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The conjecture:
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Gaussian fields and percolation

The conjecture:

Under mild conditions, the connectivity of the level sets of smooth,
stationary Gaussian fields ‘behaves like' Bernoulli percolation.

Two main aspects to this conjecture:

» Existence and sharpness of the phase transition (exponential
decay of crossing probabilities, polynomial critical window).

» Scaling limits at the critical level (RSW estimates,
convergence of crossing probabilities, convergence to CLE).
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Gaussian fields and percolation

Let f be a stationary, centred, continuous Gaussian field on R?
with covariance kernel

k(x) = E[f(0)f(x)], x¢€R2
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Gaussian fields and percolation

Let f be a stationary, centred, continuous Gaussian field on R?
with covariance kernel

k(x) =E[f(0)f(x)], xe€R~
Define the level sets and (lower-)excursion sets of f by
Ly={x:f(x)=¢} and & ={x:f(x) </}

We say that £, or & percolate if almost surely they have an
unbounded connected component.
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Gaussian fields and percolation

By monotonicity, there exists a critical level {. € [—00, 0] such
that & percolates if £ > £, and does not if £ < /..
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Gaussian fields and percolation

By monotonicity, there exists a critical level {. € [—00, 0] such
that & percolates if £ > £, and does not if £ < /..

Under mild conditions on k it is natural to expect that /. = 0.
In fact, we expect a phase transition at £. =0 :

» If £ <0, then almost surely the connected components of &
are bounded;

» If £ > 0, then almost surely £ has a unique unbounded
connected component.
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Previous results

In 1983, Molchanov & Stepanov showed that if « is absolutely
integrable then £, < oo, i.e., there exists a £* < oo such that &
percolates at every level £ > ¢*.
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Previous results

In 1983, Molchanov & Stepanov showed that if « is absolutely
integrable then £, < oo, i.e., there exists a £* < oo such that &
percolates at every level ¢ > £*.

In 1996, Alexander showed that if f is ergodic and « is positive
then the connected components of the level sets are a.s. bounded.

By the symmetry (in law) of the positive and negative excursion
sets, this implies that /. > 0.

Together, these results show that if correlations are (i) positive,
and (iii) integrable, then

0</: < 0.
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Previous results

Recently, advances in percolation theory have inspired a flurry of
new results:

» In 2016, Beffara & Gayet proved that, if s is (i) positive,
(ii) symmetric, and (iii) decays polynomially with exponent
~ > 325, then the ‘RSW estimates’ hold at the zero level.
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Previous results

Recently, advances in percolation theory have inspired a flurry of
new results:

» In 2016, Beffara & Gayet proved that, if s is (i) positive,
(ii) symmetric, and (iii) decays polynomially with exponent
~ > 325, then the ‘RSW estimates’ hold at the zero level.

» The necessary exponent -y for RSW estimates has been
subsequently reduced, first to v > 16 [Beliaev & M, 2017],
then to 7 > 4 [Rivera & Vanneuville, 2017] (integrability
corresponds to y > 2).
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Previous results

> It was also recently shown [Rivera & Vanneuville, 2017] that
the phase transition exists for the Bargmann-Fock field, i.e.
the Gaussian field with covariance

k(x) = e /2,

Their argument relied on exact Fourier-type computations on
the covariance kernel k.
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Our results

Let 1 denote the spectral measure, defined via:
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Our results

Let 1 denote the spectral measure, defined via:

K(x) = / &2705) ().

We always work under the assumption that y is absolutely
continuous (w.r.t. dx); we denote by p? the density of .

The existence of the spectral density guarantees that f is
non-degenerate and ergodic, and also that x(x) — 0 as |x| — cc.

On the other hand, this assumption is weaker than the condition
that the covariance kernel k is absolutely integrable, and also holds
for the band-limited kernels.
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Our results

The existence of the spectral density is fundamental to our analysis
because it permits a white-noise representation of f:

fgq*W

where g := F[p] € L?(R?), W is a planar white-noise, and
* denotes convolution.
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Our results

The existence of the spectral density is fundamental to our analysis
because it permits a white-noise representation of f:

fgq*W

where g := F[p] € L?(R?), W is a planar white-noise, and
* denotes convolution.

