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Abstract: Six-dimensional conformal field theories with p2, 0q supersymmetry are shown to possess

a protected sector of operators and observables that are isomorphic to a two-dimensional chiral algebra.

We argue that the chiral algebra associated to a p2, 0q theory labelled by the simply-laced Lie algebra

g is precisely the W algebra of type g, for a specific value of the central charge. Simple examples of

observables that are made accessible by this correspondence are the three-point functions of half-BPS

operators. For the An series, we compare our results at large n to those obtained using the holographic

dual description and find perfect agreement. We further find protected chiral algebras that appear on

the worldvolumes of codimension two defects in p2, 0q SCFTs. This construction has likely implications

for understanding the microscopic origin of the AGT correspondence.
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1 Introduction and summary

It has recently been observed that any four-dimensional conformal field theory with extended su-

persymmetry has a protected sector that is isomorphic to a two-dimensional chiral algebra [1]. The

existence of such a sector leads to a wide variety of insights, including new unitarity bounds and

powerful organizing principles that underlie the spectrum of BPS operators of such theories. Further-

more, the constraints of crossing symmetry are eminently tractable for correlation functions in this

subsector, and solving the “mini-bootstrap” problem associated with these constraints is an important

preliminary step towards implementing the full numerical bootstrap program for unprotected correla-

tion functions in such theories. An obvious question that presents itself is whether such a structure

can be reproduced in superconformal field theories (SCFTs) in spacetimes of dimension d ‰ 4.

The arguments presented in the four-dimensional case were fairly general, with the existence of a

protected chiral algebra following entirely from the existence of an sup1, 1|2q superconformal subalgebra

of the full superconformal algebra for which the sup1, 1q subalgebra acts as anti-holomorphic Möbius

transformations on some fixed plane. A similar subsector will consequently exist in any theory for which

the superconformal algebra includes such a subalgebra. A quick survey of the available superconformal

algebras [2, 3] leads to a rather short list of possibilities:

I sup2, 2|2q : N “ 2 in d “ 4.

II sup2, 2|4q : N “ 4 in d “ 4.

III ospp8‹|4q : N “ p2, 0q in d “ 6.

IV sup1, 1|2q : “Small” N “ p0, 4q and N “ p4, 4q in d “ 2.

The first two entries on this list were the subject of [1]. In this work we explore the third.

The six-dimensional case holds particular interest since six-dimensional p2, 0q SCFTs remain quite

mysterious. To the best of our knowledge, no correlation functions have been computed in these

theories except in the free case, or indirectly for the An theories at large n by means of the AdS/CFT

correspondence [4, 5]. This makes the presence of a solvable subsector all the more interesting, as the

structure of the computable correlators may hold some clues about the right language with which to

describe p2, 0q SCFTs more generally.

The appearance of chiral algebras in the context of the six-dimensional p2, 0q theories does not

come as a complete surprise. The AGT correspondence [6, 7] relates instanton partition functions

of four-dimensional theories of class S [8] to Toda correlators, suggesting a deep connection between

p2, 0q SCFTs and chiral algebras. More precisely, there should be a connection between the p2, 0q

theory labelled by the simply laced Lie algebra g and the chiral algebra Wg. However, the microscopic

origin of this symmetry has so far remained unclear. Our main result is that the protected chiral

algebra associated to the p2, 0q SCFT of type g is precisely the Wg algebra! In this context, the

generating currents of Wg arise very concretely as cohomology classes of half-BPS local operators in

the SCFT. This observation seems a likely starting point for a truly microscopic understanding of the

AGT correspondence.

Our analysis involves a few technicalities, but the essential argument is not difficult to summarize.

As in [1], we identify a privileged set of BPS operators that is closed under the operator product

expansion. These operators are defined by passing to the cohomology of a certain nilpotent supercharge

Q . The requirement that a local operator be annihilated by this supercharge restricts it to lie on a

fixed plane R2 Ă R6. The space-time dependence of a Q -closed operator within the fixed plane is
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also slightly unusual: its orientation in R-symmetry space is correlated with its position on the plane.

Concretely, if pz, z̄q are complex coordinate on the plane, the schematic form of a Q -closed operator is

Opz, z̄q :“ uIpz̄qOIpz, z̄q , (1.1)

where OIpz, z̄q is a conventional local operator that obeys a suitable BPS condition. The index I runs

over the components of a finite-dimensional irreducible representation of the sop5q R-symmetry, and

uIpz̄q are simple functions of z̄. (The precise form is dictated by “twisting” the right-moving slp2q

Möbius symmetry acting on z̄ by an sop3qR subgroup of sop5qR.) The crucial point of this construction

is that the anti-holomorphic position-dependence of such an operator is Q -exact, meaning that its

cohomology class depends on the insertion point meromorphically,

rOpz, z̄qsQ  Opzq . (1.2)

Consequently, correlation functions of these twisted operators are meromorphic functions of the inser-

tion points, and as such they inherit the structure of a two-dimensional chiral algebra.

This formal construction associates a chiral algebra to any p2, 0q SCFT. Since chiral algebras are

very rigid structures, we may hope to completely characterize the ones associated to the known p2, 0q

theories by leveraging a minimal amount of physical data as input. In particular, the spectrum of

half-BPS operators provides a useful starting point for the analysis. Recall that half-BPS operators of

a p2, 0q theory sit in rank k traceless symmetric tensor representations of sop5qR, and have conformal

dimension ∆ “ 2k. The highest-weight states of these sop5qR representations form a ring. Our starting

postulate (well-motivated from several viewpoints [9, 10]) is that this ring is freely generated by a set

of elements in one-to-one correspondence with the Casimir invariants of g – in other words the ranks

tkiu of the generators of the half-BPS ring coincide with the orders of the Casimir invariants of g.

The cohomological construction maps each of these generators to a generator of the chiral algebra

with spin ki. For example, each p2, 0q theory contains a single half-BPS operator with k “ 2. This

is the superconformal primary of the stress-tensor multiplet. This operator is mapped to a spin-two

chiral operator, which plays the role of a holomorphic stress-tensor in the chiral algebra. Higher-rank

generators of the half-BPS ring map to higher-spin currents of the chiral algebra. Another piece of

information that is not hard to recover is the central charge of the Virasoro symmetry associated

with the two-dimensional stress tensor. This can be read off from the appropriately normalized two-

point function of half-BPS operators, which in turn is proportional to certain coefficients in the six-

dimensional Weyl anomaly.

A natural conjecture is that the generators arising from the half-BPS ring are the complete set of

generators of the chiral algebra. This guess passes the following non-trivial test. On general grounds,

one can argue that the character of the chiral algebra is equal to a certain limit of the superconformal

index of the parent p2, 0q theory. Precisely this limit has been studied in [11, 12], where a simple

expression was proposed for the case of the An theory. That expression takes precisely the form one

would expect for a chiral algebra for which the half-BPS generators are the only generators.

All in all, we are led to the following conjecture:

Conjecture 1 (Bulk chiral algebra) The protected chiral algebra of the six-dimensional p2, 0q su-

perconformal theory of type g “ tAn, Dn, Enu is isomorphic to the Wg chiral algebra with central

charge

c2d “ 4dgh
_
g ` rg .
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Even after making the above assumptions, our argument falls short of a general proof of this

conjecture, as we are not aware of a uniqueness theorem for W algebras with the same set of generators

as Wg. A priori, the associativity constraints may admit multiple solutions for the singular OPE

coefficients, leading to inequivalent chiral algebras with identical sets of generators. In simple cases such

as g “ A1, A2, which correspond to the Virasoro and to the Zamolodchikov W3 algebras respectively,

it is easy to prove that the crossing symmetry relations admit a unique solution. This is also known

to be the case for the A3 and A5 theories [13, 14]. For the A4 case, it is known that the solution is

not unique [14], but the additional solution corresponds to a W algebra with null states present for

generic values of the central charge, which would conflict with the match of the vacuum character with

the superconformal index.

This conjecture has immediate implications for the spectrum and interactions of the p2, 0q theories.

For example, it predicts that the OPE of two half-BPS operators must contain an infinite tower of

protected multiplets obeying certain semi-shortening conditions, with calculable OPE coefficients.

This is essential information in setting up the conformal bootstrap program [15] for p2, 0q theories,

along the lines taken in [16] for N “ 4 SCFTs in four dimensions. The application of bootstrap

methods to p2, 0q SCFTs will be the subject of a forthcoming publication [17].

As an illustration of the kind of information that can be extracted from the chiral algebra, we

consider three-point functions of half-BPS operators. The Wg algebra computes them exactly, for any

g. Specializing to g “ An, we take the large n limit (for fixed operator dimensions) of the three-

point couplings calculated from the chiral algebra, and compare them with the holographic prediction

computed using eleven-dimensional supergravity.1 We find an exact match. The agreement of these

two completely different, technically very involved calculations is quite miraculous and constitutes

strong evidence for our conjecture. More importantly, we now have a procedure for computing half-

BPS three-point functions exactly at finite n.

With a view towards a microscopic derivation of the AGT correspondence, we also consider su-

perconformal defect theories that preserve an sup2, 2|2q superalgebra. For any g, there exists a family

of such defects whose members are labelled by embeddings ρ : slp2q Ñ g [8].2 In the construction of

class S theories, these defects create “punctures” on the UV curve, with each such defect carrying a

global symmetry group equal to the centralizer of ρpslp2qq Ă g.

The algebraic analysis underlying the existence of a protected chiral algebra in the theory living on

these defects is identical to that of [1]. In particular, the global symmetry of these defects implies the

existence of affine currents for the same symmetry algebra in the two-dimensional context. However

in contrast to the purely four-dimensional setting, we do not expect the chiral algebra associated

to defects to include a meromorphic stress tensor, since such an operator is associated with a four-

dimensional stress tensor, which will be absent from the defect theories. Though this is a somewhat

strange characteristic from a physicist’s perspective, such algebras play a major role in the connection

between two-dimensional conformal field theory and the geometric Langlands correspondence (see,

e.g., [22, 23]). We are led to the following natural conjecture, which brings the potential connection

to the geometric Langlands into sharp relief:

1Note that in contrast to the analogous comparison for N “ 4 supersymmetric Yang-Mills theory in four dimensions
[18, 19] – wherein a non-renormalization theorem [20] allows the correlators in question to be computed at weak ’t Hooft
coupling and compared to the supergravity computation at strong coupling – there has heretofore been no independent
calculation of these three point functions even at large n.

