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Cellular signal transduction usually involves activation cascades, the sequen-

tial activation of a series of proteins following the reception of an input signal.

Here, we study the classic model of weakly activated cascades and obtain

analytical solutions for a variety of inputs. We show that in the special but

important case of optimal gain cascades (i.e. when the deactivation rates are

identical) the downstream output of the cascade can be represented exactly

as a lumped nonlinear module containing an incomplete gamma function

with real parameters that depend on the rates and length of the cascade, as

well as parameters of the input signal. The expressions obtained can be applied

to the non-identical case when the deactivation rates are random to capture

the variability in the cascade outputs. We also show that cascades can be

rearranged so that blocks with similar rates can be lumped and represented

through our nonlinear modules. Our results can be used both to represent cas-

cades in computational models of differential equations and to fit data

efficiently, by reducing the number of equations and parameters involved.

In particular, the length of the cascade appears as a real-valued parameter

and can thus be fitted in the same manner as Hill coefficients. Finally,

we show how the obtained nonlinear modules can be used instead of delay

differential equations to model delays in signal transduction.
1. Introduction
Activation cascades are pervasive in cellular signal transduction systems [1,2]. In

its simplest form, an activation cascade comprises a set of components (typically

proteins) that become sequentially activated in response to an external stimulus

(figure 1). These systems have been the subject of numerous studies, experimental

and theoretical [1,3–9]. The role of activation cascades in cellular signal transduc-

tion is manifold. Cascades can relay, amplify, dampen or modulate signals in

order to achieve a variety of cellular responses. One of the best-studied examples

of such a system is the mitogen-activated protein kinase (MAPK) cascade, which

plays a central role in key cellular functions, such as regulation of the cell cycle,

stress responses and apoptosis [2].

Models of activation cascades are known to exhibit a range of nonlinear

behaviours, including ultrasensitivity [6,10] and multistability [5,11]. Linearized

models of cascades [1] (the so-called ‘weakly activated’ regime studied here)

are also of theoretical interest, and have been studied to evaluate signalling

times [12], signal specificity [13] and optimal gain [4]. Such linearized descrip-

tions of cascades often appear as part of larger and more complicated models,

and have been shown to be useful in model reduction techniques [14]. Hence

obtaining coarse-grained representations of such cascades would be useful not

only to simplify their mathematical analysis but also computationally, to allow

for compact implementations in models for systems biology. Furthermore,

weakly activated cascades are of importance in quantitative biology as they

have been observed experimentally [15]. In this context, it would be desirable

to estimate the length of an unobserved cascade from data without having to
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Figure 1. A typical protein activation cascade of length n. The proteins
(nodes) in the cascade can either be in an inactive (xi) or active (x�i )
state. An external signal R(t) activates the first node. Once a node is
active, it activates the next component in the cascade until the end. The acti-
vation rate of each xi is ai, and the deactivation rate of each x�i is bi.
Adapted from [1]. (Online version in colour.)
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create and fit several models, each with a different number of

equations to represent the varying length of the cascade.

Here, we present a study of analytical solutions of ordinary

differential equation (ODE) models of linear activation cas-

cades. First, we obtain general solutions for weakly activated

cascades. We then focus on the case when the gain of

the cascade is optimal (i.e. when all deactivation rates are

identical), and find that a lower incomplete gamma function

with only three real-valued parameters represents the output

of the entire cascade. We exemplify the use of this coarse-

grained solution to describe the downstream output induced

by several time-dependent inputs of interest, including step

functions, exponentially decaying signals, Gaussian inputs

and periodic stimuli. We also show that the obtained solution

has real-valued parameters directly linked to the length and fil-

tering properties of the cascade, and can thus be used to fit data

capturing efficiently the delay and distortion introduced by

the cascade. We also explore the application of our results to

non-optimal cascades, i.e. when the requirement of identical

deactivation rates is relaxed. When only one deactivation rate

is different, the equations can be reordered, so that a lumped

gamma function representation can be used for the block of

identical proteins without altering the final output of the

cascade. We also show that when the deactivation rates are ran-

domly distributed, the gamma function can still be used to

represent the distribution of the outputs of the cascade. Finally,

we show how the gamma function representation of a cascade

can be used as a computationally efficient replacement of delay

differential equations (DDEs).
2. Weakly activated cascades and their gamma
function solution

Consider a cascade involving n components that are activated

in succession. Upon perception of the input signal R̂(t), the first

inactive component (x1) is transformed into its activated form

(x�1), which then activates the next component (x2). Sequential

activation of xi by x�i�1 continues until the end of the cascade.