To see why this is true, consider that g x W is a stationary
Gaussian field with covariance kernel

g q = Flp]x Flp] = F[p?] = .
In fact, the existence of this representation is equivalent to the

existence of p?.
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Our results: Assumptions

Our results hold under the following additional assumptions on g:
» (Regularity) The function q is in C3;

» (Symmetry) The function g is symmetric under (i) reflection
in the x-axis, and (ii) rotation by 7/2 about the origin.

» (Positivity) The function g > 0 is positive.

> (‘Integrable correlations’) There exists v > 2 and ¢ > 0 such
that, for every |x| > 1,

[q(x)] < elx|77,
and, for every multi-index « such that |a| < 2,

[0%q(x)| < clx|77.

10 | 34



Our results: Existence of the phase transition

Our first result confirms the phase transition at the zero level:
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Our first result confirms the phase transition at the zero level:

Theorem
Under the stated conditions:

» If¢ <0, then almost surely the connected components of &
are bounded;

» If¢ >0, then almost surely £ has a unique unbounded
connected component.
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Our results: Existence of the phase transition

Another way to state this result is in terms of the ‘e’-thickened
nodal set:

Theorem
Let N. = {|f| < e}. Then under the stated conditions:

» Ife =0, then almost surely the connected components of N
are bounded;

» Ife > 0, then almost surely N has a unique unbounded
connected component.
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Our results: Sharpness of the phase transition

Our next result establishes that the phase transition is sharp (i.e.
sub-critical crossing probabilities decay rapidly).
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Our results: Sharpness of the phase transition

Our next result establishes that the phase transition is sharp (i.e.
sub-critical crossing probabilities decay rapidly).

Define a quad @ to be a simply-connected piece-wise smooth
compact domain D C R? and two disjoint boundary arcs 1 and 7'.

One can take, for instance, D to be a rectangle and 1 and 7’ to be
opposite edges.

For each quad Q and level ¢, let Cross;(Q) denote the event that
there is a connected component of & that crosses @, i.e., whose
intersection with @ intersects both 7 and 7'.
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Our results: Sharpness of the phase transition

Theorem
Under the stated conditions, the following hold for every Q:

» If{ <0, there exist ¢y, co > 0 such that, for all s > 1,

P (f € Crossy(sQ)) < cre~'08°(s),
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Under the stated conditions, the following hold for every Q:

» If{ <0, there exist ¢y, co > 0 such that, for all s > 1,

P (f € Crossy(sQ)) < cre~'08°(s),
» If{ =0,

igg P(f € Crossp(sQ)) >0 and sup P(f € Crossp(sQ)) < 1.
s s>0

14 | 34



Our results: Sharpness of the phase transition

Theorem
Under the stated conditions, the following hold for every Q:

» If{ <0, there exist ¢y, co > 0 such that, for all s > 1,

P (f € Crossy(sQ)) < cre~'08°(s),
» If{ =0,

igg P(f € Crossp(sQ)) >0 and sup P(f € Crossp(sQ)) < 1.
s s>0

» If¢ > 0, there exist ¢, c» > 0 such that, for all s > 1,

P (f € Crossy(sQ)) > 1 — cre™ @ log?(s)
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Our results: Sharpness of the phase transition

We can show exponential decay of crossing probabilities if we
additionally assume ‘strong-exponential’ decay of correlations.
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Our results: Sharpness of the phase transition
We can show exponential decay of crossing probabilities if we
additionally assume ‘strong-exponential’ decay of correlations.

