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INTRODUCTION

? In recent years, proofs of second order results in the high-
energy limit (like central and non-central limit theorems) for
local quantities associated with random waves on surfaces,
like the flat 2-torus, the sphere or the plane (but not only!).
Works by J. Benatar, V. Cammarota, F. Dalmao, D. Marinucci,
I. Nourdin, G. Peccati, M. Rossi, I. Wigman.

? Common feature: the asymptotic behaviour of such local
quantities is dominated (in L2) by their projection on a fixed
Wiener chaos, from which the nature of the fluctuations is
inherited.

? ‘Structural explanation’ of cancellation phenomena first de-
tected by Berry (plane, 2002) and Wigman (sphere, 2010).
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VIGNETTE: WIENER CHAOS

? Consider a generic separable Gaussian field G = {G(u) :
u ∈ U }.

? For every q = 0, 1, 2..., set

Pq := v.s.
{

p
(
G(u1), ..., G(ur)

)
: d◦p ≤ q

}
.

Then: Pq ⊂ Pq+1.
? Define the family of orthogonal spaces {Cq : q ≥ 0} as

C0 = R and Cq := Pq ∩ P⊥q−1; one has

L2(σ(G)) =
∞⊕

q=0

Cq.

? Cq = qth Wiener chaos of G.
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A RIGID ASYMPTOTIC STRUCTURE

For fixed q ≥ 2, let {Fk : k ≥ 1} ⊂ Cq (with unit variance).

? Nourdin and Poly (2013): If Fk ⇒ Z, then Z has necessarily a
density (and the set of possible laws for Z does not depend
on G).

? Nualart and Peccati (2005): Fk ⇒ Z ∼ N (0, 1) if and only if
EF4

k → 3(= EZ4).
? Peccati and Tudor (2005): Componentwise convergence to

Gaussian implies joint convergence.
? Nourdin, Nualart and Peccati (2015): given {Hk} ⊂ Cp, then

Fk, Hk are asymptotically independent if and only if
Cov(H2

k , F2
k )→ 0.

? Nonetheless, there exists no full characterisation of the asymp-
totic structure of chaoses ≥ 3.
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BERRY’S RANDOM WAVES (BERRY, 1977)

? Fix E > 0. The Berry random wave model on R2, with
parameter E, written

BE = {BE(x) : x ∈ R2},
is the unique (in law) centred, isotropic Gaussian field on
R2 such that

∆BE + E · BE = 0, where ∆ =
∂2

∂x2
1
+

∂2

∂x2
2

.
? Equivalently,

E[BE(x)BE(y)] =
∫

S1
ei
√

E〈x−y , z〉 dz = J0(
√

E‖x− y‖).

(this is an infinite-dimensional Gaussian object).
? Think of BE as a “canonical” Gaussian Laplace eigenfunc-

tion on R2, emerging as a universal local scaling limit for
arithmetic and monochromatic RWs, random spherical har-
monics... .
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NODAL SETS

Focus on the length LE of the nodal set:

B−1
E ({0}) ∩Q := {x ∈ Q : BE(x) = 0},

where Q is some fixed domain , as E→ ∞.

Images: D. Belyaev
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A CANCELLATION PHENOMENON

? Berry (2002): an application of Kac-Rice formulae leads to

E[LE] = areaQ×
√

E
8

,

and a legitimate guess for the order of the variance is

Var(LE) �
√

E.

? However, Berry showed that

Var(LE) ∼
areaQ
512π

log E,

whereas the length variances of non-zero level sets display the
“correct" order of

√
E.

? Such a variance reduction “... results from a cancellation whose
meaning is still obscure... ” (Berry (2002), p. 3032).

7 / 1



SPHERICAL CASE

? Berry’s constants were confirmed by I. Wigman (2010) in the
related model of random spherical harmonics — see
Domenico’s talk.

? Here, the Laplace eigenvalues are the integers

n(n + 1), n ∈N.

Picture: A. Barnett
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ARITHMETIC RANDOM WAVES

(ORAVECZ, RUDNICK AND WIGMAN, 2007)

? Let T = R2/Z2 ' [0, 1)2 be the 2-dimensional flat torus.
? We are again interested in real (random) eigenfunctions of

∆, that is, solutions of the Helmholtz equation

∆ f + E f = 0,

for some adequate E > 0 (eigenvalue).
? The eigenvalues of ∆ are therefore given by the set

{En := 4π2n : n ∈ S},

where
S = {n : n = a2 + b2; a, b ∈ Z}.

? For n ∈ S, the dimension of the corresponding eigenspace is
Nn = r2(n) := #Λn, where Λn := {(λ1, λ2) : λ2

1 + λ2
2 = n}
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ARITHMETIC RANDOM WAVES

(ORAVECZ, RUDNICK AND WIGMAN, 2007)

We define the arithmetic random wave of order n ∈ S as:

fn(x) =
1√
Nn

∑
λ∈Λn

aλe2iπ〈λ,x〉, x ∈ T,

where the aλ are i.i.d. complex standard Gaussian, except for the
relation aλ = a−λ.