The output of the cascade of length n is the activated form

of the last component, x�n. In the case of the MAPK cascade,

the components are proteins, and the activation corresponds

to a post-translational modification, i.e. phosphorylation.
However, the formalism can also describe other sequential

biochemical processes with similar functional relationships,

e.g. n-step deoxyribonucleic acid (DNA) unwinding [16].

If we use mass-action kinetics without an intermediate

complex to describe protein activation, the reaction describing

the activation of x1 is

Rþ x1�!
â1 x�1 þ R,

and for the rest of the proteins xi (i ¼ 2, . . . ,n) we have

x�i�1 þ xi�!
â i x�i�1 þ x�i :

We also assume that all proteins deactivate spontaneously with

constant rate

x�i �!
bi xi:

The system of nonlinear ODEs describing the time evolution of

the full activation cascade is [1]

dx�1
dt
¼ â1R(t)(T1 � x�1)� b1x�1,

dx�2
dt
¼ â2x�1(T2 � x�2)� b2x�2

..

.

and
dx�n
dt
¼ ânx�n�1(Tn � x�n)� bnx�n,

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð2:1Þ

where we have defined the total amount of each protein

Ti ¼ xi þ x�i , so that the inactive form is xi ¼ (Ti � x�i ). We

also assume that the model operates over time scales where

there is no significant protein production, so that the amount

of each protein Ti can be considered constant. If the time

scales are such that the total amount of protein varies signifi-

cantly, then each Ti would have to be described by its own

ODE according to additional biological knowledge.
2.1. The general solution for weakly activated cascades
As shown in [1], in the weakly activated regime Ti � x�i , one

takes the approximation (Ti � x�i ) � Ti, and the original

system (2.1) can be rewritten as a driven linear system:

dx�

dt
¼ Ax� þ a1R(t)e1, ð2:2Þ

where x�¼ ½x�1, . . . , x�n�
T, e1¼ ½1,0, . . . , 0�T is the first n�1

vector of the canonical basis, and the n � n rate matrix A is

A ¼

�b1

a2 �b2

. .
. . .

.

an �bn

2
6664

3
7775, ð2:3Þ

where ai ¼ âiTi,8i.
This system can be solved using the Laplace transform

with auxiliary variable s. If the cascade receives an integrable

input R(t), it is easy to show that the Laplace transform of the

kth protein is

L(x�k ) ¼
ak

(k)L(R)Qk
i¼1 (bi þ s)

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{Dynamics from rest

þ
Xk

i¼1

ak
(k)

ai
(i)

x�i (0)Qk
j¼i (bj þ s)

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Correction for initial condition

: ð2:4Þ

The first term on the right-hand side corresponds

to the Laplace transform of x�k (t) for initial conditions

x�i (0) ¼ 0,8i � k (i.e. the cascade starts from rest), and the

http://rsif.royalsocietypublishing.org/
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second term contains the correction for non-zero initial con-

ditions. The term a(k) is the geometric mean of the

activation rates up to k:

a(k) ¼
Yk

j¼1

aj

0
@

1
A1=k

: ð2:5Þ

Note that if bi =bj,8 i, j, then

Yk

j¼1

(bj þ s)�1 ¼
Xk

j¼1

b
(k)
(�j)

bj þ s
,

where

b
(k)
(�j) ¼

Yk

i¼1
i=j

(bj � bi)
�1 [ R, b

(0)
(�j) :¼ 1

is a constant that depends only on the deactivation rates.