2The additional structure associated with outer automorphism twists around the defect (cf. [21]) is left for future
work.
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Conjecture 2 (Defect chiral algebra) In the p2, 0q theory of type g, the protected chiral algebra of

a codimension two defect labelled by the embedding ρ is isomorphic to the quantum Drinfeld-Sokolov

reduction of type ρ of the g affine Lie algebra at the critical level,

k2d “ ´h
_ . (1.3)

Our claims regarding the bulk and defect chiral algebras are strongly reminiscent of the AGT

correspondence [6, 7] and of its generalization to include surface defects [24]. Strictly speaking, the

AGT correspondence applies to the p2, 0q theory compactified on a complex curve C and subjected to

the Ωε1,ε2 deformation in the remaining four non-compact directions. Similarly, the construction of

[24] applies to the same compactification accompanied by a codimension two defect that also wraps

C and spans two of the four non-compact directions. In the story with no defects wrapping the UV

curve, the resulting partition functions enjoy Wg symmetry with central charge

c2d “ rg `

ˆ

b`
1

b

˙2

dgh
_
g , (1.4)

where b2 :“ ε1{ε2. In the presence of defects wrapped on C, the partition functions display affine g

invariance at level [25]

k2d “ ´h
_ ´

1

b2
. (1.5)

Our construction, on the other hand, does not involve an explicit Ω deformation and features the

six-dimensional theory in flat space. Nevertheless, at the level of chiral algebras, we reproduce these

symmetries for the case b2 “ 1 (i.e., ε1 “ ε2) in the bulk case and b2 Ñ 8 (i.e., ε2 “ 0) in the

presence of defects. That these particular values of b should arise is somewhat reasonable. In the

bulk case, b ‰ 1 would break the sop4q symmetry of the transverse space, whereas the construction

used in this paper respects that symmetry. In the defect case, b2 ‰ 8 would imply an effective

compactification of the plane transverse to the defect. In such a scenario, one would expect to find a

four-dimensional stress tensor in the resulting defect theory. In the construction considered here, such

a four-dimensional stress tensor is certainly absent, and one sensibly discovers that the defect chiral

algebra is at such a level that it contains no meromorphic stress tensor. The connection between the

chiral algebras described in this paper and the AGT correspondence will be pursued in greater detail

in future work.

The organization of this paper is as follows. In §2, we recall the logic of [1] and provide the specifics

of its application to the ospp8‹|4q superconformal algebra. We further characterize the local operators

that may play a role in the protected chiral algebra of six-dimensional superconformal theories. In

§3, we consider the simple case of the abelian p2, 0q theory, which is a free theory and completely

tractable. This serves to illustrate some aspects of the correspondence that will prove useful in the

more abstract case of the interacting theories. In §4, we review what is known about the half-BPS

spectrum of the p2, 0q SCFTs and motivate the bulk chiral algebra conjecture. We show that this

conjecture passes a number of checks, both at the level of the superconformal index, and at the level

of three-point functions for the An theory at large n. In §5, we address the case of half-BPS defect

operators and motivate the above-stated defect chiral algebra conjecture. Various technical details

and useful points of reference are included in several appendices. In particular, appendix C discusses

the construction of the irreducible characters of the ospp8‹|4q which may be useful in future work.
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2 Chiral symmetry in a protected sector

In this section we set up the general algebraic machinery that is responsible for the existence of a

protected chiral algebra of six-dimensional p2, 0q theories. Our approach is a direct generalization of

the approach of [1] that was used to uncover a similar structure in four-dimensional N “ 2 SCFTs.

That such a generalization should exist is made apparent by observing that the four-dimensional

N “ 2 superconformal algebra is a subalgebra of the six-dimensional p2, 0q superconformal algebra.

The six-dimensional case turns out to be somewhat richer, however, due to the intricacies of p2, 0q

superconformal representation theory. We will keep the exposition relatively brief. We refer the

interested reader to the early sections of [1] for a detailed description of the analogous four-dimensional

case.

We first select a fixed chiral algebra plane R2 Ă R6 on which our chiral algebra will live. The first

order of business is to determine the maximal subalgebra of the full superconformal algebra that fixes

this plane. The p2, 0q superconformal algebra is reviewed in detail in Appendix A. It is isomorphic

to the Dp4, 2q superalgebra,3 the maximal bosonic subalgebra of which is the product of the sop6, 2q

conformal algebra times a uspp4q R-symmetry algebra. The choice of R2 Ă R6 breaks sop6, 2q to the

slp2q ˆ slp2q conformal algebra on the plane, times the sop4q – sup2q1 ˆ sup2q2 algebra of rotations in

the transverse R4. We can regard slp2qˆsup2q2ˆuspp4q as the bosonic subalgebra of the superalgebra

Dp2, 2q Ă Dp4, 2q, so all told we are concerned with the embeddings

slp2q ˆ su1p2q ˆ
´

slp2q ˆ sup2q2 ˆ uspp4q
¯

Ă slp2q ˆ sup2q1 ˆDp2, 2q Ă Dp4, 2q . (2.1)

Crucially, Dp2, 2q contains a sup1, 1|2q subalgebra, which is a necessary condition for the cohomological

construction of [1] to go through.4

Let us describe this embedding more explicitly. Introducing coordinates xµ, µ “ 1, . . . , 6 for

R6, we take the chiral algebra plane to have complex coordinates z “ x1 ` ix2 and z̄ “ x1 ´ ix2.

The generators of the two-dimensional conformal algebra slp2q ˆ slp2q that acts on this plane can be

identified as follows (see Appendix A for our conventions):

L0 “ 1
2 pH` L1q , L`1 “ K21 , L´1 “ P12 , (2.2)

L̄0 “ 1
2 pH´ L1q , L̄`1 “ K43 , L̄´1 “ P34 .

We have introduced Cartan generators L1,2,3 that generate rotations in the tx1, x2u, tx3, x4u, and

tx5, x6u planes, with eigenvalues h1,2,3, respectively.5 The sup2q1 and sup2q2 subalgebras correspond

to self-dual and anti-self dual rotations in the tx3, x4, x5, x6u directions, with generators

sup2q1 : M1
2 , M2

1 , M1
1 ´M2

2 ” L2 ` L3 , (2.3)

sup2q2 : M3
4 , M4

3 , M3
3 ´M4

4 ” L2 ´ L3 .

The uspp4q generators are denoted by RAB with A,B “ 1, . . . , 4. Finally the fermionic generators

3This is the complexified superalgebra. The relevant real form is ospp8‹|4q. Our construction is perhaps most naturally
phrased in terms of complexified algebras, but we will not be overly concerned with the distinction between complexified
algebras and their real forms. Using the natural real forms can be mnemonically helpful, e.g., in distinguishing the slp2q
Möbius transformations from the sup2qR subalgebra of the uspp4q R-symmetry that will be introduced shortly.

4An inequivalent choice of maximal subalgebra preserving the plane is Dp2, 1q ˆ Dp2, 1q Ă Dp4, 2q, but this is not
relevant for our purposes since Dp2, 1q does not have an sup1, 1|2q subalgebra.

5Our conventions are such that the highest- and lowest-weight components of an sop6q vector vµ are vh.w. “ pv1 `
iv2q{

?
2 and vl.w. “ pv1 ´ iv2q{

?
2.
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of the Dp2, 2q subalgebra comprise eight Poincaré supercharges tQA, rQAu and their special conformal

conjugates pSA, rSAq, transforming under a uspp4q ˆ sup2q2 R-symmetry. The embedding of these

supercharges into the six-dimensional superalgebra is given by

QA :“ QA4 , rQA :“ QA3 , SA :“ S4
A , rSA :“ S3

A . (2.4)

The identification makes it clear that pQA, rQAq and pSA, rSAq transform as doublets of sup2q2.

From the Dp2, 2q supercharges, we construct four interesting nilpotent supercharges and their

conjugates, generalizing the two that appeared in [1]:

Q 1 :“ rQ1 ´ S3 , Q
:
1 :“ rS4 ´Q2 , (2.5)

Q 2 :“ Q1 ` rS3 , Q
:
2 :“ S4 ` rQ2 ,

Q 3 :“ rQ2 ´ S4 , Q
:
3 :“ rS3 ´Q1 ,

Q 4 :“ Q2 ` rS4 , Q
:
4 :“ S3 ` rQ1 .

Because the Dp2, 2q superalgebra is the supersymmetrization of the right-moving slp2q conformal

algebra, all of these supercharges commute with the left-moving slp2q generators. The key point, as

in four dimensions, is to define an R-symmetry twist of slp2q that is exact with respect to the Q i. If

we take the maximal subalgebra sup2qR ˆ up1qr Ă uspp4qR,6 then such a twisted algebra zslp2q can be

defined as the diagonal subalgebra of slp2q ˆ sup2qR,

pL´1 :“ L̄´1 `R´ , pL0 :“ L̄0 ´R , pL`1 :“ L̄`1 ´R` . (2.6)

The twisted generators occur as Q i commutators as follows,

2pL0 “ tQ 1, Q
:
1u “ tQ 2, Q

:
2u “ tQ 3, Q

:
3u “ tQ 4, Q

:
4u , (2.7)

pL´1 “ tQ 1, Q4u “ ´ tQ 2, rQ4u “ tQ 3, Q3u “ ´ tQ 4, rQ3u ,

pL`1 “ ´ tQ 1, rS2u “ tQ 2, S2u “ ´ tQ 3, rS1u “ tQ 4, S1u .

In any unitary superconformal representation one will necessarily have pL0 ě 0 on any pL0 eigenstate,

with the equality saturated if and only if all Q i and their conjugates Q :i annihilate the state. Additional

interesting bosonic generators are those that appear in mutual commutators of the Q i. Defining

Zij :“ tQ i, Q ju, we have

Z12 “ Z34 “ 0 , (2.8)

Z13 “ ´Z24 “ M4
3 ,

Z14 “ L2 ´ L3 ´ 2r “M3
3 ´M4

4 ´ 2r ,

Z23 “ L2 ´ L3 ` 2r “M3
3 ´M4

4 ` 2r .

We are now in a position to define the protected chiral algebra of a six-dimensional p2, 0q theory.

In principle, the cohomology of any one of the Q i will have the structure of a chiral algebra. It turns

out that all four Q i define the same cohomology, and so the structure of interest is the simultaneous

cohomology of all four nilpotent supercharges. Let us outline the main points of the construction.

6This is the subalgebra under which the 5 of uspp4q decomposes as 30 ‘ 1`1 ‘ 1´1.
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A local operator Op0q inserted at the origin is a “harmonic representative” of a Q i cohomology

class if it is annihilated by Q i and its conjugate Q
:

i (separately for each i), which happens if and only

if it obeys rpL0,Op0qs “ 0, i.e., if it has quantum numbers satisfying

E ´ h1

2
´R “ 0 . (2.9)

It follows that, as stated above, the cohomology classes of all four Q i coincide. Moreover, from Eqn.

(2.8) we can deduce that a state obeying the above condition is necessarily invariant under up1qr and

sup2q2, and so must satisfy the additional relations

r “ 0, h2 ´ h3 “ 0 . (2.10)

A priori, h2 “ h3 need not be zero, so Q i cohomology classes are allowed to form non-trivial represen-

tations of sup2q1.

At this point, the construction of [1] can be carried over verbatim. Operators obeying the condition

(2.9) can be translated away from the origin (within the chiral algebra plane) by means of the twisted

momentum operator pL´1,

Opz, z̄q “ ezL´1`z̄ pL´1Op0, 0qe´zL´1´z̄ pL´1 . (2.11)

A local operator at the origin with rpL0,Op0qs “ 0 is necessarily an sup2qR highest weight state,

carrying the maximum eigenvalue R of the Cartan. Indeed, if this were not the case, states with

greater values of R would have negative pL0 eigenvalue, violating unitarity. We denote the whole spin

k representation of sup2qR as OpI1¨¨¨I2kq, with Ii “ 1, 2. Then the operator obeying (2.9) is O11¨¨¨1p0q,

and the twisted-translated operator at any other point is given by

Opz, z̄q :“ uI1pz̄q ¨ ¨ ¨ uI2k
pz̄q OpI1¨¨¨I2kqpz, z̄q , uIpz̄q :“ p1, z̄q . (2.12)

By construction, such an operator is annihilated by Q i, and thanks to the second line of Eqn. (2.7)

its z̄ dependence is Q i-exact. It follows that the cohomology class of the twisted-translated operator

defines a purely meromorphic operator,

rOpz, z̄qsQ  Opzq . (2.13)

Operators constructed in this manner have correlation functions that are meromorphic functions of

the insertion points, and enjoy well-defined meromorphic OPEs at the level of the cohomology. These

are precisely the ingredients that define a two-dimensional chiral algebra.

