# Notes on Modular Forms 

Dan Schultz

August 20, 2015

## Contents

0.1 Notation ..... 2
1 Introduction ..... 4
1.1 Partitions and the $\eta$ function ..... 4
1.2 Sums of squares and the $\theta$ function ..... 4
1.3 Ramanujan's $\tau$ Function ..... 5
1.4 Mock Modular Forms ..... 5
1.5 Special Values of the $j$ Function ..... 6
2 Elliptic Functions and Basic Modular Forms on $\mathrm{SL}_{2}(\mathbb{Z})$ ..... 7
2.1 Theory of Elliptic Functions ..... 7
2.2 The Weierstrass $\wp$ Function ..... 8
2.3 Eisenstein Series ..... 9
2.4 Modular Discriminant $\Delta(\tau)$ and Klein's Absolute Invariant $j(\tau)$ ..... 10
2.5 Basic Properties of $\mathrm{SL}_{2}(\mathbb{Z})$ ..... 11
2.6 The $\eta$ function and $E_{2}$ ..... 12
2.7 Recursions for the Eisenstein Series ..... 15
2.8 Elliptic $\Theta$ Functions ..... 15
$2.9 \quad \Gamma(2)$ and the Asymptotic of $\Theta$ Near the Cusps ..... 19
2.10 Addition Formulas ..... 23
2.11 $\Gamma(3)$ and the Asymptotic of $\eta$ Near the Cusps ..... 24
2.12 Exercises ..... 28
3 Theory of Modular Forms on $\mathrm{SL}_{2}(\mathbb{Z})$ ..... 31
3.1 Definition of a Modular Form ..... 31
3.2 Valence Formula ..... 32
3.3 Dimension Formulas and Generators ..... 33
3.4 Applications to Identities ..... 34
3.5 Exercises ..... 35
4 Theory of Modular Forms on Congruence Subgroups of $\mathrm{SL}_{2}(\mathbb{Z})$ ..... 36
4.1 Definition of modular forms on $\Gamma$ with $[\Gamma(1): \Gamma]<\infty$ ..... 36
4.2 Dimension formulas ..... 38
4.3 Counting $\epsilon_{i}$ for $\Gamma(N)$ and $\Gamma_{1}(N)$ and $\Gamma_{0}(N)$ ..... 40
4.4 General properties of $A_{k}(\Gamma)$ ..... 42
4.5 Working with finite index subgroups of $\Gamma(1)$ ..... 46
$4.6 \quad \Gamma(2)$ ..... 52
4.7 Building congruence modular forms $N$ from Klein Forms ..... 53
4.8 Building congruence modular forms from $\eta$ products ..... 55
$4.9 \quad \Gamma(N)$ and regular polyhedron ..... 57
4.10 Representations by $x^{2}+y^{2}$ ..... 64
4.11 Building congruence modular forms from $\Theta$ functions ..... 65
4.12 Representations by $x^{2}+x y+y^{2}$ other quadratic forms ..... 67
4.13 Subgroups up to index 7: non-congruence examples ..... 69
5 Hecke Operators ..... 74
5.1 Definition of the Hecke operators ..... 74
5.2 Eigenforms ..... 74
5.3 Newforms ..... 74
6 Modular Forms mod $p$ ..... 75
6.1 The structure of modular forms on $\mathrm{SL}_{2}(\mathbb{Z}) \bmod p$ ..... 75
6.2 The congruences for $p(n)$ mod $5,7,11$ are the Unique Ramanujan Congruences ..... 75
$6.324 n \equiv 1 \bmod 5^{a} 7^{b} 11^{c}$ implies $p(n) \equiv 0 \bmod 5^{a} 7^{\left[\frac{b}{2}\right\rfloor+1} 11^{c}$ ..... 75
7 Modular Equations and Singular Values ..... 76
7.1 Modular equations for $j$ ..... 76
7.2 Modular equations for the Weber functions ..... 77
7.3 Quadratic Forms ..... 77
7.4 Singular Values of the $j$ Function ..... 78
7.5 Singular Values of the Weber Functions ..... 79
7.6 The Class Number One Problem ..... 80
7.7 Singular Values of the $\eta$ Function ..... 80
8 Hypergeometric Functions ..... 81
8.1 Basic Properties of the ${ }_{2} F_{1}(x)$ and ${ }_{3} F_{2}(x)$ Series ..... 81
8.2 Jacobi's Inversion Formula and Generalizations ..... 81
8.3 Solution of the General Quintic by Modular Functions ..... 81
9 Mock Modular Forms ..... 84

### 0.1 Notation

```
    Symbol Meaning
            \(q^{a} \quad e^{2 \pi i a \tau}\left(\operatorname{not}\left(e^{2 \pi i \tau}\right)^{a}\right)\)
            \(q_{z}^{a} \quad e^{2 \pi i a z}\)
        \(e(z) \quad \exp (2 \pi i z)\)
            \(\zeta_{b}^{a} \quad\) root of unity \(e(a / b)\)
        \(\log z\) the logarithm with \(-\pi<\operatorname{Im} \log z \leq \pi\)
            \(a^{b} \quad \exp b \log a\)
        \((x ; q)_{n} \quad \prod_{k=0}^{n-1}\left(1-x q^{k}\right)\)
        \((x ; q)_{\infty} \quad \prod_{k=0}^{\infty}\left(1-x q^{k}\right)\), for \(|q|<1\)
\(\wp\left(z \mid \omega_{1}, \omega_{2}\right) \quad\) Weierstrass \(\wp\) function for the lattice \(\omega_{1} \mathbb{Z}+\omega_{2} \mathbb{Z}\)
```

$\zeta\left(z \mid \omega_{1}, \omega_{2}\right) \quad$ Weierstrass $\zeta$ function
$\sigma\left(z \mid \omega_{1}, \omega_{2}\right)$ Weierstrass $\sigma$ function
$\wp(z \mid \tau) \quad \wp(z \mid \tau, 1)$
$\eta(\tau) \quad$ Dedekind's $\eta$ function $q^{1 / 24}(q ; q)_{\infty}$
$j(\tau) \quad E_{4}(\tau)^{3} \eta(\tau)^{-24}$
$\gamma_{2}(\tau) \quad j^{1 / 3}=E_{4}(\tau) \eta(\tau)^{-8}$
$\gamma_{3}(\tau) \quad(j-1728)^{1 / 2}=E_{6}(\tau) \eta(\tau)^{-12}$
$\Theta[\vec{v}](z \mid \tau) \quad$ general elliptic $\Theta$ function with characteristic $\vec{v}$
$\Theta_{i}(z \mid \tau)$ Jacobi's four $\Theta$ functions with half-integer characteristics
$\Theta_{i}(z) \quad \Theta_{i}(z \mid \tau)$
$\Theta_{i}(\tau) \quad \Theta_{i}(0 \mid \tau)$
$\Gamma(N) \quad\left\{M \in \mathrm{SL}_{2}(\mathbb{Z}) \left\lvert\, M \equiv\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \bmod N\right.\right\}$
$\Gamma_{1}(N) \quad\left\{M \in \mathrm{SL}_{2}(\mathbb{Z}) \left\lvert\, M \equiv\left(\begin{array}{cc}1 & * \\ 0 & 1\end{array}\right) \bmod N\right.\right\}$
$\Gamma^{1}(N) \quad\left\{M \in \mathrm{SL}_{2}(\mathbb{Z}) \left\lvert\, M \equiv\left(\begin{array}{cc}1 & 0 \\ * & 1\end{array}\right) \bmod N\right.\right\}$
$\Gamma^{0}(N) \quad\left\{M \in \mathrm{SL}_{2}(\mathbb{Z}) \left\lvert\, M \equiv\binom{* 0}{* *} \bmod N\right.\right\}$
$\Gamma_{0}(N) \quad\left\{M \in \mathrm{SL}_{2}(\mathbb{Z}) \left\lvert\, M \equiv\binom{* *}{0} \bmod N\right.\right\}$
$\Gamma_{0}^{0}(N) \quad\left\{M \in \mathrm{SL}_{2}(\mathbb{Z}) \left\lvert\, M \equiv\binom{* 0}{0} \bmod N\right.\right\}$
u.v dot product of two vectors
$u . M$ product of vector $u$ interpreted as a row vector and the matrix $M$
$M . v \quad$ product of matrix $M$ and the vector $v$ interpreted as a column vector

## Chapter 1

## Introduction

The generating functions for many interesting combinatorial objects turn out to be modular forms.

### 1.1 Partitions and the $\eta$ function

We have

$$
\begin{aligned}
\frac{1}{(q ; q)_{\infty}} & =\left(1+q+q^{2}+q^{3}+\cdots\right)\left(1+q^{2}+q^{4}+q^{6}+\cdots\right)\left(1+q^{3}+q^{6}+q^{9}+\cdots\right) \cdots \\
& =\sum_{n=0}^{\infty} p(n) q^{n}
\end{aligned}
$$

where $p(n)$ is the number of partitions of $n$. We have the properties

- $p(5 n+4) \equiv 0 \bmod 5$
- $p(7 n+5) \equiv 0 \bmod 7$
- $p(11 n+6) \equiv 0 \bmod 11$
- $p\left(59^{4} 13 n+111247\right) \equiv 0 \bmod 13($ see $[2])$

The three primes $5,7,11$ are unique in this way. Similar congruences hold at powers of these primes.

### 1.2 Sums of squares and the $\theta$ function

Set

$$
\theta(\tau)=\sum_{n \in \mathbb{Z}} q^{n^{2}}
$$

Then, the generating function for $\#\left\{\left(x_{1}, \ldots, x_{k}\right) \mid n=x_{1}^{2}+\cdots+x_{k}^{2}\right\}$, which is the number of representations of $n$ by the sum of $k$ squares, is $\theta(\tau)^{k}$. If $\chi_{4}$ is the non-trivial character modulo 4 and $4 \mid c$ and $a d-b c=1$, will we see that $\theta$ satisfies the weight $1 / 2$ relation

$$
\theta\left(\frac{a \tau+b}{c \tau+d}\right)=\left(\frac{c}{d}\right) \chi_{4}(d)^{-1 / 2} \sqrt{c \tau+d} \theta(\tau)
$$

and characterize all functions that satisfy even powers of this functional equation. This leads to and easy proof of

$$
\left\{(x, y) \in \mathbb{Z}^{2} \mid n=x^{2}+y^{2}\right\}=4 \sum_{d \mid n} \chi_{4}(d)
$$

Similar formulas exists for other $\theta$ functions.

$$
\left\{(x, y) \in \mathbb{Z}^{2} \mid n=x^{2}+x y+y^{2}\right\}=6 \sum_{d \mid n} \chi_{3}(d)
$$

### 1.3 Ramanujan's $\tau$ Function

Define $\tau(n)$ by

$$
\eta(\tau)^{24}=q(q ; q)_{\infty}^{24}=: \sum_{n=1}^{\infty} \tau(n) q^{n} .
$$

The following properties were observed by Ramanujan.

- $\tau(m n)=\tau(m) \tau(n)$ for $(m, n)=1$
- $\tau\left(p^{k+1}\right)=\tau\left(p^{k}\right) \tau(p)-p^{11} \tau\left(p^{k-1}\right)$
- $\tau(p) \leq 2 p^{11 / 2}$
- $\tau(n) \equiv \sigma_{11}(n) \bmod 691$

The weight 12 relation is satisfied by $\eta(\tau)^{24}$ is

$$
\eta\left(\frac{a \tau+b}{c \tau+d}\right)^{24}=(c \tau+d)^{12} \eta(\tau)^{24}
$$

The first two are equivalent to the Euler product

$$
f(s)=\sum_{n=1}^{\infty} \frac{\tau(n)}{n^{s}}=\prod_{p} \frac{1}{1-\tau(p) p^{-s}+p^{11-2 s}},
$$

and the weight 12 transformation formula gives the reflection formula

$$
\frac{f(s) \Gamma(s)}{(2 \pi)^{s}}=\frac{f(12-s) \Gamma(12-s)}{(2 \pi)^{12-s}} .
$$

### 1.4 Mock Modular Forms

By considering the Durfee square, we have

$$
\frac{1}{(q ; q)_{\infty}}=\sum_{n=0}^{\infty} \frac{q^{n^{2}}}{(q ; q)_{n}^{2}},
$$

which is essentially a (weak) modular form of weight $-1 / 2$. The function

$$
f(\tau)=\sum_{n=0}^{\infty} \frac{q^{n^{2}}}{(-q ; q)_{n}^{2}}
$$

turns out to not be modular, but can be made modular by adding some non-holomorphic function to it. Set

$$
F(z)=q_{z}^{-1} f(24 z)+\sqrt{-8} \int_{-\bar{z}}^{i \infty} \frac{\sum_{n \in \mathbb{Z}} \chi_{12}(n) n q^{n^{2}}}{\sqrt{-i(\tau+z)}} d \tau
$$

If $a d-b c=1$ and $144 \mid c$, we have

$$
F\left(\frac{a \tau+b}{c \tau+d}\right)=\left(\frac{12 c}{d}\right) \chi_{4}(d)^{-1 / 2} \sqrt{c \tau+d} F(\tau)
$$

### 1.5 Special Values of the $j$ Function

Let $K=\mathbb{Q}(\sqrt{-d})$ be an imaginary quadratic field and let $\mathbb{Z}+\mathbb{Z} \tau$ be its ring of integers. Then, $j(\tau)$ is an algebraic integer of degree $h(-d)$ over $\mathbb{Q}$, and $K(j(\tau))$ is the maximal unramified Abelian extension of $K$.

## Chapter 2

## Elliptic Functions and Basic Modular Forms on $\mathrm{SL}_{2}(\mathbb{Z})$

### 2.1 Theory of Elliptic Functions

Definition 2.1.1. Let $\omega_{1}, \omega_{2} \in \mathbb{C}$ with $\operatorname{Im}\left(\omega_{1} / \omega_{2}\right)>0$. An elliptic function modulo $\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$ is a meromorphic function $\mathbb{C} \rightarrow \mathbb{C}$ satisfying

$$
f(z)=f\left(z+\omega_{1}\right)=f\left(z+\omega_{2}\right)
$$

For the order of a non-constant function at a point $z_{0}$, we say $\operatorname{ord}_{z_{0}}(f(z))=n$ if

$$
f(z)=\left(z-z_{0}\right)^{n}\left(c+O\left(z-z_{0}\right)\right), \quad c \neq 0
$$

and ord $f(z)$, the (total) order of the function $f(z)$, is the number of poles of $f$ counted according to multipliticy (modulo $\Lambda$ ).

Proposition 2.1.2. Let $f$ be a non-constant elliptic function modulo $\Lambda$. Then,

1. $\sum_{z \in \mathbb{C} / \Lambda} \operatorname{res}_{z}(f)=0$
2. $\sum_{z \in \mathbb{C} / \Lambda} \operatorname{ord}_{z}(f)=0$
3. $\sum_{z \in \mathbb{C} / \Lambda} z \operatorname{ord}_{z}(f) \in \Lambda$
4. ord $f \geq 2$.

Proof. Let $C$ denote the counterclockwise traversal of the parallelogram with vertices $0, \omega_{2}, \omega_{2}+\omega_{1}, \omega_{1}$. Then,

$$
\begin{aligned}
\sum_{z \in \mathbb{C} / \Lambda} \operatorname{res}_{z}(f) & =\frac{1}{2 \pi i} \int_{C} f(z) d z=0 \\
\sum_{z \in \mathbb{C} / \Lambda} \operatorname{ord}_{z}(f) & =\frac{1}{2 \pi i} \int_{C} \frac{f^{\prime}(z)}{f(z)} d z=0
\end{aligned}
$$

since integrals along opposite sides cancel. Next

$$
\begin{aligned}
\sum_{z \in \mathbb{C} / \Lambda} z \operatorname{ord}_{z}(f)= & \frac{1}{2 \pi i} \int_{C} \frac{z f^{\prime}(z)}{f(z)} d z \\
= & \frac{1}{2 \pi i} \int_{0}^{\omega_{1}} \frac{z f^{\prime}(z)}{f(z)}-\frac{\left(\omega_{2}+z\right) f^{\prime}\left(\omega_{2}+z\right)}{f\left(\omega_{2}+z\right)} d z \\
& +\frac{1}{2 \pi i} \int_{0}^{\omega_{2}}-\frac{z f^{\prime}(z)}{f(z)}+\frac{\left(\omega_{1}+z\right) f^{\prime}\left(\omega_{1}+z\right)}{f\left(\omega_{1}+z\right)} d z \\
= & -\omega_{2} \cdot \frac{1}{2 \pi i} \int_{0}^{\omega_{1}} \frac{f^{\prime}(z)}{f(z)} d z \\
& +\omega_{1} \cdot \frac{1}{2 \pi i} \int_{0}^{\omega_{2}} \frac{f^{\prime}(z)}{f(z)} d z \\
= & \left.\left.-\omega_{2}\left(\frac{1}{2 \pi i} \log f(z)\right]_{0}^{\omega_{1}}\right)+\omega_{1}\left(\frac{1}{2 \pi i} \log f(z)\right]_{0}^{\omega_{2}}\right) \\
\in & \Lambda
\end{aligned}
$$

since $\omega_{1}$ (and $\omega_{2}$ ) is a period of the function $f(z)$, so the logarithm must change by an integral multiple of $2 \pi i$. For (4), if $f$ had order 0 , then it has no poles, and is thus bounded so is constant by Liouville's theorem. If $f$ had order 1 , then it has a simple pole with non-zero residue, which contradicts (1).

Later will we see that part (3) of Proposition 2.1.2 has a converse, that is, we can construct an elliptic function with any poles and zeros that satisfy (3).

### 2.2 The Weierstrass $\wp$ Function

For a lattice $\Lambda$, let $\Lambda^{\prime}$ denote $\Lambda-0$. Set

$$
\begin{aligned}
\wp\left(z \mid \omega_{1}, \omega_{2}\right) & =\frac{1}{z^{2}}+\sum_{\omega \in \Lambda^{\prime}} \frac{1}{(z+\omega)^{2}}-\frac{1}{\omega^{2}}, \\
\wp^{\prime}\left(z \mid \omega_{1}, \omega_{2}\right) & =\sum_{\omega \in \Lambda} \frac{-2}{(z+\omega)^{3}}, \\
G_{k}\left(\omega_{1}, \omega_{2}\right) & =\sum_{\omega \in \Lambda^{\prime}} \frac{1}{\omega^{k}} .
\end{aligned}
$$

The sum for $\wp(z)$ is arranged so that

$$
\frac{1}{(z+\omega)^{2}}-\frac{1}{\omega^{2}}=O\left(w^{-3}\right)
$$

which makes the sum over $\Lambda$ absolutely convergent. The series for $G_{2}$ is not absolutely convergent, so this is not a proper definition of $G_{2}$. Later, when defining $E_{2}$, we will fix the order of summation.

Proposition 2.2.1. Set $\Lambda=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$. Then, $\wp\left(z \mid \omega_{1}, \omega_{2}\right)$ is an elliptic function of order $2 \bmod \Lambda$, and we have:

1. The power series expansion

$$
\wp\left(z \mid \omega_{1}, \omega_{2}\right)=\frac{1}{z^{2}}+\sum_{k=1}^{\infty}(2 k+1) G_{2 k+2}\left(\omega_{1}, \omega_{2}\right) z^{2 k}
$$

2. For $\lambda \neq 0$ and integers $a, b, c, d$ with $a d-b c=1$,

$$
\begin{aligned}
& \wp\left(z \mid \omega_{1}, \omega_{2}\right)=\lambda^{2} \wp\left(\lambda z \mid \lambda \omega_{1}, \lambda \omega_{2}\right), \\
& \wp\left(z \mid \omega_{1}, \omega_{2}\right)=\wp\left(z \mid a \omega_{1}+b \omega_{2}, c \omega_{1}+d \omega_{2}\right) .
\end{aligned}
$$

3. The differential equation (set $g_{2}=60 G_{4}\left(\omega_{1}, \omega_{2}\right), g_{3}=140 G_{6}\left(\omega_{1}, \omega_{2}\right)$ )

$$
\wp^{\prime}(z)^{2}=4 \wp(z)^{3}-g_{2} \wp(z)-g_{3} .
$$

Proof. From the definitions, it is clear that $\wp^{\prime}(z)$ is elliptic modulo $\Lambda$ and $\wp(z)$ is an even function. Let $\omega \in \Lambda$. Since $\wp^{\prime}(z+\omega)=\wp^{\prime}(z)$, it follows that $\wp(z+\omega)=\wp(z)+\eta$ for some constant $\eta$. Setting $z=-\omega / 2$ shows that $\eta=0$. For (2), set $M=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)$. Then,

$$
\begin{aligned}
\wp\left(z \mid a \omega_{1}+b \omega_{2}, c \omega_{1}+d \omega_{2}\right) & =\frac{1}{z^{2}}+\sum_{\vec{n} \in \mathbb{Z}^{2}-\{0,0\}} \frac{1}{\left(z+\vec{n} \cdot M \cdot\left(\omega_{1}, \omega_{2}\right)^{\top}\right)^{2}}-\frac{1}{\left(\vec{n} \cdot M \cdot\left(\omega_{1}, \omega_{2}\right)^{\top}\right)^{2}} \\
& =\frac{1}{z^{2}}+\sum_{\vec{m} \in \mathbb{Z}^{2}-\{0,0\}} \frac{1}{\left(z+\vec{m} \cdot\left(\omega_{1}, \omega_{2}\right)^{\top}\right)^{2}}-\frac{1}{\left(\vec{m} \cdot\left(\omega_{1}, \omega_{2}\right)^{\top}\right)^{2}} \\
& =\wp\left(z \mid \omega_{1}, \omega_{2}\right) .
\end{aligned}
$$

Since $\operatorname{det}(M)=1, \vec{n} . M$ ranges over all of $\mathbb{Z}^{2}-\{0,0\}$ and includes each point once, the change of variables $\vec{m}=\vec{n} . M$ is justified.

For (3),

$$
\begin{aligned}
& \wp^{\prime}(z)^{2}=\frac{4}{z^{6}}-\frac{24 G_{4}}{z^{2}}-80 G_{6}+O\left(z^{2}\right) \\
& 4 \wp(z)^{3}=\frac{4}{z^{6}}+\frac{36 G_{4}}{z^{2}}+60 G_{6}+O\left(z^{2}\right) \\
& 60 \wp(z)=\frac{60 G_{4}}{z^{2}}+O\left(z^{2}\right)
\end{aligned}
$$

From this it is clear that $\wp^{\prime}(z)^{2}-4 \wp(z)^{3}+60 G_{4} \wp(z)$ is an entire elliptic function, hence it is a constant. This constant is also easily seen to be $-140 G_{6}$.

### 2.3 Eisenstein Series

Due to the homogeneity property in Proposition 2.2.1, without loss of generality we can set $\omega_{1}=\tau$ and $\omega_{2}=1$. In this case we have

$$
\wp(z \mid \tau, 1)=(c \tau+d)^{-2} \wp\left(\frac{z}{c \tau+d} \left\lvert\, \frac{a \tau+b}{c \tau+d}\right., 1\right),
$$

which shows that the power series coefficients satisfy

$$
G_{2 k}\left(\frac{a \tau+b}{c \tau+d}, 1\right)=(c \tau+d)^{2 k} G_{2 k}(\tau, 1), \quad k \geq 2
$$

It will be convenient to have a normalization of these functions $E_{2 k}(\tau)$ with $E_{2 k}(i \infty)=1$. For $k \geq 1$, set

$$
\begin{aligned}
E_{2 k}(\tau) & =\frac{G_{2 k}(\tau, 1)}{G_{2 k}(i \infty, 1)} \\
& =\frac{1}{2 \zeta(2 k)} \sum_{m=-\infty}^{\infty} \sum_{\substack{n=-\infty \\
(m, n) \neq(0,0)}}^{\infty} \frac{1}{(m \tau+n)^{2 k}}
\end{aligned}
$$

Proposition 2.3.1. The Eisenstein series $E_{2 k}$ have the following properties.

1. For $k \geq 1$, we have

$$
E_{2 k}(\tau)=1+\frac{2}{\zeta(1-2 k)} \sum_{n=1}^{\infty} \frac{n^{2 k-1} q^{k}}{1-q^{k}}
$$

2. For $k \geq 2, E_{2 k}(\tau)$ is a holomorphic function $\mathbb{H} \rightarrow \mathbb{C}$ satisfying

$$
E_{2 k}\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{2 k} E_{2 k}(\tau)
$$

We cannot conclude the last property for $k=1$ because the series defining $G_{2}(\tau, 1)$ is not absolutely convergent. It turns out that $E_{2}(\tau)$ has a similar functional equation with a small "error" term.

Proof. Using Exercise 2.12.3,

$$
\begin{aligned}
E_{2 k}(\tau) & =\frac{1}{2 \zeta(2 k)}\left(\sum_{n=1}^{\infty} \frac{2}{(n)^{2 k}}+\sum_{m=1}^{\infty} \sum_{n=-\infty}^{\infty} \frac{1}{(m \tau+n)^{2 k}}+\frac{1}{(-m \tau+n)^{2 k}}\right) \\
& =1+\frac{1}{\zeta(2 k)} \sum_{m=1}^{\infty} \sum_{n=-\infty}^{\infty} \frac{1}{(m \tau+n)^{2 k}} \\
& =1+\frac{2}{\zeta(1-2 k)} \sum_{m=1}^{\infty} \sum_{j=1}^{\infty} j^{2 k-1} q^{j m} \\
& =1+\frac{2}{\zeta(1-2 k)} \sum_{j=1}^{\infty} j^{2 k-1} \frac{q^{j}}{1-q^{j}}
\end{aligned}
$$

### 2.4 Modular Discriminant $\Delta(\tau)$ and Klein's Absolute Invariant $j(\tau)$

Let $e_{i}(\tau)$ be the roots of the cubic polynomial in the differential equation for $\wp$, that is,

$$
\begin{aligned}
\left(\wp^{\prime}\right)^{2} & =4 \wp^{3}-g_{2} \wp-g_{3} \\
& =4\left(\wp-e_{1}\right)\left(\wp-e_{2}\right)\left(\wp-e_{3}\right) .
\end{aligned}
$$

The discriminant of the cubic polynomial is therefore

$$
\begin{aligned}
\Delta(\tau): & =16\left(e_{1}-e_{2}\right)^{2}\left(e_{2}-e_{3}\right)^{2}\left(e_{3}-e_{1}\right)^{2} \\
& =-64\left(e_{1} e_{2}+e_{1} e_{2}+e_{3} e_{1}\right)^{3}-432 e_{1}^{2} e_{2}^{2} e_{3}^{2} \\
& =g_{2}^{3}-27 g_{3}^{2},
\end{aligned}
$$

where we have used

$$
\begin{aligned}
0 & =e_{1}+e_{2}+e_{3} \\
g_{2} & =-4\left(e_{1} e_{2}+e_{2} e_{3}+e_{3} e_{1}\right), \\
g_{3} & =4 e_{1} e_{2} e_{3} .
\end{aligned}
$$

Also, set

$$
j(\tau)=\frac{1728 g_{2}(\tau)^{3}}{\Delta(\tau)}
$$

This function is known as Klein's absolute invariant, or just the $j$ function.
Proposition 2.4.1. For $\Delta(\tau)$ and $j(\tau)$ we have

1. Representation in $E_{4}$ and $E_{6}$ and $q$-series expansions:

$$
\begin{aligned}
\Delta(\tau) & =\frac{64 \pi^{12}}{27}\left(E_{4}^{3}-E_{6}^{2}\right)=(2 \pi)^{12} q+O\left(q^{2}\right) \\
j(\tau) & =\frac{1728 E_{4}^{3}}{E_{4}^{3}-E_{6}^{2}}=\frac{1}{q}+744+O(q) .
\end{aligned}
$$

2. For $a d-b c=1$,

$$
\begin{aligned}
\Delta\left(\frac{a \tau+b}{c \tau+d}\right) & =(c \tau+d)^{12} \Delta(\tau) \\
j\left(\frac{a \tau+b}{c \tau+d}\right) & =j(\tau)
\end{aligned}
$$

3. At $\tau=i \infty, \Delta(\tau)$ vanishes and $j(\tau)$ blows up.
4. $\Delta(\tau)$ does not vanish (equiviently, $j(\tau)$ has no poles) at any $\tau \in \mathbb{H}$.

Proof. Exercise 2.12.2.

### 2.5 Basic Properties of $\mathrm{SL}_{2}(\mathbb{Z})$

For the Eisenstein series, we were able to find the transformation formula for any $a, b, c, d$ directly. However, in most cases we will just prove the transformation formula for specific $a, b, c, d$ and hope that the result for general $a, b, c, d$ can be obtained by iterating these special cases. Set

$$
\Gamma(1)=\mathrm{SL}_{2}(\mathbb{Z})
$$

i.e. the "modular group" or "full modular group". A matrix in $\mathrm{SL}_{2}(\mathbb{Z})$ acts on $\mathbb{H}$ via

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): \tau \mapsto \frac{a \tau+b}{c \tau+d}
$$

Note that

$$
\begin{equation*}
\operatorname{Im}\left(\frac{a \tau+b}{c \tau+d}\right)=\frac{\operatorname{Im} \tau}{|c \tau+d|^{2}} \tag{2.5.1}
\end{equation*}
$$

Two important elements are $S$ and $T$ :

$$
\begin{aligned}
S & =\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right): \tau \mapsto \frac{-1}{\tau} \\
T & =\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right): \tau \mapsto \tau+1
\end{aligned}
$$

Also set

$$
F=\left\{\tau \in \mathbb{H} \left\lvert\,-\frac{1}{2} \leq \operatorname{Re} \tau \leq \frac{1}{2}\right. \text { and }|\tau| \geq 1\right\}
$$

The left and right edges with $\operatorname{Re} \tau= \pm \frac{1}{2}$ are identified via $T$, and the left and right edges of $F$ on $|\tau|=1$ are identified via $S$. We will also formally include $i \infty$ in $F$ as well.

Proposition 2.5.1. For $\Gamma(1)$, we have

1. $F$ is a fundamental domain for $\mathbb{H} / \Gamma(1)$ with the appropriate edges identitfied.
2. $S$ and $T$ generate $\Gamma(1) / \pm I$.
3. For any $\tau \in F$ the isotropy subgroup $\Gamma(1)_{\tau}:=\{g \in \Gamma(1) \mid g \tau=\tau\}$ is $\pm I$ except in the cases

- $\tau=i \infty, \Gamma(1)_{\tau}:= \pm\left\{T^{k}\right\}_{k \in \mathbb{Z}}$
- $\tau=i, \Gamma(1)_{\tau}:= \pm\{I, S\}$
- $\tau=e(1 / 3), \Gamma(1)_{\tau}:= \pm\left\{I, S T,(S T)^{2}\right\}$
- $\tau=e(1 / 6), \Gamma(1)_{\tau}:= \pm\left\{I, T S,(T S)^{2}\right\}$

Proof. Sketch of (1) and (3): Given $\tau \in H$, we can apply $T$ and $S$ to get a point in $F$ by repeating the following steps. Apply $T^{k}$ to get $\tau$ inside $-\frac{1}{2} \leq \operatorname{Re} \tau \leq \frac{1}{2}$. If $|\tau|<1$ apply $S$. This must terminate with a point in $F$ because $\operatorname{Im} \tau$ only increases throughout the process. Now suppose $\tau_{1}, \tau_{2} \in F$ with $\operatorname{Im} \tau_{2} \geq \operatorname{Im} \tau_{1}$ are related by $\tau_{2}=\left(a \tau_{1}+b\right) /\left(c \tau_{1}+d\right)$. From (2.5.1), this means that $\left|c \tau_{1}+d\right| \leq 1$. Since $\tau_{1}$ is in $F$ this restricts $c$ to $c=0,1,-1$.
(2). Given $g \in \Gamma(1)$ take any $\tau$ in the interior of $F$. Use $S$ and $T$ to get $g \tau$ back into $F$ and use (1) to conclude that $g$ is a product of $T$ and $S$ (modulo $\pm I$ ).

### 2.6 The $\eta$ function and $E_{2}$

The logarithmic derivative of

$$
\eta(\tau):=q^{1 / 24}(q ; q)_{\infty}
$$

is simply related to $E_{2}(\tau)$.

$$
\begin{aligned}
\frac{1}{2 \pi i} \frac{d}{d \tau} \log \eta(\tau) & =\frac{1}{2 \pi i} \frac{d}{d \tau}\left(\frac{2 \pi i \tau}{24}+\sum_{n=1}^{\infty} \log \left(1-q^{n}\right)\right) \\
& =\frac{1}{24}+q \frac{d}{d q} \sum_{n=1}^{\infty} \log \left(1-q^{n}\right) \\
& =\frac{1}{24}-\sum_{n=1}^{\infty} \frac{n q^{n}}{1-q^{n}} \\
& =\frac{1}{24} E_{2}(\tau) .
\end{aligned}
$$

Lemma 2.6.1 (Poisson Summation Formula for Cosine). Under suitable restrictions of the function $f$, if

$$
f_{c}(y)=\int_{-\infty}^{\infty} f(x) \cos (2 \pi x y) d x
$$

then

$$
\sum_{n=-\infty}^{\infty} f_{c}(n)=\frac{f(0)}{2}+\sum_{n=1}^{\infty} f(n)
$$

Proposition 2.6.2. For $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma(1)$, we have

1. $E_{2}$ transformation:

$$
\begin{aligned}
E_{2}(\tau+1) & =E_{2}(\tau), \\
\tau^{-2} E_{2}\left(-\frac{1}{\tau}\right) & =E_{2}(\tau)+\frac{12}{2 \pi i \tau} \\
(c \tau+d)^{-2} E_{2}\left(\frac{a \tau+b}{c \tau+d}\right) & =E_{2}(\tau)+\frac{12 c}{2 \pi i(c \tau+d)}
\end{aligned}
$$

2. $\eta$ transformation:

$$
\begin{aligned}
\eta(\tau+1) & =e\left(\frac{1}{24}\right) \eta(\tau) \\
\eta\left(-\frac{1}{\tau}\right) & =\sqrt{-i \tau} \eta(\tau) \\
\eta\left(\frac{a \tau+b}{c \tau+d}\right) & =\epsilon_{\eta}\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right) \sqrt{-i(c \tau+d)} \eta(\tau)
\end{aligned}
$$

where $\epsilon_{\eta}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is some $24^{\text {th }}$ root of unity.
Proof. The first parts of (1) and (2) are trivial, so we start with the second part of (1). In Lemma 2.6 .1 set

$$
\begin{aligned}
f(x) & =-24 \sum_{n=1}^{\infty} x e(n \tau x)=\frac{-24 x q^{x}}{1-q^{x}} \\
f(0) & =\frac{24}{2 \pi i \tau}
\end{aligned}
$$

The result

$$
\begin{aligned}
f_{c}(y) & =\frac{1}{2 \zeta(2)} \sum_{n=1}^{\infty} \frac{1}{(n \tau+y)^{2}}+\frac{1}{(-n \tau+y)^{2}} \\
& =\frac{1}{2 \zeta(2)} \sum_{\substack{n \in \mathbb{Z} \\
n \neq 0}} \frac{1}{(n \tau+y)^{2}}
\end{aligned}
$$

is elementary, so the assertion of Lemma 2.6.1 gives

$$
\frac{1}{2 \zeta(2)} \sum_{m=-\infty}^{\infty} \sum_{\substack{n=-\infty \\ n \neq 0}}^{\infty} \frac{1}{(n \tau+m)^{2}}=\frac{12}{2 \pi i \tau}-24 \sum_{n=1}^{\infty} \frac{n q^{n}}{1-q^{n}}
$$

or,

$$
\frac{1}{2 \zeta(2)}\left(-2 \zeta(2)+\tau^{-2} G_{2}\left(-\frac{1}{\tau}\right)\right)=\frac{12}{2 \pi i \tau}-1+E_{2}(\tau)
$$

which is the second part of (1). The second part of (2) follows from integrating the second part of (1) and using $\tau=i$ to evaluate the constant of integration. The third parts of each follow from the first two since $S$ and $T$ generate $\Gamma(1)$.

Note that the $\eta$ function is non-vanishing on $\mathbb{H}$ so we may define a logarithm

$$
\log \eta(\tau):=\frac{2 \pi i \tau}{24}+\sum_{n=1}^{\infty} \log \left(1-q^{n}\right)
$$

This also entails that we may define a logarithm of the corresponding multiplier system

$$
\log \epsilon_{\eta}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right):=\log \eta\left(\frac{a \tau+b}{c \tau+d}\right)-\frac{1}{2} \log (\sqrt{-i(c \tau+d)})-\log \eta(\tau)
$$

Now we give a formula for $\log \epsilon_{\eta}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ in terms of Dedekind sums and a slightly simpler formula for its exponential $\epsilon_{\eta}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. For odd primes $p$ let $\left(\frac{c}{p}\right)$ be the usual Legendre symbol. Extend this to all positive odd $d$ by means of the prime factorization $d=p_{1}^{e_{1}} \cdots p_{n}^{e_{n}}$ via

$$
\left(\frac{c}{d}\right)=\left(\frac{c}{p_{1}}\right)^{e_{1}} \cdots\left(\frac{c}{p_{n}}\right)^{e_{n}}
$$

Then, extend to negative odd $d$ by

$$
\left(\frac{c}{d}\right)=(-1)^{\frac{\operatorname{sign}(d)-1}{2} \frac{\operatorname{sign}(c)-1}{2}}\left(\frac{c}{|d|}\right) .
$$

Note we have the generalized quadratic reciprocity and periodicity

$$
\begin{aligned}
\left(\frac{c}{d}\right) & =(-1)^{\frac{d-1}{2} \frac{c-1}{2}}\left(\frac{d}{|c|}\right), \text { for } c, d \text { odd } \\
\left(\frac{c+d}{d}\right) & = \begin{cases}-\left(\frac{c}{d}\right) & , d<0 \text { and } \operatorname{sign}(c) \neq \operatorname{sign}(c+d) \\
+\left(\frac{c}{d}\right) & , \text { otherwise }\end{cases} \\
\left(\frac{d}{c+2 d}\right) & =\left\{\begin{array}{lll}
-\left(\frac{d}{c}\right) & , d \equiv 2,3 & \bmod 4 \\
+\left(\frac{d}{c}\right) & , d \equiv 0,1 & \bmod 4
\end{array}\right.
\end{aligned}
$$

which are useful in evaluating the Jacobi symbol.
Proposition 2.6.3. For $c>0$, the multiplier system of $\eta(\tau)$ satisfies

$$
\begin{aligned}
\epsilon_{\eta}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) & =\left\{\begin{array}{ll}
\left(\frac{d}{c}\right) \zeta_{24}^{3(1-c)+b d\left(1-c^{2}\right)+c(a+d)} & , c \text { odd } \\
\left(\frac{c}{|d|}\right) \zeta_{24}^{3 d+a c\left(1-d^{2}\right)+d(b-c)} & , d \text { odd }
\end{array},\right. \\
\log \epsilon_{\eta}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) & =2 \pi i\left(\frac{a+d}{24 c}+\frac{S(-d, c)}{2}\right),
\end{aligned}
$$

where $S$ is the Dedekind sum $S(h, k)=\sum_{r=1}^{k-1} \frac{r}{k} \bar{B}_{1}\left(\frac{h r}{k}\right)$ and $\bar{B}_{1}(x)$ is the periodic Bernoulli polynomial

$$
\bar{B}_{1}(x)=\sum_{n=1}^{\infty}-\frac{\sin (2 \pi n x)}{\pi n}=\operatorname{FracPart}(x)-\frac{1}{2}
$$

Proof. The first formula can be found in [8, pg. 51]. The second formula can be found in [1, sec. 3.4]. The first formula can also be deduced directly from the main result of Section 2.11.