Now we can express equation (2.4) as

L(x�k ) ¼
Xk

i¼1

ak
(k)b

(k)
(�i)L(R)

bi þ s
þ
ak

(k)

ai
(i)

Xk

j¼i

b
(k)
(�j)

b
(i�1)
(�j)

x�i (0)

bj þ s

8<
:

9=
;: ð2:6Þ

Using linearity and the convolution properties of the Laplace

transform, the output of the cascade is finally obtained as

x�n(t) ¼ an
(n)

Xn

i¼1

b
(n)
(�i)(R�e

�bit)(t)þ 1

ai
(i)

Xk

j¼i

b
(k)
(�j)

b
(i�1)
(�j)

x�i (0)e�bj t

8<
:

9=
;,

ð2:7Þ

where

(R�e�bit)(t) ¼
ðt

0

e�bi(t�t)R(t)dt ¼
ðt

0

e�bitR(t� t)dt,

and the pre-factor incorporates the product of all the acti-

vation rates,

an
(n) ¼

Yn

i¼1

ai:

Although equation (2.7) describes the evolution of a gen-

eral initial condition, in this study we will assume henceforth

that the cascade is initially fully inactive (i.e. x�i (0) ¼ 0,8i). In

the cases when x�i (0) = 0, then the exponential correction

introduced by the initial conditions can be incorporated

to the calculations.
Example 2.1. If a linear cascade is subject to a constant stimu-

lus given by the step function R(t) ¼ 1, t 	 0, and

x�i (0) ¼ 0 8 i, equation (2.7) shows that the output of the last

protein in the cascade is given by

x�n(t) ¼ an
(n)

Xn

i¼1

b
(n)
(�i)

bi
[1� e�bit]: ð2:8Þ

2.2. Optimal linear cascades
Activation cascades are substantial modules of the cell-

signalling machinery and, as such, they should be efficient

in minimizing the use of energetic resources, such as adeno-

sine triphosphate, or of cellular building blocks, such as

amino acids. In the study of Chaves et al. [4], it was shown

that when a weakly activated cascade (2.2) is required to pro-

vide a given gain, the amplification is achieved optimally

when the number of steps in the cascade (e.g. the number
of proteins) is finite and all deactivation rates are equal,

i.e. bi ¼ b, 8i. This result means that arbitrarily long cascades

are not useful for cells when a particular amplification gain

from external signals is required. For an optimal cascade,

the rate matrix in equation (2.2) becomes

Ã ¼

�b
a2 �b

. .
. . .

.

an �b

2
6664

3
7775: ð2:9Þ
3. Linear cascades under different input
functions

We now consider the time-dependent output of a cascade

under four different inputs of biological interest.

3.1. Step-function stimulus
In an experimental setting, one often studies the response of a

biological system to a step-function stimulus such as constant

temperature, light or treatment started at time t ¼ 0. In this

case, the stimulus is

R(t) ¼ 1, t 	 0,

and the solution to (2.2) with initial condition x�(0) ¼ 0 is

x�(t) ¼ a1A�1[etA � In]e1, ð3:1Þ

where In is the n � n identity matrix, and etA is the matrix

exponential.

If the cascade is optimal (i.e. A ¼ Ã), the Laplace transform

of the last protein given by (2.4) becomes

L(x�n) ¼
an

(n)

s(sþ b)n ,

and taking the inverse transform we obtain

x�n(t) ¼ a(n)

b

� �n

P(n, bt), ð3:2Þ

where

P(n, bt) ¼ 1� e�bt
Xn�1

k¼0

(bt)k

k!

