
Notes on Modular Forms

Dan Schultz

August 20, 2015



Contents

0.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1 Introduction 4
1.1 Partitions and the η function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Sums of squares and the θ function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Ramanujan’s τ Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Mock Modular Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Special Values of the j Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Elliptic Functions and Basic Modular Forms on SL2(Z) 7
2.1 Theory of Elliptic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 The Weierstrass ℘ Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Eisenstein Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Modular Discriminant ∆(τ) and Klein’s Absolute Invariant j(τ) . . . . . . . . . . . . 10
2.5 Basic Properties of SL2(Z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 The η function and E2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7 Recursions for the Eisenstein Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.8 Elliptic Θ Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.9 Γ(2) and the Asymptotic of Θ Near the Cusps . . . . . . . . . . . . . . . . . . . . . . 19
2.10 Addition Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.11 Γ(3) and the Asymptotic of η Near the Cusps . . . . . . . . . . . . . . . . . . . . . . 24
2.12 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Theory of Modular Forms on SL2(Z) 31
3.1 Definition of a Modular Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Valence Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Dimension Formulas and Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 Applications to Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Theory of Modular Forms on Congruence Subgroups of SL2(Z) 36
4.1 Definition of modular forms on Γ with [Γ(1) : Γ] <∞ . . . . . . . . . . . . . . . . . . 36
4.2 Dimension formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Counting εi for Γ(N) and Γ1(N) and Γ0(N) . . . . . . . . . . . . . . . . . . . . . . . 40
4.4 General properties of Ak(Γ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5 Working with finite index subgroups of Γ(1) . . . . . . . . . . . . . . . . . . . . . . . 46
4.6 Γ(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.7 Building congruence modular forms N from Klein Forms . . . . . . . . . . . . . . . . 53
4.8 Building congruence modular forms from η products . . . . . . . . . . . . . . . . . . . 55
4.9 Γ(N) and regular polyhedron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

1



4.10 Representations by x2 + y2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.11 Building congruence modular forms from Θ functions . . . . . . . . . . . . . . . . . . 65
4.12 Representations by x2 + xy + y2 other quadratic forms . . . . . . . . . . . . . . . . . 67
4.13 Subgroups up to index 7: non-congruence examples . . . . . . . . . . . . . . . . . . . 69

5 Hecke Operators 74
5.1 Definition of the Hecke operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2 Eigenforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3 Newforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6 Modular Forms mod p 75
6.1 The structure of modular forms on SL2(Z) mod p . . . . . . . . . . . . . . . . . . . . 75
6.2 The congruences for p(n) mod 5,7,11 are the Unique Ramanujan Congruences . . . . 75

6.3 24n ≡ 1 mod 5a7b11c implies p(n) ≡ 0 mod 5a7b
b
2
c+111c . . . . . . . . . . . . . . . . 75

7 Modular Equations and Singular Values 76
7.1 Modular equations for j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.2 Modular equations for the Weber functions . . . . . . . . . . . . . . . . . . . . . . . . 77
7.3 Quadratic Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.4 Singular Values of the j Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.5 Singular Values of the Weber Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.6 The Class Number One Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.7 Singular Values of the η Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8 Hypergeometric Functions 81
8.1 Basic Properties of the 2F1(x) and 3F2(x) Series . . . . . . . . . . . . . . . . . . . . . 81
8.2 Jacobi’s Inversion Formula and Generalizations . . . . . . . . . . . . . . . . . . . . . 81
8.3 Solution of the General Quintic by Modular Functions . . . . . . . . . . . . . . . . . 81

9 Mock Modular Forms 84

0.1 Notation

Symbol Meaning
q e2πiτ

qa e2πiaτ (not (e2πiτ )a)
qaz e2πiaz

e(z) exp(2πiz)
ζab root of unity e(a/b)

log z the logarithm with −π < Im log z ≤ π
ab exp b log a

(x; q)n
∏n−1

k=0(1− xqk)
(x; q)∞

∏∞
k=0(1− xqk), for |q| < 1

℘(z|ω1, ω2) Weierstrass ℘ function for the lattice ω1Z + ω2Z
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ζ(z|ω1, ω2) Weierstrass ζ function
σ(z|ω1, ω2) Weierstrass σ function

℘(z|τ) ℘(z|τ, 1)
η(τ) Dedekind’s η function q1/24(q; q)∞
j(τ) E4(τ)3η(τ)−24

γ2(τ) j1/3 = E4(τ)η(τ)−8

γ3(τ) (j − 1728)1/2 = E6(τ)η(τ)−12

Θ[~v](z|τ) general elliptic Θ function with characteristic ~v
Θi(z|τ) Jacobi’s four Θ functions with half-integer characteristics

Θi(z) Θi(z|τ)
Θi(τ) Θi(0|τ)
Γ(N) {M ∈ SL2(Z) |M ≡ ( 1 0

0 1 ) mod N}
Γ1(N) {M ∈ SL2(Z) |M ≡ ( 1 ∗

0 1 ) mod N}
Γ1(N) {M ∈ SL2(Z) |M ≡ ( 1 0

∗ 1 ) mod N}
Γ0(N) {M ∈ SL2(Z) |M ≡ ( ∗ 0

∗ ∗ ) mod N}
Γ0(N) {M ∈ SL2(Z) |M ≡ ( ∗ ∗0 ∗ ) mod N}
Γ0

0(N) {M ∈ SL2(Z) |M ≡ ( ∗ 0
0 ∗ ) mod N}

u.v dot product of two vectors
u.M product of vector u interpreted as a row vector and the matrix M
M.v product of matrix M and the vector v interpreted as a column vector
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Chapter 1

Introduction

The generating functions for many interesting combinatorial objects turn out to be modular forms.

1.1 Partitions and the η function

We have

1

(q; q)∞
= (1 + q + q2 + q3 + · · · )(1 + q2 + q4 + q6 + · · · )(1 + q3 + q6 + q9 + · · · ) · · ·

=
∞∑
n=0

p(n)qn,

where p(n) is the number of partitions of n. We have the properties

• p(5n+ 4) ≡ 0 mod 5

• p(7n+ 5) ≡ 0 mod 7

• p(11n+ 6) ≡ 0 mod 11

• p(59413n+ 111247) ≡ 0 mod 13 (see [2])

The three primes 5, 7, 11 are unique in this way. Similar congruences hold at powers of these primes.

1.2 Sums of squares and the θ function

Set
θ(τ) =

∑
n∈Z

qn
2

.

Then, the generating function for #{(x1, . . . , xk)|n = x2
1 + · · · + x2

k}, which is the number of repre-
sentations of n by the sum of k squares, is θ(τ)k. If χ4 is the non-trivial character modulo 4 and 4|c
and ad− bc = 1, will we see that θ satisfies the weight 1/2 relation

θ

(
aτ + b

cτ + d

)
=
( c
d

)
χ4(d)−1/2

√
cτ + dθ(τ),

and characterize all functions that satisfy even powers of this functional equation. This leads to and
easy proof of

{(x, y) ∈ Z2|n = x2 + y2} = 4
∑
d|n

χ4(d).
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Similar formulas exists for other θ functions.

{(x, y) ∈ Z2|n = x2 + xy + y2} = 6
∑
d|n

χ3(d).

1.3 Ramanujan’s τ Function

Define τ(n) by

η(τ)24 = q(q; q)24
∞ =:

∞∑
n=1

τ(n)qn.

The following properties were observed by Ramanujan.

• τ(mn) = τ(m)τ(n) for (m,n) = 1

• τ(pk+1) = τ(pk)τ(p)− p11τ(pk−1)

• τ(p) ≤ 2p11/2

• τ(n) ≡ σ11(n) mod 691

The weight 12 relation is satisfied by η(τ)24 is

η

(
aτ + b

cτ + d

)24

= (cτ + d)12η(τ)24.

The first two are equivalent to the Euler product

f(s) =
∞∑
n=1

τ(n)

ns
=
∏
p

1

1− τ(p)p−s + p11−2s
,

and the weight 12 transformation formula gives the reflection formula

f(s)Γ(s)

(2π)s
=
f(12− s)Γ(12− s)

(2π)12−s .

1.4 Mock Modular Forms

By considering the Durfee square, we have

1

(q; q)∞
=
∞∑
n=0

qn
2

(q; q)2
n

,

which is essentially a (weak) modular form of weight −1/2. The function

f(τ) =
∞∑
n=0

qn
2

(−q; q)2
n

turns out to not be modular, but can be made modular by adding some non-holomorphic function to
it. Set

F (z) = q−1
z f(24z) +

√
−8

∫ i∞

−z̄

∑
n∈Z χ12(n)nqn

2√
−i(τ + z)

dτ .

If ad− bc = 1 and 144|c, we have

F

(
aτ + b

cτ + d

)
=

(
12c

d

)
χ4(d)−1/2

√
cτ + dF (τ).
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1.5 Special Values of the j Function

Let K = Q(
√
−d) be an imaginary quadratic field and let Z + Zτ be its ring of integers. Then,

j(τ) is an algebraic integer of degree h(−d) over Q, and K(j(τ)) is the maximal unramified Abelian
extension of K.
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Chapter 2

Elliptic Functions and Basic Modular
Forms on SL2(Z)

2.1 Theory of Elliptic Functions

Definition 2.1.1. Let ω1, ω2 ∈ C with Im(ω1/ω2) > 0. An elliptic function modulo Zω1 + Zω2 is a
meromorphic function C→ C satisfying

f(z) = f(z + ω1) = f(z + ω2).

For the order of a non-constant function at a point z0, we say ordz0(f(z)) = n if

f(z) = (z − z0)n(c+O(z − z0)), c 6= 0,

and ord f(z), the (total) order of the function f(z), is the number of poles of f counted according to
multipliticy (modulo Λ).

Proposition 2.1.2. Let f be a non-constant elliptic function modulo Λ. Then,

1.
∑

z∈C/Λ resz(f) = 0

2.
∑

z∈C/Λ ordz(f) = 0

3.
∑

z∈C/Λ z ordz(f) ∈ Λ

4. ord f ≥ 2.

Proof. Let C denote the counterclockwise traversal of the parallelogram with vertices 0, ω2, ω2+ω1, ω1.
Then, ∑

z∈C/Λ

resz(f) =
1

2πi

∫
C

f(z)dz = 0

∑
z∈C/Λ

ordz(f) =
1

2πi

∫
C

f ′(z)

f(z)
dz = 0

7



since integrals along opposite sides cancel. Next∑
z∈C/Λ

z ordz(f) =
1

2πi

∫
C

zf ′(z)

f(z)
dz

=
1

2πi

∫ ω1

0

zf ′(z)

f(z)
− (ω2 + z)f ′(ω2 + z)

f(ω2 + z)
dz

+
1

2πi

∫ ω2

0

−zf
′(z)

f(z)
+

(ω1 + z)f ′(ω1 + z)

f(ω1 + z)
dz

= −ω2 ·
1

2πi

∫ ω1

0

f ′(z)

f(z)
dz

+ ω1 ·
1

2πi

∫ ω2

0

f ′(z)

f(z)
dz

= −ω2

(
1

2πi
log f(z)

]ω1

0

)
+ ω1

(
1

2πi
log f(z)

]ω2

0

)
∈ Λ

since ω1 (and ω2) is a period of the function f(z), so the logarithm must change by an integral multiple
of 2πi. For (4), if f had order 0, then it has no poles, and is thus bounded so is constant by Liouville’s
theorem. If f had order 1, then it has a simple pole with non-zero residue, which contradicts (1).

Later will we see that part (3) of Proposition 2.1.2 has a converse, that is, we can construct an
elliptic function with any poles and zeros that satisfy (3).

2.2 The Weierstrass ℘ Function

For a lattice Λ, let Λ′ denote Λ− 0. Set

℘(z|ω1, ω2) =
1

z2
+
∑
ω∈Λ′

1

(z + ω)2
− 1

ω2
,

℘′(z|ω1, ω2) =
∑
ω∈Λ

−2

(z + ω)3
,

Gk(ω1, ω2) =
∑
ω∈Λ′

1

ωk
.

The sum for ℘(z) is arranged so that

1

(z + ω)2
− 1

ω2
= O(w−3)

which makes the sum over Λ absolutely convergent. The series for G2 is not absolutely convergent,
so this is not a proper definition of G2. Later, when defining E2, we will fix the order of summation.

Proposition 2.2.1. Set Λ = Zω1 + Zω2. Then, ℘(z|ω1, ω2) is an elliptic function of order 2 mod Λ,
and we have:

1. The power series expansion

℘(z|ω1, ω2) =
1

z2
+
∞∑
k=1

(2k + 1)G2k+2(ω1, ω2)z2k.
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2. For λ 6= 0 and integers a, b, c, d with ad− bc = 1,

℘(z|ω1, ω2) = λ2℘(λz|λω1, λω2),

℘(z|ω1, ω2) = ℘(z|aω1 + bω2, cω1 + dω2).

3. The differential equation (set g2 = 60G4(ω1, ω2), g3 = 140G6(ω1, ω2))

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3.

Proof. From the definitions, it is clear that ℘′(z) is elliptic modulo Λ and ℘(z) is an even function.
Let ω ∈ Λ. Since ℘′(z + ω) = ℘′(z), it follows that ℘(z + ω) = ℘(z) + η for some constant η. Setting
z = −ω/2 shows that η = 0. For (2), set M = ( a bc d ). Then,

℘(z|aω1 + bω2, cω1 + dω2) =
1

z2
+

∑
~n∈Z2−{0,0}

1

(z + ~n.M.(ω1, ω2)ᵀ)2
− 1

(~n.M.(ω1, ω2)ᵀ)2

=
1

z2
+

∑
~m∈Z2−{0,0}

1

(z + ~m.(ω1, ω2)ᵀ)2
− 1

(~m.(ω1, ω2)ᵀ)2

= ℘(z|ω1, ω2).

Since det(M) = 1, ~n.M ranges over all of Z2 − {0, 0} and includes each point once, the change of
variables ~m = ~n.M is justified.

For (3),

℘′(z)2 =
4

z6
− 24G4

z2
− 80G6 +O(z2)

4℘(z)3 =
4

z6
+

36G4

z2
+ 60G6 +O(z2)

60℘(z) =
60G4

z2
+O(z2).

From this it is clear that ℘′(z)2−4℘(z)3+60G4℘(z) is an entire elliptic function, hence it is a constant.
This constant is also easily seen to be −140G6.

2.3 Eisenstein Series

Due to the homogeneity property in Proposition 2.2.1, without loss of generality we can set ω1 = τ
and ω2 = 1. In this case we have

℘(z|τ, 1) = (cτ + d)−2℘

(
z

cτ + d

∣∣∣aτ + b

cτ + d
, 1

)
,

which shows that the power series coefficients satisfy

G2k

(
aτ + b

cτ + d
, 1

)
= (cτ + d)2kG2k(τ, 1), k ≥ 2.

It will be convenient to have a normalization of these functions E2k(τ) with E2k(i∞) = 1. For k ≥ 1,
set

E2k(τ) =
G2k(τ, 1)

G2k(i∞, 1)

=
1

2ζ(2k)

∞∑
m=−∞

∞∑
n=−∞

(m,n)6=(0,0)

1

(mτ + n)2k
.
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Proposition 2.3.1. The Eisenstein series E2k have the following properties.

1. For k ≥ 1, we have

E2k(τ) = 1 +
2

ζ(1− 2k)

∞∑
n=1

n2k−1qk

1− qk
.

2. For k ≥ 2, E2k(τ) is a holomorphic function H→ C satisfying

E2k

(
aτ + b

cτ + d

)
= (cτ + d)2kE2k(τ).

We cannot conclude the last property for k = 1 because the series defining G2(τ, 1) is not absolutely
convergent. It turns out that E2(τ) has a similar functional equation with a small “error” term.

Proof. Using Exercise 2.12.3,

E2k(τ) =
1

2ζ(2k)

(
∞∑
n=1

2

(n)2k
+
∞∑
m=1

∞∑
n=−∞

1

(mτ + n)2k
+

1

(−mτ + n)2k

)

= 1 +
1

ζ(2k)

∞∑
m=1

∞∑
n=−∞

1

(mτ + n)2k

= 1 +
2

ζ(1− 2k)

∞∑
m=1

∞∑
j=1

j2k−1qjm

= 1 +
2

ζ(1− 2k)

∞∑
j=1

j2k−1 qj

1− qj

2.4 Modular Discriminant ∆(τ ) and Klein’s Absolute Invari-

ant j(τ )

Let ei(τ) be the roots of the cubic polynomial in the differential equation for ℘, that is,

(℘′)2 = 4℘3 − g2℘− g3

= 4(℘− e1)(℘− e2)(℘− e3).

The discriminant of the cubic polynomial is therefore

∆(τ) : = 16(e1 − e2)2(e2 − e3)2(e3 − e1)2

= −64 (e1e2 + e1e2 + e3e1) 3 − 432e2
1e

2
2e

2
3

= g3
2 − 27g2

3,

where we have used

0 = e1 + e2 + e3,

g2 = −4 (e1e2 + e2e3 + e3e1) ,

g3 = 4e1e2e3.
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Also, set

j(τ) =
1728g2(τ)3

∆(τ)
.

This function is known as Klein’s absolute invariant, or just the j function.

Proposition 2.4.1. For ∆(τ) and j(τ) we have

1. Representation in E4 and E6 and q-series expansions:

∆(τ) =
64π12

27
(E3

4 − E2
6) = (2π)12q +O(q2),

j(τ) =
1728E3

4

E3
4 − E2

6

=
1

q
+ 744 +O(q).

2. For ad− bc = 1,

∆

(
aτ + b

cτ + d

)
= (cτ + d)12∆(τ),

j

(
aτ + b

cτ + d

)
= j(τ).

3. At τ = i∞, ∆(τ) vanishes and j(τ) blows up.

4. ∆(τ) does not vanish (equiviently, j(τ) has no poles) at any τ ∈ H.

Proof. Exercise 2.12.2.

2.5 Basic Properties of SL2(Z)

For the Eisenstein series, we were able to find the transformation formula for any a, b, c, d directly.
However, in most cases we will just prove the transformation formula for specific a, b, c, d and hope
that the result for general a, b, c, d can be obtained by iterating these special cases. Set

Γ(1) = SL2(Z),

i.e. the “modular group” or “full modular group”. A matrix in SL2(Z) acts on H via(
a b
c d

)
: τ 7→ aτ + b

cτ + d

Note that

Im

(
aτ + b

cτ + d

)
=

Im τ

|cτ + d|2
(2.5.1)

Two important elements are S and T :

S =

(
0 −1
1 0

)
: τ 7→ −1

τ
,

T =

(
1 1
0 1

)
: τ 7→ τ + 1.

Also set
F =

{
τ ∈ H | −1

2
≤ Re τ ≤ 1

2
and |τ | ≥ 1

}
.

The left and right edges with Re τ = ±1
2

are identified via T , and the left and right edges of F on
|τ | = 1 are identified via S. We will also formally include i∞ in F as well.
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Proposition 2.5.1. For Γ(1), we have

1. F is a fundamental domain for H/Γ(1) with the appropriate edges identitfied.

2. S and T generate Γ(1)/± I.

3. For any τ ∈ F the isotropy subgroup Γ(1)τ := {g ∈ Γ(1)|gτ = τ} is ±I except in the cases

• τ = i∞, Γ(1)τ := ±{T k}k∈Z
• τ = i, Γ(1)τ := ±{I, S}
• τ = e(1/3), Γ(1)τ := ±{I, ST, (ST )2}
• τ = e(1/6), Γ(1)τ := ±{I, TS, (TS)2}

Proof. Sketch of (1) and (3): Given τ ∈ H, we can apply T and S to get a point in F by repeating
the following steps. Apply T k to get τ inside −1

2
≤ Re τ ≤ 1

2
. If |τ | < 1 apply S. This must terminate

with a point in F because Im τ only increases throughout the process. Now suppose τ1, τ2 ∈ F with
Im τ2 ≥ Im τ1 are related by τ2 = (aτ1 + b)/(cτ1 + d). From (2.5.1), this means that |cτ1 + d| ≤ 1.
Since τ1 is in F this restricts c to c = 0, 1,−1.

(2). Given g ∈ Γ(1) take any τ in the interior of F . Use S and T to get gτ back into F and use
(1) to conclude that g is a product of T and S (modulo ±I).

2.6 The η function and E2

The logarithmic derivative of
η(τ) := q1/24(q; q)∞

is simply related to E2(τ).

1

2πi

d

dτ
log η(τ) =

1

2πi

d

dτ

(
2πiτ

24
+
∞∑
n=1

log(1− qn)

)

=
1

24
+ q

d

dq

∞∑
n=1

log(1− qn)

=
1

24
−
∞∑
n=1

nqn

1− qn

=
1

24
E2(τ).

Lemma 2.6.1 (Poisson Summation Formula for Cosine). Under suitable restrictions of the function
f , if

fc(y) =

∫ ∞
−∞

f(x) cos(2πxy)dx,

then
∞∑

n=−∞

fc(n) =
f(0)

2
+
∞∑
n=1

f(n).

Proposition 2.6.2. For ( a bc d ) ∈ Γ(1), we have
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1. E2 transformation:

E2 (τ + 1) = E2(τ),

τ−2E2

(
−1

τ

)
= E2(τ) +

12

2πiτ
,

(cτ + d)−2E2

(
aτ + b

cτ + d

)
= E2(τ) +

12c

2πi(cτ + d)
.

2. η transformation:

η (τ + 1) = e

(
1

24

)
η(τ),

η

(
−1

τ

)
=
√
−iτη(τ),

η

(
aτ + b

cτ + d

)
= εη

(
a b
c d

)√
−i(cτ + d)η(τ),

where εη( a bc d ) is some 24th root of unity.

Proof. The first parts of (1) and (2) are trivial, so we start with the second part of (1). In Lemma
2.6.1 set

f(x) = −24
∞∑
n=1

xe(nτx) =
−24xqx

1− qx
,

f(0) =
24

2πiτ
.

The result

fc(y) =
1

2ζ(2)

∞∑
n=1

1

(nτ + y)2
+

1

(−nτ + y)2

=
1

2ζ(2)

∑
n∈Z
n6=0

1

(nτ + y)2

is elementary, so the assertion of Lemma 2.6.1 gives

1

2ζ(2)

∞∑
m=−∞

∞∑
n=−∞
n6=0

1

(nτ +m)2
=

12

2πiτ
− 24

∞∑
n=1

nqn

1− qn
,

or,
1

2ζ(2)

(
−2ζ(2) + τ−2G2

(
−1

τ

))
=

12

2πiτ
− 1 + E2(τ),

which is the second part of (1). The second part of (2) follows from integrating the second part of (1)
and using τ = i to evaluate the constant of integration. The third parts of each follow from the first
two since S and T generate Γ(1).
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Note that the η function is non-vanishing on H so we may define a logarithm

log η(τ) :=
2πiτ

24
+
∞∑
n=1

log (1− qn) .

This also entails that we may define a logarithm of the corresponding multiplier system

log εη( a bc d ) := log η

(
aτ + b

cτ + d

)
− 1

2
log(

√
−i(cτ + d))− log η(τ).

Now we give a formula for log εη( a bc d ) in terms of Dedekind sums and a slightly simpler formula for

its exponential εη( a bc d ). For odd primes p let
(
c
p

)
be the usual Legendre symbol. Extend this to all

positive odd d by means of the prime factorization d = pe11 · · · penn via( c
d

)
=

(
c

p1

)e1
· · ·
(
c

pn

)en
.

Then, extend to negative odd d by( c
d

)
= (−1)

sign(d)−1
2

sign(c)−1
2

(
c

|d|

)
.

Note we have the generalized quadratic reciprocity and periodicity( c
d

)
= (−1)

d−1
2

c−1
2

(
d

|c|

)
, for c, d odd(

c+ d

d

)
=

{
−
(
c
d

)
, d < 0 and sign(c) 6= sign(c+ d)

+
(
c
d

)
, otherwise

,

(
d

c+ 2d

)
=

{
−
(
d
c

)
, d ≡ 2, 3 mod 4

+
(
d
c

)
, d ≡ 0, 1 mod 4

,

which are useful in evaluating the Jacobi symbol.