### 2.7 Recursions for the Eisenstein Series

The main result of this section is that the Eisenstein series $E_{8}, E_{10}, \ldots$ can be expressed as polynomials in just $E_{4}$ and $E_{6}$. In the next chapter we will see that this is no accident and that the representation is unique.

Proposition 2.7.1. For $n \geq 0$

$$
E_{2 n+8}(\tau)=\sum_{\substack{0 \leq k, l \leq n \\ k+l=n}} \frac{6(2 k+3)(2 l+3) \zeta(2 k+4) \zeta(2 l+4)}{(n+1)(2 n+7)(2 n+9) \zeta(2 n+8)} E_{2 k+4}(\tau) E_{2 l+4}(\tau)
$$

Proof. We have

$$
\begin{aligned}
\wp^{\prime \prime}(z) & =\frac{6}{z^{4}}+6 G_{4}+60 G_{6} z^{2}+210 G_{8} z^{4}+504 G_{10} z^{6}+O\left(z^{8}\right) \\
6 \wp(z)^{2} & =\frac{6}{z^{4}}+36 G_{4}+60 G_{6} z^{2}+\left(54 G_{4}^{2}+84 G_{8}\right) z^{4}+\left(180 G_{4} G_{6}+108 G_{10}\right) z^{6}+O\left(z^{8}\right),
\end{aligned}
$$

so $\wp^{\prime \prime}(z)-6 \wp(z)^{2}$ must be a constant. The assertion follows by equating the coefficients of $z^{4}, z^{6}, \ldots$ to zero in the difference $\wp^{\prime \prime}(z)-6 \wp(z)^{2}$. Recall that $E_{2 k}=\frac{1}{2 \zeta(2 k)} G_{2 k}$.

### 2.8 Elliptic $\Theta$ Functions

Besides the Eisenstein series, there are other ways of constructing modular forms. The main ingredient is the Poisson summation formula applied to the Gaussian distribution. For arbitrary $\alpha, \beta \in \mathbb{R}$, define the $\Theta$ function with characteristics $\alpha, \beta$ as

$$
\Theta\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right](z \mid \tau)=\sum_{n \in \mathbb{Z}} e\left((z+\beta)(n+\alpha)+\tau(n+\alpha)^{2} / 2\right)
$$

The variable $z$ may take any value in $\mathbb{C}$, but $\tau$ is constrained to $\mathbb{H}$, where the sum absolutely convergent. Jacobi's four $\Theta$ functions are then

$$
\begin{aligned}
& \Theta_{1}(z \mid \tau)=\Theta\left[\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right](z \mid \tau)=-2 \sin (\pi z) q^{1 / 8}+2 \sin (3 \pi z) q^{9 / 8}+O\left(q^{17 / 8}\right) \\
& \Theta_{2}(z \mid \tau)=\Theta\left[\begin{array}{l}
1 / 2 \\
0 / 2
\end{array}\right](z \mid \tau)=2 \cos (\pi z) q^{1 / 8}+2 \cos (3 \pi z) q^{9 / 8}+O\left(q^{17 / 8}\right) \\
& \Theta_{3}(z \mid \tau)=\Theta\left[\begin{array}{l}
0 / 2 \\
0 / 2
\end{array}\right](z \mid \tau)=1+2 \cos (2 \pi z) q^{1 / 2}+2 \cos (4 \pi z) q^{2}+O\left(q^{5 / 2}\right) \\
& \Theta_{4}(z \mid \tau)=\Theta\left[\begin{array}{l}
0 / 2 \\
1 / 2
\end{array}\right](z \mid \tau)=1-2 \cos (2 \pi z) q^{1 / 2}+2 \cos (4 \pi z) q^{2}+O\left(q^{5 / 2}\right)
\end{aligned}
$$

Proposition 2.8.1. For integers $A$ and $B$, we have

1. Quasi-periodicity relation:

$$
\Theta\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right](z+A \tau+B \mid \tau)=e\left(B \alpha-A \beta-A z-\frac{A^{2} \tau}{2}\right) \Theta\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right](z \mid \tau)
$$

2. Shift of characteristics:

$$
\Theta\left[\begin{array}{l}
\alpha+A \\
\beta+B
\end{array}\right](z \mid \tau)=e(\alpha B) \Theta\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right](z \mid \tau)
$$

Proof. For (1), let

$$
s_{n}(z)=e\left((z+\beta)(n+\alpha)+\tau(n+\alpha)^{2} / 2\right) .
$$

We have

$$
\begin{aligned}
\Theta\left[\begin{array}{c}
\alpha \\
\beta
\end{array}\right](z+A \tau+B \mid \tau) & =\sum_{n \in \mathbb{Z}} s_{n}(z+A \tau+B) \\
& =e\left(-A B-A \beta-A z-\frac{A^{2} \tau}{2}\right) \sum_{n \in \mathbb{Z}} s_{n+A}(z+B) \\
& =e\left(-A \beta-A z-\frac{A^{2} \tau}{2}\right) \sum_{n \in \mathbb{Z}} s_{n}(z+B) \\
& =e\left(-A \beta-A z-\frac{A^{2} \tau}{2}\right) e(B \alpha+B n) \sum_{n \in \mathbb{Z}} s_{n}(z) \\
& =e\left(B \alpha-A \beta-A z-\frac{A^{2} \tau}{2}\right) \Theta\left[\begin{array}{c}
\alpha \\
\beta
\end{array}\right](z \mid \tau)
\end{aligned}
$$

(2) says that $\Theta$ doesn't change much when the characteristics are changed by integers and follows by shifting $n \rightarrow n-A$ in the series definition of $\Theta\left[\begin{array}{l}\alpha+A \\ \beta+B\end{array}\right](z \mid \tau)$.
Lemma 2.8.2 (Poisson Summation Formula). Under suitable restrictions of the function $f$, if

$$
\hat{f}(y)=\int_{-\infty}^{\infty} f(x) \exp (-2 \pi x y) d y
$$

then

$$
\sum_{n=-\infty}^{\infty} \hat{f}(n)=\sum_{n=-\infty}^{\infty} f(n)
$$

Proposition 2.8.3. For $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma(1)$, we have

1. Transformation under $T$ :

$$
\begin{aligned}
& \Theta_{1}(z \mid \tau+1)=\sqrt{i} \Theta_{1}(z \mid \tau), \\
& \Theta_{2}(z \mid \tau+1)=\sqrt{i} \Theta_{2}(z \mid \tau), \\
& \Theta_{3}(z \mid \tau+1)=\Theta_{4}(z \mid \tau), \\
& \Theta_{4}(z \mid \tau+1)=\Theta_{3}(z \mid \tau) .
\end{aligned}
$$

2. Transformation under $S$ :

$$
\begin{aligned}
& \Theta_{1}\left(\frac{z}{\tau} \left\lvert\,-\frac{1}{\tau}\right.\right)=-i \sqrt{-i \tau} e\left(\frac{z^{2}}{2 \tau}\right) \Theta_{1}(z \mid \tau) \\
& \Theta_{2}\left(\frac{z}{\tau} \left\lvert\,-\frac{1}{\tau}\right.\right)=\sqrt{-i \tau} e\left(\frac{z^{2}}{2 \tau}\right) \Theta_{4}(z \mid \tau) \\
& \Theta_{3}\left(\frac{z}{\tau} \left\lvert\,-\frac{1}{\tau}\right.\right)=\sqrt{-i \tau} e\left(\frac{z^{2}}{2 \tau}\right) \Theta_{3}(z \mid \tau) \\
& \Theta_{4}\left(\frac{z}{\tau} \left\lvert\,-\frac{1}{\tau}\right.\right)=\sqrt{-i \tau} e\left(\frac{z^{2}}{2 \tau}\right) \Theta_{2}(z \mid \tau)
\end{aligned}
$$

3. General transformation for $\Theta_{1}$ :

$$
\Theta_{1}\left(\frac{z}{c \tau+d} \left\lvert\, \frac{a \tau+b}{c \tau+d}\right.\right)=\epsilon_{\Theta_{1}} \sqrt{-i(c \tau+d)} e\left(\frac{c z^{2}}{2(c \tau+d)}\right) \Theta_{1}(z \mid \tau)
$$

where $\left.\epsilon_{\Theta_{1}}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)$ is some $8^{\text {th }}$ root of unity.
4. General transformation for arbitrary characteristics:

$$
\begin{gathered}
\Theta\left[\begin{array}{c}
\frac{1}{2}+\alpha \\
\frac{1}{2}+\beta
\end{array}\right]\left(\frac{z}{c \tau+d} \left\lvert\, \frac{a \tau+b}{c \tau+d}\right.\right)=\epsilon_{\Theta_{1}} \sqrt{-i(c \tau+d)} e\left(\frac{c z^{2}}{2(c \tau+d)}\right) \Theta\left[\begin{array}{c}
\frac{1}{2}+a \alpha+c \beta \\
\frac{1}{2}+b \alpha+d \beta
\end{array}\right](z \mid \tau) \\
\times e\left(\frac{a b \alpha^{2}}{2}+b c \alpha \beta+\frac{c d \beta^{2}}{2}\right) e\left(\frac{(a-1) \alpha+c \beta}{2}\right)
\end{gathered}
$$

Proof. The transformations in (1) are straightforward, so we concentrate on (2), where the proof for $\Theta_{3}$ will give the idea of the proof of the others. In Lemma 2.8.2 set

$$
f(x)=e\left(z x+\tau x^{2} / 2\right)
$$

It is easy to compute

$$
\hat{f}(y)=\frac{e\left(\frac{z y}{\tau}-\frac{y^{2}}{2 \tau}\right)}{\sqrt{-i \tau} e\left(\frac{z^{2}}{2 \tau}\right)},
$$

so the transformation for $\Theta_{3}$ follows. (3) follows by iterating (1) and (2).
The assertion (4) is equivalent to (3) since the $\Theta$ function with an arbitrary characteristic is no more general than $\Theta_{1}(z \mid \tau)$. We can write $\Theta_{1}$ as a shift of the $\Theta$ function with general characteristics as

$$
\Theta_{1}(z \mid \tau)=e\left(\frac{\alpha(\alpha \tau-2 z-1)}{2}\right) \Theta\left[\begin{array}{c}
\frac{1}{2}+\alpha \\
\frac{1}{2}+\beta
\end{array}\right](z-\alpha \tau-\beta \mid \tau)
$$

and then transform part (3) of Proposition 2.8.3 . The details are messy but straightforward.
Proposition 2.8.4. We have

1. $\Theta_{1}(z)$ is an odd function of $z$
2. The zero set of $\Theta_{1}(z)$ is exactly $\mathbb{Z}+\mathbb{Z} \tau$
3. Jacobi Triple Product:

$$
\Theta_{1}(z \mid \tau)=-i q_{z}^{-1 / 2} q^{1 / 8}\left(q_{z} ; q\right)_{\infty}\left(q / q_{z} ; q\right)_{\infty}(q ; q)_{\infty}
$$

4. As $z \rightarrow 0$

$$
\Theta_{1}(z \mid \tau)=-2 \pi \eta(\tau)^{3} z+O\left(z^{3}\right)
$$

5. $\epsilon_{\Theta_{1}}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=-i \epsilon_{\eta}\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)^{3}$.

Proof. (1) follows by replacing $n \rightarrow-1-n$ in the series definition of $\Theta_{1}$.

$$
\Theta_{1}(z \mid \tau)=\sum_{n \in \mathbb{Z}} q^{\frac{1}{2}\left(n+\frac{1}{2}\right)^{2}} i(-1)^{n} e\left(z\left(n+\frac{1}{2}\right)\right)
$$

For (2), we integrate around a fundamental parallelogram to get the number of zeros of $\Theta_{1}$ modulo the lattice as

$$
\frac{1}{2 \pi i}\left(\int_{w}^{w+1}+\int_{w+1}^{w+1+\tau}+\int_{w+1+\tau}^{w+\tau}+\int_{w+\tau}^{w}\right) d \log \Theta_{1}(z)
$$

By Proposition 2.8.1, we have

$$
\begin{aligned}
& d \log \Theta_{1}(z+1)=d \log \Theta_{1}(z) \\
& d \log \Theta_{1}(z+\tau)=d \log \Theta_{1}(z)-2 \pi i d z
\end{aligned}
$$

This first equation says that the second and fourth integrals cancel completely. This second equation says that the first and third integrals combine to give a total of

$$
\frac{1}{2 \pi i} \int_{w}^{w+1} 2 \pi i d z=1
$$

zero in a fundamental parallelogram.
(3) is a well-known identity, and (4) follows from rewriting (3) as

$$
\frac{\Theta_{1}(z \mid \tau)}{i\left(q_{z}^{1 / 2}-q_{z}^{-1 / 2}\right)}=q^{1 / 8}\left(q q_{z} ; q\right)_{\infty}\left(q / q_{z} ; q\right)_{\infty}(q ; q)_{\infty}
$$

and letting $z \rightarrow 0$.
(5) follows from differentiating part (3) of Proposition 2.8.3 and substituting part (4) here.

Proposition 2.8.5. We have

1. Relation between $\wp(z)$ and $\Theta_{1}(z)$ :

$$
\wp(z \mid \tau)=-\frac{\partial^{2}}{\partial z^{2}} \log \Theta_{1}(z \mid \tau)-\frac{\pi^{2}}{3} E_{2}(\tau)
$$

2. If $p_{1}+\cdots+p_{r}=q_{1}+\cdots+q_{r}$, then

$$
\frac{\Theta_{1}\left(z-q_{1} \mid \tau\right) \cdots \Theta_{1}\left(z-q_{r} \mid \tau\right)}{\Theta_{1}\left(z-p_{1} \mid \tau\right) \cdots \Theta_{1}\left(z-p_{r} \mid \tau\right)}
$$

is an elliptic function modulo $\mathbb{Z}+\mathbb{Z} \tau$ with poles $p_{1}, \ldots, p_{r}$ and zeros $q_{1}, \ldots, q_{r}$.
3. Factorization of $\wp\left(z_{1}\right)-\wp\left(z_{2}\right)$ :

$$
\wp\left(z_{1}\right)-\wp\left(z_{2}\right)=(2 \pi i)^{2} \eta(\tau)^{6} \frac{\Theta_{1}\left(z_{1}-z_{2}\right) \Theta_{1}\left(z_{1}+z_{2}\right)}{\Theta_{1}\left(z_{1}\right)^{2} \Theta_{1}\left(z_{2}\right)^{2}} .
$$

Proof. From Propositions 2.8.1 and 2.8.4, we see that

$$
\wp(z \mid \tau)+\frac{\partial^{2}}{\partial z^{2}} \log \Theta_{1}(z, \tau)
$$

is an entire elliptic function, hence it is some constant $C$. In order to evaluate this constant we need to get the next coefficient in the expansion of $\Theta_{1}(z)$, i.e.

$$
\Theta_{1}(z)=-2 \pi \eta(\tau)^{3}\left(z+\frac{C}{2} z^{3}+O\left(z^{5}\right)\right)
$$

To this end, note that

$$
\begin{aligned}
\frac{\partial^{3}}{\partial z^{3}} \Theta_{1}(z \mid \tau) & =(2 \pi i)^{3} \sum_{n \in \mathbb{Z}}\left(n+\frac{1}{2}\right)^{3} e\left(\left(z+\frac{1}{2}\right)\left(n+\frac{1}{2}\right)+\frac{\tau}{2}\left(n+\frac{1}{2}\right)^{2}\right) \\
& =4 \pi i \frac{\partial^{2}}{\partial \tau \partial z} \Theta_{1}(z \mid \tau)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
-2 \pi \eta(\tau)^{3} \frac{C}{2} \cdot 6 & =\left.\frac{\partial^{3}}{\partial z^{3}} \Theta_{1}(z \mid \tau)\right|_{z=0} \\
& =\left.4 \pi i \frac{\partial^{2}}{\partial \tau \partial z} \Theta_{1}(z \mid \tau)\right|_{z=0} \\
& =-8 \pi^{2} i \frac{\partial}{\partial \tau} \eta(\tau)^{3} \\
& =2 \pi^{3} \eta(\tau)^{3} E_{2}(\tau)
\end{aligned}
$$

and so $C=-\frac{\pi^{2}}{3} E_{2}(\tau)$.
(2) Follows immediately from Proposition 2.8.1, which says that

$$
\begin{aligned}
& \Theta_{1}((z+1)-a \mid \tau)=-\Theta_{1}(z-a \mid \tau) \\
& \Theta_{1}((z+\tau)-a \mid \tau)=-e(a-z-\tau / 2) \Theta_{1}(z-a \mid \tau)
\end{aligned}
$$

As long as $e\left(q_{1}+\cdots+q_{r}-p_{1}-\cdots-p_{r}\right)=1$, the displayed quotient will be an elliptic function modulo $\mathbb{Z}+\mathbb{Z} \tau$.

For (3), note that there is a constant $A$, depending only on $\tau$, such that

$$
\wp\left(z_{1}\right)-\wp\left(z_{2}\right)=A \frac{\Theta_{1}\left(z_{1}-z_{2}\right) \Theta_{1}\left(z_{1}+z_{2}\right)}{\Theta_{1}\left(z_{1}\right)^{2} \Theta_{1}\left(z_{2}\right)^{2}}
$$

since both sides have the same poles and zeros as functions of either $z_{1}$ or $z_{2}$. To evaluate this constant, multiply both sides by $z_{1}^{2}$ and let $z_{1} \rightarrow 0$. This gives

$$
\begin{aligned}
1 & =A \frac{\Theta_{1}\left(-z_{2}\right) \Theta_{1}\left(z_{2}\right)}{\Theta_{1}\left(z_{2}\right)^{2}} \lim _{z_{1} \rightarrow 0} \frac{z_{1}^{2}}{\Theta_{1}\left(z_{1}\right)^{2}} \\
& =-A \lim _{z_{1} \rightarrow 0} \frac{z_{1}^{2}}{\Theta_{1}\left(z_{1}\right)^{2}} \\
& =-A\left(-2 \pi \eta(\tau)^{3}\right)^{-2}
\end{aligned}
$$

## $2.9 \quad \Gamma(2)$ and the Asymptotic of $\Theta$ Near the Cusps

According to Proposition 2.8.3, we have a surjective homomorphism $\Gamma(1) \rightarrow S_{3}$, where $S_{3}$ the the group of permutations on the $\Theta$ functions $\Theta_{2}, \Theta_{3}, \Theta_{4}$. One might wonder what the kernel and stabilizer of, say, $\Theta_{3}$ is, that is, what the groups

$$
\begin{aligned}
& G_{1}=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma(1) \left\lvert\, \Theta_{i}\left(0 \left\lvert\, \frac{a \tau+b}{c \tau+d}\right.\right)^{8}=(c \tau+d)^{4} \Theta_{i}(0 \mid \tau)^{8}\right. \text { for all } i \in\{2,3,4\}\right\} \\
& G_{2}=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma(1) \left\lvert\, \Theta_{3}\left(0 \left\lvert\, \frac{a \tau+b}{c \tau+d}\right.\right)^{8}=(c \tau+d)^{4} \Theta_{3}(0 \mid \tau)^{8}\right.\right\}
\end{aligned}
$$

are. To answer this question we can apply part (4) of Proposition 2.8.3 to see that the kernel of the homomorphism $\Gamma(1) \rightarrow S_{3}$ consists of those $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma(1)$ for which

$$
\begin{array}{ll}
a \alpha+c \beta=\alpha & \bmod 1, \\
b \alpha+d \beta=\beta & \bmod 1,
\end{array}
$$

for all half-integers $\alpha$ and $\beta$. Clearly this is the group

$$
G_{1}=\Gamma(2):=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma(1) \left\lvert\,\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \bmod 2\right.\right\}
$$

By the first isomorphism theorem, we have

$$
\Gamma(1) / \Gamma(2) \simeq S_{3}=\left\{\Gamma(2),(S T) \Gamma(2),(S T)^{2} \Gamma(2),(S) \Gamma(2),(T) \Gamma(2),(T S T) \Gamma(2)\right\}
$$

The following groups between $\Gamma(1)$ and $\Gamma(2)$ have important names:

$$
\begin{aligned}
\Gamma_{0}(2) & =\{\Gamma(2),(T) \Gamma(2)\} \\
& =\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma(1) \right\rvert\, c \equiv 0 \bmod 2\right\} \\
\Gamma_{\vartheta} & =\{\Gamma(2),(S) \Gamma(2)\} \\
& =\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma(1) \right\rvert\, a b \equiv c d \equiv 0 \bmod 2\right\} .
\end{aligned}
$$

Note that $G_{2}=\Gamma_{\vartheta}$, which is known as the theta subgroup of $\Gamma(1)$ while $\Gamma_{0}(2)$ is know as the principle Hecke subgroup of level 2.

The main goal of this section is to establish asymptotic formulas for the $\Theta$ functions near the cusps in order to obtain explicit formulas for the roots of unity involved in the multiplier systems for these functions. When the function vanishes at a cusp, it seems that we need to use the modular inverse symbol

$$
x_{\bmod y}^{-1}=z \text { whenever there is a } z \text { such that } z x \equiv 1 \bmod y \text { and } 0 \leq z / y<1
$$

Note that we always have a reciprocity property given by

$$
\frac{x_{\bmod y}^{-1}}{y}+\frac{y_{\bmod x}^{-1}}{x}=1+\frac{1}{x y} .
$$

When it is clear, we will set $\Theta(\tau)=\Theta(0 \mid \tau)$.
Proposition 2.9.1. Let $c$ and $d$ be any integers with $(c, d)=1$ and $c \neq 0$. Then, as $t \rightarrow 0^{+}$,

1. Relation to exponential sums

$$
\begin{aligned}
\sqrt{i c t} \Theta_{3}\left(i t-\frac{d}{c}\right) & \sim \frac{1}{\sqrt{-i c}} \sum_{n=1}^{|c|} \zeta_{2 c}^{-d n^{2}} \\
\frac{e^{\frac{\pi}{4 c^{2} t}}}{2} \sqrt{i c t} \Theta_{3}\left(i t-\frac{d}{c}\right) & \sim \frac{1}{\sqrt{-4 i c}} \sum_{n=1}^{|c|}\left(\zeta_{2 c}^{n}+\zeta_{2 c}^{-n}\right) \zeta_{2 c}^{-d n^{2}}, c d \text { odd }
\end{aligned}
$$

2. $\Theta_{3}$ :

$$
\begin{aligned}
\sqrt{i c t} \Theta_{3}\left(i t-\frac{d}{c}\right) & \sim\left(\frac{c}{d}\right) \zeta_{8}^{1-d} \quad, c \text { even } d \text { odd } \\
\frac{e^{\frac{\pi}{4 c^{2} t}}}{2} \sqrt{i c t} \Theta_{3}\left(i t-\frac{d}{c}\right) & \sim\left(\frac{d}{|c|}\right) \zeta_{8}^{c} \zeta_{c}^{(8 d)^{-1} \bmod c}, c \text { odd } d \text { odd } \\
\sqrt{i c t} \Theta_{3}\left(i t-\frac{d}{c}\right) & \sim\left(\frac{d}{|c|}\right) \zeta_{8}^{c} \quad, \text { c odd } d \text { even }
\end{aligned}
$$

3. $\Theta_{4}$ :

$$
\begin{array}{rlrl}
\sqrt{i c t} \Theta_{4}\left(i t-\frac{d}{c}\right) & \sim\left(\frac{c}{d}\right) \zeta_{8}^{1+2 c-d-c d} & , c \text { even } d \text { odd } \\
\sqrt{i c t} \Theta_{4}\left(i t-\frac{d}{c}\right) & \sim\left(\frac{d}{|c|}\right) \zeta_{8}^{c} \quad, c \text { odd } d \text { odd } \\
\frac{e^{\frac{\pi}{4 c^{2} t}}}{2} \sqrt{i c t} \Theta_{4}\left(i t-\frac{d}{c}\right) & \sim\left(\frac{d}{|c|}\right) \zeta_{8}^{c} \zeta_{c}^{(8 d)^{-1} \bmod c}, c \text { odd } d \text { even }
\end{array}
$$

4. $\Theta_{2}$ :

$$
\begin{aligned}
\frac{e^{\frac{\pi}{4 c^{2} t}}}{2} \sqrt{i c t} \Theta_{2}\left(i t-\frac{d}{c}\right) & \sim\left(\frac{c}{d}\right) \zeta_{8}^{3 d-3} \zeta_{8 c}^{d_{\text {mod } 8 c}^{-1}}, c \text { even } d \text { odd } \\
\sqrt{i c t} \Theta_{2}\left(i t-\frac{d}{c}\right) & \sim\left(\frac{d}{|c|}\right) \zeta_{8}^{c d+3 c+2 d+2}, c \text { odd } d \text { odd } \\
\sqrt{i c t} \Theta_{2}\left(i t-\frac{d}{c}\right) & \sim\left(\frac{d}{|c|}\right) \zeta_{8}^{c d+c-2 d} \quad, c \text { odd } d \text { even }
\end{aligned}
$$

Proof. To avoid complications, the factor $\sqrt{-i c t}$ is handled like $\sqrt{|c| t}$. This results in a $\zeta_{8}^{\operatorname{sgn}(c)}$ canceling in the formulas, since

$$
\sqrt{i c t}=\sqrt{|c| t} \zeta_{8}^{\operatorname{sgn}(c)}
$$

For (1), if $c d$ is even then the function of $n$ given by $e\left(\frac{-d n^{2}}{2 c}\right)$ has $c$ as a period. Therefore,

$$
\begin{aligned}
\Theta_{3}\left(i t-\frac{d}{c}\right) & =\sum_{n \in \mathbb{Z}} e\left(\frac{-d n^{2}}{2 c}\right) e^{-\pi n^{2} t} \\
& =\sum_{n=1}^{|c|} e\left(\frac{-d n^{2}}{2 c}\right) \sum_{\substack{m \in \mathbb{Z} \\
m \equiv n \bmod c}} e^{-\pi m^{2} t} \\
& =\sum_{n=1}^{|c|} e\left(\frac{-d n^{2}}{2 c}\right) e^{-\pi c^{2} t} \Theta_{3}\left(i c n t \mid i c^{2} t\right) \\
& =\sum_{n=1}^{|c|} e\left(\frac{-d n^{2}}{2 c}\right) \frac{1}{|c| \sqrt{t}} \Theta_{3}\left(\frac{n}{c} \left\lvert\, \frac{i}{c^{2} t}\right.\right) \\
& \sim \frac{1}{\sqrt{|c|}} \sum_{n=1}^{|c|} \zeta_{2 c}^{-d n^{2}} \times \frac{1}{\sqrt{|c| t}}
\end{aligned}
$$

If $c d$ is odd, then $\Theta_{3}$ vanishes at this cusp, so the evaluation is slightly more difficult. In this case
$e\left(\frac{d n^{2}}{2 c}\right)$ changes sign when $n$ is incremented by $c$, so temporarily setting $q=e^{-\frac{\pi}{4 c^{2} t}}$,

$$
\begin{aligned}
\Theta_{3}\left(i t-\frac{d}{c}\right) & =\sum_{n=1}^{|c|} e\left(\frac{d n^{2}}{2 c}\right) \sum_{\substack{m \in \mathbb{Z} \\
m \equiv n \text { mod } 2|c|}} e^{-\pi m^{2} t}-e^{-\pi(m+c)^{2} t} \\
& =\sum_{n=1}^{|c|} e\left(\frac{d n^{2}}{2 c}\right) \frac{\Theta_{3}\left(\frac{n}{2 c \mid} \left\lvert\, \frac{i}{4 c^{2} t}\right.\right)-\Theta_{3}\left(\frac{c+n}{2 c} \left\lvert\, \frac{i}{4 c^{2} t}\right.\right)}{2|c| \sqrt{t}} \\
& =\sum_{n=1}^{|c|} e\left(\frac{-d n^{2}}{2 c}\right) \frac{\left(1+2 q \cos \left(\frac{\pi n}{c}\right)+\cdots\right)-\left(1+2 q \cos \left(\frac{\pi(n+c)}{c}\right)+\cdots\right)}{2|c| \sqrt{t}} \\
& \sim \frac{1}{\sqrt{|c|}} \sum_{n=1}^{|c|} e\left(\frac{-d n^{2}}{2 c}\right) \cos \left(\frac{2 n \pi}{c}\right) \times \frac{2 q}{\sqrt{|c| t}} .
\end{aligned}
$$

For (2), let $T(d, c)$ denote $\lim _{t \rightarrow 0} \sqrt{|c| t} \Theta_{3}\left(i t-\frac{d}{c}\right)$. By (1),

$$
T(d, c)=\frac{1}{\sqrt{|c|}} \sum_{n=1}^{|c|} \zeta_{2 c}^{-d n^{2}}= \begin{cases}\left(\frac{d}{|c|}\right) \zeta_{8}^{c-\operatorname{sgn}(c)} & , c \text { odd } d \text { even } \\ \left(\frac{c}{d}\right) \zeta_{8}^{1-d-\operatorname{sgn}(c)} & , c \text { even } d \text { odd }\end{cases}
$$

where we have used the classical evaluation of quadratic Gauss sums (for any integers $p$ and $q$ with $q>0$ and $(p, q)=1$

$$
\frac{1}{\sqrt{q}} \sum_{n=1}^{q} \zeta_{q}^{p n^{2}}= \begin{cases}\left(\frac{p}{q}\right) \frac{1+i}{1+i^{q}} & , q \text { odd } \\ \left(\frac{q}{p}\right) \frac{1+i^{p}}{1+i} \frac{1+i^{q}}{1-i} & , p \text { odd }\end{cases}
$$

) in the case $c$ odd $d$ even for in this cases it becomes a sum over $|c|^{\text {th }}$ roots of unity. The $c$ odd and $d$ even case follows from $\Theta_{3}(-1 / \tau)=\sqrt{-i \tau} \Theta_{3}(\tau)$. The second part of (2) can be obtained by completing the square in the sum $\sum_{n=1}^{|c|}\left(\zeta_{2 c}^{n}+\zeta_{2 c}^{-n}\right) \zeta_{2 c}^{-d n^{2}}$, but here will use the easy identity

$$
\Theta_{3}(\tau+1)=2 \Theta_{3}(4 \tau)-\Theta_{3}(\tau)
$$

to give an alternate derivation. First, we need to obtain the next term in the expansion of $\Theta_{3}\left(i t-\frac{d}{c}\right)$ for $c$ odd and $d$ even. In this cases find integers $a$ and $b$ so that $a d-b c=1$ and $a$ is even. The transformation formula for $\Theta_{3}$ is

$$
\Theta_{3}(\tau)=\frac{\epsilon}{\sqrt{-i(c \tau+d)}} \Theta_{3}\left(\frac{a \tau+b}{c \tau+d}\right)
$$

where $\epsilon$ is some $8^{\text {th }}$ root of unity. Setting $\tau=i t-d / c$ in this formula produces

$$
\begin{aligned}
\Theta_{3}\left(\frac{-d}{c}+i t\right) & =\frac{\epsilon}{\sqrt{c t}} \Theta_{3}\left(\frac{a}{c}+\frac{i}{c^{2} t}\right) \\
& =\frac{\epsilon}{\sqrt{c t}}\left(1+2 e\left(\frac{a}{2 c}\right) e^{-\frac{\pi}{c^{2} t}}+\cdots\right) \\
& =\frac{T(d, c)}{\sqrt{|c| t}}\left(1+2 e\left(\frac{(2 d)_{\bmod c}^{-1}}{c}\right) e^{-\frac{\pi}{c^{2} t}}+\cdots\right) .
\end{aligned}
$$

Now let $c$ and $d$ both be odd. Setting $\tau=\frac{-c-d}{c}+i t$ in the identity produces

$$
\begin{aligned}
\Theta_{3}\left(-\frac{d}{c}+i t\right)= & 2 \Theta_{3}\left(\frac{-4 c-4 d}{c}+4 i t\right)-\Theta_{3}\left(\frac{-c-d}{c}+i t\right) \\
= & 2 \frac{T(4 d+4 c, c)}{\sqrt{4|c| t}}\left(1+2 e\left(\frac{\left.\left.(8 d+8 c)_{\bmod c}^{-1}\right) e^{-\frac{\pi}{4 c^{2} t}}+\cdots\right)}{c}+\cdots\right)\right. \\
& \quad-\frac{T(d+c, c)}{\sqrt{|c| t}}\left(1+2 e\left(\frac{(2 d+2 c)_{\bmod c}^{-1}}{c}\right) e^{-\frac{\pi}{c^{2} t}}+\cdots\right) \\
= & \frac{T(d+c, c)}{\sqrt{|c| t}} e\left(\frac{(8 d)_{\bmod c}^{-1}}{c}\right) 2 e^{-\frac{\pi}{4 c^{2} t}}+\cdots,
\end{aligned}
$$

which gives the second part of (2). Parts (3) and (4) follow from the identities

$$
\begin{aligned}
& \Theta_{4}(\tau+1)=\Theta_{3}(\tau) \\
& \Theta_{2}(-1 / \tau)=\sqrt{-i \tau} \Theta_{4}(\tau)
\end{aligned}
$$

Care has been taken to ensure that the formulas are valid for negative $c$ as well.

### 2.10 Addition Formulas

Theorem 2.10.1 (Weierstrass). A meromorphic function $f: \mathbb{C} \rightarrow \mathbb{C}$ possesses an algebraic addition theorem, that is, a non-trivial relation of the form

$$
P(f(x), f(y), f(x+y))=0
$$

for some polynomial $P$ with coefficients independent of $x$ and $y$ if and only if $f(z)$ is one of the three possibilities:

1. rational function of $z$
2. rational function of $e(z / \omega)$ for some period $\omega$
3. rational function of $\wp\left(z \mid \omega_{1}, \omega_{2}\right)$ and $\wp^{\prime}\left(z \mid \omega_{1}, \omega_{2}\right)$ for some periods $\omega_{1}, \omega_{2}$

The third part of this theorem is usually stated with "an elliptic function of $z$ modulo $\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$ ". These are equivalent because any elliptic function is a rational function of $\wp(z)$ and $\wp^{\prime}(z)$. First suppose that $f(z)$ is an even elliptic function with zeros $\pm q_{n}, \ldots, \pm q_{n}$ and poles $\pm p_{n}, \ldots, \pm q_{n}$. Then, there must be a constant $c$ such that

$$
f(z)=c \prod_{i=1}^{n} \frac{\wp(z)-\wp\left(q_{i}\right)}{\wp(z)-\wp\left(p_{i}\right)}
$$

and so $f(z)$ is a rational function of $\wp(z)$. Next, for an elliptic function that is not necessarily even, use

$$
f(z)=\frac{f(z)+f(-z)}{2}+\wp^{\prime}(z) \cdot \frac{f(z)-f(-z)}{2 \wp^{\prime}(z)}
$$

where $\frac{f(z)+f(-z)}{2}$ and $\frac{f(z)-f(-z)}{2 \wp^{\prime}(z)}$ are even elliptic functions.

## Proposition 2.10.2.

1. The map $z \rightarrow\left(\wp\left(z \mid \omega_{1}, \omega_{2}\right), \wp^{\prime}\left(z \mid \omega_{1}, \omega_{2}\right)\right)$ defines a bijection between the points of $\mathbb{C} /\left(\omega_{1} \mathbb{Z}+\omega_{2} \mathbb{Z}\right)$ and the points on the curve $y^{2}=4 x^{3}-g_{2} x-g_{3}$ (with $\infty$ included).
2. For any $g_{2}, g_{3} \in \mathbb{C}$ such that $g_{2}^{3}-27 g^{2} \neq 0$, the system

$$
\begin{aligned}
g_{2} & =40 G_{4}\left(\omega_{1}, \omega_{2}\right) \\
g_{3} & =140 G_{6}\left(\omega_{1}, \omega_{2}\right)
\end{aligned}
$$

is solvable for some periods $\omega_{1}, \omega_{2}$.
3. If $u+v+w \equiv 0 \bmod \omega_{1} \mathbb{Z}+\omega_{2} \mathbb{Z}$, then $\left(\wp(u), \wp^{\prime}(u)\right)$, $\left(\wp(v), \wp^{\prime}(v)\right)$, and $\left(\wp(w), \wp^{\prime}(w)\right)$ are colinear, that is

$$
\operatorname{det}\left(\begin{array}{ccc}
1 & \wp(u) & \wp^{\prime}(u) \\
1 & \wp(v) & \wp^{\prime}(v) \\
1 & \wp(w) & \wp^{\prime}(w)
\end{array}\right)=0
$$

4. Explicit addition formula for $\wp(z)$ :

$$
\wp(u+v)=\wp(u)+\wp(v)+\frac{1}{4}\left(\frac{\wp^{\prime}(u)-\wp^{\prime}(v)}{\wp(u)-\wp(v)}\right)^{2} \text {. }
$$

Proof. (4) is left as an exercise. (2) will be established later when it is shown that $j(\tau)$ is a univalent function $\mathbb{H} / \Gamma(1) \rightarrow \mathbb{C}$.

For (1), suppose that $\left(\wp\left(z_{1}\right), \wp^{\prime}\left(z_{1}\right)\right)=\left(\wp\left(z_{2}\right), \wp^{\prime}\left(z_{2}\right)\right)$. Since $\wp(z)$ is an elliptic function of order 2, we must have $z_{1}+z_{2} \equiv 0$. This implies that $\wp^{\prime}\left(z_{1}\right)=\wp^{\prime}\left(-z_{2}\right)=-\wp^{\prime}\left(z_{2}\right)=-\wp^{\prime}\left(z_{1}\right)$ which means that $\wp^{\prime}\left(z_{1}\right)=0$ and $\wp^{\prime}\left(z_{2}\right)=0$. If it were true that $z_{1} \not \equiv z_{2}$ this would mean that the function $f(z)=\wp(z)-\wp\left(z_{1}\right)$ would have at least double zeros at the two distinct locations $z_{1}$ and $z_{2}$. This contradicts the fact the $f(z)$ has order 2 .

For (3), determine the line $l(x, y)=0$ through the points $\left(\wp(u), \wp^{\prime}(u)\right)$ and $\left(\wp(v), \wp^{\prime}(v)\right)$. Assume that this line is not vertical, so $l(x, y)=A+B x+y$ for some constants $A$ and $B$. The elliptic function $l\left(\wp(z), \wp^{\prime}(z)\right)$ has order 3 in this case so its zeros $u, v$ and $w_{1}$, say, satisfy $u+v+w_{1} \equiv 0$. This implies that $w_{1} \equiv w$, so the assertion follows. If line is vertical, then it follows that $u+v \equiv 0$, and so $w \equiv 0$, which is consistent with the third point $\left(\wp(w), \wp^{\prime}(w)\right)$ being located at $\infty$.

### 2.11 $\Gamma(3)$ and the Asymptotic of $\eta$ Near the Cusps

The $\eta$ function vanishes at every cusp and is modular with respect to $\Gamma(1)$. It turns out that there is quite a magical formula for the asymptotics near the cusps. We simply state this first and devote this section to understanding this formula.