 !
ð3:3Þ

is the normalized lower incomplete gamma function whose

general form is [17]

P(a, t) ¼ g(a, t)
G (a)

, ð3:4Þ

where G(a) is the gamma function and

g(a, t) ¼
ðt

0

e�ssa�1ds, Re(a) . 0:

3.2. Exponentially decreasing stimulus
When the first protein in the cascade is subject to an exponen-

tially decaying stimulus (e.g. when the input is a reactive

molecule or a molecule that becomes metabolized, or if the

receptors become desensitized)

R(t) ¼ e�lt, t 	 0,

then the solution to (2.2) with initial condition x�(0) ¼ 0 is

x�(t) ¼ a1[etA � e�ltIn]A�1[In þ lA�1]�1e1: ð3:5Þ

http://rsif.royalsocietypublishing.org/
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If we assume that the cascade is optimal (A ¼ Ã), then

L(x�n) ¼ a(n)

(sþ l)(sþ b)n

and the output of the cascade is given by

x�n(t) ¼

a(n)

b� l

� �n

e�lt P(n, (b� l)t) if b = l

1

G (nþ 1)
(a(n)t)

n e�bt if b ¼ l,

8>><
>>: ð3:6Þ

where a(n) is defined in (2.5). As in the case of constant stimu-

lus, the solution is also given in terms of the lower incomplete

gamma function.

3.3. Periodic stimulus
In certain experimental settings, we are interested in the

response of a system to a periodic stimulus, e.g. circadian

rhythms or day/night cycles [18]. Let us consider a linear

cascade of length n with periodic input

R(t) ¼ 1þ sin (vt),

which oscillates between 0 and 2 with mean 1 and frequency

v . 0. From a resting initial condition, the solution to

equation (2.2) is

x�(t) ¼ a1V�1[(etA � In)V� ( sin (vt)In

þv cos (vt)A�1)þ vA�1etA]A�1e1, ð3:7Þ

where V ¼ (In þ v2A�2).

When the cascade is optimal (A ¼ Ã), the explicit solution

for the nth protein in the cascade is

x�n(t) ¼ a(n)

b

� �n
"

P(n, bt)þ b

r

� �n

� sin (vt� nu)� e�bt
Xn

k¼0

(tr)k

k!
Tnþk( cos u)

 !#
, ð3:8Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ v2

p
, u ¼ arctan (b=v) and the Tnþk( cos u) are

the Chebyshev polynomials evaluated at cosu.

Asymptotic limits provide useful insights. When the

frequency is large compared with the deactivation rate,

i.e. v�b, then b=r ≃ 0, u ≃ 0 and we obtain

if v� b, x�n(t) ≃ a(n)

b

� �n

P(n, bt):

Hence for large frequencies the oscillations in equation (3.8)

are filtered out, and the solution approaches the response to

the step function given by equation (3.2). Conversely, when

the deactivation of the proteins dominates the frequency

(i.e. b� v) the behaviour of x�n will be dominated by the

sinusoidal input.

In general, asymptotically as t!1, the cascade acts

broadly as a filter with an overall amplification (a(n)=b)n,

and an oscillatory term attenuated by a factor (b=r)n with a

delay phase nu:

as t! 1, x�n(t) ¼ a(n)

b

� �n

1þ b

r

� �n

sin (vt� nu)

� �
, ð3:9Þ

where we have used the fact that limt!1 P(n, bt) ¼ 1. Note

that b=r ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ (v=b)2

q
, 1, which implies that x�n(t) . 0

for all t. Cascades with more complicated temporal stimuli

can be analysed similarly using the Fourier series expansion

of R(t).
3.4. Gaussian stimulus
Gaussian input functions are employed to represent drug

intake and other such signals. Consider a cascade of length

n with input

R(t) ¼ e�z(t�m)2

, ð3:10Þ

which describes a bell-curve centred at t ¼ m, with height 1

and amplitude z. The solution of equation (2.2) from inactive

initial conditions under this input is then given by

x�(t) ¼ a1e(t�m)A

(X1
k¼0

(� 1)k

k!