Proposition 2.6.3. For c > 0, the multiplier system of η(τ) satisfies

εη

(
a b
c d

)
=

{(
d
c

)
ζ

3(1−c)+bd(1−c2)+c(a+d)
24 , c odd(

c
|d|

)
ζ

3d+ac(1−d2)+d(b−c)
24 , d odd

,

log εη

(
a b
c d

)
= 2πi

(
a+ d

24c
+
S(−d, c)

2

)
,

where S is the Dedekind sum S(h, k) =
∑k−1

r=1
r
k
B̄1

(
hr
k

)
and B̄1(x) is the periodic Bernoulli polynomial

B̄1(x) =
∞∑
n=1

−sin(2πnx)

πn
= FracPart(x)− 1

2
.

Proof. The first formula can be found in [8, pg. 51]. The second formula can be found in [1, sec. 3.4].
The first formula can also be deduced directly from the main result of Section 2.11.
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2.7 Recursions for the Eisenstein Series

The main result of this section is that the Eisenstein series E8, E10, . . . can be expressed as polynomials
in just E4 and E6. In the next chapter we will see that this is no accident and that the representation
is unique.

Proposition 2.7.1. For n ≥ 0

E2n+8(τ) =
∑

0≤k,l≤n
k+l=n

6(2k + 3)(2l + 3)ζ(2k + 4)ζ(2l + 4)

(n+ 1)(2n+ 7)(2n+ 9)ζ(2n+ 8)
E2k+4(τ)E2l+4(τ).

Proof. We have

℘′′(z) =
6

z4
+ 6G4 + 60G6z

2 + 210G8z
4 + 504G10z

6 +O(z8),

6℘(z)2 =
6

z4
+ 36G4 + 60G6z

2 +
(
54G2

4 + 84G8

)
z4 + (180G4G6 + 108G10) z6 +O(z8),

so ℘′′(z)− 6℘(z)2 must be a constant. The assertion follows by equating the coefficients of z4, z6, . . .
to zero in the difference ℘′′(z)− 6℘(z)2. Recall that E2k = 1

2ζ(2k)
G2k.

2.8 Elliptic Θ Functions

Besides the Eisenstein series, there are other ways of constructing modular forms. The main ingredient
is the Poisson summation formula applied to the Gaussian distribution. For arbitrary α, β ∈ R, define
the Θ function with characteristics α, β as

Θ

[
α
β

]
(z|τ) =

∑
n∈Z

e
(
(z + β) (n+ α) + τ (n+ α)2 /2

)
The variable z may take any value in C, but τ is constrained to H, where the sum absolutely conver-
gent. Jacobi’s four Θ functions are then

Θ1(z|τ) = Θ

[
1/2
1/2

]
(z|τ) = −2 sin(πz)q1/8 + 2 sin(3πz)q9/8 +O(q17/8),

Θ2(z|τ) = Θ

[
1/2
0/2

]
(z|τ) = 2 cos(πz)q1/8 + 2 cos(3πz)q9/8 +O(q17/8),

Θ3(z|τ) = Θ

[
0/2
0/2

]
(z|τ) = 1 + 2 cos(2πz)q1/2 + 2 cos(4πz)q2 +O(q5/2),

Θ4(z|τ) = Θ

[
0/2
1/2

]
(z|τ) = 1− 2 cos(2πz)q1/2 + 2 cos(4πz)q2 +O(q5/2).

Proposition 2.8.1. For integers A and B, we have

1. Quasi-periodicity relation:

Θ

[
α
β

]
(z + Aτ +B|τ) = e

(
Bα− Aβ − Az − A2τ

2

)
Θ

[
α
β

]
(z|τ).
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2. Shift of characteristics:

Θ

[
α + A
β +B

]
(z|τ) = e(αB)Θ

[
α
β

]
(z|τ)

Proof. For (1), let
sn(z) = e

(
(z + β) (n+ α) + τ (n+ α)2 /2

)
.

We have

Θ

[
α
β

]
(z + Aτ +B|τ) =

∑
n∈Z

sn(z + Aτ +B)

= e

(
−AB − Aβ − Az − A2τ

2

)∑
n∈Z

sn+A(z +B)

= e

(
−Aβ − Az − A2τ

2

)∑
n∈Z

sn(z +B)

= e

(
−Aβ − Az − A2τ

2

)
e(Bα +Bn)

∑
n∈Z

sn(z)

= e

(
Bα− Aβ − Az − A2τ

2

)
Θ

[
α
β

]
(z|τ).

(2) says that Θ doesn’t change much when the characteristics are changed by integers and follows by

shifting n→ n− A in the series definition of Θ

[
α + A
β +B

]
(z|τ).

Lemma 2.8.2 (Poisson Summation Formula). Under suitable restrictions of the function f , if

f̂(y) =

∫ ∞
−∞

f(x) exp(−2πxy)dy,

then
∞∑

n=−∞

f̂(n) =
∞∑

n=−∞

f(n).

Proposition 2.8.3. For ( a bc d ) ∈ Γ(1), we have

1. Transformation under T :

Θ1(z|τ + 1) =
√
iΘ1(z|τ),

Θ2(z|τ + 1) =
√
iΘ2(z|τ),

Θ3(z|τ + 1) = Θ4(z|τ),

Θ4(z|τ + 1) = Θ3(z|τ).

2. Transformation under S:

Θ1

(
z

τ

∣∣∣− 1

τ

)
= −i

√
−iτe

(
z2

2τ

)
Θ1(z|τ),

Θ2

(
z

τ

∣∣∣− 1

τ

)
=
√
−iτe

(
z2

2τ

)
Θ4(z|τ),

Θ3

(
z

τ

∣∣∣− 1

τ

)
=
√
−iτe

(
z2

2τ

)
Θ3(z|τ),

Θ4

(
z

τ

∣∣∣− 1

τ

)
=
√
−iτe

(
z2

2τ

)
Θ2(z|τ).
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3. General transformation for Θ1:

Θ1

(
z

cτ + d

∣∣∣aτ + b

cτ + d

)
= εΘ1

√
−i(cτ + d)e

(
cz2

2(cτ + d)

)
Θ1(z|τ)

where εΘ1 (( a bc d )) is some 8th root of unity.

4. General transformation for arbitrary characteristics:

Θ

[
1
2

+ α
1
2

+ β

](
z

cτ + d

∣∣∣aτ + b

cτ + d

)
= εΘ1

√
−i(cτ + d)e

(
cz2

2(cτ + d)

)
Θ

[
1
2

+ aα + cβ
1
2

+ bα + dβ

]
(z|τ)

×e
(
abα2

2
+ bcαβ +

cdβ2

2

)
e

(
(a− 1)α + cβ

2

)
Proof. The transformations in (1) are straightforward, so we concentrate on (2), where the proof for
Θ3 will give the idea of the proof of the others. In Lemma 2.8.2 set

f(x) = e
(
zx+ τx2/2

)
It is easy to compute

f̂(y) =
e
(
zy
τ
− y2

2τ

)
√
−iτe

(
z2

2τ

) ,

so the transformation for Θ3 follows. (3) follows by iterating (1) and (2).
The assertion (4) is equivalent to (3) since the Θ function with an arbitrary characteristic is no

more general than Θ1(z|τ). We can write Θ1 as a shift of the Θ function with general characteristics
as

Θ1(z|τ) = e

(
α(ατ − 2z − 1)

2

)
Θ

[
1
2

+ α
1
2

+ β

]
(z − ατ − β|τ)

and then transform part (3) of Proposition 2.8.3 . The details are messy but straightforward.

Proposition 2.8.4. We have

1. Θ1(z) is an odd function of z

2. The zero set of Θ1(z) is exactly Z + Zτ

3. Jacobi Triple Product:

Θ1(z|τ) = −iq−1/2
z q1/8(qz; q)∞(q/qz; q)∞(q; q)∞.

4. As z → 0
Θ1(z|τ) = −2πη(τ)3z +O(z3).

5. εΘ1

(
a b
c d

)
= −iεη

((
a b
c d

))3

.

Proof. (1) follows by replacing n→ −1− n in the series definition of Θ1.

Θ1(z|τ) =
∑
n∈Z

q
1
2

(n+ 1
2

)2

i(−1)ne

(
z

(
n+

1

2

))
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For (2), we integrate around a fundamental parallelogram to get the number of zeros of Θ1 modulo
the lattice as

1

2πi

(∫ w+1

w

+

∫ w+1+τ

w+1

+

∫ w+τ

w+1+τ

+

∫ w

w+τ

)
d log Θ1(z).

By Proposition 2.8.1, we have

d log Θ1(z + 1) = d log Θ1(z)

d log Θ1(z + τ) = d log Θ1(z)− 2πidz

This first equation says that the second and fourth integrals cancel completely. This second equation
says that the first and third integrals combine to give a total of

1

2πi

∫ w+1

w

2πidz = 1

zero in a fundamental parallelogram.
(3) is a well-known identity, and (4) follows from rewriting (3) as

Θ1(z|τ)

i(q
1/2
z − q−1/2

z )
= q1/8(qqz; q)∞(q/qz; q)∞(q; q)∞,

and letting z → 0.
(5) follows from differentiating part (3) of Proposition 2.8.3 and substituting part (4) here.

Proposition 2.8.5. We have

1. Relation between ℘(z) and Θ1(z):

℘(z|τ) = − ∂2

∂z2
log Θ1(z|τ)− π2

3
E2(τ).

2. If p1 + · · ·+ pr = q1 + · · ·+ qr, then

Θ1(z − q1|τ) · · ·Θ1(z − qr|τ)

Θ1(z − p1|τ) · · ·Θ1(z − pr|τ)

is an elliptic function modulo Z + Zτ with poles p1, . . . , pr and zeros q1, . . . , qr.

3. Factorization of ℘(z1)− ℘(z2):

℘(z1)− ℘(z2) = (2πi)2η(τ)6 Θ1(z1 − z2)Θ1(z1 + z2)

Θ1(z1)2Θ1(z2)2
.

Proof. From Propositions 2.8.1 and 2.8.4, we see that

℘(z|τ) +
∂2

∂z2
log Θ1(z, τ)

is an entire elliptic function, hence it is some constant C. In order to evaluate this constant we need
to get the next coefficient in the expansion of Θ1(z), i.e.

Θ1(z) = −2πη(τ)3(z +
C

2
z3 +O(z5)).
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To this end, note that

∂3

∂z3
Θ1(z|τ) = (2πi)3

∑
n∈Z

(
n+

1

2

)3

e

((
z +

1

2

)(
n+

1

2

)
+
τ

2

(
n+

1

2

)2
)

= 4πi
∂2

∂τ∂z
Θ1(z|τ).

Therefore,

−2πη(τ)3C

2
· 6 =

∂3

∂z3
Θ1(z|τ)

∣∣∣
z=0

= 4πi
∂2

∂τ∂z
Θ1(z|τ)

∣∣∣
z=0

= −8π2i
∂

∂τ
η(τ)3

= 2π3η(τ)3E2(τ),

and so C = −π2

3
E2(τ).

(2) Follows immediately from Proposition 2.8.1, which says that

Θ1((z + 1)− a|τ) = −Θ1(z − a|τ),

Θ1((z + τ)− a|τ) = −e(a− z − τ/2)Θ1(z − a|τ).

As long as e(q1 + · · · + qr − p1 − · · · − pr) = 1, the displayed quotient will be an elliptic function
modulo Z + Zτ .

For (3), note that there is a constant A, depending only on τ , such that

℘(z1)− ℘(z2) = A
Θ1(z1 − z2)Θ1(z1 + z2)

Θ1(z1)2Θ1(z2)2
,

since both sides have the same poles and zeros as functions of either z1 or z2. To evaluate this constant,
multiply both sides by z2

1 and let z1 → 0. This gives

1 = A
Θ1(−z2)Θ1(z2)

Θ1(z2)2
lim
z1→0

z2
1

Θ1(z1)2

= −A lim
z1→0

z2
1

Θ1(z1)2

= −A(−2πη(τ)3)−2.

2.9 Γ(2) and the Asymptotic of Θ Near the Cusps

According to Proposition 2.8.3, we have a surjective homomorphism Γ(1) → S3, where S3 the the
group of permutations on the Θ functions Θ2,Θ3,Θ4. One might wonder what the kernel and stabilizer
of, say, Θ3 is, that is, what the groups

G1 =

{(
a b
c d

)
∈ Γ(1) | Θi

(
0
∣∣∣aτ + b

cτ + d

)8

= (cτ + d)4Θi(0|τ)8 for all i ∈ {2, 3, 4}

}
,

G2 =

{(
a b
c d

)
∈ Γ(1) | Θ3

(
0
∣∣∣aτ + b

cτ + d

)8

= (cτ + d)4Θ3(0|τ)8

}
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are. To answer this question we can apply part (4) of Proposition 2.8.3 to see that the kernel of the
homomorphism Γ(1)→ S3 consists of those ( a bc d ) ∈ Γ(1) for which

aα + cβ = α mod 1,

bα + dβ = β mod 1,

for all half-integers α and β. Clearly this is the group

G1 = Γ(2) :=

{(
a b
c d

)
∈ Γ(1) |

(
a b
c d

)
≡
(

1 0
0 1

)
mod 2

}
.

By the first isomorphism theorem, we have

Γ(1)/Γ(2) ' S3 = {Γ(2), (ST )Γ(2), (ST )2Γ(2), (S)Γ(2), (T )Γ(2), (TST )Γ(2)}.

The following groups between Γ(1) and Γ(2) have important names:

Γ0(2) = {Γ(2), (T )Γ(2)}

=

{(
a b
c d

)
∈ Γ(1) | c ≡ 0 mod 2

}
,

Γϑ = {Γ(2), (S)Γ(2)}

=

{(
a b
c d

)
∈ Γ(1) | ab ≡ cd ≡ 0 mod 2

}
.

Note that G2 = Γϑ, which is known as the theta subgroup of Γ(1) while Γ0(2) is know as the principle
Hecke subgroup of level 2.

The main goal of this section is to establish asymptotic formulas for the Θ functions near the
cusps in order to obtain explicit formulas for the roots of unity involved in the multiplier systems for
these functions. When the function vanishes at a cusp, it seems that we need to use the modular
inverse symbol

x−1
mod y = z whenever there is a z such that zx ≡ 1 mod y and 0 ≤ z/y < 1.

Note that we always have a reciprocity property given by

x−1
mod y

y
+
y−1

mod x

x
= 1 +

1

xy
.

When it is clear, we will set Θ(τ) = Θ(0|τ).

Proposition 2.9.1. Let c and d be any integers with (c, d) = 1 and c 6= 0. Then, as t→ 0+,

1. Relation to exponential sums

√
ictΘ3

(
it− d

c

)
∼ 1√
−ic

|c|∑
n=1

ζ−dn
2

2c , cd even

e
π

4c2t

2

√
ictΘ3

(
it− d

c

)
∼ 1√
−4ic

|c|∑
n=1

(
ζn2c + ζ−n2c

)
ζ−dn

2

2c , cd odd
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2. Θ3:
√
ictΘ3

(
it− d

c

)
∼
( c
d

)
ζ1−d

8 , c even d odd

e
π

4c2t

2

√
ictΘ3

(
it− d

c

)
∼
(
d

|c|

)
ζc8ζ

(8d)−1
mod c

c , c odd d odd

√
ictΘ3

(
it− d

c

)
∼
(
d

|c|

)
ζc8 , c odd d even

3. Θ4:
√
ictΘ4

(
it− d

c

)
∼
( c
d

)
ζ1+2c−d−cd

8 , c even d odd

√
ictΘ4

(
it− d

c

)
∼
(
d

|c|

)
ζc8 , c odd d odd

e
π

4c2t

2

√
ictΘ4

(
it− d

c

)
∼
(
d

|c|

)
ζc8ζ

(8d)−1
mod c

c , c odd d even

4. Θ2:
e

π
4c2t

2

√
ictΘ2

(
it− d

c

)
∼
( c
d

)
ζ3d−3

8 ζ
d−1

mod 8c
8c , c even d odd

√
ictΘ2

(
it− d

c

)
∼
(
d

|c|

)
ζcd+3c+2d+2

8 , c odd d odd

√
ictΘ2

(
it− d

c

)
∼
(
d

|c|

)
ζcd+c−2d

8 , c odd d even

Proof. To avoid complications, the factor
√
−ict is handled like

√
|c|t. This results in a ζ

sgn(c)
8 canceling

in the formulas, since √
ict =

√
|c|tζsgn(c)

8 .

For (1), if cd is even then the function of n given by e
(
−dn2

2c

)
has c as a period. Therefore,

Θ3

(
it− d

c

)
=
∑
n∈Z

e

(
−dn2

2c

)
e−πn

2t

=

|c|∑
n=1

e

(
−dn2

2c

) ∑
m∈Z

m≡n mod c

e−πm
2t

=

|c|∑
n=1

e

(
−dn2

2c

)
e−πc

2tΘ3

(
icnt|ic2t

)
=

|c|∑
n=1

e

(
−dn2

2c

)
1

|c|
√
t
Θ3

(
n

c

∣∣∣ i
c2t

)

∼ 1√
|c|

|c|∑
n=1

ζ−dn
2

2c × 1√
|c|t

.

If cd is odd, then Θ3 vanishes at this cusp, so the evaluation is slightly more difficult. In this case
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e
(
dn2

2c

)
changes sign when n is incremented by c, so temporarily setting q = e−

π
4c2t ,

Θ3

(
it− d

c

)
=

|c|∑
n=1

e

(
dn2

2c

) ∑
m∈Z

m≡n mod 2|c|

e−πm
2t − e−π(m+c)2t

=

|c|∑
n=1

e

(
dn2

2c

) Θ3

(
n
2c

∣∣∣ i
4c2t

)
−Θ3

(
c+n
2c

∣∣∣ i
4c2t

)
2|c|
√
t

=

|c|∑
n=1

e

(
−dn2

2c

) (1 + 2q cos
(
πn
c

)
+ · · ·

)
−
(

1 + 2q cos
(
π(n+c)

c

)
+ · · ·

)
2|c|
√
t

∼ 1√
|c|

|c|∑
n=1

e

(
−dn2

2c

)
cos

(
2nπ

c

)
× 2q√

|c|t
.

For (2), let T (d, c) denote limt→0

√
|c|tΘ3

(
it− d

c

)
. By (1),

T (d, c) =
1√
|c|

|c|∑
n=1

ζ−dn
2

2c =

{(
d
|c|

)
ζ
c−sgn(c)
8 , c odd d even(

c
d

)
ζ

1−d−sgn(c)
8 , c even d odd

,

where we have used the classical evaluation of quadratic Gauss sums (for any integers p and q with
q > 0 and (p, q) = 1

1
√
q

q∑
n=1

ζpn
2

q =


(
p
q

)
1+i
1+iq

, q odd(
q
p

)
1+ip

1+i
1+iq

1−i , p odd

) in the case c odd d even for in this cases it becomes a sum over |c|th roots of unity. The c odd
and d even case follows from Θ3(−1/τ) =

√
−iτΘ3(τ). The second part of (2) can be obtained by

completing the square in the sum
∑|c|

n=1

(
ζn2c + ζ−n2c

)
ζ−dn

2

2c , but here will use the easy identity

Θ3(τ + 1) = 2Θ3(4τ)−Θ3(τ).

to give an alternate derivation. First, we need to obtain the next term in the expansion of Θ3

(
it− d

c

)
for c odd and d even. In this cases find integers a and b so that ad − bc = 1 and a is even. The
transformation formula for Θ3 is

Θ3(τ) =
ε√

−i(cτ + d)
Θ3

(
aτ + b

cτ + d

)
,

where ε is some 8th root of unity. Setting τ = it− d/c in this formula produces

Θ3

(
−d
c

+ it

)
=

ε√
ct

Θ3

(
a

c
+

i

c2t

)
=

ε√
ct

(
1 + 2e

( a
2c

)
e−

π
c2t + · · ·

)
=
T (d, c)√
|c|t

(
1 + 2e

(
(2d)−1

mod c

c

)
e−

π
c2t + · · ·

)
.
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Now let c and d both be odd. Setting τ = −c−d
c

+ it in the identity produces

Θ3

(
−d
c

+ it

)
= 2Θ3

(
−4c− 4d

c
+ 4it

)
−Θ3

(
−c− d
c

+ it

)
= 2

T (4d+ 4c, c)√
4|c|t

(
1 + 2e

(
(8d+ 8c)−1

mod c

c

)
e−

π
4c2t + · · ·

)
− T (d+ c, c)√

|c|t

(
1 + 2e

(
(2d+ 2c)−1

mod c

c

)
e−

π
c2t + · · ·

)
=
T (d+ c, c)√

|c|t
e

(
(8d)−1

mod c

c

)
2e−

π
4c2t + · · · ,

which gives the second part of (2). Parts (3) and (4) follow from the identities

Θ4(τ + 1) = Θ3(τ),

Θ2(−1/τ) =
√
−iτΘ4(τ).

Care has been taken to ensure that the formulas are valid for negative c as well.

2.10 Addition Formulas

Theorem 2.10.1 (Weierstrass). A meromorphic function f : C→ C possesses an algebraic addition
theorem, that is, a non-trivial relation of the form

P (f(x), f(y), f(x+ y)) = 0,

for some polynomial P with coefficients independent of x and y if and only if f(z) is one of the three
possibilities:

1. rational function of z

2. rational function of e(z/ω) for some period ω

3. rational function of ℘(z|ω1, ω2) and ℘′(z|ω1, ω2) for some periods ω1, ω2

The third part of this theorem is usually stated with “an elliptic function of z modulo Zω1 +Zω2”.
These are equivalent because any elliptic function is a rational function of ℘(z) and ℘′(z). First
suppose that f(z) is an even elliptic function with zeros ±qn, ...,±qn and poles ±pn, ...,±qn. Then,
there must be a constant c such that

f(z) = c

n∏
i=1

℘(z)− ℘(qi)

℘(z)− ℘(pi)
,

and so f(z) is a rational function of ℘(z). Next, for an elliptic function that is not necessarily even,
use

f(z) =
f(z) + f(−z)

2
+ ℘′(z) · f(z)− f(−z)

2℘′(z)
,

where f(z)+f(−z)
2

and f(z)−f(−z)
2℘′(z)

are even elliptic functions.

Proposition 2.10.2.
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1. The map z → (℘(z|ω1, ω2), ℘′(z|ω1, ω2)) defines a bijection between the points of C/(ω1Z+ω2Z)
and the points on the curve y2 = 4x3 − g2x− g3 (with ∞ included).

2. For any g2, g3 ∈ C such that g3
2 − 27g2 6= 0, the system

g2 = 40G4(ω1, ω2)

g3 = 140G6(ω1, ω2)

is solvable for some periods ω1, ω2.

3. If u+v+w ≡ 0 mod ω1Z+ω2Z, then (℘(u), ℘′(u)), (℘(v), ℘′(v)), and (℘(w), ℘′(w)) are colinear,
that is

det

 1 ℘(u) ℘′(u)
1 ℘(v) ℘′(v)
1 ℘(w) ℘′(w)

 = 0

4. Explicit addition formula for ℘(z):

℘(u+ v) = ℘(u) + ℘(v) +
1

4

(
℘′(u)− ℘′(v)

℘(u)− ℘(v)

)2

.

Proof. (4) is left as an exercise. (2) will be established later when it is shown that j(τ) is a univalent
function H/Γ(1)→ C.

For (1), suppose that (℘(z1), ℘′(z1)) = (℘(z2), ℘′(z2)). Since ℘(z) is an elliptic function of order
2, we must have z1 + z2 ≡ 0. This implies that ℘′(z1) = ℘′(−z2) = −℘′(z2) = −℘′(z1) which means
that ℘′(z1) = 0 and ℘′(z2) = 0. If it were true that z1 6≡ z2 this would mean that the function
f(z) = ℘(z) − ℘(z1) would have at least double zeros at the two distinct locations z1 and z2. This
contradicts the fact the f(z) has order 2.

For (3), determine the line l(x, y) = 0 through the points (℘(u), ℘′(u)) and (℘(v), ℘′(v)). Assume
that this line is not vertical, so l(x, y) = A+Bx+y for some constants A and B. The elliptic function
l(℘(z), ℘′(z)) has order 3 in this case so its zeros u, v and w1, say, satisfy u+ v+w1 ≡ 0. This implies
that w1 ≡ w, so the assertion follows. If line is vertical, then it follows that u+ v ≡ 0, and so w ≡ 0,
which is consistent with the third point (℘(w), ℘′(w)) being located at ∞.