2.1 Elements of the Q cohomology

The next step is to determine precisely which operators in a p2, 0q SCFT have the right properties

to play a role in the protected chiral algebra. The representation theory of the p2, 0q superconformal

algebra has been worked out in [26–28] and is discussed in detail in Appendix B. Let us summarize

the salient points here.

A generic representation is specified by a set of sop6q Dynkin labels, rc1, c2, c3s, a pair of uspp4qR
Dynkin labels, rd1, d2s, and the scaling dimension, E, of the superconformal primary operator. In terms

of the sop6q quantum numbers ph1, h2, h3q and uspp4q quantum numbers pR, rq introduced above, the
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Series Primary Q -chiral Level

Bp‹q rc1, c2, 0s; rd1, 0s rc1, c2 ` 2, 0s; rd1 ` 2, 0s 4

B r0, c2, 0s; rd1, 0s r0, c2 ` 2, 0s; rd1 ` 2, 0s 4

Cp‹q rc1, 0, 0s; rd1, 1s rc1 ` 1, 1, 0s; rd1 ` 2, 0s 3

Cp‹q rc1, 0, 0s; rd1, 0s rc1 ` 2, 0, 0s; rd1 ` 1, 0s 2

D r0, 0, 0s; rd1, 2s r0, 1, 0s; rd1 ` 2, 0s 2

Dp‹q r0, 0, 0s; rd1, 1s r1, 0, 0s; rd1 ` 1, 0s 1

D r0, 0, 0s; rd1, 0s r0, 0, 0s; rd1 ` 0, 0s 0

Table 1. Summary of superconformal representations that contain chiral algebra currents. The quantum
numbers of the primary and the Q -chiral operators are displayed, along with the level in the representation
where one may find the Q -chiral operators. Representations labelled with a star are those that seem to be
absent from actual p2, 0q theories.

Dynkin labels can be written as

c1 “ h2 ´ h3 , c2 “ h1 ´ h2 , c3 “ h2 ` h3 , (2.14)

d1 “ R´ r , d2 “ 2r . (2.15)

Shortening conditions arise when certain linear relations for these quantum numbers are satisfied. In

particular, (semi-)short representations come in four series, for which the quantum numbers introduced

here satisfy the following conditions,

A : E “ h1 ` h2 ´ h3 ` 2R` 2r ` 6 , (2.16)

B : E “ h1 ` 2R` 2r ` 4 , h1 > h2 “ h3 ,

C : E “ h1 ` 2R` 2r ` 2 , h1 “ h2 “ h3 ,

D : E “ 2R` 2r , h1 “ h2 “ h3 “ 0 .

Operators satisfying (2.9) only appear in a select subset of these representations. The complete

list, along with the location within the full representation of the relevant operator, is determined in

Appendices C and D. The results are summarized in Table 1.

Of the representations listed, the most familiar are those in the D series. In these representations

the superconformal primary is quarter-BPS (half-BPS if d2 “ 0). It is interesting to note that in

practice, all D series multiplets in the known p2, 0q theories are believed to transform in representa-

tions that appear in the tensor product of sufficiently many copies of the r1, 0s, and for this reason

representations of type Dr0, 0, 0; d1, 1s are expected to be absent [10].

The half-BPS operators form a ring, the half-BPS ring, which is a generalization of the chiral ring

in four-dimensional supersymmetric theories. An important property of the half-BPS operators is that

they are the operators with the lowest possible dimension given their sup2qR quantum numbers. Using

this fact in conjunction with sup2q selection rules, one quickly sees that the chiral algebra operator

associated to a generator of the half-BPS ring can never appear as a normal ordered product. This

means that the generators of the half-BPS ring are necessarily mapped to generators of the chiral

algebra. This is a structurally identical result to the fact that in the four-dimensional case, generators

of the so-called “Hall-Littlewood chiral ring” are mapped to chiral algebra generators.

The B and C series appearing in Table 1 are more exotic representations that satisfy semi-
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shortening conditions at level two or greater. Although these are somewhat unfamiliar, we will see in

the rest of this paper that the presence of B series representations is necessary and natural from the

point of view of the protected chiral algebra.

3 The free tensor multiplet

Having established this basic machinery, let us consider the chiral algebra of the abelian p2, 0q theory.

This is the theory of a free tensor multiplet, and so the chiral algebra can be constructed explicitly. The

tensor multiplet lies in an ultra-short representation of type Dr0, 0, 0; 1, 0s that comprises a scalar, two

Weyl fermions, and a two-form with self-dual field strength. The quantum numbers of these fields are

summarized in Table 2. Of these basic fields, the only one satisfying (2.9) is the uspp4q highest-weight

Operator ∆ sop6q uspp4qR pL0pψh.w.q

ΦI 2 1 5 0

λaA
5
2 4 4 1

2

ω`
pabq 3 10 1 1

Table 2. Field content of the abelian tensor multiplet.

component of the scalar multiplet. In our conventions, this is the field

Φh.w. “
Φ1 ` iΦ2
?

2
. (3.1)

Other fields and uspp4qR descendants of the scalar have strictly positive eigenvalues under pL0. The

meromorphic operator associated to Φh.w. can be constructed using twisted translation in the plane

as was described in §2, leading to the following cohomology class,

Φpzq :“
”

1?
2
pΦ1pz, z̄q ` iΦ2pz, z̄qq ` z̄Φ3pz, z̄q `

z̄2?
2
pΦ1pz, z̄q ´ iΦ2pz, z̄qq

ı

Q

. (3.2)

The singular part of the meromorphic ΦˆΦ OPE follows directly from the free field OPE of the scalar

fields. Specifically, if we normalize the six-dimensional operators to have canonical OPEs,

ΦIpxqΦJpyq „
δIJ

|x´ y|4
, (3.3)

then the resulting chiral algebra OPE takes a familiar form,

ΦpzqΦpwq „
1

pz ´ wq2
. (3.4)

This is the OPE of a up1q affine current,

Φpzq Jup1qpzq . (3.5)

The other operators in the free theory that obey (2.9) are just the normal ordered products

of holomorphic derivatives in the chiral algebra plane of Φh.w.. These map in the obvious way to
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composites of the up1q current in the chiral algebra, e.g.,

:pBk112Φh.w.qpB
k2
12Φh.w.qpB

k3
12Φh.w.q : pBk1Jup1qpB

k2Jup1qpB
k3Jup1qqqq . (3.6)

The chiral algebra of the abelian p2, 0q theory is therefore precisely a up1q affine current algebra.

It is worthwhile to take a moment to understand the appearance of Virasoro symmetry. In four

dimensions, Virasoro symmetry of the chiral algebra followed from the presence of a stress tensor in

four dimensions. In six dimensions, we again find that Virasoro symmetry comes for free with the six-

dimensional stress tensor multiplet. The six-dimensional stress tensor lies in a short representation of

type Dr0, 0, 0; 2, 0s, in which the stress tensor is a level-four descendant. The superconformal primary

is a dimension four scalar transforming in the 14 of uspp4q. In the case of the free theory, this primary

is the symmetric traceless bilinear of scalar fields,

Op14qIJ :“ :ΦpIΦJq: . (3.7)

As a half-BPS operator, the highest weight state of Op14qIJ obeys (2.9), and upon mapping to the chiral

algebra this is identified with the un-normalized Sugawara operator in the up1q affine current algebra,

ruIpz̄quJpz̄qOp14qIJ pz, z̄qsQ “: Op14qpzq Spzq :“ pJup1qJup1qqpzq . (3.8)

If we further canonically normalize this operator as T pzq :“ 1
2Spzq, then direct computation leads to

the standard OPE of a holomorphic stress tensor in two dimensions,

T pzqT p0q „
1{2

z4
`

2T p0q

z2
`
BT p0q

z
, (3.9)

where the Virasoro central charge is that of a up1q current algebra, namely c2d “ 1. As was the case in

four dimensions, we see that although the holomorphic stress tensor in the chiral algebra arises from

the stress tensor multiplet in six dimensions, it corresponds to an operator in that multiplet which is

not the six-dimensional stress tensor itself.

This evaluation of the chiral algebra central charge for the abelian theory is useful since it deter-

mines for us the constant of proportionality between the two-dimensional and six-dimensional central

charges. Recall that the Weyl anomaly of a p2, 0q theory takes the form [29]

A6d “ aE6 ` c1I1 ` c2I2 ` c3I3 ` scheme dependent , (3.10)

where E6 is the Euler density and I1,2,3 are certain Weyl invariants whose precise form is unimportant

for our purposes. The ratios of the two- and three-point functions of stress tensor multiplets in the

p2, 0q theories are fixed in terms of the coefficients ci of the Weyl invariants, and these constants in

turn have their ratios fixed by supersymmetry [30]. There will therefore exist a universal constant

of proportionality between c2d and any one of the ci that follows from supersymmetry and therefore

holds for any choice of g. Having determined this constant in the abelian theory, the same result will

necessarily hold for any p2, 0q theory. We have the general result

c2dpgq

cipgq
“

1

ctensi

. (3.11)

This relation will prove useful in the discussion of the non-abelian theories to come. Notice that, in
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contrast with the four-dimensional case, the central charge of the chiral algebra of the p2, 0q theories

is always positive.

4 Chiral algebras of interacting p2, 0q theories

A direct analysis in the style of the previous section is not possible when g is non-abelian. Never-

theless, we find compelling evidence in favor of the bulk chiral algebra conjecture put forward in the

introduction. Let us first make some elementary observations that serve to motivate our claim.

Recall that the moduli space of vacua for the p2, 0q theory of type g is the orbifold

Mg “ pR5qrg{Wg . (4.1)

where rg is the rank and Wg the Weyl group of the Lie algebra. Let us further define the following

complex subspace of Mg,

M1{2
g :“ Crg{Wg . (4.2)

The spectrum of half-BPS operators in the p2, 0q theories has been studied in, e.g., [10] (see also

[9, 31]). These papers found confirmation of a folk theorem that states that the ring of BPS operators

of an SCFT is isomorphic to the ring of holomorphic polynomials on (an appropriate subspace of

the) moduli space of the theory. In the present case, this amounts to the statement that the ring of

half-BPS operators in the p2, 0q theory of type g is isomorphic to the holomorphic polynomial ring on

M1{2
g .

