

Definition 1.2.1. a) Vector field on a formal pointed manifold, which corre-
sponds to a non-counital coalgebra A, is given by a derivation of the corresponding
counital coalgebra Â.

b) Vector field is called vanishing at the based point if it is given by a derivation
of A (i.e. it is a derivation of Â preserving A).

c) Tangent space Tpt(X) to a formal pointed manifold (X, pt) is the object
Ker(∆), where ∆ : A→ A⊗2 is the coproduct.

Let (Xi, pti) be formal pointed manifolds. We assume that we have chosen
affine coordinates. This means a choice of isomorphisms Ci ≃ C(Vi), i = 1, 2
of the corresponding cofree coalgebras. Let f : (X1, pt1) → (X2, pt2) be a mor-
phism of formal pointed manifolds. By definition it corresponds to the homomor-
phism of cofree cocommutative coalgebras F : C1 → C2. Because of the uni-
versality property, it is uniquely determined by the composition pr2 ◦ F where
pr2 : C2 → Ker(∆C2) is the projection. Notice that the projection depends of
a choice of the isomorphism C2 ≃ C(V2) (although the kernel of the coproduct
doesn’t). Restricting pr2 ◦ F to Ker(∆C1) we obtain a linear map between the
tangent spaces T (f) : Tpt1(X1)→ Tpt2(X2).

We will denote T (f) also by f1 and treat it as the first Taylor coefficient of f
at the based point pt1.

The homomorhism of coalgebras F : C(V1)→ C(V2) is uniquely determined by
a sequence of linear maps Fn : Sn(V1)→ V2, such that Fn = pr2 ◦F|Sn(V ). We will
say that the sequence (Fn)n≥1 determines the Taylor decomposition f =

∑
n≥1 fn

of the morphism f . We are not going to distinguish between Fn and fn in the
future, calling either of them the Taylor coefficients of f .

It is easy to see that fn can be identified with the linear map ∂nf(v1 · ... · vn) =
∂n

∂x1...∂xn |x1=...xn=0
f(x1v1 + ... + xnvn) where xi are affine coordinates in V1. To

do this one has to interpret Sn(V1) as the quotient space of V ⊗n
1 rather than a

subspace of invariants.

1.3. Inverse function theorem.

Theorem 1.3.1. Let (X1, pt1) and (X2 , pt2) be formal pointed manifolds, and
Ci, i = 1, 2 the corresponding cofree coalgebras. Then a morphism f : (X1, pt1) →
(X2, pt2) is an isomorphism if and only if the induced linear map of tangent spaces
f1 = T (f) : Tpt1(X1)→ Tpt2(X2) is an isomorphism.

Proof. Clearly C1 and C2 are filtered, where the filtrations are defined by the
kernels of the coproducts: Fn(Ci) = Ker((∆⊗id⊗ ...id)...(∆⊗id)∆))((n+1) times,
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n ≥ 0, i = 1, 2). Morphism f is compatible with the filtrations. Using induction by
n we see that f is an isomorphism. !

The inverse mapping theorem admits a generalization called implicit mapping
theorem. We are going to formulate it without proof. The proof is left as an exercise
to the reader.

Before stating the theorem, we remark that there are finite products in the
category of formal pointed manifolds. They correspond to the tensor products of
the corresponding coalgebras. Same is true for non-pointed formal manifolds.

Theorem 1.3.2. Let f : (X1, pt1)→ (X2, pt2) be a morphism of formal pointed
manifolds such that the corresponding tangent map f1 : Tpt1(X1) → Tpt2 (X2) is
an epimorphism. Then there exists a formal pointed manifold (Y, ptY ) such that
(X1, pt1) ≃ (X2 , pt2)× (Y, ptY ), and under this isomorphism f becomes the natural
projection.

If f1 is a monomorphism, then there exists (Y, ptY ) and an isomorphism (X2, pt2)→
(X1, pt1) × (Y, ptY ), such that under this isomorphism f becomes the natural em-
bedding (X1, pt1)→ (X1, pt1)× (ptY , ptY ).

If S is a k-scheme then one can speak about a family of formal pointed manifolds
over S. Namely, the family is given by a quasi-coherent sheaf F of cocommutative
coalgebras without counit, which is locally finitely generated, and every fiber of F
is a smooth coalgebra.

Similarly one can define a family of formal pointed manifolds over a base S
which is itself a formal manifold.

2. Formal pointed dg-manifolds

2.1. Main definition.

Definition 2.1.1. A formal pointed differential-graded manifold (dg-manifold
for short) over k is a pair (M, Q) consisiting of a formal pointed Z-graded manifold
M and a vector field Q on M of degree +1 such that [Q, Q] = 0.

As before, we will often skip Z from the notation. We will also often skip Q,
thus denoting by M the formal pointed dg-manifold ((M, pt), Q). Unless we say
otherwise, we assume that the vector field Q vanishes at the marked point pt.

A formal pointed graded manifold is modelled by a cofree cocommutative coal-
gebra C(V ) generated by a graded vector space V . A formal pointed dg-manifold
is modelled by a pair (C(V ), Q), where C(V ) is as above and Q is a derivation of
the coalgebra C(V ) of degree +1, such that Q2 = 0. Then a morphism of formal
pointed dg-manifolds is defined as a homomorphism of the corresponding coalge-
bras which commutes with the differentials. In this way we obtain a category of
formal pointed dg-manifolds. It is a symmetric monoidal category with the tensor
product given by the tensor product of differential coalgebras.

Let M = (C(V ), Q) be a formal pointed dg-manifold. Then V carries a struc-
ture of L∞-algebra, which is a generalization of that of a Lie algebra. For that
reason dg-manifolds are sometimes called L∞-manifolds. We are going to discuss
L∞-algebras below.

2.2. Remark about non-formal dg-manifolds. Occasionally we will be
using graded manifolds (and dg-manifolds) in the non-formal set-up. We can define
graded (and differential-graded) manifolds in the following categories:
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a) category of smooth manifolds;
b) category of algebraic manifolds over a field of characteristic zero.

Definition 2.2.1. A graded smooth manifold is an S1-equivariant smooth
supermanifold such that−1 ∈ S1 acts as the canonical involution (the latter changes
the parity on the supermanifold).

A smooth dg-manifold is a graded manifold which carries a vector field Q of
degree +1 such that [Q, Q] = 0.

Remark 2.2.2. Replacing smooth supermanifolds by algebraic supermanifolds,
and the group S1 by the multiplicative group Gm one gets the definitions of a graded
algebraic manifold and an algebraic dg-manifold. We will be using these definitions
later in the book.

2.3. L∞-algebras. Let V be a Z-graded vector space. As before, we denote by
C(V ) the cofree cocommutative coassociative coalgebra without counit generated
by V .

Definition 2.3.1. An L∞-algebra is a pair (V, Q) where V is a Z-graded vector
space and Q is a differential on the graded coalgebra C(V [1]).

Thus we see that an L∞-algebra (V, Q) gives rise to a formal pointed dg-
manifold ((V [1]formal, 0), Q). One can say that a formal pointed dg-manifold is
locally modelled by an L∞-algebra.

It is useful to develop both algebraic and geometric languages while speaking
about formal pointed dg-manifolds. This subsection is devoted to the algebraic one.

The derivation Q is determined by its restriction to cogenerators, i.e. by the
composition

⊕n≥1S
n(V [1]) = C(V [1]) Q−→C(V )[2] projection−→ V [2].

This gives rise to a collection of morphisms of graded vector spaces

Qn : Sn(V [1])→ V [2]

satisfying an infinite system of quadratic equations (all encoded in the equation
Q2 = 0).

Since Sn(V [1]) ≃ ∧n(V )[n] (prove it) the maps Qn give rise to a collection of
“higher brackets”

[ , . . . , ]n : ∧n(V )→ V [2− n],
for n = 1, 2, ...

Slightly abusing the notation we will often denote these brackets by the same
letters Qn.

The condition Q2 = 0 gives rise to a sequence of the following identities (they
hold for every n ≥ 1 and homogeneous v1, ..., vn):

∑

σ∈Sn

∑

k,l≥1,k+l=n+1

±[[vσ(1), ..., vσ(k)]k, ...., vσ(n)]l = 0,

where Sn is the symmetric group.
Let us consider first few identities:
a) n = 1 equation is just Q2

1(v) = [[v]1]1 = 0. Hence Q1 = [ ]1 : V → V [1]
defines a differential on V .
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b) n = 2 equation means that Q2 = [ , ]2 : ∧2(V ) → V is a homomorphism of
complexes with the differentials induced by Q1.

c) n = 3 equation means that [ , ]2 satisfies Jacobi identity up to homotopy
given by Q3 = [ , , ]3.

As a corollary we have the following result.

Proposition 2.3.2. Let H∗(V ) be the cohomology of V with respect to Q1.
Then the bracket Q2 = [ , ]2 defines a structure of Z-graded Lie algebra on H∗(V ).

Exercise 2.3.3. Prove that DGLA is an L∞-algebra such that [...]k = 0 for
k = 3, 4, ...

Remark 2.3.4. Sometimes L∞-algebras are called strong homotopy Lie alge-
bras (SHLA) or simply homotopy Lie algebras.

2.4. Morphisms of L∞-algebras. By definition, a morphism of L∞-algebras
is a morphism of the corresponding differential-graded coalgebras f : C(V1)[1] →
C(V2)[1].

We know that free commutative algebras are defined by the functorial property
HomAlg(Comm(V ), B) = Hom(V, B).
Analogously, cofree cocommutative coalgebras are defined by the property
HomCoalg(B, Cofree(V )) = Hom(B, V ) which holds for every cocommutative

coalgebra B without counit.
Thus a morphism of cofree coalgebras corresponding to two L∞-algebras is an

infinite collection of maps

fn : ∧n(V1)→ V2[1− n].
Compatibility with Q turns into a sequence of equations.

Exercise 2.4.1. Write down these equations. Show that f1 is a morphism of
complexes, which is compatible with [ , ]2 up to homotopy.

Notice that for DGLAs V1, V2 there are more morphisms in the category of
L∞-algebras than in the category of DGLAs. This is one of the reasons why the
former category is better adopted for the purposes of the homotopy theory.

2.5. Pre-L∞-morphisms. This subsection serves a technical purpose. It con-
tains formulas which will be used later.

Let g1 and g2 be two graded vector spaces.

Definition 2.5.1. A pre-L∞-morphism F from g1 to g2 is a map of formal
pointed manifolds

F : ((g1[1])formal, 0)→ ((g2[1])formal, 0)

The map F is defined by its Taylor coefficients which are, by definition, linear
maps ∂nF of graded vector spaces:

∂1F : g1 → g2

∂2F : ∧2(g1)→ g2[−1]

∂3F : ∧3(g1)→ g2[−2]

. . .
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Here we use again the natural isomorphism Sn(g1[1]) ≃
(
∧n(g1)

)
[n]. Equiva-

lently, we have a collection of linear maps between vector spaces

F(k1,...,kn) : gk1
1 ⊗ · · ·⊗ gkn

1 → gk1+···+kn+(1−n)
2

with the symmetry property

F(k1,...,kn)(γ1⊗· · ·⊗γn) = −(−1)kiki+1F(k1,...,ki+1,ki,...,kn)(γ1⊗· · ·⊗γi+1⊗γi⊗· · ·⊗γn) .

Here gn
i denotes the nth graded component of gi, i = 1, 2.

One can write (slightly abusing the notation)

∂nF (γ1 ∧ · · ·∧ γn) = F(k1,...,kn)(γ1 ⊗ · · ·⊗ γn)

for γi ∈ gki
1 , i = 1, . . . , n.

In the sequel we will denote ∂nF simply by Fn.

2.6. L∞-algebras and formal pointed dg-manifolds. Recall that an L∞-
algebra (g, Q) gives rise to a formal pointed dg-manifold ((g[1]formal , 0), Q). This
means that an L∞-algebra is the same as a formal pointed dg-manifold with an
affine structure at the marked point (i.e. a choice of an isomorphism of the coalgebra
of distributions with C(V )).

Let g1 and g2 be L∞-algebras. Then an L∞-morphism between them is a pre-
L∞-morphism compatible with the differentials. Equivalently, it is a morphism of
formal pointed manifolds (g1[1]formal, 0) → (g2[1]formal, 0) commuting with the
corresponding odd vector fields. We can also say that it is a morphism in the
category of formal pointed dg-manifolds.

In the case of differential-graded Lie algebras a pre-L∞-morphism F is an
L∞-morphism iff its Taylor coefficients satisfy the following equation for any n =
1, 2 . . . and homogeneous elements γi ∈ g1:

dFn(γ1 ∧ γ2 ∧ · · · ∧ γn)−
n∑

i=1

±Fn(γ1 ∧ · · ·∧ dγi ∧ · · · ∧ γn) =

=
1
2

∑

k,l≥1, k+l=n

1
k!l!

∑

σ∈Sn

±[Fk(γσ1 ∧ · · · ∧ γσk ), Fl(γσk+1 ∧ · · · ∧ γσn)]+

∑

i<j

±Fn−1([γi, γj] ∧ γ1 ∧ · · · ∧ γn) .

Here are first two equations:

dF1(γ1) = F1(dγ1) ,

dF2(γ1 ∧ γ2)−F2(dγ1 ∧ γ2)− (−1)γ1F2(γ1 ∧ dγ2) = F1([γ1, γ2])− [F1(γ1), F1(γ2)] .

We see that F1 is a morphism of complexes. The same is true for arbitrary
L∞-algebras. The graded space g for an L∞-algebra (g, Q) can be considered as
the tensor product of k[−1] with the tangent space to the corresponding formal
pointed manifold at the base point. The differential Q1 on g arises from the action
of Q on the manifold. In other words, the tangent space at the base point is a
complex of vector spaces with the differential given by the first Taylor coefficient
of the odd vector field Q.
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Let us assume that g1 and g2 are differential-graded Lie algebras, and F is an
L∞-morphism from g1 to g2. Any solution γ ∈ g1

1 ⊗m to the Maurer-Cartan equa-
tion where m is a commutative nilpotent non-unital algebra, produces a solution
to the Maurer-Cartan equation in g1

2 ⊗m:

dγ+
1
2
[γ, γ] = 0 =⇒ dγ̃+

1
2
[γ̃, γ̃] = 0 where γ̃ =

∞∑

n=1

1
n!

Fn(γ ∧ · · ·∧γ) ∈ g1
2⊗m .

The same formula is applicable to solutions to the Maurer-Cartan equation
depending formally on a parameter h:

γ(h) = γ1h + γ2h
2 + · · · ∈ g1

1 [[h]], dγ(h) +
1
2
[γ(h), γ(h)] = 0

This implies the following equation:

dγ̃(h) +
1
2
[γ̃(h), γ̃(h)] = 0 .

Remark 2.6.1. In order to understand conceptually the last implication, we
need to use the notion of a formal dg-manifold without the base point. Then one
observes that the Maurer-Cartan equation for any differential-graded Lie algebra
g is the equation for the subscheme of zeroes of Q in formal manifold g[1]formal .
Clearly L∞-morphism f : (M1, Q1)→ (M2, Q2) maps the subscheme of zeros of Q1

to the one of Q2 (because f commutes with Qi, i = 1, 2). Using this observation
we will see later that the L∞-morphism f induces a natural transformations of
deformation functors defined by (M1, Q1) and (M2, Q2) respectively.

2.7. Tangent complex. We have already introduced the notion of the tan-
gent space to a formal pointed manifold. Let us recall it here. The dual space
to a cofree coalgebra C(V ) = ⊕n≥1Sn(V ) is an algebra of formal power series
C∗ =

∏
n≥1(S

n(V ))∗ (without the unit). Adding the unit we obtain the algebra of
formal functions on a formal pointed manifold (maybe, infinite-dimensional) with
the marked point 0. Algebraically a “choice of affine coordinates” corresponds to
the identification of the formal scheme Spf(C∗) with the formal neighborhood of
zero. The (graded) tangent space is T0(C) := Ker(∆ : C → C ⊗ C). .

Recall that we have the notion of formal graded manifolds without marked
point. Such manifolds form a category dual to the category of cocommutative
cofree coalgebras which are isomorphic to ⊕n≥0Sn(V ). The definition of formal
dg-manifold is also clear. Suppose we have fixed a closed k-point x0 of a formal
dg-manifold (M, Q). The odd vector field Q can have non-trivial component Q0 =
Q(x0). If Q0 = 0 we can factorize the corresponding coalgebra by the zeroth
component and obtain a new coalgebra which represents a formal pointed graded
manifold. In the non-vanishing case the following theorem holds.

Theorem 2.7.1. Let (M, Q) be a formal dg-manifold and pt a closed k-point.
Suppose that Q(pt) ̸= 0. Then by a formal change of coordinates preserving pt one
can make the vector field Q equivalent to a vector field with constant coefficients.
Equivalently, in some coordinates (xi) we have: Q = ∂/∂x1.

Proof. Exercise. !
This result is similar to the one in the theory of ordinary differential equa-

tions: a vector field is locally equivalent to a constant one near a point where it is
non-zero. The classification of critical points is hard in both cases. Since we are
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interested in L∞-algebras, we will almost exclusively consider the case of formal
pointed manifolds unless we say otherwise.

Let us recall that in the category of formal pointed manifolds we have the
inverse image theorem. It says that the formal morphism is invertible iff its first
Taylor coefficient is invertible. We would like to generalize the theorem to the
category of formal pointed dg-manifolds.

Suppose that f is the homomorphism of coalgebras corresponding to a mor-
phism of formal pointed dg-manifolds. Since f commutes with Q, we see that the
tangent map f1 commutes with its first Taylor coefficient Q1. If C is the coalge-
bra corresponding to a formal pointed dg-manifold ((M, pt), Q) then on Tpt(M) =
Ker(∆) arises a differential which is the first Taylor coefficient Q1 of Q.

Definition 2.7.2. The pair (Tpt(M), Q1) considered as a complex of vector
spaces is called the tangent complex of M at the base point.

Definition 2.7.3. Two formal pointed dg-manifolds (resp. L∞-algebras) are
called quasi-isomorphic if the corresponding differential-graded coalgebras are quasi-
isomorphic.

Let (M, Q) and (M ′, Q′) be formal pointed dg-manifolds.

Definition 2.7.4. Tangent quasi-isomorphism (t-qis for short) from (M, Q) to
(M ′, Q′) is a morphism of these formal pointed dg-manifolds such that the corre-
sponding morphism of tangent complexes is a quasi-isomorphism.

Suppose that our formal pointed dg-manifolds correspond to L∞-algebras gi, i =
1, 2. Then a quasi-isomorphism of L∞-algebras g1 → g2 is defined as the t-qis of
the corresponding formal pointed dg-manifolds g1[1]formal → g2[1]formal. Equiv-
alently, it is a homomorphism of dg-coalgebras f : C(g1[1]) → C(g2[1]) such that
the tangent map T (f) := f1 is a quasi-isomorphism. This definition agrees with
the standard definition of a quasi-isomorphism of DGLAs. Sometimes we will call
it the tangent quasi-isomorphism of the coalgebras corresponding to gi, i = 1, 2.

Suppose that we are given L∞-algebras g1 and g2 and a homomorphism f :
C1 → C2 of the corresponding dg-coalgebras. We have seen that the morphism of
tangent spaces T (f) : T0(C1)→ T0(C2) is a morphism of complexes. On the other
hand Ci, i = 1, 2 are complexes and f is a morphism of complexes.

Theorem 2.7.5. If T (f) is a quasi-isomorphism then f is a quasi-isomorphism

Proof. We need to prove that f induces an isomorphism on the cohomology.
The complexes C(gi[1]), i = 1, 2 are filtered with the filtrations F (i)

0 ⊂ F (i)
1 ⊂ ..., i =

1, 2 where F i
m = ⊕0≤j≤mSj(gi[1]), i = 1, 2. The morphism f is compatible with

the filtrations. Let gr(f) be the associated morphism of graded objects (which are
complexes as well).

The theorem is a corollary of the following two lemmas.
Lemma 1. Let h : X → Y be a quasi-isomorphism of complexes. Then its

symmetric powers Sn(h) are quasi-isomorphisms.
Lemma 2. If X and Y are filtered complexes with filtrations bounded from

below, and f : X → Y is a morphism preserving filtrations such that gr(f) is a
quasi-isomorphism, then f is a quasi-isomorphism.

Let us explain how Lemma 1 and Lemma 2 imply the theorem.
Le us consider the complexes ⊕n≥0(Sn(g1[1]), Q(1)

1 ) and ⊕n≥0(Sn(g2[1]), Q(2)
1 ).

Here Q(i)
1 , i = 1, 2 are the differentials induced by the differentials on the tangent
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complexes gi[1], i = 1, 2. The latter differentials are first Taylor coefficients of the
odd vector fields Q(i) = Q(i)

1 + Q(i)
2 + ..., i = 1, 2. Since f1 = T (f) is a quasi-

isomorphism, we conclude (using Lemma 1) that the induced morphism of the
symmteric powers is a quasi-isomorphism as well.

On the other hand, let us consider filtrations of the coalgebras C(gi[1]), i = 1, 2
given by Fm = ⊕0≤n≤mSn in each case. In fact we have filtrations of the complexes
(C(gi[1]), Q(i)), i = 1, 2. The corresponding associated graded complexes are of the
type (Sn(gi[1]), Q(i)

1 ), i = 1, 2. They are quasi-isomorphic by Lemma 1. Applying
Lemma 2 we conclude that the morphism f is a quasi-isomorphism.

Proof of Lemma 1
We define a homotopy between morphisms of complexes in the standard way.

Namely h is a homotopy between f and g if [d, h] = f − g. One writes f ∼ g if f is
homotopic to g. Two complexes are homotopy equivalent if there exist morphisms
f and g such that fg ∼ id and gf ∼ id. One can prove that, for complexes over
a field, a quasi-isomorphism is the same as a homotopy equivalence. On the other
hand, one can prove that tensor powers of a homotopy equivalence are homotopy
equivalences. This proves Lemma 1.

Proof of Lemma 2
Usually such things can be proved by means of spectral sequences, but there is

another way outlined below.
Sublemma 1. Morphism f : X → Y is a quasi-isomorphism iff its cone is

acyclic, where the cone is the total complex of the bicomplex
0→ X → Y → 0→ ..., where X is in degree −1.
Sublemma 2. Suppose that X is filtered complex with filtration bounded

from below. If gr(X) is acyclic then X is acyclic.

Exercise 2.7.6. Prove that the sublemmas imply the Lemma 2.

Proof of Sublemmas
For the first Sublemma, one uses the standard exact sequence:

Hi(X) → Hi(Y )→ Hi(Cone(f)) → Hi+1(X) → ...

For the second one, one uses the fact that a filtration of the complexes induces
the filtration on cohomology. Since the filtration of X is bounded from below we
can use induction in order to finish the proof. To deduce Lemma 2 from sublemmas,
notice that gr(Cone(f)) is acyclic. !

3. Homotopy classification of formal pointed dg-manifolds and
L∞-algebras

One reason for introducing L∞-algebras is the following result, which we will
prove soon: if there exists t-qis: C1 → C2 of the corresponding coalgebras then
there exists (non-canonical) t-qis: C2 → C1. This is not true in the category of
DGLAs. This result imples that t-qis is an equivalence relation. We call it homotopy
equivalence of L∞-algebras. Then it is natural to pose the following problem.

Problem: Classify L∞-algebras up to homotopy equivalence.
To solve it we introduce two types of L∞-algebras.

Definition 3.0.7. An L∞-algebra is called:
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1) linear contractible, if there are coordinates in which Qk = 0 for k > 1 and
Ker Q1 = ImQ1.

2) minimal, if Q1 = 0 in some (equivalently, any) coordinates.

The property to be minimal is invariant under L∞-isomorphisms, but the prop-
erty to be linear contractible is not.

Definition 3.0.8. We call a formal pointed dg-manifold contractible if it can
be modelled by an L∞-algebra, which is isomorphic to a linear contractible one.
We call a formal pointed dg-manifold minimal if the corresponding L∞-algebra is
minimal.

Now we can state the following important fact.

Theorem 3.0.9. Every formal pointed dg-manifold is isomorphic to a direct
product of a contractible one and a minimal one.

Definition 3.0.10. The minimal factor of the product is called the minimal
model of the formal pointed dg-manifold (or the corresponding L∞-algebra).

The above theorem is called the minimal model theorem. We are going to prove
it in the next subsection. We will finish this subsection by proving the promised
result about inversion of tangent quasi-isomorphisms.

Corollary 3.0.11. If f : g1 → g2 is a quasi-isomorphism of L∞-algebras then
there is a quasi-isomorphism of L∞-algebras h : g2 → g1.

Proof. Let g be an L∞-algebra and gmin be a minimal L∞-algebra from the
direct sum decomposition theorem. Then there are two L∞-morphisms (projection
and inclusion)

(g[1]formal , 0)→ (gmin[1]formal, 0), (gmin[1]formal, 0)→ (g[1]formal, 0)

which are quasi-isomorphisms. From this follows that if

(g1[1]formal, 0)→ (g2[1]formal, 0)

is a quasi-isomorphism then there exists a quasi-isomorphism

(gmin
1 [1]formal, 0)→ (gmin

2 [1]formal , 0) .

Any quasi-isomorphism between minimal L∞-algebras is invertible, because it in-
duces an isomorphism of spaces of generators (the inverse mapping theorem).

Then we have an L∞-isomorphism h which is a composition of this inverse map
(gmin

2 [1]formal, 0)→ (gmin
1 [1]formal, 0) with the inclusion to (g1[1]formal, 0). !

Corollary 3.0.12. Homotopy classes of L∞-algebras coincide with the
L∞-isomorphism classes of minimal L∞-algebras.

Proof. Same as the proof of Corollary 3.34. !
Remark 3.0.13. There is an analogy between the minimal model theorem and

the theorem from the singularity theory (see, for example, the beginning of Section
11.1 of the book [AGV]) which says that for every germ f of an analytic function f
at a critical point, one can find local coordinates (x1, . . . , xk, y1, . . . , yl) such that
f = const + f2(x) + f≥3(y) where f2 is a nondegenerate quadratic form in x and
f≥3(y) is a germ of a function in y such that its Taylor expansion at y = 0 starts
at terms of degree at least 3.
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3.1. Proof of the minimal model theorem. The idea is to pick coordinates
and try to modify them by higher order corrections, finally getting coordinates
(xi, yi, zj) such that Q =

∑
i xi∂/∂yi +

∑
j≥1 Pj(z)∂/∂zj , where Pj(z) is a Taylor

series in zi with the lowest term of degree at least 2.
Let C(V ) be the coalgebra corresponding to an L∞-algebra (V [−1], Q). Let

us split the complex (V, Q1) into a direct sum of two complexes: the one with
zero differential and the one with trivial cohomology. If the former is trivial, we
are done: Q1 = 0 and V is minimal. If not, we can find coordinates (xi, yi, zj)
such that Q1 =

∑
i xi∂/∂yi. The desired splitting is V = Span{zj}⊕Span{xi, yi}.

Then the first summand carries the trivial differential, the second one has the trivial
cohomology with respect to Q1.

We proceed by induction in degree N of the Taylor coefficients of the vector
field Q. Assume that Q =

∑
i xi∂/∂yi +

∑
j≥1 P N

j (z)∂/∂zj+ higher terms. Here
P N

j (z) are polynomials in zi containg terms of degrees between 2 and N . Let us
denote

∑
i xi∂/∂yi by Q1.

Next term in the Taylor expansion is
∑

i

Ai(x, y, z)
∂

∂xi
+

∑

i

Bi(x, y, z)
∂

∂yi
+

∑

j

Cj(x, y, z)
∂

∂zj
,

where Ai, Bi, Cj are homogeneous polynomials of degree N + 1.
From the equation [Q, Q] = 0 we derive the following identities:
(1) Q1(Ai) = 0; (2) −Ai + Q1(Bi) = 0; (3) Q1(Cj) = some function Fj(z)

(Fj(z) arises from commuting of the middle term in the formula for Q with itself).
If we apply a diffeomorphism close to the identity, that is exp(ξ) where ξ is a

vector field

ξ =
∑

i

A′
i

∂

∂xi
+

∑

i

B′
i

∂

∂yi
+

∑

j

C ′
j

∂

∂zj
,

where A′
i, B

′
i, C

′
j are polynomials of degree N + 1, the change of Q will be:

(a) Ai → Ai + Q1(A′
i)

(b) Bi → Bi + A′
i + Q1(B′

i)
(c) Cj → Cj + Q1(C ′

j)
We pose A′

i := −Bi, B′
i := 0, thus killing Ai and Bi. Also, we can find C ′

j

such that the new Cj is a function in z only. The reason is that on k[x, y, z] the
cohomology of Q1 is isomorphic to k[z]. More pricisely, LHS in (3) depends on xi

but the RHS does not. Therefore Fj = 0, and Cj is cohomologous to an element
from k[z]. This means that we can find C ′

j in (c) such that Cj + Q1(C ′
j) depends

on z only. Clearly new Cj(z) does not have terms of degree less than 2 in zj .
Finally we obtain a new coordinate system (xi, yi, zj) such that Q =

∑
i xi∂/∂yi+∑

j≥1 Pj(z)∂/∂zj as desired.
Then the formal pointed submanifolds defined by equations X : {zj = 0},

Y : {xi = yi = 0} give a desired product decomposition. It is easy to see that Y
defines a minimal L∞-algebra and X defines a linear contractible L∞-algebra. This
concludes the proof. !

3.2. Cofibrant dg-manifolds and homotopy equivalence of dg-algebras.
Let (A, dA) be a dg-algebra, that is a commutative unital algebra in the category
V ectZk .
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Definition 3.2.1. We say that A is cofibrant if the following two conditions
are satisfied:

a) it is free as a graded commutative algebra, i.e. A is isomorphic to the
symmetric algebra Sym(V ), V ∈ V ectZk ;

b) V is filtered, i.e. V =
⋃

n≥0 V≤n, where 0 = V≤0 ⊂ V≤1 ⊂ ... is an increasing
filtration of graded vector spaces such that dA(V≤n) ⊂ V≤n−1.

Any dg-algebra satisfying the condition a) gives rise to a dg-manifold (X =
Spec(A), QX). It is given by a (non-formal) smooth scheme X in the tensor category
V ectZk , as well as a vector field QX on X induced by the differential dA. Because of
the condition dA(V≤1) = 0 we conclude that QX has zero, thus we have a pointed
dg-manifold. We will call such pointed dg-manifolds fibrant. Fibrant dg-manifolds
form a category dual to the category of cofibrant dg-algebras. In order to simplify
the notation we will often skip the vector field QX , thus writing X instead of
(X, QX).

Definition 3.2.2. Let X = Spec(A) and Y = Spec(B) be two fibrant dg-
manifolds. We say that homomorphisms f0 : A → B, f1 : A → B (or induced
morphisms of fibrant dg-manifolds) are homotopy equivalent if there exists a homo-
morphism H : A→ B⊗Ω•(∆1) of dg-algebras such that pr0 ◦H = f0, pr1◦H = f1.
Here Ω•(∆1) ≃ k[t, dt] is the algebra of polynomial differential forms on the 1-
simplex [0, 1], and pri, i = 0, 1 are two projections of this algebra to the field k,
such that pri(t) = i, pri(dt) = 0.

Proposition 3.2.3. Homotopy equivalence is an equivalence relation on ho-
momorphisms of cofibrant algebras.

Proof. The only non-trivial part is the transivity condition. Assume that f0 is
homotopic to f1 and f1 is homotopic to f2. Let us prove that f0 is homotopic to
f2. In order to do this we consider a simplicial complex which is the union of two
segment I1 ∪ I2 of the boundary of the standard 2-simplex ∆2. Let x ∈ I1 ∩ I2 be
the only common vertex. The algebra of polynomial differential forms Ω•(I1 ∪ I2)
consists of differential forms on I1 and I2 which coincide at x. Since I1 ∪ I2 is
homotopy equivalent to ∆2 we have a natural quasi-isomorphism of dg-algebras
Ω•(I1 ∪ I2) → Ω•(∆2) induced by the obvious retraction ∆2 → I1 ∪ I2. On the
other hand, we have the retraction ∆2 → I3 to the remaining side of ∆2. In gives
a quasi-isomorphism Ω•(I3) → Ω•(∆2). This chain of quasi-isomorphisms induces
homotopy equivalences to zero of f0 − f1 and f1 − f2. Hence f0 is homotopy
equivalent to f2. This concludes the proof. !

Remark 3.2.4. a) There is an analog of this theorem for non-commutative
dg-algebras.

b) One can construct Kan simplicial set A ⊗ Ω•(∆n), where ∆n, n ≥ 0 is the
standard simplex. It follows from the proof that if f0 is homotopy equivalent to
f1 then there are homomorphisms Hn : A → B × Ω•(∆n), n ≥ 0 of dg-algebras
such that the composition pri ◦ Hn, i = 0, 1 coincide with f0 and f1 respectively
(here pri denotes the projection to the marked vertex t = i of ∆1 ⊂ ∆n. In other
words, homotopy equivalent homomorphisms induce homotopy equivalence of Kan
simplicial sets.

c) We can replace ordinary dg-algebras by topologically complete dg-algebras.
In this way we get the notion of homotopy equivalent formal dg-manifolds.
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3.3. Massey operations. If A is a DGLA then we can construct a structure
(unique up to an isomorphism) of a minimal L∞-algebra on its cohomology H(A)
taken with respect to the differential Q1.

In this case Q2 = [ ]2 is the usual bracket on H•(A). Higher brackets Q3, Q4

etc. depend on a choice of coordinates. Only leading coefficients are canonically
defined.

The higher brackets can be compared with the so-called Massey products in
H•(A). We give an example of the simplest Massey product of three elements. We
take homogeneous x, y, z ∈ H•(A) such that [x, y] = [y, z] = [z, x] = 0. We want
to construct an element in H•(A)/{ Lie ideal generated by x, y, z }. It will have
degree equal to deg x+deg y+deg z−1. Here is a construction. Pick representatives
X, Y, Z of x, y, z in KerQ1. Then for some α, β, γ we have [X, Y ] = Q1γ, [Y, Z] =
Q1α, [Z, X] = Q1β. By Jacobi identity: Q1([α, X] ± [β, Y ] ± [γ, Z]) = 0. The
cohomology class of the expression in brackets is denoted by [x, y, z]. This is the
triple Massey product.

Exercise 3.3.1. Prove that [x, y, z] is well-defined modulo [H•(A), ⟨x, y, z⟩]
and it is represented by [x, y, z]3 in any coordinate system.

4. Deformation functor

4.1. Groupoid and the foliation in the case of supermanifolds. Geo-
metrically an L∞-algebra is a formal graded manifold with a marked point, and an
odd vector field Q such that [Q, Q] = 0 and Q vanishes at the point. In the next
subsection we are going to associate with these data a deformation functor. The
construction has geometric meaning and can be performed in the case of superman-
ifolds. In this case all objects can be defined globally, while in the case of formal
pointed dg-manifolds we will have to speak about formal graded schemes (in fact
small schemes) as functors Artink → Sets.

Let S be the subset of zeros of the odd vector field Q on a supermanifold M .
Equivalently, x ∈ S iff Q(f)(x) = 0 for all smooth functions f . The (even part
of the) space S can be singular. We will ignore this problem for a moment and,
assuming that S is a super submanifold of M , we are going to construct a foliation
of S. The operator [Q, •] is a differential on the vector fields. Its kernel consists of
vector fields commuting with Q. They are tangent to S, and hence define vector
fields on S.

We have a sequence Im[Q, •]→ Ker[Q, •]→ Vect(S) of inclusions of real vector
spaces. In fact, they are monomorphisms of Lie algebras (by the Jacobi identity),
which are O(S)-linear (by the Leibniz formula). We are particularly interested in
the foliation defined by Im[Q, •].

We can decompose the even part of S into the union of “leaves”, which are
subvarieties Sα. Two points belong to the same leaf if they can be connected by
smooth curve tangent to a vector field from Im[Q, •].

The formal neighborhood of a smooth point x ∈ S gives rise to an L∞-algebra.
To be more precise it is a Z2-graded version of an L∞-algebra. The formal pointed
dg-manifolds corresponding to different points of the same leaf (for the foliation
defined by [Q, •]) are quasi-isomorphic.

Exercise 4.1.1. Work out the details of the above construction and prove the
last statement.
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Hint: Use the flows of the vector fields tangent to the leaf.
This geometric picture gives rise to a groupoid in the following way.
1) Objects of the groupoid are points of S.
2) Morphisms between two objects are given by paths f(t) in a leaf and vector

fields v(t) such that f ′(t) = [Q, v(t)], modulo the following equivalences:
a) v(t) is equivalent to v(t) + u(t) where u(t) vanishes at f(t);
b) v(t) is equivalent to v(t) + [Q, u(t)];
c) the one-parameter group of superdiffeomorphisms D(t) does not change the

equivalence class as along as D(t) satisfies the following differential equation

d/dt(D(t)x(t)D(t)−1) = [Q, x(t)].

Exercise 4.1.2. Check that the groupoid axioms are satisfied. (Hint: Look at
the super analog of the minimal model for the transverse structure along a leaf. It
ensures the local factorization, such that the “trivial” factor is a super analog of
the linear contractible formal pointed dg-manifold.)

Exercise 4.1.3. The algebra of polyvector fields on a manifold makes the
cotangent bundle into a supermanifold (with odd fibers). A Poisson structure is an
odd vector field on this manifold. Describe the corresponding groupoid.

4.2. Deformation functor associated with a formal pointed dg-manifold.
Now we would like to revisit geometric considerations of the previous section in the
case of formal pointed dg-manifolds. Let us sketch what we would like to achieve.

Let C be a cocommutative coalgebra without counit, Q : C → C[1] be a
differential of degree +1, R be an Artin algebra with the maximal ideal m.

Points of S (objects of the groupoid) will be HomCoalg(m∗, C) such that the
image is contained in the kernel of Q (we take morphisms of graded coalgebras with
m placed in degree 0).

In coordinates we have: C = C(V [1]), an object of the groupoid will be γ ∈
m⊗ V 1 satisfying the generalized Maurer-Cartan equation:

[γ]1 +
1
2
[γ, γ]2 +

1
6
[γ, γ, γ]3 + ... = 0.

Which objects are equivalent?
Consider the following differential equation for γ(t), polynomial in t:

γ′(t) = [a(t)]1 + [a(t), γ(t)]2 +
1
2!

[a(t), γ(t), γ(t)]3 + ...,

where a(t) is a polynomial in t with values in V 0 ⊗m.
We say here that γ0 is equivalent to γ1 if there is a solution to this equation

such that γ(0) = γ0, γ(1) = γ1.
Morphisms Hom(γ0 , γ1) are equivalence classes of such differential equations.
We will spell out this definition similarly to the case of supermanifolds. Namely,
a) We will have an odd vector field Q such that [Q, Q] = 0. Zeroes of Q

correspond to solutions of the Maurer-Cartan equation.
b) The set of zeros S admits a “foliation” by [Q, v], v ∈ V ect(S). It gives rise

to a holonomy groupoid of the foliation.
c) Moduli space (as a set) is the space of leaves of the foliation.
Let us make all this more precise.
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The deformation functor corresponds to a formal pointed dg-manifold M ( base
point is denoted by 0). The set of solutions to the Maurer-Cartan equation with
coefficients in a finite-dimensional nilpotent non-unital algebra m (for example m
is the maximal ideal m of R) is defined as the set of m-points of the formal scheme
of zeros of Q:

Maps
((

Spec(m ⊕ k · 1), base point
)
,
(
Zeroes(Q), 0

))
⊂

Maps
((

Spec(m⊕ k · 1), base point
)
,
(
M, 0

))
.

In terms of the coalgebra C corresponding to M this set is equal to the set
of homomorphisms of graded coalgebras m∗ → C (m placed in degree 0) with the
image annihilated by Q. (Another way to say this is to introduce a global pointed
dg-manifold of maps from

(
Spec(m ⊕ k · 1), base point

)
to (M, 0) and consider

zeros of the global vector field Q on it).
In order to understand the relation to the Maurer-Cartan equation one can

observe the following:
a) if f : m∗ → C(V ) is a homomorphism of coalgebras and fn : m∗ → Sn(V [1])

its component then:
fn = 1

n!

∑
σ∈Sn

σ ◦ f⊗n
1 ◦∆(n)

where ∆(n) is the iterated coproduct for m∗.
In particular

fn =
f1 ∧ f1 ∧ ... ∧ f1

n!
(n wedge factors);

b) the condition Q(f(x)) = 0 for any x ∈ m∗ is equivalent to the condition
Q1(f(x)) + Q2(f(x)) + ... = 0 which is the Maurer-Cartan equation

[f1]1 +
1
2!

[f1, f1]2 + ... = 0

We recall here the well-known lemma.

Lemma 4.2.1. (Quillen) if V is a DGLA, then there is a bijection between the
set HomCoalgk (m∗, C(V )) and the set of solutions to the Maurer-Cartan equation
f1 ∈ HomV ectZk

(m∗, V [1]) = HomV ectk(m∗, V 1) = V 1 ⊗m.

Two solutions p0 and p1 of the Maurer-Cartan equation are called gauge equiv-
alent iff there exists (parametrized by Spec(m ⊕ k · 1)) polynomial family of odd
vector fields ξ(t) on M (of degree −1 with respect to Z-grading) and a polynomial
solution of the equation

dp(t)
dt

= [Q, ξ(t)]|p(t), p(0) = p0, p(1) = p1,

where p(t) is a polynomial family of m-points of formal graded manifold M with
base point.