Xk

h¼0

k
h

� ��
(t� m)2k�hþ1

�(�m)2k�hþ1
	 zk�h

2k � hþ 1
Ah

)
e1: ð3:11Þ

When a Gaussian input (2ps2)�1=2e�((t�m)2=2s2) becomes

increasingly narrow (i.e. s! 0), it approaches in the limit a

Dirac delta function: R(t) ¼ d(t� m). In that case, from

equation (2.7) the solution for the nth protein is

x�n(t) ¼
0 t , m,

an
(n)

Pn
i¼1 b

(n)
(�i)e

�bi(t�m) t 	 m:

(
ð3:12Þ
4. Applications of the analytical solutions to the
coarse-grained modelling of cascades

4.1. Model simplification and parameter fitting
The expressions of the cascade output, x�n(t), obtained in the

previous sections can be used to fit activation data to a small

number of parameters. Rather than fitting observations to

an entire module of ODEs with n [ N components, the

expressions with the gamma function contain three parameters

(a(n), b, n) to describe an optimal cascade, and possibly other

real parameters associated with the input (e.g. l for the expo-

nentially decaying input, or v for the periodic stimulus). In

particular, note that the first argument of the incomplete

gamma function (3.4), which is linked to the cascade length,

is a positive real number [19]. Hence when fitting data

(figure 2), the estimated length of the cascade is turned into a

real-valued parameter ^n [ R, similar to what is done with

Hill coefficients to represent multiple mechanistic steps [21].

In figure 2, we present the application of this approach

to the fitting of the output of an optimal cascade with

two different inputs. We start by generating simulated

data from a cascade of length n ¼ 5 with parameters a1 ¼ 3,

ai ¼ 4, for i ¼ 2, . . . ,5 (so that a(n) ¼ 3.776), and bi ¼ b ¼ 3,

for i ¼ 1, . . . ,5. One cascade is subject to a constant stimu-

lus R(t) ¼ 1 and the other to an exponentially decaying

input R(t) ¼ e�lt with l ¼ 1. We solve numerically the

n-dimensional system of equation (2.2) for both inputs (solid

lines in figure 2b,c), and then we generate ‘observations’ by

sampling the output x5(t) at times t ¼ f0, 1, . . . , 10gwith addi-

tive Gaussian noise drawn fromN (0, 0:052). We consider these

samples as our ‘noisy data’ (squares in figure 2b,c) and we fit

the gamma function expressions (3.2)1 and (3.6), respectively,

using a Matlab implementation of the squeeze-and-breathe

evolutionary Monte Carlo method which is especially appro-

priate for time course series [20].2 The dashed lines in

figure 2b show the fits to both cascade outputs, and the esti-

mated values are close to the ‘true’ ones: for the constant

http://rsif.royalsocietypublishing.org/
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Figure 2. Simplification of a linear activation cascade and fitting with incomplete gamma functions. (a) Schematic of an optimal linear cascade (2.2) and its
corresponding equivalent output function (3.2) under a step-function input. The output of the cascade, xn, relays the signal to downstream components of
the pathway. Whereas the full n-dimensional model of the cascade has up to n þ 2 parameters (ai, b, n), the condensed expression for the output has
three parameters a(n), b, n. Fitting time-courses of a cascade with two different inputs: (b) a step function and (c) an exponentially decaying stimulus. In
both cases, we considered an optimal cascade with n ¼ 5 components and parameters a1 ¼ 3, ai ¼ 4 for i ¼ 2, . . . ,5, and b ¼ 3. The step-function
input was R(t) ¼ 1, t 	 0 and the exponentially decaying input was R(t) ¼ e�lt with l ¼ 1. The solid lines indicate the solutions to the full system of n
ODEs. The squares are ‘noisy data’ generated from the full model: x5(t) sampled at t ¼ f0, 1, . . . , 10g with additive Gaussian noise with standard deviation
s ¼ 0.05. The dashed lines are fits of the noisy data using the corresponding incomplete gamma function expressions, equations (3.2) and (3.6). The fits
were carried out using the squeeze-and-breathe algorithm [20]. (Online version in colour.)
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stimulus cascade, the fitted values are ^a(n) � 4:068,
^

b � 3:281

and ^n � 5:418; for the exponentially decaying stimulus, the

estimated values are ^a(n) � 3:317,
^

b � 2:177, ^n � 4:600 and
^

l � 2:177.

