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Brief intro to quantum chaos

Detect classical integrability vs chaos in terms of spectral
properties of “quantized Hamiltonians”.
Simple example setup:

I Classical dynamics given by “billiards” (geodesic flow) on
compact manifold M.

I “Quantized Hamiltonian”: Laplacian −∆ acting on L2(M).

With
−∆ψi = λiψi

what can we say about

I Eigenvalues — in particular gaps between them?

I (Eigenfunctions ψi? Quantum ergodicity etc.)
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Examples: billiards with classical integrability/chaos

Integrable = simple; trajectories have structure:

Chaos — particle bounces “everywhere, from every direction”:

Tell difference by looking at gaps between eigenvalues (“spacing
distribution”.)
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The universality conjecture

I Spacing distribution: first order eigenvalues such that

λ1 ≤ λ2 ≤ . . . .
Define spacing density function P(s) (if exists) so that

lim
N→∞

|{λi ≤ N : λi+1 − λi ∈ (a, b)}|
|{λi ≤ N}|

=

∫ b

a
P(s) ds

Remark: implicit rescaling so that |{λi ≤ N}| ∼ N.

I The spacing statistics (generically) falls into two classes.
I Berry-Tabor: If the classical system is integrable, the spacing

statistics are Poissonian (“random”)

P(s) = e−s .

I Bohigas-Giannoni-Schmit: If the classical system is chaotic,
the spacing statistics are given by random matrix theory.
“Nonrandom”, eigenvalues “repel”:

P(s) ≈ π

2
s · exp(−π

4
s2)
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Poisson vs RMT (GOE)

(NDE: “nuclear data ensemble”, experimental data for neutron
absorbtion in heavy atomic nuclei.)
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Systems with intermediate statistics

To study transition between integrability and chaos, Šeba proposed
“perturburbing Laplacian by delta potential at x0”:

H := −∆ + αδx0

on rectangles with Dirichlet boundary conditions.

I View as “Sinai billiard with shrinking obstactle”.
I Mathematical setup: von Neumann theory of self adjoint

extensions.
I Roughly, let ∆ act on smooth functions vanishing at x0, then

find self adjoint extension.
I “Old” eigenfunctions: regular Laplace eigenfunctions vanishing

at x0.
I “New” eigenfunctions: given by Green’s function (have

singularity at x0.)
I One parameter family of extensions (cf. α), roughly giving

“strength” of perturbation.

I Model appears to have level repulsion.
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Some results

I Shigehara later found that level repulsion is quite subtle, need
to carefully adjust parameters with λ.
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FIG. 5. The nearest-neighbor level spacing distribution P(S) is shown for U~ =0, 10, 20, 30, 40, 50, and 100. The statistics are
taken within the eigenvalues between zi~ and z4000 in all cases. The solid (broken) line is the Wigner (Poisson) distribution.
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Some results

I Shigehara later found that level repulsion is quite subtle, need
to carefully adjust parameters with λ.

I Shigehara-Cheon: for d = 3 this issue goes away.
I Bogomolny-Gerland-Schmit: obtained level repulsion and

Poisson tails provided the unperturbed spectrum has Poisson
spacings. Subtle points:

I For Dirichlet boundary conditions (and x0 “generic”), get
P(s) ∼ s log4 s

I For periodic boundary condition, get P(s) ∼ (π
√

3/2)s for
small s. (Not the GOE constant!)

We’ll consider d = 3 with periodic boundary conditions, i.e.,

H := −∆ + αδx0

acting on 3d tori. WLOG, from now on x0 = 0.
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Toral point scatterers

Work with “arithmetic torus”: T = R3/2πZ3.
Before perturbation: −∆ acts on L2(T), spectrum given by

S := {m ∈ Z : m = a2 + b2 + c2, a, b, c ∈ Z}

Eigenspace decomposition:

L2(T) = ⊕m∈SVm

where (multiplicities!)

dim(Vm) = r3(m) := |{v ∈ Z3 : |v |2 = m}|

Toral point scatterer — introduce perturbation:

H = −∆ + α · δ, α ∈ R×

where δ is Dirac delta supported (say) at x = 0 ∈ T.
Again α is parameter controlling “strength” of perturbation.
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“New” vs “old” eigenvalues

Perturbation “tiny” (rank one); Vm splits into two eigenspaces:

I Functions vanishing at δ-support remain eigenfunctions
(“boring”):

V old
m := {ψ ∈ Vm : ψ(0) = 0}

I Each Vm also “gives birth” to

V new
m = Span(ψnew

λm )

with the “new” eigenvalue λm being a solution of∑
n∈S

r3(n)

(
1

n − λm
− n

n2 + 1

)
= 0

and the “new” eigenfunction is given by Green’s function:

ψnew
λm :=

∑
v∈Z3

e i〈v ,x〉

|v |2 − λm
, x ∈ T
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Spectral equation

New eigenvalues are solutions of

G (λ) :=
∑
n

r3(n)

(
1

n − λ
− n

n2 + 1

)
= 0

Note: new eigenvalues interlace with the unperturbed eigenvalues.
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Some convenient notation

I If r3(m) > 0, let λm denote largest solution to G (λ) = 0 such
that λ < m.