Let us take (M, 0) = (g[1]formal , 0) where g is an L∞-algebra.
In terms of L∞-algebras, the set of polynomial paths {p(t)} is naturally identi-

fied with the set g1⊗m⊗ k[t]. Vector fields ξ(t) depend polynomially on t and not
necessarily vanish at the base point 0. The set of these vector fields is isomorphic
to

HomV ectZk
(C(g[1])⊕ (k · 1)∗, g)⊗ (m⊕ k · 1)
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Exercise 4.2.2. Check that the gauge equivalence defined above is an equiva-
lence relation. Alternatively, one can define the equivalence relation as the transitive
closure of the above relation.

For a formal pointed dg-manifold M we define a set DefM (m) as the set of
gauge equivalence classes of solutions to the Maurer-Cartan equation. The corre-
spondence m )→ DefM (m) extends naturally to a functor denoted also by DefM .
It can be thought of as a functor to groupoids.

Definition 4.2.3. This functor is called deformation functor associated with
M .

Analogously, for an L∞-algebra g we denote by Defg the deformation functor
associated with (g[1]formal , 0).

Exercise 4.2.4. Prove the following properties of the deformation functor:
1) For a differential-graded Lie algebra g the deformation functor defined as

above for (g[1]formal , 0), is isomorphic to the deformation functor defined in Chap-
ter 1 for DGLAs.

2) Any L∞-morphism gives rise to a morphism of deformation functors.
3) The functor DefX1×X2 corresponding to the product of two formal pointed

dg-manifolds is isomorphic to the product of functors DefX1 ×DefX2 ,
4) The deformation functor for a linear contractible L∞-algebra g is trivial,

that is Defg(m) is a one-element set for every m.

Properties 2)-4) are trivial, and 1) is easy. It follows from properties 1)-4) that
if an L∞-morphism of differential graded Lie algebras is a quasi-isomorphism, then
it induces an isomorphism of deformation functors.

In the definition of the deformation functor, the finite-dimensional nilpotent
commutative algebra m can be replaced by a finite-dimensional nilpotent commu-
tative algebra in V ectZk .

Lemma 4.2.5. Two maps (inclusion and projection) {minimal } → {minimal
} × {contractible}→ {minimal} induce isomorphisms of deformation functors.

Proof. This follows from the properties 3) and 4) above. !
Corollary 4.2.6. Quasi-isomorphisms between L∞-algebras (resp. DGLA’s)

induce isomorphisms of the corresponding deformation functors.

Proof. Using the Lemma we reduce everything to the case of minimal L∞-
algebras. In this case a quasi-isomorphism is the same as an isomorphism. Then
the property 2) gives the result. !

As an illustration of the above Corollary we mention the following theorem of
Goldman and Millson.

Theorem 4.2.7. The moduli space of representations of the fundamental group
of a compact Kähler manifold in a real compact Lie group is locally quadratic.

This theorem follows from the observation that the DGLA controlling defor-
mations of the representations of the fundamental group is formal, i.e. quasi-
isomorphic to its cohomology (as a DGLA ). The cohomology has trivial differential,
so the Maurer-Cartan equation becomes quadratic: [γ, γ] = 0.



CHAPTER 4

Examples

1. dg-manifolds associated with algebraic examples

In the following subsections we are going to describe DGLAs controlling de-
formations of associative, Lie and commutative algebras. General technique of the
previous chapter allows us to construct the corresponding graded formal pointed
dg-manifolds.

1.1. Associative algebras. Let A be an associative algebra without unit.
We define the graded vector space of Hochschild cochains on A as

C•(A, A) = ⊕n≥0HomV ectk(A⊗n, A)
and the truncated graded vector space of Hochschild cochains as

C•
+(A, A) = ⊕n≥1HomV ectk(A⊗n, A).

Degree of ϕ ∈ HomV ectk(A⊗n, A) is equal to deg ϕ = n.
Let g = gA = C•(A, A)[1] and g+ = C•

+(A, A)[1] be the graded vector spaces
with the grading shifted by 1. There is a graded Lie algebra structure on g, so that
g+ is a graded Lie subalgebra. This structure was introduced by Murray Gersten-
haber at the beginning of 60’s, so we will call the Lie bracket on g Gerstenhaber
bracket. It is defined such as follows. First, for any two homogeneous elements ϕ,ψ
such that deg ϕ = n, deg ψ = m we define their Gerstenhaber dot product

(ϕ•ψ)(a0, a1, ..., an+m) =
∑

0≤i≤n(−1)mϕ(a0, ..., ai−1,ψ(ai, ai+1, ..., ai+n), ai+n+1, ..., an+m).
Then we define the Gerstenhaber bracket

[ϕ,ψ] = ϕ • ψ − (−1)nmψ • ϕ.

Exercise 1.1.1. Prove that in this way we obtain a graded Lie algebra structure
on g = ⊕n≥−1gn, and g+ = ⊕n≥0gn

+ is a graded Lie subalgebra of g.

So far we did not use an algebra structure on A. We have a multiplication
m : A ⊗ A → A, hence m ∈ g1

+. Then we define Hochschild differential d = [m, •].
Since [m, m] = 0 (check this) then one has d2 = 0. The pair (g, d) is called (full)
Hochschild complex, while the pair (g+, d) is called (truncated) Hochschild complex.
Often this terminology applies directly to C•(A, A) and C•

+(A, A).

Exercise 1.1.2. Write down Hochschild differential explicitly. Compare with
the formulas of Chapter 1, Section 1.1. Check that in this way we obtain a DGLA
(g, d) and its sub-DGLA (g+, d)

There is another, more geometric, version of the these differential-graded Lie
algebras. Let us consider the tensor coalgebra T (A[1]) = ⊕n≥0(A[1])n. The coprod-
uct is given by ∆(1) = 1⊗ 1, ∆(v) = v ⊗ 1 + 1⊗ v, v ∈ A[1] and ∆(v1 ⊗ ...⊗ vn) =

69
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∑
1≤i≤n(v1⊗...⊗vi)

⊗
(vi+1⊗...⊗vn), where vi ∈ A[1], 1≤ i ≤ n. Similarly one de-

fines the truncated tensor coalgebra T+(A[1]) = ⊕n≥1(A[1])n. The only difference
in formulas is that in the latter case we set ∆(v) = 0 for v ∈ A[1].

Let us denote by Der(T (A[1]) and Der(T+(A[1]) the graded Lie algebras of
derivations of the above coalgebras. Recall that a derivation D of a coalgebra B
has degree n if it is an automorphism of the coalgebra B⊗k[ε]/(ε2), where deg ε = n.

Exercise 1.1.3. Consider topological dual tensor algebras T (A[1])∗ and T (A[1])∗+.
Check that derivations of degree n of the coalgebras correspond to such continuous
linear maps of these algebras that D(ab) = D(a)b+(−1)ndeg aaD(b) (i.e. derivations
of degree n of the algebras). In case of T (A[1])∗ we also require D(1) = 0.

The following Proposition is easy to prove, so we leave the proof to the reader.

Proposition 1.1.4. Graded Lie algebra Der(T (A[1]) is isomorphic to g, while
Der(T+(A[1]) is isomorphic to g+. Introducing the Hochschild differential d =
[m, •] we obtain DGLAs, which are full and truncated Hochschild complex respec-
tively.

Having a DGLA g+ (we skip the differential from the notation), we obtain,
as in Chapter 3, the deformation functor Defg+ : Artink → Sets. On the other
hand we have the “naive” deformation functor DefA : Artink → Sets such that
DefA(R) consists of associative R-algebras V such that reduction of V modulo the
maximal ideal mR is isomorphic to the k-algebra A. In other words, V is a family
of associative algebras over Spec(R) such that the fiber over the point Spec(k) is
isomorphic to A. Therefore DefA describes deformations of the algebra A.

Theorem 1.1.5. Functor Defg+ is isomorphic to DefA .

Proof. Associative product on a vector space V is an element m of a DGLA
C•

+(V, V )[1] such that [m, m] = 0. Let now m0 be an associative product on A.
Then, for an Artin algebra R with the maximal ideal mR we have an element
m ∈ g1

A ⊗ mR satisfying Maurer-Cartan equation, which in this case says that
[m, m] = 0. Hence we have a family A ⊗ R of associative algebras, such that
the reduction modulo mR is isomorphic to A. This gives a morphism of functors
Defg+ → DefA. Conversely, a product m on the algebra V gives a product on
A, hence the solution to the Maurer-Cartan equation. In this way we obtain an
inverse functor DefA → Defg+ . !

This theorem explains why we say that the DGLA g+ controls deformations of
an associative algebra A.

1.2. Lie algebras. Deformation theory of Lie algebras is similar to the defor-
mation theory of associative algebras. For a Lie algebra W over k we consider the
graded vector space of cochains C•(W, W ) = ⊕n≥1Hom(

∧n W, W ). The shifted
graded vector space g = gW = C•(W, W )[1] has the natural graded Lie algebra
structure, if we interpret it as a graded Lie algebra of graded derivations of the
cocommutative coalgebra S(W [1]) = ⊕n≥1Sn(W [1]) (see Chapter 3). Similarly
to the case of associative algebras the Lie bracket b :

∧2 W → W gives rise to a
DGLA structure on g. Corresponding complex is called Chevalley complex of the
Lie algebra W . Therefore we have a deformation functor Defg : Artink → Sets.
On the other hand we have a “naive” deformation functor DefW : Artink → Sets
which assigns to an Artin algebra R a family α of Lie algebras over R, such that
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the reduction modulo the maximal ideal mR is isomorphic to W . We leave to the
reader to prove the following result.

Theorem 1.2.1. Functors Defg and DefW are isomorphic.

We say that the DGLA g = gW controls the deformation theory of W .

1.3. Commutative algebras. Let A be a commutative algebra over k. Con-
struction of the DGLA controlling deformations of A is more complicated in this
case. First, we observe that for any vector space V there is a cocommutative Hopf
algebra structure on the tensor coalgebra T (V ). The coproduct is uniquely deter-
mined by the formulas ∆(1) = 1⊗1, ∆(x) = x⊗1+1⊗x, x ∈ V . We skip formulas
for the product (it is called shuffle-product). In any case we have a cocommutative
Hopf algebra T (V ). Therefore it is isomorphic to the universal enveloping algebra
U(L(V )) of some Lie algebra L(V ).

Exercise 1.3.1. Show that L(V ) = V ⊕
∧2 V ⊕ V ⊗3/J ⊕ ..., where J =

Coker(
∧3 V → V ⊗

∧2 V ) is the cokernel of the linear map a ∧ b ∧ c )→ a ⊗ (b ∧
c) + b⊗ (a ∧ c) + c⊗ (a ∧ b).

We define the graded Lie algebra gV of graded derivations of the cocommuta-
tive Hopf algebra T (V ). Finally, we apply this construction to V = A[1]. Then
g = gA = ⊕n≥0gn, where g0 = HomV ectk(A, A), g1 = HomV ectk(S2(A), A), g3 =
HomV ectk(Coker(S3(A) → A ⊗ S2(A)), A), etc. In fact this graded Lie algebra is
a graded Lie subalgebra of Hochschild cochains of A, considered as an associative
algebra. We are going to denote g by gHar , so it will not be confused with the
graded Lie algebra of Hochschild cochains.

Proposition 1.3.2. The condition [γ, γ] = 0 for γ ∈ g1 is equivalent to the
fact that γ is a commutative associative product on A.

Proof. The image of the natural embedding of gHar into the graded Lie al-
gebra of Hochschild cochains of A consists of derivations which preserves not only
coproduct, but also a shuffle-product. The results follows. !

Therefore, having a commutative associative product on A we can make gHar =
gHar

A into a DGLA. The corresponding complex is called Harrison complex.
Similarly to the case of associative algebras we can define two functors: DefgHar :

Artink → Sets and DefA : Artink → Sets, which is the “naive” deformation func-
tor (we leave the definition to the reader). Again we have the following theorem.

Theorem 1.3.3. Functors DefgHar and DefA are isomorphic.

We say that DGLA gHar
A controls deformations of A as a commutative associa-

tive algebra.

Remark 1.3.4. The reader can easily see that all the deformation functors in
this section are in fact functors to groupoids. All three theorems give equivalence
of functors from Artin algebras to groupoids.

2. dg-manifolds associated with geometric examples

We are going to discuss geometric examples. Here we have a new phenomenon:
formal pointed dg-manifolds can be derived directly from the problem, without
introducing a DGLA first.



72 4. EXAMPLES

2.1. Systems of polynomial equations. Let M be a smooth manifold,
f1, ..., fn : M → R a finite collection of smooth functions. Let us fix m0 ∈ M
and consider the following problem: how to deform solutions to the system of equa-
tions

f1(m) = f2(m) = ... = fn(m) = 0?
In particular, we can ask about the corresponding functor ArtinR → Sets.
Let us consider the formal completion M̂m0 of M at m0. Then we can lift given

functions to the formal functions f̂i, 1 ≤ i ≤ n.
We have a functor F which assigns to an Artin algebra R the set of all mor-

phisms π : Spec(R) → M̂m0 such that π∗(f̂i) = 0, 1 ≤ i ≤ n.

Remark 2.1.1. More generally, we can have a formal manifold over any field
and any number of regular functions on it.

By the Schlessinger theorem (see Chapter 1) functor F is represented by an ind-
scheme over R. This ind-scheme can be singular. The idea is to find an L∞-algebra
g such that Defg is isomorphic to F , but the formal moduli space associated with
g is non-singular.

Namely, let us define M̂odd
m0

= M̂m0 × Spec(R[ξ1, ..., ξn]) such that deg ξi =
−1, 1 ≤ i ≤ n. Then M̂odd

m0
is a formal graded manifold.

Exercise 2.1.2. Prove that d =
∑

1≤i≤n fi∂/∂ξi is a vector field on M̂odd
m0

of
degree +1, such that [d, d] = 0.

Let us consider a formal scheme Z of common zeros of f̂i, 1 ≤ i ≤ n. We can
think of Z as a functor ArtinR → Sets. This is the functor F we mentioned above.

This picture can be generalized further. Namely, let M̂ be a formal manifold
over a field k, and E → M̂ be a vector bundle (it is given by a finitely generated
projective O(M̂)-module). Let us fix a section s ∈ Γ(M̂, E). Then one has an
ind-scheme Z(s) of zeros of s. As a functor Artink → Sets it can be described
such as follows. Let us consider the total space of the formal Z-graded manifold
tot(E[−1]). This formal graded manifold carries a vector field dtot of degree +1 such
that [dtot, dtot] = 0. If one trivializes the vector bundle, then, in local coordinates
dtot =

∑
i fi∂/∂ξi, where s = (f1, ..., fn) and ξi, 1 ≤ i ≤ N are coordinates along

the fiber of E[−1].
DGLA (more precisely, the complex) corresponding to the formal pointed dg-

manifold Z(s) is called the Koszul complex. If E is a trivial vector bundle, we
obtain the previous case of a collection of functions. The following proposition is a
direct reformulation of definitions.

Proposition 2.1.3. One has an isomorphism of vector spaces H0(O(tot(E[−1])), dtot) ≃
O(Z(s)) ≃ O(M̂)/(f1, ..., fn).

In fact this proposition holds in infinite-dimensional case as well.
One can ask whether higher cohomology groups vanish. We will present without

a proof the result in the finite-dimensional case.

Theorem 2.1.4. The following conditions are equivalent:
a) dim(Z(s)) = dim(M̂)− rk(E),
b) Hi(O(tot(E[−1])), dtot) = 0 for i < 0,
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c) there exists a trivialization of E such that s = (f1, ..., fn) and fi is not a
zero divisor in O(M̂)/(f1, ..., fi−1) for all 1 ≤ i ≤ n (we assume f0 = 0).

If the condition c) is satisfied, the section s (or the corresponding sequence of
functions) is called regular (or complete intersection).

Remark 2.1.5. Suppose E → M̂ is a vector bundle over an ind-affine scheme.
We say that an ind-subscheme Z ⊂ M is an abstract complete intersection if
O(Z) ≃ H0(O(tot(E[−1])), dtot). One can prove that realization of Z as an
ind-scheme of zeros of a section of E described above is unique up to a quasi-
isomorphism of the corresponding formal pointed dg-manifolds.

2.2. Group action. Instead of the scheme of zeros fi(m) = 0, 1 ≤ i ≤ n we
can consider a quotient under the Lie group action. Namely, let G be a finite-
dimensional Lie group, g = Lie(G) be its Lie algebra. Suppose that G acts on a
formal manifold X. Let us consider a (partially) formal Z-graded manifold g[1]×X.
It is understood as a functor from Z-graded Artin algebras to Sets. There is a vector
field d of degree +1 on g[1]×X. Namely, d(γ, x) = (1

2 [γ, γ], vγ(x)), where vγ(x) is
the vector field on X generated by γ ∈ g.

Exercise 2.2.1. Check that [d, d] = 0.

Therefore we have a formal dg-manifold and can consider the formal scheme
of zeros Z(d) (it is thought of as a functor Artink → Sets). This functor has
another description. Namely, let us consider a functor F : Artink → Sets such
that F (R) = X(R)/G(R) (i.e. the quotient set of R-points).

Proofs of the following two results are left as exercises to the reader.

Proposition 2.2.2. Functor F is isomorphic to the functor Z(d).

Proposition 2.2.3. If action of G is free then:
a) the quotient X/G is a formal manifold. It is quasi-isomorphic to the formal

pointed dg-manifold Z(d).
b) We have an isomorphism H0(O(g[1]×X)) ≃ OG(X) (in the RHS we take

the space of invariant functions).

Question 2.2.4. Is it reasonable to consider such actions that H>0(O(g[1] ×
X) = 0? It would be an analog of a complete intersection.

2.3. Homotopical actions of L∞-algebras. Let now g be an L∞-algebra
and X be a formal graded manifold. Then the product g[1]×X is a formal graded
manifold. Let dg[1] denotes the vector field of degree +1 induced by the L∞-
structure.

Definition 2.3.1. Homotopical action of g on X is a vector field d of degree
+1 on g[1]×X such that [d, d] = 0 and the natural projection g[1]×X → g[1] is a
morphism of formal dg-manifolds.

More generally, let g be an L∞-algebra and (X, dX) be a formal dg-manifold.

Definition 2.3.2. A homotopical action of g on X is given by an epimorphism
of formal dg-manifolds π : (Z, dZ) → (g[1], dg[1]) together with an isomorphism of
formal dg-manifolds (π−1(0), dZ) ≃ (X, dX).
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We can say that g “acts” on the fibers of a formal bundle and the “quotient
space” is the total space of the bundle. This situation is similar to the one in
topology. If a Lie group G acts on a topological space X, one can define a homotopy
quotient of this action as the total space of the bundle EG ×G X → BG. Notice
that if G is compact then H•(BG, R) ≃ H•(g, R). The RHS of this formula is
the cohomology of the Chevalley complex (C•(g[1]), d), hence describes the formal
dg-manifold (g[1], dg[1]).

Remark 2.3.3. One can impose at the same time conditions fi = 0, 1 ≤ i ≤ n
and factorize by a (homotopical) action of a Lie algebra. In this way one can
combine in a single formal dg-manifold all geometric examples discussed above.

2.4. Formal differential geometry. Let π : E → X be a submersion of
smooth finite-dimensional manifolds (we will call it a bundle for short). Then we
have an infinite-dimensional bundle of infinite jets of sections: π∞ : J∞(E) → X.
It is well-known that the bundle of infinite jets carries a flat connection ∇∞, so
that flat sections of π∞ are exactly sections of π. Let us fix s ∈ Γ(X, E) and
consider the following problem: what is the formal pointed dg-manifold controlling
the deformation theory of s?

Remark 2.4.1. More generally, we can assume that π : E → X is a submersion
(bundle) of supermanifolds (it is the same as a submersion of the underlying even
manifolds).

For each k ≥ 0 we have a bundle of k-jets πk : Jk(E) → X. For any open
U ⊂ Jk(E) we have an infinite-dimensional manifold Γ(U)(X, E). It consists of
s ∈ Γ(X, E) such that the k-jet of s belongs to U .

Exercise 2.4.2. Describe this manifold as a functor on real Artin algebras.

Let TE|X be a vertical tangent bundle, and v ∈ Γ(U, π∗
k(TE|X)) a vector field.

Then we can construct a canonical vector field vs on Γ(U)(X, E). Indeed, let s ∈
Γ(U)(X, E). We can consider the bundle which is the pull-back (jk(s))∗π∗

k(TE|X) =
s∗(TE|X)→ X.

Proposition 2.4.3. One has the following isomorphism

Ts(Γ(U)(X, E)) ≃ Γ(X, s∗(TE|X)),
where Ts denotes the tangent bundle at s.

Proof. Clear. !
Therefore, we can define vs = (jk(s))∗(v).

Definition 2.4.4. Such vector fields are called local vector fields (or vector
fields given by local differential expressions).

It often happens in practice that vs has degree +1 and [vs, vs] = 0. Then we
have a formal pointed dg-manifold Ms, which is a formal neighborhood of s in
Γ(U)(X, E).

Remark 2.4.5. It often happens (and it is a wish in general) that the tangent
complex Ts(Ms) is elliptic. This explains why often overdetermined systems of
differential equations have a solution. Among examples are complex structures,
metrics with special holonomy, etc.
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Replacing a manifold X by the union X̂ of formal neighborhoods of its points,
we get a formal bundle over X̂. Then we can repeat the above construction and
obtain a vertical vector field v̂s on the bundle of infinite jets π∞. It is easy to see
that v̂s(j∞(s)) = 0. We will assume that deg(v̂s) = +1 and [v̂s, v̂s] = 0. One can see
that v̂s is covariantly constant with respect to the connection ∇∞. If we recall that
j∞(s) is a flat section of π∞, we see that the deformation problem is reformulated
in terms of formal differential geometry. In this way we obtain the formal pointed
dg-manifold M∞

s controlling the deformation theory of s.
There is a quasi-isomorphic formal pointed dg-manifold, which is sometimes

easier to use. In order to describe it we recall that the total space T [1]X of
the tangent odd bundle carries an odd vector field ddR of degree +1 such that
[ddR, ddR] = 0. It comes from the de Rham differential on differential forms. Let us
consider the pull-back of the bundle π∞ to T [1]X. The total space of the pull-back
carries an odd vector field ξ of degree +1 such that [ξ, ξ] = 0. It is a sum of ddR

and the pullback of v̂s. We have also a pull-back of j∞(s). We can deform this
section as a section of formal supermanifolds. It is a zero of ξ. Thus we have a
formal pointed dg-manifold N∞

s .

Proposition 2.4.6. There is natural quasi-isomorphism of formal pointed dg-
manifolds M∞

s → N∞
s .

Proof. To a section of E → X we associate its pull-back to T [1]X. In order to
finish the proof we observe that Ω∗(X, Tj∞(s)(Γ(X, J∞(E))) is quasi-isomorphic to
Γ(X, E). !

Remark 2.4.7. We can construct formal pointed dg-manifolds in the cases
when no bundle is apparent. For example we can ask about deformations of an em-
bedding of smooth manifolds j : M → N . This problem reduces to the deformation
theory of the induced section of the bundle M ×N →M .

We will discuss more examples in the next setion.

3. BRST

3.1. General scheme. Let E → X be a non-linear bundle with the fibers
which are supermanifolds, and with the base X which is an even finite-dimensional
manifold. Then for an open U ⊂ X the space of sections E(U) of E over U is an
infinite-dimensional supermanifold. We would like to make it into a dg-manifold.
In the considerations below we take U = X. The corresponding odd vector field
should be given by “local” formulas. In other words, if s ∈ E(X) = Γ(X, E) then
dE(X)(s) ∈ Ts(E(X)) = Γ(X, s∗TX)[1] should depend on a finite jet of the section
s. The space of odd vector fields which satisfy the locality condition forms a Lie
superalgebra V ectloc(X)[1] ⊂ V ect(E(X))[1] (in fact we have a sheaf of subalgebras,
since our considerations are local). Choosing d ∈ V ectloc(X)[1] such that [d, d] = 0
we obtain a sheaf (on X) of infinite-dimensional dg-manifolds. They are non-formal
dg-manifolds. Formal neighborhood of a zero d gives rise to a deformation functor.
This is a classical BRST construction.

Example 3.1.1. Let us consider the standard fiber bundle π : E = T [1]X → X.
Then Γ(X, E) = V ect(X)[1] is a dg-manifold. The corresponding odd vector field d
is defined by the Lie algebra structure on V ect(X). Let (xi, ξi) be local coordinates
on T [1]X. A section s ∈ Γ(X, E) is given by ξi = vi(x). Then the odd vector
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field d is given by the formulas v̇i =
∑

i vj(x)∂vi(x)/∂xj = 1/2[v, v]i(x). Formal
neighborhoods of zeros of d (i.e. points x where vi(x) = 0) define the deformation
theory of X as a smooth manifold.

3.2. Jet bundles and non-linear equations.
3.2.1. Determined systems. Let p : Y → X be a (non-linear) fiber bundle of

smooth manifolds, and π : V → Y be a vector bundle. We denote by JetN (Y ) the
space of N -jets of smooth sections of p : Y → X. For a given section s ∈ Γ(X, Y )
we denote by jN (s) the corresponding N -jet. Then we have a pull-back vector
bundle π∗V → JN (Y ). Let us also fix a section Φ of the pull-back bundle.

Definition 3.2.1. An differential equation of order less or equal than N (for
a section s ∈ Γ(X, Y )) is given by Φ(jN (s)) = 0.

Let us introduce a supermanifold E = V [−1]. It gives rise to a fiber bundle
on X: E → Y → X. Let s ∈ Γ(X, E). We define ŝ ∈ Γ(X, Y ) by composing
s : X → Y with the projection E → Y . Then Φ(ŝ) ∈ Γ(X, ŝ∗V ) ⊂ Ts(Γ(X, E)),
where Ts(Γ(X, E)) denotes the tangent space to s in the space of sections. In this
way we obtain an odd vector field d such that [d, d] = 0. Thus a closed subset in
the space of N -jets is described as a set of zeros of a section of some vector bundle
on JN (Y ).

Let us explain this point in detail. Suppose that we are given a differential
expression D : JN(Y ) → R. Naively, a non-linear differential equation of order
less or equal than N is given by D(jN (s)) = 0. We can say the same thing dif-
ferently. Let us consider a dg-manifold Γ(X, Y ) × C∞(X)[1] = Γ(X, Y × R0|1).
Local coordinates on it will be denoted by (s, ξ) = (s(x), ξ(x)). Then we define an
odd vector field d by the formulas ṡ(x) = 0, ξ̇(x) = D(jetN (s)(x)). One can check
that [d, d] = 0. Taking V = Y ×R we arrive to the previous description. Formal
neighborhoods of zeros of d control the deformation theory of determined systems
of non-linear equations.

3.2.2. Overdetermined systems. For overdetermined systems of non-linear equa-
tions there are solvability conditions. They give rise to odd variables. Roughly
speaking, in this case one works with such DGLAs g = ⊕n≥0gn that g0 consists of
functions (sections of bundles, etc.) , g1 corresponds to equations, g2 corresponds
to compatibility conditions. Symmetries of the equations appear in g−1.

Let us consider a typical example: integrability conditions for almost complex
structures. Thus we have a smooth manifold X, dimX = 2n. We also have
a bundle Y → X of almost complex structures. The fiber consists of linear maps
Jx : TxX → TxX such that J2 = −id. Equivalently, it is given by the space of vector
subspaces T 1,0

x ⊂ TxX ⊗C such that T 1,0
x ∩ T 1,0

x = 0 and T 1,0
x ⊕ T 1,0

x = TxX ⊗C.
For any global almost complex structure one can define its curvature as an element
of Γ(X, Hom(

∧2 T 0,1, TX ⊗C/T 0,1
X )). One can do this adding also forms of higher

degrees. Then one gets an elliptic complex. It carries a structure of a DGLA, which
corresponds to the (extended) formal moduli space of complex structures. In degree
−1 one has symmetries of the integrability conditions. They are all smooth vector
fileds on X, acting on the space of complex structures.

Remark 3.2.2. One can also have examples in which there is no “honest”
Lie algebra of symmetries of equations. In fact one can replace a Lie algebra of
symmetries by its resolution and consider homotopy actions. Such example appear
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indeed when one considers the action of holomorphic vector fields on holomorphic
foliations.

3.3. Volume elements. Let us denote by Ωn,+(X) the cone of positive vol-
ume elements on a real smooth n-dimensional manifold X. We put E = Ωn,+(X)×X

T [1]X. Then Γ(X, E) becomes a dg-manifold with an odd vector field d = (Lieξω, [ξ, ξ]),
where ω ∈ Ωn,+(X), ξ ∈ T [1]X. Let us take a section s(x) = (ω(x), 0). Then the
corresponding dg-manifold is related to the Lie algebra of vector fields with zero
divergence.

3.4. dg-manifolds associated with deformations of local systems, com-
plex vector bundles and complex manifolds.

3.4.1. Local systems. Let X be a smooth manifold, G a Lie group. Let us
consider a G-local system on X, which is a smooth principal G-bundle E → X
equipped with a flat connection ∇. Let g = Lie(G) be the Lie algebra of G. Then
we have the associated vector bundle ad(E) → X which carries the induced flat
connection. We are interested in the deformation theory of this flat connection.

Let Γ• = ⊕n≥0Γn be a graded Lie algebra Γ(X, ad(E)⊗ Ω•(X)) of differential
forms with values in ad(E). The bracket is given locally as on the product of Lie
algebra and graded commutative algebra. The flat connection defines a differential
d∇ on Γ.

Proposition 3.4.1. DGLA (Γ•, d∇) controls the deformation theory of ∇.

Proof. Let R be an Artin algebra, ∇+ α be a flat connection. Then, in terms
of Γ•, we can say that we have α ∈ Γ1⊗mR satisfying the Maurer-Cartan equation

d∇(α) + 1/2[α,α] = 0.

Gauge transformations are given by elements of the group exp(Γ0⊗mR). There-
fore the “naive” deformation functor Def∇ (we leave as an exercise to define it) is
isomorphic to the functor DefΓ• . !

Thus we have a formal pointed dg-manifold, which is associated with Γ• and
controls the deformation theory of ∇.

The latter result can be reinterpreted in terms of BRST construction. Let
us consider the pull-back F → T [1]X of the supervector bundle ad(E[1]) → X.
There is a flat superconnection on F . The total space tot(F ) carries a vector field
dtot of degree +1 such that dtot = ddR + dg[1] in the previous notation. Clearly
[dtot, dtot] = 0 and ∇ defines a section s of F such that dtot(s) = 0. Then, as we
know, we have a formal pointed dg-manifold, which is a formal neighborhood of s
in the space of sections.

3.4.2. Complex structures and complex vector bundles. To a real smooth man-
ifold X we can associate two closely related algebras: the algebra O(X) of real
valued smooth functions on X and the algebra O(X) ⊗ C := O(XC) of complex-
valued smooth functions on X. We would like to think of the latter as of the algebra
of regular functions on the “very thin” complex extension XC of X. If X was a
real-analytic, then XC would be a germ of the corresponding complex manifold. In
other words, we think of X as of a pair (XC, ∗), where ∗ is the complex conjugation.

If X admits a complex structure then the formal completion X̂Cx at each
point x is a product of two formal manifolds: holomorphic and antiholomorphic:
X̂Cx ≃ X̂C

hol

x × X̂C
antihol

x .
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Thus we have two complex conjugate formal foliations of X̂C. Holomorphic
vector bundle on X give rise to a holomorphic vector bundle on X̂C (i.e. pro-
jective finitely-generated O(XC)-module) with a connection, which is flat in the
anti-holomorphic direction.

In order to describe the deformation theory of such a connection ∇ one should
replace in the previous subsection de Rham differential forms by Dolbeault differ-
ential forms.

Exercise 3.4.2. a) Prove that the DGLA of Dolbeault forms g• = ⊕n≥0Γ(X,
∧n(T 0,1

X )∗⊗
T 1,0

X ) (differential is induced by the ∂̄-operator) controls the deformation theory of
the complex structure on X.

b) Let E → X be a holomorphic vector bundle with holomorphic connection.
Let us think of it as of a smooth vector bundle with a connection which is flat in
∂̄-direction.

Prove that the DGLA of Dolbeault E-valued forms g• = ⊕n≥0Γ(X, E⊗Ω0,∗(X))
(differential is induced by the connection) controls the deformation theory of the
complex connection on E.

Returning to the BRST picture, we remark that to a smooth manifold X one
can associate a supervector bundle over XC with the total space Spec(Ω0,∗(X))
and the fiber over a point x given by Spec(

∧•(T 0,1
x )∗). Then we can repeat consid-

erations of the previous subsection replacing T [1]X by T 0,1[1]X. This gives us the
formal pointed dg-manifold controlling the deformation theory of the vector bundle
with a holomorphic connection.

Finally we observe that, similarly to complex structures, one can treat real
foliations. More precisely, let X be a smooth manifold which carries a foliation
F . Then F is defined by an integrable subbundle of the tangent bundle TX . In
particular we can consider a supermanifold T [1]F ⊂ T [1]X.

Exercise 3.4.3. Check that the odd vector field ddR on T [1]X is tangent to
T [1]F (Hint: foliation is defined by a differential ideal JF in Ω•(X) which consists
of forms vanishing on TF ).

Let g = V ect(T [1]F ) be a graded Lie algebra of vector fields on a supermanifold
T [1]F . It follows from the exercise that d = [ddR, •] makes g into a DGLA. Then
we have a deformation functor Defg : ArtinR → Sets. On the other hand we have
a “naive” deformation functor DefF : ArtinR → Sets which assigns to an Artin
algebra (R, mR) a class of isomorphism of families of foliations on X parametrized
by Spec(R) modulo the gauge action of the group exp(mR ⊗ V ect(X)).

Exercise 3.4.4. Prove that Defg is isomorphic to DefF (Hint: compare with
the deformation theory of complex structures, i.e. deform the de Rham differential
along the leaves of F ).

3.5. Deformations of holomorphic maps. Let φ : X → Y be a holomor-
phic map of complex manifolds. We would like to describe the deformation theory
of φ. As always, we have a “naive” deformation functor Defφ : ArtinC → Sets.
Namely, Defφ(R) consists of morphisms of analytic spaces X × Spec(R) → Y
such that their restriction to X × Spec(C) coincides with φ. We would like to
describe a formal pointed dg-manifold M such that the deformation functor DefM

is isomorphic to Defφ .
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We recall (see Section 3.4) that with a C∞-manifold Z we can associate its
complexification ZC, which is the same real manifold, but equipped with the sheaf
of complexified smooth functions C∞

Z ⊗ C. We will use the same notation in the
case when Z is a supermanifold (see Chapter 2, Section 8).

Let us consider a complexified supermanifold X1 = (T 0,1[1]X)C. More pre-
cisely, we start with X considered as a smooth real manifold. Then we can define
a supermanifold T 0,1[1]X which is the total space of the vector bundle of anti-
holomorphic vectors, with the changed parity of fibers. Finally we complexify the
algebra of functions on this supermanifold. Clearly C∞(X1) ≃ Ω0,∗(X). There is
natural action of the complex supergroup C∗ ×C0|1 on X1. Similarly to the case
of ordinary differential forms (see Chapter 2, Section 6.1 and Section 8) now we
recover the Dolbeault differential.

Let EY → X be a bundle over X with the fiber EY,x being the complexification
of the formal manifold (Ŷφ(x))C, which is the complexification of the completion
of C∞-manifold Y at φ(x). In fact EY carries a flat connection, hence the Lie
algebra V ect(X) acts on the space of sections Γ(X, EY ). If Y carries a complex
structure, then, as we discussed in Section 3.4 we have a factorization (Ŷφ(x))C =
Ŷ hol

φ(x) × Ŷ antihol
φ(x) . We denote by E1 → X1 the pull-back to X1 via φ of the bundle

Ehol
Y → X, obtained from EY by taking the factor Ŷ hol

φ(x) for each x ∈ X in the above
factorization. Notice that Ehol

Y carries a flat connection (holomorphic functions for
infinitesimally closed points can be identified). Finally, we denote by M the formal
pointed dg-manifold which is the completion at φ of the space of section Γ(X1, E1)
(vector field d = dM of degree +1 such that [d, d] = 0 and d(φ) = 0 arises from the
action of C∗ ×C0|1, as we discussed above).

Theorem 3.5.1. There is an isomorphism of deformation functors DefM ≃
Defφ.

Proof. Let (R, mR) be a complex Artin algebra. Then DefM (R) consists of
such sections of the bundle E2 → X1 × Spec(R) (which is the pull-back of E1 via
the natural projection X1× Spec(R)→ X1) that their restriction to X1×Spec(C)
coincides with φ. Notice that E2 carries a flat connection. We are interested in
C∗ × C0|1-invariant sections of E2. It is easy to see that the space C∗-invariant
sections of E2 is isomorphic to the space of smooth sections of the bundle Ehol

Y →
XC × Spec(R) (recall that XC denotes the complexification of X considered as a
C∞-manifold). The latter space can be described explicitly. Namely, for any x ∈ X
we choose a small Stein neighborhood Ux as well as a small Stein neighborhood Uφ(x)

of φ(x) such that φ(Ux) ⊂ Uφ(x). Then a section s ∈ Γ(Ux, Ehol
Y ) is the same as such

homomorphism of algebras O(Uφ(x))→ (C∞(Ux) ⊗R C) ⊗C R) that its reduction
modulo the maximal ideal mR ⊂ R coincides with φ∗. In order to complete the
proof we notice that C0|1-invariance is equivalent to ¯partial-closedness, hence we
get holomorphic maps X → Y . Therefore we obtained a morphism of functors
DefM → Defφ. Since the above construction can be inverted, we see that in fact
we have an isomorphism of functors. !





CHAPTER 5

Operads and algebras over operads

1. Generalities on operads

1.1. Polynomial functors, operads, algebras. Let k be a field of charac-
teristic zero. All vector spaces below will be k-vector spaces unless we say otherwise.

We fix a category C which is assumed to be k-linear abelian symmetric monoidal
and closed under infinite sums and products. We will also assume that it has inner
Hom′s. Our main examples will be the category of k-vector spaces, the category
V ectZk of Z-graded vector spaces (with the Koszul rule of signs), and the category
of complexes of k-vector spaces.

Suppose we have a collection of representations F = (F (n))n≥0 of the symmet-
ric groups Sn, n = 0, 1, ... in C (i.e. we have a sequence of objects F (n) together
with an action of the group Sn on F (n) for each n).

Definition 1.1.1. A polynomial functor F : C → C is defined on objects by
the formula

F (V ) = ⊕n≥0(F (n)⊗ V ⊗n)Sn

where for a group H and an H-module W we denote by WH the space of coinvari-
ants. Functor F is defined on morphisms in an obvious way.

Notice that having a sequence F (n) as above we can define FI for any finite set I
using isomorphisms of I with the standard set {1, ..., |I|}, where |I| is the cardinality
of I. Thus F{1,...,n} = F (n). Technically speaking, we consider a functor Φ from
the groupoid of finite sets (morphisms are bijections) to the symmetric monoidal
category C. Then we set FI = Φ(I).

Polynomial functors on C form a category PF if we define morphisms between
two such functors F and G as a vector space of Sn-intertwiners

Hom(F, G) =
∞∏

n=0

HomSn (F (n), G(n))

There is a composition operation ◦ on polynomial functors such that (F ◦ G)(V )
is naturally isomorphic to F (G(V )) for any V ∈ C. We also have a polynomial
functor 1 such that 11 = 1C and 1(n) = 0 for all n ̸= 1. Here 1C is the unit object
in the monoidal category C. It is easy to see that in this way we get a monoidal
structure on PF .

Definition 1.1.2. An operad in C is a monoid in the monoidal category PF .
In other words it is a polynomial functor R ∈ PF together with morphisms m :
R ◦R→ R and u : 1→ R satisfying the associativity and the unit axioms.

More explicitly, an operad is given by a collection of morphisms

81
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F (n)⊗ F (k1)⊗ ...⊗ F (kn)→ F (k1 + ... + kn)
(f, f1, ..., fn) )→ γ(f, f1, ..., fn) called operadic compositions such that:
a) they are equivariant with respect to the action of the group Sn×Sk1×...×Skn

on the source object and the group Sk1+...+kn on the target object;
b) the associativity axiom is satisfied, i.e. two natural compositions F (n) ⊗

F (k1) ⊗ ... ⊗ F (kn) ⊗ F (l11) ⊗ ...⊗ F (ln,ln) → F (
∑

ij lij) equal to γ(γ ⊗ id) and
γ(id ⊗ γ⊗n) coincide.

We are given a morphism e : 1C → F (1), which satisfies the unit axiom:
γ(e, f) = f, γ(f, e, e, ..., e) = f for any f ∈ F (n).

To shorten the notation we will denote the operad (R, m, u) simply by R. An
operad R gives rise to a so-called triple in the category C. There is the notion of
an algebra over a triple in a category. We can use it in order to give a definition of
an algebra in C over the operad R. It is given by an object V ∈ C and a morphism
R(V ) → V satisfying natural properties of compatibility with the structure of
a triple. Equivalently, V is an R-algebra iff there is a morphism of operads R →
End(V ), where End(V ) is the endomorphism operad of V defined by (End(V ))(n) =
Hom(V ⊗n, V ), n ≥ 1, and Hom denotes the inner Hom in C. The unit is given by
idV ∈ End(V )(1). Actions of the symmetric groups and the operadic compositions
are the obvious ones.