2.11 Γ(3) and the Asymptotic of η Near the Cusps

The η function vanishes at every cusp and is modular with respect to Γ(1). It turns out that there
is quite a magical formula for the asymptotics near the cusps. We simply state this first and devote
this section to understanding this formula.

Proposition 2.11.1. Let c and d be any integers with (c, d) = 1 and c 6= 0. Then, as t→ 0+,

√
ict e

π
12c2t η

(
−d
c

+ it

)
∼ 1√
−3ic

|c|∑
n=0

(−1)n
(
ζ
−2(6n−1)
24c + ζ

2(6n−1)
24c

)
ζ
−d(6n−1)2

24c

= ζ
d+(c2−1)(d2−1)d−1

mod c
24c ×

{(
c
d

)
ζ15+9d+cd

24 , d odd(
d
|c|

)
ζ3c−2cd

24 , c odd

24



Proof. Let us first check that the final expression on the right hand side is well-defined. This entails
showing that (c2 − 1)(d2 − 1) ≡ 0 mod 24, which is indeed true for relatively prime integers c and d.
As a consequence of the Jacobi’s triple product identity, we have the representation

η(τ) = q1/24(q, q3)∞(q2, q3)∞(q3, q3)∞ =
∑
m∈Z

(−1)me

(
(6m− 1)2τ

24

)
,

hence the representation as a sum over roots of unity follows along the same lines as the calculations
in Proposition 2.9.1. The explicit evaluation will be deduced below.

Since the exponential sum in Proposition 2.11.1 seems difficult to evaluate directly, we will use an
indirect approach based properties of the modular group. Recall that we have the subgroup of Γ(1)
given by

Γ(2) = {M ∈ Γ(1)|M ≡ I mod 2}.

We had Γ(1)/Γ(2) ' S3 with the elements of the quotient realized as the six permutations of the
three functions Θ2(τ)8, Θ3(τ)8 and Θ4(τ)8. We can also define

Γ(3) = {M ∈ Γ(1)|M ≡ I mod 3}.

The full modular group Γ(1) acts on the four functions

f∞(τ) = 312η(3τ)24, f0(τ) = η
(τ

3

)24

, f1(τ) = η

(
τ + 1

3

)24

, f2(τ) = η

(
τ + 2

3

)24

by permuting them according to A4 since the two permutations

f∞(−1/τ) = τ 12f0(τ), f∞(τ + 1)= f∞(τ),

f0(−1/τ) = τ 12f∞(τ), f0(τ + 1) = f1(τ),

f1(−1/τ) = τ 12f2(τ), f1(τ + 1) = f2(τ),

f2(−1/τ) = τ 12f1(τ), f2(τ + 1) = f0(τ)

generate all of A4. It is not hard to show that the kernel of this homomorphism Γ(1)→ A4 is exactly
±Γ(3). Suppose f∞ and f0 are fixed by some ( a bc d ) ∈ Γ(1). Thse two conditions are equivalent to(

3 0
0 1

)(
a b
c d

)(
3 0
0 1

)−1

=

(
a 3b
c/3 d

)
∈ Γ(1),(

1 0
0 3

)(
a b
c d

)(
1 0
0 3

)−1

=

(
a b/3
3c d

)
∈ Γ(1).

Therefore, we must have b ≡ c ≡ 0 mod 3, which is exactly the defining congruences for ±Γ(3). Now,
any permutation in A4 that fixes f∞ and f0 necessarily fixes f1 and f2, so we have shown that the
kernel is exactly ±Γ(3).

Since S3 has a normal subgroup whose factor group is Z2, there is a group Γ2 with Γ(1)/Γ2 ' Z2.
Similarly, A4 has a normal subgroup (Z2 × Z2) whose factor group is Z3, so there is a group Γ3 with
Γ(1)/Γ3 ' Z3. In summary,

Γ(2) E Γ2 E Γ(1) with Γ(1)/Γ2 ' Z2,

±Γ(3) E Γ3 E Γ(1) with Γ(1)/Γ3 ' Z3.
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For a given subgroup Γ of SL2(Z), let Γ̄ denote Γ/± I, that is, the equivalent classes of matrices
up to sign. Sometimes, if we are very careful, we will denote these elements with a bar over them.
Note that

Γ̄(1)/Γ̄(2) ' S3, Γ̄(1)/Γ̄2' Z2,

Γ̄(1)/Γ̄(3) ' A4, Γ̄(1)/Γ̄3' Z3.

Also, let Gab denote the Abelianization of G, the quotient of G and its commutator subgroup. We
have the following universal property of the Abelianization: if φ : G→ im(φ) is a homomorphism to
an Abelian group, then there is a unique homomorphism h : Gab → im(φ) so that the diagram

G Gab

im(φ)

φ

π

h

commutes. Since Γ̄(1) is generated by S̄ and S̄T̄ and these elements have orders two and three,
respectively, it follows that

Γ̄(1)ab ⊂ {S̄i(S̄T̄ )j | i ∈ {0, 1}, j ∈ {0, 1, 2}} ' Z6.

Now define π : Γ̄(1)→ Z6 by

π

((
a b
c d

))
=

η
(
aτ+b
cτ+d

)4

(cτ + d)2η(τ)4
,

where we have identified Z6 with the sixth roots of unity. Since π(S̄) = −1 and π(T̄ ) = ζ6, we see
that π is a surjection, and so

Γ̄(1)ab ' Z6.

Proposition 2.11.2. The function η(τ)4 is modular in weight 2 with respect to Γ(2) ∩ Γ(3), i.e.

η

(
aτ + b

cτ + d

)4

= (cτ + d)2η (τ)4 , for

(
a b
c d

)
∈ Γ(2) ∩ Γ(3).

Proof. The natural projection map φ : Γ(1)→ Γ(1)/Γ
2 × Γ(1)/Γ

3
has image Z2 × Z3 ' Z6, which is

Abelian. By the universal property of the Abelianization, we have φ = h ◦ π, where, in this case, h

must be an isomorphism. Therefore, ker(π) = ker(φ) = Γ
2 ∩ Γ

3 ⊂ Γ(2) ∩ Γ(3).

According to Proposition 2.11.2, if we want to find the sixth root of unity ε(( a bc d )) so that

η

(
aτ + b

cτ + d

)4

= ε

((
a b
c d

))
(cτ + d)2η (τ)4 , for ( a bc d ) ∈ Γ(1),

it suffices to find a formula for ε(( a bc d )) that satsifies

η

(
aτ + b

cτ + d

)12

= ε

((
a b
c d

))3

(cτ + d)6η (τ)12 , for ( a bc d ) ∈ Γ(1),

η

(
aτ + b

cτ + d

)8

= ε

((
a b
c d

))2

(cτ + d)4η (τ)8 , for ( a bc d ) ∈ Γ(1).
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for just the finite number of elements in Γ(1)/Γ(2) for the first formula and Γ(1)/ ± Γ(3) for the
second formula. For Γ(1)/Γ(2), we have,

ε

((
1 0
0 1

))3

= 1 ε

((
0 1
1 0

))3

= −1,

ε

((
1 1
1 0

))3

= 1 ε

((
1 0
1 1

))3

= −1,

ε

((
0 1
1 1

))3

= 1 ε

((
1 1
0 1

))3

= −1.

(2.11.1)

For Γ(1)/± Γ(3), we have

ε

(
±
(

1 0
0 1

))2

= ζ0
3 ε

(
±
(

0 1
2 2

))2

= ζ1
3 ε

(
±
(

0 1
2 1

))2

= ζ2
3 ,

ε

(
±
(

0 1
2 0

))2

= ζ0
3 ε

(
±
(

1 0
2 1

))2

= ζ1
3 ε

(
±
(

1 0
1 1

))2

= ζ2
3 ,

ε

(
±
(

1 1
1 2

))2

= ζ0
3 ε

(
±
(

1 1
0 1

))2

= ζ1
3 ε

(
±
(

1 1
2 0

))2

= ζ2
3 ,

ε

(
±
(

1 2
2 2

))2

= ζ0
3 ε

(
±
(

1 2
1 0

))2

= ζ1
3 ε

(
±
(

1 2
0 1

))2

= ζ2
3 .

(2.11.2)

In order to complete these calculations, we write each matrix in SL2(Z/2Z) (resp. SL2(Z/3Z)) as
a word in S and T modulo 2 (resp. 3) and apply the homomorphism (T 7→ ζ2, S 7→ ζ2) (resp.
(T 7→ ζ3, S 7→ 1)). Noticing that 1 − c2 is congruent to 0 mod 2 (resp. 3) only when c is not
congruent to 0 mod 2 (resp. 3), we split the evaluations into the two cases c ≡ 0 mod 2 (resp. 3)
and c 6≡ 0 mod 2 (resp. 3). By inspection of (2.11.1) and (2.11.2), we see that

ε

((
a b
c d

))3

=

{
ζbd2 , c ≡ 0 mod 2

ζa+d+1
2 , c 6≡ 0 mod 2

,

ε

(
±
(
a b
c d

))2

=

{
ζbd3 , c ≡ 0 mod 3

ζ
(a+d)c
3 , c 6≡ 0 mod 3

.

Therefore, we have

ε

((
a b
c d

))3

= ζ
bd(1−c2)+(a+d+1)c
2 ,

ε

((
a b
c d

))2

= ζ
bd(1−c2)+(a+d)c
3 ,

and so,

ε

((
a b
c d

))
= ε6

((
a b
c d

))3

/ε6

((
a b
c d

))2

= ζ
bd(1−c2)+(a+d+3)c
6 .

Finally, setting τ = it− d/c in the transformation formula

η

(
aτ + b

cτ + d

)4

= ζ
bd(1−c2)+(a+d+3)c
6 (cτ + d)2η (τ)4 ,
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and keeping in mind that ad− bc = 1, we derive

(ict)2 e
π

3c2t η

(
−d
c

+ it

)4

∼ e

(
−ac

6
+

a

6c
+
bc2d

6
− bd

6
− cd

6
− c

2

)
.

In order to determine the correct fourth root, we need a formula for an odd power of the η function.
Fortunately, the relation

η(τ)3 =
1

2
Θ2(τ)Θ3(τ)Θ4(τ) (2.11.3)

is a consequence of Jacobi’s triple product identity (see Exercise 2.12.4). Let us now assume that c is
odd and apply the asymptotic for the Θ functions derived in Section 2.9. These formulas give

(ict)3/2 e
π

4c2t η

(
it− d

c

)3

∼


(
d
|c|

)
ζ

(8d)−1
mod c

c ζ5c+2d+cd+2
8 , d odd(

d
|c|

)
ζ

(8d)−1
mod c

c ζ3c−2d+cd
8 , d even

=

(
d

|c|

)
ζ

(8d)−1
mod c

c ζ
c(3−d)
8 ,

=

(
d

|c|

)
e

(
a(1− c2)

8c
− cd

8
+

3c

8

)
,

where we have cleverly combined the two cases into one that holds for all d and used the elementary
observation that

(8d)−1
mod c

c
≡ (1− c2)a

8c
mod 1

for odd c (recall that ad− bc = 1 so a = d−1
mod c). Also, this is well-defined because c2− 1 ≡ 0 mod 8.

Finally, since c2 − 1 ≡ 0 mod 8,

√
ict e

π
12c2t η

(
−d
c

+ it

)
= e

(
c− bd(c2 − 1)

8

)
(ict)2 e

π
3c2t η

(
it− d

c

)4

(ict)3/2 e
π

4c2t η
(
it− d

c

)3

∼
(
d

|c|

)
e

(
−ac

24
+

a

24c
+
bc2d

24
− bd

24
− cd

24
+
c

8

)
.

After eliminating b via ad − bc = 1 and replacing a by d−1
mod c, this becomes the assertion of the

proposition for c odd. The case d odd can be dealt with similarly, but we can also use η(−1/τ) =√
−iτη(τ), and, when relating d−1

c to c−1
d , we can use

d−1
c

c
+
c−1
d

d
≡ 1

cd
mod 1.

2.12 Exercises

Exercise 2.12.1. Prove part (4) of Proposition 2.10.2. You will have to actually work out the third
intersection point of a line with the curve y2 = 4x3 − g2x− g3.

Exercise 2.12.2. Prove all parts of Proposition 2.4.1

Exercise 2.12.3 (Lipschitz summation formula). For integers k ≥ 1, show

1

ζ(2k)

∞∑
n=−∞

1

(z + n)2k
=

2

ζ(1− 2k)

∞∑
j=1

j2k−1qjz.
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You might need the functional equation for ζ in the form

2

ζ(1− 2k)
=

(2πi)2k

(2k − 1)!

1

ζ(2k)
.

Exercise 2.12.4. Via Jacobi’s triple product identity, show that

Θ2(0|τ) = 2
η(2τ)2

η(τ)
= 2q1/8 + · · · ,

Θ3(0|τ) =
η(τ)5

η(2τ)2η(τ/2)2
= 1 + 2q1/2 + · · · ,

Θ4(0|τ) =
η(τ/2)2

η(τ)
= 1− 2q1/2 + · · · .

Exercise 2.12.5. This exercise deals with the theta subgroup

Γϑ =

{(
a b
c d

)
∈ Γ(1) | ab ≡ cd ≡ 0 mod 2

}
.

1. Show that S and T 2 generate Γϑ/ ± I. Possible hint: first show that every rational number
is Γϑ-equivalent to either 1(= 1/1) or i∞(= 1/0) and deduce a fundamental domain that has
3 = [Γ(1) : Γϑ] translates of the fundamental domain for Γ(1).

2. Deduce that the multiplier system for Θ3 satisfies

Θ3

(
0
∣∣∣aτ + b

cτ + d

)
= Θ3(0|τ)×

{(
d
c

)
e
(

1−c
8

)√
−i(cτ + d) , c odd(

c
d

)
e
(
d−1

8

)√
cτ + d , d odd

for any ( a bc d ) ∈ Γϑ. Hint: Let τ = it− d/c and use the asymptotics at the cusps and be careful
with the branches of the square root: −π/2 < Arg(

√
z) ≤ π/2 and the properties of the Jacobi

symbol.

Exercise 2.12.6. Show that for any ( a bc d ) ∈ Γ(1)

η

(
aτ + b

cτ + d

)
=
√
−i(cτ + d)η(τ)×

{(
d
c

)
ζ

3(1−c)+c(a+d)+bd(1−c2)
24 , c odd(

c
|d|

)
ζ

3d+d(b−c)+ac(1−d2)
24 , d odd

.

Exercise 2.12.7. Investigate

log |Θ3

(
it+ 1+

√
5

2

)
|

log(t)

as t→ 0+.

Exercise 2.12.8. The Weierstrass σ function for the lattice Λ = Zτ+Z is the entire function defined
as

σ(z|τ) = z
∏
ω∈Λ′

(
1− z

ω

)
e
z
ω

+ z2

2ω2 .
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The product is absolutely convergent. For ( a bc d ) ∈ Γ(1) and integers A,B with ω = Aτ +B, show that

℘(z|τ) = − ∂2

∂z2
σ(z|τ)

σ(z|τ) =
−eπ

2

6
E2(τ)z2

2πη(τ)3
Θ1(z|τ)

σ

(
z

cτ + d

∣∣∣aτ + b

cτ + d

)
= (cτ + d)−1σ(z|τ)

σ(z + ω|τ)

σ(z|τ)
= (−1)A+B+ABe

(
−(6A+ πiE2(τ)ω)(2z + ω)

12

)
Exercise 2.12.9. Use Proposition 2.7.1 to get

E8 = E2
4

E10 = E4E6
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Chapter 3

Theory of Modular Forms on SL2(Z)

3.1 Definition of a Modular Form

Define the slash operator |
( a b
c d

),k
in weight k (an integer) for a matrix ( a bc d ) with positive determinant

as

f |
( a b
c d

),k
(τ) =

(ad− bc)k/2

(cτ + d)k
f

(
aτ + b

cτ + d

)
.

One can easily check that this operation is compatible with matrix multiplication, that is,

f |M1,k|M2,k(τ) = f |M1M2,k(τ).

Here, |M1,k|M2,k means the result of applying |M1,k followed by |M2,k.
Now suppose that f(τ) has period 1 (f |T = f) so that it has a Fourier series expansion in the

form

f(τ) =
∞∑

k=−∞

akq
k. (3.1.1)

We say:

1. f(τ) is meromorphic at ∞ if only finitely many negative powers of q appear in (3.1.1).

2. f(τ) is holomorphic at ∞ if only no (strictly) negative powers of q appear in (3.1.1).

3. f(τ) is vanishes at ∞ if only (strictly) powers of q appear in (3.1.1).

Since T ∈ Γ(1), the following definition makes sense.

Definition 3.1.1. Suppose that

f |g,k(τ) = f(τ), for all g ∈ Γ(1) and almost all τ ∈ H.

Define the various spaces Ak, M !
k, Mk, Sk for any integer k as

1. Automorphic forms of weight k:

Ak(Γ(1)) = {f(τ) | f meromorphic on H and meromorphic at ∞}.

2. Weakly-modular forms of weight k:

M !
k(Γ(1)) = {f(τ) | f holomorphic on H and meromorphic at ∞}.
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3. Modular forms of weight k:

Mk(Γ(1)) = {f(τ) | f holomorphic on H and holomorhpic at ∞}.

4. Cusp forms of weight k:

Sk(Γ(1)) = {f(τ) | f holomorphic on H and vanishes at ∞}.

3.2 Valence Formula

For any τ0 ∈ H ∪ {∞}, define the order of a meromorphic function as

ordτ0(f) =

{
smallest power of (τ − τ0) in the Laurent series expansion of f at τ0 , τ0 ∈ H
smallest power of q in the q-series expansion of f , τ0 =∞

.

Proposition 3.2.1. If f ∈ Ak(Γ(1)) is not a constant, then

ord∞(f) +
1

2
ordi(f) +

1

3
orde( 1

3
)(f) +

∑
τ∈H/Γ(1)

τ 6=i,e( 1
3

)

ordτ (f) =
k

12
.

Proposition 3.2.2. If f ∈ Ak(Γ(1)) is not a constant, then

1. k is even

2. Set ζ = e(1
3
) and n = ordζ(f). Then, n ≡ −k/2 mod 3, and f has an expansion in the local

variable at ζ of the form(
τ − ζ̄
ζ − ζ̄

)k
f(τ) =

∞∑
j=0

cj

(
τ − ζ
τ − ζ̄

)n+3j

, c0 6= 0.

3. Set ζ = i and n = ordζ(f). Then, n ≡ −k/2 mod 2, and f has an expansion in the local variable
at ζ of the form (

τ − ζ̄
ζ − ζ̄

)k
f(τ) =

∞∑
j=0

cj

(
τ − ζ
τ − ζ̄

)n+2j

, c0 6= 0.

Proof. Since −I ∈ Γ(1), (1) follows.
For (2), set ζ = e(1

3
) and t = τ−ζ

τ−ζ̄ . The fact that n ≡ −k/2 mod 3 follows easily from the valence

formula. Next with g(t) defined for |t| < 1 by(
τ − ζ̄
ζ − ζ̄

)k
f(τ) = tng(t)

Note that g(t) is holomorphic at t = 0. One checks that the relation f(−1−1/τ) = τ kf(τ) is equivlant
to g(ζt) = ζk−ng(t). Since g(0) 6= 0, this provides another proof of the fact that n ≡ k mod 3. Also,
g(t) has a expansion in non-negative powers of t that are all multiples of 3 since g(ζt) = g(t).

A similar argument establishes (3).
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3.3 Dimension Formulas and Generators

Proposition 3.3.1. We have

1. Ak1 ∩ Ak2 = {0} for k1 6= k2.

2. Ak1 · Ak2 ⊂ Ak1+k2.

3. M !
0(Γ(1)) = C[j(τ)].

4. A0(Γ(1)) = C(j(τ)).

5. Sk(Γ(1)) = ∆(τ)Mk−12(Γ(1)).

6. Mk(Γ(1)) =
⊕

4a+6b=k
a,b≥0

CEa
4E

b
6. Also,

∞∑
k=−∞

dimMk(Γ(1))tk =
1

(1− t4)(1− t6)
=

1 + t4 + t6 + t8 + t10 + t14

(1− t12)2

= 1 + t4 + t6 + t8 + t10 + 2t12 + t14 + 2t16 + 2t18 + 2t20 + · · · .

Proof. (3). By subtracting powers of the j function (j = 1
q

+ · · · ), for any f ∈M !
0(Γ(1)) we can write

f(τ)− P (j(τ)) = O(q)

where P is a polynomial. The valence formula implies that f(τ)−P (j(τ)) vanishes identically because
it is a function of weight 0 without any poles and a zero at ∞.

(4). Given any f(τ) ∈ A0(Γ(1)), we can multiply it by a suitable polynoimal in j(τ) to obtain a
function in M !

0(Γ(1)). By (3), f(τ) must be a rational function of j(τ).
(5). If f(τ) ∈ Sk(Γ(1)) then f(τ)/∆(τ) ∈Mk−12(Γ(1)) since ∆(τ) has no zeros on H (Proposition

2.4.1) and a simple zero at ∞.
(6). The valence formula implies that dim(Mk(Γ(1))) = 0 for k = 2 or k < 0 (or k odd) and that

dim(M0(Γ(1))) = 1. Suppose that k is even and f(τ) = c+O(q) ∈Mk(Γ(1)). Then,

f(τ) = cEk(τ) + (E4(τ)3 − E6(τ)2)g(τ)

where g(τ) ∈ Mk−12(τ). Since we have already shown that Ek is a polynomial in E4 and E6, by
induction we obtain that f is of the form

f(τ) =
∑

4a+6b=k
a,b≥0

ca,bE
a
4E

b
6.

This representation is unique because if

0 =
∑

4a+6b=k
a,b≥0

ca,bE
a
4E

b
6

for some k and some choice of ca,b then muliplying by E
−k/4
4 shows that E2

6/E
3
4 is constant, which it

is not.

Proposition 3.3.2. The map τ 7→ j(τ) defines a bijection between H/Γ(1) and C.

Proof. The function j(τ)− c ∈ A0(Γ(1)) has exactly pole (at ∞) so has exactly one zero.
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3.4 Applications to Identities

Proposition 3.4.1.
∆(τ) = (2π)12η(τ)24.

Proof. dimS12(Γ(1)) = 1 and the first term in the q-series expansion of ∆ is given in Proposition
2.4.1.

Proposition 3.4.2. Let fi be a non-constant element of Mki(Γ(1)) for i = 1, 2, 3. Then, there is a
nontrivial algebraic relation of the form

P (f1, f2, f3) = 0,

for some polynomial P .

Proof. Consider the set
Fk =

{
fa1 f

b
2f

c
3

}
a,b,c≥0

ak1+bk2+ck3=k
.

We have (as k →∞)

|F0|+ |F1|+ · · ·+ |Fk| = |{(a, b, c) ∈ Z3
≥0 | ak1 + bk2 + ck3 ≤ k}|

∼ 1

3!

k3

k1k2k3

.

If f1, f2, f3 were algebraically independent, Fk would be a set of linearly independent elements of Mk

for any k. Therefore, |Fk| ≤ dimMk and

|F0|+ |F1|+ · · ·+ |Fk| ≤ dimM0 + dimM1 + · · ·+ dimMk

∼ 1

2!

k2

4 · 6
,

which is a contradition for large k.

One should note that Propostion 3.4.2 applies not only to Γ(1) but to any finite index subgroup
Γ of Γ(1), as later we will show that

dimMk(Γ) ∼ k

12
[Γ(1) : Γ],

where this formula is restricted to even k when −I ∈ Γ.

Proposition 3.4.3. The three Θ constants Θ2(τ),Θ3(τ),Θ4(τ) are algebraically dependent, and

Θ3(τ)4 = Θ2(τ)4 + Θ4(τ)4.

