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Gaussian fields and percolation

The conjecture:

Under mild conditions, the connectivity of the level sets of smooth,
stationary Gaussian fields ‘behaves like’ Bernoulli percolation.

Two main aspects to this conjecture:

I Existence and sharpness of the phase transition (exponential
decay of crossing probabilities, polynomial critical window).

I Scaling limits at the critical level (RSW estimates,
convergence of crossing probabilities, convergence to CLE).
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Gaussian fields and percolation

Let f be a stationary, centred, continuous Gaussian field on R2

with covariance kernel

κ(x) = E[f (0)f (x)] , x ∈ R2.

Define the level sets and (lower-)excursion sets of f by

L` = {x : f (x) = `} and E` = {x : f (x) ≤ `}.

We say that L` or E` percolate if almost surely they have an
unbounded connected component.
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Gaussian fields and percolation

By monotonicity, there exists a critical level `c ∈ [−∞,∞] such
that E` percolates if ` > `c and does not if ` < `c .

Under mild conditions on κ it is natural to expect that `c = 0.

In fact, we expect a phase transition at `c = 0 :

I If ` ≤ 0, then almost surely the connected components of E`
are bounded;

I If ` > 0, then almost surely E` has a unique unbounded
connected component.
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Previous results

In 1983, Molchanov & Stepanov showed that if κ is absolutely
integrable then `c <∞, i.e., there exists a `∗ <∞ such that E`
percolates at every level ` ≥ `∗.

In 1996, Alexander showed that if f is ergodic and κ is positive
then the connected components of the level sets are a.s. bounded.

By the symmetry (in law) of the positive and negative excursion
sets, this implies that `c ≥ 0.

Together, these results show that if correlations are (i) positive,
and (iii) integrable, then

0 ≤ `c <∞.
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Previous results

Recently, advances in percolation theory have inspired a flurry of
new results:

I In 2016, Beffara & Gayet proved that, if κ is (i) positive,
(ii) symmetric, and (iii) decays polynomially with exponent
γ > 325, then the ‘RSW estimates’ hold at the zero level.

I The necessary exponent γ for RSW estimates has been
subsequently reduced, first to γ > 16 [Beliaev & M, 2017],
then to γ > 4 [Rivera & Vanneuville, 2017] (integrability
corresponds to γ > 2).
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Previous results

I It was also recently shown [Rivera & Vanneuville, 2017] that
the phase transition exists for the Bargmann-Fock field, i.e.
the Gaussian field with covariance

κ(x) = e−|x |2/2.

Their argument relied on exact Fourier-type computations on
the covariance kernel κ.
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Our results

Let µ denote the spectral measure, defined via:

κ(x) =
∫

e2πi〈x ,s〉 dµ(s).

We always work under the assumption that µ is absolutely
continuous (w.r.t. dx); we denote by ρ2 the density of µ.

The existence of the spectral density guarantees that f is
non-degenerate and ergodic, and also that κ(x)→ 0 as |x | → ∞.

On the other hand, this assumption is weaker than the condition
that the covariance kernel κ is absolutely integrable, and also holds
for the band-limited kernels.
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Our results

The existence of the spectral density is fundamental to our analysis
because it permits a white-noise representation of f :

f d= q ?W

where q := F [ρ] ∈ L2(R2), W is a planar white-noise, and
? denotes convolution.

To see why this is true, consider that q ?W is a stationary
Gaussian field with covariance kernel

q ? q = F [ρ] ? F [ρ] = F [ρ2] = κ.

In fact, the existence of this representation is equivalent to the
existence of ρ2.
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Our results: Assumptions

Our results hold under the following additional assumptions on q:

I (Regularity) The function q is in C3;

I (Symmetry) The function q is symmetric under (i) reflection
in the x -axis, and (ii) rotation by π/2 about the origin.

I (Positivity) The function q ≥ 0 is positive.

I (‘Integrable correlations’) There exists γ > 2 and c > 0 such
that, for every |x | > 1,

|q(x)| < c|x |−γ ,

and, for every multi-index α such that |α| ≤ 2,

|∂αq(x)| < c|x |−γ .
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Our results: Existence of the phase transition

Our first result confirms the phase transition at the zero level:

Theorem

Under the stated conditions:

I If ` ≤ 0, then almost surely the connected components of E`
are bounded;

I If ` > 0, then almost surely E` has a unique unbounded
connected component.
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Our results: Existence of the phase transition

Another way to state this result is in terms of the ‘ε’-thickened
nodal set:

Theorem

Let Nε = {|f | ≤ ε}. Then under the stated conditions:

I If ε = 0, then almost surely the connected components of Nε
are bounded;
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Our results: Sharpness of the phase transition

Our next result establishes that the phase transition is sharp (i.e.
sub-critical crossing probabilities decay rapidly).

Define a quad Q to be a simply-connected piece-wise smooth
compact domain D ⊂ R2 and two disjoint boundary arcs η and η′.

One can take, for instance, D to be a rectangle and η and η′ to be
opposite edges.