4.2. Application to near-optimal cascades with random
deactivation rates

Strict optimality of cascades [4] requires that all deactivation

rates of the proteins be identical (i.e. bi ¼ b for all i). Likewise,

our expression for the cascade output in terms of the incom-

plete gamma function is only strictly valid under the same

assumption. Naturally, it is unreasonable to expect identical

rates in a biological system. Therefore, we ask the question:

if we relax this condition and allow each bi to be an indepen-

dent and identically distributed (iid) random variable with

mean �b, can we still approximate the output of the module

with a gamma function?

We have tested this idea in figures 3–5. First, we check

that cascades with non-identical deactivation rates still

achieve maximal amplification when the cascade is of finite

length, and we characterize the distribution of cascade

lengths observed. Figure 3 shows the histogram of the cas-

cade length at which maximal amplification is achieved for

random ensembles of cascades. We consider a step-function

input R(t) ¼ 1 with a1 ¼ 1.2, and we take as a reference

an optimal cascade with identical activation rates ai ¼ 1 for
i . 1 and deactivation rates bi ¼ bn ¼ (a1 G)�1=n ¼ 9:6�1=n,

which delivers a gain of G ¼ 8 with an optimal finite length

of n ¼ 4 [4]. We then generate 1000 sets of cascades of

length n ¼ 1, . . . ,10, with deactivation rates drawn from a

distribution bi � N (�bn, 0:052), �bn ¼ 9:6�1=n, i ¼ 1 . . . n and

n ¼ 1, . . . ,10 and we record the length at which the maximal

amplification occurs. Note that the mean of the deactivation

rates depends on the length of the cascade. As shown in

figure 3, near-optimal cascades (with normally distributed

bi with mean �bn ¼ 9:6�1=n) achieve maximal amplification

for lengths between n ¼ 3 and 5 in 60.4% of cases.

To test whether we can use the gamma function to estimate

the parameters of cascades in which the deactivation rates

are not identical, we simulated 1000 cascades under a step-

function input R(t) ¼ 1, with a(n) ¼ 3, n ¼ 5, and random

deactivation rates bi � N (2, 0:052). In each cascade, we fitted

the parameters ^a(n),
^

b, ^n in equation (3.2) to the ‘observed’

x�5(t). Figure 4 shows the histograms of the fitted parameters

for the 1000 random cascades. The fitted parameters are close

to their ‘true’ values, with the distributions of ^a(n) and ^n
peaked close to their ‘true’ values, and the distribution of esti-

mated deactivation rates
^

b normally distributed around its

‘true’ value.

To check that the outputs for (random) near-optimal

cascades can be well approximated using the gamma function

expressions, we show in figure 5 that the distribution of asymp-

totic values of an ensemble of cascades governed by (2.8) with
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bi � N (�bn, s2) matches the distribution obtained from the

gamma function representation (3.2) with bi � N (�bn, s2=n).

Hence, the gamma function form can be used for near-optimal

cascades with random variability in the deactivation par-

ameters, by scaling the variance of the deactivation rates by

the length of the cascade (figure 5c).

4.3. Cascade reordering: lumped representation of
identical blocks

As another deviation from strict optimality, we examine how

the output of a weakly activated cascade is modified when a

single protein in the cascade has a different deactivation rate.

For instance, Chaves et al. [4] considered an auxiliary protein

with different deactivation rate at the end of the cascade. We

study the effect of such a ‘perturbation’, and the effect of the

position of the perturbation in the cascade.

Consider a cascade of n proteins with activation rates aj

and deactivation rates bj ¼ b, 8j = i, and bi ¼ bþ 1 for a

given node i. First, note that from the Laplace transform of

x�n(t), it is clear that the position in the cascade of the protein

with distinct deactivation bi does not affect the final output

L(x�n) ¼
an

(n)L(R)

(bþ s)n�1(bþ 1þ s)
: ð4:1Þ

This fact allows us to reshuffle the equations of linear

cascade models, grouping the blocks with identical deactiva-

tion rates, which can thus be lumped upstream in the cascade

and replaced with the incomplete gamma function represen-

tation. The equations of the perturbed proteins can be placed

downstream and take the gamma function of the lumped

block as an input. Such reordering can be used to reduce

and simplify the model of a cascade without altering the

dynamics or timescales (figure 6a).