Theorem

Suppose that, in addition to the above assumptions, there exists a
constant ¢ > 0 such that, for every |x| > 1 and for every
multi-index o such that |a| < 2,

10%g(x)| < ceXIUoglx))?,
Then, for each ¢ < O there exist c1, co > 0 such that, for all s > 1,

IP(f € Crossy(sQ)) < cre” .
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Our results: The near-critical window

Our final results concerns the size of the near-critical window.
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Our results: The near-critical window
Our final results concerns the size of the near-critical window.
The previous result implied that, for fixed £ > 0
P[f € Crossy(sQ)] =1 ass — oo.

How quickly we can take £s — 0 so that the above still holds?

Theorem

Under the stated conditions, there exist 0 < ¢; < ¢ < 00 such
that, for every quad Q,

limsup P[f € Cross,—,(sQ)] < 1

S$—00

and
lim P[f € Cross,—, (sQ)] = 1.
5S—00
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Our results: The near-critical window

By analogy with Bernoulli percolation, we conjecture that the
near-critical window is of polynomial size with exponent
exactly 3/4.
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Our results: The near-critical window

By analogy with Bernoulli percolation, we conjecture that the
near-critical window is of polynomial size with exponent
exactly 3/4.

We can show only that it is strictly positive and at most 1 (which
is roughly all that is known in percolation outside some special
lattices).
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The percolation universality class

A major unresolved question raised by our work is to determine
how rapidly correlations must decay in order for the analogy with
percolation to be valid.

That is, for which x do our results hold (and more refined results,
such as the convergence of the nodal set to CLE(6))?
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The percolation universality class

According to the ‘Harris criterion’, the percolation universality class
consists of all k satisfying

/ / k(x — y) dxdy < R>?;
xEBRr JyeBRr

for positive k, this equates to polynomial decay of order v > 3/2.
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The percolation universality class

According to the ‘Harris criterion’, the percolation universality class
consists of all k satisfying

/ / k(x — y) dxdy < R>?;
xEBRr JyeBRr

for positive k, this equates to polynomial decay of order v > 3/2.

The random plane wave satisfies the HC since

[ [ hlix =yl dxdy = O(R).
xeBr JyeBgr

despite correlations decaying only at rate R~1/2 (for which the
LHS is a priori O(R"/?))

10| 34



Elements of the proof

The proof consists of four steps:
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Elements of the proof

The proof consists of four steps:

1. (Quasi-independence) Show that crossing events on domains
of scale R separated by a distance R are asymptotically
independent as R — o0;

2. (RSW estimates) Apply a general argument of Tassion to
deduce the RSW estimates at the zero level £ = 0;

3. ({c = 0) Use ideas from randomised algorithms (i.e. the OSSS
inequality) to deduce a qualitative description of the phase
transition at £ = 0.

4. (Sharpness) Bootstrap the previous step to give a quantitative
description of the phase transition.

20 | 24



Elements of the proof: Quasi-independence

To prove QI, we couple f to the R-dependent field

frR=qr*W = (qxr)* W

where xg is a smooth approximation of x — 1, <g/2.
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Elements of the proof: Quasi-independence

To prove QI, we couple f to the R-dependent field

frR=qr*W = (qxr)* W
where xg is a smooth approximation of x — 1, <g/2.

Then, under this coupling,
f—fr=(q—qr)* W
is a stationary Gaussian field with covariance (¢ — qr) * (9 — qRr).

Standard arguments (Kolmogorov, BTIS) then give that
]P)”f - fR’CO(BR) > E] <0

2
for e &~ R and § ~ e~ (logR)*,
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Elements of the proof: Quasi-independence

Since crossing events separated by a distance R are independent
for fg, it remains to find a bound on

|P[f € Cross¢(RQ)] — P[fr € Crossy(RQ)]|.
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Elements of the proof: Quasi-independence

Since crossing events separated by a distance R are independent
for fg, it remains to find a bound on

|P[f € Cross¢(RQ)] — P[fr € Crossy(RQ)]|.