Proof. We can obtain the algebraic dependence from Propostion 3.4.2 with fi = Θ8i
2 + Θ8i

3 + Θ8i
4 . In

order to actually obtain the relation, we compute that

2E4 = Θ8
2 + Θ8

3 + Θ8
4,

2E2
4 = Θ16

2 + Θ16
3 + Θ16

4 ,

E2
4 = Θ8

2Θ8
3 + Θ8

3Θ8
4 + Θ8

4Θ8
2,

28η24 = Θ8
2Θ8

3Θ8
4,
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since M4, M8 and S12 are all one-dimensional. Therefore,

0 = Θ16
2 + Θ16

3 + Θ16
4 − 2

(
Θ8

2Θ8
3 + Θ8

4Θ8
3 + Θ8

2Θ8
4

)
=
(
Θ4

2 −Θ4
3 −Θ4

4

) (
Θ4

2 + Θ4
3 −Θ4

4

) (
Θ4

2 −Θ4
3 + Θ4

4

) (
Θ4

2 + Θ4
3 + Θ4

4

)
.

By examining the q-series expansions, we see that it must be the third term that vanishes identically.

We will frequently use Ramanujan’s differential operator θ defined by

θf(τ) =
1

2πi

d

dτ
f(τ) = q

d

dq
f(τ).

Lemma 3.4.4. The operator

f(τ) 7→ θf(τ)− k

12
E2(τ)f(τ)

maps Mk(Γ(1)) to Mk+2(Γ(1)) (and Ak(Γ(1)) to Ak+2(Γ(1))).

Proof. Exercise.

Proposition 3.4.5.

θj(τ) = −E6(τ)

E4(τ)
j(τ).

Proof. Exercise.

3.5 Exercises

Exercise 3.5.1. Show that

f(τ) 7→ θf(τ)− k

12
E2(τ)f(τ)

maps Ak → Ak+2, Mk →Mk+2, and Sk → Sk+2.

Exercise 3.5.2. Show that

θj(τ) = −E6(τ)

E4(τ)
j(τ).

Hint: j = E3
4/η

24 and M14(Γ(1)) = CE2
4E6.

Exercise 3.5.3. Express j(τ) as a rational function of the elliptic λ function, which is defined by

λ(τ) =
Θ2(τ)4

Θ3(τ)4
= 1− Θ4(τ)4

Θ3(τ)4
.

Exercise 3.5.4. Show that E4(−1+
√
−3

2
) = 0 and E6(

√
−1) = 0 and deduce the following values of the

j function at quadratic irrationals:

j(−1+
√
−3

2
) = 0,

j(
√
−1) = 123.
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Chapter 4

Theory of Modular Forms on Congruence
Subgroups of SL2(Z)

In this chapter several ways of building modular forms on conruence subgroups of Γ(1) are presented.
Although there certainly are other methods, we will contruct functions by means of

• Klein forms and Eisenstein series. These turn out to be specializations of the functions σ(z) and
ζ(z), ℘(z), ℘′(z), ℘′′(z), . . . functions to points z ∈ 1

N
Z+ 1

N
Zτ . These produce modular functions

and forms on Γ(N).

• Θ functions from any positive definite qudratic form. If the quadratic form takes values in the
even integers and its dual takes values in 1

N
Z, then the resulting Θ function is modular with

respect to Γ0(N).

• The η function q−1/24
∏∞

n=1(1 − qn) can be generalized, leading to a function that is invariant
under a subgroup of Γ0(N) of index 2.

Using the theory developed in this chapter, many identities involving these functions can be easily
obtained.

4.1 Definition of modular forms on Γ with [Γ(1) : Γ] <∞
Extend the action of SL2(Z) to include Q ∪ {∞} by setting(

a b
c d

)(
p

q

)
=
ap+ bq

cp+ dq
,(

a b
c d

)(
−d
c

)
=∞,(

a b
c d

)
(∞) =

a

c
.

We will also set H = H ∪Q ∪ {∞}.
We need to make sense of the order of vanishing of a function on the quotient H/Γ

Definition 4.1.1. Let [Γ(1) : Γ] < ∞ and let f be a non-constant function such that f |M,k = f for
all M ∈ Γ. We define the invariant order of the function f at a point τ0 ∈ H with respect to Γ as
follows. (Note: cn 6= 0.)
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1. For any τ0 ∈ H,

ordτ0(f,Γ) =
n

|Γτ0|
where f =

∑
m≥n

cm(τ − τ0)m.

Points where |Γτ0| = 2 are called elliptic points of order two, and these only occur at points in
Γ(1)(i). The size of the Γ-equivalence class of elliptic points of order two is denoted by ε2.

Points where |Γτ0| = 3 are called elliptic points of order three, and these only occur at points in
Γ(1)(e(1

3
)). The size of the Γ-equivalence class of elliptic points of order three is denoted by ε3.

2. For τ0 ∈ Q, let α ∈ Γ(1) be such that τ0 = α(∞), and let h ∈ Z>0, the width of the cusp τ0, be
defined by

(α−1Γα)∞ =
〈

( 1 h
0 1 )

〉
.

Then,

ordτ0(f,Γ) =


n if (α−1Γα)∞ = ±〈( 1 h

0 1 )〉 and f |α =
∑

m≥n cmq
m
h

n if (α−1Γα)∞ = 〈+( 1 h
0 1 )〉 and f |α =

∑
m≥n cmq

m
h

n if (α−1Γα)∞ = 〈−( 1 h
0 1 )〉 and f |α =

∑
m≥n cmq

m
h and k even

n
2

if (α−1Γα)∞ = 〈−( 1 h
0 1 )〉 and f |α =

∑
m≥n cmq

m
2h and k odd

These points are called cusps. The size of the Γ-equivalence class of cusps is denoted by ε∞.
When the last condition is satisfied, the cusp is called irregular, otherwise it is called regular,
the sizes of the Γ-equivalence classes of theses sets are denoted by εirr∞ and εreg

∞ .

Definition 4.1.2. If [Γ(1) : Γ] <∞ and α ∈ Q, let hΓ(α) be the width of the cusp α for Γ. The level
of Γ is the least common multiple of all cusp widths. That is,

level(Γ) = lcm({hΓ(α)}α∈Q).

Definition 4.1.3. Suppose that f |M,k = f for all M ∈ Γ.

Ak(Γ) = {f | ∀τ∈H ordτ (f,Γ) > −∞ and ∀τ∈Q ordτ (f,Γ) > −∞},
M !

k(Γ) = {f | ∀τ∈H ordτ (f,Γ) ≥ 0 and ∀τ∈Q ordτ (f,Γ) > −∞},
Mk(Γ) = {f | ∀τ∈H ordτ (f,Γ) ≥ 0 and ∀τ∈Q ordτ (f,Γ) ≥ 0},
Sk(Γ) = {f | ∀τ∈H ordτ (f,Γ) ≥ 0 and ∀τ∈Q ordτ (f,Γ) > 0},
Ek(Γ) = Mk(Γ)/Sk(Γ).

For an example of an irregular cusp, take Γ = Γ1(4). The cusp 1
2

is irregular. In this case
1
2

= ( 1 0
2 1 )(∞), so α = ( 1 0

2 1 ), and

+α

(
1 h
0 1

)
α−1 =

(
+1− 2h +h
−4h +1 + 2h

)
,

−α
(

1 h
0 1

)
α−1 =

(
−1 + 2h −h

+4h −1− 2h

)
.

Thus, we see that (α−1Γ1(4)α)∞ is generated by −( 1 1
0 1 ), which means that 1

2
is an irregular cusp of

width 1 for Γ1(4). Furthermore, for the cusp 0 = α(∞) where α = S, the computation

α

(
1 h
0 1

)
α−1 =

(
1 0
−h 1

)
shows that 0

1
is a regular cusp of width 4 for Γ1(4).
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4.2 Dimension formulas

Proposition 4.2.1 (Valence Formula). If f ∈ Ak(Γ) is not constant, then∑
τ∈H/Γ

ordτ (f,Γ) =
k[Γ(1) : Γ]

12
.

Proof. Let d = [Γ(1) : Γ] and let M1, . . . ,Md be a list of representatives of Γ Γ(1). First assume that
k is even and define

g(τ) =
∏
j

f |Mj ,k(τ),

and note that g ∈Mkd(Γ(1)). The valence formula for Γ(1) now reads as

ord∞(g,Γ(1)) +
∑

τ∈H/Γ(1)

ordτ (g,Γ(1)) =
k[Γ(1) : Γ]

12
.

We will deal with the points of finite order first.

ordτ (g) =
i∑

j=1

ordτ (f |Mj
)

=
i∑

j=1

ordMjτ (f)

=
∑

z∈(Γ(1)τ)/Γ

|Γ(1)τ |
|Γz|

ordz(f)

Dividing this equality by |Γ(1)τ | and summing over all τ in the fundamental domain for Γ(1) gives∑
τ∈H/Γ(1)

ordτ (g,Γ(1)) =
∑

τ∈H/Γ(1)

ordτ (g)

|Γ(1)τ |

=
∑
z∈H/Γ

ordτ (g)

|Γτ |

=
∑
z∈H/Γ

ordτ (g,Γ).

For the cusps, we have the easy equality

ord∞(g) =
∑
τ∈Q/Γ

ordτ (f,Γ).

For odd k, we can apply the formula to g2, and using

ordτ (f
2,Γ) = 2 ordτ (f,Γ),

we see that the formula is valid for odd k as well.

Proposition 4.2.2 (Genus Formula).

g = 1 +
[Γ(1) : Γ]

12
− ε2

4
− ε3

3
− ε∞

2
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Proof. Set d = [Γ(1) : Γ]. Define f : H/Γ → H/Γ(1) via the natural projection to the fundamental
domain for Γ(1). Triangulate the domain for Γ(1) with

|F ′| = 2

|E ′| = 3

|V ′| = 3

with a vertex at i, e(1
3
) and ∞. Pull back this trangulation via f−1. For the triangulation of a

fundamental domain for Γ, we have

|F | = 2d

|E| = 3d

|V | = ε∞ + d−
∑

z∈f−1(i)

{
0, if z is an elliptic point of order 2

1, if z is not an elliptic point of order 2

+ d−
∑

z∈f−1(e(
1
3

))

{
0, if z is an elliptic point of order 2

2, if z is not an elliptic point of order 3
.

Therefore, |V | = ε∞ + d − 1
2
(d − ε2) + d − 2

3
(d − ε3) and the formula for the genus follows from

2− 2g = |F | − |E|+ |V |.

We next simply quote the dimension formulas from [4, Ch. 3], as the derivation requires the
Riemann-Roch Theorem from the theory of Riemann surfaces. If we need the dimension of any
specific one of these spaces in the future, hopefully we can give a self-contained argument.

Theorem 4.2.3. We have

1. Dimension formulas for k even:

dimMk(Γ) =


(k − 1)(g − 1) + bk

4
cε2 + bk

3
cε3 + k

2
ε∞ , k ≥ 2

1 , k = 0

0 , k < 0

,

dimSk(Γ) =


(k − 1)(g − 1) + bk

4
cε2 + bk

3
cε3 +

(
k
2
− 1
)
ε∞ , k ≥ 4

g , k = 2

0 , k ≤ 0

,

dimEk(Γ) =


ε∞ , k ≥ 4

ε∞ − 1 , k = 2

1 , k = 0

0 , k < 0

.
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2. Dimension formulas for k odd and −I 6∈ Γ (ε2 = 0 in this case):

dimMk(Γ) =


(k − 1)(g − 1) + bk

4
cε2 + bk

3
cε3 + k

2
εreg
∞ + k−1

2
εirr∞ , k ≥ 3

≥ 1
2
εreg
∞ (equality if εreg

∞ > 2g − 2) , k = 1

0 , k < 0

,

dimSk(Γ) =


(k − 1)(g − 1) + bk

4
cε2 + bk

3
cε3 + k−2

2
εreg
∞ + k−1

2
εirr∞ , k ≥ 3

dimM1(Γ)− 1
2
εreg
∞ , k = 1

0 , k < 0

,

dimEk(Γ) =


εreg
∞ , k ≥ 3

1
2
εreg
∞ , k = 1

0 , k < 0

.

4.3 Counting εi for Γ(N) and Γ1(N) and Γ0(N)

Set

Γ(N) = {M ∈ Γ(1) |M ≡ ( 1 0
0 1 ) mod N},

Γ1(N) = {M ∈ Γ(1) |M ≡ ( 1 ∗
0 1 ) mod N},

Γ0(N) = {M ∈ Γ(1) |M ≡ ( ∗ ∗0 ∗ ) mod N}.

Proposition 4.3.1. For Γ(N), we have

1. [Γ(1) : Γ(N)] = | SL2(Z/NZ)| = N3
∏

p|N

(
1− 1

p2

)
.

[Γ(1) : Γ(N)] =

{
1
2
N3
∏

p|N

(
1− 1

p2

)
, N ≥ 3

6 , N = 2
.

2. Two cusps a1/c1 and a2/c2 (gcd(ai, ci) = 1) of Γ(N) are equivalent when.

(a1, c1) ≡ ±(a2, c2) mod (Z/NZ)2.

The total number of cusps is

ε∞ =

{
1
2
N2
∏

p|N

(
1− 1

p2

)
, N ≥ 3

3 , N = 2
.

3. There are no elliptic points.
ε2 = ε3 = 0.

Proposition 4.3.2. For Γ1(N), we have

1. [Γ1(N) : Γ(N)] = N .

[Γ(1) : Γ1(N)] = N2
∏
p|N

(
1− 1

p2

)
.
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2. The number of cusps is given by

ε∞ =


1
2

∑
d|N φ(d)φ(N/d) , N > 4

3 , N = 4

2 , N = 2, 3

.

3. The number of elliptic points of order 2 is given by

ε2 =

{
1 , N = 2

0 , N 6= 2
.

4. The number of elliptic points of order 3 is given by

ε3 =

{
1 , N = 3

0 , N 6= 2
.

Proposition 4.3.3. For Γ0(N), we have

1. [Γ0(N) : Γ1(N)] = φ(N).

[Γ(1) : Γ0(N)] = N
∏
p|N

(
1 +

1

p

)
.

2. The cusps are enumerated by a
c

with gcd(a, c) = 1 and c|N and where the a’s are chosen in
the interval 1 ≤ a ≤ c to be inequivalent modulo gcd(c,N/c). Since for d|c the reduction map
(Z/cZ)∗ → (Z/dZ)∗ surjects, the number of choices for a is φ(gcd(c,N/c)). The number of
cusps is

ε∞ =
∑
c|N

φ(gcd(c,N/c)).

The width of the cusps with denominator c is N/(c gcd(c,N/c)).

3. The elliptic points of order 2 are enumerated by ( 0 −1
1 k )(i) where k (taken modulo N) ranges over

the solutions to k2 + 1 = 0 mod N .

ε2 =

{∏
p|N

(
1 +

(
−1
p

))
, 4 - N

0 , 4 | N
.

4. The elliptic points of order 3 are enumerated by ( 0 −1
1 k )(e(1

6
)) where k (taken modulo N) ranges

over the solutions to k2 + k + 1 = 0 mod N .

ε3 =

{∏
p|N

(
1 +

(
−3
p

))
, 9 - N

0 , 9 | N
.

Proof. We will show (1) and (2) just for prime N = p. The full discussion for any N can be found in
[4, Ch. 3]. Since (

a b
c d

)(
1

0

)
=
a

c
,(

a b
c d

)(
0

1

)
=
b

d
,
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any rational number with denominator divisible by p is equivalent to 1
0

while the other rational
numbers are equivalent to 0

1
. Thus, since 0

1
has width p and 1

0
has width 1,

[Γ(1) : Γ0(p)] = p+ 1.

(3). Let us first show that, with g = ( a bc d ) ∈ Γ(1), the points g(i) with non-trivial stabilizers in
Γ0(N) are all Γ0(N)-equivalent to Mk(i) with Mk = ( 0 −1

1 k ). We can compute that

gSg−1 =

(
ac+ bd −a2 − b2

c2 + d2 −ac− bd

)
,

so any g(i) with non-trivial stabilizer in Γ0(N) must have c2 + d2 ≡ 0 mod N . Since c and d are
relatively prime, this means that c and N are also relatively prime. Now,(

a b
c d

)
=

(
ak − b a
ck − d c

)(
0 −1
1 k

)
.

Since c and N are relatively prime, we can find an integer k so that ck− d ≡ 0 mod N , thus showing
that g(i) and Mk(i) are Γ0(N)-equivalent.

If Mk(i) has a non-trivial stabilizer in Γ0(N), we need k2 + 1 ≡ 0 mod N . Let us show that
when k is as such and is taken modulo N , these points are inequivalent under Γ0(N). Suppose
that Mk1(i) = hMk2(i) for some h ∈ Γ0(N) with k2

1 + 1 ≡ k2
2 + 1 ≡ 0 mod N . This means that

Mk1S
iM−1

k2
∈ Γ0(N) for i = 0 or 1. As

Mk1S
0M−1

k2
=

(
1 0

k2 − k1 1

)
,

Mk1S
1M−1

k2
=

(
−k2 −1

k1k2 + 1 k1

)
,

we see that k1 ≡ k2 mod N since k1k2 ≡ −1 mod N is equivalent to k1 ≡ k2 mod N because
k2

2 ≡ −1 mod N .

4.4 General properties of Ak(Γ)

The proof of the follow proposition follows exactly along the same lines as the proof of Proposition
3.2.2.

Proposition 4.4.1. Suppose k is even and f ∈ Ak(Γ).

1. If ζ is an elliptic point of order 2 then

k

2
+ 2 ordζ(f,Γ) ≡ 0 mod 2.

2. If ζ is an elliptic point of order 3 then

k

2
+ 3 ordζ(f,Γ) ≡ 0 mod 3.
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It follows that for functions in A0(Γ) the order should be measured in the variable

t =

{(
τ−z
τ−z

)|Γz |
, z ∈ H

exp 2πi
h
α−1(τ) , z = α(∞), h is cusp width

,

called the local variable at z ∈ H, and all function will have expansions in integral powers of this
variable. In the case of the cusp ∞, this variable is also q1/h.

As with elliptic functions, we usually refer to the number of poles of a function as its order, but
according to the following definition this number is also the number of times the function takes any
complex value.

Definition 4.4.2. If f ∈ A0(Γ) then the number of solution to f(τ) = c counted according to multi-
plicity for any c ∈ C∞ is independent of c and is called the order of the function f , also denoted by
ordΓ(f).

Proof. The number of zeros of f(τ)−c is equal to the number of poles of f(τ) by the valence formula,
so ordΓ(f) is well-defined.

Definition 4.4.3. If f ∈ A0(Γ), define the ramification index ramz(f,Γ) ∈ Z>0 by

ramz(f,Γ) =

{
ordz(f − f(z)) , f(z) 6=∞
− ordz(f) , f(z) =∞

Proposition 4.4.4. If f ∈ A0(Γ) and g is the genus of H/Γ, then∑
z∈H/Γ

(ramz(f,Γ)− 1) = 2(g − 1 + ordΓ(f)).

Proof. The is a special case of the Riemann-Hurwitz Formula where the target space is C∞. It may
be proven exactly as the genus formula was obtained (in fact the genus formula is this with f = j so
that ordΓ(j) = [Γ(1) : Γ]). One triangulates H/Γ with vertices at the finite number of points z where
ramz(f,Γ) > 1.

Proposition 4.4.5. S0(Γ) = {0} and M0(Γ) = C.

Proof. The first assertion follows from the valence formula. For the second, if f(τ) = c + O(q1/h)
where h is the width of the cusp ∞, then f(τ)− c has a zero at ∞ and is still an element of M0(Γ).
The valence formula then implies that f(τ) is constant.

Proposition 4.4.6. If R is a rational function of degree d and x ∈ A0(Γ), then

ordΓ(R(x)) = d ordΓ(x).

The function x in the following proposition, if it exists, is called a Hauptmodul for Γ, and all
Hauptmoduln for a given Γ differ by a Möbius transformation.

Proposition 4.4.7. Suppose that x ∈ A0(Γ) with ordΓ(x) = 1.

1. x : H/Γ→ C∞ is a bijection and g = 0.

2. If y is another non-constant function in A0(Γ), then there are polynomials pi(x) such that
p0(x) + p1(x)y = 0. Specifically, there is a constant c such that cy =

∏
z∈H/Γ(x − x(z))ordz(y,Γ)

where the possible term from the pole z of x is omitted.
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3. A0(Γ) = C(x).

4. S1(Γ) = S2(Γ) = {0}.

Proof. (1). x(τ)− c has one pole so it has exactly one zero by the valence formula. The proves that
x defines a bijection. Suppose that g > 0. Then there is a loop on H/Γ that may not be contracted
to a point. However, the image of this loop on C∞ is contractible. This is a contradiction because
the contraction of the loop on C∞ may be pulled back (via x−1) to a contraction on H/Γ.

(2). Define

g(τ) =
1

y(τ)

∏
z∈H/Γ
x(z)6=∞

(x(τ)− x(z))ordz(y,Γ).

Since x(τ)− x(z) has a simple zero at τ = z (as measured in the local variable at z), for all z = H/Γ
we have ordz(g,Γ) = 0 expect possibly at the unique pole of the function x. However, if z is this pole,
the valence formula implies that ordz(g,Γ) = 0 as well. Thus, g ∈ M0(Γ) which consists entirely of
constants.

(3) is then a direct consequence of (2).
(4) If f ∈ S2(Γ) then define

g(τ) =
f(τ)

dx/dτ
.

That g(τ) ∈ A0(Γ) is essentially Lemma 3.4.4. Let z ∈ H not be a pole of x and p = |Γz| and
let t be the local variable at z. Let ci denote certain non-zero constants (that could depend on
z). Recalling that x(τ) − x(z) has a simple zero at τ = z, we see that dx = (c1 + O(t))dt. Since

dτ = t
1
p
−1(c2 +O(t))dt, we have

g(τ) =
f(τ)

dx/dτ
= tordz(f,Γ)+ 1

p
−1(c3 +O(t)).

Since, by definition of S2(Γ), ordz(f,Γ) > 0, and we have ordz(f,Γ) ≡ 1 − 1
p

mod 1 by Proposition

4.4.1, g(τ) does not have a pole at z. If z is a pole of x then the only thing that needs to be changed
in this discussion is that dx = t−2(c3 +O(t))dt, and so we see that g(τ) has a zero at z in this case.

Next, if z = ( a bc d )(∞) ∈ Q, let t be the local variable at this cusp z. We have

f(τ) = (a− cτ)2tordz(f,Γ)(c4 +O(t))

dτ = (a− cτ)−2t−1c5dt

dx =

{
(c6 +O(q))dt , z is not a pole of x

t−2(c7 +O(q))dt , z is a pole of x
.

Thus we see that g does not have a pole and actually vanishes at the pole of x. Since g was an
element of A0(Γ), this means that g mush be identically 0. Therefore, S2(Γ) = {0}. The square of
any element of S1(Γ) is in S2(Γ), so S1(Γ) = {0} as well.

Proposition 4.4.8. Suppose that x ∈ A0(Γ) with ordΓ(x) = 2.

1. Any three functions in A0(Γ) are linearly dependent over C(x).

2. If y is a function of odd order, then there is a unique irreducible polynomial P (x, y) of degree 2
in y with P (x(τ), y(τ)) = 0, and we have A0(Γ) = C(x, y)/(P (x, y)).
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Proof. (1). By Proposition 4.4.4 there is a ramification point of the function x because∑
z∈H/Γ

(ramz(x,Γ)− 1) = 2(g + 1) > 0.

Since none of the assertions of the proposition are affected by applying a Möbius transformation to
x, if necessary, we can let z be such a ramification point and replace x by 1/(x−x(z)) to assume that
x has a single double pole at some point z.

Let L(m) denote the vector space of functions that have poles only at z and the order of this pole
is ≤ m. Clearly,

dimL(m) ≤ 1 +m.

Let f1, f2, f3 ∈ A0(Γ) and assume that they are linearly independent over C(x). We can find polyno-
mials pi(x) so that pi(x)fi has no poles outside z. This means that there is an integer m0 such that,
for i = 1, 2, 3,

pi(x)fi ∈ L(2m0).

For any integer m ≥ m0, the set
{xjpi(x)fi} i=1,2,3

0≤j≤m−m0

consists of 3(m − m0 + 1) linearly independent functions in L(2m). This contradicts the bound
dimL(2m) ≤ 1 + 2m for large m and shows that f1, f2, f3 are linearly dependent over C(x).