The category of R-algebras will be denoted by R− alg. There are two adjoint
functors ForgetR : R− alg → C (forgetful functor) and FreeR : C → R− alg such
that ForgetR ◦ FreeR = R.

Definition 1.1.3. For X ∈ Ob(C) we call FreeR(X) the free R-algebra gener-
ated by X.

Abusing notation we will sometimes denote FreeR(X) by R(X). More ex-
plicitly, an R-algebra structure on X is given by a collection of linear maps γX :
R(n)⊗Sn X⊗n → X, satisfying the associativity condition as well as compatibility
with the unit.

There is also a dual notion of cooperad. Cooperad is the same as cotriple in the
category C. The axioms for cooperads are dual to those for operads. In particular,
we have a collection of maps

F (k1 + ... + kn)→ F (n)⊗ F (k1)⊗ ...⊗ F (kn)
satisfying the coassocitivity property. We leave to the reader to write down explicit
diagrams for cooperads.

1.2. Examples of operads. There are operads As, Lie, Comm such that
the algebras over them in the category of vector spaces are non-unital associative,
Lie and non-unital commutative algebras correspondingly.

We have:
a) As(n) = k[Sn], n ≥ 1, which is the group algebra of the symmetric group,

considered with the right regular action of Sn. Operadic composition is induced by
the natural map Sn × Sk1 × ...× Skn → Sk1+...+kn such that σ × σ1 × ...× σn )→
σ(σ1, ..., σn).

b) Comm(n) = k for all n ≥ 1, Comm(0) = 0. Operadic composition is given
by the multiplication in k.
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c) Lie(n) = k[Sn]sgn which is the representation of Sn corresponding to the
“sign” character.

Remark 1.2.1. It is customary to describe operads implicitly, by saying what
are algebras over them. Intuitively this means that each operadic space F (n) de-
scribes “universal” operations in algebras. For example, we can describe the operad
of commutative algebras Comm by saying that algebras over this operad are non-
unital commutative associative algebras. To define an algebra V over Comm is the
same as to define for any n ≥ 1 a space of linear maps V ⊗n → V, v1 ⊗ ...⊗ vn )→
v1...vn. Since the actions of the symmetric groups are trivial, we get a commuta-
tivity of the multiplication v1 ⊗ v2 )→ v1v2.

1.3. Colored operads. There is a generalization of the notion of operad. It
is useful in order to describe in operadic terms pairs (associative algebra A, A-
module), homomorphisms of algebras over operads, etc.

Let I be set. We consider the category CI consisting of families (Vi)i∈I of
objects of C.

A polynomial functor F : CI → CI is defined by the following formula:

(F ((Vi)i∈I))j = ⊕a:I→Z≥0Fa,j ⊗∏
i Sa(i) ⊗i∈I (V ⊗a(i)

i )

where a : I → Z+ is a map with the finite support, and Fa,j is a representation in
C of the group

∏
i∈I Sa(i).

Polynomial functors in CI form a monoidal category with the tensor product
given by the composition of functors.

Definition 1.3.1. A colored operad is a monoid in this category.

Similarly to the case of usual operads it defines a triple in the category CI .
Therefore we have the notion of an algebra over a colored operad.

There exists a colored operad OP such that the category of OP-algebras is
equivalent to the category of operads.

Namely, let us consider the forgetful functor Operads → PF . It has a left
adjoint functor. Thus we have a triple in PF . As we have noticed before, the
category PF can be described as a category of sequences (P (n))n≥0 of Sn-modules.
Then using the representation theory of symmetric groups, we conclude that the
category PF is equivalent to the category CI0 , where I0 is the set of all Young
diagrams (partitions). Hence a polynomial functor F : PF → PF can be described
as a collection F ((mi), n) of the representations of the groups Sn,(mk) := Sn ×∏

k≥0(Smk ! Smk
k ), where ! denotes the semidirect product of groups.

Having these data we can express any polynomial functor F on PF by the
formula:

(F ((U(k))k≥0))(n) =
⊕

(mk)

F ((mk), n) ⊗S1,(mk)

⊗

k≥0

(U(k)⊗mk )

In particular, one has a functor OP : PF → PF , which is the composition of
the forgetful functor Operads→ PF with its adjoint. It gives rise to an I0-colored
operad OP = (OP (mi),n). We will describe it explicitly in the subsection devoted
to trees.
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1.4. Non-linear operads. We remark that operads and algebras over oper-
ads can be defined for any symmetric monoidal category C, not necessarily k-linear.
In particular, we are going to use operads in the categories of sets, topological
spaces, etc.

Namely, an operad in C is a collection (F (n))n≥0 of objects in C, each equipped
with an Sn-action, as well as composition maps:

F (n)⊗ F (k1)⊗ ...⊗ F (kn)→ F (k1 + ... + kn)
for any n ≥ 0, k1, ..., kn ≥ 0. Another datum is the unit, which is a morphism
1C → F (1). All the data are required to satisfy axioms similar to those of linear
operads (see [Ma77]). Analogously one describes colored operads and algebras over
operads. Notice that in this framework one cannot speak about polynomial functors
and free algebras.

This approach has some advantages and drawbacks (cf. the description of
analytic functions in terms of Taylor series versus their description in terms of
Taylor coefficients).

1.5. Pseudo-tensor categories and colored operads. The notion of col-
ored operad is essentially equivalent to the notion of pseudo-tensor category dis-
cussed before. Pseudo-tensor category with one object is the same as an operad.
General pseudo-tensor category is a colored operad with colors given by objects of
the category.

If A is a set, then a pseudo-tensor category is exactly the same as an A-colored
operad in the tensor category V.

If we take V to be the category of sets, and take all sets I (see the definition of
a pseudo-tensor category) to be 1-element sets, we obtain the notion of a category
with the class of objects equal to A.

Colored operad with one color gives rise to an ordinary operad. A symmetric
monoidal category A produces the colored operad with PI((Xi), Y ) = HomA(⊗iXi, Y ).

The notion of pseudo-tensor category admits a generalization to the case when
no action of symmetric group is assumed. This means that we consider sequences
of objects instead of families (see [So99]). The new notion generalizes monoidal
categories. In terms of the next subsection this would mean that one uses planar
trees instead of all trees. One can make one step further generalizing braided
categories. This leads to colored braided operads (or pseudo-braided categories).
In this case trees in R3 should be used.

2. Trees

In this book we use graphs and trees. For different purposes we will need
different classes of graphs and trees. We prefer to define each class individually. In
the case of operads, trees are used as tools for visualization of operadic compositions.

Definition 2.0.1. A tree T is defined by the following data:
1) a finite set V (T ) whose elements are called vertices;
2) a distinguished element rootT ∈ V (T ) called root vertex;
3) subsets Vi(T ) and Vt(T ) of V (T ) \ {rootT } called the set of internal vertices

and the set of tails respectively. Their elements are called internal and tail vertices
respectively;

4) a map N = NT : V (T )→ V (T ).
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These data are required to satisfy the following properties:
a) V (T ) = {rootT } 8 Vi(T ) 8 Vt(T );
b) NT (rootT ) = rootT , and Nk

T (v) = rootT for all v ∈ V (T ) and k≫ 1;
c) NT (V (T )) ∩ Vt(T ) = ∅ ;
d) there exists a unique vertex v ∈ V (T ), v ̸= rootT such that NT (v) = rootT .

We denote by |v| the valency of a vertex v, which we understand as the cardi-
nality of the set N−1

T (v).
We call the pairs (v, N(v)) edges in the case if v ̸= rootT . If both elements of

the pair belong to Vi(T ) we call the corresponding edge internal. The only edge
er defined by the condition d) above is called the root edge. All edges of the type
(v, N(v)), v ∈ Vt(T ) are called tail edges. We use the notation Ei(T ) and Et(T )
for the sets of internal and tail edges respectively. We have a decomposition of the
set of all edges E(T ) = Ei(T )8 (Et(T )∪ {er}). There is a unique tree Te such that
|Vt(Te)| = 1 and |Vi(Te)| = 0. It has the only tail edge which is also the root edge.

A numbered tree with n tails is by definition a tree T together with a bijection
of sets {1, ..., n}→ Vt(T ). We can picture trees as follows

Numbered tree,

er

root

1 2

non-numbered vertices are black

Let R be an operad. Any tree T gives a natural way to compose elements of
R, compT : ⊗i∈Vi(T )R(N−1(v))→ R(Vt(T )).

Let us return to the colored operad OP and give its description using the
language of trees.

Namely, OP((mi), n) is a k-vector space generated by the isomorphism classes
of trees T such that:

a) T has n tails numbered from 1 to n;
b) T has

∑
i mi internal vertices all numbered in such a way that first m0

vertices have valency 0, and they are numbered from 1 to m0, next m1 internal
vertices have valency 1, and they are numbered from 1 to m1, and so on;

c) for every internal vertex v ∈ Vi(T ) the set of incoming edges N−1
T (v) is also

numbered.



86 5. OPERADS AND ALGEBRAS OVER OPERADS

An action of the group S(mk),n is defined naturally: the factor Sn permutes
numbered tails, the factor Smk permutes numbered internal vertices and the factor
Smk

k permutes their incoming edges numbered from 1 to k.
The composition is given by the procedure of inserting of a tree into an internal

vertex of another one. The new numeration is clear. We leave these details as well
as the proof of the following proposition to the reader.

Proposition 2.0.2. The category of OP-algebras is equivalent to the category
of k-linear operads.

Let F be a polynomial functor on C. Let us consider a category CF objects of
which are pairs (V, φ : F (V )→ V ) where V is an object of C and φ is a morphism
in C. Morphisms of pairs are defined in the natural way.

Proposition 2.0.3. The category CF is equivalent to the category of FreeOP(F )-
algebras.

Proof.Exercise. !
We call P = FreeOP(F ) the free operad generated by F .
Components P (n) of the functor P can be defined explicitly as follows.
Let Tree(n) denotes the groupoid of numbered trees with n tails, |Tree(n)|

denotes the set of classes of isomorphisms of these trees . We denote the class of
isomorphism of T by [T ]. Then we have

P (n) = FreeOP(F )(n) = ⊕[T ]∈|Tree(n)|(⊗v∈Vi(T )F (N−1(v)))AutT

3. Resolutions of operads

3.1. Topological motivation. Let R be an operad over a field k. This means
that R is an operad in the tensor category of k-vector spaces. The aim of this section
is to discuss the notion of resolution of R. In particular we will construct canonically
a dg-operad PR over k, which is free as a graded operad, and a quasi-isomorphism
PR → R. In this subsection we will assume that R is non-trivial, which means that
the unit operation from R(1) is not equal to zero.

As a motivation we start with some topological construction (cf. [BV73]).
Let O = (O(n))n≥0 be a topological operad (i.e. all O(n) are Sn-topological

spaces and all operadic morphisms are continuous). We describe (following [BV73])
a construction of topological operad B(O) = (B(O)(n))n≥0 together with a mor-
phism of topological operads B(O)→ O which is homotopy equivalence.

To simplify the exposition we assume that Sn acts freely on On for all n.
Each space B(O)(n) will be the quotient of

B̂(O)(n) =
⊔

[T ],T∈Tree(n)

([0, +∞]Ei(T ) ×
∏

v∈Vi(T )

O(N−1(v)))/AutT

by the relations described such as follows.
Let us consider elements of B̂(O)(n) as numbered trees with elements of O

attached to the internal vertices, and the length l(e) ∈ [0, +∞] attached to every
edge e. We require that all external edges (i.e. root edge and the tail edges) have
lengths +∞.

We impose two type of relations.
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1) We can delete every vertex v of valency 1 if it contains the unit of the operad,
replacing it and the attached two edges of lengths li, i = 1, 2 by the edge with the
length l1 + l2 . We use here the usual assumption: l +∞ =∞+ l =∞.

2) We can contract every internal edge e = (v1, v2), v2 = N(v1) of the length 0
and compose in O the operations attached to vi, i = 1, 2.

We depict the trees and relations below.

8

8 8
1

8

8

8l2=

root

1 2

3

3l0 < < 8

= 0l

1

=
l 2

l 1

2

l2+

l=0 =

l

v

v
v

1

2

1O

composition of operations

in v1 and v

Let us describe how B(O) can act naturally on a topological space.
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Let X be a topological space, Y a topological subspace, and gt : X → X, t ∈
[0, +∞) a 1-parametric semigroup of continuous maps acting on X. We assume
that for any x ∈ X the limit

x∞ = lim
t→∞

gtx

exists and belongs to Y . We use the notation g∞ for the corresponding continuous
map X → Y, x )→ x∞. We have also a continuous map [0, +∞]×X → X, (t, x) )→
gt(x).

Suppose that a topological operad O acts on X, i.e. we are given continuous
maps O(n)×Xn → X, n ≥ 0, satisfying the usual properties. We can construct an
action of B(O) on Y as follows. Let γ ∈ O(n), t, ti ∈ R+∪{+∞}, xi ∈ X, 1 ≤ i ≤ n.
Then we assign to these data the point x = gtγ(gt1x1, ..., gtnxn) of X. We define
the composition of such operations in the natural way.

We can interpret the parameters t, ti above as lengths of edges of trees . Putting
t = +∞ we obtain an action of B(O) on a the homotopy retract Y .

4. Resolutions of linear operads

4.1. Filtered resolutions of algebras. Let C be a k-linear abelian tensor
category, and V ∈ Ob(C) be a filtered object, i.e. V =

⋃
n≥0 V≤n, where {0} =

V≤0 ⊂ V≤1 ⊂ .... is an increasing filtration, and R be an operad in C. Viewing R as a
polynomial functor we see that R transforms monomorphisms into monomorphisms.
In particular R(V≤n) ⊂ R(V ).

Since C is an abelian tensor category we can speak about derivations of the
free R-algebra R(V ) = FreeR(V ) as of a Lie algebra in the tensor category Ind(C)
of ind-objects. More precisely, for any R-algebra A in C and any commutative
nilpotent algebra m in C we consider an R-algebra A ⊗ (1C ⊕m). Let us consider
a set of automorphisms f : A⊗ (1C ⊕m)→ A ⊗ (1C ⊕m) such that

a) f is a morphism of 1C ⊕m-modules;
b) f is a morphism of R-algebras;
c) reduction of f modulo m is equal to idA.
It is easy to see that in this way we get a functor from the category of commu-

tative nilpotent algebras in C to the category of groups.

Exercise 4.1.1. Prove that this functor is represented by an object of Ind(C).

In other words we have a group object in the category of formal schemes in C
(see Appendix). On can prove that in fact it is a formal manifold. It has a marked
point, which is the unit of the formal group. The tangent space at the unit is a Lie
algebra in Ind(C). It is denoted by Der(A) and called the Lie algebra of derivations
of A.

Exercise 4.1.2. Prove the following isomorphism of objects:

Der(FreeR(V )) ≃ Hom(V, R(V )).
(Hint: use the fact that R(V ) = ForgetR(FreeR(V ))).

From now on we will assume that C = V ectk. Then we can speak about
elements of Der(A). Let us return to the case A = FreeR(V ), where V is a filtered
vector space.

Definition 4.1.3. We say that D ∈ Der(FreeR(V )) lowers the order of filtra-
tion by m if D(V≤n) ⊂ R(V≤n−m).
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We will be interested in the case m = 1. Then D transforms the filtration
V≤1 ⊂ V≤2 ⊂ .... into the filtration {0} = R(V≤0) ⊂ R(V≤1) ⊂ .....

Let now A = (FreeR(V ), d) be a dg-algebra over R such that the differential d
is a derivation which lowers the order of filtration by 1. In this case we say that A
is a cofibrant R-algebra.

Proposition 4.1.4. For any dg-algebra B over R there exists a cofibrant R-
algebra A which is quasi-isomorphic to B. If A′ is another such a cofibrant R-
algebra then there is a cofibrant R-algebra A′′ which is quasi-isomorphic to both A
and A′.

Proof. We need to find a filtered V such that A = FreeR(V ). We set V≤1 =
d(ForgetR(B)), V≤2 = ForgetR(B). Then d(V≤1) = 0, d(V≤2) ⊂ R(V≤1). There
is natural morphism of dg-algebras R(V≤2) → B, which is an epimorphism on
cohomology. Let us split Ker(d|R(V≤2)) as a direct sum of the image U of the
space Ker(H•(R(V≤2)→ H•(B)) and some Z-graded vector space U1. Set V≤3 =
U [1]⊕V≤2. The differential dV≤3 is defined as a sum of the old differential dV≤2 and
dU [1] induced by the splitting. Then dV≤3(V≤3) ⊂ R(V≤2) by construction. Notice
that elements of U [1] are cohomologically trivial. Then we can add generators
corresponding to these classes. Thus we have a morphism of dg-algebras R(V≤3)→
B. Repeating the procedure we construct by induction all V≤n, n ≥ 1. It is easy
to see that A = FreeR(V ) gives the desired cofibrant R-algebra. The uniqueness
is proved similarly, if one uses the fact that all cofibrant R-algebras are isomorphic
as Z-graded R-algebras (i.e. we forget about differentials). !

Corollary 4.1.5. If A is a cofibrant R-algebra then Der(A) is a DGLA. For
a quasi-isomorphic cofibrant R-algebra B one has a quasi-isomorphism of DGLAs
Der(A) ≃ Der(B).

Proof ??? !

4.2. Boardman-Vogt resolution of a linear operad. Considerations of
the previous subsection can be applied to algebras over colored operads as well.
In particular we can speak about filtered resolutions of operads (they are algebras
over the colored operad OP).

Let us return to the construction of the resolution PR → R. In order to
describe a dg-operad PR we need a special class of trees. More precisely, for every
n ≥ 0 we introduce a groupoid T (n) of marked trees with n tails. An object of
T (n) is a numbered tree T ∈ Tree(n) and a map to a 3-element set lT : E(T ) →
{0, finite, +∞} such that lT ({er} ∪ Et(T )) = {+∞}. Notice that in the case of
topological operads the component ̂B(O)(n) is stratified naturally with the strata
labeled by equivalence classes |T (n)| of marked trees. The label of an edge e of the
corresponding marked tree is 0 if l(e) = 0, is finite if l(e) ∈ (0, +∞) and is +∞
if l(e) = +∞. According to this description we call them zero-edges, finite edges
or infinite edges respectively. We denote these sets of edges by Ezero, Efinite and
Einfinite correspondingly.

We will give three different descriptions of the operad P = PR as a graded
operad. Then we define a differential.

Description 1.
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Let
P̄ (n) =

⊕

[T ],T∈T (n)

(⊗v∈V (T )R(N−1(v))[JT ])AutT

where AutT is the group of automorphisms of the tree T , JT = l−1
T (0, +∞), and for

any graded vector space W and a finite set J we use the notation W [J ] = W⊗k[1]⊗J

(shift of the grading by J).
Note that the dimension of the corresponding stratum of T (n) is the cardinality

of the set JT = the number of finite edges.
Then (P̄ (n))n≥0 evidently form a graded operad P̄ . It is a k-linear analog of

the operad B̂O.
The operad P̄ contains a subspace I generated by the following relations
1) if the length of an edge (w, v) is 0 we contract it and make the composition

in R of the operations attached to w and v (cf. description for B(O));
2) for any vertex v of valency 1 with the unit 1R ∈ R1 attached , we replace it

by 0 if at least one attached edge is finite. If they are both infinite, we remove the
vertex and two edges, replacing them by an infinite edge.

One can check easily that I is a graded ideal in P̄ . We denote by P the quotient
operad P̄ /I.

Description 2.
We define P (n) by the same formula as above, but making a summation over

the trees without edges of zero length. We also drop the relation 1) from the list
of imposed relations (there are no edges with l = 0 ).

Description 3.
We define an operad R′ such as follows:
R′(n) = R(n) for n ̸= 1, R′(1)= a complement to k · Id in R(1).
Then we define P (n) as in Description 2, but using R′ instead of R and dropping

both relations 1) and 2).
It is clear that this description defines a free graded operad.
Equivalently, it can be described as a free graded operad P such that

P = Free(Cofree′(R′[1]))[−1]

Here Cofree(L) means a dg-cooperad generated by L which is cofree as a graded
co-operad, and ′ denotes the procedure of taking a (non-canonical) complement
to the subspace generated by the unit (or counit in the case of a co-operad) as
described above in the case of R.

In this description the generators of P correspond to such trees T in T =
(T (n))n≥0 that every T has at least one internal vertex, all internal edges are finite
and there are no zero-edges in T .

Proposition 4.2.1. All three descriptions give rise to isomorphic graded free
operads over k.

Proof. Exercise. !
We can make P̄ into a dg-operad introducing a differential dP̄ . We use the

Description 1 for this purpose.
The differential dP is naturally decomposed into the sum of two differentials:
dP = d̃R + dT where
a) the differential d̃R arises from the differential dR in R;
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b) the differential dT arising from the stratification of T (n): it either contracts
a finite edge or makes it into an infinite edge .

To be more precise, let us consider the following object ∆ in C = V ectZk : ∆−1 =
1C, ∆0 = 1C ⊕ 1C where 1C is the unit object in the monoidal category C. Then ∆
can be made into a chain complex of the CW complex [0, 1] = {0}∪(0, +∞)∪{+∞}.

We see that as a graded space our P̄ (n) is given by the formula

P̄ (n) = ⊕[T ],T∈T (n)(⊗v∈Vi(T )R(N−1(v)) ⊗∆⊗Ei(T ))AutT

Since we have here a tensor product of complexes, we get the corresponding
differential dP̄ in P̄ .

Proposition 4.2.2. The ideal I is preserved by dP̄ .

Proof. Straightforward computation. !
Therefore P = PR is a dg-operad which is free as a graded operad.
There is a natural morphism of dg-operads φ : P → R. In terms of the

Description 2 it can be defined such as follows:
φ sends to zero all generators of P corresponding to trees with at least one

finite edge. Let T ∈ P be a tree with all infinite edges. Then T gives rise to a
natural rule of composing in R elements of R(N−1(v)) assigned to the vertices of
T . We define φ(T ) ∈ R as the result of this composition.

It is easy to check that φ is a well-defined morphism of dg-operad.

Proposition 4.2.3. The morphism φ is a quasi-isomorphism of dg-operads.

Proof. The proof follows from the spectral sequence arising from the natural
stratification of T . To say it differently, let us consider the tautological embedding
ψ of R into P . Then ψ is a right inverse to φ. It gives a splitting of P into the
sum P = ψ(R) ⊕ P (0). Here P (0) is spanned by the operations corresponding to
trees with finite edges only. Such a tree can be contracted to a point which means
that P (0) is contractible as a complex. Hence φ defines a quasi-isomorphism of
complexes and dg-operads. !

We are going to call the resolution PR → R the Boardman-Vogt resolution of
the operad R, or simply BV -resolution of R (notation BV (R)).

4.3. Example: BV-resolution of an associative operad. Let us discuss
an example when R is the operad of associative algebras without the unit. We
denote it by As. Then for any n ≥ 1 we have: As(n) is isomorphic to the regular
representation of the symmetric group Sn.

In this case the complex P (n) from the previous subsection can be identified
with the chain complex of the CW-complex Kn, n ≥ 2 described below.

The cells of Kn are parametrized by planar trees with an additional structure
on edges. By a planar tree here we understand a numbered tree T such that for
any v ∈ Vi(T ) the cardinality of N−1(v) is at least 2 and this set is completely
ordered. The additional structure is a map Ei(T ) → {finite, infinite}. We call
an edge finite or infinite according to its image under this map. Dimension of the
cell is equal to the number of finite edges of the corresponding planar tree.

We can either contract a finite edge or make it infinite. This defines an incidence
relation on the set of cells.

We can picture planar trees as follows
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Here the dashed lines show the complete orders on set of incoming edges. We
will not show them on other figures in the text. Instead, we will tacitly assume
that for a given vertex the incoming edges are completely ordered from the left to
the right.

In this way we obtain simplicial subdivisions of the Stasheff polyhedra.
We depict the case n = 4 below

4Stasheff pentagon K

=

4.4. Cofibrant BV-resolution. One problem with the Boardman-Vogt res-
olution is that it is not cofibrant. There is a slight modification of it, which is
cofibrant. In order to do this we introduce for each integer n ≥ 0 a groupoid T c(n)
of trees which we call Christmas trees. It is a slight modification of the groupoid
T (n) introduced in Section 3.2. In addition to the lengths of edges described there,
we also allow a new type of vertices, which we call lights. They are internal vertices
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of the (incoming) valency 1. To each light v we assign a real number b(v) ∈ [0, +∞]
called the brightness of v. Now the terminology becomes clear. Then repeat the
construction of the resolution BV (R), with the following modifications:

a) We do not replace by 0 a vertex of valency one, with the 1R inserted. Instead,
we keep all such vertices and, in addition, we assign to such a vertex a new number,
namely, the brightness of the vertex. Then each vertex becomes a light.

b) When we construct the differential we use the following rules:
b1) contraction of an edge between two lights (v1, b(v1)) and (v2, b(v2)) leads

to creation of a new light (v, b(v)) = b(v1) + b(v2));
b2) contraction of an edge between the light and an internal vertex removes

the light from the set of vertices without any other changes.
In this way we obtain a cofibrant resolution of R denoted by BV c(R) (cofibrant

BV -resolution).

5. Resolutions of classical operads

In this subsection we describe resolutions of the classical operads As (asso-
ciative non-unital algebras), Lie (Lie algebras) and Comm (non-unital associative
commutative algebras).

5.1. Generators. a) The resolution of As which we are going to construct is
called A∞-operad. Algebras over this operad are called A∞-algebras. They will be
studied in detail in Chapter 6.

At the level of generators the operad A∞ is given by the polynomial functor
G(V ) = ⊕n≥2V ⊗n = (⊕n≥2(V [1])⊗n)[−2], where V ∈ V ectZk .

b) Resolution of the operad Lie is called L∞-operad. Algebras over this operad
are L∞-algebras discussed in Chapter 3. At the level of generators it is given by a
polynomial functor G(V ) = ⊕n≥2

∧n V [n− 2] = (⊕n≥2Sn(V [1]))[−2].
c) Resolution of the operad Comm is denoted by C∞. At the level of generators

it is given by the polynomial functor G(V ) = (⊕n≥2Lien(V [1]))[−2], where Lien(U)
denotes the vector space spanned by homogeneous components of degree n in the
free Lie algebra generated by U .

We can write down all three polynomial functors in a uniform way, using the
fact that all three classical operads are quadratic, i.e. they can be written as
quotients of the free operad by the ideal generated by quadratic relations. For a
quadratic operad R one has the notion of quadratic dual operad R! introduced in
[GiKa94]. In particular, the operad As is dual to itself, while Lie and Comm are
dual to each other. Let R be either of three classical operads. Then the polynomial
functor describing generators of the free resolution of R can be written as

GR(V ) = (⊕n≥2[−2] ◦ (R!(n))∗ ◦ [1])(V ).

Here [l] denotes the functor of shifting by l ∈ Z, and (R!(n))∗ is considered as an
Sn-module dual to R!(n). We are going to denote the nth summand (considered as
a polynomial functor) by GR(n).

5.2. Differential. Notice that (R!)∗ = ((R!(n))∗)n≥2 is a cooperad. Then we
have a cocomposition (let us call it coproduct for short)

δ : (R!(n))∗ → ⊕m1+m2=n+1(R!(m1))∗ ⊗ (R!(m2))∗. This formula gives us a
differential d on generators.
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Let us denote by xT,GR(n) a generator which can be depicted as a tree T with
n tails and the only internal vertex v such that GR(n) is inserted in the vertex.
Then d(xT,GR(n)) =

∑
T1→T yT1 , where the sum is taken over all trees T1 which are

obtained from T by removing v, creating new vertices v1, v2 and new edge e with the
endpoints v1 and v2 (we denote this by T1 → T ), and yT1 is a polynomial functor
which has GR(m1) inserted in v1 and GR(m2) inserted in the vertex v2 (notice that
insertion of a new edge splits the set of n tails into two subsets consisting of m1

and m2 elements, such that m1 + m2 = n + 1). There are also appropriate signs in
the formula.

We can recast the above formula in a different way. In order to do this we
observe that in all three cases the cooperad Φ = (R!)∗ is non-counital, i.e. Φ(1) = 0
(since R(1) = 0 in all three cases, i.e. these operads are non-unital). We can
consider Φ as a polynomial functor. Then we can construct a free non-unital operad
Free([−1]◦Φ). To be pedantic, one should define a colored operad OPnu such that
OPnu-algebras are non-unital operads (at this time it suffices to say that for a non-
unital operad R one has R(1) = 0). After that we set Free(F ) = FreeOPnu(F ) by
definition. Then Free([−1] ◦Φ) is a dg-operad with the differential given as above.
In order to write down proper signs in the formula for the differential we need few
more notation.

For a finite set I we denote by [−I] (shift by −I) the functor of tensoring with
HBM (RI), which is the Borel-Moore homology of RI . Similarly, we denote by
[I] (shift by I) the functor of tensoring with HBM (RI) = (HBM )∗(RI), which is
the Borel-Moore cohomology of RI . Then F = Free([−1] ◦ Φ) = ⊕T FT , where
FT = [Vi(T )] ◦ (

⊗
v∈Vi(T ) Φ(N−1(v))).

Notice that if T1 → T then one has (in the previous notation) the coprod-
uct map δT1,T : Φ(N−1(v)) → Φ(N−1(v1)) ⊗ Φ(N−1(v2)). Then dT = d(FT ) =∑

T1→T δT1,T ◦ FT , and d =
∑

T dT .
Let pt denotes a chosen 1-element set. Then the differential has to be a mor-

phism of polynomial functors d : [−pt] ◦ F → F . In order to define the differential
it suffices to choose an isomorphism of functors [−pt] ◦ [−Vi(T )] ≃ [−Vi(T1)]. This
means that we need to identify the vertex v ∈ Vi(T ) with one of the new vertices
v1 or v2 of T1. There is no canonical choice for such an identification. Two pos-
sible choices lead to isomorphic complexes. An isomorphism of the corresponding
dg-operads is achieved by multiplication of each component dT by (−1)|Vi(T )|.

The following result is an immediate corollary of our construction.

Proposition 5.2.1. In all three cases (in fact for any non-counital cooperad)
we have d2 = 0.

Next thing is to check whether there is a quasi-isomorphism (F, d)→ R. This
is done in each case individually.

Let us sketch a construction of a morphism π : F → R of dg-operads.
1) One observes that in all three cases one has an isomorphism of S2-modules:

[−2] ◦ (R!(2))∗ ◦ [1] ≃ R(2).

2) All three classical operads quadratic (i.e. they are generated by R(2) with
the relations in R(3)). For example As is generated by a single generator m2

(algebra product) with the relation m2(m2 ⊗ id) = m2(id⊗m2).
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3) Let F 0 be a summand in F (as an operad in the category of graded vector
spaces) which has degree zero. Then F 0 is a free operad generated by R(2), since
all other components of F have negative degrees. This gives a morphism of operads
π : F → R such that all components of negative degrees are killed by π.

4) The morphism π is compatible with the differential d, i.e. π ◦ d = 0. The
compatibility condition is equivalent to the quadratic relations which define R (for
example for R = As it is exactly the associativity condition for m2).

Next question is: why π is a quasi-isomorphism?
There is no universal answer to this question. Typically, one reduces the proof

to the computation of the homology of some standard chain complex K• of geomet-
ric origin such that H>0(K•) = 0 and H0(K•) is 1-dimensional. For example, in
the case of the operad As the corresponding complex is described such as follows.

Let us consider the set of isomorphism classes of all planar trees T with n
tails (n ≥ 2 is fixed) such that |N−1(v)| ≥ 2 for all internal vertices v. Then we
introduce a structure of complex on a Z-graded k-vector space B• = ⊕T k[−Vi(T )]
by inserting an extra edge, similarly to the definition of d given above.

Exercise 5.2.2. Prove that B• has trivial cohomology in positive degrees and
1-dimensional cohomology in degree zero. (Hint: B• is isomorphic to the chain
complex of the Stasheff polyhedron Kn).

The case of the operad Lie is more complicated. One can identify Lie(n) with
the vector space H•(Cn−diag) of configurations of different n points in Cn modulo
shifts, and then use Hodge theory. It would be nice to have a uniform explanation
of the quasi-isomorphisms for all classical operads.

6. Deformation theory of algebras over operads

6.1. Statement of the problem and two approaches. Let R be an operad
in V ectk, V be an R-algebra. Then we can define a “naive” deformation functor
DefV : Artink → Sets. Namely for an Artin k-algebra (C, mC) we define DefV (C)
to be the set of isomorphism classes of R-algebras B which are also C-modules, such
that reduction of B modulo the maximal ideal mC is isomorphic to V . The problem
is to find a formal pointed manifold M such that the deformation functor DefM
is isomorphic to DefV .

One has two different approaches to this problem.

First approach

Let R(E)→ V be a cofibrant resolution, where E is a filtered Z-graded vector
space. Then we have a DGLA gR(E) = Der(R(E)). This DGLA gives rise to a
deformation functor DefgR(E) .

Second approach

Let P = PR → R be a resolution of the operad R. For example, we can take
a cofibrant resolution (it exists according to Section 3.2). Thus P is a dg-operad,
which is free as a graded operad, and the surjective morphism of dg-operads P → R
is a quasi-isomorphism (we endow R with the trivial differential). Then an R-
algebra V becomes a dg-algebra over a dg-operad P . Let us forget differentials for
a moment. Since P is a free as a graded operad, we can write P = FreeOP(F ),
where F is a polynomial functor is the category V ectZk . Then, instead of studying
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deformations of V as an R-algebra, we can study deformations of V as an algebra
over the graded operad P . In the next subsection we will define a formal pointed
dg-manifold M = M(P, V ) controlling this deformation theory. It gives rise to the
deformation functor DefM.

We are interested in the following conjecture.

Conjecture 6.1.1. Functors DefV , DefgR(E) and DefM are isomorphic to
each other.

6.2. Deformations and free operads. Let F be a polynomial functor, P =
FreeOP(F ) be the corresponding free operad. Let gP be the Lie algebra (in the
symmetric monoidal category C) of derivations of the operad P . Then, as an object
of C:

gP =
∏

n≥0

Hom(F (n), P (n))Sn

where WH denotes the space of H-invariants of an H-module W and Hom denotes
the inner Hom in C. This follows from the fact that HomPF (F, ForgetOP(G)) =
HomOP−alg(FreeOP (F ), G).

From now on we suppose that C is the category V ectZk of Z-graded vector
spaces. Then gP is a graded Lie algebra with the graded components gn

P .

Definition 6.2.1. A structure of differential-graded operad on P which is free
as a graded operad is given by an element dP ∈ g1

P such that [dP , dP ] = 0.

The definition means that P can be considered as an operad in the symmetric
monoidal category of complexes, and it is free as an operad in the category V ectZk .
Sometimes we will denote the corresponding operad in the category of complexes
by P̂ .

One of our purposes will be to use P̂ for constructing resolutions of dg-operads,
and subsequently the deformation theory of algebras over them.

Definition 6.2.2. A dg-algebra over (P, dP ) (or simply over P ) is an algebra
over P̂ in the category of complexes.

Notice that the deformation theory of the pair (P, dP ) is the same as the defor-
mation theory of dP (since P is free and therefore rigid). Then we can define the
deformation theory of the dg-operad (P, dP ) axiomatically in the following way.

Definition 6.2.3. The formal pointed dg-manifold associated with the differential-
graded Lie algebra (gP , [dP , •]) controls the deformation theory of (P, dP ).

Now we are going to describe a formal pointed dg-manifold controlling the
deformation theory of dg-algebras over P (i.e. P̂ -algebras). Before doing that
we recall to the reader that when speaking about points of Z-graded manifolds we
always mean Λ-points, where Λ is a nilpotent commutative algebra (or commutative
Artin algebra).

Let V be a P -algebra. We have the following graded vector space

M = M(P, V ) = (Hom(V, V ))[1]⊕Hom(F (V ), V )
We denote by Mn, n ∈ Z the graded components of M.
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The structure of a complex on the graded vector space V and an action of P
on V define a point (dV , ρ) ∈M0 = HomV ectZk

(k,M). We consider here dV and
ρ as morphisms of graded vector spaces. The equation d2

V = 0 and the condition
of compatibility of dV and ρ can be written in the form dM(dV , ρ) = 0, where
dM(dV , ρ) = (d2

V , ξ(dV , ρ)) ∈M1, for some ξ(dV , ρ) ∈ Hom(F (V ), V ). It is easy
to see that the assignment (dV , ρ) )→ dM(dV , ρ) defines an odd vector field dM on
the infinite-dimensional graded manifold M. A zero of this vector field corresponds
to a structure of complex on V together with a compatible structure of a dg-algebra
over P . This gives a bijection between the set of zeros and the set of such structures.

It is easy to check that [dM, dM] = 0. Therefore a formal neighborhood of a
fixed point (dV , ρ) of dM becomes a formal pointed dg-manifold.

Definition 6.2.4. The deformation theory of a dg-algebra V is controlled by
this formal pointed dg-manifold.

Abusing notation we will denote the corresponding deformation functor by
DefM (more precisely we should use the formal neighborhood of a zero of dM
instead of M). Since it will be always clear which zero of the vector field dM is
considered, such an abuse of notation should not lead to a confusion.

Remark 6.2.5. Operads are algebras over the colored operad OP . One can
show that the deformation theories for an OP-algebra P̂ described in the last two
definitions are in fact equivalent.

Returning to our main conjecture, we can now prove a part of it.

Theorem 6.2.6. Let V be an algebra over an operad R. Then the “naive”
deformation functor DefV is isomorphic to DefM, where M = M(P, V ) is defined
by means of any resolution P → R.

Proof. Let (C, mC) be an Artin algebra. Then DefM(C) is, by definition of
M, a set of isomorphims classes (modulo the action of exp(Hom(A, A) ⊗mC)) of
a structure of P -algebra on V ⊗C, compatible with a structure of C-module, such
that reduction modulo the maximal ideal mC coincides with the structure induced
via the quasi-isomorphism P → R. Since P = ... → P−2 → P−1 → P 0 = R is
a dg-operad with all P−n placed in non-positive degrees, and since C has degree
zero, we conclude that the action of the graded operad P is the same as the action
of P 0 = R. Therefore, we obtain a natural morphism of functors DefM → DefV ,
which is an isomorphism by construction. !

6.3. Example: A∞-operad and A∞-algebras. Let V ∈ V ectZk and mn :
V ⊗n → V [n− 2], n ≥ 2 be a sequence of morphisms. It gives rise to an action on
V of the free operad P = FreeOP(F ) where

F (V ) = ⊕n≥2V
⊗n[n− 2].

Then F (n) = k[Sn]mn ⊗ k[1]⊗(n−2). This notation means that we consider Fn

as a space (with the grading shifted by n− 2) of the regular representation of the
group algebra of the symmetric group Sn. This space is generated by an element
which we denote by mn.

The differential dP ∈ gP (equivalently, a structure of a dg-operad on P ) is
defined by the standard formulas:
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dP (m2) = 0,

dP (mn)(v1⊗...⊗vn) =
∑

k+l=n

±mk(v1⊗...⊗vi⊗ml(vi+1⊗...⊗vi+l)⊗...⊗vn), n > 2.

We do not specify signs in these formulas, since we do not need them here. Cor-
rect signs appear automatically from the interpretation of mn as Taylor coefficients
of the odd vector field on the non-commutative formal pointed manifold given in
Chapter 6.

Definition 6.3.1. The dg-operad A∞ = (P, dP ) is called the A∞-operad.
Algebras over this dg-operad are called A∞-algebras.

Deformations of an A∞-algebra A are controlled by the truncated Hochschild
complex

C•
+(A, A) =

∏

n≥1

HomV ectZk
(A⊗n, A)[−n]

More precisely, let A be a graded vector space. We defined (Chapter 4, Section
1.1) a graded vector space of Hochschild cochains of A as

C•(A, A) =
∏

n≥0

HomV ectZk
(A⊗n, A)[−n]

Then C•(A, A)[1] can be equipped with the structure of a graded Lie algebra with
the Gerstenhaber bracket (recall that the latter appears naturally if we interpret
Hochschild cochains as derivations of the coalgebra ⊕n≥0(A[1])⊗n).

Let us consider an element m = (m1, m2...) ∈ C•
+(A, A)[1] of degree +1 such

that [m, m] = 0. Such an element defines a differenitial d = m1 on A, and the
sequence (m2, m3, ...) gives rise to a structure of an A∞-algebra on (A, m1).

Then we can make C•(A, A) into a complex (Hochschild complex) with the
differential dm = [m, •]. It was explained in Chapter 4 that in this way we get a
differential-graded Lie algebra (DGLA for short) (C•(A, A)[1], dm). The truncated
Hochschild complex C•

+(A, A)[1] is a DGLA subalgebra. According to the general
theory of Chapter 3 both DGLAs define formal pointed dg-manifolds, and therefore
give rise to the deformation functors. This is a straightforward generalization of
the deformation theory of associative algebras discussed in Chapter 4, Section 1.1.

Exercise 6.3.2. Prove that the DGLA (C•
+(A, A)[1], dm) controls the defor-

mation theory of an A∞-algebra (A, m).

Full Hochschild complex controls deformations of the A∞-category with one
object, such that its endomorphism space is equal to A. The deformation theory
of A∞-categories will be studied in the second volume of the book. Neverthe-
less we will refer to the formal dg-manifold associated with C•(A, A)[1] as to the
moduli space of A∞-categories. Similarly, the formal dg-manifold associated with
C•

+(A, A)[1] will be called the moduli space of A∞-algebras. (All the terminology
assumes that we deform a given A∞-algebra A).