Proposition 2.11.1. Let $c$ and $d$ be any integers with $(c, d)=1$ and $c \neq 0$. Then, as $t \rightarrow 0^{+}$,

$$
\begin{gathered}
\sqrt{i c t} e^{\frac{\pi}{12 c^{2} t}} \eta\left(-\frac{d}{c}+i t\right) \sim \frac{1}{\sqrt{-3 i c}} \sum_{n=0}^{|c|}(-1)^{n}\left(\zeta_{24 c}^{-2(6 n-1)}+\zeta_{24 c}^{2(6 n-1)}\right) \zeta_{24 c}^{-d(6 n-1)^{2}} \\
=\zeta_{24 c}^{d+\left(c^{2}-1\right)\left(d^{2}-1\right) d_{\bmod c}^{-1}} \times \begin{cases}\left(\frac{c}{d}\right) \zeta_{24}^{15+9 d+c d} & , d \text { odd } \\
\left(\frac{d}{|c|}\right) \zeta_{24}^{3 c-2 c d} & , \text { c odd }\end{cases}
\end{gathered}
$$

Proof. Let us first check that the final expression on the right hand side is well-defined. This entails showing that $\left(c^{2}-1\right)\left(d^{2}-1\right) \equiv 0 \bmod 24$, which is indeed true for relatively prime integers $c$ and $d$. As a consequence of the Jacobi's triple product identity, we have the representation

$$
\eta(\tau)=q^{1 / 24}\left(q, q^{3}\right)_{\infty}\left(q^{2}, q^{3}\right)_{\infty}\left(q^{3}, q^{3}\right)_{\infty}=\sum_{m \in \mathbb{Z}}(-1)^{m} e\left(\frac{(6 m-1)^{2} \tau}{24}\right)
$$

hence the representation as a sum over roots of unity follows along the same lines as the calculations in Proposition 2.9.1. The explicit evaluation will be deduced below.

Since the exponential sum in Proposition 2.11 .1 seems difficult to evaluate directly, we will use an indirect approach based properties of the modular group. Recall that we have the subgroup of $\Gamma(1)$ given by

$$
\Gamma(2)=\{M \in \Gamma(1) \mid M \equiv I \bmod 2\}
$$

We had $\Gamma(1) / \Gamma(2) \simeq S_{3}$ with the elements of the quotient realized as the six permutations of the three functions $\Theta_{2}(\tau)^{8}, \Theta_{3}(\tau)^{8}$ and $\Theta_{4}(\tau)^{8}$. We can also define

$$
\Gamma(3)=\{M \in \Gamma(1) \mid M \equiv I \bmod 3\} .
$$

The full modular group $\Gamma(1)$ acts on the four functions

$$
f_{\infty}(\tau)=3^{12} \eta(3 \tau)^{24}, \quad f_{0}(\tau)=\eta\left(\frac{\tau}{3}\right)^{24}, \quad f_{1}(\tau)=\eta\left(\frac{\tau+1}{3}\right)^{24}, \quad f_{2}(\tau)=\eta\left(\frac{\tau+2}{3}\right)^{24}
$$

by permuting them according to $A_{4}$ since the two permutations

$$
\begin{array}{rlrl}
f_{\infty}(-1 / \tau) & =\tau^{12} f_{0}(\tau), & & f_{\infty}(\tau+1)=f_{\infty}(\tau), \\
f_{0}(-1 / \tau) & =\tau^{12} f_{\infty}(\tau), & f_{0}(\tau+1)=f_{1}(\tau), \\
f_{1}(-1 / \tau) & =\tau^{12} f_{2}(\tau), & f_{1}(\tau+1)=f_{2}(\tau), \\
f_{2}(-1 / \tau) & =\tau^{12} f_{1}(\tau), & & f_{2}(\tau+1)=f_{0}(\tau)
\end{array}
$$

generate all of $A_{4}$. It is not hard to show that the kernel of this homomorphism $\Gamma(1) \rightarrow A_{4}$ is exactly $\pm \Gamma(3)$. Suppose $f_{\infty}$ and $f_{0}$ are fixed by some $\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in \Gamma(1)$. Thse two conditions are equivalent to

$$
\begin{aligned}
& \left(\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
a & 3 b \\
c / 3 & d
\end{array}\right) \in \Gamma(1), \\
& \left(\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right)^{-1}=\left(\begin{array}{cc}
a & b / 3 \\
3 c & d
\end{array}\right) \in \Gamma(1) .
\end{aligned}
$$

Therefore, we must have $b \equiv c \equiv 0 \bmod 3$, which is exactly the defining congruences for $\pm \Gamma(3)$. Now, any permutation in $A_{4}$ that fixes $f_{\infty}$ and $f_{0}$ necessarily fixes $f_{1}$ and $f_{2}$, so we have shown that the kernel is exactly $\pm \Gamma(3)$.

Since $S_{3}$ has a normal subgroup whose factor group is $\mathbb{Z}_{2}$, there is a group $\Gamma^{2}$ with $\Gamma(1) / \Gamma^{2} \simeq \mathbb{Z}_{2}$. Similarly, $A_{4}$ has a normal subgroup $\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)$ whose factor group is $\mathbb{Z}_{3}$, so there is a group $\Gamma^{3}$ with $\Gamma(1) / \Gamma^{3} \simeq \mathbb{Z}_{3}$. In summary,

$$
\begin{aligned}
& \Gamma(2) \unlhd \Gamma^{2} \unlhd \Gamma(1) \quad \text { with } \quad \Gamma(1) / \Gamma^{2} \simeq \mathbb{Z}_{2}, \\
& \pm \Gamma(3) \unlhd \Gamma^{3} \unlhd \Gamma(1) \quad \text { with } \quad \Gamma(1) / \Gamma^{3} \simeq \mathbb{Z}_{3} .
\end{aligned}
$$

For a given subgroup $\Gamma$ of $\mathrm{SL}_{2}(\mathbb{Z})$, let $\bar{\Gamma}$ denote $\Gamma / \pm I$, that is, the equivalent classes of matrices up to sign. Sometimes, if we are very careful, we will denote these elements with a bar over them. Note that

$$
\begin{array}{ll}
\bar{\Gamma}(1) / \bar{\Gamma}(2) \simeq S_{3}, & \bar{\Gamma}(1) / \bar{\Gamma}^{2} \simeq \mathbb{Z}_{2}, \\
\bar{\Gamma}(1) / \bar{\Gamma}(3) \simeq A_{4}, & \bar{\Gamma}(1) / \bar{\Gamma}^{3} \simeq \mathbb{Z}_{3} .
\end{array}
$$

Also, let $G^{\text {ab }}$ denote the Abelianization of $G$, the quotient of $G$ and its commutator subgroup. We have the following universal property of the Abelianization: if $\phi: G \rightarrow \operatorname{im}(\phi)$ is a homomorphism to an Abelian group, then there is a unique homomorphism $h: G^{\text {ab }} \rightarrow \operatorname{im}(\phi)$ so that the diagram

commutes. Since $\bar{\Gamma}(1)$ is generated by $\bar{S}$ and $\bar{S} \bar{T}$ and these elements have orders two and three, respectively, it follows that

$$
\bar{\Gamma}(1)^{\mathrm{ab}} \subset\left\{\bar{S}^{i}(\bar{S} \bar{T})^{j} \mid i \in\{0,1\}, j \in\{0,1,2\}\right\} \simeq \mathbb{Z}_{6}
$$

Now define $\pi: \bar{\Gamma}(1) \rightarrow \mathbb{Z}_{6}$ by

$$
\pi\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)=\frac{\eta\left(\frac{a \tau+b}{c \tau+d}\right)^{4}}{(c \tau+d)^{2} \eta(\tau)^{4}}
$$

where we have identified $\mathbb{Z}_{6}$ with the sixth roots of unity. Since $\pi(\bar{S})=-1$ and $\pi(\bar{T})=\zeta_{6}$, we see that $\pi$ is a surjection, and so

$$
\bar{\Gamma}(1)^{\mathrm{ab}} \simeq \mathbb{Z}_{6} .
$$

Proposition 2.11.2. The function $\eta(\tau)^{4}$ is modular in weight 2 with respect to $\Gamma(2) \cap \Gamma(3)$, i.e.

$$
\eta\left(\frac{a \tau+b}{c \tau+d}\right)^{4}=(c \tau+d)^{2} \eta(\tau)^{4}, \text { for }\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma(2) \cap \Gamma(3) .
$$

Proof. The natural projection map $\phi: \bar{\Gamma}(1) \rightarrow \bar{\Gamma}(1) / \bar{\Gamma}^{2} \times \bar{\Gamma}(1) / \bar{\Gamma}^{3}$ has image $\mathbb{Z}_{2} \times \mathbb{Z}_{3} \simeq \mathbb{Z}_{6}$, which is Abelian. By the universal property of the Abelianization, we have $\phi=h \circ \pi$, where, in this case, $h$ must be an isomorphism. Therefore, $\operatorname{ker}(\pi)=\operatorname{ker}(\phi)=\bar{\Gamma}^{2} \cap \bar{\Gamma}^{3} \subset \bar{\Gamma}(2) \cap \bar{\Gamma}(3)$.

According to Proposition 2.11.2, if we want to find the sixth root of unity $\epsilon\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)$ so that

$$
\eta\left(\frac{a \tau+b}{c \tau+d}\right)^{4}=\epsilon\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)(c \tau+d)^{2} \eta(\tau)^{4}, \text { for }\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right) \in \Gamma(1)
$$

it suffices to find a formula for $\epsilon\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)$ that satsifies

$$
\begin{aligned}
\eta\left(\frac{a \tau+b}{c \tau+d}\right)^{12} & =\epsilon\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)^{3}(c \tau+d)^{6} \eta(\tau)^{12}, \text { for }\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma(1), \\
\eta\left(\frac{a \tau+b}{c \tau+d}\right)^{8} & =\epsilon\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)^{2}(c \tau+d)^{4} \eta(\tau)^{8}, \text { for }\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right) \in \Gamma(1)
\end{aligned}
$$

for just the finite number of elements in $\Gamma(1) / \Gamma(2)$ for the first formula and $\Gamma(1) / \pm \Gamma(3)$ for the second formula. For $\Gamma(1) / \Gamma(2)$, we have,

$$
\begin{array}{ll}
\epsilon\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right)^{3}=1 & \epsilon\left(\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right)^{3}=-1 \\
\epsilon\left(\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\right)^{3}=1 & \epsilon\left(\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)\right)^{3}=-1  \tag{2.11.1}\\
\epsilon\left(\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)\right)^{3}=1 & \epsilon\left(\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\right)^{3}=-1
\end{array}
$$

For $\Gamma(1) / \pm \Gamma(3)$, we have

$$
\begin{array}{lll}
\epsilon\left( \pm\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right)^{2}=\zeta_{3}^{0} & \epsilon\left( \pm\left(\begin{array}{ll}
0 & 1 \\
2 & 2
\end{array}\right)\right)^{2}=\zeta_{3}^{1} & \epsilon\left( \pm\left(\begin{array}{ll}
0 & 1 \\
2 & 1
\end{array}\right)\right)^{2}=\zeta_{3}^{2}, \\
\epsilon\left( \pm\left(\begin{array}{ll}
0 & 1 \\
2 & 0
\end{array}\right)\right)^{2}=\zeta_{3}^{0} & \epsilon\left( \pm\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right)\right)^{2}=\zeta_{3}^{1} & \epsilon\left( \pm\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)\right)^{2}=\zeta_{3}^{2}, \\
\epsilon\left( \pm\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)\right)^{2}=\zeta_{3}^{0} & \epsilon\left( \pm\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\right)^{2}=\zeta_{3}^{1} & \epsilon\left( \pm\left(\begin{array}{ll}
1 & 1 \\
2 & 0
\end{array}\right)\right)^{2}=\zeta_{3}^{2},  \tag{2.11.2}\\
\epsilon\left( \pm\left(\begin{array}{ll}
1 & 2 \\
2 & 2
\end{array}\right)\right)^{2}=\zeta_{3}^{0} & \epsilon\left( \pm\left(\begin{array}{ll}
1 & 2 \\
1 & 0
\end{array}\right)\right)^{2}=\zeta_{3}^{1} & \epsilon\left( \pm\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)\right)^{2}=\zeta_{3}^{2} .
\end{array}
$$

In order to complete these calculations, we write each matrix in $\mathrm{SL}_{2}(\mathbb{Z} / 2 \mathbb{Z})$ (resp. $\mathrm{SL}_{2}(\mathbb{Z} / 3 \mathbb{Z})$ ) as a word in $S$ and $T$ modulo 2 (resp. 3) and apply the homomorphism ( $T \mapsto \zeta_{2}, S \mapsto \zeta_{2}$ ) (resp. $\left.\left(T \mapsto \zeta_{3}, S \mapsto 1\right)\right)$. Noticing that $1-c^{2}$ is congruent to $0 \bmod 2($ resp. 3$)$ only when $c$ is not congruent to $0 \bmod 2($ resp. 3), we split the evaluations into the two cases $c \equiv 0 \bmod 2($ resp. 3) and $c \not \equiv 0 \bmod 2$ (resp. 3). By inspection of (2.11.1) and (2.11.2), we see that

$$
\begin{aligned}
\epsilon\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)^{3} & =\left\{\begin{array}{ll}
\zeta_{2}^{b d} & , c \equiv 0 \bmod 2 \\
\zeta_{2}^{a+d+1} & , c \not \equiv 0 \bmod 2
\end{array},\right. \\
\epsilon\left( \pm\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)^{2} & = \begin{cases}\zeta_{3}^{b d} & , c \equiv 0 \bmod 3 \\
\zeta_{3}^{(a+d) c} & , c \not \equiv 0 \bmod 3\end{cases}
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
& \epsilon\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)^{3}=\zeta_{2}^{b d\left(1-c^{2}\right)+(a+d+1) c} \\
& \epsilon\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)^{2}=\zeta_{3}^{b d\left(1-c^{2}\right)+(a+d) c}
\end{aligned}
$$

and so,

$$
\begin{aligned}
\epsilon\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right) & =\epsilon_{6}\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)^{3} / \epsilon_{6}\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)^{2} \\
& =\zeta_{6}^{b d\left(1-c^{2}\right)+(a+d+3) c} .
\end{aligned}
$$

Finally, setting $\tau=i t-d / c$ in the transformation formula

$$
\eta\left(\frac{a \tau+b}{c \tau+d}\right)^{4}=\zeta_{6}^{b d\left(1-c^{2}\right)+(a+d+3) c}(c \tau+d)^{2} \eta(\tau)^{4}
$$

and keeping in mind that $a d-b c=1$, we derive

$$
(i c t)^{2} e^{\frac{\pi}{3 c^{2} t}} \eta\left(\frac{-d}{c}+i t\right)^{4} \sim e\left(-\frac{a c}{6}+\frac{a}{6 c}+\frac{b c^{2} d}{6}-\frac{b d}{6}-\frac{c d}{6}-\frac{c}{2}\right) .
$$

In order to determine the correct fourth root, we need a formula for an odd power of the $\eta$ function. Fortunately, the relation

$$
\begin{equation*}
\eta(\tau)^{3}=\frac{1}{2} \Theta_{2}(\tau) \Theta_{3}(\tau) \Theta_{4}(\tau) \tag{2.11.3}
\end{equation*}
$$

is a consequence of Jacobi's triple product identity (see Exercise 2.12.4). Let us now assume that $c$ is odd and apply the asymptotic for the $\Theta$ functions derived in Section 2.9. These formulas give

$$
\begin{aligned}
(i c t)^{3 / 2} e^{\frac{\pi}{4 c^{2} t}} \eta\left(i t-\frac{d}{c}\right)^{3} & \sim\left\{\begin{array}{l}
\left(\frac{d}{|c|}\right) \zeta_{c}^{(8 d)_{\bmod c}^{-1} \zeta_{8}^{5 c+2 d+c d+2}, d \text { odd }} \\
\left(\frac{d}{|c|}\right) \zeta_{c}^{(8 d)_{\bmod c}^{-1} c} \zeta_{8}^{3 c-2 d+c d}, d \text { even }
\end{array}\right. \\
& =\left(\frac{d}{|c|}\right) \zeta_{c}^{(8 d)_{\bmod c}^{-1} \zeta_{8}^{c(3-d)},} \\
& =\left(\frac{d}{|c|}\right) e\left(\frac{a\left(1-c^{2}\right)}{8 c}-\frac{c d}{8}+\frac{3 c}{8}\right)
\end{aligned}
$$

where we have cleverly combined the two cases into one that holds for all $d$ and used the elementary observation that

$$
\frac{(8 d)_{\bmod c}^{-1}}{c} \equiv \frac{\left(1-c^{2}\right) a}{8 c} \quad \bmod 1
$$

for odd $c$ (recall that $a d-b c=1$ so $\left.a=d^{-1} \bmod c\right)$. Also, this is well-defined because $c^{2}-1 \equiv 0 \bmod 8$. Finally, since $c^{2}-1 \equiv 0 \bmod 8$,

$$
\begin{aligned}
\sqrt{i c t} e^{\frac{\pi}{12 c^{2} t}} \eta\left(\frac{-d}{c}+i t\right) & =e\left(c-\frac{b d\left(c^{2}-1\right)}{8}\right) \frac{(i c t)^{2} e^{\frac{\pi}{3 c^{2} t}} \eta\left(i t-\frac{d}{c}\right)^{4}}{(i c t)^{3 / 2} e^{\frac{\pi}{4 c^{2} t}} \eta\left(i t-\frac{d}{c}\right)^{3}} \\
& \sim\left(\frac{d}{|c|}\right) e\left(-\frac{a c}{24}+\frac{a}{24 c}+\frac{b c^{2} d}{24}-\frac{b d}{24}-\frac{c d}{24}+\frac{c}{8}\right) .
\end{aligned}
$$

After eliminating $b$ via $a d-b c=1$ and replacing $a$ by $d_{\bmod c}^{-1}$, this becomes the assertion of the proposition for $c$ odd. The case $d$ odd can be dealt with similarly, but we can also use $\eta(-1 / \tau)=$ $\sqrt{-i \tau} \eta(\tau)$, and, when relating $d_{c}^{-1}$ to $c_{d}^{-1}$, we can use

$$
\frac{d_{c}^{-1}}{c}+\frac{c_{d}^{-1}}{d} \equiv \frac{1}{c d} \quad \bmod 1
$$

### 2.12 Exercises

Exercise 2.12.1. Prove part (4) of Proposition 2.10.2. You will have to actually work out the third intersection point of a line with the curve $y^{2}=4 x^{3}-g_{2} x-g_{3}$.

Exercise 2.12.2. Prove all parts of Proposition 2.4.1
Exercise 2.12.3 (Lipschitz summation formula). For integers $k \geq 1$, show

$$
\frac{1}{\zeta(2 k)} \sum_{n=-\infty}^{\infty} \frac{1}{(z+n)^{2 k}}=\frac{2}{\zeta(1-2 k)} \sum_{j=1}^{\infty} j^{2 k-1} q_{z}^{j}
$$

You might need the functional equation for $\zeta$ in the form

$$
\frac{2}{\zeta(1-2 k)}=\frac{(2 \pi i)^{2 k}}{(2 k-1)!} \frac{1}{\zeta(2 k)} .
$$

Exercise 2.12.4. Via Jacobi's triple product identity, show that

$$
\begin{aligned}
\Theta_{2}(0 \mid \tau) & =2 \frac{\eta(2 \tau)^{2}}{\eta(\tau)}=2 q^{1 / 8}+\cdots \\
\Theta_{3}(0 \mid \tau) & =\frac{\eta(\tau)^{5}}{\eta(2 \tau)^{2} \eta(\tau / 2)^{2}}=1+2 q^{1 / 2}+\cdots \\
\Theta_{4}(0 \mid \tau) & =\frac{\eta(\tau / 2)^{2}}{\eta(\tau)}=1-2 q^{1 / 2}+\cdots
\end{aligned}
$$

Exercise 2.12.5. This exercise deals with the theta subgroup

$$
\Gamma_{\vartheta}=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma(1) \right\rvert\, a b \equiv c d \equiv 0 \quad \bmod 2\right\} .
$$

1. Show that $S$ and $T^{2}$ generate $\Gamma_{\vartheta} / \pm I$. Possible hint: first show that every rational number is $\Gamma_{\vartheta}$-equivalent to either $1(=1 / 1)$ or $i \infty(=1 / 0)$ and deduce a fundamental domain that has $3=\left[\Gamma(1): \Gamma_{\vartheta}\right]$ translates of the fundamental domain for $\Gamma(1)$.
2. Deduce that the multiplier system for $\Theta_{3}$ satisfies

$$
\Theta_{3}\left(0 \left\lvert\, \frac{a \tau+b}{c \tau+d}\right.\right)=\Theta_{3}(0 \mid \tau) \times \begin{cases}\left(\frac{d}{c}\right) e\left(\frac{1-c}{8}\right) \sqrt{-i(c \tau+d)} & , c \text { odd } \\ \left(\frac{c}{d}\right) e\left(\frac{d-1}{8}\right) \sqrt{c \tau+d} & , d \text { odd }\end{cases}
$$

for any $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{\vartheta}$. Hint: Let $\tau=i t-d / c$ and use the asymptotics at the cusps and be careful with the branches of the square root: $-\pi / 2<\operatorname{Arg}(\sqrt{z}) \leq \pi / 2$ and the properties of the Jacobi symbol.

Exercise 2.12.6. Show that for any $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma(1)$

$$
\eta\left(\frac{a \tau+b}{c \tau+d}\right)=\sqrt{-i(c \tau+d)} \eta(\tau) \times\left\{\begin{array}{ll}
\left(\frac{d}{c}\right) \zeta_{24}^{3(1-c)+c(a+d)+b d\left(1-c^{2}\right)} & , c \text { odd } \\
\left(\frac{c}{|d|}\right) \zeta_{24}^{3 d+d(b-c)+a c\left(1-d^{2}\right)} & , d \text { odd }
\end{array} .\right.
$$

Exercise 2.12.7. Investigate

$$
\frac{\log \left|\Theta_{3}\left(i t+\frac{1+\sqrt{5}}{2}\right)\right|}{\log (t)}
$$

as $t \rightarrow 0^{+}$.
Exercise 2.12.8. The Weierstrass $\sigma$ function for the lattice $\Lambda=\mathbb{Z} \tau+\mathbb{Z}$ is the entire function defined as

$$
\sigma(z \mid \tau)=z \prod_{\omega \in \Lambda^{\prime}}\left(1-\frac{z}{\omega}\right) e^{\frac{z}{\omega}+\frac{z^{2}}{2 \omega^{2}}} .
$$

The product is absolutely convergent. For $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma(1)$ and integers $A, B$ with $\omega=A \tau+B$, show that

$$
\begin{aligned}
\wp(z \mid \tau) & =-\frac{\partial^{2}}{\partial z^{2}} \sigma(z \mid \tau) \\
\sigma(z \mid \tau) & =\frac{-e^{\frac{\pi^{2}}{6} E_{2}(\tau) z^{2}}}{2 \pi \eta(\tau)^{3}} \Theta_{1}(z \mid \tau) \\
\sigma\left(\frac{z}{c \tau+d} \left\lvert\, \frac{a \tau+b}{c \tau+d}\right.\right) & =(c \tau+d)^{-1} \sigma(z \mid \tau) \\
\frac{\sigma(z+\omega \mid \tau)}{\sigma(z \mid \tau)} & =(-1)^{A+B+A B} e\left(-\frac{\left(6 A+\pi i E_{2}(\tau) \omega\right)(2 z+\omega)}{12}\right)
\end{aligned}
$$

Exercise 2.12.9. Use Proposition 2.7.1 to get

$$
\begin{aligned}
E_{8} & =E_{4}^{2} \\
E_{10} & =E_{4} E_{6}
\end{aligned}
$$

## Chapter 3

## Theory of Modular Forms on $\mathrm{SL}_{2}(\mathbb{Z})$

### 3.1 Definition of a Modular Form

Define the slash operator $\left.\right|_{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), k}$ in weight $k$ (an integer) for a matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with positive determinant as

$$
\left.f\right|_{\left(\begin{array}{c}
a \\
c
\end{array} d\right), k} ^{c}(\tau)=\frac{(a d-b c)^{k / 2}}{(c \tau+d)^{k}} f\left(\frac{a \tau+b}{c \tau+d}\right) .
$$

One can easily check that this operation is compatible with matrix multiplication, that is,

$$
\left.\left.f\right|_{M_{1}, k}\right|_{M_{2}, k}(\tau)=\left.f\right|_{M_{1} M_{2}, k}(\tau) .
$$

Here, $\left.\left.\right|_{M_{1}, k}\right|_{M_{2}, k}$ means the result of applying $\left.\right|_{M_{1}, k}$ followed by $\left.\right|_{M_{2}, k}$.
Now suppose that $f(\tau)$ has period $1\left(\left.f\right|_{T}=f\right)$ so that it has a Fourier series expansion in the form

$$
\begin{equation*}
f(\tau)=\sum_{k=-\infty}^{\infty} a_{k} q^{k} \tag{3.1.1}
\end{equation*}
$$

We say:

1. $f(\tau)$ is meromorphic at $\infty$ if only finitely many negative powers of $q$ appear in (3.1.1).
2. $f(\tau)$ is holomorphic at $\infty$ if only no (strictly) negative powers of $q$ appear in (3.1.1).
3. $f(\tau)$ is vanishes at $\infty$ if only (strictly) powers of $q$ appear in (3.1.1).

Since $T \in \Gamma(1)$, the following definition makes sense.
Definition 3.1.1. Suppose that

$$
\left.f\right|_{g, k}(\tau)=f(\tau), \text { for all } g \in \Gamma(1) \text { and almost all } \tau \in \mathbb{H} .
$$

Define the various spaces $A_{k}, M_{k}^{!}, M_{k}, S_{k}$ for any integer $k$ as

1. Automorphic forms of weight $k$ :

$$
A_{k}(\Gamma(1))=\{f(\tau) \mid f \text { meromorphic on } \mathbb{H} \text { and meromorphic at } \infty\} .
$$

2. Weakly-modular forms of weight $k$ :

$$
M_{k}^{!}(\Gamma(1))=\{f(\tau) \mid f \text { holomorphic on } \mathbb{H} \text { and meromorphic at } \infty\} .
$$

3. Modular forms of weight $k$ :

$$
M_{k}(\Gamma(1))=\{f(\tau) \mid f \text { holomorphic on } \mathbb{H} \text { and holomorhpic at } \infty\} .
$$

4. Cusp forms of weight $k$ :

$$
S_{k}(\Gamma(1))=\{f(\tau) \mid f \text { holomorphic on } \mathbb{H} \text { and vanishes at } \infty\} .
$$

### 3.2 Valence Formula

For any $\tau_{0} \in \mathbb{H} \cup\{\infty\}$, define the order of a meromorphic function as $\operatorname{ord}_{\tau_{0}}(f)=\left\{\begin{array}{ll}\text { smallest power of }\left(\tau-\tau_{0}\right) \text { in the Laurent series expansion of } f \text { at } \tau_{0} & , \tau_{0} \in \mathbb{H} \\ \text { smallest power of } q \text { in the } q \text {-series expansion of } f & , \tau_{0}=\infty\end{array}\right.$.

Proposition 3.2.1. If $f \in A_{k}(\Gamma(1))$ is not a constant, then

$$
\operatorname{ord}_{\infty}(f)+\frac{1}{2} \operatorname{ord}_{i}(f)+\frac{1}{3} \operatorname{ord}_{e\left(\frac{1}{3}\right)}(f)+\sum_{\substack{\tau \in \mathbb{H} / \Gamma(1) \\ \tau \neq i, e\left(\frac{1}{3}\right)}} \operatorname{ord}_{\tau}(f)=\frac{k}{12} .
$$

Proposition 3.2.2. If $f \in A_{k}(\Gamma(1))$ is not a constant, then

1. $k$ is even
2. Set $\zeta=e\left(\frac{1}{3}\right)$ and $n=\operatorname{ord}_{\zeta}(f)$. Then, $n \equiv-k / 2 \bmod 3$, and $f$ has an expansion in the local variable at $\zeta$ of the form

$$
\left(\frac{\tau-\bar{\zeta}}{\zeta-\bar{\zeta}}\right)^{k} f(\tau)=\sum_{j=0}^{\infty} c_{j}\left(\frac{\tau-\zeta}{\tau-\bar{\zeta}}\right)^{n+3 j}, \quad c_{0} \neq 0
$$

3. Set $\zeta=i$ and $n=\operatorname{ord}_{\zeta}(f)$. Then, $n \equiv-k / 2 \bmod 2$, and $f$ has an expansion in the local variable at $\zeta$ of the form

$$
\left(\frac{\tau-\bar{\zeta}}{\zeta-\bar{\zeta}}\right)^{k} f(\tau)=\sum_{j=0}^{\infty} c_{j}\left(\frac{\tau-\zeta}{\tau-\bar{\zeta}}\right)^{n+2 j}, \quad c_{0} \neq 0
$$

Proof. Since $-I \in \Gamma(1)$, (1) follows.
For (2), set $\zeta=e\left(\frac{1}{3}\right)$ and $t=\frac{\tau-\zeta}{\tau-\zeta}$. The fact that $n \equiv-k / 2 \bmod 3$ follows easily from the valence formula. Next with $g(t)$ defined for $|t|<1$ by

$$
\left(\frac{\tau-\bar{\zeta}}{\zeta-\bar{\zeta}}\right)^{k} f(\tau)=t^{n} g(t)
$$

Note that $g(t)$ is holomorphic at $t=0$. One checks that the relation $f(-1-1 / \tau)=\tau^{k} f(\tau)$ is equivlant to $g(\zeta t)=\zeta^{k-n} g(t)$. Since $g(0) \neq 0$, this provides another proof of the fact that $n \equiv k \bmod 3$. Also, $g(t)$ has a expansion in non-negative powers of $t$ that are all multiples of 3 since $g(\zeta t)=g(t)$.

A similar argument establishes (3).

### 3.3 Dimension Formulas and Generators

Proposition 3.3.1. We have

1. $A_{k_{1}} \cap A_{k_{2}}=\{0\}$ for $k_{1} \neq k_{2}$.
2. $A_{k_{1}} \cdot A_{k_{2}} \subset A_{k_{1}+k_{2}}$.
3. $M_{0}^{!}(\Gamma(1))=\mathbb{C}[j(\tau)]$.
4. $A_{0}(\Gamma(1))=\mathbb{C}(j(\tau))$.
5. $S_{k}(\Gamma(1))=\Delta(\tau) M_{k-12}(\Gamma(1))$.
6. $M_{k}(\Gamma(1))=\underset{\substack{4+6 b=k \\ a, b \geq 0}}{\bigoplus} \mathbb{C} E_{4}^{a} E_{6}^{b}$. Also,

$$
\begin{aligned}
\sum_{k=-\infty}^{\infty} \operatorname{dim} M_{k}(\Gamma(1)) t^{k} & =\frac{1}{\left(1-t^{4}\right)\left(1-t^{6}\right)}=\frac{1+t^{4}+t^{6}+t^{8}+t^{10}+t^{14}}{\left(1-t^{12}\right)^{2}} \\
& =1+t^{4}+t^{6}+t^{8}+t^{10}+2 t^{12}+t^{14}+2 t^{16}+2 t^{18}+2 t^{20}+\cdots
\end{aligned}
$$

Proof. (3). By subtracting powers of the $j$ function $\left(j=\frac{1}{q}+\cdots\right)$, for any $f \in M_{0}^{\prime}(\Gamma(1))$ we can write

$$
f(\tau)-P(j(\tau))=O(q)
$$

where $P$ is a polynomial. The valence formula implies that $f(\tau)-P(j(\tau))$ vanishes identically because it is a function of weight 0 without any poles and a zero at $\infty$.
(4). Given any $f(\tau) \in A_{0}(\Gamma(1))$, we can multiply it by a suitable polynoimal in $j(\tau)$ to obtain a function in $M_{0}^{!}(\Gamma(1))$. By (3), $f(\tau)$ must be a rational function of $j(\tau)$.
(5). If $f(\tau) \in S_{k}(\Gamma(1))$ then $f(\tau) / \Delta(\tau) \in M_{k-12}(\Gamma(1))$ since $\Delta(\tau)$ has no zeros on $\mathbb{H}$ (Proposition 2.4.1) and a simple zero at $\infty$.
(6). The valence formula implies that $\operatorname{dim}\left(M_{k}(\Gamma(1))\right)=0$ for $k=2$ or $k<0$ (or $k$ odd) and that $\operatorname{dim}\left(M_{0}(\Gamma(1))\right)=1$. Suppose that $k$ is even and $f(\tau)=c+O(q) \in M_{k}(\Gamma(1))$. Then,

$$
f(\tau)=c E_{k}(\tau)+\left(E_{4}(\tau)^{3}-E_{6}(\tau)^{2}\right) g(\tau)
$$

where $g(\tau) \in M_{k-12}(\tau)$. Since we have already shown that $E_{k}$ is a polynomial in $E_{4}$ and $E_{6}$, by induction we obtain that $f$ is of the form

$$
f(\tau)=\sum_{\substack{4 a+6 b=k \\ a, b \geq 0}} c_{a, b} E_{4}^{a} E_{6}^{b}
$$

This representation is unique because if

$$
0=\sum_{\substack{4 a+6 b=k \\ a, b \geq 0}} c_{a, b} E_{4}^{a} E_{6}^{b}
$$

for some $k$ and some choice of $c_{a, b}$ then muliplying by $E_{4}^{-k / 4}$ shows that $E_{6}^{2} / E_{4}^{3}$ is constant, which it is not.

Proposition 3.3.2. The map $\tau \mapsto j(\tau)$ defines a bijection between $\mathbb{H} / \Gamma(1)$ and $\mathbb{C}$.
Proof. The function $j(\tau)-c \in A_{0}(\Gamma(1))$ has exactly pole (at $\infty$ ) so has exactly one zero.

### 3.4 Applications to Identities

Proposition 3.4.1.

$$
\Delta(\tau)=(2 \pi)^{12} \eta(\tau)^{24}
$$

Proof. $\operatorname{dim} S_{12}(\Gamma(1))=1$ and the first term in the $q$-series expansion of $\Delta$ is given in Proposition 2.4.1.

Proposition 3.4.2. Let $f_{i}$ be a non-constant element of $M_{k_{i}}(\Gamma(1))$ for $i=1,2,3$. Then, there is a nontrivial algebraic relation of the form

$$
P\left(f_{1}, f_{2}, f_{3}\right)=0,
$$

for some polynomial $P$.
Proof. Consider the set

$$
F_{k}=\left\{f_{1}^{a} f_{2}^{b} f_{3}^{c}\right\}_{\substack{k_{1}+b k_{2}+c k_{3}=k}}^{a, b, c>0}
$$

We have (as $k \rightarrow \infty$ )

$$
\begin{aligned}
\left|F_{0}\right|+\left|F_{1}\right|+\cdots+\left|F_{k}\right| & =\left|\left\{(a, b, c) \in \mathbb{Z}_{\geq 0}^{3} \mid a k_{1}+b k_{2}+c k_{3} \leq k\right\}\right| \\
& \sim \frac{1}{3!} \frac{k^{3}}{k_{1} k_{2} k_{3}} .
\end{aligned}
$$

If $f_{1}, f_{2}, f_{3}$ were algebraically independent, $F_{k}$ would be a set of linearly independent elements of $M_{k}$ for any $k$. Therefore, $\left|F_{k}\right| \leq \operatorname{dim} M_{k}$ and

$$
\begin{aligned}
\left|F_{0}\right|+\left|F_{1}\right|+\cdots+\left|F_{k}\right| & \leq \operatorname{dim} M_{0}+\operatorname{dim} M_{1}+\cdots+\operatorname{dim} M_{k} \\
& \sim \frac{1}{2!} \frac{k^{2}}{4 \cdot 6},
\end{aligned}
$$

which is a contradition for large $k$.
One should note that Propostion 3.4.2 applies not only to $\Gamma(1)$ but to any finite index subgroup $\Gamma$ of $\Gamma(1)$, as later we will show that

$$
\operatorname{dim} M_{k}(\Gamma) \sim \frac{k}{12}[\Gamma(1): \Gamma]
$$

where this formula is restricted to even $k$ when $-I \in \Gamma$.
Proposition 3.4.3. The three $\Theta$ constants $\Theta_{2}(\tau), \Theta_{3}(\tau), \Theta_{4}(\tau)$ are algebraically dependent, and

$$
\Theta_{3}(\tau)^{4}=\Theta_{2}(\tau)^{4}+\Theta_{4}(\tau)^{4} .
$$

Proof. We can obtain the algebraic dependence from Propostion 3.4.2 with $f_{i}=\Theta_{2}^{8 i}+\Theta_{3}^{8 i}+\Theta_{4}^{8 i}$. In order to actually obtain the relation, we compute that

$$
\begin{aligned}
2 E_{4} & =\Theta_{2}^{8}+\Theta_{3}^{8}+\Theta_{4}^{8}, \\
2 E_{4}^{2} & =\Theta_{2}^{16}+\Theta_{3}^{16}+\Theta_{4}^{16}, \\
E_{4}^{2} & =\Theta_{2}^{8} \Theta_{3}^{8}+\Theta_{3}^{8} \Theta_{4}^{8}+\Theta_{4}^{8} \Theta_{2}^{8}, \\
2^{8} \eta^{24} & =\Theta_{2}^{8} \Theta_{3}^{8} \Theta_{4}^{8},
\end{aligned}
$$

since $M_{4}, M_{8}$ and $S_{12}$ are all one-dimensional. Therefore,

$$
\begin{aligned}
0 & =\Theta_{2}^{16}+\Theta_{3}^{16}+\Theta_{4}^{16}-2\left(\Theta_{2}^{8} \Theta_{3}^{8}+\Theta_{4}^{8} \Theta_{3}^{8}+\Theta_{2}^{8} \Theta_{4}^{8}\right) \\
& =\left(\Theta_{2}^{4}-\Theta_{3}^{4}-\Theta_{4}^{4}\right)\left(\Theta_{2}^{4}+\Theta_{3}^{4}-\Theta_{4}^{4}\right)\left(\Theta_{2}^{4}-\Theta_{3}^{4}+\Theta_{4}^{4}\right)\left(\Theta_{2}^{4}+\Theta_{3}^{4}+\Theta_{4}^{4}\right) .
\end{aligned}
$$

By examining the $q$-series expansions, we see that it must be the third term that vanishes identically.

We will frequently use Ramanujan's differential operator $\theta$ defined by

$$
\theta f(\tau)=\frac{1}{2 \pi i} \frac{d}{d \tau} f(\tau)=q \frac{d}{d q} f(\tau)
$$

Lemma 3.4.4. The operator

$$
f(\tau) \mapsto \theta f(\tau)-\frac{k}{12} E_{2}(\tau) f(\tau)
$$

maps $M_{k}(\Gamma(1))$ to $M_{k+2}(\Gamma(1))$ (and $A_{k}(\Gamma(1))$ to $A_{k+2}(\Gamma(1))$ ).
Proof. Exercise.
Proposition 3.4.5.

$$
\theta j(\tau)=-\frac{E_{6}(\tau)}{E_{4}(\tau)} j(\tau)
$$

Proof. Exercise.