For each quad Q and level `, let Cross`(Q) denote the event that
there is a connected component of E` that crosses Q, i.e., whose
intersection with Q intersects both η and η′.
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Our results: Sharpness of the phase transition

Theorem

Under the stated conditions, the following hold for every Q:

I If ` < 0, there exist c1, c2 > 0 such that, for all s ≥ 1,

P (f ∈ Cross`(sQ)) < c1e−c2 log2(s).

I If ` = 0,

inf
s>0

P(f ∈ Cross0(sQ)) > 0 and sup
s>0

P(f ∈ Cross0(sQ)) < 1.

I If ` > 0, there exist c1, c2 > 0 such that, for all s ≥ 1,

P (f ∈ Cross`(sQ)) > 1− c1e−c2 log2(s).
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Our results: Sharpness of the phase transition

We can show exponential decay of crossing probabilities if we
additionally assume ‘strong-exponential’ decay of correlations.

Theorem

Suppose that, in addition to the above assumptions, there exists a
constant c > 0 such that, for every |x | > 1 and for every
multi-index α such that |α| ≤ 2,

|∂αq(x)| < ce−|x |(log |x |)2
.

Then, for each ` < 0 there exist c1, c2 > 0 such that, for all s ≥ 1,

P (f ∈ Cross`(sQ)) < c1e−c2s .
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Our results: The near-critical window
Our final results concerns the size of the near-critical window.

The previous result implied that, for fixed ` > 0

P [f ∈ Cross`(sQ)]→ 1 as s →∞.

How quickly we can take `s → 0 so that the above still holds?

Theorem

Under the stated conditions, there exist 0 < c1 < c2 <∞ such
that, for every quad Q,

lim sup
s→∞

P [f ∈ Crosss−c2 (sQ)] < 1

and
lim

s→∞
P [f ∈ Crosss−c1 (sQ)] = 1.
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Our results: The near-critical window

By analogy with Bernoulli percolation, we conjecture that the
near-critical window is of polynomial size with exponent
exactly 3/4.

We can show only that it is strictly positive and at most 1 (which
is roughly all that is known in percolation outside some special
lattices).
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The percolation universality class

A major unresolved question raised by our work is to determine
how rapidly correlations must decay in order for the analogy with
percolation to be valid.

That is, for which κ do our results hold (and more refined results,
such as the convergence of the nodal set to CLE(6))?
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The percolation universality class

According to the ‘Harris criterion’, the percolation universality class
consists of all κ satisfying∫

x∈BR

∫
y∈BR

κ(x − y) dxdy � R5/2;

for positive κ, this equates to polynomial decay of order γ > 3/2.

The random plane wave satisfies the HC since∫
x∈BR

∫
y∈BR

J0(|x − y |) dxdy = O(R).

despite correlations decaying only at rate R−1/2 (for which the
LHS is a priori O(R7/2))

19 34
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Elements of the proof

The proof consists of four steps:

1. (Quasi-independence) Show that crossing events on domains
of scale R separated by a distance R are asymptotically
independent as R →∞;

2. (RSW estimates) Apply a general argument of Tassion to
deduce the RSW estimates at the zero level ` = 0;

3. (`c = 0) Use ideas from randomised algorithms (i.e. the OSSS
inequality) to deduce a qualitative description of the phase
transition at ` = 0.

4. (Sharpness) Bootstrap the previous step to give a quantitative
description of the phase transition.
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Elements of the proof: Quasi-independence

To prove QI, we couple f to the R-dependent field

fR = qR ?W = (qχR) ?W

where χR is a smooth approximation of x 7→ 1|x |≤R/2.

Then, under this coupling,

f − fR = (q − qR) ?W

is a stationary Gaussian field with covariance (q − qR) ? (q − qR).

Standard arguments (Kolmogorov, BTIS) then give that

P[|f − fR |C0(BR) > ε] < δ

for ε ≈ R1−γ and δ ≈ e−c2(log R)2 .
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Elements of the proof: Quasi-independence

Since crossing events separated by a distance R are independent
for fR , it remains to find a bound on

|P[f ∈ Cross`(RQ)]− P[fR ∈ Cross`(RQ)]|.

By monotonicity and the bound on ‖f − fR‖C0(BR), it is enough to
find a bound on

|P[f ∈ Cross`(RQ)]− P[f ± ε ∈ Cross`(RQ)]|

for ε ≈ R1−γ .
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We use a general approach based on the Cameron-Martin theorem:

Theorem (Cameron–Martin)
Let H be the RKHS of f . Then for every h ∈ H, the
Radon–Nikodym derivative of the law of f + h with respect to the
law of f is

exp
{
〈f , h〉 − 1

2E[〈f , h〉2]
}
.

where 〈f , h〉 is the ‘Paley-Weiner integral’.

Corollary
For every h ∈ H and event A,

|P[f ∈ A]− P[f ± h ∈ A]| ≤ ‖h‖H
√
P [f ∈ A]√
log 2

.
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Elements of the proof: Quasi-independence
Recall that the RKHS can be represented as

H = F [gρ] , g ∈ L2
sym(R2).