The moduli space of A∞-algebras is the same as M(A∞, A) in the previ-
ous notation. Similarly we will denote the moduli space of A∞-categories by
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Mcat(A∞, A). The natural inclusion of DGLAs C•
+(A, A)[1]→ C•(A, A)[1] induces

a dg-map M(A∞, A)→Mcat(A∞, A) (dg-map is a morphism of dg-manifolds).
Let us remark that the operad A∞ gives rise to a free resolution of the operad

As. Algebras over the latter are associative algebras without the unit.

Remark 6.3.3. It is interesting to describe deformation theories of free res-
olutions of the classical operads As, Lie, Comm. It seems that for an arbitrary
free resolution P of either of these operads the following is true: Hi(gP ) = 0 for
i ̸= 0, H0(gP ) = k. This one-dimensional vector space gives rise to the rescaling of
operations, like mn )→ λnmn in the case of A∞-algebras.

6.4. Checking the conjecture for a free operad. Let G be a polynomial
functor in the tensor category C = V ectk. We can think of G as of the functor from
the groupoid of finite sets (all non-trivial morphisms are isomorphisms) to C. Then
we have a free operad P = FreeOP(G). For any finite set I with n elements we
can write

P (I) = ⊕T∈T (n)(
∏

v∈Vi(T )

G(N−1(v)))/AutT.

Let A be a P -algebra. For simplicity we will assume that A is a trivial P -
algebra, i.e. all maps P (n) ⊗ A⊗n → A are trivial for n ≥ 2. By definition we
have a morphism g : G(A) → A. Let A := G(A)[1] ⊕ A. We endow A with the
differential d := dA such that it is trivial on A and it is id − φ on G(A)[1], where
φ := g ◦ [−1].

Proposition 6.4.1. Natural morphism f : P (A)→ A such that f(G(A)[1]) = 0
and f|A = idA defines a free resolution of the P -algebra A.

Proof. Let T ∈ T (n) be a tree. We call pre-tail a vertex v such that N−1(v)
consists of tail vertices only. We denote by Vprt(T ) the set of all pre-tail vertices.
It is easy to see that if xi is a generator of P (A) then f(d(xi)) = 0. What is left
is to check that f is a quasi-isomorphism. In order to do that we rewrite P (A)
in a different way. Let us introduce a groupoid T (n)mod of modified trees. The
only difference with T (n) is that to each pre-tail vertex v we assign a number
ϵ(v) ∈ {0, 1}. Then

P (A) = ⊕n≥0 ⊕T∈T (n)mod WT (A)[JT ],

where WT (A) = A⊗Vt(T ) ⊗ (
⊗

v∈Vi(T ) G(N−1(v))), and JT is the set of pre-tail
vertices v such that ϵ(v) = 1.

Now the differential d can be written as d = d1 + d2 where d1 changes the
marking ϵ(v) from 1 to 0 at a pre-tail vertex v with ϵ(v) = 1 (and then we take
the sum over all such pre-tail vertices) and d2 creates for any v as above a new
vertex v1 such that N(v) = v1 with −φ inserted in v1 (and then we again take the
sum over all v). Notice that d2 changes the number of internal vertices of T . Then
we have an increasing filtration of P (A) by subcomplexes (F m)m≥0 such that the
corresponding graded components grm(P (A)) = F m/F m−1 are acyclic complexes
(with the differential d1) if n > 0. Indeed

grm(P (A)) = (⊕T∈T (n)modWT (A)) ⊗K•
T ,
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where K•
T = ⊗v∈Vprt(T )(k[1] → k), and k[1] → k denotes the two-term complex

with the differential, which is trivial on the summand k placed in degree zero and
equal to id ◦ [−1] on the summand k[1]. It is easy to see that if n > 0 then K•

T
is acyclic. On the other hand, for n = 0 we obviously have the summand A. This
proves that f is a quasi-isomorphism. !

Let us compare now two approaches to the deformation theory of the P -algebra
A. Since P is a free operad, we have a free resolution of it, which is (P, dP = 0).
The corresponding formal pointed dg-manifold in is the formal neighborhood of
the point (0, φ) in the graded manifold M = End(A)[1] ⊕ Hom(G(A), A). It is
given by the DGLA gM = End(A) ⊕ Hom(G(A), A)[−1] (we have a Lie algebra
g0 = End(A) and a g0-module Hom(G(A), A)[−1], hence the graded Lie algebra
structure on gM). We endow it with the trivial differential.

In the first approach we should consider the DGLA Der(P (A)) ≃ Hom(G(A)[1]⊕
A, P (G(A)[1]⊕A) (it is an isomorphism of graded vector spaces). Let us consider a
graded Lie subalgebra g1 ⊂ Der(P (A)) which consists of derivations which preserve
the set of generators G(A)[1]⊕A and such that they map G(A)[1] into A. Clearly
g1 is a Lie subalgebra of gl(G(A)[1]⊕A) (it contains whole End(A) and linear maps
G(A)[1]→ A). There is an obvious isomorphism of graded Lie algebras gM → g1.
We leave to the reader to check that it is compatible with the differentials. Since
g1 is quasi-isomorphic to Der(P (A)), we conclude that the following result holds.

Proposition 6.4.2. For algebras over a free operad two approaches to the
deformation theory give isomorphic deformation functors.

More precisely, we have checked that for some resolution of A and some resolu-
tion of P we obtained quasi-isomorphic formal pointed dg-manifolds. Independence
of choices is a separate issue.

6.5. Homotopical actions of the Lie algebras of derivations. Let us
recall the following construction (see Chapter 4, Section 2.3). Let g be a Lie algebra
acting on a formal dg-manifold (Y, dY ). This means that we have a homomorphism
of Lie algebras g → Der(Y ), γ )→ γ̂ where Der(Y ) is the Lie algebra of vector fields
on Y preserving Z-grading an dY .

We can make Z = Y ×g[1] into a formal dg-manifold introducing an odd vector
field by the following formula

dZ(y, γ) = (dY (y) + γ̂, [γ, γ]/2)

Then [dZ, dZ] = 0. We can make g[1] into a formal dg-manifold using the odd
vector field dg[1] arising from the Lie bracket.

Exercise 6.5.1. The natural projection (Z, dZ) → (g[1], dg[1]) is an epimor-
phism of formal dg-manifolds (i.e. a dg-bundle).

We see (cf. Chapter 4, Section 2.3) that we have a homotopical g-action on
a formal dg-manifold (Y, dY ), since we get a dg-bundle π : (Z, dZ) → (g[1], dg[1])
together with an isomorphism of dg-manifolds (π−1(0), dZ) ≃ (Y, dY ).

Remark 6.5.2. It was pointed out in [Ko97-1] that in this case g acts on the
cohomology of all complexes naturally associated with (Y, dY ) ( like the tangent
space at a zero point of dY , the space of formal functions on Y , etc.).
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Suppose that F is a polynomial functor in the category of Z-graded vec-
tor spaces, P = Free(F ), V ∈ V ectZk . We apply the general scheme outlined
above to the case Y = M(P, V ), g = gP . Obviously g acts on the dg-manifold
Hom(F (V ), V ), equipped with the trivial odd vector field.

Let us consider the graded vector space

N = Hom(V, V )[1]⊕Hom(F (V ), V )⊕ gP [1]

Let dV ∈ Hom(V, V )[1] makes V into a complex, γ = dP ∈ gP [1] satisfies
the equation [dP , dP ] = 0 and ρ ∈ Hom(F (V ), V ) makes V into a dg-algebra over
(P, dP ).

We consider the formal neighborhood of the point (dV , ρ, dP ) in N , and define
an odd vector field by the formula

dN (dV , ρ, dP ) = (d2
V , ξ(dV , ρ) + d̂P , [dP , dP ]/2)

The notation here is compatible with the one for M.
One can check that [dN , dN ] = 0. Thus the formal neighborhood becomes a

formal dg-manifold. It controls deformations of pairs (an operad, an algebra over
this operad).

The natural projection π : N → gP [1] is a morphism of formal dg-manifolds .
Here on gP [1] we use the odd vector field dgP [1] defined by the Lie bracket. Then
the formal scheme of zeros of dgP [1] corresponds to the structures of a dg-operad
on P . The fiber over a fixed point x ∈ gP [1] is a dg-manifold with the differential
induced from N . Then the formal neighborhood of a fixed point in π−1(x) controls
deformations of P̂ -algebras.

We conclude that the Lie algebra of derivations of an operad acts homotopically
on the moduli space of algebras over this operad.

6.6. Independence of a choice of resolution of operad. It is natural to
ask whether the deformation theory is independent of choices of resolutions. The
situation here is quite different for the first and second approachs to the deformation
theory of algebras over operads. The reason is that the quasi-isomorphism class
of the DGLA Der(R(E)) does not depend functorially of a choice of the cofibrant
resolution R(E) → V . This is not a big surprise: Lie algebra of vector fields on a
manifold does not depend functorially of the manifold.

On the other hand, the formal pointed dg-manifold M(P, V ) depends on P in
a functorial way. More precisely, one has the following result.

Proposition 6.6.1. Let P1 → P2 be a morphism of dg-operads. Then it induces
a morphism of dg-manifolds M(P1, V )→M(P2, V ).

Proof. Exercise. !
Theorem 6.6.2. Let P1 and P2 be two cofibrant resolutions of an operad R, V

be an R-algebra. Then DefM(P1,V ) ≃ DefM(P2 ,V ).

Proof. Let us recall that we have a morphism of dg-operads φ : P → R, where
P = FreeOP(F ) as a Z-graded operad, and φ is a quasi-isomorphism. Moreover:

a) F admits a filtration (as a polynomial functor) F = ∪j≥1F (j), F (j) ⊂ F (j+1)

such that dP (F (0)) = 0 and dP (F (j)) ⊂ FreeOP (F (j−1)), j ≥ 1;
b) φ : P → R is a an epimorphism.
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Since P1 and P2 are cofibrant resolutions of the same operad R, they are ho-
motopy equivalent (as algebras over the colored operad OP). More precisely, we
notice that the homotopy theory of associative commutative dg-algebras developed
in Chapter 3, Section 2.10, can be rephrased word-by-word to the case of cofibrant
dg-algebras over an operad. By a cofibrant dg-algebra over an operad P we mean
a dg-algebra, which is free graded P -algebra (i.e. if we forget the differentials).
Then the main theorem of Chapter 3, Section 2.10 holds in this new setting, with
the same proof. Moreover, the theory holds for algebras over colored operads, in
particular, for algebras over the operad OP. Thus we have homotopy equivalences
f : P1 → P2 and g : P2 → P1. They induce morphisms of formal dg-manifolds
M(P1, V ) → M(P2, V ) (see Chapter 3) and M(P2, V ) → M(P1, V ). Since f
and g are homotopy equivalences, then the above morphisms of formal pointed dg-
manifolds are mutually inverse on the cohomology. (WHY?) This concludes the
proof. !

7. Hochschild complex and Deligne’s conjecture

There is a dg-operad of the type P̂ (i.e. it is free as a graded operad) acting
naturally on the Hochschild complex of an arbitrary A∞- algebra. Using this dg-
operad we can develop the deformation theory of A∞-algebras and relate it with the
geometry of configurations of points in R2. This circle of questions is concentrated
around so-called Deligne conjecture. There are several ways to formulate it as well
as several independent proofs. An approach suggested in [KS2000] is motivated by
the general philosophy of the previous section.

Namely, there is an operad M which acts naturally on the full Hochschild
complex C•(A, A) of an A∞-algebra A as well as on C•

+(A, A). There is a natural
free resolution P of the operad M , so that C := C•(A, A) becomes a P̂ -algebra.
Then we can say that there is a dg-map of the moduli space of A∞-categories to
the moduli space M(P, C) of structures of P̂ -algebras on the graded vector space
C.

From the point of view of deformation theory it is not very natural to make con-
structions of the type algebraic structure→ another algebraic structure (like our con-
struction A∞−algebras →M−algebras). It is more natural to extend them to mor-
phisms between the formal pointed dg-manifolds controlling the deformation theo-
ries of the structures. In fact there is an explicit dg-map M(A∞, A) →M(P, C)
as well as a dg-map Mcat(A∞, A)→M(P, C), such that the one is obtained from
another by the restriction from the moduli space of algebras to the moduli space
of categories.

The operad A∞ is augmented, i.e. equipped with a morphism of dg-operads η :
A∞ → Free0, where Free0 is the trivial operad : Free0(1) = k, F ree0((n ̸= 1)) =
0. Since A (as any graded vector space) is an algebra over Free0, it becomes also
an algebra over A∞. Any structure of an A∞-algebra on A can be considered as
a deformation of this trivial structure. Notice also that in the previous notation
the augmentation morphism defines a point in the dg-manifold M(A∞, C), where
C = C•(A, A). Therefore it is sufficient to work in the formal neighborhood of this
point.

We can consider also the moduli space of structures of a complex on the graded
vector space C•(A, A), where A is an arbitrary graded vector space. It gives rise
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to a formal dg-manifold. There are natural morphisms to it from the formal dg-
manifold of the moduli space of A∞-categories and from the formal dg-manifold of
the moduli space of structures of P̂ -algebras on C•(A, A). Theorem below combines
all three morphisms discussed above into a commutative diagram. Let us make it
more precise. First we formulate a simple general lemma, which will be applied in
the case V = C[2].

Let V be an arbitrary graded vector space, dV an odd vector field on V (consid-
ered as a graded manifold) such that [dV , dV ] = 0. Thus we get a dg-manifold. The
graded vector space H = H(V ) = Hom(V, V )[1] is a dg-manifold with dH(γ) = γ2 .
To every point v ∈ V we assign a point in H by taking the first Taylor coefficient
d(1)

V (v) of dV at v. In this way we obtain a map ν : V → H .

Lemma 7.0.3. The map ν is a morphism of dg-manifolds.

Proof . Let us write in local coordinates x = (x1, ..., xn) the vector field dV =∑
i φi∂i where ∂i denotes the partial derivative with respect to xi, and φi are

functions on V . Then the map ν assigns to a point x the matrix M = (Mij(x)) with
Mij = ∂jφi. Then direct computation shows that the condition [dV , dV ] = 0 implies
that the vector field ẋ = dV (x) is mapped to the vector field Ṁ = dH(M) = M2.
!

Let A be a graded vector space endowed with the trivial A∞-structure, and
C = C•(A, A) =

∏
n≥0 HomV ectZk

(A⊗n, A) be the graded space of Hochschild
cochains. Since C[1] carries a structure of a graded Lie algebra (with the Ger-
stenhaber bracket), it gives rise to the structure of a dg-manifold on C[2], which
is the same as Mcat(A∞, A). We will denote it by (X, dX) (or simply by X for
short).

Even for the trivial A∞-algebra structure on A, we get a non-trivial P -algebra
structure on C. The corresponding moduli space M(P, C) will be denoted by
(Y, dY ) (or Y for short).

There is a natural morphism of dg-manifolds p : Y → Hom(C, C)[1] = H
(projection of Y = M(P, C) to the first summand).

We omit the proof of the following theorem (see KoSo2000]).

Theorem 7.0.4. There exists a GL(A)-equivariant morphism of dg-manifolds
f : X → Y such that pf = ν.

Moreover there is an explicit construction of the morphism.
Suppose that A is an A∞-algebra. Geometrically the structure of an A∞-

algebra on the graded vector space A gives rise to a point γ ∈ X = C[2], C =
C•(A, A) such that dX(γ) = 0. Indeed, the definition can be written as [γ, γ] = 0.
Thus we get a differential in C (commutator with γ) making it into a complex. The
structure of a complex on the graded vector space C gives rise to a zero of the field
dH in the dg-manifold H = Hom(C, C)[1]. Theorem 1 implies that f(γ) is a zero
of the vector field dM(P,C). Therefore the Hochschild complex (C, [γ, •]) carries a
structure of a dg-algebra over P .

7.1. Operad of little discs and Fulton-Macpherson operad. We fix an
integer d ≥ 1. Let us denote by Gd the (d +1)-dimensional Lie group acting on Rd

by affine transformations u )→ λu + v, where λ > 0 is a real number and v ∈ Rd is
a vector. This group acts simply transitively on the space of closed discs in Rd (in
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the usual Euclidean metric). The disc with center v and with radius λ is obtained
from the standard disc

D0 := {(x1, . . . , xd) ∈ Rd| x2
1 + · · ·+ x2

d ≤ 1}
by a transformation from Gd with parameters (λ, v).

Definition 7.1.1. The little discs operad Ed = {Ed(n)}n≥0 is a topological
operad defined such as follows:
1) Ed(0) = ∅,
2) Ed(1) = point = {idEd},
3) for n ≥ 2 the space Ed(n) is the space of configurations of n disjoint discs
(Di)1≤i≤n inside the standard disc D0.

The composition Ed(k)×Ed(n1)× · · ·×Ed(nk)→ Ed(n1 + · · ·+nk) is obtained
by applying elements from Gd associated with discs (Di)1≤i≤k in the configuration
in Ed(k) to configurations in all Ed(ni), i = 1, . . . , k and putting the resulting
configurations together. The action of the symmetric group Sn on Ed(n) is given
by renumeration of indices of discs (Di)1≤i≤n.

The space Ed(n) is homotopy equivalent to the configuration space of n pairwise
distinct points in Rd.

There is an obvious continuous map Ed(n)→ Confn(Int(D0)) which associates
to a collection of disjoint discs the collection of their centers. This map induces a
homotopy equivalence because its fibers are contractible.

The little discs operad and homotopy equivalent little cubes operad were in-
troduced in topology by J. P. May in order to describe homotopy types of iterated
loop spaces.

The Fulton-Macpherson operad defined below is homotopy equivalent to the
little discs operad.

For n ≥ 2 we denote by Ẽd(n) the quotient space of the configuration space of
n points in Rd

Confn(Rd) := {(x1, . . . , xn) ∈ (Rd)n| xi ̸= xj for any i ̸= j}
by the action of the group Gd = {x )→ λx + v| λ ∈ R>0, v ∈ Rd}. The space
Ẽd(n) is a smooth manifold of dimension d(n− 1)− 1. For n = 2, the space Ẽd(n)
coincides with the (d−1)-dimensional sphere Sd−1. There is an obvious free action
of Sn on Ẽd(n). We define the spaces Ẽd(0) and Ẽd(1) to be empty. The collection
of spaces Ẽd(n) does not form an operad because there is no identity element, and
compositions are not defined.

Now we are ready to define the operad FMd = {FMd(n)}n≥0

The components of the operad FMd are
1) FMd(0) := ∅,
2) FMd(1) =point,
3) FMd(2) = Ẽd(2) = Sd−1,
4) for n ≥ 3 the space FMd(n) is a manifold with corners, its interior is Ẽd(n),

and all boundary strata are certain products of copies of Ẽd(n′) for n′ < n.
The spaces FMd(n), n ≥ 2 can be defined explicitly.

Definition 7.1.2. For n ≥ 2, the manifold with corners FMd(n) is the closure
of the image of Ẽd(n) in the compact manifold

(
Sd−1

)n(n−1)/2× [0, +∞] under the
map
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Gd · (x1, . . . , xn) )→ (
(

xj−xi

|xj−xi|

)

1≤i<j≤n
, |xi−xj|
|xi−xk| )

where i, j, k are pairwise distinct indices.

One can define the natural structure of operad on the collection of spaces
FMd(n). We skip here the obvious definition.

It is easy to check that in this way we obtain a topological operad (in fact an op-
erad in the category of real compact piecewise algebraic sets defined in Appendix).
We call it the Fulton-Macpherson operad and denote by FMd.

Set-theoretically, the operad FMd is the same as the free operad generated by
the collection of sets (Ẽd(n))n≥0 endowed with the Sn-actions as above.

Let us make few remarks about geometric origin of the operad P , which is a free
resolution of the operad M (see previous section). It is related to the configuration
space of discs inside of the unit disc in the plane. More precisely, the operad
Chains(E2) of singular chains on the little discs operad is quasi-isomorphic to P̂ .
In fact there is a morphism P̂ → Chains(E2) which gives the homotopy equivalence
(to be more precise it is easier to construct it for the operad Chains(FM2) which
is quasi-isomorphic to E2). Then using the fact that both dg-operads are free as
graded operads, one can invert this quasi-isomorphism. This gives a structure of
an Chains(E2)-algebra on the Hochschild complex of an A∞-algebra. This result
is known as Deligne’s conjecture.

More precisely, it is stated such as follows.

Conjecture 7.1.3. There exists a natural action of the operad Chains(C2)
on the Hochschild complex C∗(A, A) for an arbitrary associative algebra A.

There are several proofs of this conjecture (see for ex. [KoSo2000]). Having in
mind this result we can give the following definition.

Definition 7.1.4. A graded vector space V is called a d-algebra if it is an
algebra over the operad Chains(Ed) (we take singular chains of the topological
operad of little d-dimensional discs).

Then Deligne’s conjecture says that Hochschild complex of an associative alge-
bra (more general, A∞-algebra) is a 2-algebra.

The moduli space M(P, C) can be thought of as a moduli space of structures
of a 2-algebra on a graded vector space C. Then the theorem above says that there
is a GL(A)-equivariant morphism of the moduli space of A∞-categories with one
object to the moduli space of 2-algebras.

Let gP = DerP be as before the DGLA of derivations of P̂ . Then gP acts on
the moduli space of P̂ -algebras.

Remark 7.1.5. There is a natural action of the so-called Grothendieck-Tiechmüller
group on the rational homotopy type of the Fulton-Macpherson operad for R2. Now
we remark that our theorem gives rise to a morphism of L∞-algebras Lie(GT )[1]→
(gP , [dP , •]) where GT is the Grothendieck-Teichmüller group.

Therefore one has a homotopical action of the Lie algebra Lie(GT ) on the
moduli space of P̂ -algebras.

7.2. Higher-dimensional generalization of Deligne’s conjecture. For
d > 0 the notion of d-algebra was introduced by Getzler and Jones. By definition,
a 0-algebra is just a complex. An A∞-version of Deligne’s conjecture says that
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this Hochschild complex carries naturally a structure of 2-algebra, extending the
structure of differential graded Lie algebra. It has a baby version in dimension
(0 +1): if A is a vector space (i.e. 0-algebra concentrated in degree 0) then the Lie
algebra of the group of affine transformations

Lie(Aff(A)) = End(A) ⊕A

has also a natural structure of an associative algebra, in particular it is a 1-algebra.
The product in End(A) ⊕A is given by the formula

(φ1, a1)× (φ2, a2) := (φ1φ2, φ1(a2)) .

The space End(A)⊕A plays the rôle of the Hochschild complex in the case d = 0.
Now we introduce the notion of action of a (d+1)-algebra on a d-algebra. It is

convenient to formulate it using colored operads. Namely, there is a colored operad
with two colors such that algebras over this operad are pairs (g, A) where g is a Lie
algebra and A is an associative algebra on which g acts by derivations.

Let us fix a dimension d ≥ 0. Denote by σ : Rd+1 → Rd+1 the reflection

(x1, . . . , xd+1) )→ (x1, . . . , xd,−xd+1)

at the coordinate hyperplane, and by H+ the upper-half space

{(x1, . . . , xd+1)| xd+1 > 0}

Definition 7.2.1. For any pair of non-negative integers (n, m) we define a
topological space SCd(n, m) as
1) the empty space ∅ if n = m = 0,
2) the one-point space if n = 0 and m = 1,
3) in the case n ≥ 1 or m ≥ 2, the space of configurations of m + 2n disjoint discs
(D1, . . . , Dm+2n) inside the standard disc D0 ⊂ Rd+1 such that σ(Di) = Di for
i ≤m, σ(Di) = Di+n for m+1 ≤ i ≤ m+n and such that all discs Dm+1 , . . . , Dm+n

are in the upper half space H+.

The reader should think about points of SCd(n, m) as about configurations of
m disjoint semidiscs (D1 ∩H+, . . . , Dm ∩H+) and of n discs (Dm+1 , . . . , Dm+n) in
the standard semidisc D0 ∩ H+. The letters “SC” stand for “Swiss Cheese” [V].
Notice that the spaces SCd(0, m) are naturally isomorphic to Cd(m) for all m. One
can define composition maps analogously to the case of the operad Cd:

SCd(n, m)×
(
Cd+1(k1)× · · ·× Cd+1(kn)

)
×

(
SCd(a1, b1)× · · ·× SCd(am, bm)

)

→ SCd(k1 + · · ·+ kn + a1 + · · ·+ am, b1 + · · ·+ bm)

Definition 7.2.2. The colored operad SCd has two colors and consists of
collections of spaces

(
SCd(n, m)

)
n,m≥0

,
(
Cd+1(n)

)
n≥0

,

and appropriate actions of symmetric groups, identity elements, and of all compo-
sition maps.

As before, we can pass from a colored operad of topological spaces to a colored
operad of complexes using the functor Chains.

Definition 7.2.3. An action of a (d+1)-algebra B on a d-algebra A is, on the
pair (B, A), a structure of algebra over the colored operad Chains(CSd), compatible
with the structures of algebras on A and on B.
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The generalized Deligne conjecture says that for every d-algebra A there exists
a universal (in an appropriate sense) (d + 1)-algebra acting on A.

A version of this conjecture was proved in [HKV03].

7.3. Digression: homotopy theory and deformation theory. Let P be
an operad of complexes, and f : A→ B be a morphism of two P -algebras.

Definition 7.3.1. we say that f is a quasi-isomorphism if it induces an iso-
morphism of the cohomology groups of A and B considered just as complexes.

Two algebras A and B are called homotopy equivalent iff there exists a chain
of quasi-isomorphisms

A = A1 → A2 ← A3 → · · ·← A2k+1 = B

One can define a new structure of category on the collection of P -algebras in
which quasi-isomorphic algebras become equivalent. There are several ways to do
it, using either Quillen’s machinery of homotopical algebra (see [Q]), or using a free
resolution of the operad P , or some simplicial constructions. We are going to dis-
cuss the details in the second volume of the book. In the case of differential graded
Lie algebras, morphisms in the homotopy category are L∞-morphisms modulo a
homotopy between morphisms. More generally, morphisms in the homotopy cate-
gory of P -algebras are connected components of certain topological spaces, exactly
as in the usual framework of homotopy theory.

In the case when the operad P satisfies some mild technical conditions, one
can transfer the structure of a P -algebra by quasi-isomorphisms of complexes. In
particular, one can make the construction described in the following lemma.

Lemma 7.3.2. Let P be an operad of complexes, such that if we consider P
as an operad just of Z-graded vector spaces, it is free and generated by operations
in ≥ 2 arguments. Let A be an algebra over P , and let us choose a splitting of A
considered as a Z-graded space into the direct sum

A = H∗(A) ⊕ V ⊕ V [−1], (V [−1])k := V k−1

endowed with a differential d(a ⊕ b ⊕ c) = 0 ⊕ 0 ⊕ b[−1]. Then there is a canon-
ical structure of a P -algebra on the cohomology space H•(A), and this algebra is
homotopy equivalent to A.

Notice that the operad Q⊗Chains(Cd) is free as an operad of Z-graded vector
spaces over Q. This is evident because the action of Sn on Cd(n) is free and the
composition of morphisms in Cd are embeddings.

We associated with any operad P of complexes and with any P -algebra A a
differential graded Lie algebra (or more generally, a L∞-algebra Def(A) (more
precisely, we constructed a formal pointed dg-manifold). This DGLA is defined
canonically up to a quasi-isomorphism (equivalently, up to homotopy). It controls
the deformations of P -algebra structure on A. As we have already explained, there
are several equivalent constructions of Def(A) using either resolutions of A or
resolutions of the operad P . Morally, Def (A) is the Lie algebra of derivations in
homotopy sense of A. For example, if P is an operad with zero differential then
Def(A) is quasi-isomorphic to the differential graded Lie algebra of derivations of
Ã where Ã is any free resolution of A.

Differential graded Lie algebras Def (A1) and Def(A2) are quasi-isomorphic
for homotopy equivalent P -algebras A1 and A2.
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7.4. Universal Hochschild complex and deformation theory. If A a
d-algebra then the shifted complex A[d− 1],

(A[d− 1])k := A(d−1)+k

carries a natural structure of L∞-algebra. It comes from a homomorphism of oper-
ads in homotopy sense from the twisted by [d−1] operad Chains(Cd) to the operad
Lie. In order to construct such a homomorphism one can use fundamental chains
of all components of the Fulton-MacPherson operad.

Moreover, A[d−1] maps as L∞-algebra to Def(A), i.e. A[d−1] maps to “inner
derivations” of A. These inner derivations form a Lie ideal in Def (A) in homotopy
sense.

Conjecture 7.4.1. The quotient homotopy Lie algebra Def (A)/A[d − 1] is
naturally quasi-isomorphic to Hoch(A)[d].

In the case when d = 0 and the complex A is concentrated in degree 0, the Lie
algebra Def (A) is End(A), i.e. it is the Lie algebra of linear transformations in
the vector space A.

Lemma 7.4.2. The Hochschild complex of 0-algebra A is A⊕End(A) (placed in
degree 0).

Proof. First of all, the colored operad SC0 is quasi-isomorphic to its zero-
homology operad H0(SC0) because all connected components of spaces (SC0(n, m))n,m≥0

and of (C1(n))n≥0 are contractible. By general reasons this implies that we can re-
place SC0 by H0(SC0) in the definition of the Hochschild complex given above. The
H0-version of a 1-algebra is an associative non-unital algebra, and the H0-version
of an action is the following:

1) an action of an associative non-unital algebra B on vector space A (it comes
from the generator of Z = H0(SC0(1, 1)),

2) a homomorphism from B to A of B-modules (coming from the generator of
Z = H0(SC0(1, 0)).

It is easy to see that to define an action as above is the same as to define a
homomorphism of non-unital associative algebras from B to End(A) ⊕ A. Thus,
the Hochschild complex is (up to homotopy) isomorphic to End(A) ⊕A.

Let us continue the explanation for the case d = 0. The L∞-algebra Hoch(A) is
quasi-isomorphic to the Lie algebra of affine transformations on A. The homomor-
phism Def (A) → Hoch(A) is a monomorphism, but in homotopy category every
morphism of Lie algebras can be replaced by an epimorphism. The abelian graded
Lie algebra A[−1] is the “kernel” of this morphism. More precisely, the Lie algebra
Def(A) = (A) is quasi-isomorphic to the following differential graded Lie algebra
g: as a Z-graded vector space it is

End(A) ⊕ A⊕A[−1].

In other words the graded components of g are g0 = End(A) ⊕ A, g1 =
A, g ̸=0,1 = 0. The nontrivial components of the Lie bracket on g are the usual
bracket on End(A) and the action of End(A) on A and on A[−1]. The only non-
trivial component of the differential on g is the shifted by [1] identity map from A
to A[−1]. The evident homomorphism

g→ End(A)
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is a homomorphism of differential graded Lie algebras, and also a quasi-isomorphism.
There is a short exact sequence of dg-Lie algebras

0→ A[−1]→ g→ End(A) ⊕A→ 0

This concludes the proof. !
In the case d = 1 the situation is similar. The deformation complex of an

associative algebra A is the following subcomplex of the shifted by [1] Hochschild
complex:

Def (A)n := HomV ectk(A⊗(n+1), A) for n ≥ 0; Def<0(A) := 0

The deformation complex is quasi-isomorphic to the L∞-algebra g which as Z-
graded vector space is

Def (A)⊕ A⊕ A[1].
The Hochschild complex of A is a quotient complex of g by the homotopy Lie ideal
A.

7.5. Formality of the operad of little discs. Analogously to the case of
algebras, we can speak about quasi-isomorphisms of operads in the category of
complexes of vector spaces. Indeed, operads are just algebras over the colored
operad OP .

Definition 7.5.1. A morphism f : P1 → P2 between two dg-operads is called
a quasi-isomorphism if the morphisms of complexes f(n) : P1(n) → P2(n) induce
isomorphisms of cohomology groups for all n.

Conjecturally, homotopy categories and deformation theories of algebras over
quasi-isomorphic operads are equivalent.

Example 7.5.2. a) The operad Lie is quasi-isomorphic to the operad L∞.
b) The operad As is quasi-isomorphic to the operad Chains(C1), and also to

the operad A∞.

In this subsection we are going to discuss the following important result.

Theorem 7.5.3. The operad Chains(Cd)⊗R of complexes of real vector spaces
is quasi-isomorphic to its cohomology operad endowed with zero differential.

In general, differential graded algebras which are quasi-isomorphic to their
cohomology endowed with zero differential, are called formal. Classical example
is the de Rham complex of a compact Kähler manifold. The result of Deligne-
Griffiths-Morgan-Sullivan (see [DGMS 75]) says that this algebra is formal as dif-
ferential graded commutative associative algebra. The above theorem says that
Chains(Cd) ⊗R is formal as an algebra over the colored operad OP. We are not
going to prove the formality theorem here, referring the reader to [Ko99] and [T98].

8. Deformation theory of algebras over PROPs

First, we would like to illustrate how the language of colored operads can be
used in order to describe PROPs.

Let V ectk be the category of k-vector spaces, considered as a symmetric monoidal
category. Then for a finite set I we have the category V ectI consisting of families
(Vi)i∈I of k-vector spaces. We have the notion of a polynomial functor F : V ectI →
V ectI . It is given by a “Taylor series in many variables with coefficients which are
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representations of symmetric groups” (see the corresponding definition for operads).
Polynomial functors form a monoidal category, and colored operads are monoids in
this category. Every such a monoid defines a triple in the category V ectI . Then one
can speak about algebras over a colored operad. In this way a k-linear PROP (see
Chapter 2) becomes an algebra over the colored operad PR = (PR(mk,k′),n,n′). In
order to describe the components of this colored operad we will use the language
of graphs.

First of all, we have now sequences (Un,m)n,m≥0 of Sn × Sm-modules.
This means that instead of the category V ectI0 we have a category V ectI0×I0

of sequences of vector spaces parametrized by pairs of Young diagrams.
Instead of the groups S(mk),n which appear in the definition of a colored operad

we now have groups

Smk,k′ ,n,n′ =
∏

k≥0

∏

k′≥0

Sn × Sn′ × (Smk,k′ ! (Sk × Sk′)mk,k′ )

given for each sequence of non-negative integers mk,k′ such that∑
k,k′≥0 mk,k′ <∞

The component PR(mk,k′),n,n′ is a k-vector space generated by the classes of
isomorphisms of oriented graphs with input vertices numbered from 1 to n, with
output vertices numbered from 1 to n′, with mk,k′ internal vertices numbered from
1 to mk,k′ such that every such a vertex has k input edges and k′ output edges. We
also require that for every internal vertex v all edges incoming to v are numbered
and all edges outcoming from v are numbered.

Then the groups Smk,k′ ,n,n′ act on the graphs in a way similar to the case of
OP described before. Composition maps are given by the procedure of inserting of
a graph into an internal vertex. Again it is similar to the case of the colored operad
OP. Clearly, algebras over PR are k-linear PROPs.

Let us now return to the deformation theory. Let H be a k-linear PROP and
V be an H-algebra. How to describe the deformation theory of V ? If H was
an operad or colored operad we would have three approaches to the deformation
theory of V : the “naive one” (which is basically, just a statement of the problem),
the one via free resolution of V and the one via free resolution of H . In the case
of PROPs we have the naive one, and the one via resolution of PROPs. Indeed,
the notion of a free algebra over a PROP does not exist. For example, there is
no obvious way to define free Hopf algebras. Therefore, in order to construct a
formal pointed dg-manifold controlling the deformation theory of V , one needs to
construct a dg-PROP PH which is free as a graded PROP, as well as a surjective
quasi-isomorphism PH → H of dg-PROPs (we endow H with zero differential).
Then we can construct a formal pointed dg-manifold M(PH , V ) similarly to the
one constructed previously for a resolution of a k-linear operad. Since we want
the deformation theory to be independent of PH , we want PH to be a cofibrant
resolution (i.e. it should be a cofibrant algebra over the colored operad PR).

8.0.1. PROP of bialgebras. In order to make this approach practical one needs
to construct cofibrant resolutions of PROPs. Of course, one can use Boardman-Vogt
approach, similarly to the case of operads. But in this way we obtain resolutions
which are too big. Unfortunately, very few resolutions of PROPs are known. Here
we can mention the case when H is a PROP of Hopf algebras (more precisely,
bialgebras, since the existence of an antipode is not required). It was studied in
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[M02], [MV03], where the resolution of the PROP B of bialgebras was suggested.
Main result can be stated such as follows.

Theorem 8.0.4. There exist a cofibrant resolution PB → B of the PROP of
bialgebras, with generators γm,n, where m, n ≥ 1, n + m ≥ 3 such that γ1,1 corre-
sponds to the product in a bialgebra and γ1,2 corresponds to the coproduct.

Unfortunately, there is no explicit formula for the action of the differential on
the generators.

The above theorem says that B(n, m) = kSB(n,m), where SB(n, m) is a PROP in
the symmetric monoidal category Sets. This set-theoretical PROP has generators
parametrized by graphs with n numbered inputs and m numbered outputs.

Conjecture 8.0.5. There is a PROP CWB in the symmetric monoidal cat-
egory of CW -complexes, which is free as a PROP in the category of sets and
generated by cells Dn,m of dimension n + m− 3. There is a quasi-isomorphism of
dg-PROPs f : Chains(CWB) ≃ PB such that f(Dn,m) = γn,m.

One can define a k-linear PROP 1
2B, called the PROP of 1/2-bialgebras. Al-

gebras over this PROP are called 1/2-bialgebras. The idea was to kill the bial-
gebra relation ∆(ab) = ∆(a)∆(b), which is not quadratic. For the PROP B this
means to imposing the condition γ2,2 = 0, where γ2,2 corresponds to the graph
with two inputs, two outputs and two internal vertices, which are joined by a sin-
gle edge (thus each of these two internal vertex has the total valency equal to
3). Then the PROP 1

2B has a cofibrant resolution P 1
2B generated by the elements

δn,m, n, m ≥ 1, n+ m ≥ 3 of degree 3− (n + m), which are parametrized by graphs
with n inputs, m-outputs and have the only vertex. Differential d acts on δn,m by
inserting an internal edge. We do not need an explicit formula.

Notice that the PROP B is a flat deformation of the PROP 1
2B. In order to see

this, we introduce a family Bh of PROPs over k[h], such that for h = 0 we get 1
2B

and for h = 1 we get B. Algebras over Bh are vector spaces V equipped with the
product m : V ⊗ V → V , coproduct ∆ : V → V ⊗ V , such that m is associative, ∆
is coassociative and the compatibility relation is

∆ ◦m− h(m⊗m) ◦ σ23 ◦ (∆⊗∆) = 0.

Here σ23 : V ⊗4 → V ⊗4 is the linear map such that σ23(v1 ⊗ v2 ⊗ v3 ⊗ v4) =
v1 ⊗ v3 ⊗ v2 ⊗ v4.

The following result of [M02] shows all this can be applied to the deformation
theory.

Theorem 8.0.6. There is a cofibrant resolution PB → B of the PROP of
bialgebras such that PB(n, m) ≃ P 1

2B(n, m) as graded vector spaces, and dPB =
dP 1

2B
+

∑
l≥1 dl.

In other words, there is a cofibrant resolution of the PROP of bialgebras which
is a flat deformation of a cofibrant resolution of the PROP of 1/2-bialgebras. Then
the formal pointed dg-manifold controlling the deformation theory of a bialgebra
V should be a flat deformation of the formal pointed dg-manifold controlling the
deformation theory of some 1/2-bialgebra V0.
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8.0.2. PROP of Lie bialgebras. Let g be a k-vector space, which we will assume
finite-dimensional for simplicity.

Definition 8.0.7. A Lie bialgebra structure on g is given by a pair of linear
maps b : g ∧ g → g, b(x, y) := [x, y] called a Lie bracket and ϕ : g → g ∧ g called a
Lie cobracket such that

1) b makes g into a Lie algebra;
2) ϕ makes the dual vector space g∗ into a Lie algebra;
3) ϕ is a 1-cocycle, i.e. ϕ([x, y]) = adx(ϕ(y)) − ady(ϕ(x)).

Lie bialgebras were introduced by Drinfeld in the early 80’s. They play an
important role in the theory of quantum groups. The latter is beyond the scope of
this book (we refer the reader to [KSo98]). Here we describe the k-linear PROP
LB such that LB-algebras are Lie bialgebras.

We set LB(m, 0) = LB(0, n) = 0. Suppose that m, n ≥ 1. Let us consider a k-
vector space G(m, n) spanned by the isomorphism classes of finite oriented directed
trivalent graphs with m inputs numbered from 1 to m and n outputs numbered
from 1 to n. The word direction means that a direction is chosen for each edge, so
that inputs are directed inward and outputs are directed outward. An orientation
is an extra datum, which is a choice of a sign +1 or −1 for each edge. In particular,
for a graph Γ we have an opposite graph Γop with an opposite orientation. In
order to define a k-vector space LB(m, n) we first factorize G(m, n) by the relation
Γ +Γop = 0. Then we impose three extra relations corresponding to the conditions
1)-3) above. In order to to that one depicts the Lie bracket and cobracket by the
same graphs used for the product and coproduct of a bialgebra. We leave this as
an exercise to the reader. Then LB(m, n) is a vector space which is the quotient of
G(m, n) by the above relations. It follows from the definition that if g is an algebra
over the PROP LB then g carries a structure of Lie bialgebra.