### 3.5 Exercises

Exercise 3.5.1. Show that

$$
f(\tau) \mapsto \theta f(\tau)-\frac{k}{12} E_{2}(\tau) f(\tau)
$$

maps $A_{k} \rightarrow A_{k+2}, M_{k} \rightarrow M_{k+2}$, and $S_{k} \rightarrow S_{k+2}$.
Exercise 3.5.2. Show that

$$
\theta j(\tau)=-\frac{E_{6}(\tau)}{E_{4}(\tau)} j(\tau)
$$

Hint: $j=E_{4}^{3} / \eta^{24}$ and $M_{14}(\Gamma(1))=\mathbb{C} E_{4}^{2} E_{6}$.
Exercise 3.5.3. Express $j(\tau)$ as a rational function of the elliptic $\lambda$ function, which is defined by

$$
\lambda(\tau)=\frac{\Theta_{2}(\tau)^{4}}{\Theta_{3}(\tau)^{4}}=1-\frac{\Theta_{4}(\tau)^{4}}{\Theta_{3}(\tau)^{4}} .
$$

Exercise 3.5.4. Show that $E_{4}\left(\frac{-1+\sqrt{-3}}{2}\right)=0$ and $E_{6}(\sqrt{-1})=0$ and deduce the following values of the $j$ function at quadratic irrationals:

$$
\begin{aligned}
j\left(\frac{-1+\sqrt{-3}}{2}\right) & =0, \\
j(\sqrt{-1}) & =12^{3} .
\end{aligned}
$$

## Chapter 4

## Theory of Modular Forms on Congruence Subgroups of $\mathrm{SL}_{2}(\mathbb{Z})$

In this chapter several ways of building modular forms on conruence subgroups of $\Gamma(1)$ are presented. Although there certainly are other methods, we will contruct functions by means of

- Klein forms and Eisenstein series. These turn out to be specializations of the functions $\sigma(z)$ and $\zeta(z), \wp(z), \wp^{\prime}(z), \wp^{\prime \prime}(z), \ldots$ functions to points $z \in \frac{1}{N} \mathbb{Z}+\frac{1}{N} \mathbb{Z} \tau$. These produce modular functions and forms on $\Gamma(N)$.
- $\Theta$ functions from any positive definite qudratic form. If the quadratic form takes values in the even integers and its dual takes values in $\frac{1}{N} \mathbb{Z}$, then the resulting $\Theta$ function is modular with respect to $\Gamma_{0}(N)$.
- The $\eta$ function $q^{-1 / 24} \prod_{n=1}^{\infty}\left(1-q^{n}\right)$ can be generalized, leading to a function that is invariant under a subgroup of $\Gamma_{0}(N)$ of index 2 .

Using the theory developed in this chapter, many identities involving these functions can be easily obtained.

### 4.1 Definition of modular forms on $\Gamma$ with $[\Gamma(1): \Gamma]<\infty$

Extend the action of $\mathrm{SL}_{2}(\mathbb{Z})$ to include $\mathbb{Q} \cup\{\infty\}$ by setting

$$
\begin{aligned}
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\frac{p}{q}\right)=\frac{a p+b q}{c p+d q}, \\
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(-\frac{d}{c}\right)=\infty, \\
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)(\infty)=\frac{a}{c} .
\end{aligned}
$$

We will also set $\overline{\mathbb{H}}=\mathbb{H} \cup \mathbb{Q} \cup\{\infty\}$.
We need to make sense of the order of vanishing of a function on the quotient $\overline{\mathbb{H}} / \Gamma$
Definition 4.1.1. Let $[\Gamma(1): \Gamma]<\infty$ and let $f$ be a non-constant function such that $\left.f\right|_{M, k}=f$ for all $M \in \Gamma$. We define the invariant order of the function $f$ at a point $\tau_{0} \in \overline{\mathbb{H}}$ with respect to $\Gamma$ as follows. (Note: $c_{n} \neq 0$.)

1. For any $\tau_{0} \in \mathbb{H}$,

$$
\operatorname{ord}_{\tau_{0}}(f, \Gamma)=\frac{n}{\left|\bar{\Gamma}_{\tau_{0}}\right|} \text { where } f=\sum_{m \geq n} c_{m}\left(\tau-\tau_{0}\right)^{m}
$$

Points where $\left|\bar{\Gamma}_{\tau_{0}}\right|=2$ are called elliptic points of order two, and these only occur at points in $\Gamma(1)(i)$. The size of the $\Gamma$-equivalence class of elliptic points of order two is denoted by $\epsilon_{2}$.
Points where $\left|\bar{\Gamma}_{\tau_{0}}\right|=3$ are called elliptic points of order three, and these only occur at points in $\Gamma(1)\left(e\left(\frac{1}{3}\right)\right)$. The size of the $\Gamma$-equivalence class of elliptic points of order three is denoted by $\epsilon_{3}$.
2. For $\tau_{0} \in \overline{\mathbb{Q}}$, let $\alpha \in \Gamma(1)$ be such that $\tau_{0}=\alpha(\infty)$, and let $h \in \mathbb{Z}_{>0}$, the width of the cusp $\tau_{0}$, be defined by

$$
\left(\alpha^{-1} \bar{\Gamma} \alpha\right)_{\infty}=\left\langle\overline{\left(\begin{array}{ll}
1 & h \\
0 & 1
\end{array}\right)}\right\rangle
$$

Then,

$$
\operatorname{ord}_{\tau_{0}}(f, \Gamma)= \begin{cases}n & \text { if }\left(\alpha^{-1} \Gamma \alpha\right)_{\infty}= \pm\left\langle\left(\begin{array}{ll}
1 & h \\
0 & 1
\end{array}\right)\right\rangle \text { and }\left.f\right|_{\alpha}=\sum_{m \geq n} c_{m} q^{\frac{m}{h}} \\
n & \text { if }\left(\alpha^{-1} \Gamma \alpha\right)_{\infty}=\left\langle+\left(\begin{array}{ll}
1 & h
\end{array}\right)\right\rangle \text { and }\left.f\right|_{\alpha}=\sum_{m \geq n} c_{m} q^{\frac{m}{h}} \\
n & \text { if }\left(\alpha^{-1} \Gamma \alpha\right)_{\infty}=\left\langle-\left(\begin{array}{ll}
1 & h \\
0 & 1
\end{array}\right)\right\rangle \text { and }\left.f\right|_{\alpha}=\sum_{m \geq n} c_{m} q^{\frac{m}{h}} \text { and } k \text { even } \\
\frac{n}{2} & \text { if }\left(\alpha^{-1} \Gamma \alpha\right)_{\infty}=\left\langle-\left(\begin{array}{ll}
1 & h \\
0 & 1
\end{array}\right)\right\rangle \text { and }\left.f\right|_{\alpha}=\sum_{m \geq n} c_{m} q^{\frac{m}{2 h}} \text { and } k \text { odd }\end{cases}
$$

These points are called cusps. The size of the $\Gamma$-equivalence class of cusps is denoted by $\epsilon_{\infty}$. When the last condition is satisfied, the cusp is called irregular, otherwise it is called regular, the sizes of the $\Gamma$-equivalence classes of theses sets are denoted by $\epsilon_{\infty}^{\mathrm{irr}}$ and $\epsilon_{\infty}^{\mathrm{reg}}$.
Definition 4.1.2. If $[\Gamma(1): \Gamma]<\infty$ and $\alpha \in \overline{\mathbb{Q}}$, let $h_{\Gamma}(\alpha)$ be the width of the cusp $\alpha$ for $\Gamma$. The level of $\Gamma$ is the least common multiple of all cusp widths. That is,

$$
\operatorname{level}(\Gamma)=\operatorname{lcm}\left(\left\{h_{\Gamma}(\alpha)\right\}_{\alpha \in \overline{\mathbb{Q}}}\right)
$$

Definition 4.1.3. Suppose that $f \mid M, k=f$ for all $M \in \Gamma$.

$$
\begin{aligned}
A_{k}(\Gamma) & =\left\{f \mid \forall_{\tau \in \mathbb{H}} \operatorname{ord}_{\tau}(f, \Gamma)>-\infty \text { and } \forall_{\tau \in \overline{\mathbb{Q}}} \operatorname{ord}_{\tau}(f, \Gamma)>-\infty\right\} \\
M_{k}^{!}(\Gamma) & =\left\{f \mid \forall_{\tau \in \mathbb{H}} \operatorname{ord}_{\tau}(f, \Gamma) \geq 0 \text { and } \forall_{\tau \in \overline{\mathbb{Q}}} \operatorname{ord}_{\tau}(f, \Gamma)>-\infty\right\} \\
M_{k}(\Gamma) & =\left\{f \mid \forall_{\tau \in \mathbb{H}} \operatorname{ord}_{\tau}(f, \Gamma) \geq 0 \text { and } \forall_{\tau \in \overline{\mathbb{Q}}} \operatorname{ord}_{\tau}(f, \Gamma) \geq 0\right\} \\
S_{k}(\Gamma) & =\left\{f \mid \forall_{\tau \in \mathbb{H}} \operatorname{ord}_{\tau}(f, \Gamma) \geq 0 \text { and } \forall_{\tau \in \overline{\mathbb{Q}}} \operatorname{ord}_{\tau}(f, \Gamma)>0\right\}, \\
E_{k}(\Gamma) & =M_{k}(\Gamma) / S_{k}(\Gamma)
\end{aligned}
$$

For an example of an irregular cusp, take $\Gamma=\Gamma_{1}(4)$. The cusp $\frac{1}{2}$ is irregular. In this case $\frac{1}{2}=\left(\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right)(\infty)$, so $\alpha=\left(\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right)$, and

$$
\begin{aligned}
& +\alpha\left(\begin{array}{ll}
1 & h \\
0 & 1
\end{array}\right) \alpha^{-1}=\left(\begin{array}{cc}
+1-2 h & +h \\
-4 h & +1+2 h
\end{array}\right) \\
& -\alpha\left(\begin{array}{ll}
1 & h \\
0 & 1
\end{array}\right) \alpha^{-1}=\left(\begin{array}{cc}
-1+2 h & -h \\
+4 h & -1-2 h
\end{array}\right)
\end{aligned}
$$

Thus, we see that $\left(\alpha^{-1} \Gamma_{1}(4) \alpha\right)_{\infty}$ is generated by $-\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, which means that $\frac{1}{2}$ is an irregular cusp of width 1 for $\Gamma_{1}(4)$. Furthermore, for the cusp $0=\alpha(\infty)$ where $\alpha=S$, the computation

$$
\alpha\left(\begin{array}{ll}
1 & h \\
0 & 1
\end{array}\right) \alpha^{-1}=\left(\begin{array}{cc}
1 & 0 \\
-h & 1
\end{array}\right)
$$

shows that $\frac{0}{1}$ is a regular cusp of width 4 for $\Gamma_{1}(4)$.

### 4.2 Dimension formulas

Proposition 4.2.1 (Valence Formula). If $f \in A_{k}(\Gamma)$ is not constant, then

$$
\sum_{\tau \in \overline{\bar{H}} / \Gamma} \operatorname{ord}_{\tau}(f, \Gamma)=\frac{k[\bar{\Gamma}(1): \bar{\Gamma}]}{12} .
$$

Proof. Let $d=[\bar{\Gamma}(1): \bar{\Gamma}]$ and let $M_{1}, \ldots, M_{d}$ be a list of representatives of $\bar{\Gamma} \bar{\Gamma}(1)$. First assume that $k$ is even and define

$$
g(\tau)=\left.\prod_{j} f\right|_{M_{j}, k}(\tau)
$$

and note that $g \in M_{k d}(\Gamma(1))$. The valence formula for $\Gamma(1)$ now reads as

$$
\operatorname{ord}_{\infty}(g, \Gamma(1))+\sum_{\tau \in \mathbb{H} / \Gamma(1)} \operatorname{ord}_{\tau}(g, \Gamma(1))=\frac{k[\bar{\Gamma}(1): \bar{\Gamma}]}{12}
$$

We will deal with the points of finite order first.

$$
\begin{aligned}
\operatorname{ord}_{\tau}(g) & =\sum_{j=1}^{i} \operatorname{ord}_{\tau}\left(\left.f\right|_{M_{j}}\right) \\
& =\sum_{j=1}^{i} \operatorname{ord}_{M_{j} \tau}(f) \\
& =\sum_{z \in(\Gamma(1) \tau) / \Gamma} \frac{\left|\bar{\Gamma}(1)_{\tau}\right|}{\left|\bar{\Gamma}_{z}\right|} \operatorname{ord}_{z}(f)
\end{aligned}
$$

Dividing this equality by $\left|\bar{\Gamma}(1)_{\tau}\right|$ and summing over all $\tau$ in the fundamental domain for $\Gamma(1)$ gives

$$
\begin{aligned}
\sum_{\tau \in \mathbb{H} / \Gamma(1)} \operatorname{ord}_{\tau}(g, \Gamma(1)) & =\sum_{\tau \in \mathbb{H} / \Gamma(1)} \frac{\operatorname{ord}_{\tau}(g)}{\left|\bar{\Gamma}(1)_{\tau}\right|} \\
& =\sum_{z \in \mathbb{H} / \Gamma} \frac{\operatorname{ord}_{\tau}(g)}{\left|\bar{\Gamma}_{\tau}\right|} \\
& =\sum_{z \in \mathbb{H} / \Gamma} \operatorname{ord}_{\tau}(g, \Gamma)
\end{aligned}
$$

For the cusps, we have the easy equality

$$
\operatorname{ord}_{\infty}(g)=\sum_{\tau \in \overline{\mathbb{Q}} / \Gamma} \operatorname{ord}_{\tau}(f, \Gamma)
$$

For odd $k$, we can apply the formula to $g^{2}$, and using

$$
\operatorname{ord}_{\tau}\left(f^{2}, \Gamma\right)=2 \operatorname{ord}_{\tau}(f, \Gamma)
$$

we see that the formula is valid for odd $k$ as well.
Proposition 4.2.2 (Genus Formula).

$$
g=1+\frac{[\bar{\Gamma}(1): \bar{\Gamma}]}{12}-\frac{\epsilon_{2}}{4}-\frac{\epsilon_{3}}{3}-\frac{\epsilon_{\infty}}{2}
$$

Proof. Set $d=[\bar{\Gamma}(1): \bar{\Gamma}]$. Define $f: \mathbb{H} / \Gamma \rightarrow \mathbb{H} / \Gamma(1)$ via the natural projection to the fundamental domain for $\Gamma(1)$. Triangulate the domain for $\Gamma(1)$ with

$$
\begin{aligned}
\left|F^{\prime}\right| & =2 \\
\left|E^{\prime}\right| & =3 \\
\left|V^{\prime}\right| & =3
\end{aligned}
$$

with a vertex at $i, e\left(\frac{1}{3}\right)$ and $\infty$. Pull back this trangulation via $f^{-1}$. For the triangulation of a fundamental domain for $\Gamma$, we have

$$
\begin{aligned}
|F|= & 2 d \\
|E|= & 3 d \\
|V|= & \epsilon_{\infty}+d-\sum_{z \in f^{-1}(i)}\left\{\begin{array}{l}
0, \text { if } z \text { is an elliptic point of order } 2 \\
1, \text { if } z \text { is not an elliptic point of order } 2
\end{array}\right. \\
& +d-\sum_{z \in f^{-1}\left(e\left(\frac{1}{3}\right)\right)}\left\{\begin{array}{l}
0, \text { if } z \text { is an elliptic point of order } 2 \\
2, \text { if } z \text { is not an elliptic point of order } 3
\end{array}\right.
\end{aligned}
$$

Therefore, $|V|=\epsilon_{\infty}+d-\frac{1}{2}\left(d-\epsilon_{2}\right)+d-\frac{2}{3}\left(d-\epsilon_{3}\right)$ and the formula for the genus follows from $2-2 g=|F|-|E|+|V|$.

We next simply quote the dimension formulas from [4, Ch. 3], as the derivation requires the Riemann-Roch Theorem from the theory of Riemann surfaces. If we need the dimension of any specific one of these spaces in the future, hopefully we can give a self-contained argument.

## Theorem 4.2.3. We have

1. Dimension formulas for $k$ even:

$$
\begin{aligned}
& \operatorname{dim} M_{k}(\Gamma)= \begin{cases}(k-1)(g-1)+\left\lfloor\frac{k}{4}\right\rfloor \epsilon_{2}+\left\lfloor\frac{k}{3}\right\rfloor \epsilon_{3}+\frac{k}{2} \epsilon_{\infty} & , k \geq 2 \\
1 & , k=0 \\
0 & , k<0\end{cases} \\
& \operatorname{dim} S_{k}(\Gamma)= \begin{cases}(k-1)(g-1)+\left\lfloor\frac{k}{4}\right\rfloor \epsilon_{2}+\left\lfloor\frac{k}{3}\right\rfloor \epsilon_{3}+\left(\frac{k}{2}-1\right) \epsilon_{\infty} & , k \geq 4 \\
g & , k=2 \\
0 & , k \leq 0\end{cases} \\
& \operatorname{dim} E_{k}(\Gamma)= \begin{cases}\epsilon_{\infty} & , k \geq 4 \\
\epsilon_{\infty}-1 & , k=2 \\
1 & , k=0 \\
0 & , k<0\end{cases}
\end{aligned}
$$

2. Dimension formulas for $k$ odd and $-I \notin \Gamma$ ( $\epsilon_{2}=0$ in this case):

$$
\begin{aligned}
& \operatorname{dim} M_{k}(\Gamma)= \begin{cases}(k-1)(g-1)+\left\lfloor\frac{k}{4}\right\rfloor \epsilon_{2}+\left\lfloor\frac{k}{3}\right\rfloor \epsilon_{3}+\frac{k}{2} \epsilon_{\infty}^{\mathrm{reg}}+\frac{k-1}{2} \epsilon_{\infty}^{\mathrm{irr}} & , k \geq 3 \\
\left.\geq \frac{1}{2} \epsilon_{\infty}^{\mathrm{reg}} \text { (equality if } \epsilon_{\infty}^{\mathrm{reg}}>2 g-2\right) & , k=1 \\
0 & , k<0\end{cases} \\
& \operatorname{dim} S_{k}(\Gamma)= \begin{cases}(k-1)(g-1)+\left\lfloor\frac{k}{4}\right\rfloor \epsilon_{2}+\left\lfloor\frac{k}{3}\right\rfloor \epsilon_{3}+\frac{k-2}{2} \epsilon_{\infty}^{\mathrm{reg}}+\frac{k-1}{2} \epsilon_{\infty}^{\mathrm{irr}} & , k \geq 3 \\
\operatorname{dim} M_{1}(\Gamma)-\frac{1}{2} \epsilon_{\infty}^{\mathrm{reg}} & , k=1, \\
0 & , k<0\end{cases} \\
& \operatorname{dim} E_{k}(\Gamma)= \begin{cases}\epsilon_{\infty}^{\mathrm{reg}} & , k \geq 3 \\
\frac{1}{2} \epsilon_{\infty}^{\mathrm{reg}} & , k=1 . \\
0 & , k<0\end{cases}
\end{aligned}
$$

### 4.3 Counting $\epsilon_{i}$ for $\Gamma(N)$ and $\Gamma_{1}(N)$ and $\Gamma_{0}(N)$

Set

$$
\begin{aligned}
\Gamma(N) & =\left\{M \in \Gamma(1) \left\lvert\, M \equiv\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) \bmod N\right.\right\}, \\
\Gamma_{1}(N) & =\left\{M \in \Gamma(1) \left\lvert\, M \equiv\left(\begin{array}{ll}
1 & * \\
0 & *
\end{array}\right) \bmod N\right.\right\}, \\
\Gamma_{0}(N) & =\left\{M \in \Gamma(1) \left\lvert\, M \equiv\left(\begin{array}{cc}
* & * \\
0 & *
\end{array}\right) \bmod N\right.\right\} .
\end{aligned}
$$

Proposition 4.3.1. For $\Gamma(N)$, we have

1. $[\Gamma(1): \Gamma(N)]=\left|\mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z})\right|=N^{3} \prod_{p \mid N}\left(1-\frac{1}{p^{2}}\right)$.

$$
[\bar{\Gamma}(1): \bar{\Gamma}(N)]= \begin{cases}\frac{1}{2} N^{3} \prod_{p \mid N}\left(1-\frac{1}{p^{2}}\right) & , N \geq 3 \\ 6 & , N=2\end{cases}
$$

2. Two cusps $a_{1} / c_{1}$ and $a_{2} / c_{2}\left(\operatorname{gcd}\left(a_{i}, c_{i}\right)=1\right)$ of $\Gamma(N)$ are equivalent when.

$$
\left(a_{1}, c_{1}\right) \equiv \pm\left(a_{2}, c_{2}\right) \bmod (\mathbb{Z} / N \mathbb{Z})^{2}
$$

The total number of cusps is

$$
\epsilon_{\infty}= \begin{cases}\frac{1}{2} N^{2} \prod_{p \mid N}\left(1-\frac{1}{p^{2}}\right) & , N \geq 3 \\ 3 & , N=2\end{cases}
$$

3. There are no elliptic points.

$$
\epsilon_{2}=\epsilon_{3}=0
$$

Proposition 4.3.2. For $\Gamma_{1}(N)$, we have

1. $\left[\Gamma_{1}(N): \Gamma(N)\right]=N$.

$$
\left[\bar{\Gamma}(1): \bar{\Gamma}_{1}(N)\right]=N^{2} \prod_{p \mid N}\left(1-\frac{1}{p^{2}}\right) .
$$

2. The number of cusps is given by

$$
\epsilon_{\infty}=\left\{\begin{array}{ll}
\frac{1}{2} \sum_{d \mid N} \phi(d) \phi(N / d) & , N>4 \\
3 & , N=4 \\
2 & , N=2,3
\end{array} .\right.
$$

3. The number of elliptic points of order 2 is given by

$$
\epsilon_{2}=\left\{\begin{array}{ll}
1 & , N=2 \\
0 & , N \neq 2
\end{array} .\right.
$$

4. The number of elliptic points of order 3 is given by

$$
\epsilon_{3}=\left\{\begin{array}{ll}
1 & , N=3 \\
0 & , N \neq 2
\end{array} .\right.
$$

Proposition 4.3.3. For $\Gamma_{0}(N)$, we have

1. $\left[\Gamma_{0}(N): \Gamma_{1}(N)\right]=\phi(N)$.

$$
\left[\Gamma(1): \Gamma_{0}(N)\right]=N \prod_{p \mid N}\left(1+\frac{1}{p}\right) .
$$

2. The cusps are enumerated by $\frac{a}{c}$ with $\operatorname{gcd}(a, c)=1$ and $c \mid N$ and where the $a$ 's are chosen in the interval $1 \leq a \leq c$ to be inequivalent modulo $\operatorname{gcd}(c, N / c)$. Since for $d \mid c$ the reduction map $(\mathbb{Z} / c \mathbb{Z})^{*} \rightarrow(\mathbb{Z} / d \mathbb{Z})^{*}$ surjects, the number of choices for $a$ is $\phi(\operatorname{gcd}(c, N / c))$. The number of cusps is

$$
\epsilon_{\infty}=\sum_{c \mid N} \phi(\operatorname{gcd}(c, N / c)) .
$$

The width of the cusps with denominator $c$ is $N /(c \operatorname{gcd}(c, N / c))$.
3. The elliptic points of order 2 are enumerated by $\left(\begin{array}{cc}0 & -1 \\ 1 & k\end{array}\right)(i)$ where $k$ (taken modulo $N$ ) ranges over the solutions to $k^{2}+1=0 \bmod N$.

$$
\epsilon_{2}= \begin{cases}\prod_{p \mid N}\left(1+\left(\frac{-1}{p}\right)\right) & , 4 \nmid N \\ 0 & , 4 \mid N\end{cases}
$$

4. The elliptic points of order 3 are enumerated by $\left(\begin{array}{cc}0 & -1 \\ 1 & k\end{array}\right)\left(e\left(\frac{1}{6}\right)\right)$ where $k$ (taken modulo $N$ ) ranges over the solutions to $k^{2}+k+1=0 \bmod N$.

$$
\epsilon_{3}= \begin{cases}\prod_{p \mid N}\left(1+\left(\frac{-3}{p}\right)\right) & , 9 \nmid N \\ 0 & , 9 \mid N\end{cases}
$$

Proof. We will show (1) and (2) just for prime $N=p$. The full discussion for any $N$ can be found in [4, Ch. 3]. Since

$$
\begin{aligned}
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\frac{1}{0}\right)=\frac{a}{c} \\
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\frac{0}{1}\right)=\frac{b}{d}
\end{aligned}
$$

any rational number with denominator divisible by $p$ is equivalent to $\frac{1}{0}$ while the other rational numbers are equivalent to $\frac{0}{1}$. Thus, since $\frac{0}{1}$ has width $p$ and $\frac{1}{0}$ has width 1 ,

$$
\left[\Gamma(1): \Gamma_{0}(p)\right]=p+1
$$

(3). Let us first show that, with $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma(1)$, the points $g(i)$ with non-trivial stabilizers in $\Gamma_{0}(N)$ are all $\Gamma_{0}(N)$-equivalent to $M_{k}(i)$ with $M_{k}=\left(\begin{array}{cc}0 & -1 \\ 1 & k\end{array}\right)$. We can compute that

$$
g S g^{-1}=\left(\begin{array}{cc}
a c+b d & -a^{2}-b^{2} \\
c^{2}+d^{2} & -a c-b d
\end{array}\right)
$$

so any $g(i)$ with non-trivial stabilizer in $\Gamma_{0}(N)$ must have $c^{2}+d^{2} \equiv 0 \bmod N$. Since $c$ and $d$ are relatively prime, this means that $c$ and $N$ are also relatively prime. Now,

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
a k-b & a \\
c k-d & c
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & k
\end{array}\right) .
$$

Since $c$ and $N$ are relatively prime, we can find an integer $k$ so that $c k-d \equiv 0 \bmod N$, thus showing that $g(i)$ and $M_{k}(i)$ are $\Gamma_{0}(N)$-equivalent.

If $M_{k}(i)$ has a non-trivial stabilizer in $\Gamma_{0}(N)$, we need $k^{2}+1 \equiv 0 \bmod N$. Let us show that when $k$ is as such and is taken modulo $N$, these points are inequivalent under $\Gamma_{0}(N)$. Suppose that $M_{k_{1}}(i)=h M_{k_{2}}(i)$ for some $h \in \Gamma_{0}(N)$ with $k_{1}^{2}+1 \equiv k_{2}^{2}+1 \equiv 0 \bmod N$. This means that $M_{k_{1}} S^{i} M_{k_{2}}^{-1} \in \Gamma_{0}(N)$ for $i=0$ or 1 . As

$$
\begin{aligned}
& M_{k_{1}} S^{0} M_{k_{2}}^{-1}=\left(\begin{array}{cc}
1 & 0 \\
k_{2}-k_{1} & 1
\end{array}\right), \\
& M_{k_{1}} S^{1} M_{k_{2}}^{-1}=\left(\begin{array}{cc}
-k_{2} & -1 \\
k_{1} k_{2}+1 & k_{1}
\end{array}\right),
\end{aligned}
$$

we see that $k_{1} \equiv k_{2} \bmod N$ since $k_{1} k_{2} \equiv-1 \bmod N$ is equivalent to $k_{1} \equiv k_{2} \bmod N$ because $k_{2}^{2} \equiv-1 \bmod N$.

### 4.4 General properties of $A_{k}(\Gamma)$

The proof of the follow proposition follows exactly along the same lines as the proof of Proposition 3.2.2.

Proposition 4.4.1. Suppose $k$ is even and $f \in A_{k}(\Gamma)$.

1. If $\zeta$ is an elliptic point of order 2 then

$$
\frac{k}{2}+2 \operatorname{ord}_{\zeta}(f, \Gamma) \equiv 0 \bmod 2
$$

2. If $\zeta$ is an elliptic point of order 3 then

$$
\frac{k}{2}+3 \operatorname{ord}_{\zeta}(f, \Gamma) \equiv 0 \bmod 3
$$

It follows that for functions in $A_{0}(\Gamma)$ the order should be measured in the variable

$$
t= \begin{cases}\left(\frac{\tau-z}{\tau-\bar{z}}\right)^{\left|\bar{\Gamma}_{z}\right|} & , z \in \mathbb{H} \\ \exp \frac{2 \pi i}{h} \alpha^{-1}(\tau) & , z=\alpha(\infty), h \text { is cusp width }\end{cases}
$$

called the local variable at $z \in \overline{\mathbb{H}}$, and all function will have expansions in integral powers of this variable. In the case of the cusp $\infty$, this variable is also $q^{1 / h}$.

As with elliptic functions, we usually refer to the number of poles of a function as its order, but according to the following definition this number is also the number of times the function takes any complex value.

Definition 4.4.2. If $f \in A_{0}(\Gamma)$ then the number of solution to $f(\tau)=c$ counted according to multiplicity for any $c \in \mathbb{C}_{\infty}$ is independent of $c$ and is called the order of the function $f$, also denoted by $\operatorname{ord}_{\Gamma}(f)$.

Proof. The number of zeros of $f(\tau)-c$ is equal to the number of poles of $f(\tau)$ by the valence formula, so $\operatorname{ord}_{\Gamma}(f)$ is well-defined.

Definition 4.4.3. If $f \in A_{0}(\Gamma)$, define the ramification index $\operatorname{ram}_{z}(f, \Gamma) \in \mathbb{Z}_{>0}$ by

$$
\operatorname{ram}_{z}(f, \Gamma)= \begin{cases}\operatorname{ord}_{z}(f-f(z)) & , f(z) \neq \infty \\ -\operatorname{ord}_{z}(f) & , f(z)=\infty\end{cases}
$$

Proposition 4.4.4. If $f \in A_{0}(\Gamma)$ and $g$ is the genus of $\overline{\mathbb{H}} / \Gamma$, then

$$
\sum_{z \in \overline{\bar{H}} / \Gamma}\left(\operatorname{ram}_{z}(f, \Gamma)-1\right)=2\left(g-1+\operatorname{ord}_{\Gamma}(f)\right) .
$$

Proof. The is a special case of the Riemann-Hurwitz Formula where the target space is $\mathbb{C}_{\infty}$. It may be proven exactly as the genus formula was obtained (in fact the genus formula is this with $f=j$ so that $\left.\operatorname{ord}_{\Gamma}(j)=[\bar{\Gamma}(1): \bar{\Gamma}]\right)$. One triangulates $\overline{\mathbb{H}} / \Gamma$ with vertices at the finite number of points $z$ where $\operatorname{ram}_{z}(f, \Gamma)>1$.

Proposition 4.4.5. $S_{0}(\Gamma)=\{0\}$ and $M_{0}(\Gamma)=\mathbb{C}$.
Proof. The first assertion follows from the valence formula. For the second, if $f(\tau)=c+O\left(q^{1 / h}\right)$ where $h$ is the width of the cusp $\infty$, then $f(\tau)-c$ has a zero at $\infty$ and is still an element of $M_{0}(\Gamma)$. The valence formula then implies that $f(\tau)$ is constant.

Proposition 4.4.6. If $R$ is a rational function of degree $d$ and $x \in A_{0}(\Gamma)$, then

$$
\operatorname{ord}_{\Gamma}(R(x))=d \operatorname{ord}_{\Gamma}(x)
$$

The function $x$ in the following proposition, if it exists, is called a Hauptmodul for $\Gamma$, and all Hauptmoduln for a given $\Gamma$ differ by a Möbius transformation.

Proposition 4.4.7. Suppose that $x \in A_{0}(\Gamma)$ with $\operatorname{ord}_{\Gamma}(x)=1$.

1. $x: \overline{\mathbb{H}} / \Gamma \rightarrow \mathbb{C}_{\infty}$ is a bijection and $g=0$.
2. If $y$ is another non-constant function in $A_{0}(\Gamma)$, then there are polynomials $p_{i}(x)$ such that $p_{0}(x)+p_{1}(x) y=0$. Specifically, there is a constant $c$ such that $c y=\prod_{z \in \overline{\mathbb{H}} / \Gamma}(x-x(z))^{\operatorname{ord}_{z}(y, \Gamma)}$ where the possible term from the pole $z$ of $x$ is omitted.

$$
\begin{aligned}
& \text { 3. } A_{0}(\Gamma)=\mathbb{C}(x) \\
& \text { 4. } S_{1}(\Gamma)=S_{2}(\Gamma)=\{0\} .
\end{aligned}
$$

Proof. (1). $x(\tau)-c$ has one pole so it has exactly one zero by the valence formula. The proves that $x$ defines a bijection. Suppose that $g>0$. Then there is a loop on $\overline{\mathbb{H}} / \Gamma$ that may not be contracted to a point. However, the image of this loop on $\mathbb{C}_{\infty}$ is contractible. This is a contradiction because the contraction of the loop on $\mathbb{C}_{\infty}$ may be pulled back (via $x^{-1}$ ) to a contraction on $\overline{\mathbb{H}} / \Gamma$.
(2). Define

$$
g(\tau)=\frac{1}{y(\tau)} \prod_{\substack{z \in \overline{\bar{H}} / \Gamma \\ x(z) \neq \infty}}(x(\tau)-x(z))^{\operatorname{ord}_{z}(y, \Gamma)}
$$

Since $x(\tau)-x(z)$ has a simple zero at $\tau=z$ (as measured in the local variable at $z$ ), for all $z=\overline{\mathbb{H}} / \Gamma$ we have $\operatorname{ord}_{z}(g, \Gamma)=0$ expect possibly at the unique pole of the function $x$. However, if $z$ is this pole, the valence formula implies that $\operatorname{ord}_{z}(g, \Gamma)=0$ as well. Thus, $g \in M_{0}(\Gamma)$ which consists entirely of constants.
(3) is then a direct consequence of (2).
(4) If $f \in S_{2}(\Gamma)$ then define

$$
g(\tau)=\frac{f(\tau)}{d x / d \tau}
$$

That $g(\tau) \in A_{0}(\Gamma)$ is essentially Lemma 3.4.4. Let $z \in \mathbb{H}$ not be a pole of $x$ and $p=\left|\bar{\Gamma}_{z}\right|$ and let $t$ be the local variable at $z$. Let $c_{i}$ denote certain non-zero constants (that could depend on $z)$. Recalling that $x(\tau)-x(z)$ has a simple zero at $\tau=z$, we see that $d x=\left(c_{1}+O(t)\right) d t$. Since $d \tau=t^{\frac{1}{p}-1}\left(c_{2}+O(t)\right) d t$, we have

$$
g(\tau)=\frac{f(\tau)}{d x / d \tau}=t^{\operatorname{ord}_{z}(f, \Gamma)+\frac{1}{p}-1}\left(c_{3}+O(t)\right)
$$

Since, by definition of $S_{2}(\Gamma), \operatorname{ord}_{z}(f, \Gamma)>0$, and we have $\operatorname{ord}_{z}(f, \Gamma) \equiv 1-\frac{1}{p} \bmod 1$ by Proposition 4.4.1, $g(\tau)$ does not have a pole at $z$. If $z$ is a pole of $x$ then the only thing that needs to be changed in this discussion is that $d x=t^{-2}\left(c_{3}+O(t)\right) d t$, and so we see that $g(\tau)$ has a zero at $z$ in this case.

Next, if $z=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)(\infty) \in \overline{\mathbb{Q}}$, let $t$ be the local variable at this cusp $z$. We have

$$
\begin{aligned}
f(\tau) & =(a-c \tau)^{2} t^{\operatorname{ord}_{z}(f, \Gamma)}\left(c_{4}+O(t)\right) \\
d \tau & =(a-c \tau)^{-2} t^{-1} c_{5} d t \\
d x & = \begin{cases}\left(c_{6}+O(q)\right) d t & , z \text { is not a pole of } x \\
t^{-2}\left(c_{7}+O(q)\right) d t & , z \text { is a pole of } x\end{cases}
\end{aligned}
$$

Thus we see that $g$ does not have a pole and actually vanishes at the pole of $x$. Since $g$ was an element of $A_{0}(\Gamma)$, this means that $g$ mush be identically 0 . Therefore, $S_{2}(\Gamma)=\{0\}$. The square of any element of $S_{1}(\Gamma)$ is in $S_{2}(\Gamma)$, so $S_{1}(\Gamma)=\{0\}$ as well.

Proposition 4.4.8. Suppose that $x \in A_{0}(\Gamma)$ with $\operatorname{ord}_{\Gamma}(x)=2$.

1. Any three functions in $A_{0}(\Gamma)$ are linearly dependent over $\mathbb{C}(x)$.
2. If $y$ is a function of odd order, then there is a unique irreducible polynomial $P(x, y)$ of degree 2 in $y$ with $P(x(\tau), y(\tau))=0$, and we have $A_{0}(\Gamma)=\mathbb{C}(x, y) /(P(x, y))$.

Proof. (1). By Proposition 4.4.4 there is a ramification point of the function $x$ because

$$
\sum_{z \in \overline{\mathrm{H}} / \Gamma}\left(\operatorname{ram}_{z}(x, \Gamma)-1\right)=2(g+1)>0 .
$$

Since none of the assertions of the proposition are affected by applying a Möbius transformation to $x$, if necessary, we can let $z$ be such a ramification point and replace $x$ by $1 /(x-x(z))$ to assume that $x$ has a single double pole at some point $z$.

Let $L(m)$ denote the vector space of functions that have poles only at $z$ and the order of this pole is $\leq m$. Clearly,

$$
\operatorname{dim} L(m) \leq 1+m
$$

Let $f_{1}, f_{2}, f_{3} \in A_{0}(\Gamma)$ and assume that they are linearly independent over $\mathbb{C}(x)$. We can find polynomials $p_{i}(x)$ so that $p_{i}(x) f_{i}$ has no poles outside $z$. This means that there is an integer $m_{0}$ such that, for $i=1,2,3$,

$$
p_{i}(x) f_{i} \in L\left(2 m_{0}\right)
$$

For any integer $m \geq m_{0}$, the set

$$
\left\{x^{j} p_{i}(x) f_{i}\right\}_{\substack{i=j \leq, 2,3 \\ 0 \leq j \leq m-m_{0}}}^{i=1}
$$

consists of $3\left(m-m_{0}+1\right)$ linearly independent functions in $L(2 m)$. This contradicts the bound $\operatorname{dim} L(2 m) \leq 1+2 m$ for large $m$ and shows that $f_{1}, f_{2}, f_{3}$ are linearly dependent over $\mathbb{C}(x)$.
(2). Let $y$ be a function of odd order. By multiplying by a suitable polynomial in $x$, we may assume that $y$ has no poles outside of $z$ and that $y$ has a pole of odd order at $z$ because multiplying by a polynomial in $x$ changes the order of $y$ by an even integer. Then, it is easy to see that 1 and $y$ are linearly independent over $\mathbb{C}(x)$, for suppose that there were polynomials $p_{0}(x)$ and $p_{1}(x)$ with

$$
p_{0}(x)+p_{1}(x) y=0 .
$$

If $p_{1}(x) \neq 0$, then the Laurent series expansion of $p_{0}(x)$ begins with $t$ to a negative even power and $p_{1}(x) y$ begins with a negative odd power. Thus $p_{1}(x)=p_{0}(x)=0$ and 1 and $y$ are linearly independent over $\mathbb{C}(x)$. We can get the quadratic relation by applying (1) to the three functions $1, y, y^{2}$. Finally, if $f \in A_{0}(\Gamma)$, apply (1) to the three functions $1, y, f$.

Proposition 4.4.9. If $x \in A_{0}(\Gamma)$ with $l=\operatorname{ord}_{\Gamma}(x)$, then any $l+1$ functions in $A_{0}(\Gamma)$ are linearly dependent over $\mathbb{C}(x)$.