This ring can be given a simple description using the Harish-Chandra isomorphism. It is freely gen-

erated, with generators given by elements Oi, i “ 1, . . . , rg that correspond to the Casimir invariants

of g. The degree of each generator is equal to the degree of the invariant. In the language of super-

conformal representations, this means that the generators of the half-BPS ring live in Dr0, 0, 0; ki, 0s

multiplets where ki is the degree of the i’th Casimir invariant. This was understood explicitly in

[9, 10, 31] for the An´1 theories, where this is a single Casimir invariant of degree k “ 2, 3, . . . , n. The

generalization to other choices of g is straightforward.

In §2 we saw that the meromorphic currents associated to generators of the half-BPS ring are

necessarily generators of the associated chiral algebra. A minimal guess would then be that the chiral

algebra for the p2, 0q theory of type g is a W algebra generated by precisely these currents. This guess is

made more appealing upon noting that the chiral algebra Wg that appears in the AGT correspondence

[6, 7] for class S theories of type g has exactly such a structure (see, e.g., [32]). Indeed, our conjecture

is that the protected chiral algebra of the type g theory is precisely Wg, and we will find compelling

evidence in favor of this claim.

Before moving on to specific checks, we can determine the central charge of the non-abelian chiral

algebra independent of any guesswork by using Eqn. (3.11). The six-dimensional Weyl anomaly

for g “ An´1 has been determined explicitly in [33], and the relevant anomaly coefficients obey the

following relation,

cipAn´1q “ p4n
3 ´ 3n´ 1qctensi . (4.3)

Consequently, the central charge of the chiral algebra of the An´1 theory takes a suggestive form,

c2dpAn´1q “ 4n3 ´ 3n´ 1 . (4.4)
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This is precisely the value of the central charge of the An´1 Toda CFT for b2 “ 1, or in the language

of the AGT correspondence [6], for ε1 “ ε2.

For the sake of completeness, we can also derive the result for the more general case. Here the

anomaly coefficients take the form7

cipgq “ p4dgh
_
g ` rgqc

tens
i , (4.5)

where dg, h_g , and rg are the dimension, dual Coxeter number, and rank of g, respectively. The

prediction for the central charge of the chiral algebra is then

c2dpgq “ 4dgh
_
g ` rg , (4.6)

which again matches the relevant Toda central charge for b2 “ 1.

4.1 Testing with the superconformal index

Certain limits of the superconformal index for the An theories have been computed via supersym-

metric localization in five-dimensional supersymmetric Yang-Mills theory [11, 12]. The most general

superconformal index (defined here with respect to the supercharge Q14) takes the form [28]

Ipp, q, s, tq :“ Trp´1qF eβtQ14,S4
4uqE´Rph2´h3`2rtR´rsh2`h3 . (4.7)

The states that contribute to this index obey a shortening condition,

tQ14,S4
4u “ E ´ 2R´ 2r ´ h1 ´ h2 ` h3 “ 0 . (4.8)

The index undergoes a radical simplification when the fugacities are specified so that the combinations

of Cartan generators that appear in the exponents all commute with some additional supercharge. In

particular, we may choose the fugacities so that the index has an enhanced supersymmetry with respect

to Q23. In this case, the resulting partition function will only receive contributions from operators

that obey the additional shortening condition

tQ23,S3
3u “ E ´ 2R` 2r ´ h1 ` h2 ´ h3 “ 0 . (4.9)

The relevant index with this property is equivalent to the unrefined index studied in the aforementioned

paper. In our conventions, the unrefined index is recovered by setting t “ 1, whereupon the index

becomes independent of p as well, and we are left with an index that depends on only two fugacities

Ipq, sq :“ Trp´1qF eβtQ14,S4
4uqE´Rsh2`h3 . (4.10)

This is the six-dimensional analogue of the Schur index that was defined for four-dimensional N “ 2

SCFTs in [36].

The operators that contribute to this index are exactly the Q -chiral operators defined in §2. As a

consequence, this index can be reinterpreted as a Witten index of the associated chiral algebra. Recall

that the construction of §2 includes an SUp2q global symmetry inherited from the sup2q1 rotations

transverse to the chiral algebra plane in six dimensions. In particular, the combination h2 ` h3 plays

7Although we are not aware of this result appearing explicitly in the literature, this is the unique expression compatible
with the known central charge of the An series and with the structure of R-symmetry anomaly polynomials, which are
known for any g [34, 35].
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the role of (twice) the Cartan of this flavor symmetry, and we have

Ipq, sq “ I2dpq, sq :“ TrHχpnqp´1qF qL0s2j1 , (4.11)

where we have denoted the Hilbert space of the chiral algebra by Hχpnq. In terms of the six-dimensional

Lorentz group, Q -chiral operators necessarily occur in representations with Dynkin labels rc1, c2, 0s.

The spin-statistics theorem in six dimensions implies that c1` c3 is equal to fermion number (mod 2).

Now because c1 “ 2j1 for a Q -chiral operator, it follows that j1 is half-integral for fermionic operators

appearing in the index and integral for bosonic operators. Consequently there can be no cancellation

between bosonic and fermionic operators that contribute to the unrefined index.8

In [12], the unrefined index of the worldvolume theory of n coincident M5 branes was computed

in Upnq five-dimensional SYM. The resulting expression is relatively simple,

Ipq, s;nq “
n
ź

k“1

8
ź

m“0

1

1´ qk`m
“ P.E.

«

q ` q2 ` ¨ ¨ ¨ ` qn

1´ q

ff

, (4.12)

where P.E. denotes plethystic exponentiation,

P.E.
“

fpxq
‰

:“ exp

«

8
ÿ

m“1

fpxmq

m

ff

. (4.13)

Since the calculation was done in the Upnq theory, it contains an extra factor corresponding to the

index of the free tensor multiplet that describes the center of mass degrees of freedom. In other words,

for the interacting theory we have

IAn´1pq, sq “
Ip2,0qpq, s;nq
Ip2,0qpq, s; 1q

“

n
ź

k“2

8
ź

m“0

1

1´ qk`m
“ P.E.

«

q2 ` ¨ ¨ ¨ ` qn

1´ q

ff

. (4.14)

Note that this index is actually independent of the fugacity s. In conjunction with the above argument

for the absence of cancellation between states with the same sup2q1 spins, this implies that in the An
series theories there are no Q -chiral operators transforming in representations with non-zero c1 –

namely the only superconformal representations from the list in §2 that actually make an appearance

will be Br0, c2, 0; d1, t0, 1us and Dr0, 0, 0; d1, t0, 2us. Consequently all operators contributing to the

unrefined index are bosonic, and the index can be reinterpreted as the partition function of the chiral

algebra,

IAn´1pqq “ TrHχpnqq
L0 . (4.15)

The index in Eqn. (4.14) has precisely the form of the vacuum character of a chiral algebra

generated by currents of spins s “ 2, 3, . . . , n (with no null states appearing in the vacuum Verma

module). The algebra WAn´1
is precisely such a chiral algebra, and indeed when the central charge

is set as in (4.4) then the vacuum module can be seen to contain no null states (aside from those

obtained by acting with L´1 and the higher-spin equivalents) [32]. In fact, given the stated spectrum

of generating currents, WAn´1 is very likely to be the unique solution of crossing symmetry with no

nulls (up to the choice of central charge).9 This provides compelling support for the claim that the

8This is a notable feature that, in particular, does not hold for the Schur index in four dimensions. In that setting,
there can be “accidental” cancellations between protected operators that individually do contribute to the index.

9For the A1, A2, A3, and A5 cases the corresponding Wg is the only solution to crossing symmetry with the given
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protected chiral algebra of a p2, 0q theory is the corresponding Wg (at least for the An series). Turning

the logic around, we have a simple prediction for the generalization of (4.14) for general g:

IDnpq, sq “ P.E.

«

qn ` pq2 ` q4 ` ¨ ¨ ¨ ` q2n´2q

1´ q

ff

, (4.16)

IE6
pq, sq “ P.E.

«

q2 ` q5 ` q6 ` q8 ` q9 ` q12

1´ q

ff

,

IE7
pq, sq “ P.E.

«

q2 ` q6 ` q8 ` q10 ` q12 ` q14 ` q18

1´ q

ff

,

IE8pq, sq “ P.E.

«

q2 ` q8 ` q12 ` q14 ` q18 ` q20 ` q24 ` q30

1´ q

ff

.

4.2 Three-point couplings at large n

As a more refined check of our claim, we can compute the three-point functions of half-BPS operators

for theAn´1 series in the large n limit. While there is no way aside from our chiral algebraic approach to

compute half-BPS three-point functions for general g, the result at large n is accessible holographically

using eleven-dimensional supergravity in AdS7 ˆ S4.10 In particular, the three-point functions of

“single-trace” half-BPS operators can be computed. The notion of a single-trace operator that is

applicable here is that of generalized free field theory, since in the p2, 0q theories there is no obvious

sense in which gauge-invariant operators are constructed from elementary matrix-valued fields. The

single trace half-BPS operators are therefore the generators of the half-BPS chiral ring, which at large

n comprise a single scalar operator Opkq for each k “ 2, 3, . . . ,8 with scaling dimension ∆ “ 2k.

Such an operator transforms in the k-fold symmetric traceless tensor representation of sop5qR. The

three-point functions of these operators are required by symmetry to take the general form

xOpk1qI1
px1qOpk2qI2

px2qOpk3qI3
px3qy “

Cpk1, k2, k3q

x∆123
12 x∆231

23 x∆312
31

xCI1CI2CI3y , (4.17)

where xij :“ xi ´ xj and ∆ijk:“∆i ` ∆j ´ ∆k. The CIi form an orthonormal basis of traceless

symmetric tensors of sop5q and xCI1CI2CI3y denotes the unique scalar contraction of the three tensors.

For large values of n these three-point couplings scale as n´3{2, and the leading order terms have been

computed in [4, 5] using the supergravity description. They were found to take the form [5]

Cpk1, k2, k3q “
22α´2

pπnq
3
2

Γ

ˆ

k1 ` k2 ` k3

2

˙

˜

Γ
`

k123`1
2

˘

Γ
`

k231`1
2

˘

Γ
`

k312`1
2

˘

a

Γp2k1 ´ 1qΓp2k2 ´ 1qΓp2k3 ´ 1q

¸

, (4.18)

where kijk :“ ki ` kj ´ kk and α :“ 1
2 pk1 ` k2 ` k3q. The operators for which this formula holds are

canonically normalized, with two-point couplings given by

xOpkiqI pxqOpkjqJ pyqy “
δijδIJ
|x´ y|2ki

. (4.19)

generators, while for A4 there is an additional solution for which the vacuum module contains singular vectors for
arbitrary central charge [13, 14].

10The Dn case can presumably be treated similarly.
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This is the result that should be compared to the Wn three-point couplings in the appropriate large

n limit.