(2). Let y be a function of odd order. By multiplying by a suitable polynomial in x, we may
assume that y has no poles outside of z and that y has a pole of odd order at z because multiplying
by a polynomial in x changes the order of y by an even integer. Then, it is easy to see that 1 and y
are linearly independent over C(x), for suppose that there were polynomials p0(x) and p1(x) with

p0(x) + p1(x)y = 0.

If p1(x) 6= 0, then the Laurent series expansion of p0(x) begins with t to a negative even power and
p1(x)y begins with a negative odd power. Thus p1(x) = p0(x) = 0 and 1 and y are linearly independent
over C(x). We can get the quadratic relation by applying (1) to the three functions 1, y, y2. Finally,
if f ∈ A0(Γ), apply (1) to the three functions 1, y, f .

Proposition 4.4.9. If x ∈ A0(Γ) with l = ordΓ(x), then any l + 1 functions in A0(Γ) are linearly
dependent over C(x).

Proof. Suppose x has poles at q1, . . . , qr and that the orders of these poles are n1, . . . , nr. Assume
that there are l + 1 functions f1, . . . , fl+1 that are linearly independent over C(x). Let L(m) denote
the vector space of functions that have no poles outside q1, . . . , qr and having a pole of order not worse
than mni at each qi. Clearly, dim(L(m)) ≤ 1 +mn1 + · · ·+mnr = 1 +ml. We can find polynomials
p1, . . . , pr with p1(x)f1, . . . , pr(x)fr each having no poles outisde of q1, . . . , qr. Therefore, for some
fixed m0, we have pi(x)fi ∈ L(m0) for every i = 1, . . . , l + 1. It follows that

{xjpi(x)fi} i=1,...,l+1
0≤j≤m−m0

consists of (m−m0 + 1)(l + 1) linearly independent functions in L(m), which contradicts the bound
dim(L(m)) ≤ 1 +ml for large m.
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4.5 Working with finite index subgroups of Γ(1)

This section discusses several of the representations of a finite index subgroup, Γ, of Γ(1). The first and
most intuitive way is via the combination of a fundamental domain for Γ and edge-pairing matrices,
as given in the following theorem.

Theorem 4.5.1 (Siegel). If [Γ(1) : Γ] < ∞, there is a connected fundamental domain D for Γ in
which the sides of D can be paired up by elements of Γ, and the elements of Γ that the pair up all of
the sides generate Γ.

Unfortunately, the generators in this theorem are not guaranteed to be independent. For example
S and T pair up the edges in the usual fundamental domain for Γ(1), but S and T are not independent
generators. We will describe the so called Farey symbol for subgroup Γ of Γ(1) of finite index, which
allows a list of independent generators to be easily computed (see [10] and [9]). We will also describe
the bicuboid graph for Γ as well, and find the following correspondences:

1. fundamental domains with side pairings ⇒ subgroups (onto, many-to-one)

2. Farey symbols ⇒ subgroups (onto, many-to-one)

3. bicuboid graphs ⇔ conjugacy classes of subgroups (bijection)

4. marked bicuboid graphs ⇔ subgroups (bijection)

5. marked bicuboid graphs with cuts ⇔ Farey symbols (bijection)

We will first define all of these terms appears in these correspondences.

Definition 4.5.2.

1. Label the following points in H:

(a) An even point is the image of i under some element of Γ(1).

(b) An odd point is the image of e(1
6
) under some element of Γ(1).

(c) An cusp is the image of ∞ under some element of Γ(1).

2. Label the following half arcs in H:

(a) An even edge is the image the set {e(1
4
) + it | t > 0} under some element of Γ(1).

(b) An odd edge is the image the set {e(1
6
) + it | t > 0} under some element of Γ(1).

(c) A free edge is the image the set {e(t) | 1
6
< t < 1

4
} under some element of Γ(1).

3. A special polygon for Γ is a convex hyperbolic polygon P satisfying:

(a) The boundary of P consists of even and odd edges.

(b) The even edges come in pairs, each pair forming an arc connecting two elements of Q.
Each arc is either paired with itself under Γ (in which case it contains an elliptic point of
order 2) or is paired with another such arc under Γ.

(c) The odd edges come in pairs, each pair meeting at a vertex with angle 2π/3, which is an
elliptic point of order 3 for Γ.

Definition 4.5.3.
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1. A bipartite cuboid graph (or bicuboid graph) is a finite connected graph such that

(a) Every vertex is marked by either • or ◦. These are called odd and even vertices, respectively.

(b) Every odd vertex has valence 1 or 3.

(c) Every even vertex has valence 1 or 2.

(d) There is a set cyclic order on the edges originating at each vertex of valence three.

(e) Every edge joins an even and odd vertex.

2. A marked bicuboid graph is a bicuboid graph with a distiguished edge.

Definition 4.5.4. A Farey symbol is a symbol of the form

−1

0
←→
p−1

a0

c0

←→
p0

a1

c1

←→
p1

· · · ←→
pn−1

an
cn
←→
pn

1

0
,

where one of the an
cn

is 0. The pairing symbols pi are allowed to be natural numbers or one of symbols
• or ◦ and we always have ai+1ci − aici+1 = 1.

A natural number n, if it appears among the pi, appears exactly twice at two edges, say, pi and pk.
In this cases, the edges pi and pk are said to the paired by a free pairing.

If pi = ◦, the edge is said to be paired with itself by an even pairing.
If pi = •, the edge is said to be paired with itself by an odd pairing.
Define the pairing matrix for even pairings, odd pairings, and free pairings, respectively, as

Gi

(
ai
ci
←→
◦

ai+1

ci+1

)
=

(
ai+1 ai
ci+1 ci

)(
0 −1
1 0

)(
ai+1 ai
ci+1 ci

)−1

,

Gi

(
ai
ci
←→
•

ai+1

ci+1

)
=

(
ai+1 ai
ci+1 ci

)(
0 −1
1 −1

)(
ai+1 ai
ci+1 ci

)−1

,

Gi,k

(
ai
ci
←→
n

ai+1

ci+1

,
ak
ck
←→
n

ak+1

ck+1

)
=

(
ak+1 ak
ck+1 ck

)(
0 −1
1 0

)(
ai+1 ai
ci+1 ci

)−1

.

In this section will we assume that all matrices are taken modulo ±I since we are concerned
with their action on H and mercifully suppress the lines on the groups. In addition to the matrices
S = ( 0 −1

1 0 ) and T = ( 1 1
0 1 ), the matrices

O =

(
1 −1
1 0

)
, R =

(
1 0
1 1

)
will be useful. The main result which is useful for studying subgroups of Γ(1) is the result that
Γ(1) = Z2 ∗ Z3.

Proposition 4.5.5. For Γ(1), the matrices S and O are independent generators of orders 2 and 3,
that is, each element of Γ(1) can be written uniquely as a word in S and O with no two consecutive
S’s and no three consecutive O’s.

Proof. Exercise. Hint: OS = ( 1 1
0 1 ) and OOS = ( 1 0

1 1 ).

Exercise 4.5.6. Show that S and T n generate a subgroup of finite index in Γ(1) only when |n| = 1, 2.
Hint: for n > 3 assume the opposite and consider (OS)mOOSO for large m.
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Remark 4.5.7. Let xy′(x)/y(x) = x+ x2 + 4x3 + 8x4 + 5x5 + · · · be the formal generating function
for subgroups of Γ(1) of a given index. It is possible to show ([11]) that y(x) satisfies the differential
equation

x7(x3 − 1)y′′(x) + (4x9 + 2x7 − 4x6 − 2x4 − 4x3 + 1)y′(x)

+(2x8 + 2x6 − 4x5 + x4 − 4x3 − 4x2 − x− 1)y(x) = 0.

It is possible to give an explicit algorithm for writing a given M ∈ Γ(1) as a word in S and O. If
M = ( a bc d ), then the even point M(i) is part of an arc that connects the two cusps a

c
and b

d
. Let M0

be the matrix we wish to write in terms of S and O. At each step of the following algorithm, a, b, c,
and d denote the entries of Mk.

if Mk = I or S, then terminate

if −∞ ≤ a
c
, b
d
≤ 0, then Mk+1 = SMk

if 0 ≤ a
c
, b
d
≤ 1, then Mk+1 = OMk

if 1 ≤ a
c
, b
d
≤ ∞, then Mk+1 = OOMk

This will terminate, in which case M−1
0 is expressed as a word in S and O and so M0 is as well. In

the following diagram, H has been mapped into the unit disk, and the free edges E have been marked
with the matrix that sends E to the free edge between i and e(1

6
).

IS

O

OOOS

OOS

SO

SOOSOS

OSO

OSOO

SOOS
OOSO

OSOS

SOSO

Proposition 4.5.8. Let [Γ(1) : Γ] = µ and φ denote the homomorphism Γ(1) → Symµ obtained by
the permutation action of g ∈ Γ(1) on the left cosets Γ(1)\Γ.

1. Γ is completely determined by φ(S) and φ(O) up to a relabeling of the non-trivial cosets as long
as φ(S) and φ(O) have order 2 and 3, respectively, and generate a transitive subgroup of Symµ.

2. The number of fixed points of φ(S) is ε2.

3. The number of fixed points of φ(O) is ε3.
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4. The number of cycles in φ(T ) is ε∞. The lengths of these cycles are the widths of the inequivalent
cusps of Γ.

5. The order of the permutation φ(T ) is level(Γ).

As an example of this correspondence, we list the subgroups of Γ of index 3.

Example 4.5.9. For the 4 groups of index 3 in Γ(1), namely Γ3, Γ0(2), Γ0(2), Γϑ the corresponding
marked bicuboid graph, special polygon and Farey Symbol are shown below.

Γ3 Γ0(2) Γ0(2) Γϑ

X

S = (1)(2)(3)
O = (123)

X

S = (12)(3)
O = (123)

X

S = (13)(2)
O = (123)

X

S = (23)(1)
O = (123)

◦ ◦

◦

0
1

1
1

1 ◦

1

0
1

1
1

1 1

◦

0
1

1
1

◦ 1

1

0
1

1
1

−1
0
↔
◦

0
1
↔
◦

1
1
↔
◦

1
0

−1
0
↔
1

0
1
↔
1

1
1
↔
◦

1
0

−1
0
↔
1

0
1
↔
◦

1
1
↔
1

1
0

−1
0
↔
◦

0
1
↔
1

1
1
↔
1

1
0

Any relabeling of the edges for Γ3 produces isomorphic graphs because Γ3 is a normal subgroup of Γ(1).
The remaining three graphs are distinct because the position of the marked edge, the edge marked “X”,
is distinguished by the orientation on the odd vertex. This marked ege is placed by default along the
free edge from i to e(1

6
) in the special polygon.

From Proposition 4.5.8 we can construct the correspondence between bicuboid graphs and sub-
groups Γ of Γ(1), which we illustrate for a group of index 9. Let φ : Γ(1) → Sym9 be defined
by

φ(O) = (123)(456)(789),

φ(S) = (24)(39)(67).

The group Γ is then defined as the set of all g ∈ Γ(1) such that φ(g)(1) = 1. This marks “1” as
the coset Γ in Γ(1)\Γ. The corresponding graph (whose ordering on the trivalent vertices is counter-
clockwise) is
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1

5

8

2

4

3

9

6

7

X

This bicuboid graph has one edge marked with an “X”, making it into a marked bicuboid graph.
Note that marking any of the other 8 vertices gives rise to a total of only 3 distinct marked graphs,
hence there are two other subgroups of Γ(1) that are conjugate to this Γ.

We can read much of the data for Γ directly from this marked graph. First, we see that φ(O) =
(123)(456)(789) has no fixed points, so ε3 = 0. Next, φ(S) = (24)(39)(67) has three fixed points, so
ε2 = 3. By multiplying the permutations, we have φ(T ) = φ(OS) = (145783)(296), so ε∞ = 2 and
the width of these two cusps are 6 and 3. To find generators, first note that the graph has a cycle,
but that if the vertex between edges 6 and 7 is cut, the cycle is broken the the resulting cut graph is
a tree. There is now a unique path from the marked edge to any edge that does not cross over from
edge 6 to edge 7. The path from the marked edge to the edge labeled i corresponds to a matrix, and
we have

M1 = I, M4 = SO, M9 = SOO,

M2 = O, M5 = OSO, M7 = OSOO,

M3 = OO, M6 = OOSO, M8 = OOSOO.

Free generators for Γ are thenM−1
7 SM6, M−1

1 SM1, M−1
5 SM5, andM−1

8 SM8, and so Γ ' Z∗Z2∗Z2∗Z2.
In order to construct a special polygon and Farey symbol for this Γ, we first agree to make a cut
between edges 6 and 7, as before, so that the resulting graph is a tree. Next, we place the marked edge
on the free edge from i to e(1

6
) in H, and let the remaining edges fall naturally onto their respective

free edges in H. The result is

1

2

3 9

7

8

4
5 6

0 1�2 1 2

Therefore, the cusps in the Farey symbol are ∞↔0
1
↔1

2
↔1

1
↔2

1
↔∞. In order to fill in the pairing

information, note that the even points in the arcs ∞↔0
1
, 0

1
↔1

2
, and 2

1
↔∞ are all elliptic points of

order 2 for Γ since φ(S) fixes each of the cosets labeled 1, 5 and 8. This means that each of these
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three arcs is paired with itself. Finally the arc 1
2
↔1

1
is paired with the arc 1

1
↔2

1
in order to glue back

together the cut that was made between the edges 6 and 7. In summary, a Farey symbol for Γ is
given by

∞←→
◦

0

1
←→
◦

1

2
←→

1

1

1
←→

1

2

1
←→
◦
∞.

We could have made one cut between edges 2 and 4 or 3 and 9, so there are in total two more Farey
symbols corresponding to this subgroup Γ.

Algorithm 4.5.10. Input: a finite index subgroup Γ of Γ(1). Output: a Farey symbol for Γ.
Step 1: If [Γ(1) : Γ] ≤ 2

return


−1
0
←→
◦

0
1
←→
•

1
0

, ( 0 −1
1 0 ), ( 1 1

0 1 ) ∈ Γ (i.e. Γ = Γ(1))

−1
0
←→
•

0
1
←→
•

1
0

, ( 0 −1
1 1 ), ( 1 −1

0 1 ) ∈ Γ (i.e. Γ = Γ2)
.

Step 2: Let F be the partial Farey symbol

F =


−1
0
←→ 0

1
←→ 1

1
←→ 1

0
, ( 1 −1

1 0 ) 6∈ Γ

−1
0
←→ −1

1
←→ 0

1
←→ 1

0
, ( 1 −1

1 0 ) ∈ Γ
.

Step 3: For each unpaired edge in F , check if it can be paired with itself by an even or odd pairing
(Gi ∈ Γ) or if it can be paired with another unpaired edge (free pairing Gi,k ∈ Γ) and fill in all of the
possible pairings.
Step 4: If all edges are paired, then return F .
Step 5: If there is still an unpaired edge in F between, say, ai/ci and ai+1/ci+1, place an new vertex
(ai + ai+1)/(ci + ci+1) in between with no pairing information on the two adjacent edges and goto Step
3.

Given a special polygon P , we may convert P to a Farey symbol F and vice-versa. If P is a special
polygon, we assume that that ∞ is included as a vertex and that there are certain rational vertices
a0

c0
< · · · < an

cn
. These are put into F in the obvious way with the corresponding pairing information.

Note that we have ai+1ci − aici+1 = 1 because the quantity ai+1ci − aici+1 is unchanged when ai
ci

and
ai+1

ci+1
are simultaneously acted upon by some element of Γ(1) and ai+1ci − aici+1 = 1 for the basic

choices ai
ci

= −1
0

and ai+1

ci+1
= 0

1
.

Now given F , we can convert to edges of P in the following way (set g = ( ai+1 ai
ci+1 ci )).

ai
ci
←→
◦

ai+1

ci+1

ai
ci
←→
n

ai+1

ci+1

}
⇐⇒ g(E ∪ ( 0 −1

1 0 )(l)), E = {e(1
4
) + it | t > 0}

ai
ci
←→
•

ai+1

ci+1

⇐⇒ g(E ∪ ( 0 −1
1 −1 )(E)), E = {e(1

6
) + it | t > 0}

Theorem 4.5.11.

1. If P is a special polygon, then the edge pairing matrices {gi} generate some Γ and P is a
fundamental domain for Γ.
There are ε2 generators of order 2.
There are ε3 generators of order 3.
There are 2g + ε∞ − 1 free generators (order ∞).
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2. The gi are an independent set of generators for Γ. This means that any element of Γ can be
written uniquely as

∏
gk∈{gi} g

ek
k where ek 6= 0 and ek is further restricted to 1 ≤ ek < p if gk is

a generator of finite order p. In symbols,

Γ ' Z∗ε22 ∗ Z∗ε33 ∗ Z∗(2g−1+ε∞).

Proof. See [9].

4.6 Γ(2)

The main function for the group Γ(2), which play the same role as j(τ) plays for Γ(1) (the so-called
Hauptmodul), is the modular λ function defined by

λ(τ) =

(
Θ2(τ)

Θ3(τ)

)4

.

Proposition 4.6.1. Let λ(τ) be the modular λ function. Then,

1. λ(τ) ∈M !
0(Γ(2)), Θ4

2,Θ
4
3,Θ

4
4 ∈M2(Γ(2))

2. λ(τ) has a simple pole at 1
1
, a simple zero at 1

0
, and takes the value 1 at 0

1
.

3. A0(Γ(2)) = C(λ).

4. Sk(Γ(2)) = Θ4
2Θ4

3Θ4
4Mk−6(Γ(2)).

5. Θ4
3 = Θ4

2 + Θ4
4.

6. Mk(Γ(2)) =
⊕

2a+2b=k
a,b≥0

CΘ4a
2 Θ4b

3 .

Proof. (1). The fundamental domain {τ | |Re(τ)| ≤ 1 and |2τ ± 1| ≥ 1} for Γ(2) shows that Γ(2) is
generated by T 2 and ST 2S. From Proposition 2.8.3, we have

(Θ2,Θ3,Θ4)|T = (ζ1
8Θ2,Θ3,Θ4),

(Θ2,Θ3,Θ4)|S = ζ−1
8 (Θ4,Θ3,Θ2).

Therefore,

(Θ2,Θ3,Θ4)|T 2 = (ζ4Θ2,Θ3,Θ4),

(Θ2,Θ3,Θ4)|ST 2S = (ζ3
4Θ2, ζ

3
4Θ3,Θ4).

and we see that Θ4
2/Θ

4
3 ∈M !

0(Γ(2)) because Exercise 2.12.4 shows that λ has no poles or zeros in H.
(2). For the values at the cusps, we have the table

cusp function q-series
1
0

λ|I Θ4
2

Θ4
3

= 2q1/2 + · · ·
0
1

λ|S Θ4
4

Θ4
3

= 1 + · · ·
1
1

λ|TS −Θ4
4

Θ4
2

= −1
2
q−1/2 + · · ·
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(3). Since ordΓ(2)(λ) = 1 all of the assertions of Proposition 4.4.7 apply.
(4). Since Θ4

2Θ4
3Θ4

4 has a simple zero at each cusp, we must obtain Sk in this way.
(5). The form Θ4

2 + Θ4
4 − Θ4

3 = O(q2/2) in M2(Γ(2)) has a zero of order at least 2 at ∞ which
contradicts the valence formula unless this function vanishes identically.

(6). First note Θ2 and Θ3 are algebraically independent. If f ∈ Mk(Γ(2)) with k ≥ 0 and even,
then g := f/Θ2k

3 ∈ A0(Γ(2)) with the only possible pole of g located at the pole of λ. Therefore,
part 2 of Prop 4.4.7 shows that g is a polynomial in λ of degree no more than k/2 since the valence
formula says that f has k/2 zeros (hence g has no more than k/2 zeros).

4.7 Building congruence modular forms N from Klein Forms

A subgroup Γ of Γ(1) is called a congruence subgroup if Γ contains Γ(N) for some N . The smallest
such N turns out to be the level of Γ in this case (see Proposition 4.13.4 below). Similarly, a modular
function f is said to have level N if it is invariant under Γ(N). Most subgroups of Γ(1) are not
congruence; let an denote the number of subgroups of Γ(1) of index n and let bn denote the number
of congruence subgroups of Γ(1) of index at most n. Then it is known ([11], [12], [15]) that

an ∼ exp

(
1

6
n log n− 1

6
n+ n1/2 + n1/3 +

1

2
log n− 1

4
− 1

2
log 2π

)
,

log(bn) ∼

(√
2− 1

2

)2
log2 n

log log n
.

One of the building blocks of modular forms of higher levels is the Klein form k~r(τ), which is
defined for ~r ∈ Q2, τ ∈ H and has weight −1 and generalizes η(τ)−2. We will also introduce a form of
positive integral weight k by ek~r(τ) which generalizes the Eisenstein series E2k(τ). Set

k~r(τ) = −2πizeπir1z
∏
ω∈Λ′

(
1 +

z

ω

)
e−

z
ω ,

e1
~r(τ) =

1

2πi

(
1

z
+
∑
Ω∈Λ′

1

z + ω
− 1

ω

)
,

ek~r(τ) =
(k − 1)!

(2πi)k

∑
ω∈Λ

1

(z + ω)k
, k ≥ 2,

where Λ = Zτ +Z and z = r1τ + r2 and the sums or products over ω = mτ + n are performed over n
first and then m. These sums are not defined if ~r ∈ Z2, in which we take out the undefined term and
obtain the definitions

ek~r(τ) =

{
ζ(1− k)Ek(τ) , k even

0 , k odd
, for ~r ∈ Z2.
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Proposition 4.7.1. Set z = r1τ + r2. The Klein forms have the series expansions,

k~r(τ) = q(r1−1)/2
z

(qz; q)∞(q/qz; q)∞
(q; q)2

∞
,

e1
~r(τ) =

qz + 1

2(qz − 1)
−
∞∑
n=1

(qnz − q−nz )
qn

1− qn
, for |r1| < 1,

e2
~r(τ) =

qz
(qz − 1)2

+
∞∑
n=1

(qnz + q−nz )
nqn

1− qn
, for |r1| < 1,

e3
~r(τ) =

qz(qz + 1)

(qz − 1)3
−
∞∑
n=1

(qnz − q−nz )
n2qn

1− qn
, for |r1| < 1,

where ek+1
~r (τ) is formally obtained from ek~r(τ) by applying −1

2πi
∂
∂z

.

Proposition 4.7.2. For N > 1, we have

N−1∏
j=0

k i
N
, j
N

(τ) = ζ
(N−1)(i−N)
4N

η(Nτ)2

η(τ)2N
k i
N
, 0
N

(Nτ),

N−1∏
j=1

k 0
N
, j
N

(τ) = ζ1−N
4

η(Nτ)2

η(τ)2N
.

Proposition 4.7.3. For ~r = (r1, r2) and g = ( a bc d ) ∈ Γ(1),

k~r|g(τ) = k~r.g(τ),

e1
~r|g(τ) = e1

~r.g(τ) + c(aτ + b)r1 + c(cτ + d)r2,

e2
~r|g(τ) = e2

~r.g(τ)− c

2πi(cτ + d)
,

ek~r |g(τ) = ek~r.g(τ), k ≥ 3.

If (n1, n2) ∈ Z2,

k~r+(n1,n2)(τ) = (−1)n1+n2+n1n2e(1
2
(r1n2 − r2n1))k~r(τ),

e1
~r+(n1,n2)(τ) = e1

~r(τ)− n1,

ek~r+(n1,n2)(τ) = ek~r(τ), k ≥ 2.

Proposition 4.7.4. If gcd(a, c) = 1, then

orda
c
k~r(τ) =

(
frac(~r.~v)

2

)
,

where ~v = (a, c)ᵀ is the vector corresponding to the cusp a
c

and frac(x) denotes the fractional part of
x that satisfies 0 ≤ frac(x) < 1.

Proof. Exercise.

Proposition 4.7.5. For ~r = (r1, r2) ∈ 1
N
Z2,
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1. For k = −
∑

~rm(~r), the form
∏
~r k~r(τ)m(~r) is in M !

k(Γ(N)) if and only if∑
~r

m(~r)(Nr1)2 ≡ 0 mod N gcd(2, N),∑
~r

m(~r)(Nr2)2 ≡ 0 mod N gcd(2, N),∑
~r

m(~r)(Nr1)(Nr2) ≡ 0 mod N .