Proof. Suppose $x$ has poles at $q_{1}, \ldots, q_{r}$ and that the orders of these poles are $n_{1}, \ldots, n_{r}$. Assume that there are $l+1$ functions $f_{1}, \ldots, f_{l+1}$ that are linearly independent over $\mathbb{C}(x)$. Let $L(m)$ denote the vector space of functions that have no poles outside $q_{1}, \ldots, q_{r}$ and having a pole of order not worse than $m n_{i}$ at each $q_{i}$. Clearly, $\operatorname{dim}(L(m)) \leq 1+m n_{1}+\cdots+m n_{r}=1+m l$. We can find polynomials $p_{1}, \ldots, p_{r}$ with $p_{1}(x) f_{1}, \ldots, p_{r}(x) f_{r}$ each having no poles outisde of $q_{1}, \ldots, q_{r}$. Therefore, for some fixed $m_{0}$, we have $p_{i}(x) f_{i} \in L\left(m_{0}\right)$ for every $i=1, \ldots, l+1$. It follows that

$$
\left\{x^{j} p_{i}(x) f_{i}\right\}_{\substack{i=1, \ldots, l+1 \\ 0 \leq j \leq m-m_{0}}}^{\substack{ \\0 \leq 1, ~}}
$$

consists of $\left(m-m_{0}+1\right)(l+1)$ linearly independent functions in $L(m)$, which contradicts the bound $\operatorname{dim}(L(m)) \leq 1+m l$ for large $m$.

### 4.5 Working with finite index subgroups of $\Gamma(1)$

This section discusses several of the representations of a finite index subgroup, $\Gamma$, of $\Gamma(1)$. The first and most intuitive way is via the combination of a fundamental domain for $\Gamma$ and edge-pairing matrices, as given in the following theorem.

Theorem 4.5.1 (Siegel). If $[\Gamma(1): \Gamma]<\infty$, there is a connected fundamental domain $D$ for $\Gamma$ in which the sides of $D$ can be paired up by elements of $\Gamma$, and the elements of $\Gamma$ that the pair up all of the sides generate $\bar{\Gamma}$.

Unfortunately, the generators in this theorem are not guaranteed to be independent. For example $S$ and $T$ pair up the edges in the usual fundamental domain for $\Gamma(1)$, but $S$ and $T$ are not independent generators. We will describe the so called Farey symbol for subgroup $\Gamma$ of $\Gamma(1)$ of finite index, which allows a list of independent generators to be easily computed (see [10] and [9]). We will also describe the bicuboid graph for $\Gamma$ as well, and find the following correspondences:

1. fundamental domains with side pairings $\Rightarrow$ subgroups (onto, many-to-one)
2. Farey symbols $\Rightarrow$ subgroups (onto, many-to-one)
3. bicuboid graphs $\Leftrightarrow$ conjugacy classes of subgroups (bijection)
4. marked bicuboid graphs $\Leftrightarrow$ subgroups (bijection)
5. marked bicuboid graphs with cuts $\Leftrightarrow$ Farey symbols (bijection)

We will first define all of these terms appears in these correspondences.

## Definition 4.5.2.

1. Label the following points in $\overline{\bar{H}}$ :
(a) An even point is the image of $i$ under some element of $\Gamma(1)$.
(b) An odd point is the image of $e\left(\frac{1}{6}\right)$ under some element of $\Gamma(1)$.
(c) An cusp is the image of $\infty$ under some element of $\Gamma(1)$.
2. Label the following half arcs in $\overline{\mathbb{H}}$ :
(a) An even edge is the image the set $\left\{\left.e\left(\frac{1}{4}\right)+i t \right\rvert\, t>0\right\}$ under some element of $\Gamma(1)$.
(b) An odd edge is the image the set $\left\{\left.e\left(\frac{1}{6}\right)+i t \right\rvert\, t>0\right\}$ under some element of $\Gamma(1)$.
(c) A free edge is the image the set $\left\{e(t) \left\lvert\, \frac{1}{6}<t<\frac{1}{4}\right.\right\}$ under some element of $\Gamma(1)$.
3. A special polygon for $\Gamma$ is a convex hyperbolic polygon $P$ satisfying:
(a) The boundary of $P$ consists of even and odd edges.
(b) The even edges come in pairs, each pair forming an arc connecting two elements of $\mathbb{Q}$. Each arc is either paired with itself under $\Gamma$ (in which case it contains an elliptic point of order 2) or is paired with another such arc under $\Gamma$.
(c) The odd edges come in pairs, each pair meeting at a vertex with angle $2 \pi / 3$, which is an elliptic point of order 3 for $\Gamma$.

## Definition 4.5.3.

1. A bipartite cuboid graph (or bicuboid graph) is a finite connected graph such that
(a) Every vertex is marked by either $\bullet$ or $\circ$. These are called odd and even vertices, respectively.
(b) Every odd vertex has valence 1 or 3.
(c) Every even vertex has valence 1 or 2.
(d) There is a set cyclic order on the edges originating at each vertex of valence three.
(e) Every edge joins an even and odd vertex.
2. A marked bicuboid graph is a bicuboid graph with a distiguished edge.

Definition 4.5.4. A Farey symbol is a symbol of the form

$$
\frac{-1}{0} \underset{p_{-1}}{\longleftrightarrow} \frac{a_{0}}{c_{0}} \overleftrightarrow{p_{0}} \frac{a_{1}}{c_{1}} \stackrel{\longleftrightarrow}{p_{1}} \cdots \underset{p_{n-1}}{\longleftrightarrow} \frac{a_{n}}{c_{n}} \overleftrightarrow{p_{n}} \frac{1}{0}
$$

where one of the $\frac{a_{n}}{c_{n}}$ is 0 . The pairing symbols $p_{i}$ are allowed to be natural numbers or one of symbols - or $\circ$ and we always have $a_{i+1} c_{i}-a_{i} c_{i+1}=1$.

A natural number $n$, if it appears among the $p_{i}$, appears exactly twice at two edges, say, $p_{i}$ and $p_{k}$. In this cases, the edges $p_{i}$ and $p_{k}$ are said to the paired by a free pairing.

If $p_{i}=0$, the edge is said to be paired with itself by an even pairing.
If $p_{i}=\bullet$, the edge is said to be paired with itself by an odd pairing.
Define the pairing matrix for even pairings, odd pairings, and free pairings, respectively, as

$$
\begin{aligned}
G_{i}\left(\frac{a_{i}}{c_{i}} \longleftrightarrow \frac{a_{i+1}}{c_{i+1}}\right) & =\left(\begin{array}{cc}
a_{i+1} & a_{i} \\
c_{i+1} & c_{i}
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
a_{i+1} & a_{i} \\
c_{i+1} & c_{i}
\end{array}\right)^{-1}, \\
G_{i}\left(\frac{a_{i}}{c_{i}} \longleftrightarrow \frac{a_{i+1}}{c_{i+1}}\right) & =\left(\begin{array}{cc}
a_{i+1} & a_{i} \\
c_{i+1} & c_{i}
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
a_{i+1} & a_{i} \\
c_{i+1} & c_{i}
\end{array}\right)^{-1}, \\
G_{i, k}\left(\frac{a_{i}}{c_{i}} \longleftrightarrow \frac{a_{i+1}}{c_{i+1}}, \frac{a_{k}}{c_{k}} \longleftrightarrow \frac{a_{k+1}}{c_{k+1}}\right) & =\left(\begin{array}{cc}
a_{k+1} & a_{k} \\
c_{k+1} & c_{k}
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
a_{i+1} & a_{i} \\
c_{i+1} & c_{i}
\end{array}\right)^{-1} .
\end{aligned}
$$

In this section will we assume that all matrices are taken modulo $\pm I$ since we are concerned with their action on $\overline{\mathbb{H}}$ and mercifully suppress the lines on the groups. In addition to the matrices $S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ and $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, the matrices

$$
O=\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right), \quad R=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
$$

will be useful. The main result which is useful for studying subgroups of $\Gamma(1)$ is the result that $\Gamma(1)=\mathbb{Z}_{2} * \mathbb{Z}_{3}$.

Proposition 4.5.5. For $\Gamma(1)$, the matrices $S$ and $O$ are independent generators of orders 2 and 3, that is, each element of $\Gamma(1)$ can be written uniquely as a word in $S$ and $O$ with no two consecutive $S$ 's and no three consecutive $O$ 's.

Proof. Exercise. Hint: $O S=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $O O S=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$.
Exercise 4.5.6. Show that $S$ and $T^{n}$ generate a subgroup of finite index in $\Gamma(1)$ only when $|n|=1,2$. Hint: for $n>3$ assume the opposite and consider $(O S)^{m} O O S O$ for large $m$.

Remark 4.5.7. Let $x y^{\prime}(x) / y(x)=x+x^{2}+4 x^{3}+8 x^{4}+5 x^{5}+\cdots$ be the formal generating function for subgroups of $\Gamma(1)$ of a given index. It is possible to show ([11]) that $y(x)$ satisfies the differential equation

$$
\begin{aligned}
& x^{7}\left(x^{3}-1\right) y^{\prime \prime}(x)+\left(4 x^{9}+2 x^{7}-4 x^{6}-2 x^{4}-4 x^{3}+1\right) y^{\prime}(x) \\
& \quad+\left(2 x^{8}+2 x^{6}-4 x^{5}+x^{4}-4 x^{3}-4 x^{2}-x-1\right) y(x)=0 .
\end{aligned}
$$

It is possible to give an explicit algorithm for writing a given $M \in \Gamma(1)$ as a word in $S$ and $O$. If $M=\left(\begin{array}{l}a \\ c \\ c \\ d\end{array}\right)$, then the even point $M(i)$ is part of an arc that connects the two cusps $\frac{a}{c}$ and $\frac{b}{d}$. Let $M_{0}$ be the matrix we wish to write in terms of $S$ and $O$. At each step of the following algorithm, $a, b, c$, and $d$ denote the entries of $M_{k}$.

$$
\text { if } M_{k}=I \text { or } S \text {, then terminate }
$$

$$
\begin{aligned}
\text { if }-\infty \leq \frac{a}{c}, \frac{b}{d} \leq 0, \text { then } M_{k+1} & =S M_{k} \\
\text { if } 0 \leq \frac{a}{c}, \frac{b}{d} \leq 1, \text { then } M_{k+1} & =O M_{k} \\
\text { if } 1 \leq \frac{a}{c}, \frac{b}{d} \leq \infty, \text { then } M_{k+1} & =O O M_{k}
\end{aligned}
$$

This will terminate, in which case $M_{0}^{-1}$ is expressed as a word in $S$ and $O$ and so $M_{0}$ is as well. In the following diagram, $\mathbb{H}$ has been mapped into the unit disk, and the free edges $E$ have been marked with the matrix that sends $E$ to the free edge between $i$ and $e\left(\frac{1}{6}\right)$.


Proposition 4.5.8. Let $[\Gamma(1): \Gamma]=\mu$ and $\phi$ denote the homomorphism $\Gamma(1) \rightarrow \operatorname{Sym}_{\mu}$ obtained by the permutation action of $g \in \Gamma(1)$ on the left cosets $\Gamma(1) \backslash \Gamma$.

1. $\Gamma$ is completely determined by $\phi(S)$ and $\phi(O)$ up to a relabeling of the non-trivial cosets as long as $\phi(S)$ and $\phi(O)$ have order 2 and 3, respectively, and generate a transitive subgroup of $\mathrm{Sym}_{\mu}$.
2. The number of fixed points of $\phi(S)$ is $\epsilon_{2}$.
3. The number of fixed points of $\phi(O)$ is $\epsilon_{3}$.
4. The number of cycles in $\phi(T)$ is $\epsilon_{\infty}$. The lengths of these cycles are the widths of the inequivalent cusps of $\Gamma$.
5. The order of the permutation $\phi(T)$ is level $(\Gamma)$.

As an example of this correspondence, we list the subgroups of $\Gamma$ of index 3.
Example 4.5.9. For the 4 groups of index 3 in $\Gamma(1)$, namely $\Gamma^{3}, \Gamma^{0}(2), \Gamma_{0}(2), \Gamma_{\vartheta}$ the corresponding marked bicuboid graph, special polygon and Farey Symbol are shown below.


Any relabeling of the edges for $\Gamma^{3}$ produces isomorphic graphs because $\Gamma^{3}$ is a normal subgroup of $\Gamma(1)$. The remaining three graphs are distinct because the position of the marked edge, the edge marked " $X$ ", is distinguished by the orientation on the odd vertex. This marked ege is placed by default along the free edge from $i$ to $e\left(\frac{1}{6}\right)$ in the special polygon.

From Proposition 4.5 .8 we can construct the correspondence between bicuboid graphs and subgroups $\Gamma$ of $\Gamma(1)$, which we illustrate for a group of index 9. Let $\phi: \Gamma(1) \rightarrow \operatorname{Sym}_{9}$ be defined by

$$
\begin{aligned}
\phi(O) & =(123)(456)(789) \\
\phi(S) & =(24)(39)(67)
\end{aligned}
$$

The group $\Gamma$ is then defined as the set of all $g \in \Gamma(1)$ such that $\phi(g)(1)=1$. This marks " 1 " as the coset $\Gamma$ in $\Gamma(1) \backslash \Gamma$. The corresponding graph (whose ordering on the trivalent vertices is counterclockwise) is


This bicuboid graph has one edge marked with an " X ", making it into a marked bicuboid graph. Note that marking any of the other 8 vertices gives rise to a total of only 3 distinct marked graphs, hence there are two other subgroups of $\Gamma(1)$ that are conjugate to this $\Gamma$.

We can read much of the data for $\Gamma$ directly from this marked graph. First, we see that $\phi(O)=$ $(123)(456)(789)$ has no fixed points, so $\epsilon_{3}=0$. Next, $\phi(S)=(24)(39)(67)$ has three fixed points, so $\epsilon_{2}=3$. By multiplying the permutations, we have $\phi(T)=\phi(O S)=(145783)(296)$, so $\epsilon_{\infty}=2$ and the width of these two cusps are 6 and 3 . To find generators, first note that the graph has a cycle, but that if the vertex between edges 6 and 7 is cut, the cycle is broken the the resulting cut graph is a tree. There is now a unique path from the marked edge to any edge that does not cross over from edge 6 to edge 7. The path from the marked edge to the edge labeled $i$ corresponds to a matrix, and we have

$$
\begin{array}{lll}
M_{1}=I, & M_{4}=S O, & M_{9}=S O O \\
M_{2}=O, & M_{5}=O S O, & M_{7}=O S O O \\
M_{3}=O O, & M_{6}=O O S O, & M_{8}=O O S O O
\end{array}
$$

Free generators for $\Gamma$ are then $M_{7}^{-1} S M_{6}, M_{1}^{-1} S M_{1}, M_{5}^{-1} S M_{5}$, and $M_{8}^{-1} S M_{8}$, and so $\Gamma \simeq \mathbb{Z} * \mathbb{Z}_{2} * \mathbb{Z}_{2} * \mathbb{Z}_{2}$. In order to construct a special polygon and Farey symbol for this $\Gamma$, we first agree to make a cut between edges 6 and 7, as before, so that the resulting graph is a tree. Next, we place the marked edge on the free edge from $i$ to $e\left(\frac{1}{6}\right)$ in $\mathbb{H}$, and let the remaining edges fall naturally onto their respective free edges in $\mathbb{H}$. The result is


Therefore, the cusps in the Farey symbol are $\infty \leftrightarrow \frac{0}{1} \leftrightarrow \frac{1}{2} \leftrightarrow \frac{1}{1} \leftrightarrow \frac{2}{1} \leftrightarrow \infty$. In order to fill in the pairing information, note that the even points in the $\operatorname{arcs} \infty \leftrightarrow \frac{0}{1}, \frac{0}{1} \leftrightarrow \frac{1}{2}$, and $\frac{2}{1} \leftrightarrow \infty$ are all elliptic points of order 2 for $\Gamma$ since $\phi(S)$ fixes each of the cosets labeled 1,5 and 8 . This means that each of these
three arcs is paired with itself. Finally the $\operatorname{arc} \frac{1}{2} \leftrightarrow \frac{1}{1}$ is paired with the $\operatorname{arc} \frac{1}{1} \leftrightarrow \frac{2}{1}$ in order to glue back together the cut that was made between the edges 6 and 7 . In summary, a Farey symbol for $\Gamma$ is given by

$$
\infty \longleftrightarrow \frac{0}{\longleftrightarrow} \stackrel{1}{1} \frac{1}{2} \longleftrightarrow \frac{1}{1} \overleftrightarrow{1} \longleftrightarrow \frac{2}{1} \longleftrightarrow \infty
$$

We could have made one cut between edges 2 and 4 or 3 and 9 , so there are in total two more Farey symbols corresponding to this subgroup $\Gamma$.

Algorithm 4.5.10. Input: a finite index subgroup $\Gamma$ of $\Gamma(1)$. Output: a Farey symbol for $\Gamma$.
Step 1: If $[\Gamma(1): \Gamma] \leq 2$

$$
\text { return } \begin{cases}\frac{-1}{0} \longleftrightarrow \frac{0}{1} \longleftrightarrow \frac{1}{0} \quad, \quad\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right),\left(\begin{array}{cc}
1 & 1 \\
0 & 1
\end{array}\right) \in \Gamma \quad & (\text { i.e. } \Gamma=\Gamma(1)) \\
\frac{-1}{0} \longleftrightarrow \frac{0}{1} \longleftrightarrow \frac{1}{0} \quad,\left(\begin{array}{cc}
0 & -1 \\
1 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right) \in \Gamma \quad & \left(\text { i.e. } \Gamma=\Gamma^{2}\right)\end{cases}
$$

Step 2: Let $F$ be the partial Farey symbol

$$
F= \begin{cases}\frac{-1}{0} \longleftrightarrow \frac{0}{1} \longleftrightarrow \frac{1}{1} \longleftrightarrow \frac{1}{0} \quad, \quad\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right) \notin \Gamma \\
\left.\frac{-1}{0} \longleftrightarrow \frac{-1}{1} \longleftrightarrow \frac{0}{1} \longleftrightarrow \frac{1}{0} \quad, \quad \begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right) \in \Gamma\end{cases}
$$

Step 3: For each unpaired edge in $F$, check if it can be paired with itself by an even or odd pairing $\left(G_{i} \in \Gamma\right)$ or if it can be paired with another unpaired edge (free pairing $G_{i, k} \in \Gamma$ ) and fill in all of the possible pairings.
Step 4: If all edges are paired, then return $F$.
Step 5: If there is still an unpaired edge in $F$ between, say, $a_{i} / c_{i}$ and $a_{i+1} / c_{i+1}$, place an new vertex $\left(a_{i}+a_{i+1}\right) /\left(c_{i}+c_{i+1}\right)$ in between with no pairing information on the two adjacent edges and goto Step 3.

Given a special polygon $P$, we may convert $P$ to a Farey symbol $F$ and vice-versa. If $P$ is a special polygon, we assume that that $\infty$ is included as a vertex and that there are certain rational vertices $\frac{a_{0}}{c_{0}}<\cdots<\frac{a_{n}}{c_{n}}$. These are put into $F$ in the obvious way with the corresponding pairing information. Note that we have $a_{i+1} c_{i}-a_{i} c_{i+1}=1$ because the quantity $a_{i+1} c_{i}-a_{i} c_{i+1}$ is unchanged when $\frac{a_{i}}{c_{i}}$ and $\frac{a_{i+1}}{c_{i+1}}$ are simultaneously acted upon by some element of $\Gamma(1)$ and $a_{i+1} c_{i}-a_{i} c_{i+1}=1$ for the basic choices $\frac{a_{i}}{c_{i}}=\frac{-1}{0}$ and $\frac{a_{i+1}}{c_{i+1}}=\frac{0}{1}$.

Now given $F$, we can convert to edges of $P$ in the following way (set $g=\left(\begin{array}{cc}a_{i+1} & a_{i} \\ c_{i+1} & c_{i}\end{array}\right)$ ).

$$
\left.\left.\begin{array}{l}
\frac{a_{i}}{c_{i}} \longleftrightarrow \frac{a_{i+1}}{c_{i+1}} \\
\frac{a_{i}}{c_{i}} \longleftrightarrow{ }_{n} \frac{a_{i+1}}{c_{i+1}}
\end{array}\right\} \Longleftrightarrow g\left(E \cup\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)(l)\right), \quad E=\left\{\left.e\left(\frac{1}{4}\right)+i t \right\rvert\, t>0\right\}\right), ~ \begin{array}{ll}
\frac{a_{i}}{c_{i}} \longleftrightarrow \frac{a_{i+1}}{c_{i+1}} \Longleftrightarrow g\left(E \cup\left(\begin{array}{cc}
0 & -1 \\
1 & -1
\end{array}\right)(E)\right), \quad E=\left\{\left.e\left(\frac{1}{6}\right)+i t \right\rvert\, t>0\right\}
\end{array}
$$

## Theorem 4.5.11.

1. If $P$ is a special polygon, then the edge pairing matrices $\left\{g_{i}\right\}$ generate some $\Gamma$ and $P$ is a fundamental domain for $\Gamma$.
There are $\epsilon_{2}$ generators of order 2 .
There are $\epsilon_{3}$ generators of order 3 .
There are $2 g+\epsilon_{\infty}-1$ free generators (order $\infty$ ).
2. The $g_{i}$ are an independent set of generators for $\Gamma$. This means that any element of $\Gamma$ can be written uniquely as $\prod_{g_{k} \in\left\{g_{i}\right\}} g_{k}^{e_{k}}$ where $e_{k} \neq 0$ and $e_{k}$ is further restricted to $1 \leq e_{k}<p$ if $g_{k}$ is a generator of finite order p. In symbols,

$$
\Gamma \simeq \mathbb{Z}_{2}^{* \epsilon_{2}} * \mathbb{Z}_{3}^{* \epsilon_{3}} * \mathbb{Z}^{*\left(2 g-1+\epsilon_{\infty}\right)}
$$

Proof. See [9].

## $4.6 \quad \Gamma(2)$

The main function for the group $\Gamma(2)$, which play the same role as $j(\tau)$ plays for $\Gamma(1)$ (the so-called Hauptmodul), is the modular $\lambda$ function defined by

$$
\lambda(\tau)=\left(\frac{\Theta_{2}(\tau)}{\Theta_{3}(\tau)}\right)^{4}
$$

Proposition 4.6.1. Let $\lambda(\tau)$ be the modular $\lambda$ function. Then,

1. $\lambda(\tau) \in M_{0}^{!}(\Gamma(2)), \Theta_{2}^{4}, \Theta_{3}^{4}, \Theta_{4}^{4} \in M_{2}(\Gamma(2))$
2. $\lambda(\tau)$ has a simple pole at $\frac{1}{1}$, a simple zero at $\frac{1}{0}$, and takes the value 1 at $\frac{0}{1}$.
3. $A_{0}(\Gamma(2))=\mathbb{C}(\lambda)$.
4. $S_{k}(\Gamma(2))=\Theta_{2}^{4} \Theta_{3}^{4} \Theta_{4}^{4} M_{k-6}(\Gamma(2))$.
5. $\Theta_{3}^{4}=\Theta_{2}^{4}+\Theta_{4}^{4}$.
6. $M_{k}(\Gamma(2))=\underset{\substack{2 a+2 b=k \\ a, b \geq 0}}{\bigoplus} \mathbb{C} \Theta_{2}^{4 a} \Theta_{3}^{4 b}$.

Proof. (1). The fundamental domain $\{\tau||\operatorname{Re}(\tau)| \leq 1$ and $| 2 \tau \pm 1 \mid \geq 1\}$ for $\Gamma(2)$ shows that $\bar{\Gamma}(2)$ is generated by $T^{2}$ and $S T^{2} S$. From Proposition 2.8.3, we have

$$
\begin{aligned}
\left.\left(\Theta_{2}, \Theta_{3}, \Theta_{4}\right)\right|_{T} & =\left(\zeta_{8}^{1} \Theta_{2}, \Theta_{3}, \Theta_{4}\right) \\
\left.\left(\Theta_{2}, \Theta_{3}, \Theta_{4}\right)\right|_{S} & =\zeta_{8}^{-1}\left(\Theta_{4}, \Theta_{3}, \Theta_{2}\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left.\left(\Theta_{2}, \Theta_{3}, \Theta_{4}\right)\right|_{T^{2}} & =\left(\zeta_{4} \Theta_{2}, \Theta_{3}, \Theta_{4}\right), \\
\left.\left(\Theta_{2}, \Theta_{3}, \Theta_{4}\right)\right|_{S T^{2} S} & =\left(\zeta_{4}^{3} \Theta_{2}, \zeta_{4}^{3} \Theta_{3}, \Theta_{4}\right) .
\end{aligned}
$$

and we see that $\Theta_{2}^{4} / \Theta_{3}^{4} \in M_{0}^{!}(\Gamma(2))$ because Exercise 2.12.4 shows that $\lambda$ has no poles or zeros in $\mathbb{H}$.
(2). For the values at the cusps, we have the table

| cusp | function | $q$-series |
| :--- | :--- | :--- |
| $\frac{1}{0}$ | $\left.\lambda\right\|_{I}$ | $\frac{\Theta_{2}^{4}}{\Theta^{4}}=2 q^{1 / 2}+\cdots$ |
| $\frac{0}{1}$ | $\left.\lambda\right\|_{S}$ | $\frac{\Theta_{4}^{4}}{\Theta_{3}^{4}}=1+\cdots$ |
| $\frac{1}{1}$ | $\left.\lambda\right\|_{T S}$ | $-\frac{\Theta_{4}^{4}}{\Theta_{2}^{4}}=-\frac{1}{2} q^{-1 / 2}+\cdots$ |

(3). Since $\operatorname{ord}_{\Gamma(2)}(\lambda)=1$ all of the assertions of Proposition 4.4.7 apply.
(4). Since $\Theta_{2}^{4} \Theta_{3}^{4} \Theta_{4}^{4}$ has a simple zero at each cusp, we must obtain $S_{k}$ in this way.
(5). The form $\Theta_{2}^{4}+\Theta_{4}^{4}-\Theta_{3}^{4}=O\left(q^{2 / 2}\right)$ in $M_{2}(\Gamma(2))$ has a zero of order at least 2 at $\infty$ which contradicts the valence formula unless this function vanishes identically.
(6). First note $\Theta_{2}$ and $\Theta_{3}$ are algebraically independent. If $f \in M_{k}(\Gamma(2))$ with $k \geq 0$ and even, then $g:=f / \Theta_{3}^{2 k} \in A_{0}(\Gamma(2))$ with the only possible pole of $g$ located at the pole of $\lambda$. Therefore, part 2 of Prop 4.4.7 shows that $g$ is a polynomial in $\lambda$ of degree no more than $k / 2$ since the valence formula says that $f$ has $k / 2$ zeros (hence $g$ has no more than $k / 2$ zeros).

### 4.7 Building congruence modular forms $N$ from Klein Forms

A subgroup $\Gamma$ of $\Gamma(1)$ is called a congruence subgroup if $\Gamma$ contains $\Gamma(N)$ for some $N$. The smallest such $N$ turns out to be the level of $\Gamma$ in this case (see Proposition 4.13 .4 below). Similarly, a modular function $f$ is said to have level $N$ if it is invariant under $\Gamma(N)$. Most subgroups of $\Gamma(1)$ are not congruence; let $a_{n}$ denote the number of subgroups of $\Gamma(1)$ of index $n$ and let $b_{n}$ denote the number of congruence subgroups of $\Gamma(1)$ of index at most $n$. Then it is known ([11], [12], [15]) that

$$
\begin{gathered}
a_{n} \sim \exp \left(\frac{1}{6} n \log n-\frac{1}{6} n+n^{1 / 2}+n^{1 / 3}+\frac{1}{2} \log n-\frac{1}{4}-\frac{1}{2} \log 2 \pi\right) \\
\log \left(b_{n}\right) \\
\sim\left(\frac{\sqrt{2}-1}{2}\right)^{2} \frac{\log ^{2} n}{\log \log n}
\end{gathered}
$$

One of the building blocks of modular forms of higher levels is the Klein form $\mathfrak{k}_{\vec{r}}(\tau)$, which is defined for $\vec{r} \in \mathbb{Q}^{2}, \tau \in \mathbb{H}$ and has weight -1 and generalizes $\eta(\tau)^{-2}$. We will also introduce a form of positive integral weight $k$ by $\mathfrak{e}_{\vec{r}}^{k}(\tau)$ which generalizes the Eisenstein series $E_{2 k}(\tau)$. Set

$$
\begin{aligned}
& \mathfrak{k}_{\vec{r}}(\tau)=-2 \pi i z e^{\pi i r_{1} z} \prod_{\omega \in \Lambda^{\prime}}\left(1+\frac{z}{\omega}\right) e^{-\frac{z}{\omega}} \\
& \mathfrak{e}_{\vec{r}}^{1}(\tau)=\frac{1}{2 \pi i}\left(\frac{1}{z}+\sum_{\Omega \in \Lambda^{\prime}} \frac{1}{z+\omega}-\frac{1}{\omega}\right) \\
& \mathfrak{e}_{\vec{r}}^{k}(\tau)=\frac{(k-1)!}{(2 \pi i)^{k}} \sum_{\omega \in \Lambda} \frac{1}{(z+\omega)^{k}}, \quad k \geq 2,
\end{aligned}
$$

where $\Lambda=\mathbb{Z} \tau+\mathbb{Z}$ and $z=r_{1} \tau+r_{2}$ and the sums or products over $\omega=m \tau+n$ are performed over $n$ first and then $m$. These sums are not defined if $\vec{r} \in \mathbb{Z}^{2}$, in which we take out the undefined term and obtain the definitions

$$
\mathfrak{e}_{\vec{r}}^{k}(\tau)=\left\{\begin{array}{ll}
\zeta(1-k) E_{k}(\tau) & , k \text { even } \\
0 & , k \text { odd }
\end{array}, \text { for } \vec{r} \in \mathbb{Z}^{2}\right.
$$

Proposition 4.7.1. Set $z=r_{1} \tau+r_{2}$. The Klein forms have the series expansions,

$$
\begin{aligned}
\mathfrak{k}_{\vec{r}}(\tau) & =q_{z}^{\left(r_{1}-1\right) / 2} \frac{\left(q_{z} ; q\right)_{\infty}\left(q / q_{z} ; q\right)_{\infty}}{(q ; q)_{\infty}^{2}}, \\
\mathfrak{e}_{\vec{r}}^{1}(\tau) & =\frac{q_{z}+1}{2\left(q_{z}-1\right)}-\sum_{n=1}^{\infty}\left(q_{z}^{n}-q_{z}^{-n}\right) \frac{q^{n}}{1-q^{n}}, \text { for }\left|r_{1}\right|<1, \\
\mathfrak{e}_{\vec{r}}^{2}(\tau) & =\frac{q_{z}}{\left(q_{z}-1\right)^{2}}+\sum_{n=1}^{\infty}\left(q_{z}^{n}+q_{z}^{-n}\right) \frac{n q^{n}}{1-q^{n}}, \text { for }\left|r_{1}\right|<1, \\
\mathfrak{e}_{\vec{r}}^{3}(\tau) & =\frac{q_{z}\left(q_{z}+1\right)}{\left(q_{z}-1\right)^{3}}-\sum_{n=1}^{\infty}\left(q_{z}^{n}-q_{z}^{-n}\right) \frac{n^{2} q^{n}}{1-q^{n}}, \text { for }\left|r_{1}\right|<1,
\end{aligned}
$$

where $\mathfrak{e}_{\vec{r}}^{k+1}(\tau)$ is formally obtained from $\mathfrak{e}_{\vec{r}}^{k}(\tau)$ by applying $\frac{-1}{2 \pi i} \frac{\partial}{\partial z}$.
Proposition 4.7.2. For $N>1$, we have

$$
\begin{aligned}
& \prod_{j=0}^{N-1} \mathfrak{k}_{\frac{i}{N}, \frac{j}{N}}(\tau)=\zeta_{4 N}^{(N-1)(i-N)} \frac{\eta(N \tau)^{2}}{\eta(\tau)^{2 N}} \mathfrak{k}_{\frac{i}{N}, \frac{0}{N}}(N \tau), \\
& \prod_{j=1}^{N-1} \mathfrak{k}_{\frac{0}{N}, \frac{j}{N}}(\tau)=\zeta_{4}^{1-N} \frac{\eta(N \tau)^{2}}{\eta(\tau)^{2 N}}
\end{aligned}
$$

Proposition 4.7.3. For $\vec{r}=\left(r_{1}, r_{2}\right)$ and $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma(1)$,

$$
\begin{aligned}
& \left.\mathfrak{k}_{\vec{r}}\right|_{g}(\tau)=\mathfrak{k}_{\vec{r}, g}(\tau), \\
& \left.\mathfrak{e}_{\vec{r}}^{1}\right|_{g}(\tau)=\mathfrak{e}_{\vec{r}, g}^{1}(\tau)+c(a \tau+b) r_{1}+c(c \tau+d) r_{2}, \\
& \left.\mathfrak{e}_{\vec{r}}^{2}\right|_{g}(\tau)=\mathfrak{e}_{\vec{r} \cdot g}^{2}(\tau)-\frac{c}{2 \pi i(c \tau+d)}, \\
& \left.\mathfrak{e}_{\vec{r}}^{k}\right|_{g}(\tau)=\mathfrak{e}_{\vec{r} \cdot g}^{k}(\tau), \quad k \geq 3 .
\end{aligned}
$$

If $\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2}$,

$$
\begin{aligned}
& \mathfrak{k}_{\vec{r}+\left(n_{1}, n_{2}\right)}(\tau)=(-1)^{n_{1}+n_{2}+n_{1} n_{2}} e\left(\frac{1}{2}\left(r_{1} n_{2}-r_{2} n_{1}\right)\right) \mathfrak{k}_{\vec{r}}(\tau), \\
& \mathfrak{e}_{\vec{r}+\left(n_{1}, n_{2}\right)}^{1}(\tau)=\mathfrak{e}_{\vec{r}}^{1}(\tau)-n_{1}, \\
& \mathfrak{e}_{\vec{r}+\left(n_{1}, n_{2}\right)}^{k}(\tau)=\mathfrak{e}_{\vec{r}}^{k}(\tau), \quad k \geq 2 .
\end{aligned}
$$

Proposition 4.7.4. If $\operatorname{gcd}(a, c)=1$, then

$$
\operatorname{ord}_{\frac{\varrho}{c}} \mathfrak{k}_{\vec{r}}(\tau)=\binom{\operatorname{frac}(\vec{r} \cdot \vec{v})}{2}
$$

where $\vec{v}=(a, c)^{\top}$ is the vector corresponding to the cusp $\frac{a}{c}$ and $\operatorname{frac}(x)$ denotes the fractional part of $x$ that satisfies $0 \leq \operatorname{frac}(x)<1$.

Proof. Exercise.
Proposition 4.7.5. For $\vec{r}=\left(r_{1}, r_{2}\right) \in \frac{1}{N} \mathbb{Z}^{2}$,

1. For $k=-\sum_{\vec{r}} m(\vec{r})$, the form $\prod_{\vec{r}} \mathfrak{k}_{\vec{r}}(\tau)^{m(\vec{r})}$ is in $M_{k}^{1}(\Gamma(N))$ if and only if

$$
\begin{aligned}
\sum_{\vec{r}} m(\vec{r})\left(N r_{1}\right)^{2} & \equiv 0 \bmod N \operatorname{gcd}(2, N), \\
\sum_{\vec{r}} m(\vec{r})\left(N r_{2}\right)^{2} & \equiv 0 \bmod N \operatorname{gcd}(2, N), \\
\sum_{\vec{r}} m(\vec{r})\left(N r_{1}\right)\left(N r_{2}\right) & \equiv 0 \bmod N
\end{aligned}
$$

2. The form $\sum_{\vec{r}} m(\vec{r}) \mathfrak{e}_{\vec{r}}^{1}(\tau)$ is in $M_{1}(\Gamma(N))$ if and only if $\sum_{\vec{r}} m(\vec{r}) r_{1}=0$.
3. The form $\sum_{\vec{r}} m(\vec{r}) \mathfrak{e}_{\vec{r}}^{2}(\tau)$ is in $M_{2}(\Gamma(N))$ if and only if $\sum_{\vec{r}} m(\vec{r})=0$.
4. The form $\sum_{\vec{r}} m(\vec{r}) \mathfrak{e}_{\vec{r}}^{k}(\tau)$ is in $M_{k}(\Gamma(N))$ for any $k \geq 3$.

We will give a generator $x_{N}$ for the function field $A_{0}(\Gamma(N))$ for $N<6$ in Section 4.9. The following theorem tells us that two ratios of Klein forms suffice for $N \geq 6$.
Theorem 4.7.6 ([7]). For $N \geq 6$, we have $A_{0}(\Gamma(N))=\mathbb{C}\left(x_{2, N}(\tau), x_{3, N}(\tau)\right)$, where

$$
x_{r, N}(\tau)=\left(\frac{\mathfrak{k}_{r / N, 0}(N \tau)}{\mathfrak{k}_{1 / N, 0}(N \tau)}\right)^{\operatorname{gcd}(2, r, N)}
$$

Furthermore, $x_{3, N}$ is integral over $\mathbb{Q}\left[x_{2, N}\right]$.

### 4.8 Building congruence modular forms from $\eta$ products

Proposition 4.8.1. Let $\operatorname{gcd}(a, c)=1$ and $M \in \mathbb{Z}^{2 \times 2}$ with $\operatorname{det} M>0$. Then,

$$
\left.\operatorname{ord}_{\frac{a}{c}} \eta\right|_{M}(\tau)=\frac{1}{24} \frac{\operatorname{gcd}(M \cdot \vec{v})^{2}}{\operatorname{det}(M)}
$$

where $\vec{v}=(a, c)^{\top}$ is the vector corresponding to the cusp $\frac{a}{c}$.
Proof. Exercise.
Proposition 4.8.2. Set $\Gamma=\Gamma_{0}(N)$ and suppose that $f(\tau)=\prod_{l \mid N} \eta(l \tau)^{r_{l}}$ and that the three numbers

$$
k=\frac{1}{2} \sum_{l \mid N} r_{l}, \quad \operatorname{ord}_{\infty}(f, \Gamma)=\frac{1}{24} \sum_{l \mid N} l r_{l}, \quad \operatorname{ord}_{0}(f, \Gamma)=\frac{1}{24} \sum_{l \mid N} \frac{N}{l} r_{l},
$$

are all integers. Then, for any $g=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in \Gamma$ with odd $d$, $f$ satisfies

$$
\left.f\right|_{g, k}(\tau)=\left(\frac{(-1)^{k} \prod_{l \mid N} l^{\left|r_{l}\right|}}{d}\right) f(\tau)
$$

Remark 4.8.3. In the case that $d$ is even, $c$ must be odd and we can recover the multiplier for such d by

$$
\left.f\right|_{g, k}(\tau)=\left(\frac{(-1)^{k} \prod_{l \mid N} l^{\left|r_{l}\right|}}{c+d}\right) f(\tau)
$$

simply be replacing $\tau$ by $\tau-1$.