First, recall how the chiral algebra correlation functions are obtained from (4.18, 4.19). We should

replace the operators OpkqI pxq by their twisted counterparts (which we shall denote Wpkqpzq) as in

(2.12), whereupon the resulting correlation function will be meromorphic and interpretable as a chiral

algebra correlator. This amounts to a simple transformation of (4.17),

xOpk1qI1
px1qOpk2qI2

px2qOpk3qI3
px3qy ùñ xWpk1qpz1qWpk2qpz2qWpk3qpz3qy “

Cpk1, k2, k3q

z
1
2k123
12 z

1
2k231
23 z

1
2k312
34

. (4.20)

Making the same replacement leads to canonical normalizations for the chiral operators,

xWpkiqpzqWpkjqpwqy “
δkikj

pz ´ wq2ki
. (4.21)

Our claim is thus that the three-point couplings Cpk1, k2, k3q will be exactly reproduced by the struc-

ture constants of the Wn algebra (with appropriately normalization for the currents) in the double

scaling limit,

nÑ8 , c2d Ñ8 ,
c2d
4n3

Ñ 1 . (4.22)

Note that because of the double scaling, the limiting W algebra will not be the well-known W8

algebra of Pope, Shen, and Romans [37, 38]. Instead to analyze this limit we will take advantage

of the fact that in the limit of large central charge, the quantum chiral algebras Wg have classical

counterparts WpClq
g . These are nonlinear Poisson algebras that can be described in terms of the Poisson

brackets of a set of generators that are the classical limits of the generating currents of Wg. Moreover,

the structure constants of the quantum and classical W algebras agree at leading order in the 1{c2d
expansion.

We further make use of the fact that the Poisson algebras WpClq
n are limits of a one-parameter

family of universal classical W algebras W8rµs [39–42]. For generic values of µ, this algebra has one

generator each of spin 2, . . . ,8, while at positive integer values of µ it truncates to the WpClq
n algebras,

WpClq
n “W8rµ “ ns . (4.23)

The structure constants of W8rµs in a primary basis are known in closed form [43]. We can take

the double scaling limit of these results explicitly in order to determine the large n correlators. The

calculation itself is tedious and we found the form of the structure constants to be not illuminating in

general, so we display here the appropriate double-scaled limit of some of the functions that make an

appearance.

The relevant terms in the chiral algebra are the linear terms, which take the form,11

WpkiqpzqWpkjqpwq „
αkipn; c2dqδ

ij

pz ´ wq2ki
`
βkikjkkpnqWpkkq

pz ´ wqki`kj´kk
` . . . , (4.24)

11Here we are using slightly different indexing conventions from those used in [43]. For us, the indices i, j are equal
to the spin of the current, while in the reference the convention was that ithere “ ihere ´ 1.
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where in terms of the functions defined in the reference, the two-point functions are given by

αkpn; c2dq :“ ´
p2k ´ 1qc2d

6Nkpnq
, (4.25)

while the three-point functions take the form

βkikjkkpnq “ ´
pki ` kj ´ kk ´ 1q!Crki, kjstkku,t0u

Nkipnq
. (4.26)

In the scaling limit, the functions Nkipnq are given by

lim
nÑ8

Nkipnq “ p´1qki`1 6pki ´ 1q!2

p2ki ´ 1q!
n2ki´4 `Opn2ki´6q . (4.27)

The coefficients Crki, kjstkku,t0u are defined for general n in [43] and are quite complicated. In the

scaling limit, the non-vanishing structure constants simplify dramatically relative to the generic case.

With a significant amount of massaging they can be put into the form

Crki, kjstkku,t0u “p´1q
kk`ki´kj´2

2 ˆ
nkk`ki´kj´2

2kk`ki´kj´1
ˆ pkijk ´ 1q!!pkjki ´ 1q!!pkkij ´ 1q!!

ˆ
pki ` kj ` kk ´ 2q!

pki ` kj ` kk ´ 3q!!
ˆ

p2kj ´ 1q!!

p2ki ´ 3q!!p2kk ´ 3q!!
ˆ

1

p2kk ´ 1qp2kj ´ 2q!pkijk ´ 1q!
.

(4.28)

Note that the currents for which (4.24) holds differ from the canonically normalized currents with

which we should compare the supergravity results. They can be rescaled to implement the canonical

self-OPE according to

Wpkiq Ñ ĂWpkiq “
Wpkiq

a

αkipn; c2dq
, (4.29)

which leads to the following prediction for the three-point couplings that we should be computing,

Cpki, kj , kkq “

a

αkkpn; c2dq
a

αkipn; c2dq
a

αkj pn; c2dq
ˆ βkikjkkpnq . (4.30)

Remarkably, upon plugging in the above expressions and further massaging the result, one recovers

precisely the supergravity three-point functions displayed in Eqn. (4.18)!12 This agreement between

W algebra structure constants and supergravity correlation functions is an important confirmation

of our claim, and goes to demonstrate the power of having identified a chiral algebraic structure in

the p2, 0q theories. In principle, this reduces the problem of finding arbitrarily many corrections to

these three-point couplings to the much better defined problem of determining the quantization of the

W8rµs in the double scaling limit order by order in the 1{c2d expansion.

Finally, we should remark that there is in principle some freedom in the choice of generators

in terms of which one chooses to express a W algebra, and by making a redefinition of the form

Wpkiq Ñ Wpkiq ` λiWpkjqWpki´kjq, for example, one may obtain an equally good set of generators.

In the double scaling limit considered here, such a redefinition can be seen to only affect subleading

terms as long as we are looking at non-extremal three-point functions, i.e., ki ` kj ă kk and similarly

12In order to recover exact agreement with (4.18) it is necessary to make careful choices of the signs for the square
roots appearing in (4.30). With some work, these choices can be made systematically.
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for permutations of the indices. Strictly speaking, our check (and the results of [4, 5] themselves)

are only valid in the non-extremal case, due to subtleties of operator mixing in extremal correlators

(cf. [44]). Nevertheless, using the chiral algebra construction there is no obstruction to computing

extremal three-point functions, and in fact any extremal n-point function of half-BPS operators is

completely determined by the corresponding chiral algebra correlation function.

5 The chiral algebras of codimension-two defects

Finally, we come to the subject of chiral algebras associated to codimension-two defects. In the theory

of type g, there is an important class of half-BPS codimension-two defects labelled by embeddings

ρ : slp2q Ñ g [8]. The defect labelled by ρ carries a global symmetry h Ă g that is the centralizer of

the image ρ in g.

These defects play a fundamental role in bridging six- and four-dimensional physics. Upon twisted

compactification on a Riemann surface C, a p2, 0q theory will flow to an N “ 2 superconformal field

theory in four dimensions. These are four-dimensional SCFTs of class S. The codimension-two defects

appear in two different roles in this context:

(i) If a defect fills the non-compact R4, and is thus located at a point on C, then its presence changes

the four-dimensional theory. The resulting SCFT inherits the global symmetries of the defect.

(ii) If instead a defect wraps C and occupies a subspace R2 Ă R4, then it gives rise to a codimension-

two defect of the four-dimensional theory.

The four-dimensional worldvolume of such a defect enjoys sup2, 2|2q superconformal invariance, and

consequently comes with a protected chiral algebra of exactly the sort discussed in [1]. Consider the

maximal defect operator in the theory of type g (corresponding to the trivial embedding ρ “ id),

which carries g global symmetry with flavor central charge given by [21]

k4d “ 2h_ , (5.1)

where h_ is the dual Coxeter number of g. Using the dictionary of [1], one sees that the chiral algebra

supported on this defect will necessarily include as a subalgebra an affine g current algebra at level

k2d “ ´h
_ . (5.2)

This is the critical level, for which the Sugawara construction becomes singular, and consequently the

current algebra is without stress tensor. The most economical possibility is that the chiral algebra

associated to the SCFT living on the maximal defect is just the current algebra at the critical level. An

immediate check comes from another entry in the dictionary of [1]: the stress tensor of the protected

chiral algebra arises from the sup2qR symmetry current of the four-dimensional theory, which in turn

belongs to the same superconformal multiplet as the four-dimensional stress tensor. The SCFT living

on the defect, however, is not expected to have a local stress tensor (and hence, by supersymmetry,

there should be no R-symmetry current). This dovetails nicely with the absence of a stress tensor

in the current algebra at the critical level. Taking inspiration from the AGT correspondence and its

generalization [24] (see also [21, 25]) to scenario (ii), we further conjecture that the chiral algebra

associated to the defect labelled by ρ is the quantum Drinfeld-Sokolov reduction of type ρ of the

current algebra at the critical level.
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A quantitative check of our conjecture comes from an analysis of the protected spectrum of four-

dimensional SCFTs of class S. By leveraging generalized S-duality and the existence of special limits

where some of these theories admit Lagrangian descriptions, the general form for the superconformal

index of class S theories has been completely determined [36, 45, 46]. We may then hope to use

this detailed knowledge to infer some properties of the mother p2, 0q theory and of its various defect

operators. A salient feature of of the general formulae for the class S index13 is the presence of factors

K̂ρpq,aq that are naturally associated to codimension-two defects localized at punctures on C. (This

is the configuration (i) mentioned above). Indeed for each puncture of type ρ there is a puncture

factor, K̂ρpq,aq, which is a function of the superconformal fugacity q and of the flavor fugacities a of

the global symmetry algebra h Ă g. What’s more, there are no other building blocks appearing in the

class S index that depend purely on local properties of the punctures. This strongly suggests that

K̂ρpq,aq should be an intrinsic property of the codimension-two defect of type ρ. We may therefore

suspect that K̂ρpq,aq, once suitably normalized (see below), is the Schur index of the SCFT living on

the defect of type ρ, which in turn is equal to the character of associated the chiral algebra. Under

this assumption, our defect chiral algebra conjecture leads to a sharp prediction: K̂ρpq,aq must be the

character of the irreducible vacuum module of the quantum Drinfeld-Sokolov reduction of the current

algebra of type g at the critical level.

Below, we prove this statement for maximal defects in the An theories. For the Dn and En theories

a completely analogous proof is possible using the results of [47, 48]. For non-trivial embeddings, one

needs to take into account the effects of the quantum Drinfeld-Sokolov reduction on the character of

the chiral algebra. A proof that the resulting expressions again agree with the corresponding puncture

factors can be found in [49].

5.1 The critical character

The irreducible vacuum character of an affine Lie algebra at the critical level has been shown to take

the form [50]

chLλ “

ř

w̄PW̄ signpw̄qew̄pλ`ρq´ρ
ś

ᾱP∆̄`
p1´ q´xλ`ρ,ᾱ_yq

ś

αP∆re
`
p1´ e´αq

. (5.3)

The notation here is standard in the mathematical literature, see [50] for a detailed explanation. Here

λ is the highest weight of the module, which we will take to be trivial, but the formula is actually

valid for all cases where all but the zeroth Dynkin labels of λ are non-negative integers.

A comparison Eqn. (5.3) to a suitably normalized puncture factor requires some rewriting. For

λ “ 0 we can use the Weyl denominator formula to simplify the numerator, and we can also write out

the product of the real positive roots in the denominator. Recognizing that χadj “
ř

ᾱP∆̄`
peᾱ`e´ᾱq`r

leads to the final form,

chL0pq,aq “ P.E.

¨

˝

q

1´ q
χadjpaq ´

rq

1´ q
`

ÿ

ᾱP∆̄`

qxρ,ᾱ
_
y

˛

‚ . (5.4)

This equation is valid for any g.