More explicitly, suppose we have an 1-perturbed cascade

of (n þ 1) proteins reordered so that the first n proteins all

have deactivation rate b and the (n þ 1)th protein has rate
b þ 1. For a step-function input R(t) ¼ 1, t 	 0 we use

equation (3.2) to summarize the first n equations, and the

equation for the perturbed (n þ 1)th protein becomes then

dx�nþ1

dt
¼ anþ1

a(n)

b

� �n

P(n, bt)� (bþ 1)x�nþ1: ð4:2Þ

This equation can be solved analytically to give

x�nþ1(t) ¼ anþ1

bþ 1

a(n)

b

� �n
 

1� e�bt

"
�b
1

� �n

e�1t

þ
Xn�1

k¼0

(1n�k � (�b)n�k)(bt)k

1n�kk!

#!
, ð4:3Þ

where we have assumed the initial condition x�nþ1(0) ¼ 0.

Likewise, when the input is exponentially decaying

R(t) ¼ e�lt, we have that

L(x�nþ1) ¼
an

(n)

(sþ l)(sþ b)n�1(sþ bþ 1)
: ð4:4Þ

When the initial condition is x�nþ1(0) ¼ 0, the analytical

solution for b = l is

x�nþ1(t) ¼ anþ1

b� lþ 1

a(n)

b� l

� �n�
e�lt þ e�(bþ1)t

1n

� e�bt
Xn�1

k¼0

(1n�k � (l� b)n�k)(b� l)ktk

1n�kk!

�
: ð4:5Þ

When l ¼ b the solution is

x�nþ1(t) ¼ a(nþ1)

1

� 	nþ1
e�bt 1n

Xn

k¼0

(� 1)ktn�k

1k(n� k)!
þ (�1)nþ1e�1t

" #
:

ð4:6Þ

We illustrate these points in figure 6. Figure 6b shows the

time course of a cascade with six proteins in which the deacti-

vation of the third protein is perturbed. We then reorder the

equations so that the perturbed one lies at the bottom.

Figure 6c shows the output of the first five reordered equations,

given by the gamma function expression (3.6) (dot-dashed

line), and the analytical solution of the perturbed protein

(which is now the output of the cascade, solid line), given by

equation (4.5). Note how the time-courses of the fifth protein

in the original and rearranged cascades are different, yet the

time course of the sixth protein is identical in both cases, as

per our solution. Given the results for random cascades

presented above, this approach can be applied to lump sub-cas-

cades of proteins with similar deactivation rates which can then

be described compactly through their corresponding gamma

function modules.

4.4. Simplified modules for activation cascades and
delay differential equation models

Experimental observations in signalling cascades are typically

concerned with the amplification, distortion and delay intro-

duced in the output. As discussed above, when using ODE

models, delays are usually incorporated through the addition

of extra equations (and their corresponding extra variables

and parameters) corresponding to unmeasured, hidden com-

ponents, steps or processes in the cascade [22]. This approach

can lead to large (high-dimensional) models with many unob-

servable variables and high numbers of parameters to be

identified or fitted [23,24]. Alternatively, modellers often use

DDEs to account for the lag between an event and its effect
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[25–27]. In a DDE, the activity of a variable depends on the

state of the system a time t in the past:

dx�

dt
¼ f(x�(t� t)),

where the parameter t 	 0 is the delay. Although linear sys-

tems of DDEs can in principle be solved analytically using

infinite series involving the Lambert function [28,29], such

solutions are often impractical to use.