Proof. Assuming $d$ is odd, the multiplier system for $\eta$ (Exercise 2.12.6) has the form

$$
\begin{aligned}
\eta\left(\frac{a \tau+b}{c \tau+d}\right) & =\left(\frac{c}{|d|}\right) \zeta_{24}^{3 d+d(b-c)+a c\left(1-d^{2}\right)} \sqrt{-i(c \tau+d)} \eta(\tau), \\
\text { or } \quad \eta\left(l \frac{a \tau+b}{c \tau+d}\right)^{r_{l}} & =\left(\frac{c^{r_{l} \mid}| |^{\left|r_{l}\right|}}{|d|}\right) \zeta_{24}^{3 d r_{l}+d b l r_{l}-\left(a d^{2}-a+d\right) \frac{c}{N} \frac{N}{l} r_{l}}(-i(c \tau+d))^{\frac{r_{l}}{2}} \eta(l \tau)^{r_{l}},
\end{aligned}
$$

since $l \frac{a \tau+b}{c \tau+d}=\frac{a(l \tau)+b l}{\frac{c}{N} \frac{N}{l}(l \tau)+d}$. Therefore

$$
\begin{aligned}
\frac{\left.f\right|_{g, k}(\tau)}{f(\tau)} & =(-i)^{k}\left(\frac{c^{2|k|} \prod_{l \mid N} l^{\left|r_{l}\right|}}{|d|}\right) \zeta_{24}^{6 d k+24 d b \operatorname{ord}_{\infty}(f, \Gamma)-24\left(a d^{2}-a+d\right) \frac{c}{N} \operatorname{ord}_{0}(f, \Gamma)} \\
& =\left(\frac{(-1)^{k} \prod_{l \mid N} l^{\left|r_{l}\right|}}{d}\right)
\end{aligned}
$$

since $k, \operatorname{ord}_{\infty}(f, \Gamma)$, and $\operatorname{ord}_{0}(f, \Gamma)$ are all integers.
Following [6], the $\eta$ function can be generalized to any even real Dirichlet character $\chi$. Set

$$
\eta_{\chi}(\tau)=q^{-\frac{1}{2} L(-1, \chi)} \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{\chi(n)}, \quad(\chi(-1)=1) .
$$

Here $L(s, \chi)$ is the Dirichlet series $\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}$, which converges for $s>1$ and can be analytically continued to $\mathbb{C}$ with a possible pole at $s=1$. When $\chi$ is the function 1 identically, we recover the usual $\eta$ function because of the value $L(-1,1)=\zeta(-1)=-\frac{1}{12}$. It suffices to study primitive characters because if $\chi$ is a character modulo $k$ and $\chi(n)=\chi_{1}(n) \chi_{0}(n)$ where $\chi_{1}$ is the primitive character modulo $\Delta \mid k$ and $\chi_{0}(n)$ is the principle character modulo $k$, then

$$
\eta_{\chi}(\tau)=\prod_{l \left\lvert\, \frac{k}{\Delta}\right.} \eta_{\chi_{1}}(l \tau)^{\mu(l) \chi_{1}(l)}
$$

It should be pointed out at this point that the only real even primitive characters are given by

$$
\chi(n)=\left(\frac{\Delta}{n}\right)
$$

where (:) is the Kronecker symbol and $\Delta$ is a fundamental discriminant (see definition 7.3.1). The period of this character is $\Delta$.

Proposition 4.8.4 ([6]). Let $\Delta>1$ be a fundamental discriminant and $\chi$ the associated primitive real even character. Set $\chi^{\prime}(n)$ to be $\chi(n)$ if $\Delta$ is a prime, and 1 otherwise. Then, for any $\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in \Gamma_{0}(\Delta)$, $\eta_{\chi}$ satisfies the transformation formula

$$
\eta_{\chi}\left(\frac{a \tau+b}{c \tau+d}\right)=\chi^{\prime}(d) \eta_{\chi}(\tau)^{\chi(d)} \times \begin{cases}\zeta_{5}^{a b} & , \Delta=5 \\ \zeta_{16}^{a-d+b c-8 b} & , \Delta=8 \\ 1 & , \Delta>8\end{cases}
$$

## $4.9 \quad \Gamma(N)$ and regular polyhedron

It is known that the finite groups acting faithfully on $\mathbb{C}_{\infty}$ are exactly

| $\mathbb{Z}_{n}$ | the cyclic group of order $n$, |
| :--- | :--- |
| $\mathbb{Z}_{n} \rtimes \mathbb{Z}_{2}$ | the dihedral group of order $2 n$, |
| $A_{4}$ | the symmetries of the tetrahedron of order 12, |
| $S_{4}$ | the symmetries of the octahedron of order 24, |
| $A_{5}$ | the symmetries of the icosahedron of order 60. |

For the modular group, it turns out that restricting to normal subgroups of genus 0 puts a restriction on the first two types, and there is a finite list of possible groups. First, for any subgroup $\Gamma$ with $\mu=[\bar{\Gamma}(1): \bar{\Gamma}]$, let $e_{2}$ (resp. $e_{3}, e_{\infty}$ ) denote the number of equivalent classes under $\Gamma$ of the points $\Gamma(1)(i)$ (resp. $\left.\Gamma(1)\left(e\left(\frac{1}{3}\right)\right), \Gamma(1)(\infty)\right)$. Thus, $e_{m}=\epsilon_{m}+\frac{\mu-\epsilon_{m}}{m}$ for $m=2,3, \infty$ since $e_{\infty}=\epsilon_{\infty}$. Next, suppose that $\bar{\Gamma}$ is a normal subgroup of $\bar{\Gamma}(1)$. This means that the order of any point is same, and therefore that $e_{m} \mid \mu$ for $m=2,3, \infty$. Thus, in this case we can define $n_{m}$ by

$$
\mu=n_{2} e_{2}=n_{3} e_{3}=n_{\infty} e_{\infty}
$$

and this corresponds to the triplet $\left(n_{2}, n_{3}, n_{\infty}\right)$ describing the branching information of $\Gamma$. The genus formula may be rearranged as

$$
\begin{equation*}
\frac{2-2 g}{\mu}=\frac{1}{n_{2}}+\frac{1}{n_{3}}+\frac{1}{n_{\infty}}-1 . \tag{4.9.1}
\end{equation*}
$$

Note that $n_{2}$ is either 1 or 2 and $n_{3}$ is either 1 or 3 , while $n_{\infty}$, which is the width of any cusp, has no such restriction. An easy consequence is that $\mu \equiv 0 \bmod 6$ if $\mu>3$. Also, if $\Gamma_{2} \unlhd \Gamma_{1} \unlhd \Gamma(1)$, then each $n_{m}\left(\Gamma_{1}\right)$ divides $n_{m}\left(\Gamma_{2}\right)$.

Proposition 4.9.1. If $\bar{\Gamma}$ is a proper normal subgroup of $\bar{\Gamma}(1)$ with finite index and genus 0 , then $\Gamma$ is one of the following:

| $\Gamma$ | $\bar{\Gamma}(1) / \bar{\Gamma}$ | $\Gamma$ | $\bar{\Gamma}(1) / \bar{\Gamma}$ |
| :--- | :--- | :--- | :--- |
| $\Gamma^{2}$ | $\mathbb{Z}_{2}$ | $\Gamma(3)$ | $A_{4}$ |
| $\Gamma^{3}$ | $\mathbb{Z}_{3}$ | $\Gamma(4)$ | $S_{4}$ |
| $\Gamma(2)$ | $S_{3} \simeq \mathbb{Z}_{3} \rtimes \mathbb{Z}_{2}$ | $\Gamma(5)$ | $A_{5}$ |

Proof. We first deal with the case $n_{2}=n_{3}=1$. In this case, (4.9.1) is $\frac{2}{\mu}=1+\frac{1}{n_{\infty}}$ and so $\mu=1=n_{\infty}$. So in this case, $\bar{\Gamma}=\bar{\Gamma}(1)$. Next, suppose that $n_{2}=1$ and $n_{3}=3$, so that $\frac{2}{\mu}=\frac{1}{3}+\frac{1}{n_{\infty}}$. Since $\mu \geq n_{\infty}$ this implies that $\mu=3$ and that $\Gamma=\Gamma^{3}$ as this is the only normal subgroup of index 3 . Next, suppose that $n_{2}=2$ and $n_{3}=1$, so that $\frac{2}{\mu}=\frac{1}{2}+\frac{1}{n_{\infty}}$. Since $\mu \geq n_{\infty}$ this implies that $\mu=2$ and that $\Gamma=\Gamma^{2}$ as this is the only normal subgroup of index 2 . Next, suppose that $n_{2}=2$ and $n_{3}=3$, so that $\frac{2}{\mu}=-\frac{1}{6}+\frac{1}{n_{\infty}}$. This implies that $n_{\infty}=2,3,4,5$ with corresponding $\mu=6,12,24,60$. Set $G=\bar{\Gamma}(1) / \bar{\Gamma}$ so that $\mu=|G|$. We will first determine $G$ up to isomorphism and then $\bar{\Gamma}$ exactly. Note that $G$ is generated (modulo $\Gamma$ ) by $S, S T$ and $T$ with $S^{2}=(S T)^{3}=T^{n_{\infty}}=1$.

First, suppose that $|G|=6,(2,3,2)$. Since $S$ has order 2 and $S T$ has order 3 but their product $T$ has order 2 (not 6 ), $G$ cannot be Abelian, and so $G \simeq S_{3}$.

Next, suppose that $|G|=12,(2,3,3)$. A Sylow 3 subgroup cannot be normal, because otherwise its quotient would correspond to a normal subgroup of $\bar{\Gamma}(1)$ of index 4 which doesn't exist. Since $A_{4}$ is the only group of order 12 that doesn't have a normal Sylow 3 subgroup, $G \simeq A_{4}$.

Next, suppose that $|G|=24,(2,3,4)$. As before, there are 4 Sylow 3 subgroups, and we obtain a homomorphism $\phi: G \rightarrow S_{4}$ by the action of $G$ on the 4 Sylow 3 subgroups where im $\phi \simeq A_{4}, S_{4}$ since these are the only transitive subgroups of $S_{4}$ whose order is divisible by 6 . If $\operatorname{im} \phi=A_{4}$, then this
corresponds to another normal subgroup $\bar{\Gamma}_{1}$ of index 12 . The only group with index 12 corresponds to the triplet $(2,3,3)$, which does not divide the triplet $(2,3,4)$. Hence $\operatorname{im} \phi=S_{4}$ and so $G \simeq S_{4}$.

Finally, suppose that $|G|=60,(2,3,5)$. Since the only triplets dividing $(2,3,5)$ are the trivial ones, $G$ must be simple. Standard group theory arguments using the Sylow 2 subgroup show that $A_{5}$ is the only simple group of order 60 .

To finish the proof, we need to show that $\Gamma(N)$ is the only possibility for $\Gamma$ when the branching information is $(2,3, N)$ (and $g=0$ ). By Proposition 4.3.1, the groups $\bar{\Gamma}(2), \bar{\Gamma}(3), \bar{\Gamma}(4), \bar{\Gamma}(5)$ have the correct indexes in $\bar{\Gamma}(1)$, that is

$$
\mu=\frac{12 N}{6-N}=[\bar{\Gamma}(1): \bar{\Gamma}(N)]= \begin{cases}\frac{1}{2} N^{3} \prod_{p \mid N}\left(1-\frac{1}{p^{2}}\right) & , N \geq 3 \\ 6 & , N=2\end{cases}
$$

for $N=2,3,4,5$. Consider $\bar{\Gamma} \cap \bar{\Gamma}(N)$ for $N=2,3,4,5$. We know that $\bar{\Gamma} \cap \bar{\Gamma}(N)$ is a normal subgroup of $\bar{\Gamma}$, but be do not know a priori that the genus of $\bar{\Gamma} \cap \bar{\Gamma}(N)$ is 0 . However, we are given that both $\bar{\Gamma}$ and $\bar{\Gamma}(N)$ have cusp width $N$, and so $\bar{\Gamma} \cap \bar{\Gamma}(N)$ has cusp width $N$. This means that the branching data of $\bar{\Gamma} \cap \bar{\Gamma}(N)$ is $(2,3, N)$ and if $\mu$ and $g$ denote the index and genus of $\bar{\Gamma} \cap \bar{\Gamma}(N)$, we have

$$
\frac{2-2 g}{\mu}=\frac{1}{2}+\frac{1}{3}+\frac{1}{N}-1
$$

Since the right hand side is strictly positive for $N=2,3,4,5, g$ is forced to be 0 and $\mu$ is forced to be $12 N /(6-N)$. This means that $[\bar{\Gamma}(1): \bar{\Gamma} \cap \bar{\Gamma}(N)]=[\bar{\Gamma}(1): \bar{\Gamma}(N)]$, which forces $\bar{\Gamma}=\bar{\Gamma}(N)$.

Although we deduced that there is only one normal subgroup of genus 0 with branching data $(2,3, N)$ for $N=2,3,4,5$, this result does not need to hold for higher genera. For example, all normal subgroups of genus 1 have branching data $(2,3,6)$, and there are infinitely many of them ([13]).

Having classified all of the normal subgroup $\Gamma$ of $\Gamma(1)$ with genus 0 , let us turn now to the problem of constructing the spaces $M_{k}(\Gamma)$ for these $\Gamma$. The groups $\Gamma^{2}$ and $\Gamma^{3}$ are not very interesting, as (Exercise 4.9.8)

$$
A_{0}\left(\Gamma^{2}\right)=\mathbb{C}(\sqrt{j-1728}), \quad A_{0}\left(\Gamma^{3}\right)=\mathbb{C}\left(j^{1 / 3}\right)
$$

so let us turn to $\Gamma(N)$ for $N=2,3,4,5$. Assuming that there is a Hauptmodul, say $f_{N}(\tau)$, for these $\Gamma(N)$, it is possible to show that there is a Hauptmodul $x_{N}$ that is uniquely determined by

$$
x_{N}(\tau)=q^{-\frac{1}{N}}(1+\text { integral powers of } q)
$$

Since $\Gamma(N)$ is a normal subgroup of $\Gamma(1)$, there must be constants $A, B, C, D$, depending on $N$, such that

$$
\left.f_{N}\right|_{T}=\frac{A f_{N}+B}{C f_{N}+D} .
$$

By rescaling the matrix $\bar{M}=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$, we may assume that one of its eigenvalues is 1 . If the other eigenvalue were 1 , then $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ would be similar to either $\left(\begin{array}{lll}1 & 1 \\ 0 & 1\end{array}\right)$ or $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. The first is a contradiction because $\bar{M}^{N}=I$ since $T^{N} \in \Gamma(N)$. If the second were true then $f_{N}$ would be invariant under $T$ and so $N$ divides $\operatorname{ord}_{\infty}\left(f_{N}(\tau)-f_{N}(\infty), \Gamma(N)\right) \neq 0$, which is a contradiction because $f_{N}(\tau)-f_{N}(\infty)$ is also a Hauptmodul for $\Gamma(N)$. We now have $M=P^{-1}\left(\begin{array}{ll}\zeta & 0 \\ 0 & 1\end{array}\right) P$ where $\zeta$ is an $N^{\text {th }}$ root of unity. Setting $x_{N}=P\left(f_{N}\right)$ gives $\left.x_{N}\right|_{T}=\zeta_{N}^{r} x_{N}$ for some integer $r$ and so $q^{-r / N} x_{N}$ has an expansion in integral powers of $q$. Since $x_{N}$ is also a Hauptmodul, $r= \pm 1$ and we choose $r=-1$ whicn gives $x_{N}$ a simple
pole at $\infty$. It will be shown that the following functions are such Hauptmoduln for $\Gamma_{N}$.

$$
\begin{align*}
& x_{2}(\tau)=\frac{\left(q^{1 / 2} ; q^{1 / 2}\right)_{\infty}^{8}+\left(-q^{1 / 2} ;-q^{1 / 2}\right)_{\infty}^{8}}{2 q^{1 / 2}\left(q^{2} ; q^{2}\right)_{\infty}^{8}}=q^{-\frac{1}{2}}\left(1+20 q-62 q^{2}+216 q^{3}-641 q^{4}+\cdots\right), \\
& x_{3}(\tau)=\frac{\left(q^{1 / 3} ; q^{1 / 3}\right)_{\infty}^{3}+3 q^{1 / 3}\left(q^{3} ; q^{3}\right)_{\infty}^{3}}{q^{1 / 3}\left(q^{3} ; q^{3}\right)_{\infty}^{3}}=q^{-\frac{1}{3}}\left(1+5 q-7 q^{2}+3 q^{3}+15 q^{4}+\cdots\right), \\
& x_{4}(\tau)=\frac{\left(q^{2} ; q^{2}\right)_{\infty}^{6}}{q^{1 / 4}(q ; q)_{\infty}^{2}\left(q^{4} ; q^{4}\right)_{\infty}^{4}}=q^{-\frac{1}{4}}\left(1+2 q-q^{2}-2 q^{3}+3 q^{4}+2 q^{5}+\cdots\right),  \tag{4.9.2}\\
& x_{5}(\tau)=\frac{\left(q^{2} ; q^{5}\right)_{\infty}\left(q^{3} ; q^{5}\right)_{\infty}}{q^{1 / 5}\left(q ; q^{5}\right)_{\infty}\left(q^{4} ; q^{5}\right)_{\infty}}=q^{-\frac{1}{5}}\left(1+q-q^{3}+q^{5}+q^{6}-q^{7}-2 q^{8}+\cdots\right) .
\end{align*}
$$

A more uniform (but multi-valued) definition of the modular function $x_{N}$ is

$$
\begin{align*}
& x_{N}\left.\left.=\frac{j^{-\frac{N-6}{12 N}}{ }_{2} F_{1}\left(\frac{N-6}{12 N}, \frac{5 N-6}{12 N}\right.}{N} \right\rvert\, \frac{1728}{j}\right)  \tag{4.9.3}\\
& j^{-\frac{N+6}{12 N}}{ }_{2} F_{1}\left(\begin{array}{c}
\frac{N+6}{12 N}, \frac{5 N+6}{12 N} \\
\frac{N+1}{N}
\end{array} \frac{1728}{j}\right) \\
&=q^{-\frac{1}{N}\left(1+\frac{120}{N\left(N^{2}-1\right)} q+\frac{180(N-5)\left(3 N^{2}+21 N+8\right)}{N^{2}(N+1)^{2}\left(4 N^{2}-1\right)} q^{2}+\cdots\right),}
\end{align*}
$$

where $j$ is the $j$ function. This representation will be proven in Chapter 8 where Proposition 4.9.3 below can be utilized.

Proposition 4.9.2. For $N=2,3,4,5, x_{N}$ is a Hauptmodul for $\Gamma(N)$ and $x_{N}^{N}$ is a Hauptmodul for $\Gamma_{1}(N)$. The action of $T$ on $x$ is given by

$$
\left.x_{N}\right|_{T}=\zeta_{N}^{-1} x_{N} .
$$

The action of $S$ on $x_{N}$ is given in the following table.

| $N$ | $\left.x_{N}\right\|_{S}$ |
| :---: | :---: |
| 2 | $\frac{8 x+192}{x-1}$ |
| 3 | $\frac{3 x+18}{x-3}$ |
| 4 | $\frac{2 x+4}{x-2}$ |
| 5 | $\frac{(1+\sqrt{5}) x+2}{2 x-1-\sqrt{5}}$ |

Proof. We only deal with the case $N=5$ as the other cases are similar and simpler. By Proposition 4.7.2, $x_{5}$ has the representation

$$
x_{5}(\tau)=\zeta_{5}^{-1} \prod_{i=0}^{4} \frac{\mathfrak{k}_{\frac{2}{5}, \frac{, 5}{2}}(\tau)}{\mathfrak{k}_{\frac{1}{5}, \frac{,}{5}}(\tau)}
$$

hence we see immediately from Proposition 4.7 .5 that $x_{5} \in M_{0}^{!}(\Gamma(5))$. Next, suppose that $\frac{a}{c}$ is a cusp of $\Gamma(5)$ and that $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma(1)$. By Proposition 4.7.4,

$$
\frac{1}{5} \operatorname{ord} \frac{a}{c}\left(x_{5}, \Gamma(5)\right)=\sum_{i=0}^{4}\binom{\operatorname{frac}\left(\frac{2 a+i c}{5}\right)}{2}-\sum_{i=0}^{4}\binom{\operatorname{frac}\left(\frac{a+i c}{5}\right)}{2} .
$$

If $(c, 5)=1$, it is easy to see that both of these sums are $-2 / 5$ (which is $\left(1-N^{2}\right) / 12 N$ when $N=5$ ), so $x_{5}$ has no zeros or poles at these cusps. The only cusps of $\Gamma(5)$ whose denominators are divisible by 5 are represented by $\frac{1}{5}, \frac{2}{5}$, where $x_{5}$ has a simple pole and simple zero, respectively. We now know that
$x_{5}$ is a Hauptmodul for $\Gamma(5)$ since $x_{5}$ clearly has no poles in $\mathbb{H}$. It is clear from the $q$-series expansion of $x_{5}$ that $\left.x_{5}\right|_{T}=\zeta_{5}^{-1} x_{5}$. From this we can deduce that $x_{5}^{5} \in A_{0}\left(\Gamma_{1}(5)\right)$ since $\Gamma_{1}(5)$ is generated by $\Gamma(5)$ and $T$. Since the cusps for $\Gamma_{1}(5)$ are a subset of the cusps for $\Gamma(5)$, the only possible location of a pole of $x_{5}^{5}$ on $\overline{\mathbb{H}} / \Gamma_{1}(5)$ is at the cusp $\frac{1}{5}$ (equivalent to $\infty$ ), where $x_{5}^{5}$ has a simple pole with respect to $\Gamma_{1}(5)$. Finally, by Propositions 4.7.3 and 4.7.1, the $q$-series expansion of $\left.x_{5}\right|_{S}$ is

$$
\begin{aligned}
\left.x_{5}\right|_{S} & =\zeta_{5}^{-1} \prod_{i=0}^{4} \frac{\mathfrak{k}_{\frac{i}{5}, \frac{-2}{5}}(\tau)}{\mathfrak{k}_{\frac{i}{5},-\frac{1}{5}}(\tau)} \\
& =-\zeta_{5}^{3} \frac{1-\zeta_{5}^{3}}{1-\zeta_{5}^{4}} \frac{\left(\zeta_{5}^{2} q^{1 / 5} ; q^{1 / 5}\right)_{\infty}\left(\zeta_{5}^{3} q^{1 / 5} ; q^{1 / 5}\right)_{\infty}}{\left(\zeta_{5}^{1} q^{1 / 5} ; q^{1 / 5}\right)_{\infty}\left(\zeta_{5}^{4} q^{1 / 5} ; q^{1 / 5}\right)_{\infty}} \\
& =\frac{1+\sqrt{5}}{2}+\frac{5+\sqrt{5}}{2} q^{1 / 5}+\frac{5+3 \sqrt{5}}{2} q^{2 / 5}+O\left(q^{3 / 5}\right) .
\end{aligned}
$$

From these first few terms it is a simple matter to determine the constants $A, B, C$ and $D$ in the relation

$$
\left.x_{5}\right|_{S}=\frac{A x_{5}+B}{C x_{5}+D}
$$

which must exist because $\left.x_{5}\right|_{S}$ is a Hauptmodul for $\Gamma(5)$ since this is a normal subgroup of $\Gamma(1)$.
Proposition 4.9.3. Let $\{f(z), z\}$ denote the Schwarzian derivative

$$
\{f(z), z\}=\frac{f^{\prime \prime \prime}(z)}{f^{\prime}(z)}-\frac{3}{2}\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{2}
$$

Then,

$$
\left\{x_{N}, j\right\}=\frac{\frac{1}{2}\left(1-N^{-2}\right) j(j-1728)-120 j+1327104}{j^{2}(j-1728)^{2}} .
$$

Proof. Since the Schwarzian derivative is invariant under $\mathrm{GL}_{2}(\mathbb{C})$ and $\Gamma(1)$ acts on $x_{N}$ by a subgroup of $\mathrm{GL}_{2}(\mathbb{C})$, as a function of $\tau,\left\{x_{N}, j\right\}$ is in $A_{0}(\Gamma(1))$. We assert that in fact $j^{2}(j-1728)^{2}\left\{x_{N}, j\right\}$ is a polynomial of degree 2 in $j$. First at any point $\tau_{0} \in \mathbb{H}$ that is not $\Gamma(1)$ equivalent to either $i$ or $e\left(\frac{1}{3}\right), j(\tau)$ has an expansion $j(\tau)=b_{0}+b_{1}\left(\tau-\tau_{0}\right)+\cdots$ where $b_{1} \neq 0$. Therefore, since the function $x_{N}$ does not ramify anywhere, it has an expansion in the neighborhood of $\tau_{0}$ in the form $x_{N}=a_{0}+a_{1}\left(j-j\left(\tau_{0}\right)\right)+a_{2}\left(j-j\left(\tau_{0}\right)\right)^{2}+\cdots$ where $a_{1} \neq 0$. Therefore,

$$
\left\{x_{N}, j\right\}=\frac{6\left(a_{1} a_{3}-a_{2}^{2}\right)}{a_{1}^{2}}+\frac{24\left(a_{2}^{3}-2 a_{1} a_{3} a_{2}+a_{1}^{2} a_{4}\right)}{a_{1}^{3}}\left(j-j\left(\tau_{0}\right)\right)+\cdots
$$

remains finite at this location. In the neighborhood of $i, j$ has an expansion $j=1728+b_{2}(\tau-i)^{2}+\cdots$, so $x_{N}$ has an expansion $x_{N}=a_{0}+a_{1}(j-1728)^{1 / 2}+a_{2}(j-1728)^{2 / 2}+\cdots$ where $a_{1} \neq 0$. Therefore,

$$
(j-1728)^{2}\left\{x_{N}, j\right\}=\frac{3}{8}+\frac{3\left(a_{1} a_{3}-a_{2}^{2}\right)}{2 a_{1}^{2}}(j-1728)+\cdots
$$

remains finite also at $i$. In the neighborhood of $e\left(\frac{1}{3}\right), x_{N}$ has an expansion $x_{N}=a_{0}+a_{1} j^{1 / 3}+a_{2} j^{2 / 3}+\cdots$ where $a_{1} \neq 0$. Therefore, we have the expansion

$$
j^{2}\left\{x_{N}, j\right\}=\frac{4}{9}+\frac{2\left(a_{1} a_{3}-a_{2}^{2}\right)}{3 a_{1}^{2}} j^{4 / 3}+\cdots
$$

which, when taken with the previous three expansions, shows that $j^{2}(j-1728)^{2}\left\{x_{N}, j\right\}$ has possible poles only at $\infty$. At $\infty$ we have the expansions $j=q^{-1}+744+\cdots$ and $x_{N}=q^{-1 / N}\left(1+b_{1} q+\cdots\right)$,
so $x_{N}$ has the expansion $x_{N}=j^{1 / N}\left(1+a_{1} j^{-1}+a_{2} j^{-2}+\cdots\right)$ in terms of $j$. From this we obtain the expansion

$$
\left\{x_{N}, j\right\}=\left(\frac{1}{2}-\frac{1}{2 N^{2}}\right) j^{-2}+\cdots(\text { decending powers of } j)
$$

which shows that $j^{2}(j-1728)^{2}\left\{x_{N}, j\right\}$ is a polynomial of degree 2 in $j$ with leading coefficient $\frac{1}{2}-\frac{1}{2 N^{2}}$. If $P(j)$ denotes this polynomial, then the expansions of $(j-1728)^{2}\left\{x_{N}, j\right\}$ and $j^{2}\left\{x_{N}, j\right\}$ show that $1728^{-2} P(1728)=\frac{3}{8}$ and $1728^{-2} P(0)=\frac{4}{9}$, which uniquely determines the polynomial.

Proposition 4.9.4. For $N=2,3,4,5, j(\tau), j(N \tau), \frac{\eta(\tau / N)^{24}}{\eta(N \tau)^{24}}, \frac{\eta(\tau)^{24}}{\eta(N \tau)^{24}}$ have the following representations as rational functions of $x_{N}$.

| $N$ | $j(\tau)$ | $j(N \tau)$ | $\frac{\eta(\tau / N)^{24}}{\eta(N \tau)^{24}}$ | $\frac{\eta(\tau)^{24}}{\eta(N \tau)^{24}}$ |
| :---: | :---: | :---: | :---: | :---: |
| 2 | $\frac{\left(x^{2}+192\right)^{3}}{\left.x^{2}-6\right)^{2}}$ | $\frac{\left(x^{2}-48\right)^{3}}{x^{2}-64}$ | $(x-8)^{3}$ | $x^{2}-64$ |
| 3 | $\frac{x^{3}\left(x^{3}+216\right)^{3}}{\left.x^{3}-27\right)^{3}}$ | $\frac{x^{3}\left(x^{3}-24\right)^{3}}{x^{3}-27}$ | $(x-3)^{8}$ | $\left(x^{3}-27\right)^{2}$ |
| 4 | $\frac{\left.\left(x^{8}+2244\right)^{4}+256\right)^{3}}{x^{4}\left(x^{4}-16\right)^{4}}$ | $\frac{\left(x^{4}-16 x^{4}+16\right)^{3}}{x^{4}\left(x^{4}-16\right)^{1}}$ | $(x-2)^{15}\left(1+2 x^{-1}\right)^{3}$ | $\left(x^{4}-16\right)^{3}$ |
| 5 | $\frac{\left(x^{20}+228 x^{15}+494 x^{10}-228 x^{5}+1\right)^{3}}{x^{5}\left(x^{10}-11 x^{5}-1\right)^{5}}$ | $\frac{\left(x^{20}-12 x^{15}+1 x^{10}+12 x^{5}+1\right)^{3}}{x^{25}\left(x^{10}-11 x^{3}-1\right)}$ | $\left(x-1-x^{-1}\right)^{24}$ | $\left(x^{5}-11-x^{-5}\right)^{4}$ |

Proof. Let us first show that

$$
j(\tau)=\frac{A\left(x_{N}\right)^{3}}{C\left(x_{N}\right)^{N}}=1728+\frac{B\left(x_{N}\right)^{2}}{C\left(x_{N}\right)^{N}},
$$

where $A, B$, and $C$ are polynomials of degrees $\frac{4 N}{6-N}, \frac{6 N}{6-N}$, and $\frac{6+N}{6-N}$. Then using the fact that these rational functions should contain only powers of $x_{N}$ that are divisible by $N$, it is easy to compute the coefficients of $A, B$ and $C$ by comparing the $q$-series expansions. At every cusp of $\overline{\mathbb{H}} / \Gamma(N) j(\tau)$ has a pole of order $N$. Since $x$ has a pole at the cusp $\infty$, the degree of $C$ should be $\mu / N-1$, where $\mu=[\bar{\Gamma}: \bar{\Gamma}(N)]=12 N /(6-N)$. At every point in $\Gamma(1)(i) / \Gamma(N), j(\tau)-1728$ has a double zero, hence $B$ has degree $\mu / 2$. Similarly, $A$ must have degree $\mu / 3$.

By the same reasoning,

$$
j(N \tau)=\frac{A^{\prime}\left(x_{N}\right)^{3}}{C^{\prime}\left(x_{N}\right)}=1728+\frac{B^{\prime}\left(x_{N}\right)^{2}}{C^{\prime}\left(x_{N}\right)}
$$

where $A^{\prime}, B^{\prime}$, and $C^{\prime}$ are polynomials of degrees $\mu / 3, \mu / 2$, and $\mu-N^{2}$. $C^{\prime}$ has a different degree from $C$ because $j(N \tau)$ has a pole of order $N^{2}$ at $\infty$. In this case the order of $j(N \tau)$ is slight more difficult to calculate at the cusps of $\Gamma(N)$ since the order of the pole of $j(N \tau)$ at the cusp $\frac{a}{c}$ of $\Gamma(N)$ is $\operatorname{gcd}(c, N)^{2}$. We will explain the factorization of $C^{\prime}$ in the cases of $N=4,5$. Two cusps of $\Gamma(5)$ are $\frac{1}{5}$ and $\frac{2}{5}$, and $j(5 \tau)$ has a pole of order 25 at each of these. Since $\frac{1}{5}$ is equivalent to $\infty$, this cusp does not contribute any factor to $C^{\prime}$, but $\frac{2}{5}$ contributes a factor $x^{25}$. All of the other cusps of $\Gamma(5)$ have $\operatorname{gcd}(c, 5)=1$, so they contribute simple factors to $C^{\prime}$. The cusps of $\Gamma(4)$ are $\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{2}{1}, \frac{4}{1}$, which contribute factors to $C^{\prime}$ of multiplicities $1,4,1,0,1,1$.

The identities for the $\eta$ quotients are left as exercises.
Proposition 4.9.5. For $N=2,3,4,5$, set $y_{N}(\tau)=x_{N}\left(\frac{\tau}{N}\right)^{N}$.

1. $y_{N}(\tau)$ is a rational function of $x_{N}(\tau)$ of degree $N$. Explicitly,

| $N$ | $y_{N}$ in terms of $x_{N}$ |
| :---: | :---: |
| 2 | $\frac{(x+24)^{2}}{x+8}$ |
| 3 | $\frac{(x+6)^{3}}{x^{2}+3 x+9}$ |
| 4 | $\frac{(x+2)^{4}}{\left.x x^{2}+4\right)}$ |
| 5 | $\frac{x\left(x^{4}+3 x^{3}+4 x^{2}+2 x+1\right)}{x^{4}-2 x^{3}+4 x^{2}-3 x+1}$ |

2. $x_{N}(\tau)$ is expressible in terms of $y_{N}(\tau)$ and radicals. Specifically, there are constants $A, B, \ldots, C^{\prime}, D^{\prime}$, depending on $N$, such that

$$
\left(\frac{A x_{N}+B}{C x_{N}+D}\right)^{N}=\frac{A^{\prime} y_{N}+B^{\prime}}{C^{\prime} y_{N}+D^{\prime}} .
$$

Proof. (1). Since $x_{N}(\tau)^{N} \in M_{0}^{!}\left(\Gamma_{1}(N)\right)$ and

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & N
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & N
\end{array}\right)^{-1}=\left(\begin{array}{cc}
a & \frac{b}{N} \\
N c & d
\end{array}\right) \in \Gamma_{1}(N)
$$

if $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma(N)$, it follows that $y_{N}=x_{N}\left(\frac{\tau}{N}\right)^{N} \in M_{0}^{!}(\Gamma(N))$. We claim that $y_{N}$ has poles only at the cusps $\frac{1}{1}, \frac{1}{2}, \cdots, \frac{1}{N}$ of $\overline{\mathbb{H}} / \Gamma(N)$ at that these are all simple poles. From this claim it follows that $y_{N}=R_{N}\left(x_{N}\right)$ where $R_{N}$ is some rational function of degree $N$. In order to prove this claim, recall that $x_{N}$ has a pole only at the cusp $\frac{1}{N}$ (similar to $\frac{1}{0}$ ) of $\overline{\mathbb{H}} / \Gamma(N)$. Therefore, $y_{N}$ has a pole at $\frac{a}{c}$ if and only if $\frac{a}{N C}$ is equivalent to $\frac{1}{0}$. Writing $\frac{a}{N c}$ in lowest terms (assuming $\operatorname{gcd}(a, c)=1$ ), we need

$$
\left(\frac{a}{\operatorname{gcd}(a, N)}, \frac{N c}{\operatorname{gcd}(a, N)}\right) \equiv( \pm 1,0) \bmod N
$$

This implies that $\operatorname{gcd}(a, N)$ divides $c$, which means that $\operatorname{gcd}(a, N)=1$, and so $a \equiv \pm 1 \bmod N$. Next, to find the order of $y_{N}$ at the cusp $\frac{1}{k}$, notice that

$$
\begin{aligned}
y_{N}\left(\frac{\tau}{k \tau+1}\right) & =x_{N}\left(\frac{1}{N} \frac{\tau}{k \tau+1}\right)^{N} \\
& =x_{N}\left(\frac{\frac{\tau}{N}}{N k \frac{\tau}{N}+1}\right)^{N} \\
& =x_{N}\left(\frac{\tau}{N}\right)^{N} \\
& =q^{-1 / N}+\cdots
\end{aligned}
$$

which shows that $y_{N}$ has a simple pole at $\frac{1}{k}$ as claimed.
(2). Let the constants $A, B, C, D$ be determined by the action of $S$ on $x_{N}$, i.e.

$$
\left.x_{N}\right|_{S}=\frac{A x_{N}+B}{C x_{N}+D}
$$

First, we have

$$
\left(\begin{array}{cc}
0 & -1 \\
N & 0
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
N & 0
\end{array}\right)^{-1}=\left(\begin{array}{cc}
d & -\frac{c}{N} \\
-N b & a
\end{array}\right) \in \Gamma_{1}(N)
$$

if $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{1}(N)$. This means that $x_{N}\left(\frac{-1}{N \tau}\right)^{N}$ is invariant under $\Gamma_{1}(N)$ so $x_{N}\left(\frac{-1}{N \tau}\right)^{N}=F_{N}\left(x_{N}(\tau)^{N}\right)$ where $F_{N}$ is a rational function. We have already shown that

$$
x_{N}\left(\frac{\tau}{N}\right)^{N}=R_{N}\left(x_{N}(\tau)\right)
$$

where $R_{N}$ is a rational function of degree $N$. Replacing $\tau$ with $\frac{-N}{\tau}$ in this equation gives

$$
x_{N}\left(\frac{-1}{\tau}\right)^{N}=R_{N}\left(x_{N}\left(\frac{-N}{\tau}\right)\right),
$$

or

$$
\left(\frac{A x_{N}+B}{C x_{N}+D}\right)^{N}=R_{N}\left(\frac{A y_{N}^{1 / N}+B}{C y_{N}^{1 / N}+D}\right)
$$

Replacing $\tau$ by $\frac{\tau}{N}$ in $x_{N}\left(\frac{-1}{N \tau}\right)^{N}=F_{N}\left(x_{N}(\tau)^{N}\right)$, we derive an equation of the form

$$
\left(\frac{A x_{N}+B}{C x_{N}+D}\right)^{N}=F_{N}\left(y_{N}\right)
$$

Comparing these last two equation and keeping in mind that $R_{N}$ is a rational function of degree $N$, we see that $F_{N}$ must be a rational function of degree 1 and the assertion of the proposition holds.

## Proposition 4.9.6.

$$
\begin{aligned}
& M_{k}(\Gamma(3))=\bigoplus_{\substack{a+b=k \\
a, b \geq 0}} \mathbb{C} \frac{\eta(3 \tau)^{3 a} \eta(\tau / 3)^{3 b}}{\eta(\tau)^{k}}, \\
& M_{k}(\Gamma(4))=\bigoplus_{\substack{a+b=2 k \\
a, b \geq 0}} \mathbb{C} \eta(4 \tau)^{2 b-2 a} \eta(2 \tau)^{5 a-b} \eta(\tau)^{-2 a}, \\
& M_{k}(\Gamma(5))=\bigoplus_{\substack{a+b=5 k \\
a, b \geq 0}} \mathbb{C} \frac{\eta(5 \tau)^{15 k}}{\eta(\tau)^{3 k}} \mathfrak{k}_{\frac{1}{5}, \frac{0}{5}}(5 \tau)^{a} \mathfrak{k}_{\frac{2}{5}, \frac{0}{5}}(5 \tau)^{b}
\end{aligned}
$$

Proof. For $N=3,4,5$, these bases for $M_{k}(\Gamma(N))$ follow from the observation that there is a $f_{N}(\tau) \in$ $M_{-1}^{!}(\Gamma(N))$ with a pole only at $\infty$. Specifically,

$$
\begin{aligned}
f_{3}(\tau) & =\frac{\eta(\tau)}{\eta(3 \tau)^{3}} \\
f_{4}(\tau) & =\frac{\eta(2 \tau)^{2}}{\eta(4 \tau)^{4}} \\
f_{5}(\tau) & =\frac{\eta(\tau)^{3}}{\eta(5 \tau)^{15} \mathfrak{k}_{\frac{1}{5}, \frac{0}{5}}(5 \tau)^{5}}
\end{aligned}
$$

with poles only at $\infty$ of orders 1,2 and 5 , respectively. It follows that if $f \in M_{k}(\Gamma(N))$, then $f_{N}^{k} f \in M_{0}^{!}(\Gamma(N))$ and has a pole at $\infty$ of order at most $k, 2 k, 5 k$, respectively, and thus is a polynomial in $x_{N}$ of at most this degree.