2. The form
∑

~rm(~r)e1
~r(τ) is in M1(Γ(N)) if and only if

∑
~rm(~r)r1 = 0.

3. The form
∑

~rm(~r)e2
~r(τ) is in M2(Γ(N)) if and only if

∑
~rm(~r) = 0.

4. The form
∑

~rm(~r)ek~r(τ) is in Mk(Γ(N)) for any k ≥ 3.

We will give a generator xN for the function field A0(Γ(N)) for N < 6 in Section 4.9. The following
theorem tells us that two ratios of Klein forms suffice for N ≥ 6.

Theorem 4.7.6 ([7]). For N ≥ 6, we have A0(Γ(N)) = C(x2,N(τ), x3,N(τ)), where

xr,N(τ) =

(
kr/N,0(Nτ)

k1/N,0(Nτ)

)gcd(2,r,N)

.

Furthermore, x3,N is integral over Q[x2,N ].

4.8 Building congruence modular forms from η products

Proposition 4.8.1. Let gcd(a, c) = 1 and M ∈ Z2×2 with detM > 0. Then,

orda
c
η|M(τ) =

1

24

gcd(M.~v)2

det(M)
,

where ~v = (a, c)ᵀ is the vector corresponding to the cusp a
c
.

Proof. Exercise.

Proposition 4.8.2. Set Γ = Γ0(N) and suppose that f(τ) =
∏

l|N η(lτ)rl and that the three numbers

k = 1
2

∑
l|N

rl, ord∞(f,Γ) = 1
24

∑
l|N

lrl, ord0(f,Γ) = 1
24

∑
l|N

N
l
rl,

are all integers. Then, for any g = ( a bc d ) ∈ Γ with odd d, f satisfies

f |g,k(τ) =

(
(−1)k

∏
l|N l

|rl|

d

)
f(τ).

Remark 4.8.3. In the case that d is even, c must be odd and we can recover the multiplier for such
d by

f |g,k(τ) =

(
(−1)k

∏
l|N l

|rl|

c+ d

)
f(τ).

simply be replacing τ by τ − 1.
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Proof. Assuming d is odd, the multiplier system for η (Exercise 2.12.6) has the form

η

(
aτ + b

cτ + d

)
=

(
c

|d|

)
ζ

3d+d(b−c)+ac(1−d2)
24

√
−i(cτ + d)η(τ),

or η

(
l
aτ + b

cτ + d

)rl
=

(
c|rl|l|rl|

|d|

)
ζ

3drl+dblrl−(ad2−a+d) c
N
N
l
rl

24 (−i(cτ + d))
rl
2 η(lτ)rl ,

since l aτ+b
cτ+d

= a(lτ)+bl
c
N
N
l

(lτ)+d
. Therefore

f |g,k(τ)

f(τ)
= (−i)k

(
c2|k|∏

l|N l
|rl|

|d|

)
ζ

6dk+24db ord∞(f,Γ)−24(ad2−a+d) c
N

ord0(f,Γ)

24

=

(
(−1)k

∏
l|N l

|rl|

d

)
,

since k, ord∞(f,Γ), and ord0(f,Γ) are all integers.

Following [6], the η function can be generalized to any even real Dirichlet character χ. Set

ηχ(τ) = q−
1
2
L(−1,χ)

∞∏
n=1

(1− qn)χ(n), (χ(−1) = 1).

Here L(s, χ) is the Dirichlet series
∑∞

n=1
χ(n)
ns

, which converges for s > 1 and can be analytically
continued to C with a possible pole at s = 1. When χ is the function 1 identically, we recover
the usual η function because of the value L(−1, 1) = ζ(−1) = − 1

12
. It suffices to study primitive

characters because if χ is a character modulo k and χ(n) = χ1(n)χ0(n) where χ1 is the primitive
character modulo ∆|k and χ0(n) is the principle character modulo k, then

ηχ(τ) =
∏
l| k

∆

ηχ1(lτ)µ(l)χ1(l).

It should be pointed out at this point that the only real even primitive characters are given by

χ(n) =

(
∆

n

)
,

where
( ·
·

)
is the Kronecker symbol and ∆ is a fundamental discriminant (see definition 7.3.1). The

period of this character is ∆.

Proposition 4.8.4 ([6]). Let ∆ > 1 be a fundamental discriminant and χ the associated primitive real
even character. Set χ′(n) to be χ(n) if ∆ is a prime, and 1 otherwise. Then, for any ( a bc d ) ∈ Γ0(∆),
ηχ satisfies the transformation formula

ηχ

(
aτ + b

cτ + d

)
= χ′(d)ηχ(τ)χ(d) ×


ζab5 , ∆ = 5

ζa−d+bc−8b
16 , ∆ = 8

1 , ∆ > 8

.
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4.9 Γ(N) and regular polyhedron

It is known that the finite groups acting faithfully on C∞ are exactly

Zn the cyclic group of order n,
Zn o Z2 the dihedral group of order 2n,
A4 the symmetries of the tetrahedron of order 12,
S4 the symmetries of the octahedron of order 24,
A5 the symmetries of the icosahedron of order 60.

For the modular group, it turns out that restricting to normal subgroups of genus 0 puts a restriction
on the first two types, and there is a finite list of possible groups. First, for any subgroup Γ with
µ = [Γ(1) : Γ], let e2 (resp. e3, e∞) denote the number of equivalent classes under Γ of the points
Γ(1)(i) (resp. Γ(1)(e(1

3
)), Γ(1)(∞)). Thus, em = εm + µ−εm

m
for m = 2, 3,∞ since e∞ = ε∞. Next,

suppose that Γ is a normal subgroup of Γ(1). This means that the order of any point is same, and
therefore that em|µ for m = 2, 3,∞. Thus, in this case we can define nm by

µ = n2e2 = n3e3 = n∞e∞,

and this corresponds to the triplet (n2, n3, n∞) describing the branching information of Γ. The genus
formula may be rearranged as

2− 2g

µ
=

1

n2

+
1

n3

+
1

n∞
− 1. (4.9.1)

Note that n2 is either 1 or 2 and n3 is either 1 or 3, while n∞, which is the width of any cusp, has
no such restriction. An easy consequence is that µ ≡ 0 mod 6 if µ > 3. Also, if Γ2 E Γ1 E Γ(1), then
each nm(Γ1) divides nm(Γ2).

Proposition 4.9.1. If Γ is a proper normal subgroup of Γ(1) with finite index and genus 0, then Γ
is one of the following:

Γ Γ(1)/Γ Γ Γ(1)/Γ
Γ2 Z2 Γ(3) A4

Γ3 Z3 Γ(4) S4

Γ(2) S3 ' Z3 o Z2 Γ(5) A5

Proof. We first deal with the case n2 = n3 = 1. In this case, (4.9.1) is 2
µ

= 1+ 1
n∞

and so µ = 1 = n∞.

So in this case, Γ = Γ(1). Next, suppose that n2 = 1 and n3 = 3, so that 2
µ

= 1
3

+ 1
n∞

. Since µ ≥ n∞
this implies that µ = 3 and that Γ = Γ3 as this is the only normal subgroup of index 3. Next, suppose
that n2 = 2 and n3 = 1, so that 2

µ
= 1

2
+ 1

n∞
. Since µ ≥ n∞ this implies that µ = 2 and that Γ = Γ2

as this is the only normal subgroup of index 2. Next, suppose that n2 = 2 and n3 = 3, so that
2
µ

= −1
6

+ 1
n∞

. This implies that n∞ = 2, 3, 4, 5 with corresponding µ = 6, 12, 24, 60. Set G = Γ(1)/Γ

so that µ = |G|. We will first determine G up to isomorphism and then Γ exactly. Note that G is
generated (modulo Γ) by S, ST and T with S2 = (ST )3 = T n∞ = 1.

First, suppose that |G| = 6, (2, 3, 2). Since S has order 2 and ST has order 3 but their product T
has order 2 (not 6), G cannot be Abelian, and so G ' S3.

Next, suppose that |G| = 12, (2, 3, 3). A Sylow 3 subgroup cannot be normal, because otherwise
its quotient would correspond to a normal subgroup of Γ(1) of index 4 which doesn’t exist. Since A4

is the only group of order 12 that doesn’t have a normal Sylow 3 subgroup, G ' A4.
Next, suppose that |G| = 24, (2, 3, 4). As before, there are 4 Sylow 3 subgroups, and we obtain a

homomorphism φ : G→ S4 by the action of G on the 4 Sylow 3 subgroups where imφ ' A4, S4 since
these are the only transitive subgroups of S4 whose order is divisible by 6. If imφ = A4, then this

57



corresponds to another normal subgroup Γ1 of index 12. The only group with index 12 corresponds
to the triplet (2, 3, 3), which does not divide the triplet (2, 3, 4). Hence imφ = S4 and so G ' S4.

Finally, suppose that |G| = 60, (2, 3, 5). Since the only triplets dividing (2, 3, 5) are the trivial
ones, G must be simple. Standard group theory arguments using the Sylow 2 subgroup show that A5

is the only simple group of order 60.
To finish the proof, we need to show that Γ(N) is the only possibility for Γ when the branching

information is (2, 3, N) (and g = 0). By Proposition 4.3.1, the groups Γ(2),Γ(3),Γ(4),Γ(5) have the
correct indexes in Γ(1), that is

µ =
12N

6−N
= [Γ(1) : Γ(N)] =

{
1
2
N3
∏

p|N

(
1− 1

p2

)
, N ≥ 3

6 , N = 2
,

for N = 2, 3, 4, 5. Consider Γ∩Γ(N) for N = 2, 3, 4, 5. We know that Γ∩Γ(N) is a normal subgroup
of Γ, but be do not know a priori that the genus of Γ ∩ Γ(N) is 0. However, we are given that both
Γ and Γ(N) have cusp width N , and so Γ ∩ Γ(N) has cusp width N . This means that the branching
data of Γ ∩ Γ(N) is (2, 3, N) and if µ and g denote the index and genus of Γ ∩ Γ(N), we have

2− 2g

µ
=

1

2
+

1

3
+

1

N
− 1.

Since the right hand side is strictly positive for N = 2, 3, 4, 5, g is forced to be 0 and µ is forced to be
12N/(6−N). This means that [Γ(1) : Γ ∩ Γ(N)] = [Γ(1) : Γ(N)], which forces Γ = Γ(N).

Although we deduced that there is only one normal subgroup of genus 0 with branching data
(2, 3, N) for N = 2, 3, 4, 5, this result does not need to hold for higher genera. For example, all normal
subgroups of genus 1 have branching data (2, 3, 6), and there are infinitely many of them ([13]).

Having classified all of the normal subgroup Γ of Γ(1) with genus 0, let us turn now to the
problem of constructing the spaces Mk(Γ) for these Γ. The groups Γ2 and Γ3 are not very interesting,
as (Exercise 4.9.8)

A0(Γ2) = C(
√
j − 1728), A0(Γ3) = C(j1/3).

so let us turn to Γ(N) for N = 2, 3, 4, 5. Assuming that there is a Hauptmodul, say fN(τ), for these
Γ(N), it is possible to show that there is a Hauptmodul xN that is uniquely determined by

xN(τ) = q−
1
N (1 + integral powers of q).

Since Γ(N) is a normal subgroup of Γ(1), there must be constants A,B,C,D, depending on N , such
that

fN |T =
AfN +B

CfN +D
.

By rescaling the matrix M = ( A B
C D ), we may assume that one of its eigenvalues is 1. If the other

eigenvalue were 1, then ( A B
C D ) would be similar to either ( 1 1

0 1 ) or ( 1 0
0 1 ). The first is a contradiction

because M
N

= I since TN ∈ Γ(N). If the second were true then fN would be invariant under T and
so N divides ord∞(fN(τ) − fN(∞),Γ(N)) 6= 0, which is a contradiction because fN(τ) − fN(∞) is
also a Hauptmodul for Γ(N). We now have M = P−1( ζ 0

0 1 )P where ζ is an N th root of unity. Setting
xN = P (fN) gives xN |T = ζrNxN for some integer r and so q−r/NxN has an expansion in integral
powers of q. Since xN is also a Hauptmodul, r = ±1 and we choose r = −1 whicn gives xN a simple
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pole at ∞. It will be shown that the following functions are such Hauptmoduln for ΓN .

x2(τ) =
(q1/2; q1/2)8

∞ + (−q1/2;−q1/2)8
∞

2q1/2(q2; q2)8
∞

= q−
1
2 (1 + 20q − 62q2 + 216q3 − 641q4 + · · · ),

x3(τ) =
(q1/3; q1/3)3

∞ + 3q1/3(q3; q3)3
∞

q1/3(q3; q3)3
∞

= q−
1
3 (1 + 5q − 7q2 + 3q3 + 15q4 + · · · ),

x4(τ) =
(q2; q2)6

∞
q1/4(q; q)2

∞(q4; q4)4
∞

= q−
1
4 (1 + 2q − q2 − 2q3 + 3q4 + 2q5 + · · · ),

x5(τ) =
(q2; q5)∞(q3; q5)∞
q1/5(q; q5)∞(q4; q5)∞

= q−
1
5 (1 + q − q3 + q5 + q6 − q7 − 2q8 + · · · ).

(4.9.2)

A more uniform (but multi-valued) definition of the modular function xN is

xN =

j−
N−6
12N 2F1

( N−6
12N

, 5N−6
12N

N−1
N

∣∣∣1728
j

)
j−

N+6
12N 2F1

( N+6
12N

, 5N+6
12N

N+1
N

∣∣∣1728
j

)
= q−

1
N

(
1 + 120

N(N2−1)
q + 180(N−5)(3N2+21N+8)

N2(N+1)2(4N2−1)
q2 + · · ·

)
,

(4.9.3)

where j is the j function. This representation will be proven in Chapter 8 where Proposition 4.9.3
below can be utilized.

Proposition 4.9.2. For N = 2, 3, 4, 5, xN is a Hauptmodul for Γ(N) and xNN is a Hauptmodul for
Γ1(N). The action of T on x is given by

xN |T = ζ−1
N xN .

The action of S on xN is given in the following table.

N xN |S
2 8x+192

x−1

3 3x+18
x−3

4 2x+4
x−2

5 (1+
√

5)x+2

2x−1−
√

5

Proof. We only deal with the case N = 5 as the other cases are similar and simpler. By Proposition
4.7.2, x5 has the representation

x5(τ) = ζ−1
5

4∏
i=0

k 2
5
, i
5
(τ)

k 1
5
, i
5
(τ)

,

hence we see immediately from Proposition 4.7.5 that x5 ∈M !
0(Γ(5)). Next, suppose that a

c
is a cusp

of Γ(5) and that g = ( a bc d ) ∈ Γ(1). By Proposition 4.7.4,

1
5

orda
c
(x5,Γ(5)) =

4∑
i=0

(
frac

(
2a+ic

5

)
2

)
−

4∑
i=0

(
frac

(
a+ic

5

)
2

)
.

If (c, 5) = 1, it is easy to see that both of these sums are −2/5 (which is (1−N2)/12N when N = 5),
so x5 has no zeros or poles at these cusps. The only cusps of Γ(5) whose denominators are divisible by
5 are represented by 1

5
, 2

5
, where x5 has a simple pole and simple zero, respectively. We now know that
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x5 is a Hauptmodul for Γ(5) since x5 clearly has no poles in H. It is clear from the q-series expansion
of x5 that x5|T = ζ−1

5 x5. From this we can deduce that x5
5 ∈ A0(Γ1(5)) since Γ1(5) is generated by

Γ(5) and T . Since the cusps for Γ1(5) are a subset of the cusps for Γ(5), the only possible location of
a pole of x5

5 on H/Γ1(5) is at the cusp 1
5

(equivalent to ∞), where x5
5 has a simple pole with respect

to Γ1(5). Finally, by Propositions 4.7.3 and 4.7.1, the q-series expansion of x5|S is

x5|S = ζ−1
5

4∏
i=0

k i
5
,−2

5
(τ)

k i
5
,−1

5
(τ)

= −ζ3
5

1− ζ3
5

1− ζ4
5

(ζ2
5q

1/5; q1/5)∞(ζ3
5q

1/5; q1/5)∞
(ζ1

5q
1/5; q1/5)∞(ζ4

5q
1/5; q1/5)∞

=
1 +
√

5

2
+

5 +
√

5

2
q1/5 +

5 + 3
√

5

2
q2/5 +O(q3/5).

From these first few terms it is a simple matter to determine the constants A, B, C and D in the
relation

x5|S =
Ax5 +B

Cx5 +D
,

which must exist because x5|S is a Hauptmodul for Γ(5) since this is a normal subgroup of Γ(1).

Proposition 4.9.3. Let {f(z), z} denote the Schwarzian derivative

{f(z), z} =
f ′′′(z)

f ′(z)
− 3

2

(
f ′′(z)

f ′(z)

)2

.

Then,

{xN , j} =
1
2
(1−N−2)j(j − 1728)− 120j + 1327104

j2(j − 1728)2
.

Proof. Since the Schwarzian derivative is invariant under GL2(C) and Γ(1) acts on xN by a subgroup
of GL2(C), as a function of τ , {xN , j} is in A0(Γ(1)). We assert that in fact j2(j − 1728)2{xN , j}
is a polynomial of degree 2 in j. First at any point τ0 ∈ H that is not Γ(1) equivalent to either
i or e(1

3
), j(τ) has an expansion j(τ) = b0 + b1(τ − τ0) + · · · where b1 6= 0. Therefore, since the

function xN does not ramify anywhere, it has an expansion in the neighborhood of τ0 in the form
xN = a0 + a1(j − j(τ0)) + a2(j − j(τ0))2 + · · · where a1 6= 0. Therefore,

{xN , j} =
6 (a1a3 − a2

2)

a2
1

+
24(a3

2 − 2a1a3a2 + a2
1a4)

a3
1

(j − j(τ0)) + · · ·

remains finite at this location. In the neighborhood of i, j has an expansion j = 1728+b2(τ−i)2 + · · · ,
so xN has an expansion xN = a0 + a1(j − 1728)1/2 + a2(j − 1728)2/2 + · · · where a1 6= 0. Therefore,

(j − 1728)2{xN , j} =
3

8
+

3(a1a3 − a2
2)

2a2
1

(j − 1728) + · · ·

remains finite also at i. In the neighborhood of e(1
3
), xN has an expansion xN = a0+a1j

1/3+a2j
2/3+· · ·

where a1 6= 0. Therefore, we have the expansion

j2{xN , j} =
4

9
+

2(a1a3 − a2
2)

3a2
1

j4/3 + · · · ,

which, when taken with the previous three expansions, shows that j2(j − 1728)2{xN , j} has possible
poles only at ∞. At ∞ we have the expansions j = q−1 + 744 + · · · and xN = q−1/N(1 + b1q + · · · ),
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so xN has the expansion xN = j1/N(1 + a1j
−1 + a2j

−2 + · · · ) in terms of j. From this we obtain the
expansion

{xN , j} =
(

1
2
− 1

2N2

)
j−2 + · · · (decending powers of j),

which shows that j2(j−1728)2{xN , j} is a polynomial of degree 2 in j with leading coefficient 1
2
− 1

2N2 .
If P (j) denotes this polynomial, then the expansions of (j − 1728)2{xN , j} and j2{xN , j} show that
1728−2P (1728) = 3

8
and 1728−2P (0) = 4

9
, which uniquely determines the polynomial.

Proposition 4.9.4. For N = 2, 3, 4, 5, j(τ), j(Nτ), η(τ/N)24

η(Nτ)24 , η(τ)24

η(Nτ)24 have the following representa-

tions as rational functions of xN .

N j(τ) j(Nτ) η(τ/N)24

η(Nτ)24
η(τ)24

η(Nτ)24

2 (x2+192)3

(x2−64)2
(x2−48)3

x2−64
(x− 8)3 x2 − 64

3 x3(x3+216)3

(x3−27)3
x3(x3−24)3

x3−27
(x− 3)8 (x3 − 27)2

4 (x8+224x4+256)3

x4(x4−16)4
(x8−16x4+16)3

x4(x4−16)
(x− 2)15(1 + 2x−1)3 (x4 − 16)3

5 (x20+228x15+494x10−228x5+1)3

x5(x10−11x5−1)5
(x20−12x15+14x10+12x5+1)3

x25(x10−11x5−1)
(x− 1− x−1)24 (x5 − 11− x−5)4

Proof. Let us first show that

j(τ) =
A(xN)3

C(xN)N
= 1728 +

B(xN)2

C(xN)N
,

where A, B, and C are polynomials of degrees 4N
6−N , 6N

6−N , and 6+N
6−N . Then using the fact that these

rational functions should contain only powers of xN that are divisible by N , it is easy to compute
the coefficients of A, B and C by comparing the q-series expansions. At every cusp of H/Γ(N) j(τ)
has a pole of order N . Since x has a pole at the cusp ∞, the degree of C should be µ/N − 1, where
µ = [Γ : Γ(N)] = 12N/(6−N). At every point in Γ(1)(i)/Γ(N), j(τ)− 1728 has a double zero, hence
B has degree µ/2. Similarly, A must have degree µ/3.

By the same reasoning,

j(Nτ) =
A′(xN)3

C ′(xN)
= 1728 +

B′(xN)2

C ′(xN)
,

where A′, B′, and C ′ are polynomials of degrees µ/3, µ/2, and µ − N2. C ′ has a different degree
from C because j(Nτ) has a pole of order N2 at ∞. In this case the order of j(Nτ) is slight more
difficult to calculate at the cusps of Γ(N) since the order of the pole of j(Nτ) at the cusp a

c
of Γ(N)

is gcd(c,N)2. We will explain the factorization of C ′ in the cases of N = 4, 5. Two cusps of Γ(5)
are 1

5
and 2

5
, and j(5τ) has a pole of order 25 at each of these. Since 1

5
is equivalent to ∞, this cusp

does not contribute any factor to C ′, but 2
5

contributes a factor x25. All of the other cusps of Γ(5)
have gcd(c, 5) = 1, so they contribute simple factors to C ′. The cusps of Γ(4) are 1

1
, 1

2
, 1

3
, 1

4
, 2

1
, 4

1
, which

contribute factors to C ′ of multiplicities 1, 4, 1, 0, 1, 1.
The identities for the η quotients are left as exercises.

Proposition 4.9.5. For N = 2, 3, 4, 5, set yN(τ) = xN( τ
N

)N .

1. yN(τ) is a rational function of xN(τ) of degree N . Explicitly,

N yN in terms of xN

2 (x+24)2

x+8

3 (x+6)3

x2+3x+9

4 (x+2)4

x(x2+4)

5 x(x4+3x3+4x2+2x+1)
x4−2x3+4x2−3x+1
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2. xN(τ) is expressible in terms of yN(τ) and radicals. Specifically, there are constants A,B, . . . , C ′, D′,
depending on N , such that (

AxN +B

CxN +D

)N
=
A′yN +B′

C ′yN +D′
.

Proof. (1). Since xN(τ)N ∈M !
0(Γ1(N)) and(

1 0
0 N

)(
a b
c d

)(
1 0
0 N

)−1

=

(
a b

N

Nc d

)
∈ Γ1(N),

if ( a bc d ) ∈ Γ(N), it follows that yN = xN( τ
N

)N ∈ M !
0(Γ(N)). We claim that yN has poles only at

the cusps 1
1
, 1

2
, · · · , 1

N
of H/Γ(N) at that these are all simple poles. From this claim it follows that

yN = RN(xN) where RN is some rational function of degree N . In order to prove this claim, recall
that xN has a pole only at the cusp 1

N
(similar to 1

0
) of H/Γ(N). Therefore, yN has a pole at a

c
if and

only if a
NC

is equivalent to 1
0
. Writing a

Nc
in lowest terms (assuming gcd(a, c) = 1), we need(

a

gcd(a,N)
,

Nc

gcd(a,N)

)
≡ (±1, 0) mod N.

This implies that gcd(a,N) divides c, which means that gcd(a,N) = 1, and so a ≡ ±1 mod N . Next,
to find the order of yN at the cusp 1

k
, notice that

yN

(
τ

kτ + 1

)
= xN

(
1

N

τ

kτ + 1

)N
= xN

( τ
N

Nk τ
N

+ 1

)N
= xN

( τ
N

)N
= q−1/N + · · · ,

which shows that yN has a simple pole at 1
k

as claimed.
(2). Let the constants A,B,C,D be determined by the action of S on xN , i.e.

xN |S =
AxN +B

CxN +D
.