We have checked that our results can be applied to model

simple delays in linear activation cascades, leading to concise

ODE models that capture the delay through the gamma func-

tion terms without the need to rely on DDEs (figure 7a). As

an example, consider a system with delay modelled with

the linear DDE:

dp̂1

dt
¼ â � b̂ p̂1

and
dp̂2

dt
¼ â p̂1(t� t)� b̂ p̂2:

9>>=
>>; ð4:7Þ

Figure 7b(i) shows the simulated time course of p̂2(t) (solid line)

when â ¼ 2, b̂ ¼ 3 and t ¼ 2 with initial conditions

p̂1(0) ¼ p̂2(0) ¼ 0. This series was numerically obtained with

the dde23 solver in Matlab. We then generate our ‘observed
data’ by sampling p̂2 at various time points and adding

observational random noise from a distribution N (0, 0:052).

We then fit this noisy data to our gamma function

expression (3.2):

pn(t) ¼ a(n)

b

� �n

P(n, bt) � p̂2(t), ð4:8Þ

and we estimate the corresponding parameters. Figure 7b(i)

shows the fit, as obtained with the squeeze-and-breathe

algorithm [20], with estimated parameters ^a(n) � 2:270,
^

b � 7:530 and ^n � 22:107.

To explore the connection between the parameters of the

DDE and the best-fit activation cascade model, we simulate

the DDE (4.7) with parameters â ¼ 2 and b̂ ¼ 3 for different

values of the delay t [ ½0, 5� and fit models as above. The

dependence of the fitted parameters and t is shown in

figure 7b(ii). Reassuringly, the amplification factor ^a(n) remains

relatively constant, whereas the ratio ^n=
^

b grows linearly with t.

This can be expected from the simple argument that the time

delay t in the DDE should be related to the accumulated

time needed to traverse n sequential steps with duration 1/b.

Hence, a DDE with delay t can be approximated with a

linear cascade, by tuning both the length and the deactivation

rate of the cascade, i.e. t � n=b� 1.
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In Beguerisse-Dı́az et al. [30], we have used the approach

described here to introduce delays in the antioxidant

responses of guard cells to abscisic acid and ethylene stimuli

during stomatal closure in an ODE model.
5. Discussion
In this work, the classic model of activation cascades in the

weakly activated regime [1] has been re-examined. We have
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considered the important case where all deactivation rates of the

components of the cascade are identical, which was shown to

provide optimal amplification in Chaves et al. [4]. Our results

show that the output of optimal cascades can be represented

exactly by lower incomplete gamma functions, and we show

numerically that even when the cascades are near optimal (i.e.

when the deactivation rates are iid normal random variables) a

gamma function can summarize the cascade by an appropriate

rescaling of the parameters. We also show that the position of

a protein in the cascade does not affect the final output, so that

blocks of proteins with identical deactivation rates can be

lumped and represented with incomplete gamma functions.

These results allow the reduction of the number of equations

and parameters in ODE models without affecting the dynamics

or the time scales of the system. We have also shown that in some

cases incomplete gamma functions can be used to model delays

within systems of ODEs, as an alternative to DDEs.

Beyond its application to enzymatic activation cascades,

similar mathematical models of cascades could be helpful for

the parametrization and modelling of multi-step transcriptional

processes, an area of active research in systems and synthetic

biology [16,31–33]. In general, model reduction of systems of

differential equations remains a challenging and active area of

research [34–36]. Some methods reduce network models (or

modules) based on the topology, effectively finding a minimal

kernel that preserves some aspects of the dynamics [37]. Yet,
by only considering the topology of the system such methods

cannot be guaranteed to preserve time scales or behaviour

[38], and are best suited for Boolean models. As Beguerisse-

Dı́az et al. [30] show, time scales and transients can be crucially

linked to the behaviour of a model and cannot be ignored in

many cases. Our work introduces a simplified, compact

description that can serve to consider delays in ODE models

for systems and synthetic biology, and to fit data from exper-

imental observations.
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Endnotes
1We used the Matlab command gammainc to evaluate the lower
incomplete gamma function.
2Code available from http://people.maths.ox.ac.uk/beguerisse/.
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