Now one can repeat for the PROP of Lie bialgebras all what we did for the
PROP of bialgebras. In particular, one can introduce the notion of 1/2 Lie bial-
gebras, which are algebras over the corresponding PROP. Resolution of the PROP
LB is a formal deformation of the resolution of the PROP of 1/2 Lie bialgebras.
They are described in [MV03].



CHAPTER 6

A∞-algebras and non-commutative geometry

1. Motivations

In this section we motivate the transition from k-linear categories to A∞-
categories. We remind to the reader that A∞-categories will be discussed in detail
in the second volume of the book. Nevertheless we think that one needs such a mo-
tivation even if one wants to work with A∞-algebras only. In fact an A∞-algebra
is the same as A∞-category with one object. Many ideas and constructions of this
chapter admit straightforward generalizations to A∞-categories.

1.1. From associative algebras to abelian categories. Let k be a com-
mutative ring with the unit. Then one can defines the category of associative
unital algebras over k. Geometrically associative algebras correspond to “affine
non-commutative spaces”. One can generalize associative algebras, considering
k-linear categories. In a sense, k-linear categories are “algebras with many ob-
jects”. Indeed, a k-linear category with one object is an associative algebra. On
the other hand, a k-linear category C with finitely many objects is the same as
an associative k-algebra with the finite set of commuting idempotents. Indeed,
let Ob(C) = I. We define an algebra A = ⊕i,j∈IHom(i, j). Then A is a k-
algebra with the unit 1A = ⊕i∈Iidi and the multiplication given by the compo-
sition of morphisms. The elements πi = idi ∈ A are commutting idempotents:
π2

i = π, πiπj = πjπi,⊕i∈Iπi = 1A. This construction gives rise to a homomorphism
kI → A of algebras with the unit.

Conversely, suppose we are given an associative unital k-algebra A, and (πi)i∈I

is a finite set of commuting idempotents in A, such that ⊕i∈Iπi = 1A. Then we can
reconstruct a k-linear category C. To do this we set Ob(C) = I, HomC(i, j) = πiAπj .
The composition of morphisms is defined in the obvious way.

Thus we see that there are “very small” linear categories which generalize
associative algebras. Next step is to consider k-linear additive categories. Now one
has finite direct sums ⊕i∈IVi, including the case I = ∅. More precisely, an additive
category admits finite sums and finite products and they coincide.

Example 1.1.1. The category A−mod of left modules over an associative ring,
or some subcategories of the latter (like the category of free modules). Another
example is given by the category of vector bundles over a given smooth manifold.

If we are given a k-linear category C, we can construct its additive envelope,
so that the resulting category C(1) is an additive category (i.e. admits finite direct
sums). Namely, we define an object of C(1) to be a finite family (Xi)i∈I of objects of
C. We define HomC(1)((Xi), (Yj)) = ⊕i,jHomC(Xi, Yj). Composition of morphisms
is defined by the matrix product and compositions in C.

Next step is to consider abelian categories.

113
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Definition 1.1.2. Abelian category is an additive category which admits finite
limits and colimits (equivalently, every morphism has a kernel and cokernel) and
the coimage of any morphism is isomorphic to its image..

Example 1.1.3. The following categories are abelian:
a) the category A−mod of (say, left) A-modules over a given associative ring;
b) the category of sheaves of modules over a given sheaf of associative algebras.
The category of vector bundles is not an abelian category, because the quotient

of two vector bundles is not a vector bundle in general.

1.2. Triangulated categories. Triangulated category is given by an additive
category C, a functor [1] : C → C called translation (or shift) functor, and a class of
distinguished triangles X → Y → Z. These data satisfy a number of axioms, which
will not be recalled here (see [Verdier]). The most complicated is the so-called
octahedron axiom.

For a given abelian category A one constructs a triangulated category D(A),
called the derived category of A. In fact D(A) contains A as a full subcategory. The
derived category D(A) is obtained from the category of complexes in A by a kind
of localization procedure. The shift functor [1] changes the grading of a complex:
([1](C))i := (C[1])i = Ci+1. A morphism of two complexes, which induces an
isomorphism on the cohomology, becomes an isomorphism in the derived category.

Example 1.2.1. Let A be an associative algebra. We consider the category
of complexes of free A-modules with morphisms given by the homotopy classes of
morphisms of complexes. We get a triangulated category which is equivalent to
D−(A −mod).

Remark 1.2.2. If in the previous example one takes all A-modules, then the
resulting category will not be equivalent to the derived category.

There are two kinds of triangulated categories:
a) algebraic;
b) topological.
An algebraic example is given by the derived category D(C). Topological ex-

ample is given by the category of homotopy types HT . Objects of HT are pairs
(X, n) where X is a CW-complex and n ∈ Z. One defines Hom((X, n), (Y, m)) =
limN→∞[ΣN−nX, ΣN−mY ], where [A, B] denotes the set of homotopy classes of
maps, and Σ denotes the suspension functor. The shift functor is given by [1] :
(X, n) )→ (X, n + 1) (see [Switzer] for details).

1.3. Digression about non-commutative geometries. Here we would like
to compare our ladder of categories with another ladder: the one of spaces.

1) A non-commutative space according to A. Connes is given by an associative
algebra. The class of spaces (topological, smooth, etc.) is specified by a class of
algebras (algebras of continuos functions, smooth functions, etc.).

2) A non-commutative space is given by an abelian category. This approach is
based on the theorem (P. Gabriel, A. Rosenberg) that a scheme S can be recon-
structed up to an isomorphism from the abelian category QcohS of quasi-coherent
sheaves on S. Thus an abelian category should be interpreted as a category of
quasi-coherent sheaves on a “non-commutative space”.

3) A non-commutative space is given by a triangulated category. Main example
of successful application of this approach will be discussed in the chapter devoted to
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the mirror symmetry (in the terminology of physics: N = 2 Superconformal Field
Theory).

Mathematically it is based on the desire to reconstruct a (projective) scheme
X out of the category Db(X), the bounded derived category of coherent sheaves on
X. It is known (A. Bondal, D. Orlov) that if X is of generic type (i.e. KX or −KX

is an ample sheaf), then such a reconstruction is unique up to an isomorphism.
Nevertheless, it is not always the case: two non-isomorphic varieties X and Y
can have equivalent categories Db(X) ≃ Db(Y ). This is typical for Calabi-Yau
manifolds (for example, abelian varieties). We will discuss this topic later.

1.4. Why should one generalize triangulated categories? Triangulated
categories were invented for purposes of homological algebra. They appear in a
number of spectacular duality theorems. Nevertheless, this notion suffers from
some deficiences. For example, the octahedron axiom is not motivated. It is not
clear why one should not consider further axioms. Another problem is related to
the notion of a cone of morphism.

Let f : X → Y be a morphism in a triangulated category C. Then there
is a object C(f) called a cone of f , such that one has a distinguished triangle
X → Y → C(f). The cone C(f) is not uniquely defined. Moreover, there is no
functorial construction of the cone. More precisely, let us consider the following
category Mor(C). Objects of this category are morphisms in C. Morphisms between
f : X → Y and f1 : X1 → Y1 are pairs φ : X → X1,ψ : Y → Y1 such that the
natural diagram commutative. Then f → C(f) is not a functor from G(C) to C.

The following example demonstrates another problem. Let us consider the
quiver A2. Geometrically it is graph with two vertices and one directed arrow.
Algebraically, it is given by a 3-dimensional algebra A2 over a ground field k, with
a basis π1, f, π2 such that π2

i = πi, i = 1, 2, and π1 + π2 = 1.
This algebra can be described also as an algebra related to the following cat-

egory C. The category C has two objects E, F . Morphisms are defined such as
follows: Hom(E, F ) = k, Hom(F, E) = 0, End(E) = End(F ) = k.

Lemma 1.4.1. For any k-algebra B the category of B⊗A2-modules is equivalent
to the category Mor(B −mod).

Proof. A representation of A2 is given by a pair of k-vector spaces X, Y (they
correspond to the idempotents πi, i = 1, 2) as well as a linear morphism f : X → Y
(it corresponds to f ∈ A2). By definition the action of B commutes with the action
of A2. It follows that X and Y are B-invariant, and f is a homomorphism of
B-modules. We leave to the reader the remaining details. #

The previous example suggests the following idea. For a given abelian category
C one should have an abelian category C ⊗ A2 such that Mor(C) is equivalent to
C⊗A2. If C is a triangulated category then Mor(C) is not a triangulated category.
Nevertheless in all known examples one can define a category C ⊗ A2 such that it
is a triangulated category, and the set of isomorphism classes of objects of C ⊗A2

is in one-to-one correspondence with isomorphism classes of objects in Mor(C).
The conclusion is that some simple constructions fail to work in the case of

triangulated categories. Therefore one should generalize this notion. An appropri-
ate generalization will be discussed later in this chapter. It is called A∞-category.
Namely:
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a) this is the “right” (from homotopical point of view) generalization of the
notion of k-linear category;

b) triangulated A∞-category generalizes the notion of usual triangulated cate-
gory.

The relation between A∞-categories and triangulated A∞-categories is similar
to the relation between k-linear and additive categories, rather than to the relation
between abelian and derived categories. In other words, it is simpler than in the
classical case. We are going to discuss A∞-categories in detail in te second volume
of the book. At the same time, main features of the theory can be observed in
the case of A∞-algebra, which can be thought of as A∞-category with one object.
In the Chapter, devoted to operads, we already met A∞-algebras as algebras over
the A∞-operad (equivalently, algebras over the operad of singular chains on the
collection of topological spaces FM1(n), n ≥ 0. In this chapter we use completely
different point of view on A∞-algebras. Namely, they will appear as local models for
non-commutative formal pointed dg-manifolds. This makes the theory completely
parallel to the theory of L∞-algebras discussed before (which can be thought of
as local models for commutative formal pointed dg-manifolds). At the same time,
we decided not to combine both theories under the same roof. Indeed, the the-
ory of commutative and non-commutative schemes, although having many similar
features, are fundamentally different in problems and methods.

2. Coalgebras and non-commutative schemes

Geometric description of A∞-algebras will be given in terms of geometry of
non-commutative ind-affine schemes in the tensor category of graded vector spaces
(we will use Z-grading or Z/2-grading). In this section we are going to describe
these ind-schemes as functors from finite-dimensional algebras to sets (cf. with
the description of formal schemes in [Gr59]). More precisely, such functors are
represented by counital coalgebras. Corresponding geometric objects are called
non-commutative thin schemes.

2.1. Coalgebras as functors. Let k be a field, and C be a k-linear Abelian
symmetric monoidal category (we call such categories tensor), which admits infinite
sums and products. Then we can do simple linear algebra in C, in particular, speak
about associative algebras or coassociative coalgebras. By definition for a coalgebra
B there is a morphism ∆ : B → B ⊗ B called a coproduct (or comultiplication)
such that (∆⊗ id) ◦∆ = (id ⊗ δ) ◦∆. For a counital coalgebra B we also have a
morphism ε : B → 1, where 1 is the unit object in C. The morphism ε is called a
counit and satisfies the relation (ε⊗ id) ◦∆ = (id⊗ ε) ◦∆ = id.

Let ∆′ = cB,B∆ denotes the opposite coproduct (here cB,B : B ⊗ B → B ⊗ B
is the commutativity morphism). The coalgebra is called cocommutative if ∆ =
∆′. The iterated coproduct ∆(n) : B⊗n → B is defined by induction: ∆(2) = ∆,
∆(n+1) = (∆⊗ id⊗n) ◦∆(n).

Definition 2.1.1. Non-counital coalgebra B is called conilpotent if there exists
n ≥ 1 such that ∆(n) = 0. It is called locally conilpotent if for any b ∈ B there
exists n (depending on b) such that ∆(n)(b) = 0.

If B is a counital coalgebras, we will keep the above terminology in the case
when the non-counital coagebra Ker ε ⊂ B is conilpotent (resp. locally conilpo-
tent).
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Clearly any conilpotent coalgebra is locally conilpotent.
For the rest of the Chapter, unless we say otherwise, we will assume that either

C = V ectZk , which is the tensor category of Z-graded vector spaces V = ⊕n∈ZVn,
or C = V ectZ/2

k , which is the tensor category of Z/2-graded vector spaces (then
V = V0 ⊕ V1), or C = V ectk, which is the tensor category of k-vector spaces.
Associativity morphisms in V ectZk or V ectZ/2

k are identity maps, and commutativity
morphisms are given by the Koszul rule of signs: c(vi ⊗ vj) = (−1)ijvj ⊗ vi, where
vn denotes an element of degree n.

We will denote by Cf the Artinian category of finite-dimensional objects in C
(i.e. objects of finite length). The category AlgCf of unital finite-dimensional alge-
bras is closed with respect to finite projective limits. In particular, finite products
and finite fiber products exist in AlgCf . One has also the categories CoalgC (resp.
CoalgCf ) of coassociative counital (resp. coassociative counital finite-dimensional)
coalgebras. In the case C = V ectk we will also use the notation Algk, Algf

k , Coalgk

and Coalgf
k for these categories. The category CoalgCf = Algop

Cf admits finite
inductive limits.

We will need simple facts about coalgebras. We will present proofs in the
Appendix for completness.

Theorem 2.1.2. Let F : AlgCf → Sets be a covariant functor commuting
with finite projective limits. Then it is isomorphic to a functor of the type A )→
HomCoalgC (A∗, B) for some counital coalgebra B. Moreover, the category of such
functors is equivalent to the category of counital coalgebras.

Proposition 2.1.3. If B ∈ Ob(CoalgC), then B is a union of finite-dimensional
counital coalgebras.

Objects of the category CoalgCf = Algop
Cf can be interpreted as “very thin”

non-commutative affine schemes (cf. with finite schemes in algebraic geometry).
Proposition 1 implies that the category CoalgC is naturally equivalent to the cate-
gory of ind-objects in CoalgCf .

For a counital coalgebra B we denote by Spc(B) (the “spectrum” of the coalge-
bra B) the corresponding functor on the category of finite-dimensional algebras. A
functor isomorphic to Spc(B) for some B is called a non-commutative thin scheme.
The category of non-commutative thin schemes is equivalent to the category of
counital coalgebras. For a non-commutative scheme X we denote by BX the corre-
sponding coalgebra. We will call it the coalgebra of distributions on X. The algebra
of functions on X is by definition O(X) = B∗

X .
Non-commutative thin schemes form a full monoidal subcategory NAffth

C ⊂
Ind(NAffC ) of the category of non-commutative ind-affine schemes (see Appen-
dix).Tensor product corresponds to the tensor product of coalgebras.

Let us consider few examples.

Example 2.1.4. Let V ∈ Ob(C). Then T (V ) = ⊕n≥0V ⊗n carries a structure of
counital cofree coalgebra in C with the coproduct ∆(v0 ⊗ ...⊗ vn) =

∑
0≤i≤n(v0 ⊗

... ⊗ vi) ⊗ (vi+1 ⊗ ... ⊗ vn). The corresponding non-commutative thin scheme is
called non-commutative formal affine space Vform (or formal neighborhood of zero
in V ).
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Definition 2.1.5. A non-commutative formal manifold X is a non-commutative
thin scheme isomorphic to some Spc(T (V )) from the example above. The dimension
of X is defined as dimkV .

The algebra O(X ) of functions on a non-commutative formal manifold X of
dimension n is isomorphic to the topological algebra k⟨⟨x1, ..., xn⟩⟩ of formal power
series in free graded variables x1, ..., xn.

Let X be a non-commutative formal manifold, and pt : k → BX a k-point in
X,

Definition 2.1.6. The pair (X, pt) is called a non-commutative formal pointed
manifold. If C = V ectZk it will be called non-commutative formal pointed graded
manifold. If C = V ectZ/2

k it will be called non-commutative formal pointed super-
manifold.

The following example is a generalization of the previous example (which cor-
responds to a quiver with one vertex).

Example 2.1.7. Let I be a set and BI = ⊕i∈I1i be the direct sum of trivial
coalgebras. We denote by O(I) the dual topological algebra. It can be thought of
as the algebra of functions on a discrete non-commutative thin scheme I.

A quiver Q in C with the set of vertices I is given by a collection of objects
Eij ∈ C, i, j ∈ I called spaces of arrows from i to j. The coalgebra of Q is the
coalgebra BQ generated by the O(I) −O(I)-bimodule EQ = ⊕i,j∈IEij, i.e. BQ ≃
⊕n≥0⊕i0,i1,...,in∈I Ei0i1 ⊗ ...⊗Ein−1in := ⊕n≥0Bn

Q, B0
Q := BI . Elements of B0

Q are
called trivial paths. Elements of Bn

Q are called paths of the length n. Coproduct is
given by the formula

∆(ei0i1 ⊗ ...⊗ ein−1in) = ⊕0≤m≤n(ei0i1 ⊗ ...⊗ eim−1im)⊗ (eimim+1 ...⊗ ...⊗ ein−1in),

where for m = 0 (resp. m = n) we set ei−1i0 = 1i0 (resp. einin+1 = 1in).
In particular, ∆(1i) = 1i ⊗ 1i, i ∈ I and ∆(eij) = 1i ⊗ eij + eij ⊗ 1j, where

eij ∈ Eij, and 1m ∈ BI corresponds to the image of 1 ∈ 1 under the natural
embedding into ⊕m∈I1.

The coalgebra BQ has a counit ε such that ε(1i) = 1i, and ε(x) = 0 for
x ∈ Bn

Q, n ≥ 1.

Example 2.1.8. (Generalized quivers). Here we replace 1i by a unital simple
algebra Ai (e.g. Ai = Mat(ni, Di), where Di is a division algebra). Then Eij are
Ai−mod−Aj-bimodules. We leave as an exercise to the reader to write down the
coproduct (one uses the tensor product of bimodules) and to check that we indeed
obtain a coalgebra.

Example 2.1.9. Let I be a set. Then the coalgebra BI = ⊕i∈I1i is a direct
sum of trivial coalgebras, isomorphic to the unit object in C. This is a special case
of Example 2. Notice that in general BQ is a O(I) −O(I)-bimodule.

Example 2.1.10. Let A be an associative unital algebra. It gives rise to the
functor FA : CoalgC{ → Sets such that FA(B) = HomAlgC (A, B∗). This functor
describes finite-dimensional representations of A. It commutes with finite direct
limits, hence it is representable by a coalgebra. If A = O(X) is the algebra of
regular functions on the affine scheme X, then in the case of algebraically closed
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field k the coalgebra representing FA is isomorphic to ⊕x∈X(k)O∗
x,X , where O∗

x,X

denotes the topological dual to the completion of the local ring Ox,X . If X is
smooth of dimension n, then each summand is isomorphic to the topological dual
to the algebra of formal power series k[[t1, ..., tn]]. In other words, this coalgebra
corresponds to the disjoint union of formal neighborhoods of all points of X.

Remark 2.1.11. One can describe non-commutative thin schemes more pre-
cisely by using structure theorems about finite-dimensional algebras in C. For
example, in the case C = V ectk any finite-dimensional algebra A is isomorphic to
a sum A0 ⊕ r, where A0 is a finite sum of matrix algebras ⊕iMat(ni, Di), Di are
division algebras, and r is the radical. In Z-graded case a similar decomposition
holds, with A0 being a sum of algebras of the type End(Vi)⊗Di,where Vi are some
graded vector spaces and Di are division algebras of degree zero. In Z/2-graded
case the description is slightly more complicated. In particular A0 can contain
summands isomorphic to (End(Vi) ⊗ Di) ⊗ Dλ, where Vi and Di are Z/2-graded
analogs of the above-described objects, and Dλ is a 1|1-dimensional superalgebra
isomorphic to k[ξ]/(ξ2 = λ), deg ξ = 1, λ ∈ k∗/(k∗)2.

2.2. Smooth thin schemes. Recall that the notion of an ideal has meaning in
any abelian tensor category. A 2-sided ideal J is called nilpotent if the multiplication
map J⊗n → J has zero image for a sufficiently large n.

Definition 2.2.1. Counital coalgebra B in a tensor category C is called smooth
if the corresponding functor FB : AlgCf → Sets, FB (A) = HomCoalgC (A∗, B) sat-
isfies the following lifting property: for any 2-sided nilpotent ideal J ⊂ A the map
FB(A) → FB(A/J) induced by the natural projection A → A/J is surjective.
Non-commutative thin scheme X is called smooth if the corresponding counital
coalgebra B = BX is smooth.

Proposition 2.2.2. For any quiver Q in C the corresponding coalgebra BQ is
smooth.

Proof. First let us assume that the result holds for all finite quivers. We remark
that if A is finite-dimensional, and Q is an infinite quiver then for any morphism
f : A∗ → BQ we have: f(A∗) belongs to the coalgebra of a finite sub-quiver of Q.
Since the lifting property holds for the latter, the result follows. Finally, we need
to prove the Proposition for a finite quiver Q . Let us choose a basis {eij,α} of each
space of arrows Eij. Then for a finite-dimensional algebra A the set FBQ(A) is
isomorphic to the set {((πi), xij,α)i,j∈I}, where πi ∈ A, π2

i = πi, πiπj = πjπi, if i ̸=
j,

∑
i∈I πi = 1A, and xij,α ∈ πiAπj satisfy the condition: there exists N ≥ 1 such

that xi1j1,α1 ...ximjm,αm = 0 for all m ≥ N . Let now J ⊂ A be the nilpotent ideal
from the definition of smooth coalgebra and (π′

i, x
′
ij,α) be elements of A/J satisfying

the above constraints. Our goal is to lift them to A. We can lift the them to the
projectors πi and elements xij,α for A in such a way that the above constraints are
satisfied except of the last one, which becomes an inclusion xi1j1,α1...ximjm,αm ∈ J
for m ≥ N . Since Jn = 0 in A for some n we see that xi1j1,α1 ...ximjm,αm = 0 in A
for m ≥ nN . This proves the result. !

Remark 2.2.3. a) According to Cuntz and Quillen (see [CQ95-2]) a non-
commutative associative algebra R in V ectk is called smooth if the functor Algk →
Sets, FR(A) = HomAlgk (R, A) satisfies the lifting property from the Definition 3
applied to all (not only finite-dimensional) algebras. We remark that if R is smooth
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in the sense of Cuntz and Quillen then the coalgebra Rdual representing the functor
Coalgf

k → Sets, B )→ HomAlgf
k
(R, B∗) is smooth. One can prove that any smooth

coalgebra in V ectk is isomorphic to a coalgebra of a generalized quiver.
b) Almost all examples of non-commutative smooth thin schemes considered

in this Chapter are non-commutative formal pointed manifolds, i.e. they are iso-
morphic to Spc(T (V )) for some V ∈ Ob(C). It is natural to try to “globalize”
this picture to the case of non-commutative “smooth” schemes X which satisfy the
property that the completion of X at a “commutative” point gives rise to a for-
mal pointed manifold in our sense. An example of the space of maps is considered
below.

c) The tensor product of non-commutative smooth thin schemes is typically
non-smooth, since it corresponds to the tensor product of coalgebras (the latter is
not a categorical product).

Let now x be a k-point of a non-commutative smooth thin scheme X. By
definition x is a homomorphism of counital coalgebras x : k → BX (here k = 1
is the trivial coalgebra corresponding to the unit object). The completion X̂x of
X at x is a formal pointed manifold which can be described such as follows. As a
functor FX̂x

: Algf
C → Sets it assigns to a finite-dimensional algebra A the set of

such homomorphisms of counital colagebras f : A∗ → BX which are compositions
A∗ → A∗

1 → BX , where A∗
1 ⊂ BX is a conilpotent extension of x (i.e. A1 is a

finite-dimensional unital nilpotent algebra such that the natural embedding k →
A∗

1 → BX coinsides with x : k→ BX).
Description of the coalgebra BX̂x

is given in the following Proposition.

Proposition 2.2.4. The formal neighborhood X̂x corresponds to the counital
sub-coalgebra BX̂x

⊂ BX which is the preimage under the natural projection BX →
BX/x(k) of the sub-coalgebra consisting of conilpotent elements in the non-counital
coalgebra B/x(k). Moreover, X̂x is universal for all morphisms from nilpotent
extensions of x to X.

We discuss in Appendix a more general construction of the completion along a
non-commutative thin subscheme.

We leave as an exercise to the reader to prove the following result.

Proposition 2.2.5. Let Q be a quiver and pti ∈ X = XBQ corresponds to
a vertex i ∈ I. Then the formal neighborhood X̂pti is a formal pointed manifold
corresponding to the tensor coalgebra T (Eii) = ⊕n≥0E

⊗n
ii , where Eii is the space of

loops at i.

2.3. Implicit and inverse function theorems. Here we give without proofs
non-commutative analogs of the implicit and inverse function theorems. Proofs are
basically the same as those in Chapter 3. We leave them as exercises to the reader.

Theorem 2.3.1. Let (X1, pt1) and (X2, pt2) be non-commutative formal pointed
manifolds. Then a morphism f : (X1 , pt1) → (X2, pt2) is an isomorphism if and
only if the induced linear map of tangent spaces f1 = T (f) : Tpt1(X1) → Tpt2(X2)
is an isomorphism.

Theorem 2.3.2. Let f : (X1, pt1)→ (X2, pt2) be a morphism of non-commutative
formal pointed manifolds such that the corresponding tangent map f1 : Tpt1(X1)→
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Tpt2(X2) is an epimorphism. Then there exists a non-commutative formal pointed
manifold (Y, ptY ) such that (X1, pt1) ≃ (X2, pt2)×(Y, ptY ), and under this isomor-
phism f becomes the natural projection.

If f1 is a monomorphism, then there exists (Y, ptY ) and an isomorphism (X2, pt2)→
(X1, pt1) × (Y, ptY ), such that under this isomorphism f becomes the natural em-
bedding (X1, pt1)→ (X1, pt1)× (ptY , ptY ).

2.4. Inner Hom. Let X, Y be non-commutative thin schemes, and BX , BY

the corresponding coalgebras.

Theorem 2.4.1. The functor AlgCf → Sets such that

A )→ HomCoalgC (A∗ ⊗ BX , BY )

is representable. The corresponding non-commutative thin scheme is denoted by
Maps(X, Y ).

Proof. It is easy to see that the functor under consideration commutes with
finite projective limits. Hence it is of the type A )→ HomCoalgC (A∗, B), where
B is a counital coalgebra The corresponding non-commutative thin scheme is the
desired Maps(X, Y ). !

It follows from the definition that Maps(X, Y ) = Hom(X, Y ), where the inner
Hom is taken in the symmetric monoidal category of non-commutative thin schemes.
By definition Hom(X, Y ) is a non-commutative thin scheme, which satisfies the
following functorial isomorphism for any Z ∈ Ob(NAffth

C ):

HomNAffth
C

(Z, Hom(X, Y )) ≃ HomNAffth
C

(Z ⊗X, Y ).

Notice that the monoidal category NAffC of all non-commutative affine schemes
does not have inner Hom′s even in the case C = V ectk. If C = V ectk then one
can define Hom(X, Y ) for X = Spec(A), where A is a finite-dimensional unital
algebra and Y is arbitrary. The situation is similar to the case of “commutative”
algebraic geometry, where one can define an affine scheme of maps from a scheme
of finite length to an arbitrary affine scheme. On the other hand, one can show
that the category of non-commutative ind-affine schemes admits inner Hom’s (the
corresponding result for commutative ind-affine schemes is known.

Remark 2.4.2. The non-commutative thin scheme Maps(X, Y ) gives rise to a
quiver, such that its vertices are k-points of Maps(X, Y ). In other words, vertices
correspond to homomorphisms BX → BY of the coalgebras of distributions. Taking
the completion at a k-point we obtain a formal pointed manifold. More generally,
one can take a completion along a subscheme of k-points, thus arriving to a non-
commutative formal manifold with a marked closed subscheme (rather than one
point). This construction will be used in the second volume for the desription of
the A∞-structure on A∞-functors. We also remark that the space of arrows Eij

of a quiver is an example of the geometric notion of bitangent space at a pair of
k-points i, j. It will be also discussed in the second volume.

For non-counital coalgebras A and B we introduce a “new” tensor product
A⊗new B = A⊗B ⊕A⊕B. It mimicks the tensor product of counital coalgebras.
Then the functor on non-unital finite-dimensional coalgebras

C )→ HomCoalgC (C ⊗new A, B)
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is representable by a non-counital coalgebra, which can be thought of the coalgebra
of distributions on a thin scheme Maps(Spc(A), Spc(B)) corresponding to non-
countial coalgebras A and B.

Example 2.4.3. Let Q1 = {i1} and Q2 = {i2} be quivers with one vertex such
that Ei1i1 = V1, Ei2i2 = V2, dimVi < ∞, i = 1, 2. Then BQi = T (Vi), i = 1, 2 and
Maps(XBQ1

, XBQ2
) corresponds to the quiver Q such that the set of vertices IQ =

HomCoalgC (BQ1 , BQ2) =
∏

n≥1 Hom(V ⊗n
1 , V2) and for any two vertices f, g ∈ IQ

the space of arrows is isomorphic to Ef,g =
∏

n≥0 Hom(V ⊗n
1 , V2).

Definition 2.4.4. Homomorphism f : B1 → B2 of counital coalgebras is called
a minimal conilpotent extension if it is an inclusion and the induced coproduct on
the non-counital coalgebra B2/f(B1) is trivial.

Composition of minimal conilpotent extensions is simply called a conilpotent
extension. Definition 2.2.1 can be reformulated in terms of finite-dimensional coal-
gebras. Coalgebra B is smooth if the functor C )→ HomCoalgC (C, B) satisfies the
lifting property with respect to conilpotent extensions of finite-dimensional couni-
tal coalgebras. The following proposition shows that we can drop the condition of
finite-dimensionality.

Proposition 2.4.5. If B is a smooth coalgebra then the functor CoalgC →
Sets such that C )→ HomCoalgC (C, B) satisfies the lifting property for conilpotent
extensions.

Proof. Let f : B1 → B2 be a conilpotent extension, and g : B1 → B and
arbitrary homomorphism of counital coalgebras. It can be thought of as homomor-
phism of f(B1) → B. We need to show that g can be extended to B2 . Let us
consider the set of pairs (C, gC) such f(B1) ⊂ C ⊂ B2 and gC : C → B defines
an extension of counital coalgebras, which coincides with g on f(B1). We apply
Zorn lemma to the partially ordered set of such pairs and see that there exists a
maximal element (Bmax, gmax) in this set. We claim that Bmax = B2. Indeed,
let x ∈ B2 \ Bmax. Then there exists a finite-dimensional coalgebra Bx ⊂ B2

which contains x. Clearly Bx is a conilpotent extension of f(B1) ∩ Bx. Since B
is smooth we can extend gmax : f(B1) ∩ Bx → B to gx : Bx → B and,finally
to gx,max : Bx + Bmax → B. This contradicts to maximality of (Bmax, gmax).
Proposition is proved. !

Proposition 2.4.6. If X, Y are non-commutative thin schemes and Y is smooth
then Maps(X, Y ) is also smooth.

Proof. Let A → A/J be a nilpotent extension of finite-dimensional unital al-
gebras. Then (A/J)∗ ⊗ BX → A∗ ⊗ BX is a conilpotent extension of counital
coalgebras. Since BY is smooth then the previous Proposition implies that the
induced map HomCoalgC (A∗ ⊗ BX , BY ) → HomCoalgC ((A/J)∗ ⊗ BX , BY ) is sur-
jective. This concludes the proof. !

Let us consider the case when (X, ptX) and (Y, ptY ) are non-commutative for-
mal pointed manifolds in the category C = V ectZk . One can describe “in coordi-
nates” the non-commutative formal pointed manifold, which is the formal neighbor-
hood of a k-point of Maps(X, Y ). Namely, let X = Spc(B) and Y = Spc(C), and
let f ∈ HomNAffth

C
(X, Y ) be a morphism preserving marked points. Then f gives

rise to a k-point of Z = Maps(X, Y ). Since O(X) and O(Y ) are isomorphic to the
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topological algebras of formal power series in free graded variables, we can choose
sets of free topological generators (xi)i∈I and (yj)j∈J for these algebras. Then we
can write for the corresponding homomorphism of algebras f∗ : O(Y )→ O(X):

f∗(yj) =
∑

I

c0
j,MxM ,

where c0
j,M ∈ k and M = (i1, ..., in), is ∈ I is a non-commutative multi-index (all

the coefficients depend on f , hence a better notation should be cf,0
j,M). Notice that

for M = 0 one gets c0
j,0 = 0 since f is a morphism of pointed schemes. Then we

can consider an “infinitesimal deformation” fdef of f

f∗
def (yj) =

∑

M

(c0
j,M + δc0

j,M )xM ,

where δc0
j,M are new variables commuting with all xi. Then δc0

j,M can be thought
of as coordinates in the formal neighborhood of f . More pedantically it can be
spelled out such as follows. Let A = k ⊕m be a finite-dimensional graded unital
algebra, where m is a graded nilpotent ideal of A. Then an A-point of the formal
neighborhood Uf of f is a morphism φ ∈ HomNAffth

C
(Spec(A) ⊗X, Y ), such that

it reduces to f modulo the nilpotent ideal m. We have for the corresponding
homomorphism of algebras:

φ∗(yj) =
∑

M

cj,MxM ,

where M is a non-commutative multi-index, cj,M ∈ A, and cj,M )→ c0
j,M under

the natural homomorphism A → k = A/m. In particular cj,0 ∈ m. We can treat
coefficients cj,M as A-points of the formal neighborhood Uf of f ∈Maps(X, Y ).

Remark 2.4.7. The above definitions will play an important role in the sub-
sequent paper, where the non-commutative smooth thin scheme Spc(BQ) will be
assigned to a (small) A∞-category, the non-commutative smooth thin scheme

Maps(Spc(BQ1 ), Spc(BQ2 )) will be used for the description of the category of
A∞-functors between A∞-categories, and the formal neighborhood of a point in
the space Maps(Spc(BQ1 ), Spc(BQ2 )) will correspond to natural transformations
between A∞-functors.

Remark 2.4.8. Let A = B, f = id. Then Spc(Maps(Spc(A), Spc(A)) is a
Hopf algebra. It might be interesting to study it further.

We conclude this subsection with the following result.

Proposition 2.4.9. There is natural isomorphism of Lie algebras V ect(X) ≃
TidX (M̂apsidX

(X, X)).

Proof. Tangent space in the RHS can be identified with automorphisms of
the coalgebra Homid(C, C) ⊗ k[t]/(t2). Equivalently it is a set of maps from the
coalgebra Spc((k[t]/(t2))∗) to X. But the latter is the set of all vector fields on
X. We leave to the reader to check that in fact we have an isomorphism of local
groups, which implies an isomorphism of Lie algebras. !
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3. A∞-algebras

3.1. Main definitions. From now on assume that C = V ectZk unless we say
otherwise. If X is a thin scheme then a vector field on X is, by definition, a
derivation of the coalgebra BX . Vector fields form a graded Lie algebra V ect(X).

Definition 3.1.1. A non-commutative thin differential-graded (dg for short)
scheme is a pair (X, d) where X is a non-commutative thin scheme, and d is a
vector field on X of degree +1 such that [d, d] = 0.

We will call the vector field d homological vector field.
Let X be a formal pointed manifold and x0 be its unique k-point. Such a point

corresponds to a homomorphism of counital coalgebras k → BX . We say that the
vector field d vanishes at x0 if the corresponding derivation kills the image of k.

Definition 3.1.2. A non-commutative formal pointed dg-manifold is a pair
((X, x0), d) such that (X, x0) is a non-commutative formal pointed graded manifold,
and d = dX is a homological vector field on X such that d|x0 = 0.

Homological vector field d has an infinite Taylor decomposition at x0. More
precisely, let Tx0X be the tangent space at x0. It is canonically isomorphic to
the graded vector space of primitive elements of the coalgebra BX , i.e. the set of
a ∈ BX such that ∆(a) = 1 ⊗ a + a ⊗ 1 where 1 ∈ BX is the image of 1 ∈ k
under the homomorphism of coalgebras x0 : k→ BX (see Appendix for the general
definition of the tangent space). Then d := dX gives rise to a (non-canonically
defined) collection of linear maps d(n)

X := mn : Tx0X
⊗n → Tx0X[1], n ≥ 1 called

Taylor coefficients of d which satisfy a system of quadratic relations arising from
the condition [d, d] = 0. Indeed, our non-commutative formal pointed manifold is
isomorphic to the formal neighborhood of zero in Tx0X, hence the corresponding
non-commutative thin scheme is isomorphic to the cofree tensor coalgebra T (Tx0X)
generated by Tx0X. Homological vector field d is a derivation of a cofree coalgebra,
hence it is uniquely determined by a sequence of linear maps mn.

Definition 3.1.3. Non-unital A∞-algebra over k is given by a non-commutative
formal pointed dg-manifold (X, x0, d) together with an isomorphism of counital
coalgebras BX ≃ T (Tx0X).

Choice of an isomorphism with the tensor coalgebra generated by the tangent
space is a non-commutative analog of a choice of affine structure in the formal
neighborhood of x0.

From the above definitions one can recover the traditional one. We present it
below for convenience of the reader.

Definition 3.1.4. A structure of an A∞-algebra on V ∈ Ob(V ectZk ) is given
by a derivation d of degree +1 of the non-counital cofree coalgebra T+(V [1]) =
⊕n≥1V ⊗n such that [d, d] = 0 in the differential-graded Lie algebra of coalgebra
derivations.

Traditionally the Taylor coefficients of d = m1 + m2 + ... are called (higher)
multiplications for V . The pair (V, m1) is a complex of k-vector spaces called the
tangent complex. If X = Spc(T (V )) then V [1] = T0X and m1 = d(1)

X is the first
Taylor coefficient of the homological vector field dX . The tangent cohomology
groups Hi(V, m1) will be denoted by Hi(V ). Clearly H•(V ) = ⊕i∈ZHi(V ) is an
associative (non-unital) algebra with the product induced by m2.
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An important class of A∞-algebras consists of unital (or strictly unital) and
weakly unital (or homologically unital) ones. We are going to discuss the definition
and the geometric meaning of unitality later.

Homomorphism of A∞-algebras can be described geometrically as a morphism
of the corresponding non-commutative formal pointed dg-manifolds. In the alge-
braic form one recovers the following traditional definition.

Definition 3.1.5. A homomorphism of non-unital A∞-algebras (A∞-morphism
for short) (V, dV )→ (W, dW ) is a homomorphism of differential-graded coalgebras
T+(V [1])→ T+(W [1]).

A homomorphism f of non-unital A∞-algebras is determined by its Taylor
coefficients fn : V ⊗n →W [1− n], n ≥ 1 satisfying the system of equations∑

1≤l1<...,<li=n(−1)γimW
i (fl1 (a1, ..., al1),

fl2−l1 (al1+1, ..., al2), ..., fn−li−1(an−li−1+1, ..., an)) =∑
s+r=n+1

∑
1≤j≤s(−1)ϵsfs(a1, ..., aj−1, mV

r (aj , ..., aj+r−1), aj+r, ..., an).
Here ϵs = r

∑
1≤p≤j−1 deg(ap) + j − 1 + r(s − j), γi =

∑
1≤p≤i−1(i − p)(lp −

lp−1−1)+
∑

1≤p≤i−1 ν(lp)
∑

lp−1+1≤q≤lp
deg(aq), where we use the notation ν(lp) =∑

p+1≤m≤i(1− lm + lm−1), and set l0 = 0.

Remark 3.1.6. All the above definitions and results are valid for Z/2-graded
A∞-algebras as well. In this case we consider formal manifolds in the category
V ectZ/2

k of Z/2-graded vector spaces. We will use the correspodning results without
further comments. In this case one denotes by ΠA the Z/2-graded vector space
A[1].

3.2. Minimal models of A∞-algebras. One can do simple differential ge-
ometry in the symmetric monoidal category of non-commutative formal pointed
dg-manifolds. New phenomenon is the possibility to define some structures up to
a quasi-isomorphism.

Definition 3.2.1. Let f : (X, dX , x0) → (Y, dY , y0) be a morphism of non-
commutative formal pointed dg-manifolds. We say that f is a quasi-isomorphism
if the induced morphism of the tangent complexes f1 : (Tx0X, d(1)

X ) → (Ty0Y, d(1)
Y )

is a quasi-isomorphism. We will use the same terminology for the corresponding
A∞-algebras.

Definition 3.2.2. An A∞-algebra A (or the corresponding non-commutative
formal pointed dg-manifold) is called minimal if m1 = 0. It is called contractible if
mn = 0 for all n ≥ 2 and H•(A, m1) = 0.

The notion of minimality is coordinate independent, while the notion of con-
tractibility is not.

It is easy to prove that any A∞-algebra A has a minimal model MA, i.e. MA is
minimal and there is a quasi-isomorphism MA → A (the proof is similar to the one
in Chapter 3. The minimal model is unique up to an A∞-isomorphism. We will use
the same terminology for non-commutative formal pointed dg-manifolds. In geo-
metric language a non-commutative formal pointed dg-manifold X is isomorphic to
a categorical product (i.e. corresponding to the completed free product of algebras
of functions) Xm ×Xlc, where Xm is minimal and Xlc is linear contractible. The
above-mentioned quasi-isomorphism corresponds to the projection X → Xm.
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The following result (homological inverse function theorem) can be easily de-
duced from the above product decomposition.

Proposition 3.2.3. If f : A→ B is a quasi-isomorphism of A∞-algebras then
there is a (non-canonical) quasi-isomorphism g : B → A such that fg and gf induce
identity maps on zero cohomologies H0(B) and H0(A) respectively.