Let us now turn to the consider the factors K̂ρpq,aq. In the An´1 theories the embeddings

ρ : slp2q Ñ slpnq are labelled by Young tableaux with n boxes. We will be concerned with the trivial

13For our purposes we should focus on the Schur limit of the index, which depends on a single superconformal fugacity
q. According to the dictionary of [1], the Schur index of the SCFT corresponds to the graded character Trp´1qF qL0 of
the associated chiral algebra.
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embedding, in which case the flavor symmetry is maximal and equal to slpnq. The corresponding

Young tableau is Λ “ . . . . From Eqn. (6.9) of [36], one finds that

K̂Λpq,aq “
n
ź

j,k“1

P.E.

ˆ

aja
´1
k q

1´ q

˙

“ P.E.

ˆ

q

1´ q
χadjpaq `

q

1´ q

˙

, (5.5)

where the n flavor fugacities ai correspond to the orthonormal basis of An´1 and satisfy
śn
i“1 ai “ 1.

To obtain the above expression we have used the fact that the adjoint character for An´1 takes the

form χadjpaq “
řn
j,k“1 aja

´1
k ´ 1.

Before we can compare this expression to Eqn. (5.4), we should consider its normalization. Reason-

ing based on the superconformal index only defines K̂ρpq,aq up to an overall q-dependent multiplicative

factor. Our interpretation suggests a natural normalization, because the index of the trivial defect

(i.e., no defect whatsover) should be identically equal to 1. The trivial defect corresponds to the

principal embedding, whose associated Young tableau is the dual tableau Λt, so the precise version of

our claim is

chL0 “
K̂Λpq,aq

K̂Λtpqq
. (5.6)

The factor for the trivial puncture, K̂Λtpqq, is again easily determined from the results of [36]. We find

that14

K̂Λpq,aq

K̂Λtpqq
“ P.E.

ˆ

q

1´ q
χadjpaq ´

řn
i“2 q

i

1´ q

˙

. (5.7)

Upon comparing (5.7) and (5.4) we see that the flavor fugacity dependence matches perfectly. Matching

the extra q-dependent terms requires the relation

ÿ

ᾱP∆̄`

qxρ,ᾱ
_
y “

n q ´
řn
i“1 q

i

1´ q
, (5.8)

which is indeed a simple fact of life for the An´1 Lie algebras.
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A The p2, 0q superconformal algebra

A.1 Oscillator representation

In order to establish conventions for the the six-dimensional superconformal algebra, we utilize an

oscillator representation (cf. [51]). We define a set of four fermionic oscillators with their conjugates,

pca, c̃
aq, along with four (symplectic) bosonic oscillators αA. The indices a and A run from one to

four, and the oscillators satisfy (anti-)commutation relations

tca, c̃
bu “ δ b

a , rαA, αBs “ ΩAB , (A.1)

where Ω is the skew-symmetric symplectic matrix with Ω14 “ Ω23 “ 1 and other unrelated entries

equal to zero.

The fermionic generators of the superconformal algebra are fermionic bilinears of the basic oscil-

lators,

QAa :“ caαA , SaA :“ c̃aαA , (A.2)

whereas the bosonic bilinears make up the generators of the bosonic subalgebra sop6, 2q ˆ uspp4q,

Pab :“ ca cb ,

Kab :“ c̃a c̃b ,

RAB :“ αA αB ,

M b
a :“ ca c̃

b ´ 1
4δ

b
a cc c̃

c ,

H :“ 1
2 ca c̃

a .

Repeated indices are summed over.

The fermionic anti-commutators are as follows

tQAa,QBbu “ ΩABPab ,
tSaA,SbBu “ ΩABKab ,
tQAa,SbBu “ δ b

a RAB ` ΩABM b
a `

1
2δ

b
a ΩABH ,

while the non-vanishing commutation relations of the bosonic generators amongst themselves are given

by

rPab,Kcds “ δ c
b M d

a ` δ d
a M c

b ´ δ
c
aM d

b ´ δ
d
b Mc

a ,

rPab,M d
c s “ δ d

a Pbc ´ δ d
b Pac ` 1

2δ
d
c Pab ,

rKab,M d
c s “ δbcKad ´ δacKbd ´ 1

2δ
d
c Kab ,

rM b
a ,M d

c s “ ´δ d
a M b

c ` δ
b
c M d

a ,

rH,Pabs “ Pab ,
rH,Kabs “ ´Kab ,

rRAB,RCDs “ ΩACRBC ` ΩBCRAD ` ΩADRBC ` ΩBDRAC .
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Charge QAa h1, h2, h3 pj1, j2q R r sup2, 2|2q Dp2, 2q

Q11 ``` p`, 0q ` ` Q1
`

Q21 ``` p`, 0q ` ´

Q31 ``` p`, 0q ´ ` Q2
`

Q41 ``` p`, 0q ´ ´

Q12 `´´ p´, 0q ` ` Q1
´

Q22 `´´ p´, 0q ` ´

Q32 `´´ p´, 0q ´ ` Q2
´

Q42 `´´ p´, 0q ´ ´

Q13 ´`´ p0,`q ` ` Q1

Q23 ´`´ p0,`q ` ´ rQ1
9̀ Q2

Q33 ´`´ p0,`q ´ ` Q3

Q43 ´`´ p0,`q ´ ´ rQ2
9̀ Q4

Q14 ´´` p0,´q ` ` Q̃1

Q24 ´´` p0,´q ` ´ rQ1
9́ Q̃2

Q34 ´´` p0,´q ´ ` Q̃3

Q44 ´´` p0,´q ´ ´ rQ2
9́ Q̃4

Table 3. Supercharge summary. All orthogonal basis quantum numbers have magnitude one half. The four-
dimensional subalgebra acts on the h2 and h3 planes, while the two-dimensional chiral subalgebras act in the
h1 plane.

Finally, the fermionic charges have the following commutation relations with the bosonic subalgebra,

rPab,QCcs “ 0 ,

rKab,QCcs “ δ b
c SaC ´ δ a

c SbC ,

rM b
a ,QCcs “ δ b

c QCa ´
1
4δ

b
a QCc ,

rH,QCcs “
1
2QCc ,

rRAB,QCcs “ ΩACQBc ` ΩBCQAc ,

rPab,ScCs “ δ c
b QCa ´ δ

c
aQCb ,

rKab,ScCs “ 0 ,

rM b
a ,ScCs “ ´δcaSbC ` 1

4δ
b
a ScC ,

rH,ScCs “ ´1
2S

c
C ,

rRAB,ScCs “ ΩACScA ` ΩBCScA .

A.2 Subalgebras

It will be convenient to explicitly define various subalgebras of Dp4, 2q. First of all, let us fix our

conventions for the generators of various maximal and Cartan subalgebras of the bosonic symmetry

groups. There is a maximal subalgebra sup2qR ˆ up1qr Ă uspp4q, with generators tR˘, Ru, and r that

we can take to be given by

R` “ R12 , R´ :“ R34 , R :“ ´ 1
2 pR14 `R23q , r :“ 1

2 pR14 ´R23q . (A.3)

This is the subalgebra under which the 5 of uspp4q decomposes as 5 Ñ 30‘1`1‘1´1. The generators

R and r define the orthogonal basis of weights for sop5q, and are related to the sop5q Dynkin weights
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d1 and d2 according to

d1 “ R´ r , d2 “ 2r . (A.4)

The orthogonal basis for the Cartan subalgebra of sop6q is given by the generators of rotations in

the three orthogonal planes in R6,

L1 :“ 1
2 pM

1
1 `M2

2 ´M3
3 ´M4

4q ,

L2 :“ 1
2 pM

1
1 ´M2

2 `M3
3 ´M4

4q ,

L3 :“ 1
2 pM

1
1 ´M2

2 ´M3
3 `M4

4q .

We denote the eigenvalues of these generators by Li|ψy “ hi|ψy. These orthogonal basis quantum

numbers are related to the Dynkin basis rc1, c2, c3s of sup4q according to

h1 “
1

2
c1 ` c2 `

1
2c3 , h2 “

1
2c1 `

1
2c3 , h3 “ ´

1
2c1 ´

1
2c3 . (A.5)

There are a number of superconformal subalgebras of Dp4, 2q. In the text, a particularly impor-

tant role is played by the maximal supersymmetrization of the algebra of anti-holomorphic Möbius

transformations in the tx1, x2u plane, which is a Dp2, 2q algebra. In addition, the four-dimensional

N “ 2 superconformal algebra sup2, 2|2q can be embedded such that the four-dimensional rotation

group is sup2q1 ˆ sup2q2 and the four-dimensional R-symmetry group is sup2qR ˆ diagrup1qr, up1qL1
s.

The precise map between the supercharges for these two embeddings is shown in table 3.

B Unitarity irreducible representations of ospp8‹|4q

We recall the classification of unitarity irreducible representations of the ospp8‹|4q superalgebra. These

have been described in [26–28]. There are four linear relations at the level of quantum numbers that,

if satisfied by the superconformal primary state in a representation, guarantee that the resulting

representation is (semi-)short. We adopt the following notation for labelling these relations:

A : E “ h1 ` h2 ´ h3 ` 2R` 2r ` 6 , (B.1)

B : E “ h1 ` 2R` 2r ` 4 , h1 > h2 “ h3 ,

C : E “ h1 ` 2R` 2r ` 2 , h1 “ h2 “ h3 ,

D : E “ 2R` 2r , h1 “ h2 “ h3 “ 0 .

Note that we are using conventions for the orthogonal Cartans such that the highest weight state of

the 5 of uspp4q has R “ 1 and r “ 0, and the highest weight state of the 4 of sop6q has ph1, h2, h3q “

p 1
2 ,

1
2 ,

1
2 q.

For a representation in any one of the classes listed above, the structure of null states in the Verma

module built on the superconformal primary depends on the sop6q representation of that primary.

Every short representation possesses a single primary null state, with the additional null states being

obtained by the action of additional raising operators on the null primary. Different locations for the

primary null state lead to different multiplet structures, which we summarize in table 4. In all cases,

when some of the ci are written, the last one is necessarily non-zero. The quantum numbers d1,2 in

all cases are only restricted to be non-negative integers. The multiplets of the type Brc1, c2, 0; 0, 0s,

Crc1, 0, 0; d1, d2s with d1` d2 ď 1, and Dr0, 0, 0; d1, d2s with d1` d2 ď 2 contain conserved currents or

free fields. In particular, the stress tensor multiplet is Dr0, 0, 0; 2, 0s.
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A[c1,c2,c3;d1,d2] Q14 ψ “ 0 [ 0, 0, -1 ; 0, 1 ]

A[c1,c2, 0 ;d1,d2] Q13Q14 ψ “ 0 [ 0, -1, 0 ; 0, 2 ]

A[c1, 0 , 0 ;d1,d2] Q12Q13Q14 ψ “ 0 [ -1, 0, 0 ; 0, 3 ]

A[ 0 , 0 , 0 ;d1,d2] Q11Q12Q13Q14 ψ “ 0 [ 0, 0, 0 ; 0, 4 ]

B[c1,c2, 0 ;d1,d2] Q13 ψ “ 0 [ 0, -1, 1 ; 0, 1 ]

B[c1, 0 , 0 ;d1,d2] Q12Q13 ψ “ 0 [ -1, 0, 1 ; 0, 2 ]

B[ 0 , 0 , 0 ;d1,d2] Q11Q12Q13 ψ “ 0 [ 0, 0, 1 ; 0, 3 ]

C[c1, 0 , 0 ;d1,d2] Q12 ψ “ 0 [ -1, 1, 0 ; 0, 1 ]

C[ 0 , 0 , 0 ;d1,d2] Q11Q12 ψ “ 0 [ 0, 1, 0 ; 0, 2 ]

D[ 0 , 0 , 0 ;d1,d2] Q11 ψ “ 0 [ 1, 0, 0 ; 0, 1 ]

Table 4. The primary null state for each of the shortened multiplets, expressed in terms of a combination
of supercharges acting on the superconformal primary. The expression in the second column is schematic,
since the actual null state be a linear combination of this state with other descendants. The rightmost column
contains the Dynkin labels corresponding to the combination of supercharges. Notice that the Lorentz indices
are implicitly antisymmetrized because of the identical R symmetry indices on each supercharge.