We are interested in the behaviour, as
Nn → ∞, of the total nodal length

Ln := length f−1
n ({0}).

Picture: J. Angst & G. Poly
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NODAL LENGTHS AND SPECTRAL MEASURES

? Crucial role played by the set of spectral probability mea-
sures on S1

µn(dz) :=
1
Nn

∑
λ∈Λn

δλ/
√

n(dz), n ∈ S

(invariant with respect to z 7→ z and z 7→ i · z.)

? The set {µn : n ∈ S} is relatively compact and its adherent
points are an infinite strict subset of the class of invariant
probabilities on the circle (see Kurlberg and Wigman (2015)).
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ANOTHER CANCELLATION

? Rudnick and Wigman (2008): For every n ∈ S, E[Ln] =
√

En
2
√

2
.

Moreover, Var(Ln) = O
(
En/N 1/2

n
)
. Conjecture: Var(Ln) =

O(En/Nn).
? Krishnapur, Kurlberg and Wigman (2013): if {nj} ⊂ S is such

that Nnj → ∞, then

Var(Lnj) =
Enj

N 2
nj

× c(nj) + O(Enj R5(nj)),

where

c(nj) =
1 + µ̂nj(4)

2

512
; R5(nj) =

∫
T
|rnj(x)|5dx = o

(
1/N 2

nj

)
.

? Two phenomena: (i) cancellation, and (ii) non-universality.
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NEXT STEP: SECOND ORDER RESULTS

? For E > 0 and n ∈ S, define the normalized quantities

L̃E :=
LE −E(LE)

Var(LE)1/2 and L̃n :=
Ln −E(Ln)

Var(Ln)1/2 .

? Question : Can we explain the above cancellation phenom-
ena and, as E, Nn → ∞, establish limit theorems of the type

L̃E
LAW−→ Y, and L̃n′j

LAW−→ Z?

({n′j} ⊂ S is some subsequence)
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A COMMON STRATEGY

? Step 1. Let V = fn or BE, and L = LE or Ln. Use the
representation (based on the coarea formula)

L =
∫

δ0(V(x))‖∇V(x)‖ dx, in L2(P),

to deduce the Wiener chaos expansion of L.

? Step 2. Show that exactly one chaotic projection L(4) :=
proj(L |C4) dominates in the high-energy limit – thus ac-
counting for the cancellation phenomenon.

? Step 3. Study by “bare hands” the limit behaviour of L(4).
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FLUCTUATIONS FOR BERRY’S MODEL

Theorem (Nourdin, P., & Rossi, 2017)

1. (Cancellation) For every fixed E > 0,

proj(LE |C2q+1) = 0, q ≥ 0,

and proj(L̃E |C2) reduces to a “negligible boundary term”, as
E→ ∞.

2. (4th chaos dominates) Let E→ ∞. Then,

L̃E = proj(L̃E |C4) + oP(1).

3. (CLT) As E→ ∞,
L̃E ⇒ Z ∼ N(0, 1).
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REFORMULATION ON GROWING DOMAINS

Theorem
Define, for B = B1:

Lr := length(B−1({0}) ∩ Ball(0, r)).

Then,
1. E[Lr] =

πr2

2
√

2
;

2. as r → ∞, Var(Lr) ∼ r2 log r
256 ;

3. as r → ∞, Lr −E[Lr]

Var(Lr)1/2 ⇒ Z ∼ N(0, 1).
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FLUCTUATIONS FOR ARITHMETIC RANDOM WAVES

Theorem (Marinucci, P., Rossi & Wigman, 2016)

1. (Exact Cancellation) For every fixed n ∈ S,

proj(Ln |C2) = proj(Ln |C2q+1) = 0, q ≥ 0.

2. (4th chaos dominates) Let {nj} ⊂ S be such that Nnj → ∞.
Then,

L̃nj = proj(L̃nj |C4) + oP(1).

3. (Non-Universal/Non-Gaussian) If |µ̂nj(4)| → η ∈ [0, 1],
where µ̂n(4) =

∫
z4µn(dz), then

L̃nj ⇒ M(η) :=
1

2
√

1 + η2

(
2− (1− η)Z2

1 − (1 + η)Z2
2
)

,

where Z1, Z2 independent standard normal.
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PHASE SINGULARITIES

Theorem (Dalmao, Nourdin, P. & Rossi, 2016)
For T̂ an independent copy, consider

In := #[T−1
n ({0}) ∩ T̂−1

n ({0})].