3.3. A∞-algebra structure on a subcomplex. Let (A, mn), n ≥ 1 be a
non-unital A∞-algebra, Π : A → A be an idempotent which commutes with the
differential d = m1. In other words, Π is a linear map of degree zero such that
dΠ = Πd, Π2 = Π. Assume that we are given an homotopy H : A → A[−1],
1−Π = dH +Hd where 1 denotes the identity morphism. Let us denote the image
of Π by B. Then we have an embedding i : B → A and a projection p : A → B,
such that Π = i ◦ p.

Let us introduce a sequence of linear operations mB
n : B⊗n → B[2 − n] in the

following way:
a) mB

1 := dB = p ◦m1 ◦ i;
b) mB

2 = p ◦m2 ◦ (i⊗ i);
c) mB

n =
∑

T ±mn,T , n ≥ 3.
Here the summation is taken over all oriented planar trees T with n + 1 tails

vertices (including the root vertex), such that the (oriented) valency |v| (the number
of ingoing edges) of every internal vertex of T is at least 2. In order to describe
the linear map mn,T : B⊗n → B[2−n] we need to make some preparations. Let us
consider another tree T̄ which is obtained from T by the insertion of a new vertex
into every internal edge. As a result, there will be two types of internal vertices in
T̄ : the “old” vertices, which coincide with the internal vertices of T , and the “new”
ones, which can be thought geometrically as the midpoints of the internal edges of
T .

To every tail vertex of T̄ we assign the embedding i. To every “old” vertex v
we assign mk with k = |v|. To every “new” vertex we assign the homotopy operator
H . To the root we assign the projector p. Then moving along the tree down to the
root one reads off the map mn,T as the composition of maps assigned to vertices of
T̄ . Here is an example of T and T̄ :
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Proposition 3.3.1. The linear map mB
1 defines a differential in B.

Proof. Clear. !

Theorem 3.3.2. The sequence mB
n , n ≥ 1 gives rise to a structure of an A∞-

algebra on B.

Sketch of the proof. The proof is quite straightforward, so we just briefly show
main steps of computations.

First, one observes that p and i are homomorphisms of complexes. In order
to prove the theorem we will replace for a given n ≥ 2 each summand mn,T by a
different one, and then compute the result in two different ways. Let us consider a
collection of trees {T̄e}e∈E(T̄ ) such that T̄e is obtained from T̄ in the following way:

a) we split the edge e into two edges by inserting a new vertex we inside e;
b) the remaining part of T̄ is unchanged.
We assign d = m1 to the vertex we edge, and keep all other assignments

untouched. In this way we obtain a map mn,T̄e
: B⊗n → B[3− n].

Let us consider the following sum:

m̂B
n =

∑

T

∑

e∈E(T̄ )

±mn,T̄e
.

VPISAT ZNAKI?
We can compute it in two different ways: using the relation 1−Π = dH + Hd,

and using the formulas for d(mj), j ≥ 2 given by the A∞-structure on A. The case
of the relation 1−Π = dH + Hd =: d(H) gives

m̂B
n = d(mB

n ) −mB,Π
n + mB,1

n

where mB,Π
n is defined analogously to mB

n , with the only difference that we assign
to a new vertex operator Π instead of H for some edge e ∈ Ei(T ). Similarly, the
summand mB,1

n is defined if we assign to a new vertex operator 1 = idA instead
of H . Formulas for d(mj) are quadratic expressions in ml, l < j. This gives us
another identity

m̂B
n = mB,1

n
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Thus we have d(mB
n ) = mB,Π

n , and it is exactly the A∞-constraint for the collection
(mB

n )n≥1. !
Moreover, using similar technique, one can prove the following result.

Proposition 3.3.3. There is a canonical A∞-morphism g : B → A, which
defines a quasi-isomorphism of A∞-algebras.

For the convenience fo the reader we give an explicit formula for a canonical
choice of g. The operator g1 : B → A is defined as the inclusion i. For n ≥ 2 we
define gn as the sum of terms gn,T over all planar trees T with n + 1 tails. Each
term gn,T is similar to the term mn,T defined above, the only difference is that we
insert operator H instead of p into the root vertex.

One can also construct an explicit A∞-quasi-isomorphism A→ B.

3.4. Centralizer of an A∞-morphism. Let A and B be two A∞-algebras,
and (X, dX , x0) and (Y, dY , y0) be the corresponding non-commutative formal pointed
dg-manifolds. Let f : A→ B be a morphism of A∞-algebras. Then the correspond-
ing k-point f ∈ Maps(Spc(A), Spc(B)) gives rise to the formal pointed manifold
Uf = M̂aps(X, Y )f (completion at the point f). Functoriality of the construction
of Maps(X, Y ) gives rise to a homomorphism of graded Lie algebras of vector fields
V ect(X) ⊕ V ect(Y )→ V ect(Maps(X, Y )). Since [dX , dY ] = 0 on X ⊗ Y , we have
a well-defined homological vector field dZ on Z = Maps(X, Y ). It corresponds to
dX ⊗1Y −1X ⊗dY under the above homomorphism. It is easy to see that dZ|f = 0
and in fact morphisms f : A→ B of A∞-algebras are exactly zeros of dZ. We are
going to describe below the A∞-algebra Centr(f) (centralizer of f) which corre-
sponds to the formal neighborhood Uf of the point f ∈Maps(X, Y ). We can write
(see Section 2.3 for the notation)

cj,M = c0
j,M + rj,M ,

where c0
j,M ∈ k and rj,M are formal non-commutative coordinates in the neigh-

borhood of f . Then the A∞-algebra Centr(f) has a basis (rj,M)j,M and the A∞-
structure is defined by the restriction of the homological vector dZ to Uf .

As a Z-graded vector space Centr(f) =
∏

n≥0 HomV ectZk
(A⊗n, B)[−n]. Let

φ1, ..., φn ∈ Centr(f), and a1, ..., aN ∈ A. Then we have mn(φ1, ..., φn)(a1, ..., aN) =
I + R. Here I corresponds to the term = 1X ⊗ dY and is given by the following
expression
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Similarly R corresponds to the term dX ⊗ 1Y and is described by the following
picture

R= Σ

a 1
a N

e

Am j
.

edges e,
trees T

root

+

φ 1

−+

Comments on the figure describing I.
1) We partition a sequence (a1, ..., aN) into l ≥ n non-empty subsequences.
2) We mark n of these subsequences counting from the left (the set can be

empty).
3) We apply multilinear map φi, 1 ≤ i ≤ n to the ith marked group of elements

al.
4) We apply Taylor coefficients of f to the remaining subsequences.
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Notice that the term R appear only for m1 (i.e. n = 1). For all subsequences
we have n ≥ 1.

From geometric point of view the term I corresponds to the vector field dY ,
while the term R corresponds to the vector field dX .

Proposition 3.4.1. Let dCentr(f) be the derivation corresponding to the image
of dX ⊕ dY in Maps(X, Y ).

One has [dCentr(f), dCentr(f)] = 0.

Proof. Clear. !

Remark 3.4.2. The A∞-algebra Centr(f) and its generalization to the case
of A∞-categories discussed in the second volume give geometric description of the
notion of natural transformaion between A∞-functors.

4. Non-commutative dg-line L and weak unit

4.1. Main definition.

Definition 4.1.1. An A∞-algebra is called unital (or strictly unital) if there ex-
ists an element 1 ∈ V of degree zero, such that m2(1, v) = m2(v, 1) and mn(v1, ..., 1, ..., vn) =
0 for all n ̸= 2 and v, v1, ..., vn ∈ V . It is called weakly unital (or homologically
unital) if the graded associative unital algebra H•(V ) has a unit 1 ∈ H0(V ).

The notion of strict unit depends on a choice of affine coordinates on Spc(T (V )),
while the notion of weak unit is “coordinate free”. Moreover, one can show that
a weakly unital A∞-algebra becomes strictly unital after an appropriate change of
coordinates.

The category of unital or weakly unital A∞-algebras are defined in the natural
way by the requirement that morphisms preserve the unit (or weak unit) structure.

In this section we are going to discuss a non-commutative dg-version of the
odd 1-dimensional supervector space A0|1 and its relationship to weakly unital A∞-
algebras. The results are valid for both Z-graded and Z/2-graded A∞-algebras.

Definition 4.1.2. Non-commutative formal dg-line L is a non-commutative
formal pointed dg-manifold corresponding to the one-dimensional A∞-algebra A ≃
k such that m2 = id, mn ̸=2 = 0.

The algebra of functions O(L) is isomorphic to the topological algebra of formal
series k⟨⟨ξ⟩⟩, where deg ξ = 1. The differential is given by ∂(ξ) = ξ2.

4.2. Adding a weak unit. Let (X, dX , x0) be a non-commutative formal
pointed dg-manifold correspodning to a non-unital A∞-algebra A. We would like
to describe geometrically the procedure of adding a weak unit to A.

Let us consider the non-commutative formal pointed graded manifold X1 =
L ×X corresponding to the free product of the coalgebras BL ∗ BX . Clearly one
can lift vector fields dX and dL := ∂/∂ ξ to X1.

Lemma 4.2.1. The vector field

d := dX1 = dX + ad(ξ)− ξ2∂/∂ ξ

satisfies the condition [d, d] = 0.
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Proof. Straightforward check. !
It follows from the formulas given in the proof that ξ appears in the expansion

of dX in quadratic expressions only. Let A1 be an A∞-algebras corresponding to
X1 and 1 ∈ TptX1 = A1[1] be the element of A1[1] dual to ξ (it corresponds to the
tangent vector ∂/∂ ξ). Thus we see that mA1

2 (1, a) = mA1
2 (a, 1) = a, mA1

2 (1, 1) = 1
for any a ∈ A and mA1

n (a1, ..., 1, ..., an) = 0 for all n ≥ 2, a1, ..., an ∈ A. This proves
the following result.

Proposition 4.2.2. The A∞-algebra A1 has a strict unit.

Notice that we have a canonical morphism of non-commutative formal pointed
dg-manifolds e : X → X1 such that e∗|X = id, e∗(ξ) = 0.

Definition 4.2.3. Weak unit in X is given by a morphism of non-commutative
formal pointed dg-manifolds p : X1 → X such that p ◦ e = id.

It follows from the definition that if X has a weak unit then the associative
algebra H•(A, mA

1 ) is unital. Hence our geometric definition agrees with the pure
algebraic one (explicit algebraic description of the notion of weak unit can be found
e.g. in [FOOO], Section 20).

5. Modules and bimodules

5.1. Modules and vector bundles. Recall that a topological vector space is
called linearly compact if it is a projective limit of finite-dimensional vector spaces.
The duality functor V )→ V ∗ establishes an anti-equivalence between the category
of vector spaces (equipped with the discrete topology) and the category of linearly
compact vector spaces. All that can be extended in the obvious way to the category
of graded vector spaces.

Let X be a non-commutative thin scheme in V ectZk .

Definition 5.1.1. Linearly compact vector bundle E over X is given by a
linearly compact topologically free O(X)-module Γ(E), where O(X) is the algebra
of function on X. Module Γ(E) is called the module of sections of the linearly
compact vector bundle E .

Suppose that (X, x0) is formal graded manifold. The fiber of E over x0 is given
by the quotient space Ex0 = Γ(E)/mx0Γ(E) where mx0 ⊂ O(X) is the 2-sided
maximal ideal of functions vanishing at x0, and the bar means the closure.

Definition 5.1.2. A dg-vector bundle over a formal pointed dg-manifold (X, dX , x0)
is given by a linearly compact vector bundle E over (X, x0) such that the corre-
sponding module Γ(E) carries a differential dE : Γ(E) → Γ(E)[1], d2

E = 0 so that
(Γ(E), dE) becomes a dg-module over the dg-algebra (O(X), dX) and dE vanishes
on Ex0 .

Definition 5.1.3. Let A be a non-unital A∞-algebra. A left A-module M is
given by a dg-bundle E over the formal pointed dg-manifold X = Spc(T (A[1]))
together with an isomorphism of vector bundles Γ(E) ≃ O(X)⊗̂M∗ called a trivi-
alization of E .

Passing to dual spaces we obtain the following algebraic definition.
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Definition 5.1.4. Let A be an A∞-algebra and M be a Z-graded vector space.
A structure of a left A∞-module on M over A (or simply a structure of a left A-
module on M) is given by a differential dM of degree +1 on T (A[1]) ⊗M which
makes it into a dg-comodule over the dg-coalgebra T (A[1]).

The notion of right A∞-module is similar. Right A-module is the same as left
Aop-module. Here Aop is the opposite A∞-algebra, which coincides with A as a Z-
graded vector space, and for the higher multiplications one has: mop

n (a1, ..., an) =
(−1)n(n−1)/2mn(an, ..., a1). The A∞-algebra A carries the natural structures of the
left and right A-modules. If we simply say “A-module” it will always mean “left
A-module”.

Taking the Taylor series of dM we obtain a collection of k-linear maps (higher
action morphisms) for any n ≥ 1

mM
n : A⊗(n−1) ⊗M →M [2− n],

satisfying the compatibility conditions which can be written in exactly the same
form as compatibility conditions for the higher products mA

n . All those condi-
tions can be derived from just one property that the cofree T+(A[1])-comodule
T+(A[1], M) = ⊕n≥0A[1]⊗n ⊗M carries a derivation mM = (mM

n )n≥0 such that
[mM , mM ] = 0. In particular (M, mM

1 ) is a complex of vector spaces.

Definition 5.1.5. Let A be a weakly unital A∞-algebra. An A-module M is
called weakly unital if the cohomology H•(M, mM

1 ) is a unital H•(A)-module.

It is easy to see that left A∞-modules over A form a dg-category A−mod with
morphisms being homomorphisms of the corresponding comodules. As a graded
vector space

HomA−mod(M, N) = ⊕n≥0HomV ectZk
(A[1]⊗n⊗M, N).

It easy to see that HomA−mod(M, N) is a complex.
If M is a right A-module and N is a left A-module then one has a naturally

defined structure of a complex on M⊗AN := ⊕n≥0M⊗A[1]⊗n⊗N . The differential
is given by the formula:

d(x⊗ a1 ⊗ ...⊗ an ⊗ y) =
∑

±mM
i (x⊗ a1 ⊗ ...⊗ ai) ⊗ ai+1 ⊗ ...⊗ an ⊗ y)+

∑
±x⊗ a1 ⊗ ...⊗ ai−1 ⊗mA

k (ai ⊗ ...⊗ ai+k−1) ⊗ ai+k ⊗ ...⊗ an ⊗ y+
∑

±x⊗ a1 ⊗ ...⊗ ai−1 ⊗mN
j (ai ⊗ ...⊗ an ⊗ y).

We call this complex the derived tensor product of M and N .
For any A∞-algebras A and B we define an A − B-bimodule as a Z-graded

vector space M together with linear maps

cM
n1,n2

: A[1]⊗n1 ⊗M ⊗B[1]⊗n2 →M [1]

satisfying the natural compatibility conditions. If X and Y are formal pointed
dg-manifolds corresponding to A and B respectively then an A − B-bimodule is
the same as a dg-bundle E over X ⊗Y equipped with a homological vector field dE
which is a lift of the vector field dX ⊗ 1 + 1⊗ dY .

Example 5.1.6. Let A = B = M . We define a structure of diagonal bimodule
on A by setting cA

n1,n2
= mA

n1+n2+1 .
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Proposition 5.1.7. 1) To have a structure of an A∞-module on the complex
M is the same as to have a homomorphism of A∞-algebras φ : A → EndK(M),
where K is a category of complexes of k-vector spaces.

2) To have a structure of an A − B-bimodule on a graded vector space M is
the same as to have a structure of left A-module on M and to have a morphism of
A∞-algebras ϕA,B : Bop → HomA−mod(M, M).

Let A be an A∞-algebra, M be an A-module and ϕA,A : Aop → HomA−mod(M, M)
be the corresponding morphism of A∞-algebras. Then the dg-algebra Centr(ϕ) is
isomorphic to the dg-algebra HomA−mod(M, M).

If M =A MB is an A − B-bimodule and N =B NC is a B − C-bimodule then
the complex AMB ⊗B BNC carries an A − C-bimodule structure. It is called the
tensor product of M and N .

Let f : X → Y be a homomorphism of formal pointed dg-manifolds corre-
sponding to a homomorphism of A∞-algebras A→ B. Recall that in Section 4 we
constructed the formal neighborhood Uf of f in Maps(X, Y ) and the A∞-algebra
Centr(f). On the other hand, we have an A−mod − B bimodule structure on B
induced by f . Let us denote this bimodule by M(f). We leave the proof of the
following result as an exercise to the reader. It will not be used in the paper.

Proposition 5.1.8. If B is weakly unital then the dg-algebra EndA−mod−B(M(f))
is quasi-isomorphic to Centr(f).

A∞-bimodules will be used later in the study of homologically smooth A∞-
algebras. In the subsequent paper devoted to A∞-categories we will explain that
bimodules give rise to A∞-functors between the corresponding categories of mod-
ules. Tensor product of bimodules corresponds to the composition of A∞-functors.

5.2. On the tensor product of A∞-algebras. The tensor product of two
dg-algebras A1 and A2 is a dg-algebra. For A∞-algebras there is no canonical
simple formula for the A∞-structure on A1 ⊗k A2 which generalizes the one in the
dg-algebras case. Some complicated formulas were proposed in [SU2000]. They are
not symmetric with respect to the permutation (A1, A2) )→ (A2, A1). We will give
below the definition of the dg-algebra which is quasi-isomorphic to the one from
[SU2000] in the case when both A1 and A2 are weakly unital. Namely, we define
the A∞-tensor product

A1“⊗ ”A2 = EndA1−mod−A2 (A1 ⊗ A2).

Notice that it is a unital dg-algebra. One can show that the dg-category A−mod−B
is equivalent (as a dg-category) to A1“⊗ ”Aop

2 −mod.

6. Elliptic spaces

There are interesting examples of A∞-algebras (in fact dg-algebras) and mod-
ules over them coming from geometry of elliptic spaces. Elliptic spaces (see below)
fom a dg-category. Although A∞-categories is a subject of the second volume of
the book, the notion of elliptic space is independent of the general theory, so we
decided to discuss it here.
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6.1. Definition of an elliptic space. Let X be a connected smooth mani-
fold, W → X be a bundle of finite-dimensional Z-graded complex algebras with the
unit. Let A = Γ(X, W ). Assume that we are given a C-linear map D : A → A[1],
continuous in C∞-topology, such that D2 = 0, and D satisfies the Leibniz formula.
It follows that D is a first order differential operator on W .

Definition 6.1.1. We say that a triple (X, A, D) defines an elliptic space if
the corresponding complex is elliptic (equivalently, symbol σ(D) defines an acyclic
complex at each point of T ∗X \ X).

Let us consider a category A such that its objects are dg-modules over (A, D)
which are projective of finite rank as A-modules.

One can prove the following result.

Lemma 6.1.2. Let X be compact, and N = (X, A, D) be an elliptic space. Then
for any two objects E, F of A one has rk H∗(Hom(E, F )) <∞.

Using the lemma one can construct a triangulated category BunN (vector bun-
dles over an elliptic space) in the following way. Objects of BunN are complex
Z-graded vector bundles E → X such that Γ(X, A⊗E) carries a structure of a dg-
algebra over Γ(X, A). We define Hom(E, F ) to be the space H0(Γ(X, A⊗E∗⊗F ).
It follows from the lemma that this space is finite-dimensional.

Remark 6.1.3. One can consider vector bundles over an elliptic spaces as
objects which are glued from local data, similarly to ordinary vector bundles.

For two elliptic space N1 and N2 one can consider functors F : BunN1 →
BunN2 . They are given by elements from BunN1×N2 .

We are going to give few examples of elliptic spaces. They are of geometric
origin. In all the cases A = Γ(X,

∧∗(T ∗
X ⊗C))/I, where I is a homogeneous ideal,

which is invariant under the de Rham differential. We leave as an exercise to the
reader to check that in all the examples one gets an elliptic space.

6.2. de Rham complex. Let us take I = 0. Then A = Ω(X). This is the
dg-algebra of de Rham differential forms. The whole category of dg-modules is
difficult to describe. Some objects are of the form Ω(X) ⊗ Γ(X, E), where E is a
vector bundle. Then E carries a flat connection.

This example admits a generalization.

Definition 6.2.1. Let E = ⊕i∈ZEi be a Z-graded vector bundle over X. A
superconnection on E is given by a linear map ∇ : Γ(X, E)→ Γ(X, E⊗T ∗

X), which
satisfies the graded Leibniz identity ∇(as) = a∇(s) + (−1)|a||s|D(a)s.

One defines the curvature curv(∇) ∈ Γ(X, End(
∧∗

X ⊗E))2 in the natural way
(here the superscript denotes the grading).

Then a graded vector bundle E, equipped with a superconnection ∇ such that
curv(∇) = 0 defines a dg-module over Ω(X).

Remark 6.2.2. Although the category of vector bundles with flat connections
is equivalent to the category of modules over the group algebra of π1(X) (the
fundamental group of X), it is not true that the category of projective dg-modules
over Ω(X) is equivalent to the derived category Db(C[π1(X)] − mod). In fact
Hom(M, N) ≃ H∗(Hom(M, N)) in the former category, and

Hom(M, N) ≃ H∗(π1(X), Hom(M, N)) in the latter category. One can guess,
that the categories are equivalent for K(π, 1)-spaces.
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6.3. Dolbeault complex. Assume that X admits a complex structure. Then
we have: TX ⊗ C = T 1,0

X ⊕ T 0,1
X . Let I be an ideal generated by (T 1,0

X )∗. Then
A = Ω0,∗(X) is the dg-algebra of Dolbeault differential forms.

6.4. Foliations with transversal complex structures. Assume that X
carries a foliation F which has a transversal complex structure. This means that
for any x ∈ X, sufficiently small U ⊂ X which contains x, the space U/F has
a complex structure, and it is compatible with the restriction to an open subset.
Then one has a decomposition TX/F ⊗C = T 0,1 ⊕ T 1,0. It follows that (T 1,0)∗ ⊂
(TX/F )∗ ⊗C ⊂ T ∗

X ⊗C. Then the ideal I is generated by (T 1,0)∗.
Let Y be a transversal complex manifold (if it exists). Then A = Ω0,∗(Y ) ⊗

Ω∗(F ), where Ω∗(F ) is a dg-algebra of differential forms along the leaves of F . This
example is a combination of the previous ones (de Rham and Dolbeault).

6.5. Lie groups. Let G be a Lie group, H be a Lie subgroup such that G/H
has a G-invariant complex structure. For example, one can take G = SL(n, R),
G/H = CPn−1 \ RPn−1. Let KH ⊂ H be a compact subgroup, Γ ⊂ G be a
cocompact discrete subgroup. It is clear that G/KH → G/H is a bundle with
transversal complex structure. The elliptic space we are interested in is given
by Γ\G/KH . There is a natural projection of this space to a (non-Hausdorff)
topological space Γ\G/H . This is an example of the foliation with a transversal
complex structure (it does not exist globally).

6.6. Conformal manifolds. Let X be an oriented 2n-dimensional manifolds
which carries a conformal structure. One introduces the Hodge operator ∗ acting
on smooth differential forms, so that ∗2 = (−1)2n = 1. Let Ωn,+(X) = {α ∈
Ωn(X)| ∗ α = α}. We define the graded ideal I such as follows: I = Ωn,+(X) ⊕
Ωn+1(X) ⊕Ωn+2(X) ⊕ ...⊕ Ω2n(X).

In particular, taking n = 2 one gets autodual connections on a 4-dimensional
manifold with conformal structure. Then they give rise to dg-modules over the
corresponding dg-algebra A = Γ(X,

∧∗(T ∗
X ⊗C))/I).

6.7. 7-dimensional manifolds. Let X be a 7-dimensional smooth manifold.
Assume that there exists ω ∈ Ω3(X) such that dω = 0.

It is known that the natural action of GL(7, R) in
∧3(R7) has an open orbit,

and the real points of the stabilizer of each point is isomorphic to the compact form
of the exceptional group G2. More precisely, if S is the stabilizer then S ≃ G2×µ3,
thus S(R) ≃ G2(R). This orbit is also characterized by the property that for
any non-zero v ∈ R7 the 2-form ω(v, x, y) is a symplectic form in x, y. Using the
fact that S(R) ≃ G2(R) one can prove that the structure group of the tangent
bundle to X can be reduced from GL(7, R) to G2 (i.e. X has an exceptional
holonomy G2). Since G2 is compact, X carries a Riemannian metric. The ideal
I is defined such as follows. It contains all

∧m T ∗
X such that m ≥ 4. If m = 2

one has a decomposition of
∧2 T ∗

X into the sum V7 ⊕ V14 of the 7-dimensional and
14-dimensional representations of G2. We require that V14 belongs to I. Similarly,∧3 T ∗

X is a sum V1⊕W , where V1 is a 1-dimensional representation of G2 generated
by ω, and W is the orthogonal representation. We require that W ⊂ I. Using the
fact that ω is a closed form, one can prove that I is invariant under the de Rham
differential.
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6.8. Hyperkahler manifolds. Let X be a hyperkahler manifold, ωI,ωJ ,ωK

be the corresponding symplectic forms. Then I is generated by these forms.

6.9. Calabi-Yau manifolds. Let X be a Calabi-Yau manifold, ω ∈ Ω1,1(X)
be the Kähler form, Ωvol ∈ Ωn,0(X) be a non-degenerate holomorphic form. Then
I is generated by ω, Ωvol, Ω0,m(X), m ≥ 2.

7. Yoneda lemma

7.1. Explicit formulas for the product and differential on Centr(f).
Let A be an A∞-algebra, and B = EndK(A) be the dg-algebra of endomorphisms
of A in the category K of complexes of k-vector spaces. Let f = fA : A → B be
the natural A∞-morphism coming from the left action of A on itself. Notice that
B is always a unital dg-algebra, while A can be non-unital. The aim of this Section
is to discuss the relationship between A and Centr(fA). This is a simplest case of
the A∞-version of Yoneda lemma.

As a graded vector space Centr(fA) is isomorphic to
∏

n≥0 Hom(A⊗(n+1), A)[−n].
Let us describe the product in Centr(f) for f = fA. Let φ,ψ be two homoge-

neous elements of Centr(f). Then

(φ · ψ)(a1, a2, . . . , aN) = ±φ(a1, . . . , ap−1,ψ(ap, . . . , aN)).

Here ψ acts on the last group of variables ap, . . . , aN , and we use the Koszul sign
convention for A∞-algebras in order to determine the sign.

Similarly one has the following formula for the differential (see Section 3.4):

(dφ)(a1, . . . , aN) =
∑

±φ(a1, . . . , as, mi(as+1, . . . , as+i), as+i+1 . . . , aN)+
∑

±mi(a1, . . . , as−1, φ(as, . . . , aj, ..., aN)).

7.2. Yoneda homomorphism. If M is an A − B-bimodule then one has a
homomorphism of A∞-algebras Bop → Centr(φA,M ) (see Section 5). We would like
to apply this general observation in the case of the diagonal bimodule structure on
A. Explicitly, we have the A∞-morphism Aop → Endmod−A(A) or, equivalently, the
collection of maps A⊗m → Hom(A⊗n, A). By conjugation it gives us a collection
of maps

A⊗m ⊗Hom(A⊗n, A)→ Hom(A⊗(m+n), A).
In this way we get a natural A∞-morphism Y o : Aop → Centr(fA) called the
Yoneda homomorphism.

Proposition 7.2.1. The A∞-algebra A is weakly unital if and only if the
Yoneda homomorphism is a quasi-isomorphism.

Proof. Since Centr(fA) is weakly unital, then A must be weakly unital as long
as Yoneda morphism is a quasi-isomorphism.

Let us prove the opposite statement. We assume that A is weakly unital. It
suffices to prove that the cone Cone(Y o) of the Yoneda homomorphism has trivial
cohomology. Thus we need to prove that the cone of the morphism of complexes

(Aop, m1)→ (⊕n≥1Hom(A⊗n, A), mCentr(fA)
1 ).

is contractible. In order to see this, one considers the extended complex A ⊕
Centr(fA). It has natural filtration arising from the tensor powers of A. The
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corresponding spectral sequence collapses, which gives an explicit homotopy of the
extended complex to the trivial one. This implies the desired quasi-isomorphism of
H0(Aop) and H0(Centr(fA)). !

Remark 7.2.2. It look like the construction of Centr(fA) is the first known
canonical construction of a unital dg-algebra quasi-isomorphic to a given A∞-
algebra (canonical but not functorial). This is true even in the case of strictly
unital A∞-algebras. Standard construction via bar and cobar resolutions gives a
non-unital dg-algebra.

8. Hochschild cochain and chain complexes of an A∞-algebra

8.1. Hochschild cochain complex. We change the notation for the homo-
logical vector field to Q, since the letter d will be used for the differential. Let
((X, pt), Q) be a non-commutative formal pointed dg-manifold corresponding to a
non-unital A∞-algebra A, and V ect(X) the graded Lie algebra of vector fields on
X (i.e. continuous derivations of O(X)).

We denote by C•(A, A) := C•(X, X) := V ect(X)[−1] the Hochschild cochain
complex of A. As a Z-graded vector space

C•(A, A) =
∏

n≥0

HomC(A[1]⊗n, A).

The differential on C•(A, A) is given by [Q, •]. Algebraically, C•(A, A)[1] is a DGLA
of derivations of the coalgebra T (A[1]) (see Section 3).

Theorem 8.1.1. Let X be a non-commutative formal pointed dg-manifold and
C•(X, X) be the Hochschild cochain complex. Then one has the following quasi-
isomorphism of complexes

C•(X, X)[1] ≃ TidX (Maps(X, X)),

where TidX denotes the tangent complex at the identity map.

Proof. Notice that Maps(Spec(k[ε]/(ε2)) ⊗ X, X) is the non-commutative dg
ind-manifold of vector fields on X. The tangent space TidX from the theorem
can be identified with the set of such f ∈ Maps(Spec(k[ε]/(ε2)) ⊗ X, X) that
f |{pt}⊗X = idX . On the other hand the DGLA C•(X, X)[1] is the DGLA of vector
fields on X. The theorem follows. !

The Hochschild complex admits a couple of other interpretations. We leave to
the reader to check the equivalence of all of them. First, C•(A, A) ≃ Centr(idA).
Finally, for a weakly unital A one has C•(A, A) ≃ HomA−mod−A(A, A). Both are
quasi-isomorphisms of complexes.

Remark 8.1.2. Interpretation of C•(A, A)[1] as vector fields gives a DGLA
structure on this space. It is a Lie algebra of the “commutative” formal group in
V ectZk , which is an abelianization of the non-commutative formal group of inner (in
the sense of tensor categories) automorphisms Aut(X) ⊂Maps(X, X). Because of
this non-commutative structure underlying the Hochschild cochain complex, it is
natural to expect that C•(A, A)[1] carries more structures than just DGLA. Indeed,
Deligne’s conjecture claims that the DGLA algebra structure on C•(A, A)[1] can
be extended to a structure of an algebra over the operad of singular chains of the
topological operad of little discs. Graded Lie algebra structure can be recovered
from cells of highest dimension in the cell decomposition of the topological operad.
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8.2. Hochschild chain complex. In this subsection we are going to con-
struct a complex of k-vector spaces which is dual to the Hochschild chain complex
of a non-unital A∞-algebra.

8.2.1. Cyclic differential forms of order zero. Let (X, pt) be a non-commutative
formal pointed manifold over k, and O(X) the algebra of functions on X. For
simplicity we will assume that X is finite-dimensional, i.e. dimk TptX < ∞. If
B = BX is a counital coalgebra corresponding to X (coalgebra of distributions on
X) then O(X) ≃ B∗. Let us choose affine coordinates x1, x2, ..., xn at the marked
point pt. Then we have an isomorphism of O(X) with the topological algebra
k⟨⟨x1, ..., xn⟩⟩ of formal series in free graded variables x1, ..., xn.

We define the space of cyclic differential degree zero forms on X as

Ω0
cycl(X) = O(X)/[O(X),O(X)]top,

where [O(X),O(X)]top denotes the topological commutator (the closure of the al-
gebraic commutator in the adic topology of the space of non-commutative formal
power series).

Equivalently, we can start with the graded k-vector space Ω0
cycl,dual(X) defined

as the kernel of the composition B → B ⊗ B →
∧2 B (first map is the coproduct

∆ : B → B ⊗ B, while the second one is the natural projection to the skew-
symmetric tensors). Then Ω0

cycl(X) ≃ (Ω0
cycl,dual(X))∗ (dual vector space).

8.2.2. Higher order cyclic differential forms. We start with the definition of
the odd tangent bundle T [1]X. This is the dg-analog of the total space of the
tangent supervector bundle with the changed parity of fibers. It is more conve-
nient to describe this formal manifold in terms of algebras rather than coalge-
bras. Namely, the algebra of functions O(T [1]X) is a unital topological algebra
isomorphic to the algebra of formal power series k⟨⟨xi, dxi⟩⟩, 1 ≤ i ≤ n, where
deg dxi = deg xi+1 (we do not impose any commutativity relations between gener-
ators). More invariant description involves the odd line. Namely, let t1 := Spc(B1),
where (B1)∗ = k⟨⟨ξ⟩⟩/(ξ2), deg ξ = +1. Then we define T [1]X as the formal neigh-
borhood in Maps(t1, X) of the point p which is the composition of pt with the
trivial map of t1 into the point Spc(k).

Definition 8.2.1. a) The graded vector space

O(T [1]X) = Ω•(X) =
∏

m≥0

Ωm(X)

is called the space of de Rham differential forms on X.
b) The graded space

Ω0
cycl(T [1]X) =

∏

m≥0

Ωm
cycl(X)

is called the space of cyclic differential forms on X.

In coordinate description the grading is given by the total number of dxi.
Clearly each space Ωn

cycl(X), n ≥ 0 is dual to some vector space Ωn
cycl,dual(X)

equipped with athe discrete topology (since this is true for Ω0(T [1]X)).
The de Rham differential on Ω•(X) corresponds to the vector field ∂/∂ξ (see

description which uses the odd line, it is the same variable ξ). Since Ω0
cycl is given

by the natural (functorial) construction, the de Rham differential descends to the
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subspace of cyclic differential forms. We will denote the former by dDR and the
latter by dcycl.

The space of cyclic 1-forms Ω1
cycl(X) is a (topological) span of expressions

x1x2...xl dxj, xi ∈ O(X). Equivalently, the space of cyclic 1-forms consists of ex-
pressions

∑
1≤i≤n fi(x1, ..., xn) dxi where fi ∈ k⟨⟨x1, ..., xn⟩⟩.

There is a map ϕ : Ω1
cycl(X) → O(X)red := O(X)/k, which is defined on Ω1(X)

by the formula adb )→ [a, b] (check that the induced map on the cyclic 1-forms is
well-defined). This map does not have an analog in the commutative case.

8.2.3. Non-commutative Cartan calculus. Let X be a formal graded manifold
over a field k. We denote by g := gX the graded Lie algebra of continuous linear
maps O(T [1]X)→ O(T [1]X) generated by de Rham differential d = dDR and con-
traction maps iξ , ξ ∈ V ect(X) which are defined by the formulas iξ(f) = 0, iξ(df) =
ξ(f) for all f ∈ O(T [1]X). Let us define the Lie derivative Lieξ = [d, iξ] (graded
commutator). Then one can easily check the usual formulas of the Cartan calculus

[d, d] = 0, Lieξ = [d, iξ], [d, Lieξ] = 0,

[Lieξ , iη] = i[ξ,η], [Lieξ, Lieη] = Lie[ξ,η] , [iξ, iη] = 0,

for any ξ, η ∈ V ect(X).
By naturality, the graded Lie algebra gX acts on the space Ω•

cycl(X) as well as
one the dual space (Ω•

cycl(X))∗.
8.2.4. Differential on the Hochschild chain complex. Let Q be a homological

vector field on (X, pt). Then A = TptX[−1] is a non-unital A∞-algebra.
We define the dual Hochschild chain complex (C•(A, A))∗ as Ω1

cycl(X)[2] with
the differential LieQ. Our terminology is explained by the observation that Ω1

cycl(X)[2]
is dual to the conventional Hochschild chain complex

C•(A, A) = ⊕n≥0(A[1])⊗n ⊗A.

Notice that we use the cohomological grading on C•(A, A), i.e. chains of de-
gree n in conventional (homological) grading have degree −n in our grading. The
differential has degree +1.

In coordinates the isomorphism identifies an element fi(x1, ..., xn)⊗xi ∈ (A[1]⊗n⊗
A)∗ with the homogeneous element fi(x1, ..., xn) dxi ∈ Ω1

cycl(X). Here xi ∈ (A[1])∗, 1 ≤
i ≤ n are affine coordinates.

The graded Lie algebra V ect(X) of vector fields of all degrees acts on any
functorially defined space, in particular, on all spaces Ωj(X), Ωj

cycl(X), etc. Then
we have a differential on Ωj

cycl(X) given by b = LieQ of degree +1. There is an
explicit formula for the differential b on C•(A, A) (cf. [T]):

b(a0 ⊗ ...⊗ an) =
∑

±a0 ⊗ ...⊗ml(ai ⊗ ...⊗ aj)⊗ ...⊗ an

+
∑

±ml(aj ⊗ ...⊗ an ⊗ a0 ⊗ ...⊗ ai) ⊗ ai+1 ⊗ ...⊗ aj−1.

It is convenient to depict a cyclic monomial a0 ⊗ ...⊗ an in the following way. We
draw a clockwise oriented circle with n + 1 points labeled from 0 to n such that
one point is marked We assign the elements a0, a1, ..., an to the points with the
corresponding labels, putting a0 at the marked point.
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a 0

a 1

a i

a n

.

Then we can write b = b1 + b2 where b1 is the sum (with appropriate signs) of
the expressions depicted below:

m lid

.

.
Similarly, b2 is the sum (with appropriate signs) of the expressions depicted

below:
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m lid

.

.
In both cases maps ml are applied to a consequitive cyclically ordered sequence

of elements of A assigned to the points on the top circle. The identity map is applied
to the remaining elements. Marked point on the top circle is the position of the
element of a0. Marked point on the bottom circle depicts the first tensor factor
of the corresponding summand of b. In both cases we start cyclic count of tensor
factors clockwise from the marked point.

8.3. The case of strictly unital A∞-algebras. Let A be a strictly unital
A∞-algebra. There is a reduced Hochschild chain complex

Cred
• (A, A) = ⊕n≥0A⊗ ((A/k · 1)[1])⊗n,

which is the quotient of C•(A, A). Similarly there is a reduced Hochschild cochain
complex

C•
red(A, A) =

∏

n≥0

HomC((A/k · 1)[1]⊗n, A),

which is a subcomplex of the Hochschild cochain complex C•(A, A).
Also, C•(A, A) carries also the “Connes’s differential ” B of degree −1 (called

sometimes “de Rham differential”) given by the formula (see [Co94])

B(a0 ⊗ ...⊗ an) =
∑

i

±1⊗ ai ⊗ ...⊗ an ⊗ a0 ⊗ ...⊗ ai−1, B
2 = 0, Bb + bB = 0.

Here is a graphical description of B (it will receive an explanation in the section
devoted to generalized Deligne’s conjecture)
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id id 1 id

.

.

.

a i
a n

Let u be an independent variable of degree +2. It follows that for a strictly
unital A∞-algebra A one has a differential b + uB of degree +1 on the graded
vector space C•(A, A)[[u]] which makes the latter into a complex called negative
cyclic complex. In fact b+uB is a differential on a smaller complex C•(A, A)[u]. In
the non-unital case one can use Cuntz-Quillen complex instead of a negative cyclic
complex (see next subsection).

8.4. Non-unital case: Cuntz-Quillen complex. In this subsection we are
going to present a formal dg-version of the mixed complex introduced by Cuntz
and Quillen (see [CQ95-1]). In the previous subsection we introduced the Connes
differential B in the case of strictly unital A∞-algebras. In the non-unital case
the construction has to be modified. Let X = A[1]form be the corresponding
non-commutative formal pointed dg-manifold. The algebra of functions O(X) ≃∏

n≥0(A[1]⊗n)∗ is a complex with the differential LieQ .

Proposition 8.4.1. If A is weakly unital then all non-zero cohomology of the
complex O(X) are trivial, and H0(O(X)) ≃ k.

Proof. Let us calculate the cohomology using the spectral sequence associated
with the filtration

∏
n≥n0

(A[1]⊗n)∗. The term E1 of the spectral sequence is iso-
morphic to the complex

∏
n≥0((H

•(A[1], m1))⊗n)∗ with the differential induced by
the multiplication mA

2 on H•(A, mA
1 ). By assumption H•(A, mA

1 ) is a unital al-
gebra, hence all the cohomology groups vanish except of the zeroth one, which is
isomorphic to k. This concludes the proof. !.

It follows from the above Proposition that the complex O(X)/k is acyclic. We
have the following two morphisms of complexes

dcycl : (O(X)/k · 1, LieQ)→ (Ω1
cycl(X), LieQ)

and
ϕ : (Ω1

cycl(X), LieQ)→ (O(X)/k · 1, LieQ).
Here dcycl and ϕwere introduced in the Section 8. We have: deg(dcycl) = +1, deg(ϕ) =
−1, dcycl ◦ ϕ = 0,ϕ ◦ dcycl = 0..
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Let us consider a modified Hochschild chain complex

Cmod
• (A, A) := (Ω1

cycl(X)[2])∗ ⊕ (O(X)/k · 1)∗

with the differential
b =

(
(LieQ)∗ ϕ∗

0 (LieQ)∗

)

Let
B =

(
0 0

d∗
cycl 0

)
be an endomorphism of Cmod

• (A, A) of degree −1. Then

B2 = 0. Let u be a formal variable of degree +2. We define modified negative
cyclic, periodic cyclic and cyclic chain complexes such as follows

CC−,mod
• (A) = (Cmod

• (A, A)[[u]], b+ uB),

CP mod
• (A) = (Cmod

• (A, A)((u)), b + uB),

CCmod
• (A) = (CP mod

• (A)/CC−,mod
• (A))[−2].

