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INTRODUCTION

* In recent years, proofs of second order results in the high-
energy limit (like central and non-central limit theorems) for
local quantities associated with random waves on surfaces,
like the flat 2-torus, the sphere or the plane (but not only!).
Works by J. Benatar, V. Cammarota, F. Dalmao, D. Marinucci,
I. Nourdin, G. Peccati, M. Rossi, I. Wigman.

* Common feature: the asymptotic behaviour of such local
quantities is dominated (in L?) by their projection on a fixed
Wiener chaos, from which the nature of the fluctuations is
inherited.

* ‘Structural explanation” of cancellation phenomena first de-
tected by Berry (plane, 2002) and Wigman (sphere, 2010).
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VIGNETTE: WIENER CHAOS

* Consider a generic separable Gaussian field G = {G(u) :
ueut.
* Foreverygq =0,1,2..., set

P, := ﬁ{p(G(ul),...,G(ur)) :d°p < q}.

Then: P; C Pyy1.
* Define the family of orthogonal spaces {C, : q > 0} as
Co=Rand C; := P; N Pqﬁl; one has

* C; = qth Wiener chaos of G.



A RIGID ASYMPTOTIC STRUCTURE

For fixed g > 2,let {F, : k > 1} C Gy (with unit variance).

* Nourdin and Poly (2013): If F, = Z, then Z has necessarily a
density (and the set of possible laws for Z does not depend
on G).

* Nualart and Peccati (2005): F, = Z ~ .#°(0,1) if and only if
EF} — 3(=EZ*).

* Peccati and Tudor (2005): Componentwise convergence to
Gaussian implies joint convergence.

* Nourdin, Nualart and Peccati (2015): given {H} C C,, then
Fy, Hy are asymptotically independent if and only if
Cov(H?, F?) — 0.

* Nonetheless, there exists no full characterisation of the asymp-
totic structure of chaoses > 3.

4/1



BERRY’S RANDOM WAVES (BERRY, 1977)

x Fix E > 0. The Berry random wave model on R?, with
parameter E, written

Br = {Br(x) : x € R?},

is the unique (in law) centred, isotropic Gaussian field on
R? such that
2 9?
ABE+E-Bg =0, where A = — + —.
: 0x?  09x3

* Equivalently, 1 2

B[Be(x)Be(v)] = [
(this is an infinite-dimensional Gaussian object).

* Think of Bg as a “canonical” Gaussian Laplace eigenfunc-
tion on R?, emerging as a universal local scaling limit for
arithmetic and monochromatic RWs, random spherical har-
monics... .

ei\/E<X*y/Z> dz = ]0(\/EHX - yH)



NODAL SETS
Focus on the length Lg of the nodal set:

Bz'({0})NQ:={x € Q:Bg(x) =0},

where Q is some fixed domain , as E — oo.
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A CANCELLATION PHENOMENON

* Berry (2002): an application of Kac-Rice formulae leads to

E[Lg| = area Q X \/E,

and a legitimate guess for the order of the variance is

Var(Lg) =< VE.

* However, Berry showed that

area Q

5127
whereas the length variances of non-zero level sets display the
“correct” order of \/E.

* Such a variance reduction “... results from a cancellation whose
meaning is still obscure... ” (Berry (2002), p. 3032).

Var(Lg) ~

log E,

711



SPHERICAL CASE

* Berry’s constants were confirmed by I. Wigman (2010) in the
related model of random spherical harmonics — see
Domenico’s talk.

* Here, the Laplace eigenvalues are the integers
n(n+1), neN.
Picture: A. Barnett
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ARITHMETIC RANDOM WAVES
(ORAVECZ, RUDNICK AND WIGMAN, 2007)

x Let T = R?/Z? ~ [0,1)? be the 2-dimensional flat torus.

* We are again interested in real (random) eigenfunctions of
A, that is, solutions of the Helmholtz equation

Af+Ef =0,

for some adequate E > 0 (eigenvalue).
* The eigenvalues of A are therefore given by the set

{E,:=4r*n:n €S},

where
= {n:n:a2+b2; a,beZ}.