Let us prove the claim about $f_{5}$. We first observe that $\frac{\eta(5 \tau)^{5}}{\eta(\tau)} \in M_{2}^{!}(\Gamma(5))$ by Proposition 4.8.2 and $\mathfrak{k}_{\frac{1}{5}, \frac{0}{5}}(5 \tau) \in M_{-1}^{!}(\Gamma(5))$ by Proposition 4.7.5. Since, by Propositions 4.7.4 and 4.8.1,

$$
\begin{aligned}
\frac{1}{5} \operatorname{ord} \frac{a}{c}\left(\frac{\eta(\tau)^{3}}{\eta(5 \tau)^{15} \mathfrak{k}_{\frac{1}{5}, \frac{0}{5}}(5 \tau)^{5}}, \Gamma(5)\right) & =\frac{3}{24} \frac{\operatorname{gcd}(1, c)^{2}}{1}-\frac{15}{24} \frac{\operatorname{gcd}(5, c)^{2}}{5}-5 \sum_{i=0}^{4}\binom{\operatorname{frac}\left(\frac{a+i c}{5}\right)}{2} \\
& = \begin{cases}-1 & , \frac{a}{c} \equiv \frac{1}{5} \bmod \Gamma(5) \\
0 & , \frac{a}{c} \equiv \frac{2}{5} \bmod \Gamma(5) \\
2 & , \text { otherwise }\end{cases}
\end{aligned}
$$

the claim for $f_{5}$ is verified.
Exercise 4.9.7. Obtain and explain the formulas for the $\eta$ quotients in Proposition 4.9.4.

Exercise 4.9.8. Show the following. Sections 4.4 and 4.5 will be helpful, and one should recall the definitions of $\Gamma^{2}$ and $\Gamma^{3}$ in Section 2.11.

1. $\Gamma^{2}\left(\right.$ resp. $\left.\Gamma^{3}\right)$ is the only normal subgroup of $\Gamma(1)$ of index 2 (resp. 3).
2. $\bar{\Gamma}^{2}$ is freely generated by $\left(\begin{array}{cc}-1 & -1 \\ 1 & 0\end{array}\right)$ and $\left(\begin{array}{ll}0 & -1 \\ 1 & -1\end{array}\right)$, each of order 3 .
3. $\bar{\Gamma}^{3}$ is freely generated by $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}1 & -1 \\ 2 & -1\end{array}\right)$ and $\left(\begin{array}{ll}1 & -2 \\ 1 & -1\end{array}\right)$, each of order 2 .
4. The commutator subgroup $\bar{\Gamma}(1)^{\prime}$ of $\bar{\Gamma}(1)$ is $\bar{\Gamma}^{2} \cap \bar{\Gamma}^{3}$, has genus 1 , and is freely generated by $\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)$ and $\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$.
5. $A_{0}\left(\Gamma^{2}\right)=\mathbb{C}(\sqrt{j-1728})$.
6. $A_{0}\left(\Gamma^{3}\right)=\mathbb{C}\left(j^{1 / 3}\right)$.
7. $A_{0}\left(\Gamma^{2} \cap \Gamma^{3}\right)=\mathbb{C}\left(j^{1 / 3}, \sqrt{j-1728}\right)$

### 4.10 Representations by $x^{2}+y^{2}$

Proposition 4.10.1. For any integer $k \geq 1$

1. $\Theta_{3}(2 \tau)^{2 k} \in M_{k}\left(\Gamma_{1}(4)\right)$.
2. $\operatorname{dim} M_{k}\left(\Gamma_{1}(4)\right)=\left\lfloor\frac{k+2}{2}\right\rfloor$.
3. $\operatorname{dim} S_{k}\left(\Gamma_{1}(4)\right)=\max \left(\left\lfloor\frac{k-3}{2}\right\rfloor, 0\right)$.

Proof. (1). Exercise 2.12.5 gives

$$
\Theta_{3}\left(\frac{a \tau+b}{c \tau+d}\right)=\left(\frac{c}{d}\right) e\left(\frac{d-1}{8}\right) \sqrt{c \tau+d} \Theta_{3}(\tau)
$$

for any $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{\vartheta}$ with $d$ odd. Since

$$
\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
a & 2 b \\
\frac{c}{2} & d
\end{array}\right) \in \Gamma_{\vartheta}
$$

if $\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in \Gamma_{1}(4)$, it follows that $\Theta_{3}(2 \tau)^{2} \in M_{1}\left(\Gamma_{1}(4)\right)$.
(2). Proposition 4.9.6 gives

$$
M_{k}(\Gamma(4))=\bigoplus_{\substack{a+b=2 k \\ a, b \geq 0}} \mathbb{C} \eta(4 \tau)^{2 b-2 a} \eta(2 \tau)^{5 a-b} \eta(\tau)^{-2 a}
$$

Since $M_{k}\left(\Gamma_{1}(4)\right)$ is the subspace of $M_{k}(\Gamma(4))$ consisting of forms with expansions in integral powers of $q$ and

$$
\eta(4 \tau)^{2 b-2 a} \eta(2 \tau)^{5 a-b} \eta(\tau)^{-2 a}=q^{b / 4}\left(q^{4} ; q^{4}\right)_{\infty}^{2 b-2 a}\left(q^{2} ; q^{2}\right)_{\infty}^{5 a-b}(q ; q)_{\infty}^{-2 a}
$$

we must have

$$
M_{k}\left(\Gamma_{1}(4)\right)=\bigoplus_{\substack{a+b=2 k \\ a b \geq 0 \\ b \equiv 0 \bmod 4}} \mathbb{C} \eta(4 \tau)^{2 b-2 a} \eta(2 \tau)^{5 a-b} \eta(\tau)^{-2 a}
$$

which implies that $\operatorname{dim} M_{k}\left(\Gamma_{1}(4)\right)=\left\lfloor\frac{k+2}{2}\right\rfloor$.
(3). $M_{5}\left(\Gamma_{1}(4)\right)$ is spanned by the three functions $f_{i}$ in the following table, where the orders are given at the cusps. Note that the cusps of $\Gamma_{1}(4)$ are representated by $\frac{1}{0}, \frac{0}{1}$, and $\frac{1}{2}$, with widths 1,4 , and 1.

| $f_{i}$ | $\frac{\eta(2 \tau)^{50}}{\eta(\tau)^{20} \eta(4 \tau)^{20}}$ | $\frac{\eta(2 \tau)^{26}}{\eta(\tau)^{12} \eta(4 \tau)^{4}}$ | $\frac{\eta(2 \tau)^{2} \eta(4 \tau)^{12}}{\eta(\tau)^{4}}$ |
| :---: | :---: | :---: | :---: |
| $\operatorname{ord}_{\frac{1}{0}}\left(f_{i}, \Gamma_{1}(4)\right)$ | 0 | 1 | 2 |
| $\operatorname{ord}_{\frac{0}{1}}\left(f_{i}, \Gamma_{1}(4)\right)$ | 0 | 0 | 0 |
| $\operatorname{ord}_{\frac{1}{2}}\left(f_{i}, \Gamma_{1}(4)\right)$ | $\frac{5}{2}$ | $\frac{3}{2}$ | $\frac{1}{2}$ |

If $A \neq 0$, then $f_{2}+A f_{3}$ has a zero of lowest possible order at the two cusps $\frac{1}{0}$ and $\frac{1}{2}$. Lets try to determine $A$ so that it also has a simple zero at the cusp $\frac{0}{1}$.

$$
\begin{aligned}
\frac{\eta(2 \tau)^{26}}{\eta(\tau)^{12} \eta(4 \tau)^{4}}+\left.A \frac{\eta(2 \tau)^{2} \eta(4 \tau)^{12}}{\eta(\tau)^{4}}\right|_{S, 5} & =-\frac{i A \eta\left(\frac{\tau}{4}\right)^{12} \eta\left(\frac{\tau}{2}\right)^{2}}{8192 \eta(\tau)^{4}}-\frac{i \eta\left(\frac{\tau}{2}\right)^{26}}{512 \eta\left(\frac{\tau}{4}\right)^{4} \eta(\tau)^{12}} \\
& =\frac{(A+16)+(64-12 A) q^{1 / 4}+O\left(q^{2 / 4}\right)}{8 i}
\end{aligned}
$$

With $A=-16$, we see that there is a form $f_{2}-16 f_{3} \in S_{5}\left(\Gamma_{1}(4)\right)$ with simple zeros at the regular cusps and a zero of order $\frac{1}{2}$ at the irregular cusp. Also, $f_{2}-16 f_{3}$ has no zeros on $\mathbb{H}$ by the valence formula. It follows that $S_{k}\left(\Gamma_{1}(4)\right)=\left(f_{2}-16 f_{3}\right) M_{k-5}\left(\Gamma_{1}(4)\right)$.

## Proposition 4.10.2.

$$
\begin{array}{ll}
\Theta_{3}(2 \tau)^{2}=2 \mathfrak{e}_{\frac{0}{4}, \frac{1}{4}}^{1} & =1+4 \sum_{\substack{n=1 \\
2 \nmid n}}^{\infty}(-1)^{\frac{n-1}{2}} \frac{q^{n}}{1-q^{n}}, \\
\Theta_{3}(2 \tau)^{4}=3 \mathfrak{e}_{\frac{0}{4}, \frac{0}{4}}^{2}-2 \mathfrak{e}_{\frac{0}{4}, \frac{1}{4}}^{2}-1 \mathfrak{e}_{\frac{0}{4}, \frac{2}{4}}^{2}=1+8 \sum_{\substack{n \neq 1 \\
4 \nmid n}}^{\infty} \frac{n q^{n}}{1-q^{n}}, \\
\Theta_{3}(2 \tau)^{6}=-2 i \mathfrak{e}_{\frac{0}{4}, \frac{1}{4}}^{3}-\frac{1}{4} \sum_{j=0}^{3} \mathfrak{e}_{\frac{1}{4}, \frac{j}{4}}^{3}=1+16 \sum_{n=1}^{\infty} \frac{n^{2} q^{n}}{1+q^{2 n}}-4 \sum_{\substack{n=1 \\
2 \nmid n}}^{\infty}(-1)^{\frac{n-1}{2}} \frac{n^{2} q^{n}}{1-q^{n}}, \\
\Theta_{3}(2 \tau)^{8}=\frac{15}{2} \mathfrak{e}_{\frac{0}{4}, \frac{0}{4}}^{4}-1 \mathfrak{e}_{\frac{0}{4}, \frac{1}{4}}^{4}-\frac{1}{2} \mathfrak{e}_{\frac{0}{4}, \frac{2}{4}}^{4}=1+\sum_{n=1}^{\infty} \frac{n^{3} q^{n}}{1-q^{n}} \cdot \begin{cases}12 & , n \equiv 2 \bmod 4 \\
16 & \text {, otherwise }\end{cases}
\end{array}
$$

### 4.11 Building congruence modular forms from $\Theta$ functions

Riemann's $\Theta$ function with characteristic $\left[\begin{array}{l}\alpha \\ \beta\end{array}\right] \in \mathbb{R}^{2 \times g}$ is defined as

$$
\Theta\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right](z \mid \Omega)=\sum_{n \in \mathbb{Z}^{g}} e\left(\frac{1}{2}(n+\alpha) \cdot \Omega \cdot(n+\alpha)+(z+\beta) \cdot(n+\alpha)\right),
$$

where $z \in \mathbb{C}^{g}$ and $\Omega \in \mathbb{C}^{g \times g}$ is symmetric with positive definite imaginary part so that the sum is absolutely convergent. The $\Theta$ function without characteristics is defined as $\Theta(z \mid \Omega)=\Theta\left[\begin{array}{l}0 \\ 0\end{array}\right](z \mid \Omega)$. Since

$$
\Theta\left[\begin{array}{c}
\alpha \\
\beta
\end{array}\right](z \mid \Omega)=e\left(\alpha \cdot(z+\beta)+\frac{1}{2} \alpha . \Omega . \alpha\right) \Theta(z+\alpha \cdot \Omega+\beta \mid \Omega),
$$

the function with characteristics is no more general but is slightly more convenient to work with. We will mainly make use of this function in the case $z=0$ and $\Omega=\tau Q$ where $\tau$ is the usual variable in $\mathbb{H}$ and $Q$ is a symmetric positive definite matrix in $\mathbb{Q}^{g \times g}$. In this case set $\Theta_{Q}\left[\begin{array}{c}\alpha \\ \beta\end{array}\right](\tau)=\Theta\left[{ }_{\beta}^{\alpha}\right](\tau Q)$. When the variable $z$ is set to zero, it is commonly omitted from the notation so that $\Theta\left[\begin{array}{l}\alpha \\ \beta\end{array}\right](\Omega)=\Theta\left[\begin{array}{l}\alpha \\ \beta\end{array}\right](0 \mid \Omega)$.

Note that Riemann's $\Theta$ function doesn't change much if the characteristics change in sign or by integer vectors, i.e.

$$
\begin{aligned}
\Theta\left[\begin{array}{c}
-\alpha \\
-\beta
\end{array}\right](\Omega) & =\Theta\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right](\Omega), \\
\Theta\left[\begin{array}{l}
\alpha+s \\
\beta+t
\end{array}\right](\Omega) & =e(\alpha . t) \Theta\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right](\Omega), \quad s, t \in \mathbb{Z}^{g} .
\end{aligned}
$$

Proposition 4.11.1. We have the following properties of $\Theta\left[\begin{array}{l}\alpha \\ \beta\end{array}\right](z \mid \Omega)$.

1. Quasi-periodicity: For any $s, t \in \mathbb{Z}^{g}$,

$$
\begin{aligned}
\Theta\left[\begin{array}{l}
\alpha+s \\
\beta+t
\end{array}\right](z \mid \Omega) & =e(\alpha . t) \Theta\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right](z \mid \Omega), \\
\Theta\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right](z+s . \Omega+t \mid \Omega) & =e\left(\alpha . t-\beta . s-\frac{1}{2} s . \Omega . s-s . z\right) \Theta\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right](z \mid \Omega) .
\end{aligned}
$$

2. Parity for half-integer characteristics: If $\alpha, \beta \in \frac{1}{2} \mathbb{Z}^{g}$, then

$$
\Theta\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right](-z \mid \Omega)=(-1)^{4 \alpha \cdot \beta} \Theta\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right](z \mid \Omega)
$$

3. For any $A, B, C, D \in \mathbb{Z}^{g \times g}$ such that $G=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$ is a symplectic matrix, i.e.

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\left(\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right)\left(\begin{array}{cc}
A^{\top} & C^{\top} \\
B^{\top} & D^{\top}
\end{array}\right)=\left(\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right)
$$

and $A B^{\top}, C D^{\top}$ have even diagonal, there is an eighth root of unity $\epsilon(G)$, depending only on $G$ and the choice of the square root such that

$$
\begin{gathered}
\Theta\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]\left(z \cdot(C \Omega+D)^{-1} \mid(A \Omega+B)(C \Omega+D)^{-1}\right)=\epsilon \sqrt{\operatorname{det}(C \Omega+D)} e\left(\frac{1}{2} z \cdot(C \Omega+D)^{-1} C \cdot z\right) \\
\times e\left(-\frac{1}{2} \alpha \cdot A B^{\top} \cdot \alpha-\alpha \cdot B C^{\top} \cdot \beta-\frac{1}{2} \beta \cdot C D^{\top} \cdot \beta\right) \Theta\left[\begin{array}{c}
\alpha . A+\beta \cdot C \\
\alpha \cdot B+\beta \cdot D
\end{array}\right](z \mid \Omega)
\end{gathered}
$$

We first give the behavior of $\Theta_{Q}\left[\begin{array}{l}\alpha \\ \beta\end{array}\right](\tau)$ under the generators of $\Gamma(1)$. Proposition 4.11 .2 implies that the functions

$$
\left\{\left.\Theta_{Q}\left[\begin{array}{c}
\alpha \\
\beta
\end{array}\right](\tau) \right\rvert\, \alpha, \beta \in \frac{1}{N} \mathbb{Z}^{g} \bmod 1, \beta \cdot Q^{-1} \in \frac{1}{N} \mathbb{Z}^{g}\right\}
$$

are transformed linear among themselves (in weight $g / 2$ ) by $\Gamma(1)$, as well as the same for the functions

$$
\left\{\left.\Theta_{Q}\left[\begin{array}{c}
\alpha \\
0
\end{array}\right](\tau) \right\rvert\, \alpha \in \frac{1}{N} \mathbb{Z}^{g} \bmod 1, \alpha \cdot Q \in \mathbb{Z}^{g}\right\}
$$

Thus we obtain a homomorphism from $\Gamma(1)$ to $\mathrm{GL}_{k}(\mathbb{C})$ for some $k$. Proposition 4.11 .3 shows that the kernel of this homomorphism is a congruence subgroup, and we will work out explicit examples in the case when $Q$ corresponds to the quadratic form $x^{2}+x y+y^{2}$ and other interesting forms as well.

Proposition 4.11.2. Suppose that $Q \in \mathbb{Z}^{g \times g}$ has even diagonal and that $N$ is a positive integer with $N Q^{-1} \in \mathbb{Z}^{g \times g}$. Then

$$
\begin{aligned}
\Theta_{Q}\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right](\tau+1) & =e\left(-\frac{1}{2} \alpha \cdot Q . \alpha\right) \Theta_{Q}\left[\begin{array}{c}
\alpha \\
\beta+\alpha \cdot Q
\end{array}\right](\tau), \\
\frac{\sqrt{\operatorname{det} Q}}{(-i \tau)^{g / 2}} \Theta_{Q}\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]\left(-\frac{1}{\tau}\right) & =e(-\alpha \cdot \beta) \sum_{\substack{r \in \mathbb{Z}^{g} / N \mathbb{Z}^{g} \\
Q \cdot r \equiv 0 \bmod N}} \Theta_{Q}\left[\begin{array}{c}
\frac{r}{N}-\beta \cdot Q^{-1} \\
\alpha \cdot Q
\end{array}\right](\tau) .
\end{aligned}
$$

Proposition 4.11.3. Suppose that $Q \in \mathbb{Q}^{g \times g}$ is symmetric and positive definite. If $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma(1)$ is such that $b Q, c Q^{-1}$ are integral and $a b Q, c d Q^{-1}$ have even diagonals. Then,

$$
\begin{aligned}
& \Theta_{M Q M \mathrm{~T}}\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right](\tau)= \Theta_{Q}\left[\begin{array}{c}
\alpha \cdot M \\
\beta \cdot M^{-\top}
\end{array}\right](\tau), \quad M \in \mathrm{GL}_{g}(\mathbb{Z}), \\
& \Theta_{Q^{-1}\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]\left(-\frac{1}{\tau}\right)=}=e(-\alpha \cdot \beta) \sqrt{\operatorname{det}(-i \tau Q)} \Theta_{Q}\left[\begin{array}{c}
\beta \\
-\alpha
\end{array}\right](\tau), \\
& \Theta_{Q}\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]\binom{a \tau+b}{c \tau+d}= e\left(-\frac{1}{2} a b \alpha \cdot Q \cdot \alpha-b c \alpha \cdot \beta-\frac{1}{2} c d \beta \cdot Q^{-1} \cdot \beta\right) \\
& \times \epsilon_{Q}(c, d)(c \tau+d)^{g / 2} \Theta_{Q}\left[\begin{array}{c}
a \alpha+c Q^{-1} \cdot \beta \\
b Q \cdot \alpha+d \beta
\end{array}\right](\tau),
\end{aligned}
$$

Here the quantity $\epsilon_{Q}(c, d)$, depending only on $c$ and $d$, is the eighth root of unity

$$
\begin{aligned}
\epsilon_{Q}(c, d) & =\frac{c^{g / 2}}{(c d)^{g / 2}} \sum_{n \in \mathbb{Z}^{g} / d \mathbb{Z}^{g}} \zeta_{2 d}^{-c n \cdot Q^{-1} \cdot n} \\
& =\frac{(i c)^{-g / 2}}{\sqrt{\operatorname{det} Q}} \sum_{n \in \mathbb{Z}^{g} / c \mathbb{Z}^{g}} \zeta_{2 c}^{+d n \cdot Q \cdot n}
\end{aligned}
$$

where it is assumed that $c d Q$ is integral with even diagonal in this last sum (so that it is well-defined).
Proposition 4.11.4. Let all of the hypothesis of Proposition 4.11.3 hold as well as the assumption that $c d Q$ is integral with even diagonal. For an automorphism $\sigma \in \operatorname{Aut}\left(\mathbb{Q}\left(\zeta_{n}\right)\right)$, let $x^{\sigma}$ denote $\sigma(x)$ and $x^{\sigma-1}$ denote $\sigma(x) / x$.

1. If $Q$ is integral and has even diagonal, then

$$
\epsilon_{Q}(c, d)=(\sqrt{\operatorname{det} i c Q})^{\sigma-1}, \text { where } \sigma: \zeta_{c} \mapsto \zeta_{c}^{d}
$$

2. If $Q$ is integral and $d$ is odd, then

$$
\epsilon_{Q}(c, d)=(\sqrt{\operatorname{det} i c Q})^{\sigma-1}, \text { where } \sigma: \zeta_{2 c} \mapsto \zeta_{2 c}^{d}
$$

3. If $Q \in \mathbb{Z}^{2 \times 2}$ has even diagonal, then

$$
\epsilon_{Q}(c, d)= \begin{cases}\left(\frac{d}{\operatorname{det} Q}\right) & , \operatorname{det} Q \text { odd } \\ \left(\frac{2 \operatorname{det} Q}{d}\right) \zeta_{8}^{d-1} & , \operatorname{det} Q \text { even }\end{cases}
$$

Proof. (1).

### 4.12 Representations by $x^{2}+x y+y^{2}$ other quadratic forms

The quadratic form $x^{2}+x y+y^{2}$ arises from the case $Q=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$. Let us save space notationally by writing $\Theta\left[\begin{array}{l}\alpha \\ \beta\end{array}\right](\tau)=\Theta\left[\begin{array}{l}\alpha / 3 \\ \beta / 3\end{array}\right]\left(\left(\begin{array}{ll}2 \tau & 1 \tau \\ 1 \tau & 2 \tau\end{array}\right)\right)$ for the time being. Propositions 4.11 .3 and 4.11 .4 give

$$
\begin{align*}
& \left.\Theta\left[\begin{array}{l}
0,0 \\
0,0
\end{array}\right]\right|_{g}(\tau)=\left(\frac{d}{3}\right) \Theta\left[\begin{array}{l}
0,0 \\
0,0
\end{array}\right](\tau), \\
& \left.\Theta\left[\begin{array}{l}
1,1 \\
0,0
\end{array}\right]\right|_{g}(\tau)=\zeta_{3}^{b d}\left(\frac{d}{3}\right) \Theta\left[\begin{array}{l}
1,1 \\
0,0
\end{array}\right](\tau),  \tag{4.12.1}\\
& \left.\Theta\left[\begin{array}{l}
0,0 \\
1,2
\end{array}\right]\right|_{g}(\tau)=\zeta_{3}^{a c}\left(\frac{d}{3}\right) \Theta\left[\begin{array}{l}
0,0 \\
1,2
\end{array}\right](\tau),
\end{align*}
$$

for any $g=\left(\begin{array}{cc}a & b \\ -3 c & d\end{array}\right) \in \Gamma_{0}(3)$. These $\Theta$ functions, i.e.

$$
\begin{aligned}
& \Theta\left[\begin{array}{l}
0,0 \\
0,0
\end{array}\right](\tau)=\sum_{x, y \in \mathbb{Z}^{2}} q^{x^{2}+x y+y^{2}}, \\
& \Theta\left[\begin{array}{l}
1,1 \\
0,0
\end{array}\right](\tau)=\sum_{x, y \in \frac{1}{3}+\mathbb{Z}^{2}} q^{x^{2}+x y+y^{2}}, \\
& \Theta\left[\begin{array}{l}
0,0 \\
1,2
\end{array}\right](\tau)=\sum_{x, y \in \mathbb{Z}^{2}} q^{x^{2}+x y+y^{2}} \zeta_{3}^{x-y},
\end{aligned}
$$

are the three functions introduced in [3].
Proposition 4.12.1. For any integer $k \geq 1$

1. $\Theta\left[\begin{array}{l}0,0 \\ 0,0\end{array}\right](\tau)^{k} \in M_{k}\left(\Gamma_{1}(3)\right)$.
2. $\operatorname{dim} M_{k}\left(\Gamma_{1}(3)\right)=\left\lfloor\frac{k+3}{3}\right\rfloor$.
3. $\operatorname{dim} S_{k}\left(\Gamma_{1}(3)\right)=\max \left(\left\lfloor\frac{k-3}{3}\right\rfloor, 0\right)$.

Proof. The proof of these results is similar to Proposition 4.10.1. The form in $S_{6}\left(\Gamma_{1}(3)\right)$ with a simple pole at $\frac{1}{0}$ (width 1 ) and a simple pole at $\frac{0}{1}$ (width 3 ) is $\eta(\tau)^{6} \eta(3 \tau)^{6}$, by Proposition 4.8.2.

## Proposition 4.12.2.

$$
\Theta\left[\begin{array}{l}
0,0 \\
0,0
\end{array}\right](\tau)^{3}=\Theta\left[\begin{array}{c}
1,1 \\
0,0
\end{array}\right](\tau)^{3}+\Theta\left[\begin{array}{l}
0,0 \\
1,2
\end{array}\right](\tau)^{3}
$$

Proof. By (4.12.1), the three functions $\Theta\left[\begin{array}{l}0,0 \\ 0,0\end{array}\right](\tau)^{3}, \Theta\left[\begin{array}{c}1,1 \\ 0,0\end{array}\right](\tau)^{3}, \Theta\left[\begin{array}{c}0,0 \\ 1,2\end{array}\right](\tau)^{3}$ are all in $M_{3}\left(\Gamma_{1}(3)\right)$. Since this space has dimension 2 by Proposition 4.12.1, there must be a nontrivial linear relation between these functions. This is easily found using the first three terms of the $q$-series expansions.

Proposition 4.12.3. Let $\chi$ be the odd character modulo 6. Then,

$$
\Theta\left[\begin{array}{l}
0,0 \\
0,0
\end{array}\right](\tau)=2 \sqrt{-3} \mathfrak{e}_{\frac{0}{3}, \frac{1}{3}}(\tau)=1+6 \sum_{n=1}^{\infty} \frac{\chi(n) q^{n}}{1-q^{n}} .
$$

This concludes the study of the quadratic form $Q=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$. We will now focus unimodular lattices, and in particular on the $E_{8}$ lattice. The $E_{8}$ lattice is defined as

$$
E_{8}=\left\{\left.\left(x_{1}, \ldots, x_{2}\right) \in \mathbb{Z}^{8} \cup\left(\mathbb{Z}+\frac{1}{2}\right)^{8} \right\rvert\, x_{1}+\cdots+x_{8} \in 2 \mathbb{Z}\right\} .
$$

A basis for the $E_{8}$ lattice can be given as the columns of the matrix

$$
A=\left(\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 1 & -1 & -1 / 2 \\
0 & 0 & 0 & 0 & 1 & -1 & -1 & 1 / 2 \\
0 & 0 & 0 & 1 & -1 & 0 & 0 & 1 / 2 \\
0 & 0 & 1 & -1 & 0 & 0 & 0 & 1 / 2 \\
0 & 1 & -1 & 0 & 0 & 0 & 0 & 1 / 2 \\
1 & -1 & 0 & 0 & 0 & 0 & 0 & 1 / 2 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 / 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 / 2
\end{array}\right) .
$$

Note that $\operatorname{det} A=-1$. The associated quadratic form is

$$
Q_{8}=A^{\top} A=\left(\begin{array}{cccccccc}
2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 2 & -1 & -1 & 0 \\
0 & 0 & 0 & 0 & -1 & 2 & 0 & -1 \\
0 & 0 & 0 & 0 & -1 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 2
\end{array}\right) .
$$

Proposition 4.12.4. Let $Q \in \mathbb{Z}^{g \times g}$ be a symmetric positive definite matrix with even diagonal and $\operatorname{det} Q=1$.

1. $g \equiv 0 \bmod 8$
2. $\Theta_{Q}(\tau) \in M_{g / 2}(\Gamma(1))$.

Proof. (1). By Proposition 4.11 .3 with $\alpha=\beta=0$ and $M=Q^{-1}$, we have $\Theta_{Q^{-1}\left(-\frac{1}{\tau}\right)}=\Theta_{Q}\left(-\frac{1}{\tau}\right)=$ $(i \tau)^{g / 2} \Theta_{Q}(\tau)$ and $\Theta_{Q}(\tau+1)=\Theta_{Q}(\tau)$. Therefore,

$$
\Theta_{Q}(\tau)=(i / \tau)^{g / 2} \Theta_{Q}\left(1-\frac{1}{\tau}\right)
$$

Iterating this three times gives $\Theta_{Q}(\tau)=(i / \tau)^{g / 2}(i \tau /(\tau-1))^{g / 2}(i(1-\tau))^{g / 2} \Theta_{Q}(\tau)$. Since $\Theta_{Q}(\tau)$ clearly does not vanish identically, this implies that

$$
\left(\frac{i}{\tau}\right)^{g / 2}\left(\frac{i \tau}{\tau-1}\right)^{g / 2}(i(1-\tau))^{g / 2}=1
$$

Setting $\tau=e\left(\frac{1}{3}\right)$ and simplifying, we find that the left hand side is $\zeta_{8}^{g}$. Thus, $g \equiv 0 \bmod 8$.
(2). This is now clear since $\Theta_{Q}(\tau)=\sum_{n \in \mathbb{Z}^{g}} q^{\frac{1}{2} n \cdot Q . n}$ has a $q$-series exansion in non-negative powers of $q$.

We can derive from this proposition the fact that $\Theta_{Q_{8}}\left[\begin{array}{l}0 \\ 0\end{array}\right](\tau) \in M_{4}(\Gamma(1))$, and so

$$
\begin{aligned}
E_{4}(\tau) & =\Theta_{Q_{8}}(\tau) \\
& =\sum_{x \in \mathbb{Z}^{8}} q^{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+x_{5}^{2}+x_{6}^{2}+x_{7}^{2}+x_{8}^{2}-x_{1} x_{2}-x_{2} x_{3}-x_{3} x_{4}-x_{4} x_{5}-x_{5} x_{6}-x_{5} x_{7}-x_{6} x_{8}}
\end{aligned}
$$

### 4.13 Subgroups up to index 7: non-congruence examples

Recall that if a subgroup $\Gamma$ of $\Gamma(1)$ contains some $\Gamma(N)$ then it is called a congruence subgroup. In this section we are concerned with the elements of $\Gamma(1)$ only up to their action on $\mathbb{H}$, so we suppress the bars over all of the subgroups of $\Gamma(1)$. For any subgroup $\Gamma$ and cusp $\alpha \in \mathbb{Q}$, let $h_{\Gamma}(\alpha)$ denote the width of the cusp $\alpha$ for $\Gamma$. Also, let $\Gamma^{c}$, called the congruence closure of $\Gamma$, be the smallest congruence subgroup of $\Gamma(1)$ that contains $\Gamma$. Clearly, $\Gamma$ is a congruence subgroup if and only if $\Gamma=\Gamma^{c}$. The following proposition relates $\Gamma, \Gamma^{c}$ and $\operatorname{level}(\Gamma)$.

Proposition 4.13.1. Suppose $[\Gamma(1): \Gamma]<\infty$. Set $N=\operatorname{level}(\Gamma)$ and let $\phi: \Gamma(1) \rightarrow \mathrm{PSL}_{2}(\mathbb{Z} / N \mathbb{Z})$ be the map that reduces matrices modulo $N$. Let $\phi^{-1}$ take subgroups of $\mathrm{PSL}_{2}(\mathbb{Z} / N \mathbb{Z})$ to the corresponding groups between $\Gamma(1)$ and $\Gamma(N)$. Then, $\Gamma^{c}=\phi^{-1}(\phi(\Gamma))$.

Remark 4.13.2. There are much faster ways for testing if $\Gamma$ is a congruence subgroup and computing the congruence closure using presentations for $\mathrm{PSL}_{2}(\mathbb{Z} / N \mathbb{Z})$. See [16]. The main result for odd $N$ is: $\Gamma$ is congruence iff $\left(R^{2} T^{\frac{N-1}{2}}\right)^{3}$ acts trivially on the cosets $\Gamma(1) \backslash \Gamma$. Recall that $R=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$ and $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.

Proposition 4.13.3. Suppose $\Gamma$ is a congruence subgroup of level $N$. Then, if $\Gamma \geq \Gamma(l)$ then $N \mid l$. Proof. Exercise.

The following Proposition, due to Wohlfart, says that the level of a congruence subgroup $\Gamma$ is the smallest $l$ satisfying $\Gamma \geq \Gamma(l)$.

Proposition 4.13.4. Suppose $\Gamma$ is a congruence subgroup of level $N$. Then, $\Gamma \geq \Gamma(N)$ and

$$
N=\operatorname{lcm}\left(h_{\Gamma}(0), h_{\Gamma}(1), h_{\Gamma}(\infty)\right)
$$

Proof. Set $m=\operatorname{lcm}(h(0), h(1), h(\infty))$. Since the hypothesis is that $\Gamma$ is a congruence subgroup, let $l$ be such that $\Gamma \geq \Gamma(l)$. Since $\Gamma \geq \Gamma(l)$ and the width of every cusp for $\Gamma(l)$ is $l, l$ must be a multiple of each of these three widths $h(0), h(1), h(\infty)$, and so $m \mid l$. Let $M=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \equiv I \bmod m$ be any matrix in $\Gamma(m)$. We must show that $M \in \Gamma$. By multiplying by powers of $\left(\begin{array}{cc}1 & m \\ 0 & 1\end{array}\right)$ and $\left(\begin{array}{ll}1 & 0 \\ m & 1\end{array}\right)$, which are in both $\Gamma$ and $\Gamma(m)$, we may make some simplifying assumptions on $M$.

- $\operatorname{gcd}(d, l)=1$. Note that $\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)\left(\begin{array}{cc}1 & m \\ 0 & 1\end{array}\right)^{n_{1}}=\left(\begin{array}{ll}a & b+a m n_{1} \\ c & d+c m n_{1}\end{array}\right)$. Since $\operatorname{gcd}(d, m c)=1$ by the assumption $\overline{M \in \Gamma(m)}$, there is an integer $n_{1}$ so that $\operatorname{gcd}\left(d+c m n_{1}, l\right)=1$ (for example, since $d+c m \mathbb{Z}$ contains infinitely many primes).
- $\underline{b \equiv 0 \bmod l}$. Note that $\left(\begin{array}{ccc}1 & m \\ 0 & 1\end{array}\right)^{n_{2}}\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)=\left(\begin{array}{cc}a+c m n_{2} & b+d m n_{2} \\ c\end{array}\right)$. Since $m \mid b$ and $\operatorname{gcd}(d, l)=1$, there is a $n_{2}$ such that $b+d m n_{2} \equiv 0 \bmod l$.
- $\underline{c \equiv 0 \bmod l}$. Note that $\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ m & 1\end{array}\right)^{n_{3}}=\left(\begin{array}{lll}a+b m n_{3} & b \\ c+d m n_{3} & d\end{array}\right)$. Since $m \mid c$ and $\operatorname{gcd}(d, l)=1$, there is a $n_{3}$ such that $c+d m n_{3} \equiv 0 \bmod l$.

Therefore, we may assume $M \equiv\left(\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right) \bmod l$ where $a d \equiv 1 \bmod l$. However, modulo $l, M$ is congruent to $M^{\prime}$, where $M^{\prime}=\left(\begin{array}{cc}a & a d-1 \\ 1-a d & d(2-a d)\end{array}\right)$. Therefore, there is a matrix $L \in \Gamma(l) \leq \Gamma$ with $M=L M^{\prime} . M^{\prime}$ can be written as the product of three matrices with trace 2 as

$$
M^{\prime}=\left(\begin{array}{cc}
1 & 0 \\
d-1 & 1
\end{array}\right)\left(\begin{array}{cc}
a & 1-a \\
a-1 & 2-a
\end{array}\right)\left(\begin{array}{cc}
1 & 1-d \\
0 & 1
\end{array}\right) .
$$

The last matrix in this product fixes $\infty$, and $h(\infty) \mid 1-d$ because $d \equiv 1 \bmod m$. This implies that the last matrix is in $\Gamma$. Dido for the second matrix $\left(=\left(\begin{array}{cc}1 & 0 \\ 1 & 1\end{array}\right)\left(\begin{array}{cc}1 & 1-a \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ 1 & 1\end{array}\right)^{-1}\right)$ and the cusp 1. Dido for the first matrix and the cusp 0.

Finally, let $N$ denote the level of $\Gamma$, that is, $\operatorname{lcm}\left(\left\{h_{\Gamma}(\alpha)\right\}_{\alpha \in \overline{\mathbb{Q}}}\right)$. We have just seen that $\Gamma \geq \Gamma(m)$. However, we have $m \mid N$ by the definition of $m$, and $N \mid m$ by Proposition 4.13.3. Therefore, $N=m$.

The number of subgroups of $\bar{\Gamma}$ and size of the conjugacy classes as computed in [14] are as follows.

| index | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of subgroups | 1 | 1 | 4 | 8 | 5 | 22 | 42 |
| No. of conjugacy classes | 1 | 1 | 2 | 2 | 1 | 8 | 6 |

All of the subgroups $\Gamma$ of $\Gamma(1)$ with index $\leq 7$ except $\Gamma^{2} \cap \Gamma^{3}$ have genus 0 . It turns out that if we assume the existence of a Hauptmodul, $x_{\Gamma}$, for each of these genus 0 subgroups $\Gamma$, we can find $x_{\Gamma}$ as an explicit algebraic function of $j$. Let us illustrate with, for example, the conjugacy class of subgroups of index 7 in Table 4.1 with $\left(\epsilon_{\infty}, \epsilon_{2}, \epsilon_{3}\right)=(2,1,1)$ and cusp widths $5+2$. We first fix $x$ by putting its pole at the cusp with width 5 (and setting its residue to be 1 ) and its zero at the cusp with width 0 . Since there is one elliptic point of each order for this subgroup, we have an equation of the form

$$
j=\frac{\left(x+a_{1}\right)\left(x^{2}+a_{2} x+a_{3}\right)^{3}}{x^{2}}=1728+\frac{\left(x+b_{1}\right)\left(x^{3}+b_{2} x^{2}+b_{3} x+b_{4}\right)^{2}}{x^{2}}
$$

It is possible to determine the constants $a_{i}$ and $b_{i}$ algebraically by equating coefficients on powers of $x$. It turns out that there are five distinct sets of solutions, corresponding to the five conjugate subgroups that have a cusp width of 5 at $\infty$. In the table, $x$ has been rescaled so that the defining relation with $j$ is rational.