For unital dg-algebras these complexes are quasi-isomorphic to the standard
ones. If char k = 0 and A is weakly unital then CC−,mod

• (A) is quasi-isomorphic
to the complex (Ω0

cycl(X), LieQ)∗. Notice that the k[[u]]-module structure on the
cohomology H•((Ω0

cycl(X), LieQ)∗) is not visible from the definition.

9. Homologically smooth and compact A∞-algebras

From now on we will assume that all A∞-algebras are weakly unital unless we
say otherwise.

9.1. Homological smoothness. Let A be an A∞-algebra over k and E1, E2, ..., En

be a sequence of A-modules. Let us consider a sequence (E≤i)1≤i≤n of A-modules
together with exact triangles

Ei → E≤i → Ei+1 → Ei[1],

such that E≤1 = E1.
We will call E≤n an extension of the sequence E1, ..., En.
The reader also notices that the above definition can be given also for the

category of A −A-bimodules.

Definition 9.1.1. 1) A perfect A-module is the one which is quasi-isomorphic
to a direct summand of an extension of a sequence of modules each of which is
quasi-isomorphic to A[n], n ∈ Z.

2) A perfect A − A-bimodule is the one which is quasi-isomorphic to a direct
summand of an extension of a sequence consisting of bimodules each of which is
quasi-isomorphic to (A ⊗A)[n], n ∈ Z.

Perfect A-modules form a full subcategory PerfA of the dg-category A−mod.
Perfect A −A-bimodules form a full subcategory PerfA−mod−A of the category of
A− A-bimodules.1

1Sometimes PerfA is called a thick triangulated subcategory of A − mod generated by A.
Then it is denoted by ⟨A⟩. In the case of A−A-bimodules we have a thik triangulated subcategory
generated by A ⊗ A, which is denoted by ⟨A ⊗ A⟩.
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Definition 9.1.2. We say that an A∞-algebra A is homologically smooth if it
is a perfect A−A-bimodule (equivalently, A is a perfect module over the A∞-algebra
A“⊗ ”Aop).

Remark 9.1.3. An A−B-bimodule M gives rise to a dg-functor B−mod → A−
mod such that V )→M ⊗B V . The diagonal bimodule A corresponds to the identity
functor IdA−mod : A−mod→ A−mod. The notion of homological smoothness can
be generalized to the framework of A∞-categories. The corresponding notion of
saturated A∞-category can be spelled out entirely in terms of the identity functor.

Let us list few examples of homologically smooth A∞-algebras.

Example 9.1.4. a) Algebra of functions on a smooth affine scheme.
b) A = k[x1, ..., xn]q, which is the algebra of polynomials in variables xi, 1 ≤ i ≤

n subject to the relations xixj = qij xjxi, where qij ∈ k∗ satisfy the properties qii =
1, qijqji = 1. More generally, all quadratic Koszul algebras, which are deformations
of polynomial algebras are homologically smooth.

c) Algebras of regular functions on quantum groups (see [KorSo98]).
d) Free algebras k⟨x1, ..., xn⟩.
e) Finite-dimensional associative algebras of finite homological dimension.
f) If X is a smooth scheme over k then the bounded derived category Db(Perf(X))

of the category of perfect complexes (it is equivalent to Db(Coh(X))) has a gen-
erator P (see [BvB02]). Then the dg-algebra A = End(P ) (here we understand
endomorphisms in the “derived sense”, see [Ke06]) is a homologically smooth alge-
bra.

Let us introduce an A−A-bimodule A! = HomA−mod−A(A, A⊗A) (cf. [Gi2000]).
The structure of an A − A-bimodule is defined similarly to the case of associative
algebras.

Proposition 9.1.5. If A is homologically smooth then A! is a perfect A − A-
bimodule.

Proof. We observe that HomC−mod(C, C) is a dg-algebra for any A∞-algebra
C. The Yoneda embedding C → HomC−mod(C, C) is a quasi-isomorphism of A∞-
algebras. Let us apply this observation to C = A⊗Aop. Then using the A∞-algebra
A“ ⊗ ”Aop (see Section 5.2) we obtain a quasi-isomorphism of A − A-bimodules
HomA−mod−A(A ⊗ A, A⊗ A) ≃ A ⊗ A. By assumption A is quasi-isomorphic (as
an A∞-bimodule) to a direct summand in an extension of a sequence (A ⊗ A)[ni]
for ni ∈ Z. Hence HomA−mod−A(A ⊗ A, A ⊗ A) is quasi-isomorphic to a direct
summand in an extension of a sequence (A⊗A)[mi ] for mi ∈ Z. The result follows.
!

Definition 9.1.6. The bimodule A! is called the inverse dualizing bimodule.

The terminology is explained by an observation that if A = End(P ) where P is
a generator of of Perf(X) (see example 9.1.4f)) then the bimodule A! corresponds
to the functor F )→ F ⊗K−1

X [−dimX], where KX is the canonical class of X.2

2The inverse dualizing module was first mentioned in the paper by M. van den Bergh “Ex-
istence theorems for dualizing complexes over non-commutative graded and filtered rings”, J.
Algebra, 195:2, 1997, 662-679.
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Remark 9.1.7. In [ToVa05] the authors introduced a stronger notion of fibrant
dg-algebra. Informally it corresponds to “non-commutative homologically smooth
affine schemes of finite type”. In the compact case (see the next section) both
notions are equivalent.

9.2. Compact A∞-algebras.

Definition 9.2.1. We say that an A∞-algebra A is compact if the cohomology
H•(A, m1) is finite-dimensional.

Example 9.2.2. a) If dimkA <∞ then A is compact.
b) Let X/k be a proper scheme of finite type. According to [BvB02] there exists

a compact dg-algebra A such that PerfA is equivalent to Db(Coh(X)).
c) If Y ⊂ X is a proper subscheme (possibly singular) of a smooth scheme

X then the bounded derived category Db
Y (Perf(X)) of the category of perfect

complexes on X, which are supported on Y has a generator P such that A =
End(P ) is compact. In general it is not homologically smooth for Y ̸= X. More
generally, one can replace X by a formal smooth scheme containing Y , e.g. by
the formal neighborhood of Y in the ambient smooth scheme. In particular, for
Y = {pt} ⊂ X = A1 and the generator OY of Db(Perf(X)) the corresponding
graded algebra is isomorphic to k⟨ξ⟩/(ξ2), where deg ξ = 1.

Proposition 9.2.3. If A is compact and homologically smooth then the Hochschild
homology and cohomology of A are finite-dimensional.

Proof. a) Let us start with Hochschild cohomology. We have an isomorphism
of complexes C•(A, A) ≃ HomA−mod−A(A, A). Since A is homologically smooth
the latter complex is quasi-isomorphic to a direct summand of an extension of the
bimodule HomA−mod−A(A⊗A, A⊗A). The latter complex is quasi-isomorphic to
A ⊗ A (see the proof of the Proposition 9.1.5). Since A is compact, the complex
A ⊗ A has finite-dimensional cohomology. Therefore any perfect A − A-bimodule
enjoys the same property. We conclude that the Hochschild cohomology groups are
finite-dimensional vector spaces.

b) Let us consider the case of Hochschild homology. With any A−A-bimodule
E we associate a complex of vector spaces E♯ = ⊕n≥0A[1]⊗n ⊗ E (cf. [Gi2000]).
The differential on E♯ is given by the same formulas as the Hochschild differential
for C•(A, A) with the only change: we place an element e ∈ E instead of an element
of A at the marked vertex (see Section 8). Taking E = A with the structure of the
diagonal A − A-bimodule we obtain A♯ = C•(A, A). On the other hand, it is easy
to see that the complex (A ⊗A)♯ is quasi-isomorphic to (A, m1), since (A ⊗ A)♯ is
the quotient of the canonical free resolution (bar resolution) for A by a subcomplex
A. The construction of E♯ is functorial, hence A♯ is quasi-isomorphic to a direct
summand of an extension (in the category of complexes) of a shift of (A ⊗ A)♯,
because A is smooth. Since A♯ = C•(A, A) we see that the Hochschild homology
H•(A, A) is isomorphic to a direct summand of the cohomology of an extension of
a sequence of k-modules (A[ni], m1). Since the vector space H•(A, m1) is finite-
dimensional the result follows. !

Remark 9.2.4. For a homologically smooth compact A∞-algebra A one has a
quasi-isomorphism of complexes C•(A, A) ≃ HomA−mod−A(A!, A) Also, the com-
plex HomA−mod−A(M !, N) is quasi-isomorphic to (M ⊗A N)♯ for two A − A-
bimodules M, N , such that M is perfect. Here M ! := HomA−mod−A(M, A ⊗ A)
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Having this in mind one can offer a version of the above proof which uses the
isomorphism

HomA−mod−A(A!, A) ≃ HomA−mod−A(HomA−mod−A(A, A⊗ A), A).

Indeed, since A is homologically smooth the bimodule HomA−mod−A(A, A ⊗A) is
quasi-isomorphic to a direct summand P of an extension of a shift of HomA−mod−A(A⊗
A, A⊗A) ≃ A⊗A. Similarly, HomA−mod−A(P, A) is quasi-isomorphic to a direct
summand of an extension of a shift of HomA−mod−A(A ⊗ A, A ⊗ A) ≃ A ⊗ A.
Combining the above computations we see that the complex C•(A, A) is quasi-
isomorphic to a direct summand of an extension of a shift of the complex A ⊗ A.
The latter has finite-dimensional cohomology, since A enjoys this property.

Besides algebras of finite quivers there are two main sources of homologically
smooth compact Z-graded A∞-algebras.

Example 9.2.5. a) Combining Examples 9.1.4f) and 9.2.2b) we see that the de-
rived category Db(Coh(X)) is equivalent to the category PerfA for a homologically
smooth compact A∞-algebra A.

b) According to [Se03] the derived category Db(F (X)) of the Fukaya category
of a K3 surface X is equivalent to PerfA for a homologically smooth compact
A∞-algebra A. The latter is generated by Lagrangian spheres, which are vanishing
cycles at the critical points for a fibration of X over CP1. This result can be
generalized to other Calabi-Yau manifolds.

In Z/2-graded case examples of homologically smooth compact A∞-algebras
come from Landau-Ginzburg categories (see [Or05], [R03]) and from Fukaya cate-
gories for Fano varieties.

Remark 9.2.6. Formal deformation theory of smooth compact A∞-algebras
gives a finite-dimensional formal pointed (commutative) dg-manifold. The global
moduli stack can be constructed using methods of [ToVa05]). It can be thought of
as a moduli stack of non-commutative smooth proper varieties.

10. Degeneration Hodge-to-de Rham

10.1. Main conjecture. Let us assume that char k = 0 and A is a weakly
unital A∞-algebra, which can be Z-graded or Z/2-graded.

For any n ≥ 0 we define the truncated modified negative cyclic complex Cmod,(n)
• (A, A) =

Cmod
• (A, A) ⊗ k[u]/(un), where deg u = +2. It is a complex with the differential

b + uB. Its cohomology will be denoted by H•(Cmod,(n)
• (A, A)).

Definition 10.1.1. We say that an A∞-algebra A satisfies the degeneration
property if for any n ≥ 1 one has: H•(Cmod,(n)

• (A, A)) is a flat k[u]/(un)-module.

Conjecture 10.1.2. (Degeneration Hodge-to-de Rham). Let A be a weakly
unital compact homologically smooth A∞-algebra. Then it satisfies the degenera-
tion property.

We will call the above statement the degeneration conjecture.

Corollary 10.1.3. If the A satisfies the degeneration property then the nega-
tive cyclic homology coincides with lim←−nH•(Cmod,(n)

• (A, A)), and it is a flat k[[u]]-
module.
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Remark 10.1.4. One can speak about degeneration property (modulo un) for
A∞-algebras which are flat over unital commutative k-algebras. For example, let
R be an Artinian local k-algebra with the maximal ideal m, and A be a flat R-
algebra such that A/m is weakly unital, homologically smooth and compact. Then,
assuming the degeneration property for A/m, one can easily see that it holds for A
as well. In particular, the Hochschild homology of A gives rise to a vector bundle
over Spec(R) ×A1

form[−2].

Assuming the degeneration property for A we see that there is a Z-graded vector
bundle ξA over A1

form [−2] = Spf(k[[u]]) with the space of sections isomorphic to

lim←− nH•(Cmod,(n)
• (A, A)) = HC−,mod

• (A),

which is the negative cyclic homology of A. The fiber of ξA at u = 0 is isomorphic
to the Hochschild homology Hmod

• (A, A) := H•(C•(A, A)).
Notice that Z-graded k((u))-module HP mod

• (A) of periodic cyclic homology can
be described in terms of just one Z/2-graded vector space HP mod

even(A)⊕ΠHP mod
odd (A),

where HP mod
even(A) (resp. HP mod

odd (A)) consists of elements of degree zero (resp. de-
gree +1) of HP mod

• (A) and Π is the functor of changing the parity. We can interpret
ξA in terms of (Z/2-graded) supergeometry as a Gm-equivariant supervector bun-
dle over the even formal line A1

form . The structure of a Gm-equivariant supervector
bundle ξA is equivalent to a filtration F (called Hodge filtration) by even numbers
on HP mod

even(A) and by odd numbers on HP mod
odd (A). The associated Z-graded vector

space coincides with H•(A, A).
We can say few words in support of the degeneration conjecture. One is, of

course, the classical Hodge-to-de Rham degeneration theorem (see Section 10.2
below). It is an interesting question to express the classical Hodge theory alge-
braically, in terms of a generator E of the derived category of coherent sheaves and
the corresponding A∞-algebra A = RHom(E , E). The degeneration conjecture also
trivially holds for algebras of finite quivers without relations.

In classical algebraic geometry there are basically two approaches to the proof
of degeneration conjecture. One is analytic and uses Kähler metric, Hodge decom-
position, etc. Another one is pure algebraic and uses the technique of reduction
to finite characteristic (see [DI87]). Recently Kaledin (see [Kal05]) suggested a
proof of a version of the degeneration conjecture based on the reduction to finite
characterstic.

Below we will formulate a conjecture which could lead to the definition of
crystalline cohomology for A∞-algebras. Notice that one can define homologically
smooth and compact A∞-algebras over any commutative ring, in particular, over
the ring of integers Z. We assume that A is a flat Z-module.

Conjecture 10.1.5. Suppose that A is a weakly unital A∞-algebra over Z,
such that it is homologically smooth (but not necessarily compact). Truncated
negative cyclic complexes (C•(A, A)⊗ Z[[u, p]]/(un, pm), b + uB) and (C•(A, A) ⊗
Z[[u, p]]/(un, pm), b − puB) are quasi-isomorphic for all n, m ≥ 1 and all prime
numbers p.

If, in addition, A is compact then the homology of either of the above complexes
is a flat module over Z[[u, p]]/(un, pm).

If the above conjecture is true then the degeneration conjecture,probably, can
be deduced along the lines of [DI87]. One can also make some conjectures about
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Hochschild complex of an arbitrary A∞-algebra, not assuming that it is compact
or homologically smooth. More precisely, let A be a unital A∞-algebra over the
ring of p-adic numbers Zp. We assume that A is topologically free Zp-module. Let
A0 = A⊗Zp Z/p be the reduction modulo p. Then we have the Hochschild complex
(C•(A0, A0), b) and the Z/2-graded complex (C•(A0, A0), b + B).

Conjecture 10.1.6. For any i there is natural isomorphism of Z/2-graded
vector spaces over the field Z/p:

H•(C•(A0, A0), b) ≃ H•(C•(A0, A0), b + B).

There are similar isomorphisms for weakly unital and non-unital A∞-algebras,
if one replaces C•(A0, A0) by Cmod

• (A0, A0). Also one has similar isomorphisms for
Z/2-graded A∞-algebras.

The last conjecture presumably gives an isomorphism used in [DI87], but does
not imply the degeneration conjecture.

Remark 10.1.7. As we will explain in the second volume there are similar
conjectures for saturated A∞-categories (recall that they are generalizations of ho-
mologically smooth compact A∞-algebras). This observation supports the idea of
introducing the category NCMot of non-commutative pure motives. Objects of
the latter will be saturated A∞-categories over a field, and HomNCMot(C1, C2) =
K0(Funct(C1, C2))⊗Q/equiv where K0 means the K0-group of the A∞-category of
functors and equiv means numerical equivalence (i.e. the quivalence relation gen-
erated by the kernel of the Euler form ⟨E, F ⟩ := χ(RHom(E, F )), where χ is the
Euler characteristic). The above category is worth of consideration and is discussed
in [Ko 06]. In particular, one can formulate non-commutative analogs of Weil and
Beilinson conjectures for the category NCMot.

10.2. Relationship with the classical Hodge theory. Let X be a quasi-
projective scheme of finite type over a field k of characteristic zero. Then the
category Perf(X) of perfect sheaves on X is equivalent to H0(A − mod), where
A − mod is the category of A∞-modules over a dg-algebra A. Let us recall a
construction of A. Consider a complex E of vector bundles which generates the
bounded derived category Db(Perf(X)) (see [BvB]). Then A is quasi-isomorphic
to RHom(E, E). More explicitly, let us fix an affine covering X = ∪iUi. Then
the complex A := ⊕i0,i1,...,inΓ(Ui0 ∩ ... ∩ Uin , E∗ ⊗ E)[−n], n = dimX computes
RHom(E, E) and carries a structure of dg-algebra. Different choices of A give rise
to equivalent categories H0(A−mod) (derived Morita equivalence).

Properties of X are encoded in the properties of A. In particular:
a) X is smooth iff A is homologically smooth;
b) X is compact iff A is compact.
Moreover, if X is smooth then

H•(A, A) ≃ Ext•Db(Coh(X×X))(O∆,O∆) ≃

⊕i,j≥0H
i(X,∧jTX)[−(i + j)]]

where O∆ is the structure sheaf of the diagonal ∆ ⊂ X ×X.
Similarly

H•(A, A) ≃ ⊕i,j≥0H
i(X,∧jT ∗

X)[j − i].
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The RHS of the last formula is the Hodge cohomology of X. One can con-
sider the hypercohomology H•(X, Ω•

X [[u]]/unΩ•
X [[u]]) equipped with the differ-

ential uddR. Then the classical Hodge theory ensures degeneration of the cor-
responding spectral sequence, which means that the hypercohomology is a flat
k[u]/(un)-module for any n ≥ 1. Usual de Rham cohomology H•

dR(X) is isomor-
phic to the generic fiber of the corresponding flat vector bundle over the formal
line A1

form [−2], while the fiber at u = 0 is isomorphic to the Hodge cohomol-
ogy H•

Hodge(X) = ⊕i,j≥0Hi(X,∧jT ∗
X)[j − i]. In order to make a connection with

the “abstract” theory of the previous subsection we remark that H•
dR(X) is iso-

morphic to the periodic cyclic homology HP•(A) while H•(A, A) is isomorphic to
H•

Hodge(X).

11. Symplectic structures and volume forms in non-commutative case

In this section we advocate the following philosophy. Let X be a finite-dimensional
non-commutative formal manifold. To define some geometric structure on X means
to define a collection of “compatible” such structures on all commutative formal
manifolds M(X, n) := R̂ep0(O(X), Matn(k)), where Matn(k) is the associative al-
gebra of n×n matrices over k, O(X) is the algebra of functions on X and R̂ep0(...)
means the formal completion at the trivial representation. More generally one
should consider formal manifolds M(X, V ) = R̂ep0(O(X), End(V )), where V is a
finite-dimensional object of the tensor category C. For the most of this section we
will assume for simplicity that C = V ectk or C = V ectZk . We are going to illustrate
our approach in two examples: symplectic manifolds and manifolds with volume
forms. We would like to say that the compatibility conditions for different n are
not clear in the latter case.

11.1. Main definitions. Let (X, pt, Q) be a finite-dimensional formal pointed
dg-manifold over a field k of characteristic zero.

Recall that the space of cyclic 1-forms x1, . . . , xn can be identified with the
direct sum of n copies of the corresponding free algebra A:

(a1, . . . , an)↔
∑

ai ⊗ dxi .

We can define linear operators ∂
∂xi

: Ocycl(X) → Ocycl(X) by the formula
dH =

∑
i

∂H
∂xi
⊗ dxi.

We observe that 0-forms are linear combinations of cyclic words (of length ≥ 2)
in alphabet x1, . . . , xn. For example,

∂(xxyxz)
∂x

= xyxz + yxzx + zxxy ,
∂(xxyxz)

∂y
= xzxx ,

where xxyxz is considered as a cyclic word.

Exercise 11.1.1. Check the following identity
∑ [

xi,
∂H

∂xi

]
= 0 .

Definition 11.1.2. A symplectic structure of degree N ∈ Z on X is given by
a cyclic closed 2-form ω of degree N such that its restriction to the tangent space
TptX is non-degenerate.
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In this case the linear map ξ )→ iξω gives rise to an isomorphism between the
space of vector fields on X and the space of cyclic 1-forms.

Exercise 11.1.3. Prove that the space of Hamiltonian vector fields (i.e. those
preserving ω) is in one-to-one correspondence with the space of cyclic functions (i.e.
Hamiltonians of these vector fields).

There is an explicit formula for the Poisson bracket of cyclic functions induced
by the symplectic structure:

{G, H} =
∑ (

∂G

∂pi
⊗ ∂H

∂qi
− ∂G

∂qi
⊗ ∂H

∂pi

)
.

Proposition 11.1.4. (Darboux lemma) Symplectic form ω has constant coeffi-
cients in some affine coordinates at the point pt. In other words, one can find local
coordinates (xi)i∈I at x0 such that ω =

∑
i,j∈I cijdxi ⊗ dxj, where cij ∈ k.

Proof. Let us choose an affine structure at the marked point and write down
ω = ω0 +ω1 +ω2 + ...., where ωl =

∑
i,j cij(x)dxi⊗ dxj and cij(x) is homogeneous

of degree l (in particular, ω0 has constant coefficients). Next we observe that the
following lemma holds.

Lemma 11.1.5. Let ω = ω0 + r, where r = ωl + ωl+1 + ..., l ≥ 1. Then
there is a change of affine coordinates xi )→ xi + O(xl+1) which transforms ω into
ω0 + ωl+1 + ....

Lemma implies the Proposition, since we can make an infinite product of the
above changes of variables (it is a well-defined infinite series). The resulting auto-
morphism of the formal neighborhood of x0 transforms ω into ω0.

Proof of the lemma. We have dcyclωj = 0 for all j ≥ l. The change of variables
is determined by a vector field v = (v1, ..., vn) such that v(x0) = 0. Namely,
xi )→ xi − vi, 1 ≤ i ≤ n. Moreover, we will be looking for a vector field such that
vi = O(xl+1) for all i.

We have Liev(ω) = d(ivω0)+d(ivr). Since dωl = 0 we have ωl = dαl+1 for some
form αl+1 = O(xl+1) in the obvious notation (formal Poincare lemma). Therefore
in order to kill the term with ωl we need to solve the equation dαl+1 = d(ivω0). It
suffices to solve the equation αl+1 = ivω0. Since ω0 is non-degenerate, there exists
a unique vector field v = O(xl+1) solving last equation. This proves the lemma. !

There exists a simple description of closed 2-forms.

Theorem 11.1.6. Let A = O(X) be the (free) algebra of functions on X. Then
there exists a canonical isomorphism Ω2,cl

cycl(X) ≃ [A, A].

Proof. First of all, we define a map t : Ω1
cycl(X) → [A, A] by the formula

t(a ⊗ db) = [a, b]. It is clear that this map is onto and it vanishes on dΩ0
cycl(X).

Thus for the associative case we obtain the short sequence

A→ A2/[A, A]→ Ω1
cycl(X)→ [A, A]→ 0

exact everywhere, except of the middle term. If we choose local coordinates, then we
obtain a grading on all terms of this sequence. Simple dimension count shows that
Euler characteristics of all graded components are zero (we know the generating
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function of Ω1
cycl(X), because there exists an an isomorphism Ω1

cycl(X) ≃ Der(A)).
Thus the sequence above is exact and coincides with the exact sequence

0→ Ω0
cycl(X) → Ω1

cycl(X)→ Ω2,cl
cycl(X)→ 0 .

This concludes the proof. !
Definition 11.1.7. Let (X, pt, Q,ω) be a non-commutative formal pointed

symplectic dg-manifold. A scalar product of degree N on the A∞-algebra A =
TptX[−1] is given by a choice of affine coordinates at pt such that the ω becomes
constant and gives rise to a non-degenerate bilinear form A⊗ A→ k[−N ].

Remark 11.1.8. Notice that since LieQ(ω) = 0 there exists a cyclic function
S ∈ Ω0

cycl(X) such that iQω = dS and {S, S} = 0 (here the Poisson bracket
corresponds to the symplectic form ω). It follows that the deformation theory of
a non-unital A∞-algebra A with the scalar product is controlled by the DGLA
Ω0

cycl(X) equipped with the differential {S, •}.

We can restate the above definition in algebraic terms. Let A be a finite-
dimensional A∞-algebra, which carries a non-degenerate symmetric bilinear form
(, ) of degree N . This means that for any two elements a, b ∈ A such that deg(a) +
deg(b) = N we are given a number (a, b) ∈ k such that:

1) for any collection of elements a1, ..., an+1 ∈ A the expression (mn(a1, ..., an), an+1)
is cyclically symmetric in the graded sense (i.e. it satisfies the Koszul rule of signs
with respect to the cyclic permutation of arguments);

2) bilinear form (•, •) is non-degenerate.
In this case we will say that A is an A∞-algebra with the scalar product of

degree N .
The Hamiltonian S can be written as

S =
∑

n≥1

(mn(a1, ..., an), an+1)
n + 1

.

This is a cyclic functional on TX,x0 .

Remark 11.1.9. One can define a k-linear PROP P such that P-algebras are
associative algebras with non-degenerate scalar products. To to this one observes
that the scalar product defines a map A ⊗ A → k, while the inverse to it defines
a map k → A × A. Let P ′ be a dg-resolution of P. It is natural to say that P ′-
algebras are A∞-algebras with scalar product. We conjecture that this definition
is equivalent to the above one. In particular, the deformation theories defined in
these two ways are equivalent.

11.2. Calabi-Yau structure. The above definition requires A to be finite-
dimensional. We can relax this condition requesting that A is compact. As a
result we will arrive to a homological version of the notion of scalar product. More
precisely, assume that A is weakly unital compact A∞-algebra. Let CCmod

• (A) =
(CCmod

• (A, A)[u−1], b+uB) be the cyclic complex of A. Let us choose a cohomology
class [ϕ] ∈ H•(CCmod

• (A))∗ of degree N . Since the complex (A, m1) is a subcomplex
of Cmod

• (A, A) ⊂ CCmod
• (A) we see that [ϕ] defines a linear functional Tr[ϕ] :

H•(A)→ k[−N ].

Definition 11.2.1. We say that [ϕ] is homologically non-degenerate if the
bilinear form of degree N on H•(A) given by (a, b) )→ Tr[ϕ](ab) is non-degenerate.



152 6. A∞-ALGEBRAS AND NON-COMMUTATIVE GEOMETRY

Notice that the above bilinear form defines a symmetric scalar product of degree
N on H•(A) .

Theorem 11.2.2. For a weakly unital compact A∞-algebra A a homologically
non-degenerate cohomology class [ϕ] gives rise to a class of isomorphisms of non-
degenerate scalar products on a minimal model of A.

Proof. Since char k = 0 the complex (CCmod
• (A))∗ is quasi-isomorphic to

(Ω0
cycl(X)/k, LieQ).

Lemma 11.2.3. Complex (Ω2,cl
cycl(X), LieQ) is quasi-isomorphic to the complex

(Ω0
cycl(X)/k, LieQ).

Proof. Notice that as a complex (Ω2,cl
cycl(X), LieQ) is isomorphic to the complex

Ω1
cycl(X)/dcycl Ω0

cycl(X). The latter is quasi-isomorphic to [O(X),O(X)]top via
a db )→ [a, b] (recall that [O(X),O(X)]top denotes the topological closure of the
commutator).

By definition Ω0
cycl(X) = O(X)/[O(X),O(X)]top . We know that O(X)/k is

acyclic, hence Ω0
cycl(X)/k is quasi-isomorphic to [O(X),O(X)]top. Hence the com-

plex (Ω2,cl
cycl(X), LieQ) is quasi-isomorphic to (Ω0

cycl(X)/k, LieQ). !
As a corollary we obtain an isomorphism of cohomology groups H•(Ω2,cl

cycl(X)) ≃
H•(Ω0

cycl(X)/k). Having a non-degenerate cohomology class [ϕ] ∈ H•(CCmod
• (A))∗ ≃

H•(Ω2,cl
cycl(X), LieQ) as above, we can choose its representative ω ∈ Ω2,cl

cycl(X),
LieQω = 0. Let us consider ω(x0). It can be described pure algebraically such
as follows. Notice that there is a natural projection H•(Ω0

cycl(X)/k)→ (A/[A, A])∗
which corresponds to the taking the first Taylor coefficient of the cyclic function.
Then the above evaluation ω(x0) is the image of ϕ(x0) under the natural map
(A/[A, A])∗ → (Sym2(A))∗ which assigns to a linear functional l the bilinear form
l(ab).

We claim that the total map H•(Ω2,cl
cycl(X)) → (Sym2(A))∗ is the same as

the evaluation at x0 of the closed cyclic 2-form. Equivalently, we claim that
ω(x0)(a, b) = Trϕ(ab). Indeed, if f ∈ Ω0

cycl(X)/k is the cyclic function corre-
sponding to ω then we can write f =

∑
i aixi + O(x2). Therefore LieQ(f) =∑

l,i,j aic
ij
l [xi, xj] + O(x3), where cij

l are structure constants of O(X). Dualizing
we obtain the claim.

Proposition 11.2.4. Let ω1 and ω2 be two symplectic structures on the finite-
dimensional formal pointed minimal dg-manifold (X, pt, Q) such that [ω1] = [ω2] in
the cohomology of the complex (Ω2,cl

cycl(X), LieQ) consisting of closed cyclic 2-forms.
Then there exists a change of coordinates at x0 preserving Q which transforms ω1

into ω2.

Corollary 11.2.5. Let (X, pt, Q) be a (possibly infinite-dimensional) formal
pointed dg-manifold endowed with a (possibly degenerate) closed cyclic 2-form ω.
Assume that the tangent cohomology H0(TptX) is finite-dimensional and ω induces
a non-degenerate pairing on it. Then on the minimal model of (X, pt, Q) we have
a canonical isomorphism class of symplectic forms modulo the action of the group
Aut(X, pt, Q).

Proof. Let M be a (finite-dimensional) minimal model of A. Choosing a coho-
mology class [ϕ] as above we obtain a non-degenerate bilinear form on M , which
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is the restriction ω(x0) of a representative ω ∈ Ω2,cl(X). By construction this
scalar product depends on ω. We would like to show that in fact it depends on the
cohomology class of ω, i.e. on ϕ only. This is the corollary of the following result.

Lemma 11.2.6. Let ω1 = ω+LieQ(dα). Then there exists a vector field v such
that v(x0) = 0, [v, Q] = 0 and Liev(ω) = LieQ(dα).

Proof. As in the proof of Darboux lemma we need to find a vector field v, satisfy-
ing the condition div(ω) = LieQ(dα). Let β = LieQ(α). Then dβ = dLieQ(α) = 0.
Since ω is non-degenerate we can find v satisfying the conditions of the Proposition
and such that div(ω) = LieQ(dα). Using this v we can change affine coordinates
transforming ω+ LieQ(dα) back to ω. This concludes the proof of the Proposition
and the Theorem.!

We will sometimes call the cohomology class [ϕ] a Calabi-Yau structure on A
(or on the corresponding non-commutative formal pointed dg-manifold X). The
following example illustrates the relation to geometry.

Example 11.2.7. Let X be a complex Calabi-Yau manifold of dimension n.
Then it carries a nowhere vanishing holomorphic n-form vol. Let us fix a holomor-
phic vector bundle E and consider a dg-algebra A = Ω0,∗(X, End(E)) of Dolbeault
(0, p)-forms with values in End(E). This dg-algebra carries a linear functional
a )→

∫
X Tr(a) ∧ vol. One can check that this is a cyclic cocycle which defines a

non-degenerate pairing on H•(A) in the way described above.
There is another approach to Calabi-Yau structures in the case when A is homo-

logically smooth. Namely, we say that A carries a Calabi-Yau structure of dimension
N if A! ≃ A[N ] (recall that A! is the A − A-bimodule HomA−mod−A(A, A ⊗ A)
introduced in Section 8.1. Then we expect the following conjecture to be true.

Conjecture 11.2.8. If A is a homologically smooth compact finite-dimensional
A∞-algebra then the existence of a non-degenerate cohomology class [ϕ] of degree
dimA is equivalent to the condition A! ≃ A[dimA].

If A is the dg-algebra of endomorphisms of a generator of Db(Coh(X)) (X is
Calabi-Yau) then the above conjecture holds trivially.

Finally, we would like to illustrate the relationship of the non-commutative
symplectic geometry discussed above with the commutative symplectic geometry
of certain spaces of representations. More generally we would like to associate
with X = Spc(T (A[1])) a collection of formal algebraic varieties, so that some
“non-commutative” geometric structure on X becomes a collection of compatible
“commutative” structures on formal manifolds M(X, n) := R̂ep0(O(X), Matn(k)),
where Matn(k) is the associative algebra of n × n matrices over k, O(X) is the
algebra of functions on X and R̂ep0(...) means the formal completion at the trivial
representation. In other words, we would like to define a collection of compatible
geometric structure on “Matn(k)-points” of the formal manifold X. In the case of
symplectic structure this philosophy is illustrated by the following result.

Theorem 11.2.9. Let X be a non-commutative formal symplectic manifold
in V ectk. Then it defines a collection of symplectic structures on all manifolds
M(X, n), n ≥ 1.

Proof. Let O(X) = A,O(M(X, n)) = B. Then we can choose isomorphisms
A ≃ k⟨⟨x1, ..., xm⟩⟩ and B ≃ ⟨⟨xα,β

1 , ..., xα,β
m ⟩⟩, where 1 ≤ α, β ≤ n. To any a ∈ A

we can assign â ∈ B ⊗Matn(k) such that:
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x̂i =
∑

α,β

xα,β
i ⊗ eα,β,

where eα,β is the n× n matrix with the only non-trivial element equal to 1 on the
intersection of α-th line and β-th column. The above formulas define an algebra
homomorphism. Composing it with the map idB ⊗ TrMatn(k) we get a linear map
Ocycl(X) → O(M(X, n)). Indeed the closure of the commutator [A, A] is mapped
to zero. Similarly, we have a morphism of complexes Ω•

cycl(X) → Ω•(M(X, n)),
such that

dxi )→
∑

α,β

dxα,β
i eα,β.

Clearly, continuous derivations of A (i.e. vector fields on X) give rise to the vector
fields on M(X, n).

Finally, one can see that a non-degenerate cyclic 2-form ω is mapped to the
tensor product of a non-degenerate 2-form on M(X, n) and a nondegenerate 2-form
Tr(XY ) on Matn(k). Therefore a symplectic form on X gives rise to a symplectic
form on M(X, n), n ≥ 1. !

11.3. Volume forms. We will assume for simplicity that k = C and C =
V ectC. Let (X, x0) be a finite-dimensional non-commutative formal pointed man-
ifold. Choosing local coordinates we fix an isomorphism of topological algebras
A := O(X) ≃ T̂ (V ) (completed tensor algebra of a finite-dimensional vector space
V ).

We would like to define a class of volume forms on X. For each n ≥ 1 let us
choose local coordinates on M(X, n) as well as a tensor ρ ∈ Ocycl(X)⊗̂Ocycl(X).
Then we can formally write ρ =

∑
m am⊗ bm (possibly infinite sum). Then we can

define a volume form on M(X, n) such as follows:
vol((xi)i∈I , ρ) =

∧top(dxi)α,βexp(
∑

m Tr(am)Tr(bm)).
It is easy to see that this is a well-defined volume form.

Theorem 11.3.1. Let (x′
i)i∈I be another choice of local coordinates. Then there

exists ρ′ ∈ Ocycl(X)⊗̂Ocycl(X) such that vol((xi)i∈I , ρ) = vol((x′
i)i∈I , ρ′).

Proof. Let us define a linear map div : V ect(X) → Ocycl(X)⊗̂Ocycl(X) in the
following way. Let ξ =

∑
i,j1,...,jm

ci
j1,...,jm

xj1
1 ...xjm

m ∂/∂xi. Then it defines a vector
field ξ1 on M(X, n), which is isomorphic to the formal neighborhood of 0 ∈ Cn2|I|.
The latter space carries a standard volume form V ol, so we have the divergence of
the vector field xi1, defined in the usual way: Lieξ1 (V ol) = div(ξ1)V ol. We leave to
the reader to check that div(ξ1) =

∑
j1,...,jm,jp=i ci

j1,...,jm
Tr(Xj1 ...Xjp−1)Tr(Xjp+1 ...Xjm),

where Xr ∈ Matn(C) is the image of the local coordinate xr . Replacing Xi by
xi, i ∈ I we obtain the desired element div(ξ).

We see that an infinitesimal cahnge of coordinates by the vector field ξ leads to
the multiplication of vol((xi)i∈I , ρ) by the image of exp(div(ξ)). But all the traces
go to zero under the commutator map, so the volume form does not change. This
concludes the proof. !.

We would like to interpret a collection vol((xi)i∈I , ρ), n ≥ 1 as a single class of
volume forms on X.
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11.3.1. Digression about matrix integrals. We conclude this section with a re-
mark on matrix integrals. It often appears in quantum field theory or string theory
that one needs to compute integrals of over the spaces of n× n matrices, and then
take the limit n→ +∞. A typical integral is of the form

In =
∫

Hermn

exp(
∑

m

Tr(Xj1 ...Xjm)Tr(Xjm+1 ...Xjn))dn2
X,

where we integrate over the space of all n×n Hermitian matrices, and the expression
in the exponent is cyclically invariant. The above theorem suggest to interpret
integrals like In as volumes of the spaces of matrices with respect to some volume
form vol((xi)i∈I , ρ).

Example 11.3.2. For one-matrix model one has In = exp(−nTr(f(X)))dn2
X,

where f : R → R is a function decreasing sufficiently fast at ±∞. The factor n
can be written as Tr(id), so one can interpret In as desired. We remark that as
n→ +∞ one has

log(In) = −n2log(n)/2 +
∑

g≥0

cgn
2−2g.

12. Hochschild complexes as algebras over operads and PROPs

Let A be a strictly unital A∞-algebra over a field k of characteristic zero. In
this section we are going to describe a colored dg-operad P such that the pair
(C•(A, A), C•(A, A)) is an algebra over this operad. More precisely, we are going
to describe Z-graded k-vector spaces A(n, m) and B(n, m), n, m ≥ 0 which are
components of the colored operad such that B(n, m) ̸= 0 for m = 1 only and
A(n, m) ̸= 0 for m = 0 only together with the colored operad structure and the
action

a) A(n, 0)⊗ (C•(A, A))⊗n → C•(A, A),
b) B(n, 1)⊗ (C•(A, A))⊗n ⊗ C•(A, A)→ C•(A, A).
Then, assuming that A carries a non-degenerate scalar product, we are going

to describe a PROP R associated with moduli spaces of Riemannian surfaces and
a structure of R-algebra on C•(A, A).

12.1. Configuration spaces of discs. We start with the spaces A(n, 0).
They are chain complexes. The complex A(n, 0) coincides with the complex Mn of
the minimal operad M = (Mn)n≥0 described in [KoSo2000], Section 5. Without
going into details which can be found in loc. cit. we recall main facts about the
operad M . A basis of Mn as a k-vector space is formed by n-labeled planar trees
(such trees have internal vertices labeled by the set {1, ..., n} as well as other internal
vertices which are non-labeled and each has the valency at least 3).

We can depict n-labeled trees such as follows
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1

root

21

1

root root

4

2
3

Labeled vertices are depicted as circles with numbers inscribed, non-labeled
vertices are depicted as black vertices. In this way we obtain a graded operad M
with the total degree of the basis element corresponding to a tree T equal to

deg(T ) =
∑

v∈Vlab(T )

(1− |v|) +
∑

v∈Vnonl(T )

(3− |v|)

where Vlab(T ) and Vnonl(T ) denote the sets of labeled and non-labeled vertices
respectively , and |v| is the valency of the vertex v, i.e. the cardinality of the set of
edges attached to v.

The notion of an angle between two edges incoming in a vertex is illustrated in
the following figure (angles are marked by asteriscs).

* * *

* *

**

*
*

2

3

1

4

root

Operadic composition and the differential are described in [KoSo2000], sections
5.2, 5.3. We borrow from there the following figure which illustrates the operadic
composition of generators corresponding to labeled trees T1 and T2.