* For n € S, the dimension of the corresponding eigenspace is
Ny = ra(n) :=#A,, where A, := {(A1, A2) : )\% + A% =n}



ARITHMETIC RANDOM WAVES
(ORAVECZ, RUDNICK AND WIGMAN, 2007)

We define the arithmetic random wave of order n € S as:

fulx) = —— ¥ a0, xeT,

V;;Vl AEA,

where the a, are i.i.d. complex standard Gaussian, except for the
relationa), =a_,.

We are interested in the behaviour, as
N, — o0, of the total nodal length

%, = length £,71({0}).
Picture: . Angst & G. Poly
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NODAL LENGTHS AND SPECTRAL MEASURES

* Crucial role played by the set of spectral probability mea-
sures on S!

1
pn(dz) = A Z Srpmldz), nes

nAeN,
(invariant with respecttoz — zand z — i - z.)

* The set {y, : n € S} is relatively compact and its adherent
points are an infinite strict subset of the class of invariant

probabilities on the circle (see Kurlberg and Wigman (2015)).
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ANOTHER CANCELLATION

* Rudnick and Wigman (2008): For every n € S, E[.%,] = VE;
Moreover, Var(.%,) = O (E, //\/’,}/2). Conjecture: Var(.%,) =
O (En /Nn ) .

* Krishnapur, Kurlberg and Wigman (2013): if {n;} C S is such
that Nnj — 00, then

Var(%,,) x c(nj) + O(EnRs(n;)),

_ E”/‘
N2

n;
where

1+, (4)2
c(nj) = 51]2(); Rs(nj) = /T \rn,.(x)Ide =0 (1//\/',12]_) :

* Two phenomena: (i) cancellation, and (ii) non-universality.
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NEXT STEP: SECOND ORDER RESULTS

* For E > 0 and n € S, define the normalized quantities

~  Lg—E(Lg)

P Ly —E(%)
E7 Var(Lg)172

and .,%1 = W.

* Question : Can we explain the above cancellation phenom-
ena and, as E, \V;, — oo, establish limit theorems of the type

T LAW -5  LAW
Lg —Y, and fn’. — Z7?
j

({n;} C S is some subsequence)
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A COMMON STRATEGY

*x Step1. Let V = f, or Bg, and L = Lg or .%,. Use the
representation (based on the coarea formula)

L—/éo NIVV(x)| dx, in L2(P),

to deduce the Wiener chaos expansion of L.

* Step 2. Show that exactly one chaotic projection L(4) :=
proj(L | C4) dominates in the high-energy limit — thus ac-
counting for the cancellation phenomenon.

* Step 3. Study by “bare hands” the limit behaviour of L(4).
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FLUCTUATIONS FOR BERRY’'S MODEL

Theorem (Nourdin, P., & Rossi, 2017)
1. (Cancellation) For every fixed E > 0,

proj(Lg | Coq41) =0, g2>0,

and proj(Lg | Cy) reduces to a “negligible boundary term”, as
E — co.

2. (4" chaos dominates) Let E — oo. Then,

EE = pI‘Oj(ZE ’ C4) + 0]13(1>.
3. (CLT) As E — oo,
Lr = Z ~ N(0,1).




REFORMULATION ON GROWING DOMAINS

Theorem
Define, for B = By:

L, := length(B~'({0}) N Ball(0,7)).

Then,
2
1. E[L,] = %;
2. asr — oo, Var(L,) ~ rzzlggr;
3. asr — oo, L, — E[L,]
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FLUCTUATIONS FOR ARITHMETIC RANDOM WAVES

Theorem (Marinucci, P., Rossi & Wigman, 2016)
1. (Exact Cancellation) For every fixedn € S,
proj(Z [ C2) = proj(Zy | Cog1) =0, 4 2>0.

2. (4" chaos dominates) Let {n;} C S be such that Ny, — .
Then, -
L, —pro( | Ca) +op(1).

(Non-Universal/Non-Gau351an) If [iin,(4)| — 1 € [0,1],
where 1, (4) = [ z4uy, dz) then

fﬂ] = M(U) zm (

where 21, Zy independent standard normal.

(1—-mZi - (1+n)Z3),




PHASE SINGULARITIES

Theorem (Dalmao, Nourdin, P. & Rossi, 2016)
For T an independent copy, consider

L = #[T, ({0}) N T, ({0}))-
1. As N, — oo,
23y (4 +5
N2~ 12872
2. If [fin;(4)| — 17 € [0, 1], then

~ 1 1+7 1—7 )
I, = J(n) = At B—2(C—2
1) = s (A 5B 202

Var(I,)

with A, B, C independent s.t. A law p law ZX% + 2X§ — 4X§ and

law

= X% + X3, where (X1, X2, X3) is standard Gaussian.
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ELEMENTS OF PROOF (BRW)
* In view of Green’s identity, one has that

proj(Le | Co) = 2= [ Be(x) (VB (), n(x) d,

where 71(x) is the outward unit normal at x (variance bounded).