I Caveat: λm is not the m-th eigenvalue.

I Weyl’s law for new eigenvalues:

|{m < T : r3(m) > 0}| ∼ 5

6
T

so won’t bother with rescaling.

I Given m such that r3(m) > 0, let m+ denote smallest n > m
such that r3(n) > 0 — “nearest right neighboor in
unperturbed spectrum”. Similarly, let m− denote left
neighboor.

I Define associated spacing

sm = λm+ − λm
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Repulsion results for this model

Repulsion between new and old eigenvalues

Theorem (Rudnick-Ueberschär)

∑
m≤T

(λm+ −m) ∼ 1

2

∑
m≤T

(m+ −m)

Remarks:

I Result holds for any 3d tori.
I However, cannot rule out sm alternating between o(1) and

m −m− − o(1).
I If so, get P(s) = 1

2δ0(s)+?(s), i.e., lots of mass at s = 0 — no
level repulsion.
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Main result

Can’t prove that the spacing distribution (between new
eigenvalues) exists, but... can show that small gaps are very rare.

Theorem
Given any small γ > 0, we have

|{m ≤ T : r3(m) > 0, sm < ε}|
|{m ≤ T : r3(m) > 0}|

= Oγ(ε4−γ)

as T →∞ (and ε > 0 small.)

Upshot: result suggests essentially cubic order repulsion

P(s) ∼ s3−γ , s → 0

What is the truth?
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Some numerics

Figure: Histogram illustration of the distribution of sm, for m ≤ 10000
(and r3(m) > 0.)

Suggests P(s) = s∞ for s small (!?!?)
Turns out: most small sm “comes from” m such that 4l |m and l
“big”.
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Gaps along m = 4lk

Figure: Histogram illustration of the distribution of sm (for m such that
r3(m) > 0), along the progressions {m = 410 · k : k ≤ 10000} (left) and
for {m = 420 · k : k ≤ 10000} (right).

Possibly P(s) ∼ s4 is the truth.
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Proof idea

Put δ = λ−m and rewrite

G (λ) :=
∑
n

r3(n)

(
1

n − λ
− n

n2 + 1

)
= 0

as
r3(m)

δ
= Gm(δ) + error

where

Gm(δ) :=
∑

0<|n−m|≤m1/2

r3(n)

n −m − δ

Enough to consider |δ| < 1/10, let’s assume that
−1/10 < δ1 < 0 < δ2 < 1/10 are two nearby solutions.
Simple lemma: if G ′m(δ) ≤ Bm for |δ| < 1/10, then

sm = δ2 − δ1 >
√

r3(m)/Bm

Get repulsion if r3(m) tiny, or Bm big, is rare.
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Bounding the derivative via L-functions

Easy:

Bm �
∑
k 6=0

r3(m + k)

k2

What do we know about r3(n)?
I “Morally”, r3(n) ∼

√
n (but: Siegel zero issue!)

I Also: powers of 2 obstruction: r3(n) = 0 if n ≡ 7 mod 8.
Further, r3(4ln) = r3(n) so r3 can be quite small if nonzero.

I Amazing formula (by Gauss): If n is squarefree and n 6≡ 7
mod 8, then

r3(n) ∼
√
nL(1, χ−4n)

Granville-Soundararajan: large (and small) values L(1, χ) extremely
rare:

|{d : d < T : L(1, χ−d) > x}| � Te−e
cx

Easy consequence: for any k > 0,

|{m < T : Bm >
√
mx}| �k T/xk
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Proof sketch, cont’d

I Upshot of derivative bound: Bm �
√
m “always holds” (don’t

have to worry about large Bm-values.)

I Recall separation lemma

sm = δ2 − δ1 >
√

r3(m)/Bm

so done if r3(m)/
√
m not too small. Two “enemies”:

I Siegel zeros. Very rare!
I Powers of four: r3(4lm0) = r3(m0). But m’s divisible by large

powers of four also very rare.

I Upshot: almost all m such that sm < ε “come from” m
divisible by 4l and 4l ∼ (1/ε)4.

I Only about proportion ε4 of these.

Pär Kurlberg, KTH Level repulsion for arithmetic toral point scatterers



The end

Thank you!
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Gauss’ amazing formula

If n is squarefree and n 6≡ 7 mod 8, then

r3(n) = π−1µn
√
nL(1, χ−4n)

where µn = 16 for n ≡ 3 mod 8, and µn = 24 for n ≡ 1, 2, 5, 6
mod 8;

L(1, χ−4n) =
∞∑

m=1

χ−4n(m)/m

where χ−4n is defined via the Kronecker symbol, namely

χ−4n(m) :=

(
−4n

m

)
.

Remark:
√
nL(1, χ−4n) is essentially a class number (of an

imaginary quadratic field). Formula is amazing relation between
r3(n) (the number of ways to express n in terms of the ternary form
x2 + y2 + z2) and the number of classes of binary quadratic forms.
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