Two questions on nodal sets

Manjunath Krishnapur

(Indian Institute of Science)

22/June/2018

Part-1

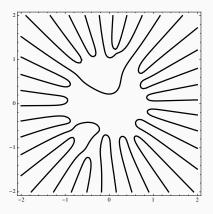
A random non-crossing matching from

random polynomials

Zeros of the real part of Kac polynomial

Kac polynomial

 $P_n(z) = a_0 + a_1 z + \ldots + a_n z^n$ where a_k are i.i.d. N(0, 1) random variables. Let \mathcal{Z} be the zero set of $\Re(P_n(z))$.



- ▶ \mathcal{Z} consists of n disjoint curves (there is no z such that $\Re(P_n)$ and $\nabla\Re(P_n)$ vanish simultaneously).
- For large |z| we have $\Re(P_n(z)) \sim a_n r^n \cos(n\theta)$. Hence the rays $\theta = \frac{\pi k}{a}$, $0 \le k \le 2n 1$ are asymptotically close to the zeros.
- ► The topology of the zero set can be captured as a non-crossing matching or as a random tree.
- ightharpoonup Question: What is the structure of this random tree? In particular, how large is \mathcal{D}_n , the depth of the tree.

▶ Let $Z_{k,n}$ be the number of positive real roots of

$$r\mapsto \sum_{\ell=0}^n a_\ell \cos(\ell \theta_k)\, r^\ell, \quad ext{where } \theta_k=rac{\pi}{n}(k+rac{1}{2}).$$

Then, $\mathcal{D}_n \leq \max_{0 \leq k \leq 2n-1} Z_{k,n}$.

 $ightharpoonup Z_{k,n}$ is like the number of positive roots of a Kac polynomial, hence about log n. More precisely, one can prove that

$$\mathbb{P}\{Z_{k,n} \geq b \log n\} \leq n^{-C_b}$$
, where $C_b \to \infty$ as $b \to \infty$.

- ▶ Take *b* large enough so that $C_b > 3$. Then $\mathcal{D}_n \le b \log n$ with probability at least $1 \frac{1}{n^2}$.
- ▶ Then, $\mathbb{E}[\mathcal{D}_n] \lesssim \log n$.

Question

 $\mathbb{E}[\mathcal{D}_n] \gtrsim \log n$?

Analogous question for Weyl polynomials:

$$Q_n(z) = \sum_{k=0}^n a_k \frac{z^k}{\sqrt{k!}}.$$

One can show $\mathbb{E}[\mathcal{D}_n] \lesssim \sqrt{n}$.

Question

Show that $\mathbb{E}[\mathcal{D}_n] \gtrsim \sqrt{n}$.

- ▶ Random trees naturally occurring in probability tend to have depth of order \sqrt{n} . Eg. Uniform random tree with vertex set $\{1, 2, ..., n\}$.
- Possible source of difficulty: Lack of semi-locality.

Part-2

Discrete nodal length

Discrete nodal length

▶ Let G = (V, E) be a finite graph. Its Laplacian is the $V \times V$ matrix

$$L(i,j) = \begin{cases} -1 & \text{if } i \sim j, \\ \deg(i) & \text{if } j = i, \\ 0 & \text{otherwise.} \end{cases}$$

▶ This is the correct analogue of continuous Laplacian. For example, for $f: V \mapsto \mathbb{R}$,

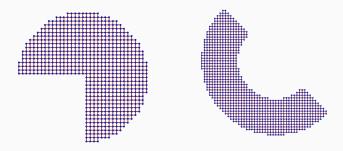
$$\langle Lf, f \rangle = \sum_{i \sim i} (f(i) - f(j))^2.$$

This is analogous to $\langle -\Delta f, f \rangle = \int \|\nabla f\|^2$.

- ▶ Let $0 = \lambda_1 \le ... \le \lambda_n$ be the eigenvalues of L and let $f_1, ..., f_n$ be the corresponding eigenvectors.
- ▶ For $f: V \mapsto \mathbb{R}$, define its discrete nodal length

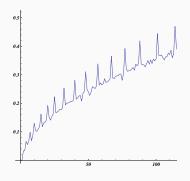
$$S(f) = \frac{1}{n} \# \{ (i,j) : i \sim j \text{ and } f(i)f(j) < 0 \}.$$

▶ In what follows, fix a bounded region $\Omega \subseteq \mathbb{R}^2$ and let G_n be the subgraph $\frac{1}{n}\mathbb{Z}^2 \cap \Omega$.



Discrete nodal length

▶ In such examples, we expect $S(f_k) \simeq \sqrt{\lambda_k}$ (Yau conjecture).



- ▶ Reason: $n^2\lambda_k(G_n) \rightarrow \lambda_k$ (with appropriate boundary condition) and similarly for eigenfunctions...
- ▶ But this is only for fixed k. For $k = k_n$ growing with n, there is no analogue in the continuum. But in discrete situation we can consider all eigenfunctions.