By monotonicity and the bound on ||f — fg|co(g,,), it is enough to
find a bound on

|P[f € Cross;(RQ)] — P[f £ ¢ € Cross;(RQ)]|

fore ~ R177.
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We use a general approach based on the Cameron-Martin theorem:
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We use a general approach based on the Cameron-Martin theorem:

Theorem (Cameron—Martin)

Let H be the RKHS of f. Then for every h € H, the

Radon—Nikodym derivative of the law of f + h with respect to the
law of f is

exp {(f, By — %E[(f, h>2]} .

where (f, hy is the ‘Paley-Weiner integral’
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We use a general approach based on the Cameron-Martin theorem:

Theorem (Cameron—Martin)

Let H be the RKHS of f. Then for every h € H, the

Radon—Nikodym derivative of the law of f + h with respect to the
law of f is

1
oxp { (£, 1) ~ SEL(F. 071}
where (f, hy is the ‘Paley-Weiner integral’

Corollary
For every h € H and event A,

AP € Al
[PIf € A= PIf & he Al < TV
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Elements of the proof: Quasi-independence

Recall that the RKHS can be represented as

H=Flgpl, geLl3n(R.
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Elements of the proof: Quasi-independence

Recall that the RKHS can be represented as

H="Flgnl, g€ L5n(R).

sym

This gives the identity
Il = | RGO/ pP(x) o,
x€R?

which means that, if h &~ 1g,, then [|hl|3; = [ cp/r)p~2(x) dx.
Proposition

Suppose p(0) > 0. Then there exist c, Ry > 0 such that, for every
R > Ry, monotonic event A that depends on f|g,, and € > 0,

IP[f € A] - P[f + ¢ € A]| < cRey/P[f € A].
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Elements of the proof: Quasi-independence

Recall that the RKHS can be represented as

H="Flgnl, g€ L5n(R).

sym

This gives the identity
Il = | RGO/ pP(x) o,
x€R?

which means that, if h &~ 1g,, then [|hl|3; = [ cp/r)p~2(x) dx.

Proposition

Suppose p(0) > 0. Then there exist c, Ry > 0 such that, for every
R > Ry, monotonic event A that depends on f|g,, and € > 0,

IP[f € A] - P[f + ¢ € A]| < cRey/P[f € A].

From here, it is easy to deduce QI if v > 2,
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Elements of the proof: RSW estimates

To prove RSW estimates we borrow an argument of Tassion that
applies to any stationary random colouring of the plane with three
key properties:
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Elements of the proof: RSW estimates

To prove RSW estimates we borrow an argument of Tassion that
applies to any stationary random colouring of the plane with three
key properties:

» Sufficient symmetry, guaranteed by our assumptions;
» The QI property; and

» Positive associations, which is equivalent in the Gaussian
setting to k > 0 (and so is implied by g > 0).

275 | 34



Elements of the proof: Sharp thresholds via OSSS
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Elements of the proof: Sharp thresholds via OSSS

Consider a finite-dimensional product space and an event A. The
OSSS inequality bounds the variance of A in terms of the
‘influence’ and the ‘revealement’ of each coordinate.

The influence I;(A) of the i coordinate on A is defined as the
probability that resampling the coordinate modifies 1 4.

Let A be a random algorithm that determines A, i.e. a procedure
that reveals the coordinates and stops once the value of 1,4 is
known. The revealment §;(A) of the i** coordinate for the
algorithm A is the probability that the coordinate is revealed.

Theorem (O'Donnell, Saks, Schramm, Servedio, 2005)

Var(14) <Y 6i(A)(A).
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Elements of the proof: Sharp thresholds via OSSS

Let us explain how the OSSS inequality helps describe the phase
transition.
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Elements of the proof: Sharp thresholds via OSSS

Let us explain how the OSSS inequality helps describe the phase
transition.

Suppose that f is finite-dimensional, i.e. f depends on a finite
number of i.i.d. Gaussians X;.

The Cameron-Martin theorem gives that
d
ﬂ]}b [f +/e A] = ZE[X{]I{f+g€A}].