1. As Nn → ∞,

Var(In) ∼
E2

n
N 2

n

3µ̂nj(4)
2 + 5

128π2

2. If |µ̂nj(4)| → η ∈ [0, 1], then

Ĩnj ⇒ J(η) :=
1

2
√

10 + 6η2

(
1 + η

2
A +

1− η

2
B− 2(C− 2)

)

with A, B, C independent s.t. A law
= B law

= 2X2
1 + 2X2

2 − 4X2
3 and

C law
= X2

1 + X2
2 , where (X1, X2, X3) is standard Gaussian.
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ELEMENTS OF PROOF (BRW)

? In view of Green’s identity, one has that

proj(LE |C2) =
1

2
√

E

∫
∂Q

BE(x)〈∇BE(x), n(x)〉 dx,

where n(x) is the outward unit normal at x (variance bounded).
? The term proj(L̃E |C4) is a l.c. of 4th order terms, among

which
VE :=

√
E
∫
Q

H4(BE(x))dx,

for which one has that

Var(VE) =
24
E

∫
(
√

EQ)2
J0(‖x− y‖)4dxdy ∼ 18

π2 log E,

using e.g. J0(r) ∼
√

2
πr cos(r− π/4), r → ∞.

? In the proof, one cannot a priori rely on the “full correlation
phenomenon” seen in Domenico’s talk.
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ELEMENTS OF PROOF (ARW)

? Write Ln(u) = length f−1
n (u). One has that

proj(Ln(u) |C2) = ce−u2/2u2
∫

T
( fn(x)2 − 1)dx

= c
e−u2/2u2

Nn
∑

λ∈Λn

(|aλ|2 − 1)

(this is the dominating term for u 6= 0; it verifies a CLT).
? Prove that proj(Ln |C4) has the form√

En

N 2
n
×Qn,

where Qn is a quadratic form, involving sums of the type

∑
λ∈Λn

(|aλ|2 − 1)c(λ, n)

? Characterise proj(Ln |C4) as the dominating term, and com-
pute the limit by Lindeberg and continuity. 20 / 1



FURTHER RESULTS

? Benatar and Maffucci (2017) and Cammarota (2017): fluctua-
tions on nodal volumes for ARW on R3/Z3.

? The nodal length of random spherical harmonics verifies a
Gaussian CLT (Marinucci, Rossi, Wigman (2017)).

? Analogous non-central results hold for nodal lengths on
shrinking balls (Benatar, Marinucci and Wigman, 2017).

? Quantitative versions are available: e.g. (Peccati and Rossi,
2017)

Wass1(L̃n, M(µ̂n(4))) = inf
X∼L,Y∼M

E|X−Y| = O
(

1
N 1/4

n

)
.
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BEYOND EXPLICIT MODELS (W.I.P. )

? Suppose {Kλ : λ > 0} is a collection of covariance kernels
on R2 such that, for λ→ ∞, some rλ → ∞ and every α, β,

sup
|x|,|y|≤rλ

| ∂α∂β(Kλ(x, y)− J0(‖x− y‖))| := η(λ) = o(1)

? Let Yλ ∼ Kλ and B ∼ J0.

? Typical example: Yλ = 1√
2π
× Canzani-Hanin’s pullback ran-

dom wave (dim. 2) at a point of isotropic scaling (needs
rλ = o(λ)).
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BEYOND EXPLICIT MODELS (W.I.P.)

? Write L(Yλ, rλ) := length{Y−1
λ ({0})∩Ball(0, rλ)}, and Lr :=

length(B1 ∩ Ball(0, r)).

? Then, one can couple Yλ and B on the same probability space,
in such a way that, if rλη(λ)β → 0 (say, β ' 1/30),∣∣∣∣L(Yλ, r)−EL(Yλ, r)

Var(Lrλ
)1/2 − Lrλ

−ELrλ

Var(Lrλ
)1/2

∣∣∣∣→ 0,

in L2.

? For instance, if η(λ) = O(1/ log λ) (expected for pullback
waves coming from manifolds with no conjugate points),
then the statement is true for rλ = (log λ)β, β ' 1/30.
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BIBLIOGRAPHIC REMARKS

? The use of Wiener chaos for studying excursions of random
fields appears in seminal works e.g. by Azaïs, Kratz, Léon
and Wschebor (in the 90s).

? Starting from seminal contributions by Marinucci and Wig-
man (2010, 2011): geometric functionals of random Laplace
eigenfunctions on compact manifolds can be studied by de-
tecting specific domination effects.

? Such geometric functionals include: lengths of level sets,
excursion areas, Euler-Poincaré characteristics, # critical
points, # nodal intersections. See several works by Cam-
marota, Dalmao, Marinucci, Nourdin, Peccati, Rossi, Wig-
man, ... (2010–2018).

? Further examples of previous use of Wiener chaos in a
close setting: Sodin and Tsirelson (2002) (Gaussian analytic
functions), Azaïs and Leon’s proof (2011) of the Granville-
Wigman CLT for zeros of trigonometric polynomials. 24 / 1



THANK YOU FOR YOUR ATTENTION!
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