This gives the identity

‖h‖2H =
∫

x∈R2
|ĥ(x)|2/ρ2(x) dx ,

which means that, if h ≈ 1BR , then ‖h‖2H ≈
∫

x∈B(1/R) ρ
−2(x) dx .

Proposition
Suppose ρ(0) > 0. Then there exist c,R0 > 0 such that, for every
R > R0, monotonic event A that depends on f |BR , and ε > 0,

|P [f ∈ A]− P[f ± ε ∈ A]| ≤ cRε
√
P [f ∈ A].

From here, it is easy to deduce QI if γ > 2,
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Elements of the proof: RSW estimates

To prove RSW estimates we borrow an argument of Tassion that
applies to any stationary random colouring of the plane with three
key properties:

I Sufficient symmetry, guaranteed by our assumptions;

I The QI property; and

I Positive associations, which is equivalent in the Gaussian
setting to κ ≥ 0 (and so is implied by q ≥ 0).
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Elements of the proof: Sharp thresholds via OSSS

Consider a finite-dimensional product space and an event A. The
OSSS inequality bounds the variance of A in terms of the
‘influence’ and the ‘revealement’ of each coordinate.

The influence Ii (A) of the i th coordinate on A is defined as the
probability that resampling the coordinate modifies 1A.

Let A be a random algorithm that determines A, i.e. a procedure
that reveals the coordinates and stops once the value of 1A is
known. The revealment δi (A) of the i th coordinate for the
algorithm A is the probability that the coordinate is revealed.

Theorem (O’Donnell, Saks, Schramm, Servedio, 2005)

Var(1A) ≤
∑

i
δi (A)Ii (A).
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Elements of the proof: Sharp thresholds via OSSS

Let us explain how the OSSS inequality helps describe the phase
transition.

Suppose that f is finite-dimensional, i.e. f depends on a finite
number of i.i.d. Gaussians Xi .

The Cameron-Martin theorem gives that

d
d`P [f + ` ∈ A] =

∑
i
E[Xi1{f +`∈A}].

Moreover, if A is increasing (w.r.t. the Xi ),

E[Xi1{f +`∈A}] ≥ cIi ({f + ` ∈ A})

for c = supa≥0 P [Z ≥ a] /E [Z1Z≥a] <∞.
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Elements of the proof: Sharp thresholds via OSSS

Applying the OSSS inequality, for any algorithm A that determines
Cross`(RQ),

d
d`P [Cross`(RQ)] ≥

Var(1Cross`(RQ))
supi δi (A) .

Hence, in order to demonstrate `c = 0, i.e. to show that

d
d`P [Cross`(RQ)]

∣∣∣∣
`=0
→∞ , as R →∞,

we need only exhibit an algorithm A for Cross`(RQ) such that

sup
i
δi (A)→ 0, as R →∞.
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Elements of the proof: Sharp thresholds via OSSS

To approximate f by a finite-dimensional field, we couple W to a
discretised white-noise W ε at scale ε > 0 by setting

ηv = ε−1
∫

x∈v+[−ε/2,ε/2]2
dW (x) , v ∈ εZ2,

(ηv are i.i.d. standard Gaussians), and defining

W ε(x) = ε−1 ∑
v∈εZ2

ηv1x∈v+[−ε/2,ε/2]2 .

On any compact set, we can approximate f by the
finite-dimensional Gaussian field

f εr = qr ?W ε.
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Elements of the proof: Sharp thresholds via OSSS

Let r = R−α and ε = R−β, for suitably chosen α, β ∈ (0, 1).

Let Q be a rectangle, and define A to be the algorithm that picks
a random horizontal line, and reveals ηv in the r -neighbour of this
line and of all ‘blocking’ clusters that intersect this line.

This determines the event {f εr ∈ Cross0(R)}.

Credit: Dmitry Beliaev
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Elements of the proof: Sharp thresholds via OSSS

A white-noise coordinate ηv is ‘revealed’ only if there is a blocking
cluster that connect Br (v) to the horizontal line.

Since the horizontal line is random,

δv = P[ηv is revealed] . P[∂Br is connected to ∂BR ].

The latter ‘one-arm event’ can be controlled thanks to the RSW
estimates.
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Elements of the proof: Bootstrapping

The upshot of the OSSS analysis is a ‘qualitative’ description for
the phase transition: for any quad Q and ` > 0,

P [f ∈ Cross`(RQ)]→ 1 as R →∞.

The final step is to convert this into a quantitative description of
the sharp phase transition.
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Elements of the proof: Bootstrapping
Let Q be the 3× 1 rectangle, and define

aR = P [fR /∈ Cross`(RQ)] ;

The goal is to upgrade the qualitative statement aR → 0, to the
quantitative statement that aR ≤ e−c log2(R).

This is implied from the following functional inequality

a3R ≤ c1a2
R + R2−β

√
(aR)2 + e−c2 log2(R),

which is deduced from the event below.
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Future directions

There are many questions that remain to be understood:

I Boundary of the percolation universality class (RPW etc.);

I Scaling limits for the nodal set (convergence to CLE (6) etc.);

I Existence and sharpness of the phase transition in higher
dimensions.

Thank you!
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