This structure of null states makes the decomposition rules for long multiplets transparent. Start-

ing with a generic multiplet approaching the A-type bound for its dimension, the following decom-

positions take place (which decomposition occurs depends on the sop6q representation of the long

multiplet):

ψrE˚ ` δ; c1, c2, c3; d1, d2s ÝÑ
δÑ0

Arc1, c2, c3; d1, d2s ‘ Arc1, c2, c3 ´ 1; d1, d2 ` 1s , (B.2)

ψrE˚ ` δ; c1, c2, 0; d1, d2s ÝÑ
δÑ0

Arc1, c2, 0; d1, d2s ‘ Brc1, c2 ´ 1, 0; d1, d1 ` 2s ,

ψrE˚ ` δ; c1, 0, 0; d1, d2s ÝÑ
δÑ0

Arc1, 0, 0; d1, d2s ‘ Crc1 ´ 1, 0, 0; d1, d2 ` 3s ,

ψrE˚ ` δ; 0, 0, 0; d1, d2s ÝÑ
δÑ0

Ar0, 0, 0; d1, d2s ‘ Dr0, 0, 0; d1, d2 ` 4s .

There is a relatively short list of multiplets that can never appear in a recombination rule:

Brc1, c2, 0; d1, t0, 1us , (B.3)

Crc1, 0, 0; d1, t0, 1, 2us ,

Dr0, 0, 0; d1, t0, 1, 2, 3us .

Amusingly, the Q -chiral operators that give rise to currents of the protected chiral algebra are all

selected from among these non-recombinant representations.

C Characters of ospp8˚|4q

In this appendix we discuss a method to compute the characters for the various UIRs of ospp8˚|4q

discussed in the previous appendix. We will then use these characters to enumerate the full set of

Q -chiral operators given in table 1 in the main text.
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The characters are defined as

χRpa,b, qq “ TrRpa
c1
1 ac22 ac33 bd11 bd22 q∆q

where rc1, c2, c3s and rd1, d2s are the sup4q and sop5q weights of a state in the Dynkin basis, respectively,

and ∆ is its scaling dimension. The trace runs over all states in the representation.

We will below write χpOq to denote a monomial of the fugacities associated to an element O of

ospp8˚|4q. As an example, consider the two sop5q raising operators R`1 and R`2 corresponding to the

positive simple roots. Their respective Dynkin labels are r2,´2s and r´1, 2s and therefore

χpR`1 q “
b21
b22
, χpR`2 q “

b22
b1
. (C.1)

C.1 Long representations

The character for a generic long representation Lrc1, c2, c3; d1, d2s, whose highest weight has scaling

dimension ∆, is easily constructed. It takes the form

χLpa,b, qq “ q∆χrc1,c2,c3spaqχrd1,d2spbqP pa, qqQpa,b, qq (C.2)

In this expression the terms χrc1,c2,c3spaq and χrd1,d2spbq are just the sup4q and sop5q characters of

the irreducible highest weight representation with the given Dynkin labels. The terms P pa, qq and

Qpa,b, qq then represent the action of the supercharges and the derivatives and are defined as

Qpa,d, qq “
ź

A,a

p1` χpQAaqq P pa, qq “
6
ź

µ“1

p1´ χpPµqq´1
. (C.3)

We will now rewrite equation (C.2) in a form that is useful to describe the short representations

below. To this end, we notice that the characters χrc1,c2,c3spaq and χrd1,d2spbq can be written as orbits

over the Weyl group W ,

χrc1,c2,c3spaq “
ÿ

wPWsup4q

wpa1q
c1wpa2q

c2wpa3q
c3M pwpaqq , (C.4)

χrd1,d2spdq “
ÿ

wPWuspp4q

wpb1q
d1wpb2q

d2R pwpbqq . (C.5)

The factors Mpaq and Rpbq are the denominators of the Verma module characters, obtained from a

product over all negative roots,

Mpaq “
6
ź

i“1

`

1´ χpM´
i q
˘´1

“
1

´

1´ a2
a21

¯´

1´ 1
a1a3

¯´

1´ a2
a23

¯´

1´ a1
a2a3

¯´

1´ a1a3
a22

¯´

1´ a3
a1a2

¯ ,

Rpbq “
4
ź

j“1

`

1´ χpR´j q
˘´1

“
1

´

1´ 1
b1

¯´

1´ 1
b22

¯´

1´ b1
b22

¯´

1´
b22
b21

¯ . (C.6)

Notice that the elements of the Weyl group act on the fugacities, whereas in the usual Weyl-Kac

character formula they act on the highest weight (in a shifted way). Our expressions for the irreducible

characters are however a direct rewriting of the Weyl-Kac character formula. Since the factors P pa, qq
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and Qpa,b, qq are invariant under the Weyl group we may also write the full character (C.2) as

χLpa,b, qq “ q∆
ÿ

wPW

wpa1q
c1wpa2q

c2wpa3q
c3wpb1q

d1wpb2q
d2

ˆMpwpaqqRpwpbqqP pwpaq, qqQpwpaq, wpbq, qq

(C.7)

where we defined W “ Wsup4qˆsop5q, the Weyl group of the maximal compact bosonic subgroup of

OSpp8˚|4q. In the following we will denote the Weyl symmetrizer sum as v. . .wW so that we may write

χLpa,b, qq “
1

q∆ac11 a
c2
2 a

c3
3 b

d1
1 b

d2
2 MpaqRpbqP pa, qqQpa,b, qq

9

W
. (C.8)

As we will shortly see, this form of the character extends most easily to short multiplets.

C.2 Short representations

For shortened UIRs of ospp8˚|4q the superconformal primary state is annihilated by a subset of the

supercharges15 and, in the case of free fields or conserved currents, of the momentum operators as well.

In that case there is a remarkable (but conjectural) recipe [28, 52, 53] to compute the character: the

only changes required in (C.8) are to simply remove from Qpa,b, qq and P pa, qq those combinations

of supercharges and momentum operators that annihilate the highest weight state, and to dial ∆ to

the correct scaling dimension of the superconformal primary. For example, table 4 shows that for a

short multiplet of type Arc1, c2, c3; d1, d2s with c3 ą 0 and d2 ą 0 the only supercharge that generates

a primary null state is Q14 to which we associate the monomial χpQ14q “ b2q
1{2{a3. The recipe then

leads to

χArc1,c2,c3;d1,d2spa,b, qq “

3

q∆ac11 a
c2
2 a

c3
3 b

d1
1 b

d2
2 XpaqY pbqP pa, qqQpa,b, qq

ˆ

1`
b2q

1{2

a3

˙´1
;

W

(C.9)

with ∆ “ 6 ` c1{2 ` c2 ` 3c3{2 ` 2d1 ` 2d2. Notice that the additional factor effectively removes

from Qpa,b, qq not only the primary null state but also all the states obtained from it by the action

of further supercharges - this is always what we have in mind when we say that we ‘remove’ a certain

combination of supercharges.

We have implemented the recipe in Mathematica and obtained in this way expressions for the

irreducible characters of all the shortened representations. The characters so obtained match known

results and satisfy the correct recombination rules. Furthermore, when we compute the superconformal

index from these characters by dialing the fugacities in an appropriate manner we find the expected

form where only the “ground states” in the cohomology of a particular supercharge contribute. We

therefore believe the resulting expressions to be correct.

Notice that the recipe requires a precise enumeration of all the different combinations of the

supercharges that annihilate the superconformal primary, which is in fact rather subtle. To illustrate

the general idea, consider once more the Arc1, c2, c3; d1, d2s multiplet with c3 ą 0 but now with

d2 “ 0. In that case we can act with an sop5q lowering operator on the primary null state condition

Q14ψrd1,0s “ 0 to find that Q24 also annihilates the superconformal primary state,

0 “ R´2 Q14ψrd1,0s “ rR
´
2 ,Q14sψrd1,0s “ Q24ψrd1,0s . (C.10)

15The exact null state is generically a linear combination of states obtained by acting with the supercharges and other
lowering operators. This distinction is however irrelevant for the discussion in this appendix.
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The correct character therefore becomes

χArc1,c2,c3;d1,0spa,b, qq “
3

q∆ac11 a
c2
2 a

c3
3 b

d1
1 b

0
2MpaqRpbqP pa, qqQpa,b, qq

ˆ

1`
b2q

1{2

a3

˙´1 ˆ

1`
b1q

1{2

b2a3

˙´1
;

W

, (C.11)

where we used that χpQ24q “ b1q
1{2{pb2a3q. In the remainder of this appendix we discuss how to

systematically enumerate all the supercharge combinations that lead to such additional terms in the

character formula.

C.2.1 Null states and supercharge combinations

We would like to find combinations of supercharges that annihilate the superconformal primary state,

besides those obtained from the action of zero or more supercharges on the primary null states listed

in table 4. As in the previous example, such additional combinations arise from the action of sup4q

or sop5q lowering operators on the null states, at least for low values of the Dynkin labels of the

superconformal primary. The action of the lowering operators on the individual supercharges is as

follows:

QA1

QA2

QA3

QA4

M´
1

M´
2

M´
3

Q1a

Q2a

Q3a

Q4a

R´2

R´1

R´2

(C.12)

Let us first consider new null states appearing from the action of the Lorentz generators. Using

the first diagram given above, and the specific pattern of shortening conditions in table 4, we find the

following rule: if

Q1a1 . . .Q1akψrc1,c2,c3;d1,d2s “ 0 (C.13)

then the additional shortenings with the same R symmetry indices are obtained by taking all possible

actions of the lowering operators M´
i . Therefore if

rM´
i1
, . . . , rM´

im
,Q1a1 . . .Q1ak ss “: Q1b1 . . .Q1bk ‰ 0 (C.14)

then the resulting combination of supercharges annihilates the superconformal primary and so the

corresponding term needs to be subtracted from Qpa,b, qq in the character formula. For example,

consider the Brc1, 0, 0; d1, d2s multiplet. Table 4 shows that the primary null state is given by

Q12Q13ψrc1,0,0s “ 0 (C.15)

Acting with M´
3 and then further with M´

2 , both of which annihilate the superconformal primary,
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we find the additional null states

Q12Q14ψrc1,0,0s “ 0 Q13Q14ψrc1,0,0s “ 0 (C.16)

These combinations therefore also need to be removed from the factor Qpa,b, qq. The explanation

behind our general rule tracks the logic of this example: from a direct analysis one finds that if (C.14)

is non-zero for a specific combination of the M´
i then each M´

i in this combination annihilates the

superconformal primary and the result follows.