First, we have (
0 −1
N 0

)(
a b
c d

)(
0 −1
N 0

)−1

=

(
d − c

N

−Nb a

)
∈ Γ1(N),

if ( a bc d ) ∈ Γ1(N). This means that xN(−1
Nτ

)N is invariant under Γ1(N) so xN(−1
Nτ

)N = FN(xN(τ)N)
where FN is a rational function. We have already shown that

xN

( τ
N

)N
= RN(xN(τ)),

where RN is a rational function of degree N . Replacing τ with −N
τ

in this equation gives

xN
(−1
τ

)N
= RN

(
xN
(−N

τ

))
,
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or (
AxN +B

CxN +D

)N
= RN

(
Ay

1/N
N +B

Cy
1/N
N +D

)
.

Replacing τ by τ
N

in xN(−1
Nτ

)N = FN(xN(τ)N), we derive an equation of the form(
AxN +B

CxN +D

)N
= FN (yN) .

Comparing these last two equation and keeping in mind that RN is a rational function of degree N ,
we see that FN must be a rational function of degree 1 and the assertion of the proposition holds.

Proposition 4.9.6.

Mk(Γ(3)) =
⊕
a+b=k
a,b≥0

C
η(3τ)3aη(τ/3)3b

η(τ)k
,

Mk(Γ(4)) =
⊕

a+b=2k
a,b≥0

Cη(4τ)2b−2aη(2τ)5a−bη(τ)−2a,

Mk(Γ(5)) =
⊕

a+b=5k
a,b≥0

C
η(5τ)15k

η(τ)3k
k 1

5
, 0
5
(5τ)ak 2

5
, 0
5
(5τ)b.

Proof. For N = 3, 4, 5, these bases for Mk(Γ(N)) follow from the observation that there is a fN(τ) ∈
M !
−1(Γ(N)) with a pole only at ∞. Specifically,

f3(τ) =
η(τ)

η(3τ)3
,

f4(τ) =
η(2τ)2

η(4τ)4
,

f5(τ) =
η(τ)3

η(5τ)15k 1
5
, 0
5
(5τ)5

,

with poles only at ∞ of orders 1, 2 and 5, respectively. It follows that if f ∈ Mk(Γ(N)), then
fkNf ∈ M !

0(Γ(N)) and has a pole at ∞ of order at most k, 2k, 5k, respectively, and thus is a
polynomial in xN of at most this degree.

Let us prove the claim about f5. We first observe that η(5τ)5

η(τ)
∈M !

2(Γ(5)) by Proposition 4.8.2 and

k 1
5
, 0
5
(5τ) ∈M !

−1(Γ(5)) by Proposition 4.7.5. Since, by Propositions 4.7.4 and 4.8.1,

1
5

orda
c

(
η(τ)3

η(5τ)15k 1
5
, 0
5
(5τ)5

,Γ(5)

)
=

3

24

gcd(1, c)2

1
− 15

24

gcd(5, c)2

5
− 5

4∑
i=0

(
frac

(
a+ic

5

)
2

)

=


−1 , a

c
≡ 1

5
mod Γ(5)

0 , a
c
≡ 2

5
mod Γ(5)

2 , otherwise

,

the claim for f5 is verified.

Exercise 4.9.7. Obtain and explain the formulas for the η quotients in Proposition 4.9.4.
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Exercise 4.9.8. Show the following. Sections 4.4 and 4.5 will be helpful, and one should recall the
definitions of Γ2 and Γ3 in Section 2.11.

1. Γ2 (resp. Γ3) is the only normal subgroup of Γ(1) of index 2 (resp. 3).

2. Γ
2

is freely generated by ( −1 −1
1 0 ) and ( 0 −1

1 −1 ), each of order 3.

3. Γ
3

is freely generated by ( 0 −1
1 0 ), ( 1 −1

2 −1 ) and ( 1 −2
1 −1 ), each of order 2.

4. The commutator subgroup Γ(1)′ of Γ(1) is Γ
2 ∩ Γ

3
, has genus 1, and is freely generated by ( 1 1

1 2 )
and ( 2 1

1 1 ).

5. A0(Γ2) = C(
√
j − 1728).

6. A0(Γ3) = C(j1/3).

7. A0(Γ2 ∩ Γ3) = C(j1/3,
√
j − 1728)

4.10 Representations by x2 + y2

Proposition 4.10.1. For any integer k ≥ 1

1. Θ3(2τ)2k ∈Mk(Γ1(4)).

2. dimMk(Γ1(4)) = bk+2
2
c.

3. dimSk(Γ1(4)) = max(bk−3
2
c, 0).

Proof. (1). Exercise 2.12.5 gives

Θ3

(
aτ + b

cτ + d

)
=
( c
d

)
e

(
d− 1

8

)√
cτ + d Θ3(τ)

for any ( a bc d ) ∈ Γϑ with d odd. Since(
2 0
0 1

)(
a b
c d

)(
2 0
0 1

)−1

=

(
a 2b
c
2

d

)
∈ Γϑ

if ( a bc d ) ∈ Γ1(4), it follows that Θ3(2τ)2 ∈M1(Γ1(4)).
(2). Proposition 4.9.6 gives

Mk(Γ(4)) =
⊕

a+b=2k
a,b≥0

Cη(4τ)2b−2aη(2τ)5a−bη(τ)−2a.

Since Mk(Γ1(4)) is the subspace of Mk(Γ(4)) consisting of forms with expansions in integral powers
of q and

η(4τ)2b−2aη(2τ)5a−bη(τ)−2a = qb/4(q4; q4)2b−2a
∞ (q2; q2)5a−b

∞ (q; q)−2a
∞ ,

we must have
Mk(Γ1(4)) =

⊕
a+b=2k
a,b≥0

b≡0 mod 4

Cη(4τ)2b−2aη(2τ)5a−bη(τ)−2a,

which implies that dimMk(Γ1(4)) = bk+2
2
c.

(3). M5(Γ1(4)) is spanned by the three functions fi in the following table, where the orders are
given at the cusps. Note that the cusps of Γ1(4) are representated by 1

0
, 0

1
, and 1

2
, with widths 1, 4,

and 1.
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fi
η(2τ)50

η(τ)20η(4τ)20

η(2τ)26

η(τ)12η(4τ)4

η(2τ)2η(4τ)12

η(τ)4

ord 1
0
(fi,Γ1(4)) 0 1 2

ord 0
1
(fi,Γ1(4)) 0 0 0

ord 1
2
(fi,Γ1(4)) 5

2
3
2

1
2

If A 6= 0, then f2 + Af3 has a zero of lowest possible order at the two cusps 1
0

and 1
2
. Lets try to

determine A so that it also has a simple zero at the cusp 0
1
.

η(2τ)26

η(τ)12η(4τ)4
+ A

η(2τ)2η(4τ)12

η(τ)4

∣∣∣
S,5

= −
iAη

(
τ
4

)12
η
(
τ
2

)2

8192η(τ)4
−

iη
(
τ
2

)26

512η
(
τ
4

)4
η(τ)12

=
(A+ 16) + (64− 12A)q1/4 +O(q2/4)

8i
.

With A = −16, we see that there is a form f2 − 16f3 ∈ S5(Γ1(4)) with simple zeros at the regular
cusps and a zero of order 1

2
at the irregular cusp. Also, f2 − 16f3 has no zeros on H by the valence

formula. It follows that Sk(Γ1(4)) = (f2 − 16f3)Mk−5(Γ1(4)).

Proposition 4.10.2.

Θ3(2τ)2 = 2ie1
0
4
, 1
4

= 1 + 4
∞∑
n=1
2-n

(−1)
n−1

2
qn

1− qn
,

Θ3(2τ)4 = 3e2
0
4
, 0
4
− 2e2

0
4
, 1
4
− 1e2

0
4
, 2
4

= 1 + 8
∞∑
n=1
4-n

nqn

1− qn
,

Θ3(2τ)6 = −2ie3
0
4
, 1
4
− 1

4

3∑
j=0

e3
1
4
, j
4

= 1 + 16
∞∑
n=1

n2qn

1 + q2n
− 4

∞∑
n=1
2-n

(−1)
n−1

2
n2qn

1− qn
,

Θ3(2τ)8 = 15
2
e4

0
4
, 0
4
− 1e4

0
4
, 1
4
− 1

2
e4

0
4
, 2
4

= 1 +
∞∑
n=1

n3qn

1− qn
·

{
12 , n ≡ 2 mod 4

16 , otherwise
.

4.11 Building congruence modular forms from Θ functions

Riemann’s Θ function with characteristic [ αβ ] ∈ R2×g is defined as

Θ [ αβ ] (z|Ω) =
∑
n∈Zg

e
(

1
2
(n+ α).Ω.(n+ α) + (z + β).(n+ α)

)
,

where z ∈ Cg and Ω ∈ Cg×g is symmetric with positive definite imaginary part so that the sum is
absolutely convergent. The Θ function without characteristics is defined as Θ(z|Ω) = Θ [ 0

0 ] (z|Ω).
Since

Θ [ αβ ] (z|Ω) = e(α.(z + β) + 1
2
α.Ω.α)Θ(z + α.Ω + β|Ω),

the function with characteristics is no more general but is slightly more convenient to work with. We
will mainly make use of this function in the case z = 0 and Ω = τQ where τ is the usual variable in H
and Q is a symmetric positive definite matrix in Qg×g. In this case set ΘQ [ αβ ] (τ) = Θ [ αβ ] (τQ). When
the variable z is set to zero, it is commonly omitted from the notation so that Θ [ αβ ] (Ω) = Θ [ αβ ] (0|Ω).
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Note that Riemann’s Θ function doesn’t change much if the characteristics change in sign or by integer
vectors, i.e.

Θ
[ −α
−β
]

(Ω) = Θ [ αβ ] (Ω),

Θ
[
α+s
β+t

]
(Ω) = e(α.t)Θ [ αβ ] (Ω), s, t ∈ Zg.

Proposition 4.11.1. We have the following properties of Θ [ αβ ] (z|Ω).

1. Quasi-periodicity: For any s, t ∈ Zg,

Θ
[
α+s
β+t

]
(z|Ω) = e(α.t)Θ [ αβ ] (z|Ω),

Θ [ αβ ] (z + s.Ω + t|Ω) = e(α.t− β.s− 1
2
s.Ω.s− s.z)Θ [ αβ ] (z|Ω).

2. Parity for half-integer characteristics: If α, β ∈ 1
2
Zg, then

Θ [ αβ ] (−z|Ω) = (−1)4α.βΘ [ αβ ] (z|Ω).

3. For any A,B,C,D ∈ Zg×g such that G = ( A B
C D ) is a symplectic matrix, i.e.(

A B
C D

)(
0 I
−I 0

)(
Aᵀ Cᵀ

Bᵀ Dᵀ

)
=

(
0 I
−I 0

)
,

and ABᵀ, CDᵀ have even diagonal, there is an eighth root of unity ε(G), depending only on G
and the choice of the square root such that

Θ [ αβ ]
(
z.(CΩ +D)−1|(AΩ +B)(CΩ +D)−1

)
= ε
√

det(CΩ +D)e
(

1
2
z.(CΩ +D)−1C.z

)
×e(−1

2
α.ABᵀ.α− α.BCᵀ.β − 1

2
β.CDᵀ.β)Θ

[
α.A+β.C
α.B+β.D

]
(z|Ω)

We first give the behavior of ΘQ [ αβ ] (τ) under the generators of Γ(1). Proposition 4.11.2 implies
that the functions {

ΘQ [ αβ ] (τ) | α, β ∈ 1
N
Zg mod 1, β.Q−1 ∈ 1

N
Zg
}

are transformed linear among themselves (in weight g/2) by Γ(1), as well as the same for the functions{
ΘQ [ α0 ] (τ) | α ∈ 1

N
Zg mod 1, α.Q ∈ Zg

}
.

Thus we obtain a homomorphism from Γ(1) to GLk(C) for some k. Proposition 4.11.3 shows that the
kernel of this homomorphism is a congruence subgroup, and we will work out explicit examples in the
case when Q corresponds to the quadratic form x2 + xy + y2 and other interesting forms as well.

Proposition 4.11.2. Suppose that Q ∈ Zg×g has even diagonal and that N is a positive integer with
NQ−1 ∈ Zg×g. Then

ΘQ [ αβ ] (τ + 1) = e
(
−1

2
α.Q.α

)
ΘQ [ α

β+α.Q ] (τ),
√

detQ

(−iτ)g/2
ΘQ [ αβ ]

(
− 1
τ

)
= e(−α.β)

∑
r∈Zg/NZg

Q.r≡0 mod N

ΘQ

[
r
N
−β.Q−1

α.Q

]
(τ).
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Proposition 4.11.3. Suppose that Q ∈ Qg×g is symmetric and positive definite. If g = ( a bc d ) ∈ Γ(1)
is such that bQ, cQ−1 are integral and abQ, cdQ−1 have even diagonals. Then,

ΘMQMᵀ [ αβ ] (τ) = ΘQ

[
α.M
β.M−ᵀ

]
(τ), M ∈ GLg(Z),

ΘQ−1 [ αβ ]
(
− 1
τ

)
= e(−α.β)

√
det(−iτQ)ΘQ

[
β
−α
]

(τ),

ΘQ [ αβ ]
(
aτ+b
cτ+d

)
= e

(
−1

2
abα.Q.α− bcα.β − 1

2
cdβ.Q−1.β

)
× εQ(c, d)(cτ + d)g/2ΘQ

[
aα+cQ−1.β
bQ.α+dβ

]
(τ),

Here the quantity εQ(c, d), depending only on c and d, is the eighth root of unity

εQ(c, d) =
cg/2

(cd)g/2

∑
n∈Zg/dZg

ζ−cn.Q
−1.n

2d

=
(ic)−g/2√

detQ

∑
n∈Zg/cZg

ζ+dn.Q.n
2c ,

where it is assumed that cdQ is integral with even diagonal in this last sum (so that it is well-defined).

Proposition 4.11.4. Let all of the hypothesis of Proposition 4.11.3 hold as well as the assumption
that cdQ is integral with even diagonal. For an automorphism σ ∈ Aut(Q(ζn)), let xσ denote σ(x)
and xσ−1 denote σ(x)/x.

1. If Q is integral and has even diagonal, then

εQ(c, d) =
(√

det icQ
)σ−1

, where σ : ζc 7→ ζdc .

2. If Q is integral and d is odd, then

εQ(c, d) =
(√

det icQ
)σ−1

, where σ : ζ2c 7→ ζd2c.

3. If Q ∈ Z2×2 has even diagonal, then

εQ(c, d) =

{(
d

detQ

)
, detQ odd(

2 detQ
d

)
ζd−1

8 , detQ even
.

Proof. (1).

4.12 Representations by x2 + xy + y2 other quadratic forms

The quadratic form x2 + xy + y2 arises from the case Q = ( 2 1
1 2 ). Let us save space notationally by

writing Θ [ αβ ] (τ) = Θ
[
α/3
β/3

]
(( 2τ 1τ

1τ 2τ )) for the time being. Propositions 4.11.3 and 4.11.4 give

Θ
[

0,0
0,0

]
|g(τ) =

(
d
3

)
Θ
[

0,0
0,0

]
(τ),

Θ
[

1,1
0,0

]
|g(τ) = ζbd3

(
d
3

)
Θ
[

1,1
0,0

]
(τ),

Θ
[

0,0
1,2

]
|g(τ) = ζac3

(
d
3

)
Θ
[

0,0
1,2

]
(τ),

(4.12.1)
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for any g = ( a b
−3c d ) ∈ Γ0(3). These Θ functions, i.e.

Θ
[

0,0
0,0

]
(τ) =

∑
x,y∈Z2

qx
2+xy+y2

,

Θ
[

1,1
0,0

]
(τ) =

∑
x,y∈ 1

3
+Z2

qx
2+xy+y2

,

Θ
[

0,0
1,2

]
(τ) =

∑
x,y∈Z2

qx
2+xy+y2

ζx−y3 ,

are the three functions introduced in [3].

Proposition 4.12.1. For any integer k ≥ 1

1. Θ
[

0,0
0,0

]
(τ)k ∈Mk(Γ1(3)).

2. dimMk(Γ1(3)) = bk+3
3
c.

3. dimSk(Γ1(3)) = max(bk−3
3
c, 0).

Proof. The proof of these results is similar to Proposition 4.10.1. The form in S6(Γ1(3)) with a simple
pole at 1

0
(width 1) and a simple pole at 0

1
(width 3) is η(τ)6η(3τ)6, by Proposition 4.8.2.

Proposition 4.12.2.
Θ
[

0,0
0,0

]
(τ)3 = Θ

[
1,1
0,0

]
(τ)3 + Θ

[
0,0
1,2

]
(τ)3

Proof. By (4.12.1), the three functions Θ
[

0,0
0,0

]
(τ)3, Θ

[
1,1
0,0

]
(τ)3, Θ

[
0,0
1,2

]
(τ)3 are all in M3(Γ1(3)).

Since this space has dimension 2 by Proposition 4.12.1, there must be a nontrivial linear relation
between these functions. This is easily found using the first three terms of the q-series expansions.

Proposition 4.12.3. Let χ be the odd character modulo 6. Then,

Θ
[

0,0
0,0

]
(τ) = 2

√
−3e 0

3
, 1
3
(τ) = 1 + 6

∞∑
n=1

χ(n)qn

1− qn
.

This concludes the study of the quadratic form Q = ( 2 1
1 2 ). We will now focus unimodular lattices,

and in particular on the E8 lattice. The E8 lattice is defined as

E8 = {(x1, . . . , x2) ∈ Z8 ∪ (Z + 1
2
)8 | x1 + · · ·+ x8 ∈ 2Z}.

A basis for the E8 lattice can be given as the columns of the matrix

A =



0 0 0 0 0 1 −1 −1/2
0 0 0 0 1 −1 −1 1/2
0 0 0 1 −1 0 0 1/2
0 0 1 −1 0 0 0 1/2
0 1 −1 0 0 0 0 1/2
1 −1 0 0 0 0 0 1/2
−1 0 0 0 0 0 0 1/2
0 0 0 0 0 0 0 −1/2


.
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Note that detA = −1. The associated quadratic form is

Q8 = AᵀA =



2 −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 −1 0
0 0 0 0 −1 2 0 −1
0 0 0 0 −1 0 2 0
0 0 0 0 0 −1 0 2


.

Proposition 4.12.4. Let Q ∈ Zg×g be a symmetric positive definite matrix with even diagonal and
detQ = 1.

1. g ≡ 0 mod 8

2. ΘQ(τ) ∈Mg/2(Γ(1)).

Proof. (1). By Proposition 4.11.3 with α = β = 0 and M = Q−1, we have ΘQ−1(− 1
τ
) = ΘQ(− 1

τ
) =

(iτ)g/2ΘQ(τ) and ΘQ(τ + 1) = ΘQ(τ). Therefore,

ΘQ(τ) = (i/τ)g/2ΘQ(1− 1
τ
).

Iterating this three times gives ΘQ(τ) = (i/τ)g/2(iτ/(τ−1))g/2(i(1−τ))g/2ΘQ(τ). Since ΘQ(τ) clearly
does not vanish identically, this implies that(

i

τ

)g/2(
iτ

τ − 1

)g/2
(i(1− τ))g/2 = 1.

Setting τ = e(1
3
) and simplifying, we find that the left hand side is ζg8 . Thus, g ≡ 0 mod 8.

(2). This is now clear since ΘQ(τ) =
∑

n∈Zg q
1
2
n.Q.n has a q-series exansion in non-negative powers

of q.

We can derive from this proposition the fact that ΘQ8 [ 0
0 ] (τ) ∈M4(Γ(1)), and so

E4(τ) = ΘQ8(τ)

=
∑
x∈Z8

qx
2
1+x2

2+x2
3+x2

4+x2
5+x2

6+x2
7+x2

8−x1x2−x2x3−x3x4−x4x5−x5x6−x5x7−x6x8

4.13 Subgroups up to index 7: non-congruence examples

Recall that if a subgroup Γ of Γ(1) contains some Γ(N) then it is called a congruence subgroup. In
this section we are concerned with the elements of Γ(1) only up to their action on H, so we suppress
the bars over all of the subgroups of Γ(1). For any subgroup Γ and cusp α ∈ Q, let hΓ(α) denote the
width of the cusp α for Γ. Also, let Γc, called the congruence closure of Γ, be the smallest congruence
subgroup of Γ(1) that contains Γ. Clearly, Γ is a congruence subgroup if and only if Γ = Γc. The
following proposition relates Γ, Γc and level(Γ).

Proposition 4.13.1. Suppose [Γ(1) : Γ] <∞. Set N = level(Γ) and let φ : Γ(1)→ PSL2(Z/NZ) be
the map that reduces matrices modulo N . Let φ−1 take subgroups of PSL2(Z/NZ) to the corresponding
groups between Γ(1) and Γ(N). Then, Γc = φ−1(φ(Γ)).
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Remark 4.13.2. There are much faster ways for testing if Γ is a congruence subgroup and computing
the congruence closure using presentations for PSL2(Z/NZ). See [16]. The main result for odd N

is: Γ is congruence iff (R2T
N−1

2 )3 acts trivially on the cosets Γ(1)\Γ. Recall that R = ( 1 0
1 1 ) and

T = ( 1 1
0 1 ).

Proposition 4.13.3. Suppose Γ is a congruence subgroup of level N . Then, if Γ ≥ Γ(l) then N | l.

Proof. Exercise.

The following Proposition, due to Wohlfart, says that the level of a congruence subgroup Γ is the
smallest l satisfying Γ ≥ Γ(l).

Proposition 4.13.4. Suppose Γ is a congruence subgroup of level N . Then, Γ ≥ Γ(N) and

N = lcm(hΓ(0), hΓ(1), hΓ(∞)).

Proof. Set m = lcm(h(0), h(1), h(∞)). Since the hypothesis is that Γ is a congruence subgroup, let l
be such that Γ ≥ Γ(l). Since Γ ≥ Γ(l) and the width of every cusp for Γ(l) is l, l must be a multiple of
each of these three widths h(0), h(1), h(∞), and so m | l. Let M = ( a bc d ) ≡ I mod m be any matrix
in Γ(m). We must show that M ∈ Γ. By multiplying by powers of ( 1 m

0 1 ) and ( 1 0
m 1 ), which are in

both Γ and Γ(m), we may make some simplifying assumptions on M .

• gcd(d, l) = 1. Note that ( a bc d )( 1 m
0 1 )n1 = ( a b+amn1

c d+cmn1
). Since gcd(d,mc) = 1 by the assumption

M ∈ Γ(m), there is an integer n1 so that gcd(d + cmn1, l) = 1 (for example, since d + cmZ
contains infinitely many primes).

• b ≡ 0 mod l. Note that ( 1 m
0 1 )n2( a bc d ) = ( a+cmn2 b+dmn2

c d ). Since m | b and gcd(d, l) = 1, there is
a n2 such that b+ dmn2 ≡ 0 mod l.

• c ≡ 0 mod l. Note that ( a bc d )( 1 0
m 1 )n3 = ( a+bmn3 b

c+dmn3 d ). Since m | c and gcd(d, l) = 1, there is a n3

such that c+ dmn3 ≡ 0 mod l.

Therefore, we may assume M ≡ ( a 0
0 d ) mod l where ad ≡ 1 mod l. However, modulo l, M is congruent

to M ′, where M ′ = ( a ad−1
1−ad d(2−ad) ). Therefore, there is a matrix L ∈ Γ(l) ≤ Γ with M = LM ′. M ′ can

be written as the product of three matrices with trace 2 as

M ′ =

(
1 0

d− 1 1

)(
a 1− a

a− 1 2− a

)(
1 1− d
0 1

)
.

The last matrix in this product fixes∞, and h(∞)|1− d because d ≡ 1 mod m. This implies that the
last matrix is in Γ. Dido for the second matrix (= ( 1 0

1 1 )( 1 1−a
0 1 )( 1 0

1 1 )−1) and the cusp 1. Dido for the
first matrix and the cusp 0.

Finally, let N denote the level of Γ, that is, lcm({hΓ(α)}α∈Q). We have just seen that Γ ≥ Γ(m).
However, we have m|N by the definition of m, and N |m by Proposition 4.13.3. Therefore, N = m.