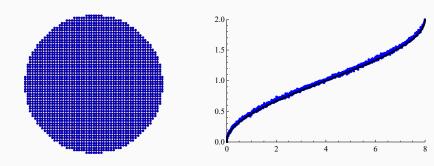


Figure: A discrete disk with nearly 2500 vertices. The black curve is $\frac{4}{\pi}$ arcsin($\sqrt{x/8}$).

Relationship to Yau conjecture: $\arcsin(\sqrt{x}) \sim \sqrt{x}$ as $x \to 0$.

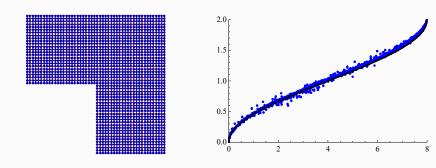


Figure: L-shaped region with nearly 1875 vertices. The black curve is $\frac{4}{\pi} \arcsin(\sqrt{x/8})$.

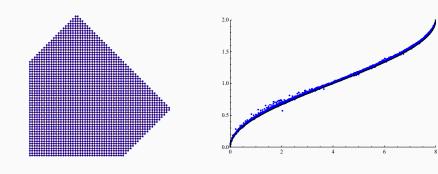
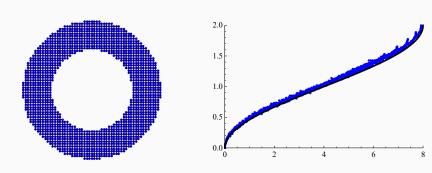
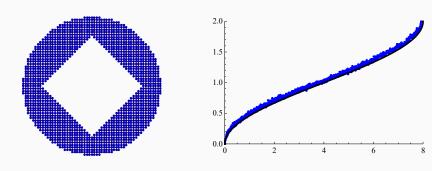
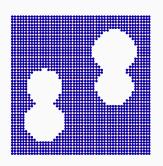
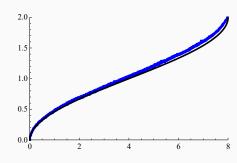


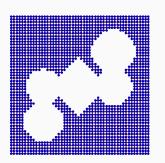
Figure: A pentagonal region with nearly 2300 vertices. The black curve is $\frac{4}{\pi} \arcsin(\sqrt{x/8})$.

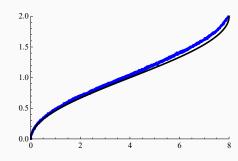


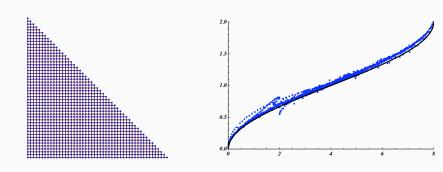












Explicit case of the square

Let G_n the subgraph of \mathbb{Z}^2 with vertex set $[n] \times [n]$. With slight modification (identify opposite sides), we have eigenvalues and eigenfunctions for $0 \le k, \ell \le n-1$.

$$\lambda_{k,\ell} = 4\sin^2\left(\frac{\pi k}{n}\right) + 4\sin^2\left(\frac{\pi \ell}{n}\right),$$

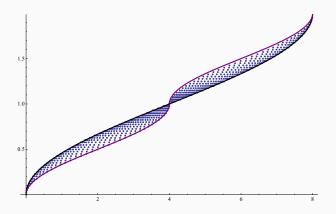
$$\varphi_{k,\ell}(p,q) = \cos\left(\frac{2\pi k}{n}p\right)\cos\left(\frac{2\pi \ell}{n}q\right).$$

$$S(\varphi_{k,\ell}) = 2\frac{k}{n} + 2\frac{\ell}{n}.$$

Simple calculation: If $4[\sin^2(\pi x) + \sin^2(\pi y)] = t$, then

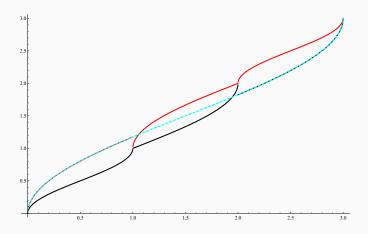
$$\begin{split} &\frac{1}{\pi}\arcsin(\sqrt{t/4})\leq 2(x+y)\leq \frac{2}{\pi}\arcsin(\sqrt{t/8}) &\text{if } 0\leq t\leq 4,\\ &\frac{2}{\pi}\arcsin(\sqrt{t/8})\leq 2(x+y)\leq 1+\frac{1}{\pi}\arcsin(\sqrt{(t-4)/4}) &\text{if } 4\leq t\leq 8. \end{split}$$

Explicit case of the square



In this case, there is no curve describing $S(\varphi_{\lambda})$ as a function of λ but only these envelopes (the entire region between the curves is filled.

In three dimensions



Questions?

- ▶ Generically, does $S(\varphi_{\lambda})$ follow the curve $\frac{2}{\pi} \arcsin(\sqrt{\lambda/8})$? If so, in what sense? (analogy with random matrix).
- If not, does it fill out a region bounded by arcsin curves?
- ▶ In higher dimensions, a similar picture (one or more arcsine curves) is seen, but not in random graphs.