Next we consider the R symmetry quantum numbers. By carefully matching how many states

should be removed at a given level against the number of states available one uncovers the following

slightly more involved pattern. First of all, we find that for d2 ą 3 the above analysis suffices and there

are no additional terms that need to be removed from Qpa,b, qq. To see what happens for d2 ď 3

let us consider the type Dr0, 0, 0; d1, 3s multiplet as an example. We obtain from table 4 that the

superconformal primary is killed by Q11 and, in agreement with the rule given above, we find three

more shortenings by acting with M´
a . Altogether this leads to

Q11ψr0,0,0;d1,3s “ 0 , Q12ψr0,0,0;d1,3s “ 0 , Q13ψr0,0,0;d1,3s “ 0 , Q14ψr0,0,0;d1,3s “ 0 .

(C.17)

Let us now demonstrate that the highest weight state in this multiplet satisfies the additional relation:

Q21Q22Q23Q24ψ “ 0 (C.18)

and therefore that this combination of supercharges also needs to be removed from the character

formula. In order to show (C.18) it suffices to realize that one may rewrite this expression as a linear

combination of the following terms:

pR´2 q4Q11Q12Q13Q14ψ

pR´2 q3rR
´
2 ,Q11Q12Q13Q14sψ

pR´2 q2rR
´
2 , rR

´
2 ,Q11Q12Q13Q14ssψ

R´2 rR
´
2 rR

´
2 , rR

´
2 ,Q11Q12Q13Q14sssψ

Q11Q12Q13Q14pR´2 q4ψ

(C.19)

with coefficients that are easily determined but unimportant for our analysis. Now, each of the states

listed above is null: the first four because the commutators evaluate to a term that vanishes due to

the shortening (C.17), and the last one because ψ has d2 “ 3.

Notice that (C.18) is precisely the shortening condition of Ar0, 0, 0; d1, d2s type acted upon with

pR´2 q4. This is indicative of the following general pattern. Let us enumerate the shortening types

by an integer X “ t1, 2, 3, 4u for tA,B, C,Du, respectively. Then, in a short multiplet of type

X rc1, c2, c3; d1, d2s with X´d2 ą 0 and d1 ą 3, we need to additionally remove from Qpa,b, qq precisely

those combinations of the supercharges that one obtains from the action of pR´2 qd2`1, pR´2 qd2`2, . . . , pR´2 q4
on the combination states of type pX ´ d2qrc1, c2, c3; d1, d2s.

16

In a similar vein one finds that further factors may need to be removed if, in addition to d2 ď 3,

the superconformal primary has d1 ` d2 ď 3. In that case one should also remove the supercharge

16Notice that the Lorentz indices in the shortening conditions are always antisymmetrized so one may take the
sop5q indices to be symmetrized. The precise statement is that one has to remove precisely one term in the sum that
symmetrizes the sop5q indices, but it does not matter which term.
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combinations obtained from the action of pR´1 qd1`1 on the shortening conditions of type pX ´ d1 ´

d2qrc1, c2, c3; d1, d2s obtained using the above procedure for d2 ă 3, as well as all the supercharge

combinations obtained from all the other sop5q lowering operators acting on this combination.

Finally, when the multiplet contains conserved currents one should further remove the action of

certain momentum operators from P pa, qq. We have not implemented this in detail, relying instead

on the known form of short representations of the conformal algebra [52] to obtain expressions that

match our expectations.

C.2.2 Contribution to the unrefined superconformal index

The explicit form of the characters is obviously rather involved. It does not seem wortwhile to repro-

duce them here, but they are available from the authors upon request. On the other hand, we can use

these characters to compute the contribution to the superconformal index of each shortened multiplet.

If we in addition take the unrefined limit of the superconformal index as described in section 2.1 then

the expressions simplify drastically. We find a non-zero contribution only for the following six cases:

Brc1, c2, 0; d1, 0s :
q4`d1`c1{2`c2

1´ q
χc1psq Dr0, 0, 0; d1, 0s :

qd1

1´ q

Crc1, 0, 0; d1, 0s :
q2`d1`c1{2

1´ q
χc1`2psq Dr0, 0, 0; d1, 1s :

q3{2`d1

1´ q
χ1psq (C.20)

Crc1, 0, 0; d1, 1s :
q7{2`d1`c1{2

1´ q
χc1`1psq Dr0, 0, 0; d1, 2s :

q3`d1

1´ q

with

χλpsq “
sλ`1 ´ s´λ´1

s´ s´1
(C.21)

the sup2q character corresponding to the irrep with highest weight λ. These are the Q -chiral operators

described in the main text.

D Q -chiral operators

In this appendix we provide an alternative and more direct derivation of the Q -chiral operators. The

derivation presented below does not require the computation of characters and may give a more

intuitive picture behind the presence of Q -chiral operators in shortened UIRs. The results that we

obtain are in complete agreement with those of the previous appendix.

As explained in the main text, a Q -chiral operator satisfies the following defining set of conditions

for its quantum numbers:

rL̂0,Op0qs “ 0 ùñ
E ´ h1

2
´R “ 0 , (D.1)

By unitary, an operator satisfying this condition will necessarily obey the additional relations

h2 “ h3 , r “ 0 . (D.2)

Now the important question for us is where such states may appear in a UIR of the six-dimensional

superconformal algebra. Let us start by determining some general properties regarding the placement

of such an state in a six-dimensional represenation. First, we can see that such a state must be in
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the highest weight state of its sop5q representation. Indeed, consider a state |ψyrd1,0s that obeys the

Q -chirality conditions and has Dynkin weights rd1, d2s. The action of the positive simple roots of

uspp4q on this state will be as follows,

R`1 |ψyrd1,d2s “ λ1|ψyrd1`2,d2´2s ,

R`2 |ψyrd1,d2s “ λ2|ψyrd1´1,d2`2s ,

for some coefficients λ1,2. If either λ were non-zero, one can easily see that the resulting state would

violate unitarity in the sense that sums of squares of some supercharges would have negative eigenvalue

when acting on that state. Consequently, a Q -chiral state must necessarily be a sop5q highest weight.

The story of sup4q representations is not quite as simple. This is because the supercharges involved

in these arguments all commute with the subgroup sup2q1 Ă sup4q. If we consider the action of the

positive simple roots of sup4q acting on a Q -chiral state ψrc1,c2,c3s,

M`
1 ψrc1,c2,c3s „ ψrc1`2,c2´1,c3s ,

M`
2 ψrc1,c2,c3s „ ψrc1´1,c2`2,c3´1s ,

M`
3 ψrc1,c2,c3s „ ψrc1,c2´1,c3`2s .

The second and third of these states will violate unitarity if non-zero. The first, on the other hand,

could be an allowed state that also satisfies the Q -chirality conditions, and indeed the first represents

the action of the raising operator of sup2q1. We may conclude that within a given representation of

sup4q ˆ sop5q, the only potential Q -chiral operators are of the form

pM´
1 q
k|ψyh.w. ,

which fill out the representation of sup2q1 in which the sup4q highest weight transforms. For the

purpose of identifying representations in which Q -chiral operators reside, it will therefore be sufficient

to look for highest weight states of sup4q ˆ sop5q that are Q -chiral, and subsequently include any

additional states in the relevant sup2q1 multiplet.

We can do this as follows. The highest weight state of any sup4q ˆ sop5q representation appearing

in the superconformal multiplet will be a linear combination of states, at least one of which will take

the form of up to sixteen supercharges acting on the superconformal highest weight state:

ψh.w. “ Q ¨ ¨ ¨Qψs.c.h.w. ` . . .

Thus, we can search for Q -chiral operators searching of states of this form with the correct quantum

numbers. The possible operators of this type are immediately restricted by the fact that L̂0 must have

positive eigenvalues on any physical state, and there are only four supercharges whose action reduces

the value of L̂0. Thus we are actually only interested in operators of the form

Qn1
11Q

n2
12Q

n3
21Q

n4
22ψ ,

with ni “ 0, 1.17

17There are also supercharges that do not shift the value of L̂0, and one may at first think that those could be included
in the action as well. However, those supercharges will necessarily shift the value of r, meaning that if a Q -chiral operator
existed that included an action of such a supercharge, there would be another operator present with L̂0 “ 0 and r ‰ 0,
which would violate unitarity.
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The most that the L̂0 eigenvalue of any superconformal primary state can be lowered before reach-

ing a Q -chiral operator is therefore two. Consequently, the types of multiplets that may conceivably

contain Q -chiral operators are those which the superconformal primary has L̂0 eigenvalue less than

or equal to two, along with some additional r symmetry constraints. The possible cases are easily

enumerated to be the following:

Brc1, c2, 0; d1, 0s , Crc1, 0, 0; d1, t0, 1us , Dr0, 0, 0; d1, t0, 1, 2us .

Let us consider these options in order.

i A multiplet of type Brc1, c2, 0; d1, 0s. In this case there is a potential Q -chiral operator including

a term of the form Q12Q22Q21Q22ψs.c.h.w.. Indeed, one can check that such a state does exist

(it is not excluded by the shortening conditions), and it is in the highest weight state of the

following projection:

Qb4ψ
ˇ

ˇ

rc1,c2`2,0;d1`2,0s
.

Note that generally speaking c1 may be non-zero, in which case such a Q -chiral operator will lie

in an SUp2q multiplet of Q -chiral operators.

ii(a) The next consideration is Crc1, 0, 0; d1, 0s. For such a multiplet, there are potential Q -chiral

operators including terms of the following forms: Q11Q12ψscp, Q11Q22ψscp, Q21Q12ψscp, or

Q21Q22ψscp. It turns out that only the first of these actually appears in the highest weight

component of a Q -chiral operator, which is as follows:

`

Qb2 b ψ
˘
ˇ

ˇ

rc1`2,0,0;d1`1,0s
.

There will always be a non-trivial SUp2q multiplet of Q -chiral operators in this case.

ii(b) We also consider the case Crc1, 0, 0; d1, 1s. In this case the potential Q -chiral operators include

terms of the form Q21Q12Q22ψscp and Q11Q12Q22ψscp. Again, only the first of these appears

in a highest weight Q -chiral operator, which is as follows:

`

Qb3 b ψrc1,0,0;d1,1s

˘
ˇ

ˇ

rc1`1,1,0;d1`2,0s
,

We have a non-trivial SUp2q multiplet again.

iii(a) Finally, we consider the (at least) quarter BPS states of type D. For Dr0, 0, 0; d1, 0s, these are

actually half BPS states, and the superconformal primary itself is Q -chiral,

ψr0,0,0;d1,0s .

iii(b) For Dr0, 0, 0; d1, 1s, the possible Q -chiral states include terms of the form Q12ψscp and Q22ψscp.

The second of these is in the same multiplet as the first, which gives us a Q -chiral highest weight

state in the following projection:

`

Qb ψr0,0,0;d1,1s

˘
ˇ

ˇ

r1,0,0;d1`1,0s
.
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iii(c) Finally, for Dr0, 0, 0; d1, 2s, the only possible Q -chiral states include the term Q12Q22ψscp, which

occurs in the following projection:

`

Qb2 b ψr0,0,0;d1,2s

˘
ˇ

ˇ

r0,1,0;d1`2,0s
.
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