The number of subgroups of Γ and size of the conjugacy classes as computed in [14] are as follows.

index 1 2 3 4 5 6 7

No. of subgroups 1 1 4 8 5 22 42
No. of conjugacy classes 1 1 2 2 1 8 6
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All of the subgroups Γ of Γ(1) with index ≤ 7 except Γ2 ∩ Γ3 have genus 0. It turns out that if we
assume the existence of a Hauptmodul, xΓ, for each of these genus 0 subgroups Γ, we can find xΓ as an
explicit algebraic function of j. Let us illustrate with, for example, the conjugacy class of subgroups
of index 7 in Table 4.1 with (ε∞, ε2, ε3) = (2, 1, 1) and cusp widths 5 + 2. We first fix x by putting its
pole at the cusp with width 5 (and setting its residue to be 1) and its zero at the cusp with width 0.
Since there is one elliptic point of each order for this subgroup, we have an equation of the form

j =
(x+ a1)(x2 + a2x+ a3)3

x2
= 1728 +

(x+ b1)(x3 + b2x
2 + b3x+ b4)2

x2
.

It is possible to determine the constants ai and bi algebraically by equating coefficients on powers
of x. It turns out that there are five distinct sets of solutions, corresponding to the five conjugate
subgroups that have a cusp width of 5 at ∞. In the table, x has been rescaled so that the defining
relation with j is rational.

Note that the groups of index 7 in the last four entries in Table 4.1 are not congruence subgroups
because the least common multiples of the cusp widths are 6, 10 and 12, respectively, and none of
the indexes [Γ(1) : Γ(6)] = 72, [Γ(1) : Γ(10)] = 360, and [Γ(1) : Γ(12)] = 576 is divisible by 7. Let Γ52

denote the subgroup with cusp widths 5 + 2 and fundamental domain

1
1

◦ •

.

Note that once the locations of the two elliptic points are specified, there is only one way to pair
the edges while obeying the cusp widths of 5 and 2, so this defines a subgroup of Γ(1). Since Table
4.1 gives the Hauptmodul x as a explicit algebraic function of j, it is a simple matter to obtain the
q-series expansion of x from that of j. For the group Γ52, we have

x(τ) = 7 · 72/5q−1/5 − 28 +
278

72/5
q1/5 − 2540

7 · 74/5
q2/5 +

116185

343 · 71/5
q3/5 +

2924644

2401 · 73/5
q4/5 + · · · ,

x(1− 1/τ) =
512000

343
√
−7

q1/2 +
69632000

117649
q +

488364032000

40353607
√
−7

q3/2 +
340869677056000

96889010407
q2 + · · · .

The function x(τ) is a Hauptmodul for Γ52. The Hauptmoduln for the other six groups in this
conjugacy class are x(1− 1/(τ + i)), and x(τ + j) for i = 0, 1 and j = 1, 2, 3, 4.

As Γ52 is non-congruence and has prime index in Γ(1), its congruence closure must be the full
modular group Γ(1). Since x is clearly not invariant under Γ(1), we have the q-series expansion of a
modular function that is not invariant under Γ(N) for any N (so in particular, it cannot be written
in terms of the usual q-products). There are a few things to notice about the q-series coefficients of
the function x:

• The coefficients appear to have unbounded denominators. (The q-series expansions of the Haupt-
moduln for the congruence subgroups in Table 4.1 all have bounded denominators.)

• Any Galois extension of Q containing the q-series coefficients of x and its six conjugate is not
an Abelian extension.
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µ (ε∞, ε2, ε3) cusps Hauptmoduln conj.

2 (1, 0, 2) 2 j = x2 + 1728 1

3 (1, 3, 0) 3 j = x3 1

3 (2, 1, 0) 2 + 1 j = (x+16)3

x
3

4 (1, 2, 1) 4 j = x(x+ 1)3 4

4 (2, 0, 1) 3 + 1 j = (x+27)(x+3)3

x
4

5 (1, 1, 2) 5 j = x3(x2 − 5x+ 40) 5

6 (1, 0, 0) 6 genus 1 1
6 (1, 0, 3) 6 j = −27x3(x3 + 16) 2
6 (1, 4, 0) 6 j = 27(x2 + 4)3 3

6 (2, 2, 0) 3 + 3 j = x3(x+12)3

(x+9)3 3

6 (2, 2, 0) 4 + 2 j = x3(x+8)3

(x+4)2 3

6 (2, 2, 0) 5 + 1 j = (x2+10x+5)3

x
6

6 (3, 0, 0) 2 + 2 + 2 j = (x2+192)3

(x2−64)2 1

6 (3, 0, 0) 4 + 1 + 1 j = (x2+48)3

x2+64
3

7 (1, 3, 1) 7 j = x(x2 + 7+7
√
−7

2
x+ −35+7

√
−7

2
)3 7

7 (1, 3, 1) 7 j = x(x2 + 7−7
√
−7

2
x+ −35−7

√
−7

2
)3 7

7 (2, 1, 1) 6 + 1 j =
384(747−1763

√
−3)(x+9)(x2+(6+

√
−3)x+ 1

2
(3+
√
−3))3

823543x
7

7 (2, 1, 1) 6 + 1 j =
384(747+1763

√
−3)(x+9)(x2+(6−

√
−3)x+ 1

2
(3−
√
−3))3

823543x
7

7 (2, 1, 1) 5 + 2 j = (x+125)(x2+5x−1280)3

823543x2 7

7 (2, 1, 1) 4 + 3 j = (x+432)(x2+80x−3888)3

−823543x3 7

Table 4.1: The subgroups with [Γ(1) : Γ] ≤ 7 and their Hauptmoduln
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Exercise 4.13.5. Set α = −1+
√
−7

2
. Recall from Table 4.1 that supposedly there are 14 congruence

subgroups of index 7 with (ε∞, ε2, ε3) = (1, 3, 1), whose Hauptmoduln x satisfy

j = x(x2 − αx− 21− 7α)3 or ᾱ in place of α.

Since these are congruence subgroups, we should be able to solve for x in terms of q-products. Let us
first fix two of these groups, Γ7 and Γ̃7, by the fundamental domains

0 6

◦ ◦ ◦•

, 0 6

◦ ◦ ◦ •

,

respectively. The edge pairings for each of these fundamental domains are uniquely determined by the
locations of the elliptic points (shown with dots).

1. Show that Γ7 and Γ̃7 are congruence subgroups of level 7 by means of Proposition 4.13.1 via the
following steps.

(a) Show that Γ7 is freely generated by S, T 4ST−4, T 5ST−5, T 2ST−1

Show that Γ̃7 is freely generated by S, T 2ST−2, T 3ST−3, T 6ST−5.

(b) Let G and G̃ be the subgroups of PSL2(Z/7Z) ' Γ(1)/Γ(7) generated respectively by the
two sets of generators in (a) modulo 7. Show that G and G̃ have order 24 hence index 7
in PSL2(Z/7Z).

2. For j = 1, 2, 3, let uj(τ) = ±kj/7,0(7τ)η(7τ)3/η(τ), with the signs fixed by

u1(τ) = −q17/42(q; q7)∞(q6; q7)∞(q7; q7)∞/(q; q)∞,

u2(τ) = +q5/42(q2; q7)∞(q5; q7)∞(q7; q7)∞/(q; q)∞,

u3(τ) = +q−1/42(q3; q7)∞(q4; q7)∞(q7; q7)∞/(q; q)∞.

Show that u1η(τ)4, u2η(τ)4, u3η(τ)4 ∈ S2(Γ(7)). This is in fact a basis by Theorem 4.2.3.

3. Show that  u1η
4

u2η
4

u3η
4

 |T =

 ζ4
7 0 0
0 ζ2

7 0
0 0 ζ1

7

 u1η
4

u2η
4

u3η
4

 ,

 u1η
4

u2η
4

u3η
4

 |S =
1√
−7

 ζ6
7 − ζ1

7 ζ5
7 − ζ2

7 ζ3
7 − ζ4

7

ζ5
7 − ζ2

7 ζ3
7 − ζ4

7 ζ6
7 − ζ1

7

ζ3
7 − ζ4

7 ζ6
7 − ζ1

7 ζ5
7 − ζ2

7

 u1η
4

u2η
4

u3η
4

 .

4. Let xi = ζ3i
7 u

2
1 + ζ5i

7 u
2
2 + ζ6i

7 u
2
3 + α(ζ i7u1u3 + ζ2i

7 u2u3 + ζ4i
7 u1u2). Show that x0 is a Hauptmodul

for Γ7 ∩ Γ3, which is a subgroup of index 21 with (ε∞, ε2, ε3) = (1, 9, 1). Hint: show that
x0η

8 ∈ S4(Γ7). Recall also that η8 ∈ S4(Γ3).

5. Show that x3
0 is a Hauptmodul for Γ7 and that the x3

i are Hauptmoduln for the conjugates of Γ7.
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Chapter 5

Hecke Operators

5.1 Definition of the Hecke operators

5.2 Eigenforms

5.3 Newforms
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Chapter 6

Modular Forms mod p

6.1 The structure of modular forms on SL2(Z) mod p

6.2 The congruences for p(n) mod 5,7,11 are the Unique Ra-

manujan Congruences

6.3 24n ≡ 1 mod 5a7b11c implies p(n) ≡ 0 mod 5a7b
b
2c+111c
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Chapter 7

Modular Equations and Singular Values

7.1 Modular equations for j

Proposition 7.1.1 (Classical modular equation). For any integer n ≥ 2 there is a polynomial
Φn(X, Y ) of degree φ(n) = n

∏
p|n(1 + 1/p) in X and Y such that:

1. Φn(X, Y ) is irreducible.

2. Φn(X, Y ) is symmetric in X and Y .

3. Φn(X,X) has leading coefficient ±1 if n is not a square.

4. The zeros of Φn(X, j(τ)) occur exactly at the points

X = j

(
ατ + β

δ

)
,

αδ = n
0 ≤ β < δ
gcd(α, β, δ) = 1

.

Proof. This polynomial can be given as

Φn(X, Y ) =
∏
ad=n

0≤b<d
(a,b,d)=1

(
X − j

(
aτ + b

d

))
, (7.1.1)

where the coefficients of Xk on the right hand side should expressed as polynomials in Y for Y = j(τ).
...

Proposition 7.1.2 (Canonical modular equation). For any integer n ≥ 2 there is an irreducible
polynomial Ψn(X, Y ) of degree ψ(n) in X and Y such that Φn(fn(τ), j(τ)) = 0, where

fn(τ) =

(
η(nτ)

η(τ)

) 24
(24,n−1)

.
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7.2 Modular equations for the Weber functions

Weber’s functions are defined as

γ3(τ) =
√
j(τ)− 1728 =

E6(τ)

η(τ)12

γ2(τ) = (j(τ))1/3 =
E4(τ)

η(τ)8

f(τ) = ζ−1
48

η
(
τ+1

2

)
η(τ)

f1(τ) =
η
(
τ
2

)
η(τ)

f2(τ) =
η (2τ)

η(τ)

Proposition 7.2.1.

γ3(τ) ∈M !
0(Γ(2)),

γ2(τ) ∈M !
0(Γ(3)),

f(τ)24, f1(τ)24, f2(τ)24 ∈M !
0(Γ(2)),

f(τ)3, f1(τ)3, f2(τ)3 ∈M !
0(Γ(16)),

f(τ), f1(τ), f2(τ) ∈M !
0(Γ(48)).

7.3 Quadratic Forms

Let n < 0 be an square free integer and consider the field K = Q(
√
n)). The ring of integers in K

can be given as

OK =

{
Z + Z

√
n , n 6≡ 1 mod 4

Z + Z−1+
√
n

2
, n ≡ 1 mod 4

.

Therefore, the discriminant of K is given as

disc(K) =

{
4n , n 6≡ 1 mod 4

n , n ≡ 1 mod 4
. (7.3.1)

Definition 7.3.1.

1. A negative integer d is called a discriminant if d ≡ 0, 1 mod 4.

2. A negative integer ∆ is called a fundamental discriminant if it can be obtained from some square
free n by formula (7.3.1). These are the numbers ∆ such that

∆ ≡ 1 mod 4 and ∆ is square free

or ∆ ≡ 8, 12 mod 16 and ∆/4 is square free.

3. Any discriminant d can be written uniquely as d = f 2∆ where ∆ is a fundamental discriminant
and f > 0 is an integer. This f is called the conductor of the discriminant d.
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Definition 7.3.2. Associate with triple of integers (a, b, c) such that a > 0,b2− 4ac < 0 the following
objects

1. the positive definite quadratic form ax2 + bxy + cy2

2. the discriminant b2 − 4ac

3. τa,b,c = −b+
√
d

2a
∈ H

4. the following operation of Z2×2 on quadratics forms

M ∈ Z2×2 : ax2 + bxy + cy2 7→ aX2 + bXY + cY 2 with

(
X
Y

)
= M

(
x
y

)
.

Definition 7.3.3.

1. A quadratic form (a, b, c) is called reduced if

0 ≤ |b| ≤ a ≤ c and b ≥ 0 whenever a = |b| or a = c.

2. A quadratic form (a, b, c) is called primitive if gcd(a, b, c) = 1.

Proposition 7.3.4. Every quadratic form is equivalent (under Γ(1)) to a reduced form, and no two
distinct reduced forms are equivalent.

Proof. The condition for (a, b, c) reduced is exactly

|Re(τ)| ≤ 1

2
and |τ | ≥ 1 and Re(τ) ≤ 0 whenever |Re(τ)| = 1

2
or |τ | = 1.

for τ = −b+
√
d

2a
. This is exactly the fundamental domain for Γ(1).

Definition 7.3.5. Let H(d) denote the equivalent classes of primitive forms of a given discriminant
d under the action of Γ(1). Also let h(d) denote the size of H(d).

Proposition 7.3.6. h(d) <∞.

Proof. If (a, b, c) is a reduced form with discriminant d then we see b2 ≤ ac ≤ −d/3. There can only
be a finite number of forms satisfying this.

Example 7.3.7.

h(−163) = 1 H(−163) = {(1, 1, 41)}
h(−160) = 4 H(−160) = {(1, 0, 40), (5, 0, 8), (4, 4, 11), (7, 6, 7)}

7.4 Singular Values of the j Function

Proposition 7.4.1. For any discriminant d, the polynomial

Hj
d(X) =

∏
(a,b,c)∈H(d)

(
X − j

(
−b+
√
d

2a

))
has integer coefficients. Furthermore, if d = r2− 4n for any integers r and n with n > 1, then Hj

d(X)
divides Φn(X,X) (the modular equation for j).

Remark 7.4.2. It seems that the full force of class field theory is required to show that Hj
d(X) is

irreducible and the Galois group over Q(
√
−d) is isomorphic to the class group, but we will not need

this fact for our purposes.
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7.5 Singular Values of the Weber Functions

The polynomial Hj
d(X) defined in Section 7.4 has quite large coefficients. It turns out that modular

functions of higher level provide the same extensions of Q with much simpler defining polynomials.
Weber defined a class invariant f(τ) to be a modular function for which

Q(f(τa,b,c)) = Q(j(τa,b,c))

where (a, b, c) ranges over some set of representatives of H(d).

Definition 7.5.1. For any integer N let (a′, b′, c′) := [(a, b, c)]N denote any form equivalent to (a, b, c)
for which

gcd(a′, N) = 1 and b′ ≡ b mod 2N .

Proposition 7.5.2. For any primitive form (a, b, c), [(a, b, c)]N exists.

Proposition 7.5.3. Let (a, b, c) range over [H(d)]2 and set τ = −b+
√
d

2a
and s = gcd(2, d). Then

γ3(τ)s

is a class invariant.

Proposition 7.5.4. Let (a, b, c) range over [H(d)]3 and set τ = −b+
√
d

2a
and s = gcd(3, d). Then

γ2(τ)s

is a class invariant.

Proposition 7.5.5. Let (a, b, c) range over [H(d)]48. Set τ = −b+
√
d

2a
and s = gcd(3, d). Then, we

have the following table of class invariants.

condition class invariant

−d/4 ≡ 0 mod 8 2−3sf1(τ)8s

−d/4 ≡ 4 mod 8
(

2
a

)
2−3s/2f1(τ)4s

−d/4 ≡ 2 mod 4
(

2
a

)
2−s/2f1(τ)2s

−d/4 ≡ 1 mod 8
(

2
a

)
2−s/2f(τ)2s

−d/4 ≡ 5 mod 8 2−sf(τ)4s

−d/4 ≡ 3 mod 8 f(τ)s

−d/4 ≡ 7 mod 8
(

2
a

)
2−s/2f(τ)s

d ≡ 1 mod 8 ζsa48 f2(τ)s

d ≡ 5 mod 8 f(τ∞)s

2
+ f(τ0)s

2
+ f(τ1)s

2
− 2

f(τ∞)s
− 2

f(τ0)s
− 2

f(τ1)s

In the case d ≡ 5 mod 8, we should set τi = −bi+
√

4d
2ai

where

(a∞, b∞, c∞) = [( 2 0
0 1 )(a, b, c)]48 ,

(a0, b0, c0) = [( 1 0
0 2 )(a, b, c)]48 ,

(a1, b1, c1) = [( 1 1
0 2 )(a, b, c)]48 .

Example 7.5.6. We have h(−103) = 5 and

[H(−103)]48 = {(17, 769, 8698), (19,−767, 7742), (1, 1, 26), (23, 865, 8134), (29, 97, 82)}.
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According to Proposition,

ζ17
48 f2

(
−769+

√
−103

34

)
, ζ19

48 f2

(
767+

√
−103

38

)
, ζ48f2

(
−1+i

√
−103

2

)
,

ζ23
48 f2

(
−865+

√
−103

46

)
, ζ29

48 f2

(
−97+

√
−103

58

)
are roots of X5 + 2X4 + 3X3 + 3X2 +X − 1. This is a much simpler polynomial than

Hj
−103(X) = X5 + 70292286280125X4 + 85475283659296875X3

+4941005649165514137656250000X2 + 13355527720114165506172119140625X

+28826612937014029067466156005859375,

although they generate the same splitting field.

7.6 The Class Number One Problem

7.7 Singular Values of the η Function

Proposition 7.7.1. Let d be a discriminant and let f and ∆ be the associated conductor and funda-
mental discriminant. Let

χ(n) =

(
∆

n

)
=


0 ,

1 ,

−1 ,

,

and let w be the number of roots of unity in Q(
√

∆). Then,

∑
(a,b,c)∈H(d)

log
2π|d|
a

∣∣∣η (−d+
√
d

2a

)∣∣∣4 =

|∆|∑
n=1

wh(d)χ(n)

2h(∆)
log Γ

(
n

|∆|

)

+
∑
pn||f

h(d) (1− p−n) (1− χ(p))

(1− p−1) (p− χ(p))
log p
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Chapter 8

Hypergeometric Functions

8.1 Basic Properties of the 2F1(x) and 3F2(x) Series

Proposition 8.1.1. The formula (4.9.3) is correct for N = 2, 3, 4, 5 at least for −iτ > 0 (so j(τ) >
1728).

8.2 Jacobi’s Inversion Formula and Generalizations

8.3 Solution of the General Quintic by Modular Functions

From Proposition 4.9.4,

j =
(x20 + 228x15 + 494x10 − 228x5 + 1)3

x5(x10 − 11x5 − 1)5
(8.3.1)

where j is the j function and x5 is the Hauptmodul for Γ(5) defined in (4.9.2) (the reciprocal of the
Rogers-Ramanujan continued fraction). The solution for x as a function of j in this equation is the
basic irrationality that can be used to resolve the simple group A5/1 in the normal series

1 / A5 / S5

for S5. The factor group S5/A5 ' Z2 corresponds to taking the square root of the discriminant of the
quintic.

Proposition 8.3.1. Let F = Q(a, b, c, ζ5). The splitting field of the quintic X4 + 5αX2 + 5βX + γ is
F (
√
D, x) where D is the discriminant of the quintic and

x =

j
1
60 2F1

(
− 1

60
, 29

60
4
5

∣∣∣1728
j

)
j−

11
60 2F1

( 11
60
, 31

60
6
5

∣∣∣1728
j

)
and j is some element of F (

√
D).

Proof. Let X0, . . . , X4 be the roots of the quintic, and let
√
D =

∏
i<j(Xi−Xj) denote a fixed square

root of the discriminant (D is not a square in F ). Then, Gal(F (X0, . . . , X4)/F (
√
D)) ⊆ A5.

Let I60 denote the group of Möbius transformation on C∞ giving the 60 symmetries of the regular
icosahedron. We have already seen

I60 ' Γ(1)/Γ(5) ' A5,

with the correspondence on generators given by
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element of I60 element of Γ(1)/Γ(5) element of A5

x 7→ ζ−1
5 x T Γ(5) τ = (01234)

x 7→ φx−1
x−φ S Γ(5) σ = (12)(34)

,

where φ = 1+
√

5
2

and φ̄ = 1−
√

5
2

. For any π ∈ A5, let Mπ denote the corresponding element of I60. Set
(for i = 0, . . . , 4)

ti =
4∑
j=0

ζ ij5 Xj.

Then, the action of A5 on the ti is

τ


t1
t2
t3
t4

 =


ζ4

5 0 0 0
0 ζ3

5 0 0
0 0 ζ2

5 0
0 0 0 ζ1

5




t1
t2
t3
t4

 ,

σ


t1
t2
t3
t4

 =
1√
5


1 −φ̄ φ −1
−φ̄ −1 1 φ
φ 1 −1 −φ̄
−1 φ −φ̄ 1




t1
t2
t3
t4

 .

Next, note that that vanishing of the coefficients of X4 and X3 gives 0 = t0 = t1t4 + t2t3, and set

x = −t2
t1

= +
t4
t3

,

x̄ = +
t3
t1

= −t4
t2

.
(8.3.2)

The action of A5 on x and x̄ is given by

τ(x) = ζ−1
5 x, σ(x)=

φx− 1

x− φ
,

τ(x̄) = ζ−2
5 x̄, σ(x̄)=

φ̄x̄− 1

x̄− φ̄
.

(8.3.3)

This means that the corresponding values of j and j̄ (see (8.3.1)) are fixed by σ and τ , hence ele-
ments of F (

√
D). Since x was defined in terms of the Xi rationally over F , we have F (

√
D, x) ⊆

F (X0, X1, X2, X3, X4).
In order to establish the proposition, we must show that each Xi can be obtained as an element

of F (
√
D, x). Once we know x and x̄, we know the ratios of the ti by (8.3.2). Hence the ratios of the

roots Xi are known since they are the inverse Fourier transform of the ti and t0 = 0. Once we know
the ratios of the roots we know the roots because of the equation

1

X0

+
1

X1

+ · · ·+ 1

X4

= −5β

γ
,

so it suffices to demonstrate that x̄ is an element of F (
√
D, x). The reason for this lies in (8.3.3).

Every transformation in I60 is defined over Q(ζ5). Therefore, for a given M ∈ I60, if M denotes M
with the automorphism ζ5 7→ ζ2

5 applied, then we have

π(x) = Mπ(x) =⇒ π(x̄) = Mπ(x̄), π ∈ A5, (8.3.4)
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since this holds on generators. Now let M1, · · · ,M60 denote the elements of I60 so that {Mi(x)}i is
a list of conjugates of x under A5. Since (8.3.1) has disinct roots as long as j 6= 0, 1728,∞, this
list contains 60 distinct elements. From (8.3.4) we see that {Mi(x)}i and {M i(x̄)}i are permuted
identically under A5, that is

π(Mi(x)) = Mj(x) =⇒ π(M i(x̄)) = M j(x̄), π ∈ A5.

This means that the solutions for the ak in the linear system

M i(x̄) =
60∑
k=1

akMi(x)k−1, i = 1, . . . , 60

are all fixed by A5 hence elements of F (
√
D).

Remark 8.3.2. It is possible to be much more explicit about the relationship between x and x̄. In
fact, we have

√
x11 − 11x6 − x√

j − 1728

(7x5 − 1)x̄+ x7 + 7x2

(x13 + 39x8 − 26x3)x̄− 26x10 − 39x5 + 1
∈ F (

√
D).

See [5].
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Chapter 9

Mock Modular Forms
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