12. HOCHSCHILD COMPLEXES AS ALGEBRAS OVER OPERADS AND PROPS 157

4

5

root

32

+_

5

4

2

4

5

root

3

+

T

__+

root

1

2 3

root

T1 =T1 2 4

5

root

32

=T1
=

2

4

5

root

2 3

+_

2 3

+_ 4

3

+_

2

root

4

5

root

5

Informally speaking, the operadic gluing of T2 to T1 at an internal vertex v of
T1 is obtained by:

a) Removing from T1 the vertex v together with all incoming edges and vertices.
b) Gluing T2 to v (with the root vertex removed from T2). Then
c) Inserting removed vertices and edges of T1 in all angles between incoming

edges to the new vertex vnew.
d) Taking the sum (with appropriate signs) over all possible inserting of edges

in c).
The differential dM is a sum of the “local” differentials dv, where v runs through

the set of all internal vertices. Each dv inserts a new edge into the set of edges
attached to v. The following figure illustrates the difference between labeled (white)
and non-labeled (black) vertices.
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In this way we make M into a dg-operad. It was proved in [KoSo1], that M is
quasi-isomorphic to the dg-operad Chains(FM2) of singular chains on the Fulton-
Macpherson operad FM2. The latter consists of the compactified moduli spaces of
configurations of points in R2 (see e.g. [KoSo2000], Section 7.2 for a description).
It was also proved in [KoSo2000] (see also Chapter 5) that C•(A, A) is an algebra
over the operad M (Deligne’s conjecture follows from this fact). The operad FM2

is homotopy equivalent to the famous operad C2 = (C2(n))n≥0 of 2-dimensional
discs (little disc operad). Thus C•(A, A) is an algebra (in the homotopy sense)
over the operad Chains(C2).

12.2. Configurations of points on the cylinder. Let Σ = S1 × [0, 1] de-
notes the standard cylinder.

Let us denote by S(n) the set of isotopy classes of the following graphs Γ ⊂ Σ:
a) every graph Γ is a forest (i.e. disjoint union of finitely many trees Γ = 8iTi);
b) the set of vertices V (Γ) is decomposed into the union V∂Σ 8Vlab 8Vnonl 8V1

of four sets with the following properties:
b1) the set V∂Σ is the union {in} ∪ {out} ∪ Vout of three sets of points which

belong to the boundary ∂Σ of the cylinder. The set {in} consists of one marked
point which belongs to the boundary circle S1 × {1} while the set {out} consists
of one marked point which belongs to the boundary circle S1 × {0}. The set Vout

consists of a finitely many unlableled points on the boundary circle S1 × {0};
b2) the set Vlab consists of n labeled points which belong to the surface S1×(0, 1)

of the cylinder;
b3) the set Vnonl consists of a finitely many non-labeled points which belong

to the surface S1 × (0, 1) of the cylinder;
b4) the set V1 is either empty or consists of only one element denoted by

1 ∈ S1 × (0, 1) and called special vertex;
c) the following conditions on the valencies of vertices are imposed:
c1) the valency of the vertex out is less or equal than 1;
c2) the valency of each vertex from the set V∂Σ \ Vout is equal to 1;
c3) the valency of each vertex from Vlab is at least 1;
c4) the valency of each vertex from Vnonl is at least 3;
Ic5) if the set V1 is non-empty then the valency of the special vertex is equal

to 1. In this case the only outcoming edge connects 1 with the vertex out.
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d) Every tree Ti from the forest Γ has its root vertex in the set V∂Σ.
e) We orient each tree Ti down to its root vertex.

in

1

2

3

n .1

in in

out out
out

Remark 12.2.1. Let us consider the configuration space Xn, n ≥ 0 which
consists of (modulo C∗-dilation) equivalence classes of n points on CP1 \ {0,∞}
together with two direction lines at the tangent spaces at the points 0 and ∞.
One-point compactification X̂n admits a cell decomposition with cells (except of
the point X̂n \ Xn) parametrized by elements of the set S(n). This can be proved
with the help of Strebel differentials (cf. [KoSo2000], Section 5.5).

Previous remark is related to the following description of the sets S(n) (it will
be used later in the paper). Let us contract both circles of the boundary ∂Σ into
points. In this way we obtain a tree on the sphere. Points become vertices of
the tree and lines outcoming from the points become edges. There are two vertices
marked by in and out (placed at the north and south poles respectively). We orient
the tree towards to the vertex out. An additional structure consists of:

a) Marked edge outcoming from in (it corresponds to the edge outcoming from
in).

b) Either a marked edge incoming to out (there was an edge incoming to out
which connected it with a vertex not marked by 1) or an angle between two edges
incoming to out (all edges which have one of the endpoint vertices on the bottom
circle become after contracting it to a point the edges incoming to out, and if there
was an edge connecting a point marked by 1 with out, we mark the angle between
edges containing this line).

The reader notices that the star of the vertex out can be identified with a
regular k-gon, where k is the number of incoming to out edges. For this k-gon we
have either a marked point on an edge (case a) above) or a marked angle with the
vertex in out (case b) above).

12.3. Generalization of Deligne’s conjecture. The definition of the op-
eradic space B(n, 1) will be clear from the description of its action on the Hochschild
chain complex. The space B(n, 1) will have a basis parametrized by elements of
the set S(n) described in the previous subsection. Let us describe the action of a
generator of B(n, 1) on a pair (γ1⊗ ...⊗γn, β), where γ1⊗ ...⊗γn ∈ C•(A, A)⊗n and
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β = a0⊗ a1⊗ ...⊗ al ∈ Cl(A, A). We attach elements a0, a1, ..., al to points on Σin
h ,

in a cyclic order, such that a0 is attached to the point in. We attach γi to the ith
numbered point on the surface of Σh. Then we draw disjoint continuous segments
(in all possible ways, considering pictures up to an isotopy) starting from each point
marked by some element ai and oriented downstairs, with the requirements a)-c)
as above, with the only modification that we allow an arbitrary number of points
on S1 × {1}. We attach higher multiplications mj to all non-numbered vertices,
so that j is equal to the incoming valency of the vertex. Reading from the top to
the bottom and composing γi and mj we obtain (on the bottom circle) an element
b0 ⊗ ...⊗ bm ∈ C•(A, A) with b0 attached to the vertex out. If the special vertex 1
is present then we set b0 = 1. This gives the desired action.

m 2

m 2

m 2

.

..
.

.1
γ

γ

γ

1

2

3

a
aa0n

1
2

ai

b

bb

1

m
i

= ina

out0b =

Composition of the operations in B(n, 1) corresponds to the gluing of the cylin-
ders such that the point out of the top cylinder is identified with the point in of
the bottom cylinder. If after the gluing there is a line from the point marked 1 on
the top cylinder which does not end at the point out of the bottom cylinder, we
will declare such a composition to be equal to zero.

Let us now consider a topological colored operad Ccol
2 = (Ccol

2 (n, m))n,m≥0

with two colors such that Ccol
2 (n, m) ̸= ∅ only if m = 0, 1, and

a) In the case m = 0 it is the little disc operad.
b) In the case m = 1 Ccol

2 (n, 1) is the moduli space (modulo rotations) of the
configurations of n ≥ 1 discs on the cyliner S1× [0, h] h ≥ 0, and two marked points
on the boundary of the cylinder. We also add the degenerate circle of configurations
n = 0, h = 0. The topological space Ccol

2 (n, 1) is homotopically equivalent to the
configuration space Xn described in the previous subsection.

Let Chains(Ccol
2 ) be the colored operad of singular chains on Ccol

2 . Then,
similarly to [KoSo2000], Section 7, one proves (using the explicit action of the
colored operad P = (A(n, m), B(n, m))n,m≥0 described above) the following result.

Theorem 12.3.1. Let A be a unital A∞-algebra. Then the pair (C•(A, A), C•(A, A))
is an algebra over the colored operad Chains(Ccol

2 ) (which is quasi-isomorphic to
P ) such that for h = 0, n = 0 and coinciding points in = out, the corresponding
operation is the identity.
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Remark 12.3.2. The above Theorem generalizes Deligne’s conjecture. It is
related to the abstract calculus associated with A (see [TaT2000], [TaT05]). The
reader also notices that for h = 0, n = 0 we have the moduli space of two points on
the circle. It is homeomorphic to S1. Thus we have an action of S1 on C•(A, A).
This action gives rise to the Connes differential B.

Similarly to the case of little disc operad, one can prove the following result.

Proposition 12.3.3. The colored operad Ccol
2 is formal, i.e. it is quasi-isomorphic

to its homology colored operad.

If A is non-unital we can consider the direct sum A1 = A⊕ k and make it into
a unital A∞-algebra. The reduced Hochschild chain complex of A1 is defined as
Cred

• (A1, A1) = ⊕n≥0A1⊗ ((A1/k)[1])⊗n with the same differential as in the unital
case. One defines the reduced Hochschild cochain complex C•

red(A1, A1) similarly.
We define the modified Hochschild chain complex Cmod

• (A, A) from the following
isomorphism of complexes Cred

• (A1, A1) ≃ Cmod
• (A, A) ⊕ k. Similarly, we define

the modified Hochschild cochain complex from the decomposition C•
red(A1, A1) ≃

C•
mod(A, A) ⊕ k. Then, similarly to the Theorem 12.3.1 one proves the following

result.

Proposition 12.3.4. The pair (Cmod
• (A, A), C•

mod(A, A)) is an algebra over
the colored operad which is an extension of Chains(Ccol

2 ) by null-ary operations
on Hochschild chain and cochain complexes, which correspond to the unit in A,
and such that for h = 0, n = 0 and coinciding points in = out, the corresponding
operation is the identity.

12.4. Remark about Gauss-Manin connection. Let R = k[[t1, ..., tn]] be
the algebra of formal series, and A be an R-flat A∞-algebra. Then the (modified)
negative cyclic complex CC−,mod

• (A) = (C•(A, A)[[u]], b+uB) is an R[[u]]-module.
It follows from the existense of Gauss-Manin connection (see [Get]) that the coho-
mology HC−,mod

• (A) is in fact a module over the ring

DR(A) := k[[t1, ..., tn, u]][u∂/∂t1, ..., u∂/∂tn].

Inedeed, if ∇ is the Gauss-Manin connection from [Get] then u∂/∂ti acts on the
cohomology as u∇∂/∂ti, 1 ≤ i ≤ n.

The above considerations can be explained from the point of view of conjecture
below. Let g = C•(A, A)[1] be the DGLA associated with the Hochschild cochain
complex, and M := (C−,mod

• (A). We define a DGLA ĝ which is the crossproduct
(g ⊗ k⟨ξ⟩) # k(∂/∂ξ), where deg ξ = +1.

Conjecture 12.4.1. There is a structure of an L∞-module on M over ĝ which
extends the natural structure of a g-module and such that ∂/∂ξ acts as Connes
differential B. Moreover this structure should follow from the P -algebra structure
described in Section 12.3.

It looks plausible that the formulas for the Gauss-Manin connection from [Get]
can be derived from our generalization of Deilgne’s conjecture. We will discuss flat
connections on periodic cyclic homology later in the text.

12.5. Flat connections and the colored operad. We start with Z-graded
case. Let us interpret the Z-graded formal scheme Spf(k[[u]]) as even formal line
equipped with the Gm-action u )→ λ2u. The space HC−,mod

• (A) can be interpreted
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as a space of sections of a Gm-equivariant vector bundle ξA over Spf(k[[u]]) corre-
sponding to the k[[u]]-flat module lim←− nH•(C(n)

• (A, A)). The action of Gm identifies
fibers of this vector bundle over u ̸= 0. Thus we have a natural flat connection ∇
on the restriction of ξA to the complement of the point 0 which has the pole of
order one at u = 0.

Here we are going to introduce a different construction of the connection ∇
which works also in Z/2-graded case. This connection will have in general a pole
of degree two at u = 0. In particular we have the following result.

Proposition 12.5.1. The space of section of the vector bundle ξA can be en-
dowed with a structure of a k[[u]][[u2∂/∂u]]-module.

In fact we are going to give an explicit construction of the connection, which
is based on the action of the colored dg-operad P discussed in Section 12.3 (more
precisely, an extension P new of P , see below). Before presenting an explicit formula,
we will make few comments.

1. For any Z/2-graded A∞-algebra A one can define canonically a 1-parameter
family of A∞-algebras Aλ, λ ∈ Gm, such that Aλ = A as a Z/2-graded vector space
and mAλ

n = λmA
n .

2. For simplicity we will assume that A is strictly unital. Otherwise we will
work with the pair (Cmod

• (A, A), C•
mod(A, A)) of modified Hochschild complexes.

3. We can consider an extension P new of the dg-operad P allowing any non-
zero valency for a non-labeled (black) vertex( in the definition of P we required
that such a valency was at least three). All the formulas remain the same. But the
dg-operad P new is no longer formal. It contains a dg-suboperad generated by trees
with all vertices being non-labeled. Action of this suboperad P new

nonl is responsible
for the flat connection discussed below.

4. In addition to the connection along the variable u one has the Gauss-Manin
connection which acts along the fibers of ξA (see Section 12.4). Probably one can
write down an explicit formula for this connection using the action of the colored
operad P new. In what follows are going to describe a connection which presumably
coincides with the Gauss-Manin connection.

Let us now consider a dg-algebra k[B, γ0, γ2] which is generated by the following
operations of the colored dg-operad P new:

a) Connes differential B of degree −1. It can be depicted such as follows (cf.
Section 8.3):

in

.B= .1

out
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b) Generator γ2 of degree 2, corresponding to the following figure:

in

out

γ2 =
.

.

c) Generator γ0 of degree 0, where 2γ0 is depicted below:

+

in in
in

out
outout

.1 .1 .1. ..
++=2γ0

Proposition 12.5.2. The following identities hold in P new:

B2 = dB = dγ2 = 0, dγ0 = [B, γ2],

Bγ0 + γ0B := [B, γ0]+ = −B.

Here by d we denote the Hochschild chain differential (previously it was denoted by
b).

Proof. Let us prove that [B, γ0] = −B, leaving the rest as an exercise to the
reader. One has the following identities for the compositions of operations in P new:
Bγ0 = 0, γ0B = B. Let us check, for example, the last identity. Let us denote by
W the first summand on the figure defining 2γ0. Then γ0B = 1

2WB. The latter
can be depicted in the following way:
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.

out 2

out 1 =in 2

in1

B=

W= .1 .
.1

It is easily seen equals to 2 · 1
2B = B. !

Corollary 12.5.3. Hochschild chain complex C•(A, A) is a dg-module over
the dg-algebra k[B, γ0, γ2].

Let us consider the truncated negative cyclic complex (C•(A, A)[[u]]/(un), du =
d + uB). We introduce a k-linear map ∇ of C•(A, A)[[u]]/(un) into itself such that
∇u2∂/∂u = u2∂/∂u− γ2 + uγ0. Then we have:

a) [∇u2∂/∂u, du] = 0;
b) [∇u2∂/∂u, u] = u2.
Let us denote by V the unital dg-algebra generated by ∇u2∂/∂u and u, subject

to the relations a), b) and the relation un = 0. From a) and b) one deduces the
following result.

Proposition 12.5.4. The complex (C•(A, A)[[u]]/(un), du = d + uB) is a V -
module. Moreover, assuming the degeneration conjecture, we see that the operator
∇u2∂/∂u defines a flat connection on the cohomology bundle

H•(C•(A, A)[[u]]/(un), du)

which has the only singularity at u = 0 which is a pole of second order.

Taking the inverse limit over n we see that H•(C•(A, A)[[u]], du) gives rise to
a vector bundle over A1

form [−2] which carries a flat connection with the second
order pole at u = 0. It is interesting to note the difference between Z-graded and
Z/2-graded A∞-algebras. It follows from the explicit formula for the connection ∇
that the coefficient of the second degree pole is represented by multiplication by a
cocyle (mn)n≥1 ∈ C•(A, A). In cohomology it is trivial in Z-graded case (because
of the invariance with respect to the group action mn )→ λ mn), but nontrivial in
Z/2-graded case. Therefore the order of the pole of ∇ is equal to one for Z-graded
A∞-algebras and is equal to two for Z/2-graded A∞-algebras. We see that in Z-
graded case the connection along the variable u comes from the action of the group
Gm on higher products mn , while in Z/2-graded case it is more complicated.

12.6. PROP of marked Riemann surfaces. In this secttion we will de-
scribe a PROP naturally acting on the Hochschild complexes of a finite-dimensional
A∞-algebra with the scalar product of degree N .
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Since we have a quasi-isomorphism of complexes

C•(A, A) ≃ (C•(A, A))∗[−N ]

it suffices to consider the chain complex only.
In this subsection we will assume that A is either Z-graded (then N is an

integer) or Z/2-graded (then N ∈ Z/2). We will present the results for non-unital
A∞-algebras. In this case we will consider the modified Hochschild chain complex

Cmod
• = ⊕n≥0A⊗ (A[1])⊗n

⊕
⊕n≥1(A[1])⊗n,

equipped with the Hochschild chain differential (see Section 7.4).
Our construction is summarized in i)-ii) below.
i) Let us consider the topological PROP M = (M(n, m))n,m≥0 consisting of

moduli spaces of metrics on compacts oriented surfaces with bondary consisting of
n + m circles and some additional marking (see precise definition below).

ii) Let Chains(M) be the corresponding PROP of singular chains. Then there
is a structure of a Chains(M)-algebra on Cmod

• (A, A), which is encoded in a col-
lection of morphisms of complexes

Chains(M(n, m)) ⊗Cmod
• (A, A)⊗n → (Cmod

• (A, A))⊗m.

In addition one has the following:
iii) If A is homologically smooth and satisfies the degeneration property then the

structure of Chains(M)-algebra extends to a structure of a Chains(M)-algebra,
where M is the topological PROP of stable compactifications of M(n, m).

Definition 12.6.1. An element of M(n, m) is an isomorphism class of triples
(Σ, h, mark) where Σ is a compact oriented surface (not necessarily connected) with
metric h, and mark is an orientation preserving isometry between a neighborhood of
∂Σ and the disjoint union of n+m flat semiannuli 81≤i≤n(S1×[0, ε))881≤i≤m(S1×
[−ε, 0]), where ε is a sufficiently small positive number. We will call n circle “inputs”
and the rest m circles “outputs”. We will assume that each connected component of
Σ has at least one input, and there are no discs among the connected components.
Also we will add Σ = S1 to M(1, 1) as the identity morphism. It can be thought
of as the limit of cylinders S1 × [0, ε] as ε→ 0.

The composition is given by the natural gluing of surfaces.
Let us describe a construction of the action of Chains(M) on the Hochschild

chain complex. In fact, instead of Chains(M) we will consider a quasi-isomorphic
dg-PROP R = (R(n, m)n,m≥0) generated by ribbon graphs with additional data.
In what follows we will skip some technical details in the definition of the PROP
R. They can be recovered in a more or less straightforward way.

It is well-known (and can be proved with the help of Strebel differentials)
that M(n, m) admits a stratification with strata parametrized by graphs described
below. More precisely, we consider the following class of graphs.

1) Each graph Γ is a (not necessarily connected) ribbon graph (i.e. we are
given a cyclic order on the set Star(v) of edges attached to a vertex v of Γ). It is
well-known that replacing an edge of a ribbon graph by a thin stripe (thus getting
a “fat graph”) and gluing stripes in the cyclic order one gets a Riemann surface
with the boundary.

2) The set V (Γ) of vertices of Γ is the union of three sets: V (Γ) = Vin(Γ) ∪
Vmiddle(Γ)∪Vout(Γ). Here Vin(Γ) consists of n numbered vertices in1, ..., inn of the
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valency 1 ( the outcoming edges are called tails), Vmiddle(Γ) consists of vertices of
the valency greater or equal than 3, and Vout(Γ) consists of m numbered vertices
out1, ..., outm of valency greater or equal than 1.

3) We assume that the Riemann surface corresponding to Γ has n connected
boundary components each of which has exactly one input vertex.

4) For every vertex outj ∈ Vout(Γ), 1 ≤ j ≤ m we mark either an incoming edge
or a pair of adjacent (we call such a pair of edges a corner).

corner
marked edge marked

More pedantically, let E(Γ) denotes the set of edges of Γ and Eor(Γ) denotes
the set of pairs (e, or) where e ∈ E(Γ) and or is one of two possible orientations of e.
There is an obvious map Eor(Γ)→ V (Γ)× V (Γ) which assigns to an oriented edge
the pair of its endpoint vertices: source and target. The free involution σ acting on
Eor(Γ) (change of orientation) corresponds to the permutation map on V (Γ)×V (Γ).
Cyclic order on each Star(v) means that there is a bijection ρ : Eor(Γ) → Eor(Γ)
such that orbits of iterations ρn, n ≥ 1 are elements of Star(v) for some v ∈ V (Γ).
In particular, the corner is given either by a pair of coinciding edges (e, e) such that
ρ(e) = e or by a pair edges e, e′ ∈ Star(v) such that ρ(e) = e′. Let us define a
face as an orbit of ρ ◦ σ. Then faces are oriented closed paths. It follows from the
condition 2) that each face contains exactly one edge outcoming from some ini.

We depict below two graphs in the case g = 0, n = 2, m = 0.
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deg Γ= 0

deg Γ= −1

. .in1

in2

in1

in2.
.

Here is a picture illustrating the notion of face

Two faces: one contains in
another contains in

.

.in1

in2 .

.

2

1,

Remark 12.6.2. The above data (i.e. a ribbon graph with numerations of
in and out vertices) have no automorphisms. Thus we can identify Γ with its
isomorphism class.
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The functional (mn(a1, ..., an), an+1) is depicted such as follows.

.
v m n

n=|v|−1

We define the degree of Γ by the formula

deg Γ =
∑

v∈Vmiddle(Γ)

(3− |v|) +
∑

v∈Vout(Γ)

(1− |v|) +
∑

v∈Vout(Γ)

ϵv −Nχ(Γ),

where ϵv = −1, if v contains a marked corner and ϵv = 0 otherwise. Here χ(Γ) =
|V (Γ)|− |E(Γ)| denotes the Euler characteristic of Γ.

Definition 12.6.3. We define R(n, m) as a graded vector space which is a
direct sum ⊕ΓψΓ of 1-dimensional graded vector spaces generated by graphs Γ as
above, each summand has degree deg Γ.

One can see that ψΓ is naturally identified with the tensor product of 1-
dimensional vector spaces (determinants) corresponding to vertices of Γ.

Now, having a graph Γ which satisfies conditions 1-3) above, and Hochschild
chains γ1, ..., γn ∈ Cmod

• (A, A) we would like to define an element of Cmod
• (A, A)⊗m.

Roughly speaking we are going to assign the above n elements of the Hochschild
complex to n faces corresponding to vertices ini, 1 ≤ i ≤ n, then assign tensors
corresponding to higher products ml to internal vertices v ∈ Vmiddle(Γ), then using
the convolution operation on tensors given by the scalar product on A to read off
the resulting tensor from outj, 1 ≤ j ≤ m. More precise algorithm is described
below.

a) We decompose the modified Hochschild complex such as follows:

Cmod
• (A, A) = ⊕l≥0,ε∈{0,1}C

mod
l,ε (A, A),

where Cmod
l,ε=0(A, A) = A ⊗ (A[1])⊗l and Cmod

l,ε=1(A, A) = k ⊗ (A[1])⊗l according to
the definition of modified Hochschild chain complex. For any choice of li ≥ 0, εi ∈
{0, 1}, 1≤ i ≤ n we are going to construct a linear map of degree zero

fΓ : ψΓ ⊗Cmod
l1,ε1

(A, A) ⊗ ...⊗ Cmod
ln,ε1

(A, A)→ (Cmod
• (A, A))⊗m.

The result will be a sum fΓ =
∑

Γ′ fΓ′ of certain maps. The description of the
collection of graphs Γ′ is given below.
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b) Each new graph Γ′ is obtained from Γ by adding new edges. More precisely
one has V (Γ′) = V (Γ) and for each vertex ini ∈ Vin(Γ) we add li new outcoming
edges. Then the valency of ini becomes li + 1..

.
in1

m 3

m 3

in2

c

..
.

.

More pedantically, for every i, 1 ≤ i ≤ n we have constructed a map from the
set {1, ..., li} to a cyclically ordered set which is an orbit of ρ ◦ σ with removed
the tail edge oucoming from ini. Cyclic order on the edges of Γ′ is induced by
the cyclic order at every vertex and the cyclic order on the path forming the face
corresponding to ini.

.ini

corner

c) We assign γi ∈ Cli,εi to ini. We depict γi as a “wheel” representing the
Hochschild cocycle. It is formed by the endpoints of the li + 1 edges outcoming
from ini ∈ V (Γ′) and taken in the cyclic order of the corresponding face. If εi = 1
then (up to a scalar) γi = 1⊗ a1⊗ ...⊗ ali , and we require that the tensor factor 1
corresponds to zero in the cyclic order.
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.
.

ini

1

a 1

a 2

a 3 a 4

γ i

d) We remove from considerations graphs Γ which do not obey the following
property after the step c):

the edge corresponding to the unit 1 ∈ k (see step c)) is of the type (ini, v)
where either v ∈ Vmiddle(Γ′) and |v| = 3 or v = outj for some 1 ≤ j ≤ m and the
edge (ini, outj) was the marked edge for outj.

Let us call unit edge the one which satisfies one of the above properties. We
define a new graph Γ′′ which is obtained from Γ by removing unit edges.

e) Each vertex now has the valency |v| ≥ 2. We attach to every such vertex
either:

the tensor c ∈ A⊗A (inverse to the scalar product), if |v| = 2,
or
the tensor (m|v|−1(a1, ..., a|v|−1), a|v|) if |v| ≥ 3. The latter can be identified

with the element of A⊗|v| (here we use the non-degenerate scalar product on A).
Let us illustrate this construction.

.

.

c

γ1

1

.γ2

.
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f) Let us contract indices of tensors corresponding to Vin(Γ′′)∪Vmiddle(Γ′′) (see
c), e)) along the edges of Γ′′ using the scalar product on A. The result will be an
element aout of the tensor product ⊗1≤j≤mAStarΓ′′(outj).

g) Last thing we need to do is to interpret the element aout as an element of
Cmod

• (A, A). There are three cases.
Case 1. When we constructed Γ′′ there was a unit edge incoming to some outj .

Then we reconstruct back the removed edge, attach 1 ∈ k to it, and interpret the
resulting tensor as an element of Cmod

|outj|,εj=1(A, A).
Case 2. There was no removed unit edge incoming to outj and we had a marked

edge (not a marked corner) at the vertex outj. Then we have an honest element of
Cmod

|outj|,εj=0(A, A)
Case 3. Same as in Case 2, but there was a marked corner at outj ∈ Vout(Γ).

We have added and removed new edges when constructed Γ′′. Therefore the marked
corner gives rise to a new set of marked corners at outj considered as a vertex of
Γ′′. Inside every such a corner we insert a new edge, attach the element 1 ∈ k
to it and take the sum over all the corners. In this way we obtain an element of
Cmod

|outj|,εj=1(A, A). This procedure is depicted below.

1 and e 2 are new edges.e

1

e 1

e 2

Three new
corners with
new unit edges

out j

e 1

e 2

e 1

e 2

1

e 1

e 2

1

+

+

.

.

.

.

out j

out j

out j
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This concludes the construction of fΓ. Notice that R is a dg-PROP with
the differential given by the insertion of a new edge between two vertices from
Vmiddle(Γ).

Proof of the following Proposition will be given elsewhere.

Proposition 12.6.4. The above construction gives rise to a structure of a R-
algebra on Cmod

• (A, A).

Remark 12.6.5. The above construction did not use homological smoothness
of A.

Finally we would like to say few words about an extension of the R-action to
the Chains(M)-action.

If we assume the degeneration property for A, then the action of the PROP R
can be extended to the action of the PROP Chains(M) of singular chains of the
topological PROP of stable degenerations of Mmarked

g,n,m . In order to see this, one
introduces the PROP D freely generated by R(2, 0) and R(1, 1), i.e. by singular
chains on the moduli space of cylinders with two inputs and zero outputs (they
correspond to the scalar product on C•(A, A)) and by cylinders with one input and
one output (they correspond to morphisms C•(A, A)→ C•(A, A)). In fact the (non-
symmetric) bilinear form h : H•(A, A)⊗H•(A, A)→ k does exist for any compact
A∞-algebra A. It is described by the graph of degree zero on the figure in Section
12.6. This is a generalization of the bilinear form (a, b) ∈ A/[A, A]⊗ A/[A, A] )→
Tr(axb) ∈ k. It seems plausible that homological smoothness implies that h is non-
degenerate. This allows us to extend the action of the dg sub-PROP D ⊂ R to the
action of the dg PROP D′ ⊂ R which contains also R(0, 2) (i.e. the inverse to the
above bilinear form). If we assume the degeneration property, then we can “shrink”
the action of the homologically non-trivial circle of the cylinders (since the rotation
around this circle corresponds to the differential B). Thus D′ is quasi-isomorphic
to the dg-PROP of chains on the (one-dimensional) retracts of the above cylinders
(retraction contracts the circle). Let us denote the dg-PROP generated by singular
chains on the retractions by D′′. Thus, assuming the degeneration property, we see
that the free product dg-PROP R′ = R ∗D D′′ acts on Cmod

• (A, A). One can show
that R′ is quasi-isomorphic to the dg-PROP of chains on the topological PROP
M

marked
g,n,m of stable compactifications of the surfaces from Mmarked

g,n,m .

Remark 12.6.6. a) The above construction is generalization of the construction
from [Ko92], which assigns cohomology classes of Mg,n to a finite-dimensional A∞-
algebra with scalar product (trivalent graphs were used in [Ko92]).

b) Different approach to the action of the PROP R was suggested in [Cos04].
The above Proposition gives rise to a structure of Topological Field Theory as-
sociated with a non-unital A∞-algebra with scalar product. If the degeneration
property holds for A then one can define a Cohomological Field Theory in the
sense of [KoM94]

c) Homological smoothness of A is closely related to the existence of a non-
commutative analog of the Chern class of the diagonal ∆ ⊂ X ×X of a projective
scheme X. This Chern class gives rise to the inverse to the scalar product on A.
This topic will be discussed in the subsequent paper devoted to A∞-categories.
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13. Appendix

13.1. Non-commutative schemes and ind-schemes. Let C be an Abelian
k-linear tensor category. To simplify formulas we will assume that it is strict (see
[McL71]). We will also assume that C admits infinite sums. To simplify the expo-
sition we will assume below (and in the main body of the paper) that C = V ectZk .

Definition 13.1.1. The category of non-commutative affine k-schemes in C
(notation NAffC) is the one opposite to the category of associative unital k-
algebras in C.

The non-commutative scheme corresponding to the algebra A is denoted by
Spec(A). Conversely, if X is a non-commutative affine scheme then the corre-
sponding algebra (algebra of regular functions on X) is denoted by O(X). By
analogy with commutative case we call a morphism f : X → Y a closed embedding
if the corresponding homomorphism f∗ : O(Y )→ O(X) is an epimorphism.

Let us recall some terminology of ind-objects (see for ex. [Gr59], [AM64],
[KSch01]). For a covariant functor φ : I → A from a small filtering category I
(called filtrant in [KSch01]) there is a notion of an inductive limit “ lim−→ ”φ ∈ Â and
a projective limit “ lim←−”φ ∈ Â. By definition “ lim−→ ”φ(X) = lim−→HomA(X, φ(i))
and “ lim←−”φ(X) = lim−→HomA(φ(i), X). All inductive limits form a full subcate-
gory Ind(A) ⊂ Â of ind-objects in A. Similarly all projective limits form a full
subcategory Pro(A) ⊂ Â of pro-objects in A.

Definition 13.1.2. Let I be a small filtering category, and F : I → NAffC
a covariant functor. We say that “ lim−→ ”F is a non-commutative ind-affine scheme
if for a morphism i → j in I the corresponding morphism F (i)→ F (j) is a closed
embedding.

In other words a non-commutative ind-affine scheme X is an object of Ind(NAffC ),
corresponding to the projective limit lim←− Aα,α ∈ I, where each Aα is a unital as-
sociative algebra in C, and for a morphism α → β in I the corresponding homo-
morphism Aβ → Aα is a surjective homomorphism of unital algebras (i.e. one has
an exact sequence 0→ J → Aβ → Aα → 0).

Remark 13.1.3. Not all categorical epimorphisms of algebras are surjective ho-
momorphisms (although the converse is true). Nevertheless one can define closed
embeddings of affine schemes for an arbitrary Abelian k-linear category, observing
that a surjective homomorphism of algebras f : A → B is characterized categori-
cally by the condition that B is the cokernel of the pair of the natural projections
f1,2 : A×B A→ A defined by f .

Morphisms between non-commutative ind-affine schemes are defined as mor-
phisms between the corresponding projective systems of unital algebras. Thus we
have

HomNAffC (lim−→ IXi, lim−→ JYj) = lim←− I lim−→ JHomNAffC (Xi, Yj).
Let us recall that an algebra M ∈ Ob(C) is called nilpotent if the natural morphism
M⊗n →M is zero for all sufficiently large n.

Definition 13.1.4. A non-commutative ind-affine scheme X̂ is called formal
if it can be represented as X̂ = lim−→Spec(Ai), where (Ai)i∈I is a projective system
of associative unital algebras in C such that the homomorphisms Ai → Aj are
surjective and have nilpotent kernels for all morphisms j → i in I.
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Let us consider few examples in the case when C = V ectk.

Example 13.1.5. In order to define the non-commutative formal affine line
Â1

NC it suffices to define Hom(Spec(A), Â1
NC ) for any associative unital algebra

A. We define HomNAffk (Spec(A), Â1
NC ) = lim−→ HomAlgk (k[[t]]/(tn), A). Then the

set of A-points of the non-commutative formal affine line consists of all nilpotent
elements of A.

Example 13.1.6. For an arbitrary set I the non-commutative formal affine
space ÂI

NC corresponds, by definition, to the topological free algebra k⟨⟨ti⟩⟩i∈I . If
A is a unital k-algebra then any homomorphism k⟨⟨ti⟩⟩i∈I → A maps almost all ti
to zero, and the remaining generators are mapped into nilpotent elements of A. In
particular, if I = N = {1, 2, ...} then ÂN

NC = lim−→Spec(k⟨⟨t1 , ..., tn⟩⟩/(t1, ..., tn)m),
where (t1, ..., tn) denotes the two-sided ideal generated by ti, 1 ≤ i ≤ n, and the
limit is taken over all n, m→∞.

By definition, a closed subscheme Y of a scheme X is defined by a 2-sided
ideal J ⊂ O(X). Then O(Y ) = O(X)/J . If Y ⊂ X is defined by a 2-sided ideal
J ⊂ O(X), then the completion of X along Y is a formal scheme corresponding to
the projective limit of algebras lim←− nO(X)/Jn . This formal scheme will be denoted
by X̂Y or by Spf(O(X)/J).

Non-commutative affine schemes over a given field k form symmetric monoidal
category. The tensor structure is given by the ordinary tensor product of unital
algebras. The corresponding tensor product of non-commutative affine schemes
will be denoted by X ⊗Y . It is not a categorical product, differently from the case
of commutative affine schemes (where the tensor product of algebras corresponds
to the Cartesian product X × Y ). For non-commutative affine schemes the analog
of the Cartesian product is the free product of algebras.

Let A, B be free algebras. Then Spec(A) and Spec(B) are non-commutative
manifolds. Since the tensor product A⊗B in general is not a smooth algebra, the
non-commutative affine scheme Spec(A ⊗B) is not a manifold.

Let X be a non-commutative ind-affine scheme in C. A closed k-point x ∈ X
is by definition a homomorphism of O(X) to the tensor algebra generated by the
unit object 1. Let mx be the kernel of this homomorphism. We define the tangent
space TxX in the usual way as (mx/m2

x)∗ ∈ Ob(C). Here m2
x is the image of the

multiplication map m⊗2
x → mx.

A non-commutative ind-affine scheme with a marked closed k-point will be
called pointed. There is a natural generalization of this notion to the case of many
points. Let Y ⊂ X be a closed subscheme of disjoint closed k-points (it corresponds
to the algebra homomorphism O(X)→ 1⊕1⊕ ...). Then X̂Y is a formal manifold.
A pair (X̂Y , Y ) (often abbreviated by X̂Y ) will be called (non-commutative) formal
manifold with marked points. If Y consists of one such point then (X̂Y , Y ) will be
called (non-commutative) formal pointed manifold.

13.2. Proof of Theorem 2.1.2. In the category AlgCf every pair of mor-
phisms has a kernel. Since the functor F is left exact and the category AlgCf is
Artinian, it follows from [Gr59], Sect. 3.1 that F is strictly pro-representable. This
means that there exists a projective system of finite-dimensional algebras (Ai)i∈I

such that, for any morphism i → j the corresponding morphsim Aj → Ai is a
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categorical epimorphism, and for any A ∈ Ob(AlgC{) one has

F (A) = lim−→ IHomAlgCf (Ai, A).

Equivalently,
F (A) = lim−→ IHomCoalgCf (A∗

i , A
∗),

where (A∗
i )i∈I is an inductive system of finite-dimensional coalgebras and for any

morphism i→ j in I we have a categorical monomorphism gji : A∗
i → A∗

j .
All what we need is to replace the projective system of algebras (Ai)i∈I by

another projective system of algebras (Ai)i∈I such that
a) functors “ lim←− ”hAi and “ lim←−”hAi

are isomorphic (here hX is the functor
defined by the formula hX(Y ) = Hom(X, Y ));

b) for any morphism i→ j the corresponding homomorphism of algebras f ij :
Aj → Ai is surjective.

Let us define Ai =
⋂

i→j Im(fij ), where Im(fij ) is the image of the homomor-
phism fij : Aj → Ai corresponding to the morphism i → j in I. In order to prove
a) it suffices to show that for any unital algebra B in Cf the natural map of sets

lim−→ IHomCf (Ai, B)→ lim−→ IHomCf (Ai, B)

(the restriction map) is well-defined and bijective.
The set lim−→ IHomCf (Ai, B) is isomorphic to (

⊔
I HomCf (Ai, B))/equiv, where

two maps fi : Ai → B and fj : Aj → B such that i → j are equivalent if
fifij = fj. Since Cf is an Artinian category, we conclude that there exists Am

such that fim(Am) = Ai, fjm(Am) = Aj . From this observation one easily deduces
that fij(Aj) = Ai. It follows that the morphism of functors in a) is well-defined,
and b) holds. The proof that morphisms of functors biejectively correspond to
homomorphisms of coalgebras is similar. This completes the proof of the theorem.
!

13.3. Proof of Proposition 2.1.3. The result follows from the fact that any
x ∈ B belongs to a finite-dimensional subcoalgebra Bx ⊂ B, and if B was counital
then Bx would be also counital. Let us describe how to construct Bx. Let ∆ be
the coproduct in B. Then one can write

∆(x) =
∑

i

ai ⊗ bi,

where ai (resp. bi) are linearly independent elements of B.
It follows from the coassociativity of ∆ that

∑

i

∆(ai)⊗ bi =
∑

i

ai ⊗∆(bi).

Therefore one can find constants cij ∈ k such that

∆(ai) =
∑

j

aj ⊗ cij,

and
∆(bi) =

∑

j

cji ⊗ bj.
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Applying ∆⊗ id to the last equality and using the coassociativity condition again
we get

∆(cji) =
∑

n

cjn ⊗ cni.

Let Bx be the vector space spanned by x and all elements ai, bi, cij. Then Bx is
the desired subcoalgebra. !

13.4. Formal completion along a subscheme. Here we present a con-
struction which generalizes the definition of a formal neighborhood of a k-point of
a non-commutative smooth thin scheme.

Let X = Spc(BX ) be such a scheme and f : X → Y = Spc(BY ) be a closed em-
bedding, i.e. the corresponding homomorphism of coalgebras BX → BY is injective.
We start with the category NX of nilpotent extensions of X, i.e. homomorphisms
φ : X → U , where U = Spc(D) is a non-commutative thin scheme, such that the
quotient D/f(BX ) (which is always a non-counital coalgebra) is locally conilpo-
tent. We recall that the local conilpotency means that for any a ∈ D/f(BX ) there
exists n ≥ 2 such that ∆(n)(a) = 0, where ∆(n) is the n-th iterated coproduct ∆.
If (X, φ1, U1) and (X, φ2, U2) are two nilpotent extensions of X then a morphism
between them is a morphism of non-commutative thin schemes t : U1 → U2, such
that tφ1 = φ2 (in particular, NX is a subcategory of the naturally defined category
of non-commutative relative thin schemes).

Let us consider the functor Gf : N op
X → Sets such that G(X, φ, U) is the set of

all morphisms ψ : U → Y such that ψφ = f .

Proposition 13.4.1. Functor Gf is represented by a triple (X, π, ŶX) where
the non-commutative thin scheme denoted by ŶX is called the formal neighborhood
of f(X) in Y (or the completion of Y along f(X)).

Proof. Let Bf ⊂ BX be the counital subcoalgebra which is the pre-image
of the (non-counital) subcoalgebra in BY /f(BX ) consisting of locally conilpotent
elements. Notice that f(BX ) ⊂ Bf . It is easy to see that taking ŶX := Spc(Bf )
we obtain the triple which represents the functor Gf . !

Notice that ŶX → Y is a closed embedding of non-commutative thin schemes.

Proposition 13.4.2. If Y is smooth then ŶX is smooth and ŶX ≃ ŶŶX
.

Proof. Follows immediately from the explicit description of the coalgebra Bf

given in the proof of the previous Proposition. !
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