Note that the groups of index 7 in the last four entries in Table 4.1 are not congruence subgroups because the least common multiples of the cusp widths are 6,10 and 12 , respectively, and none of the indexes $[\Gamma(1): \Gamma(6)]=72,[\Gamma(1): \Gamma(10)]=360$, and $[\Gamma(1): \Gamma(12)]=576$ is divisible by 7 . Let $\Gamma^{52}$ denote the subgroup with cusp widths $5+2$ and fundamental domain


Note that once the locations of the two elliptic points are specified, there is only one way to pair the edges while obeying the cusp widths of 5 and 2 , so this defines a subgroup of $\Gamma(1)$. Since Table 4.1 gives the Hauptmodul $x$ as a explicit algebraic function of $j$, it is a simple matter to obtain the $q$-series expansion of $x$ from that of $j$. For the group $\Gamma^{52}$, we have

$$
\begin{aligned}
x(\tau) & =7 \cdot 7^{2 / 5} q^{-1 / 5}-28+\frac{278}{7^{2 / 5}} q^{1 / 5}-\frac{2540}{7 \cdot 7^{4 / 5}} q^{2 / 5}+\frac{116185}{343 \cdot 7^{1 / 5}} q^{3 / 5}+\frac{2924644}{2401 \cdot 7^{3 / 5}} q^{4 / 5}+\cdots, \\
x(1-1 / \tau) & =\frac{512000}{343 \sqrt{-7}} q^{1 / 2}+\frac{69632000}{117649} q+\frac{488364032000}{40353607 \sqrt{-7}} q^{3 / 2}+\frac{340869677056000}{96889010407} q^{2}+\cdots
\end{aligned}
$$

The function $x(\tau)$ is a Hauptmodul for $\Gamma^{52}$. The Hauptmoduln for the other six groups in this conjugacy class are $x(1-1 /(\tau+i))$, and $x(\tau+j)$ for $i=0,1$ and $j=1,2,3,4$.

As $\Gamma^{52}$ is non-congruence and has prime index in $\Gamma(1)$, its congruence closure must be the full modular group $\Gamma(1)$. Since $x$ is clearly not invariant under $\Gamma(1)$, we have the $q$-series expansion of a modular function that is not invariant under $\Gamma(N)$ for any $N$ (so in particular, it cannot be written in terms of the usual $q$-products). There are a few things to notice about the $q$-series coefficients of the function $x$ :

- The coefficients appear to have unbounded denominators. (The $q$-series expansions of the Hauptmoduln for the congruence subgroups in Table 4.1 all have bounded denominators.)
- Any Galois extension of $\mathbb{Q}$ containing the $q$-series coefficients of $x$ and its six conjugate is not an Abelian extension.

| $\mu$ | $\left(\epsilon_{\infty}, \epsilon_{2}, \epsilon_{3}\right)$ | cusps | Hauptmoduln | conj. |
| :--- | :--- | :--- | :--- | :--- |
| 2 | $(1,0,2)$ | 2 | $j=x^{2}+1728$ | 1 |
| 3 | $(1,3,0)$ | 3 | $j=x^{3}$ | 1 |
| 3 | $(2,1,0)$ | $2+1$ | $j=\frac{(x+16)^{3}}{x}$ | 3 |
| 4 | $(1,2,1)$ | 4 | $j=x(x+1)^{3}$ | 4 |
| 4 | $(2,0,1)$ | $3+1$ | $j=\frac{(x+27)(x+3)^{3}}{x}$ | 4 |
| 5 | $(1,1,2)$ | 5 | $j=x^{3}\left(x^{2}-5 x+40\right)$ | 5 |
| 6 | $(1,0,0)$ | 6 | genus 1 | 1 |
| 6 | $(1,0,3)$ | 6 | $j=-27 x^{3}\left(x^{3}+16\right)$ | 2 |
| 6 | $(1,4,0)$ | 6 | $j=27\left(x^{2}+4\right)^{3}$ | 3 |
| 6 | $(2,2,0)$ | $3+3$ | $j=\frac{x^{3}(x+12)^{3}}{(x+9)^{3}}$ | 3 |
| 6 | $(2,2,0)$ | $4+2$ | $j=\frac{x^{3}(x+8)^{3}}{(x+4)^{2}}$ | 3 |
| 6 | $(2,2,0)$ | $5+1$ | $j=\frac{\left(x^{2}+10 x+5\right)^{3}}{x}$ | 6 |
| 6 | $(3,0,0)$ | $2+2+2$ | $j=\frac{\left(x^{2}+192\right)^{3}}{\left(x^{2}-64\right)^{2}}$ | 1 |
| 6 | $(3,0,0)$ | $4+1+1$ | $j=\frac{\left(x^{2}+48\right)^{3}}{x^{2}+64}$ | $j=x\left(x^{2}+\frac{7+7 \sqrt{-7}}{2} x+\frac{-35+7 \sqrt{-7}}{2}\right)^{3}$ |
| 7 | $(1,3,1)$ | 7 | $j=x\left(x^{2}+\frac{7-7 \sqrt{-7}}{2} x+\frac{-35-7 \sqrt{-7}}{2}\right)^{3}$ | 7 |
| 7 | $(1,3,1)$ | 7 | $\left.j=\frac{1}{2}\right)$ |  |
| 7 | $(2,1,1)$ | $6+1$ | $j=\frac{384(747-1763 \sqrt{-3})(x+9)\left(x^{2}+(6+\sqrt{-3}) x+\frac{1}{2}(3+\sqrt{-3})\right)^{3}}{823543 x}$ | 7 |
| 7 | $(2,1,1)$ | $6+1$ | $j=\frac{384(747+1763 \sqrt{-3})(x+9)\left(x^{2}+(6-\sqrt{-3}) x+\frac{1}{2}(3-\sqrt{-3})\right)^{3}}{3}$ | 7 |
| 7 | $(2,1,1)$ | $5+2$ | $j=\frac{(x+125)\left(x^{2}+5 x-1280\right)^{323543 x}}{8253 x^{2}}$ | 7 |
| 7 | $(2,1,1)$ | $4+3$ | $j=\frac{(x+432)\left(x^{2}+80 x-3888\right)^{3}}{-823543 x^{3}}$ | 7 |

Table 4.1: The subgroups with $[\bar{\Gamma}(1): \bar{\Gamma}] \leq 7$ and their Hauptmoduln

Exercise 4.13.5. Set $\alpha=\frac{-1+\sqrt{-7}}{2}$. Recall from Table 4.1 that supposedly there are 14 congruence subgroups of index 7 with $\left(\epsilon_{\infty}, \epsilon_{2}, \epsilon_{3}\right)=(1,3,1)$, whose Hauptmoduln $x$ satisfy

$$
j=x\left(x^{2}-\alpha x-21-7 \alpha\right)^{3} \text { or } \bar{\alpha} \text { in place of } \alpha .
$$

Since these are congruence subgroups, we should be able to solve for $x$ in terms of $q$-products. Let us first fix two of these groups, $\Gamma^{7}$ and $\tilde{\Gamma}^{7}$, by the fundamental domains

respectively. The edge pairings for each of these fundamental domains are uniquely determined by the locations of the elliptic points (shown with dots).

1. Show that $\Gamma^{7}$ and $\tilde{\Gamma}^{7}$ are congruence subgroups of level 7 by means of Proposition 4.13 .1 via the following steps.
(a) Show that $\Gamma^{7}$ is freely generated by $S, T^{4} S T^{-4}, T^{5} S T^{-5}, T^{2} S T^{-1}$

Show that $\tilde{\Gamma}^{7}$ is freely generated by $S, T^{2} S T^{-2}, T^{3} S T^{-3}, T^{6} S T^{-5}$.
(b) Let $G$ and $\tilde{G}$ be the subgroups of $\mathrm{PSL}_{2}(\mathbb{Z} / 7 \mathbb{Z}) \simeq \bar{\Gamma}(1) / \bar{\Gamma}(7)$ generated respectively by the two sets of generators in (a) modulo 7. Show that $G$ and $G$ have order 24 hence index 7 in $\mathrm{PSL}_{2}(\mathbb{Z} / 7 \mathbb{Z})$.
2. For $j=1,2,3$, let $u_{j}(\tau)= \pm \mathfrak{k}_{j / 7,0}(7 \tau) \eta(7 \tau)^{3} / \eta(\tau)$, with the signs fixed by

$$
\begin{aligned}
& u_{1}(\tau)=-q^{17 / 42}\left(q ; q^{7}\right)_{\infty}\left(q^{6} ; q^{7}\right)_{\infty}\left(q^{7} ; q^{7}\right)_{\infty} /(q ; q)_{\infty} \\
& u_{2}(\tau)=+q^{5 / 42}\left(q^{2} ; q^{7}\right)_{\infty}\left(q^{5} ; q^{7}\right)_{\infty}\left(q^{7} ; q^{7}\right)_{\infty} /(q ; q)_{\infty} \\
& u_{3}(\tau)=+q^{-1 / 42}\left(q^{3} ; q^{7}\right)_{\infty}\left(q^{4} ; q^{7}\right)_{\infty}\left(q^{7} ; q^{7}\right)_{\infty} /(q ; q)_{\infty}
\end{aligned}
$$

Show that $u_{1} \eta(\tau)^{4}, u_{2} \eta(\tau)^{4}, u_{3} \eta(\tau)^{4} \in S_{2}(\Gamma(7))$. This is in fact a basis by Theorem 4.2.3.
3. Show that

$$
\begin{aligned}
& \left.\left(\begin{array}{l}
u_{1} \eta^{4} \\
u_{2} \eta^{4} \\
u_{3} \eta^{4}
\end{array}\right)\right|_{T}=\left(\begin{array}{ccc}
\zeta_{7}^{4} & 0 & 0 \\
0 & \zeta_{7}^{2} & 0 \\
0 & 0 & \zeta_{7}^{1}
\end{array}\right)\left(\begin{array}{l}
u_{1} \eta^{4} \\
u_{2} \eta^{4} \\
u_{3} \eta^{4}
\end{array}\right), \\
& \left.\left(\begin{array}{l}
u_{1} \eta^{4} \\
u_{2} \eta^{4} \\
u_{3} \eta^{4}
\end{array}\right)\right|_{S}=\frac{1}{\sqrt{-7}}\left(\begin{array}{ccc}
\zeta_{7}^{6}-\zeta_{7}^{1} & \zeta_{7}^{5}-\zeta_{7}^{2} & \zeta_{7}^{3}-\zeta_{7}^{4} \\
\zeta_{7}^{5}-\zeta_{7}^{2} & \zeta_{7}^{3}-\zeta_{7}^{4} & \zeta_{7}^{6}-\zeta_{7}^{1} \\
\zeta_{7}^{3}-\zeta_{7}^{4} & \zeta_{7}^{6}-\zeta_{7}^{1} & \zeta_{7}^{5}-\zeta_{7}^{2}
\end{array}\right)\left(\begin{array}{l}
u_{1} \eta^{4} \\
u_{2} \eta^{4} \\
u_{3} \eta^{4}
\end{array}\right) .
\end{aligned}
$$

4. Let $x_{i}=\zeta_{7}^{3 i} u_{1}^{2}+\zeta_{7}^{5 i} u_{2}^{2}+\zeta_{7}^{6 i} u_{3}^{2}+\alpha\left(\zeta_{7}^{i} u_{1} u_{3}+\zeta_{7}^{2 i} u_{2} u_{3}+\zeta_{7}^{4 i} u_{1} u_{2}\right)$. Show that $x_{0}$ is a Hauptmodul for $\Gamma^{7} \cap \Gamma^{3}$, which is a subgroup of index 21 with $\left(\epsilon_{\infty}, \epsilon_{2}, \epsilon_{3}\right)=(1,9,1)$. Hint: show that $x_{0} \eta^{8} \in S_{4}\left(\Gamma^{7}\right)$. Recall also that $\eta^{8} \in S_{4}\left(\Gamma^{3}\right)$.
5. Show that $x_{0}^{3}$ is a Hauptmodul for $\Gamma^{7}$ and that the $x_{i}^{3}$ are Hauptmoduln for the conjugates of $\Gamma^{7}$.

## Chapter 5

## Hecke Operators

5.1 Definition of the Hecke operators
5.2 Eigenforms
5.3 Newforms

## Chapter 6

## Modular Forms mod $p$

6.1 The structure of modular forms on $\mathrm{SL}_{2}(\mathbb{Z}) \bmod p$
6.2 The congruences for $p(n) \bmod 5,7,11$ are the Unique Ramanujan Congruences
6.3 $24 n \equiv 1 \bmod 5^{a} 7^{b} 11^{c}$ implies $p(n) \equiv 0 \bmod 5^{a} 7^{\left\lfloor\frac{b}{2}\right\rfloor+1} 11^{c}$

## Chapter 7

## Modular Equations and Singular Values

### 7.1 Modular equations for $j$

Proposition 7.1.1 (Classical modular equation). For any integer $n \geq 2$ there is a polynomial $\Phi_{n}(X, Y)$ of degree $\phi(n)=n \prod_{p \mid n}(1+1 / p)$ in $X$ and $Y$ such that:

1. $\Phi_{n}(X, Y)$ is irreducible.
2. $\Phi_{n}(X, Y)$ is symmetric in $X$ and $Y$.
3. $\Phi_{n}(X, X)$ has leading coefficient $\pm 1$ if $n$ is not a square.
4. The zeros of $\Phi_{n}(X, j(\tau))$ occur exactly at the points

$$
X=j\left(\frac{\alpha \tau+\beta}{\delta}\right), \quad \begin{aligned}
& \alpha \delta=n \\
& 0 \leq \beta<\delta \\
& \operatorname{gcd}(\alpha, \beta, \delta)=1
\end{aligned}
$$

Proof. This polynomial can be given as

$$
\begin{equation*}
\Phi_{n}(X, Y)=\prod_{\substack{a d=n \\ 0 \leq b<d \\(a b, b) d=1}}\left(X-j\left(\frac{a \tau+b}{d}\right)\right) \tag{7.1.1}
\end{equation*}
$$

where the coefficients of $X^{k}$ on the right hand side should expressed as polynomials in $Y$ for $Y=j(\tau)$.

Proposition 7.1.2 (Canonical modular equation). For any integer $n \geq 2$ there is an irreducible polynomial $\Psi_{n}(X, Y)$ of degree $\psi(n)$ in $X$ and $Y$ such that $\Phi_{n}\left(f_{n}(\tau), j(\tau)\right)=0$, where

$$
f_{n}(\tau)=\left(\frac{\eta(n \tau)}{\eta(\tau)}\right)^{\frac{24}{(24, n-1)}}
$$

### 7.2 Modular equations for the Weber functions

Weber's functions are defined as

$$
\begin{aligned}
\gamma_{3}(\tau) & =\sqrt{j(\tau)-1728}=\frac{E_{6}(\tau)}{\eta(\tau)^{12}} \\
\gamma_{2}(\tau) & =(j(\tau))^{1 / 3}=\frac{E_{4}(\tau)}{\eta(\tau)^{8}} \\
\mathfrak{f}(\tau) & =\zeta_{48}^{-1} \frac{\eta\left(\frac{\tau+1}{2}\right)}{\eta(\tau)} \\
\mathfrak{f}_{1}(\tau) & =\frac{\eta\left(\frac{\tau}{2}\right)}{\eta(\tau)} \\
\mathfrak{f}_{2}(\tau) & =\frac{\eta(2 \tau)}{\eta(\tau)}
\end{aligned}
$$

## Proposition 7.2.1.

$$
\begin{aligned}
\gamma_{3}(\tau) & \in M_{0}^{!}(\Gamma(2)), \\
\gamma_{2}(\tau) & \in M_{0}^{!}(\Gamma(3)), \\
\mathfrak{f}(\tau)^{24}, \mathfrak{f}_{1}(\tau)^{24}, \mathfrak{f}_{2}(\tau)^{24} & \in M_{0}^{!}(\Gamma(2)), \\
\mathfrak{f}(\tau)^{3}, \mathfrak{f}_{1}(\tau)^{3}, \mathfrak{f}_{2}(\tau)^{3} & \in M_{0}^{!}(\Gamma(16)), \\
\mathfrak{f}(\tau), \mathfrak{f}_{1}(\tau), \mathfrak{f}_{2}(\tau) & \in M_{0}^{!}(\Gamma(48)) .
\end{aligned}
$$

### 7.3 Quadratic Forms

Let $n<0$ be an square free integer and consider the field $K=\mathbb{Q}(\sqrt{n}))$. The ring of integers in $K$ can be given as

$$
\mathcal{O}_{K}=\left\{\begin{array}{lll}
\mathbb{Z}+\mathbb{Z} \sqrt{n} & , n \not \equiv 1 & \bmod 4 \\
\mathbb{Z}+\mathbb{Z} \frac{-1+\sqrt{n}}{2} & , n \equiv 1 & \bmod 4
\end{array}\right.
$$

Therefore, the discriminant of $K$ is given as

$$
\operatorname{disc}(K)=\left\{\begin{array}{lll}
4 n & , n \not \equiv 1 & \bmod 4  \tag{7.3.1}\\
n & , n \equiv 1 & \bmod 4
\end{array}\right.
$$

## Definition 7.3.1.

1. A negative integer $d$ is called a discriminant if $d \equiv 0,1 \bmod 4$.
2. A negative integer $\Delta$ is called a fundamental discriminant if it can be obtained from some square free $n$ by formula (7.3.1). These are the numbers $\Delta$ such that

$$
\begin{aligned}
\Delta & \equiv 1 \bmod 4 \text { and } \Delta \text { is square free } \\
\text { or } \Delta & \equiv 8,12 \bmod 16 \text { and } \Delta / 4 \text { is square free. }
\end{aligned}
$$

3. Any discriminant $d$ can be written uniquely as $d=f^{2} \Delta$ where $\Delta$ is a fundamental discriminant and $f>0$ is an integer. This $f$ is called the conductor of the discriminant $d$.

Definition 7.3.2. Associate with triple of integers $(a, b, c)$ such that $a>0, b^{2}-4 a c<0$ the following objects

1. the positive definite quadratic form $a x^{2}+b x y+c y^{2}$
2. the discriminant $b^{2}-4 a c$
3. $\tau_{a, b, c}=\frac{-b+\sqrt{d}}{2 a} \in \mathbb{H}$
4. the following operation of $\mathbb{Z}^{2 \times 2}$ on quadratics forms

$$
M \in \mathbb{Z}^{2 \times 2}: a x^{2}+b x y+c y^{2} \mapsto a X^{2}+b X Y+c Y^{2} \text { with }\binom{X}{Y}=M\binom{x}{y}
$$

## Definition 7.3.3.

1. A quadratic form $(a, b, c)$ is called reduced if

$$
0 \leq|b| \leq a \leq c \text { and } b \geq 0 \text { whenever } a=|b| \text { or } a=c
$$

2. A quadratic form $(a, b, c)$ is called primitive if $\operatorname{gcd}(a, b, c)=1$.

Proposition 7.3.4. Every quadratic form is equivalent (under $\Gamma(1)$ ) to a reduced form, and no two distinct reduced forms are equivalent.

Proof. The condition for $(a, b, c)$ reduced is exactly

$$
|\operatorname{Re}(\tau)| \leq \frac{1}{2} \text { and }|\tau| \geq 1 \text { and } \operatorname{Re}(\tau) \leq 0 \text { whenever }|\operatorname{Re}(\tau)|=\frac{1}{2} \text { or }|\tau|=1
$$

for $\tau=\frac{-b+\sqrt{d}}{2 a}$. This is exactly the fundamental domain for $\Gamma(1)$.
Definition 7.3.5. Let $H(d)$ denote the equivalent classes of primitive forms of a given discriminant $d$ under the action of $\Gamma(1)$. Also let $h(d)$ denote the size of $H(d)$.
Proposition 7.3.6. $h(d)<\infty$.
Proof. If $(a, b, c)$ is a reduced form with discriminant $d$ then we see $b^{2} \leq a c \leq-d / 3$. There can only be a finite number of forms satisfying this.

## Example 7.3.7.

$$
\begin{array}{ll}
h(-163)=1 & H(-163)=\{(1,1,41)\} \\
h(-160)=4 & H(-160)=\{(1,0,40),(5,0,8),(4,4,11),(7,6,7)\}
\end{array}
$$

### 7.4 Singular Values of the $j$ Function

Proposition 7.4.1. For any discriminant d, the polynomial

$$
\mathcal{H}_{d}^{j}(X)=\prod_{(a, b, c) \in H(d)}\left(X-j\left(\frac{-b+\sqrt{d}}{2 a}\right)\right)
$$

has integer coefficients. Furthermore, if $d=r^{2}-4 n$ for any integers $r$ and $n$ with $n>1$, then $\mathcal{H}_{d}^{j}(X)$ divides $\Phi_{n}(X, X)$ (the modular equation for $j$ ).
Remark 7.4.2. It seems that the full force of class field theory is required to show that $\mathcal{H}_{d}^{j}(X)$ is irreducible and the Galois group over $\mathbb{Q}(\sqrt{-d})$ is isomorphic to the class group, but we will not need this fact for our purposes.

### 7.5 Singular Values of the Weber Functions

The polynomial $\mathcal{H}_{d}^{j}(X)$ defined in Section 7.4 has quite large coefficients. It turns out that modular functions of higher level provide the same extensions of $\mathbb{Q}$ with much simpler defining polynomials. Weber defined a class invariant $f(\tau)$ to be a modular function for which

$$
\mathbb{Q}\left(f\left(\tau_{a, b, c}\right)\right)=\mathbb{Q}\left(j\left(\tau_{a, b, c}\right)\right)
$$

where $(a, b, c)$ ranges over some set of representatives of $H(d)$.
Definition 7.5.1. For any integer $N$ let $\left(a^{\prime}, b^{\prime}, c^{\prime}\right):=[(a, b, c)]_{N}$ denote any form equivalent to $(a, b, c)$ for which

$$
\operatorname{gcd}\left(a^{\prime}, N\right)=1 \text { and } b^{\prime} \equiv b \bmod 2 N
$$

Proposition 7.5.2. For any primitive form $(a, b, c),[(a, b, c)]_{N}$ exists.
Proposition 7.5.3. Let $(a, b, c)$ range over $[H(d)]_{2}$ and set $\tau=\frac{-b+\sqrt{d}}{2 a}$ and $s=\operatorname{gcd}(2, d)$. Then

$$
\gamma_{3}(\tau)^{s}
$$

is a class invariant.
Proposition 7.5.4. Let $(a, b, c)$ range over $[H(d)]_{3}$ and set $\tau=\frac{-b+\sqrt{d}}{2 a}$ and $s=\operatorname{gcd}(3, d)$. Then

$$
\gamma_{2}(\tau)^{s}
$$

is a class invariant.
Proposition 7.5.5. Let $(a, b, c)$ range over $[H(d)]_{48}$. Set $\tau=\frac{-b+\sqrt{d}}{2 a}$ and $s=\operatorname{gcd}(3, d)$. Then, we have the following table of class invariants.

$$
\begin{array}{l|l}
\text { condition } & \text { class invariant } \\
-d / 4 \equiv 0 \bmod 8 & 2^{-3 s} \mathfrak{f}_{1}(\tau)^{8 s} \\
-d / 4 \equiv 4 \bmod 8 & \left(\frac{2}{a}\right) 2^{-3 s / 2} \mathfrak{f}_{1}(\tau)^{4 s} \\
-d / 4 \equiv 2 \bmod 4 & \left(\frac{2}{a}\right) 2^{-s / 2} \mathfrak{f}_{1}(\tau)^{2 s} \\
-d / 4 \equiv 1 \bmod 8 & \left(\frac{2}{a}\right) 2^{-s / 2} \mathfrak{f}(\tau)^{2 s} \\
-d / 4 \equiv 5 \bmod 8 & 2^{-s} \mathfrak{f}(\tau)^{4 s} \\
-d / 4 \equiv 3 \bmod 8 & \mathfrak{f}(\tau)^{s} \\
-d / 4 \equiv 7 \bmod 8 & \left(\frac{2}{a}\right) 2^{-s / 2} \mathfrak{f}(\tau)^{s} \\
d \equiv 1 \bmod 8 & \zeta_{4 a}^{s a} \mathfrak{f}_{2}(\tau)^{s} \\
d \equiv 5 \bmod 8 & \frac{\mathfrak{f}\left(\tau_{\infty}\right)^{s}}{2}+\frac{\mathfrak{f}\left(\tau_{0}\right)^{s}}{2}+\frac{\mathfrak{f}\left(\tau_{1}\right)^{s}}{2}-\frac{2}{\mathfrak{f}\left(\tau_{\infty}\right)^{s}}-\frac{2}{\mathfrak{f}\left(\tau_{0}\right)^{s}}-\frac{2}{\mathfrak{f}\left(\tau_{1}\right)^{s}}
\end{array}
$$

In the case $d \equiv 5 \bmod 8$, we should set $\tau_{i}=\frac{-b_{i}+\sqrt{4 d}}{2 a_{i}}$ where

$$
\begin{aligned}
\left(a_{\infty}, b_{\infty}, c_{\infty}\right) & =\left[\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right)(a, b, c)\right]_{48}, \\
\left(a_{0}, b_{0}, c_{0}\right) & =\left[\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)(a, b, c)\right]_{48}, \\
\left(a_{1}, b_{1}, c_{1}\right) & =\left[\left(\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right)(a, b, c)\right]_{48} .
\end{aligned}
$$

Example 7.5.6. We have $h(-103)=5$ and

$$
[H(-103)]_{48}=\{(17,769,8698),(19,-767,7742),(1,1,26),(23,865,8134),(29,97,82)\} .
$$

According to Proposition,

$$
\begin{gathered}
\zeta_{48}^{17} \mathfrak{f}_{2}\left(\frac{-769+\sqrt{-103}}{34}\right), \quad \zeta_{48}^{19} \mathfrak{f}_{2}\left(\frac{767+\sqrt{-103}}{38}\right), \quad \zeta_{48} \mathfrak{f}_{2}\left(\frac{-1+i \sqrt{-103}}{2}\right), \\
\zeta_{48}^{23} \mathfrak{f}_{2}\left(\frac{-865+\sqrt{-103}}{46}\right), \quad \zeta_{48}^{29} \mathfrak{f}_{2}\left(\frac{-97+\sqrt{-103}}{58}\right)
\end{gathered}
$$

are roots of $X^{5}+2 X^{4}+3 X^{3}+3 X^{2}+X-1$. This is a much simpler polynomial than

$$
\begin{gathered}
\mathcal{H}_{-103}^{j}(X)=X^{5}+70292286280125 X^{4}+85475283659296875 X^{3} \\
+4941005649165514137656250000 X^{2}+13355527720114165506172119140625 X \\
+28826612937014029067466156005859375
\end{gathered}
$$

although they generate the same splitting field.

### 7.6 The Class Number One Problem

### 7.7 Singular Values of the $\eta$ Function

Proposition 7.7.1. Let $d$ be a discriminant and let $f$ and $\Delta$ be the associated conductor and fundamental discriminant. Let

$$
\chi(n)=\left(\frac{\Delta}{n}\right)= \begin{cases}0 & , \\ 1 & , \\ -1 & ,\end{cases}
$$

and let $w$ be the number of roots of unity in $\mathbb{Q}(\sqrt{\Delta})$. Then,

$$
\begin{aligned}
\sum_{(a, b, c) \in H(d)} \log \frac{2 \pi|d|}{a}\left|\eta\left(\frac{-d+\sqrt{d}}{2 a}\right)\right|^{4}= & \sum_{n=1}^{|\Delta|} \frac{w h(d) \chi(n)}{2 h(\Delta)} \log \Gamma\left(\frac{n}{|\Delta|}\right) \\
& +\sum_{p^{n} \mid f} \frac{h(d)\left(1-p^{-n}\right)(1-\chi(p))}{\left(1-p^{-1}\right)(p-\chi(p))} \log p
\end{aligned}
$$

## Chapter 8

## Hypergeometric Functions

### 8.1 Basic Properties of the ${ }_{2} F_{1}(x)$ and ${ }_{3} F_{2}(x)$ Series

Proposition 8.1.1. The formula (4.9.3) is correct for $N=2,3,4,5$ at least for $-i \tau>0$ (so $j(\tau)>$ 1728).

### 8.2 Jacobi's Inversion Formula and Generalizations

### 8.3 Solution of the General Quintic by Modular Functions

From Proposition 4.9.4,

$$
\begin{equation*}
j=\frac{\left(x^{20}+228 x^{15}+494 x^{10}-228 x^{5}+1\right)^{3}}{x^{5}\left(x^{10}-11 x^{5}-1\right)^{5}} \tag{8.3.1}
\end{equation*}
$$

where $j$ is the $j$ function and $x_{5}$ is the Hauptmodul for $\Gamma(5)$ defined in (4.9.2) (the reciprocal of the Rogers-Ramanujan continued fraction). The solution for $x$ as a function of $j$ in this equation is the basic irrationality that can be used to resolve the simple group $A_{5} / 1$ in the normal series

$$
1 \triangleleft A_{5} \triangleleft S_{5}
$$

for $S_{5}$. The factor group $S_{5} / A_{5} \simeq \mathbb{Z}_{2}$ corresponds to taking the square root of the discriminant of the quintic.
Proposition 8.3.1. Let $F=\mathbb{Q}\left(a, b, c, \zeta_{5}\right)$. The splitting field of the quintic $X^{4}+5 \alpha X^{2}+5 \beta X+\gamma$ is $F(\sqrt{D}, x)$ where $D$ is the discriminant of the quintic and

$$
\left.x=\frac{j^{\frac{1}{60}}{ }_{2} F_{1}\left(\begin{array}{c}
-\frac{1}{60}, \frac{29}{60} \\
\frac{4}{5}
\end{array}\right.}{\frac{1728}{j}}\right)
$$

and $j$ is some element of $F(\sqrt{D})$.
Proof. Let $X_{0}, \ldots, X_{4}$ be the roots of the quintic, and let $\sqrt{D}=\prod_{i<j}\left(X_{i}-X_{j}\right)$ denote a fixed square root of the discriminant $(D$ is not a square in $F)$. Then, $\operatorname{Gal}\left(F\left(X_{0}, \ldots, X_{4}\right) / F(\sqrt{D})\right) \subseteq A_{5}$.

Let $\mathbb{I}_{60}$ denote the group of Möbius transformation on $\mathbb{C}_{\infty}$ giving the 60 symmetries of the regular icosahedron. We have already seen

$$
\mathbb{I}_{60} \simeq \bar{\Gamma}(1) / \bar{\Gamma}(5) \simeq A_{5}
$$

with the correspondence on generators given by

| element of $\mathbb{I}_{60}$ | element of $\bar{\Gamma}(1) / \bar{\Gamma}(5)$ | element of $A_{5}$ |
| :---: | :---: | :---: |
| $x \mapsto \zeta_{5}^{-1} x$ | $T \bar{\Gamma}(5)$ | $\tau=(01234)$ |
| $x \mapsto \frac{\phi x-1}{x-\phi}$ | $S \bar{\Gamma}(5)$ | $\sigma=(12)(34)$ |,

where $\phi=\frac{1+\sqrt{5}}{2}$ and $\bar{\phi}=\frac{1-\sqrt{5}}{2}$. For any $\pi \in A_{5}$, let $M_{\pi}$ denote the corresponding element of $\mathbb{I}_{60}$. Set (for $i=0, \ldots, 4$ )

$$
t_{i}=\sum_{j=0}^{4} \zeta_{5}^{i j} X_{j}
$$

Then, the action of $A_{5}$ on the $t_{i}$ is

$$
\begin{aligned}
\tau\left(\begin{array}{l}
t_{1} \\
t_{2} \\
t_{3} \\
t_{4}
\end{array}\right) & =\left(\begin{array}{cccc}
\zeta_{5}^{4} & 0 & 0 & 0 \\
0 & \zeta_{5}^{3} & 0 & 0 \\
0 & 0 & \zeta_{5}^{2} & 0 \\
0 & 0 & 0 & \zeta_{5}^{1}
\end{array}\right)\left(\begin{array}{c}
t_{1} \\
t_{2} \\
t_{3} \\
t_{4}
\end{array}\right) \\
\sigma\left(\begin{array}{l}
t_{1} \\
t_{2} \\
t_{3} \\
t_{4}
\end{array}\right) & =\frac{1}{\sqrt{5}}\left(\begin{array}{cccc}
1 & -\bar{\phi} & \phi & -1 \\
-\bar{\phi} & -1 & 1 & \phi \\
\phi & 1 & -1 & -\bar{\phi} \\
-1 & \phi & -\bar{\phi} & 1
\end{array}\right)\left(\begin{array}{l}
t_{1} \\
t_{2} \\
t_{3} \\
t_{4}
\end{array}\right)
\end{aligned}
$$

Next, note that that vanishing of the coefficients of $X^{4}$ and $X^{3}$ gives $0=t_{0}=t_{1} t_{4}+t_{2} t_{3}$, and set

$$
\begin{align*}
& x=-\frac{t_{2}}{t_{1}}=+\frac{t_{4}}{t_{3}}  \tag{8.3.2}\\
& \bar{x}=+\frac{t_{3}}{t_{1}}=-\frac{t_{4}}{t_{2}}
\end{align*}
$$

The action of $A_{5}$ on $x$ and $\bar{x}$ is given by

$$
\begin{align*}
& \tau(x)=\zeta_{5}^{-1} x, \quad \sigma(x)=\frac{\phi x-1}{x-\phi} \\
& \tau(\bar{x})=\zeta_{5}^{-2} \bar{x}, \quad \sigma(\bar{x})=\frac{\bar{\phi} \bar{x}-1}{\bar{x}-\bar{\phi}} \tag{8.3.3}
\end{align*}
$$

This means that the corresponding values of $j$ and $\bar{j}$ (see (8.3.1)) are fixed by $\sigma$ and $\tau$, hence elements of $F(\sqrt{D})$. Since $x$ was defined in terms of the $X_{i}$ rationally over $F$, we have $F(\sqrt{D}, x) \subseteq$ $F\left(X_{0}, X_{1}, X_{2}, X_{3}, X_{4}\right)$.

In order to establish the proposition, we must show that each $X_{i}$ can be obtained as an element of $F(\sqrt{D}, x)$. Once we know $x$ and $\bar{x}$, we know the ratios of the $t_{i}$ by (8.3.2). Hence the ratios of the roots $X_{i}$ are known since they are the inverse Fourier transform of the $t_{i}$ and $t_{0}=0$. Once we know the ratios of the roots we know the roots because of the equation

$$
\frac{1}{X_{0}}+\frac{1}{X_{1}}+\cdots+\frac{1}{X_{4}}=-\frac{5 \beta}{\gamma}
$$

so it suffices to demonstrate that $\bar{x}$ is an element of $F(\sqrt{D}, x)$. The reason for this lies in (8.3.3). Every transformation in $\mathbb{I}_{60}$ is defined over $\mathbb{Q}\left(\zeta_{5}\right)$. Therefore, for a given $M \in \mathbb{I}_{60}$, if $\bar{M}$ denotes $M$ with the automorphism $\zeta_{5} \mapsto \zeta_{5}^{2}$ applied, then we have

$$
\begin{equation*}
\pi(x)=M_{\pi}(x) \Longrightarrow \pi(\bar{x})=\bar{M}_{\pi}(\bar{x}), \quad \pi \in A_{5} \tag{8.3.4}
\end{equation*}
$$

since this holds on generators. Now let $M_{1}, \cdots, M_{60}$ denote the elements of $\mathbb{I}_{60}$ so that $\left\{M_{i}(x)\right\}_{i}$ is a list of conjugates of $x$ under $A_{5}$. Since (8.3.1) has disinct roots as long as $j \neq 0,1728, \infty$, this list contains 60 distinct elements. From (8.3.4) we see that $\left\{M_{i}(x)\right\}_{i}$ and $\left\{\bar{M}_{i}(\bar{x})\right\}_{i}$ are permuted identically under $A_{5}$, that is

$$
\pi\left(M_{i}(x)\right)=M_{j}(x) \Longrightarrow \pi\left(\bar{M}_{i}(\bar{x})\right)=\bar{M}_{j}(\bar{x}), \quad \pi \in A_{5} .
$$

This means that the solutions for the $a_{k}$ in the linear system

$$
\bar{M}_{i}(\bar{x})=\sum_{k=1}^{60} a_{k} M_{i}(x)^{k-1}, \quad i=1, \ldots, 60
$$

are all fixed by $A_{5}$ hence elements of $F(\sqrt{D})$.
Remark 8.3.2. It is possible to be much more explicit about the relationship between $x$ and $\bar{x}$. In fact, we have

$$
\frac{\sqrt{x^{11}-11 x^{6}-x}}{\sqrt{j-1728}} \frac{\left(7 x^{5}-1\right) \bar{x}+x^{7}+7 x^{2}}{\left(x^{13}+39 x^{8}-26 x^{3}\right) \bar{x}-26 x^{10}-39 x^{5}+1} \in F(\sqrt{D}) .
$$

See [5].

## Chapter 9

## Mock Modular Forms

## Bibliography

[1] T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, 2nd ed., New York: Springer-Verlag, 1997.
[2] A. O. L. Atkin, J. N. O'Brien, Some properties of $p(n)$ and $c(n)$ modulo powers of 13. Trans. Amer. Math. Soc. 126 (1976), 442-459.
[3] Borwein, J. M. and Borwein, P. B., A cubic counterpart of Jacobis identity and the AGM, Trans. Amer. Math. Soc. 323 (1991), 691-701.
[4] F. Diamond, J. Shurman, A First Course in Modular Forms, New York: Springer-Verlag, 2005.
[5] P. Gordon. Ueber die Auflösung der Gleichungen vom fünften Grade. Math. Ann., 13:375404, 1869.
[6] T. Horie, N. Kanou, Certain Modular Functions Similar to the Dedekind eta Function, Abh. Math. Sem. Univ. Hamburg 72 (2002), 89-117.
[7] N. Ishida, Generators and equations for modular function fields of principal congruence subgroups, Acta Arithmetica LXXXV. 3 (1998)
[8] M. I. Knopp, Modular Function in Analytic Number Theory, 2nd ed., Chelsea, New York, 1993.
[9] R. S. Kulkarni, An arithmetic geometric method in the study of the subgroups of the modular group, American Journal of Mathematics 113 (1991), no. 6, 1053-1133.
[10] C. A. Kurth, L. Long, Computations with Finite Index Subgroups of $\mathrm{PSL}_{2}(\mathbb{Z})$ using Farey Symbols.
[11] A. Lubotzky, Counting Finite Index Subgroups.
[12] M. Newman, Asymptotic formulas related to free products of cyclic groups, Math. Comp. 30 (1976), 838-846
[13] M. Newman, Classification of normal subgroups of the modular group.
[14] S. A. Vidal, Sur le classification et le dénombrement des sous-groupes du groupe modulaire et de leurs classes de conjugaison. Pub. IRMA, Lille 66(II):1-35, 2006. Preprint:http://arxiv.org/abs/math.CO/0702223
[15] D. Goldfeld, A. Lubotzky, L. Pyber, Counting Congruence Subgroups, Acta Mathematica, 2004, Volume 193, Issue 1, pp 73-104
[16] T. Hsu, IDENTIFYING CONGRUENCE SUBGROUPS OF THE MODULAR GROUP. Proc. Amer. Math. Soc. (124), no. 5, May 1996