* The term proj(Lg | Cy) is a Lc. of 47 order terms, among

which
Ve i— \/E/Q Ha(Br(x))dx,

for which one has that

24 18
Var(Vp) = = Jo([lx = yll)*dxdy ~ — log E,
E J(vEQ) T

using e.g. Jo(r) ~ \/ 2 cos(r — /4), r — c.
* In the proof, one cannot a priori rely on the “full correlation
phenomenon” seen in Domenico’s talk.
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ELEMENTS OF PROOF (ARW)

x Write %, (1) = length f,7!(u). One has that
proj(Zu(u) [ C2) = e/ [ (£, ~ 1)dx
T

7u2/2u2

a, =1
7 L (mf -1

(this is the dominating term for u # 0; it verifies a CLT).
* Prove that proj(.%;, | C4) has the form

e
= C

E,
A2 X Qn

where Q,, is a quadratic form, involving sums of the type
Y (> = 1)e(r, n)
AEA,

* Characterise proj(.%, | Cs4) as the dominating term, and com-
pute the limit by Lindeberg and continuity.
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FURTHER RESULTS

* Benatar and Maffucci (2017) and Cammarota (2017): fluctua-
tions on nodal volumes for ARW on R3/Z3.

* The nodal length of random spherical harmonics verifies a
Gaussian CLT (Marinucci, Rossi, Wigman (2017)).

* Analogous non-central results hold for nodal lengths on
shrinking balls (Benatar, Marinucci and Wigman, 2017).

* Quantitative versions are available: e.g. (Peccati and Rossi,
2017)

- . 1
Wassy (£, M(jin(4))) = XN}S(fNMImX_ Y|=0 <an/4> :
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BEYOND EXPLICIT MODELS (W.L.P.)

* Suppose {K, : A > 0} is a collection of covariance kernels
on R? such that, for A — o, some r, — oo and every «, B,

sup | 9"0P(Ki(x,y) — Jo(llx —yl))] == n(A) = 0(1)

x| [y[<ra

* LetY), ~ K, and B ~ .

* Typical example: Y, =\/L27T x Canzani-Hanin’s pullback ran-

dom wave (dim. 2) at a point of isotropic scaling (needs
ry = 0(A)).
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BEYOND EXPLICIT MODELS (W.I.P.)

* Write L(Y),r,) := length{Y, '({0}) NBall(0,7,)},and L, :=
length(B; N Ball(0,7)).

* Then, one can couple Y, and B on the same probability space,
in such a way that, if ry7(A)P — 0 (say, B =~ 1/30),

L(Y/\, 7’) - IEL(Y/\, 7’) Lr/\ - IELr/\

— — 0,
Var(L,, )1/2 Var(L,, )1/2

in 2.

* For instance, if 7(A) = O(1/ logA) (expected for pullback
waves coming from manifolds with no conjugate points),
then the statement is true for ry = (logA)f, B ~ 1/30.



BIBLIOGRAPHIC REMARKS

* The use of Wiener chaos for studying excursions of random
fields appears in seminal works e.g. by Azais, Kratz, Léon
and Wschebor (in the 90s).

% Starting from seminal contributions by Marinucci and Wig-
man (2010, 2011): geometric functionals of random Laplace
eigenfunctions on compact manifolds can be studied by de-
tecting specific domination effects.

* Such geometric functionals include: lengths of level sets,
excursion areas, Euler-Poincaré characteristics, # critical
points, # nodal intersections. See several works by Cam-
marota, Dalmao, Marinucci, Nourdin, Peccati, Rossi, Wig-
man, ... (2010-2018).

* Further examples of previous use of Wiener chaos in a
close setting: Sodin and Tsirelson (2002) (Gaussian analytic
functions), Azais and Leon’s proof (2011) of the Granville-

Wigman CLT for zeros of trigonometric polynomials. i1



THANK YOU FOR YOUR ATTENTION!
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