Moreover, if A is increasing (w.r.t. the Xj),
E[XiL{rieen] > cli({f + £ € A})

for c = sup,>oP[Z > a] /E[Z17>.] < oc.
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Elements of the proof: Sharp thresholds via OSSS

Applying the OSSS inequality, for any algorithm A that determines
Crossy(RQ),

Var(ﬂCrosse(RQ))
sup; 0i(A)

d
Al [Cross(RQ)] =

Hence, in order to demonstrate /. = 0, i.e. to show that

iIP)[Crossg(RQ)] — o0, asR— oo,
dt =0

we need only exhibit an algorithm A for Crossy(RQ) such that

supdi(A) = 0, as R — oo.
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Elements of the proof: Sharp thresholds via OSSS

To approximate f by a finite-dimensional field, we couple W to a
discretised white-noise W*® at scale € > 0 by setting

Ny = 6_1/ dW(x), veeZ?
xEv+[—e/2,e/2)?

(n, are i.i.d. standard Gaussians), and defining

WE(X) =t Z 77V]lx€v-i-[—a/2,a/2]2'
veeZ?
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Elements of the proof: Sharp thresholds via OSSS

To approximate f by a finite-dimensional field, we couple W to a
discretised white-noise W*® at scale € > 0 by setting

Ny = 6_1/ dW(x), veeZ?
xEv+[—e/2,e/2)?

(n, are i.i.d. standard Gaussians), and defining

WE(X) =t Z 77V]lx€v—|-[—a/2,a/2]2'
veeZ?

On any compact set, we can approximate f by the
finite-dimensional Gaussian field

o =qr~ W°.
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Elements of the proof: Sharp thresholds via OSSS

Let r = R~ and ¢ = R7, for suitably chosen a, 3 € (0, 1).
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Elements of the proof: Sharp thresholds via OSSS

Let r = R~ and ¢ = R7, for suitably chosen a, 3 € (0, 1).

Let @ be a rectangle, and define A to be the algorithm that picks
a random horizontal line, and reveals 7, in the r-neighbour of this
line and of all ‘blocking’ clusters that intersect this line.

This determines the event {f7 € Crossp(R)}.

Credit: Dmitry Beliaev
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Elements of the proof: Sharp thresholds via OSSS

A white-noise coordinate 7, is ‘revealed’ only if there is a blocking
cluster that connect B,(v) to the horizontal line.
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Elements of the proof: Sharp thresholds via OSSS

A white-noise coordinate 7, is ‘revealed’ only if there is a blocking
cluster that connect B,(v) to the horizontal line.

Since the horizontal line is random,
dy = P[n, is revealed] < P[0B, is connected to OBg].

The latter ‘one-arm event’' can be controlled thanks to the RSW
estimates.
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Elements of the proof: Bootstrapping

The upshot of the OSSS analysis is a ‘qualitative’ description for
the phase transition: for any quad Q@ and ¢ > 0,

P[f € Crossy(RQ)] -+ 1 as R — oc.

The final step is to convert this into a quantitative description of
the sharp phase transition.
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Elements of the proof: Bootstrapping
Let @ be the 3 x 1 rectangle, and define

ar = P[fr ¢ Crossy(RQ)];

The goal is to upgrade the qualitative statement ag — 0, to the
R . 2
quantitative statement that ag < e~¢'o8"(R),
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Elements of the proof: Bootstrapping
Let @ be the 3 x 1 rectangle, and define

ar = P[fr ¢ Crossy(RQ)];

The goal is to upgrade the qualitative statement ag — 0, to the
quantitative statement that ap < e~

This is implied from the following functional inequality

asr < crag + R\ /(ar)2 + e

c|0g2(R).

- Iog2(R)

which is deduced from the event below.

9

(

-~

A

S

1

5=

—\*p\
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Future directions

There are many questions that remain to be understood:
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Future directions

There are many questions that remain to be understood:
» Boundary of the percolation universality class (RPW etc.);
» Scaling limits for the nodal set (convergence to CLE(6) etc.);

» Existence and sharpness of the phase transition in higher
dimensions.

Thank you!
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