Decoupling of distant local events for Gaussian fields

Alejandro Rivera

(joint work with Hugo Vanneuville)

The characters...

Take f smooth Gaussian field on \mathbb{R}^2 with covariance $\kappa(x-y) = \mathbb{E}\left[f(x)f(y)\right]$ and assume that, $\kappa(0) = 1$ and $\lim_{|x| \to +\infty} \kappa(x) = 0$.

Disclaimer: I will always assume κ is C^{∞} and that for distinct $x_1, \ldots, x_k, (f(x_1), \ldots, f(x_k))$ is non-degenerate.

Take f smooth Gaussian field on \mathbb{R}^2 with covariance

$$\kappa(x-y) = \mathbb{E}\left[f(x)f(y)\right]$$
 and assume that, $\kappa(0) = 1$ and $\lim_{|x| \to +\infty} \kappa(x) = 0$.

• Set $\mathcal{D}_{\pm} = \{ \pm f \geq 0 \}$.

Disclaimer: I will always assume κ is C^{∞} and that for distinct $x_1, \ldots, x_k, (f(x_1), \ldots, f(x_k))$ is non-degenerate.

Take f smooth Gaussian field on \mathbb{R}^2 with covariance

$$\kappa(x-y) = \mathbb{E}[f(x)f(y)]$$
 and assume that, $\kappa(0) = 1$ and $\lim_{|x| \to +\infty} \kappa(x) = 0$.

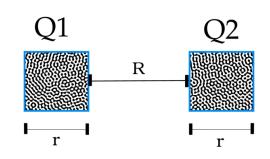
- Set $\mathcal{D}_{\pm} = \{ \pm f \ge 0 \}$.
- Color \mathcal{D}_+ in black and \mathcal{D}_- in white

Disclaimer : I will always assume κ is C^{∞} and that for distinct $x_1, \ldots, x_k, (f(x_1), \ldots, f(x_k))$ is non-degenerate.

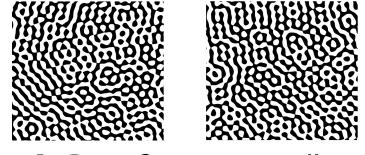
ŝ 0

The question...

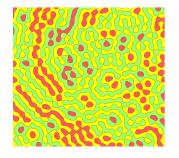
ŝ 0

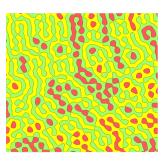


Is $\mathcal{D}_+ \cap \mathcal{Q}_1$ asymptotically independent from $\mathcal{D}_+ \cap \mathcal{Q}_2$?

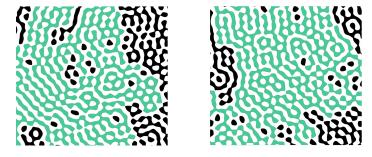


Is $\mathcal{D}_+ \cap \mathcal{Q}_1$ asymptotically independent from $\mathcal{D}_+ \cap \mathcal{Q}_2$? NO: unique continuation issues



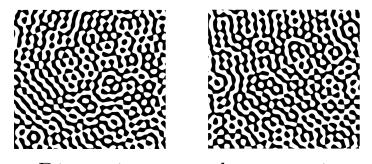


Are the number of nodal domains asymptotically independent from each other?

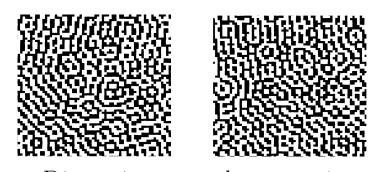


Are percolation events asymptotically independent from each other?

Possible solutions...



Discretize at scale $\varepsilon \ll 1$.



Discretize at scale $\varepsilon \ll 1$.

- Set $\eta = \sup_{x \in \mathcal{Q}_1, y \in \mathcal{Q}_2} |\kappa(x y)|$.
- Consider discretized boxes $\mathcal{Q}_1^{\varepsilon} = \{x_i\}_{i \in I}, \ \mathcal{Q}_2^{\varepsilon} = \{y_j\}_{j \in J}.$

- Set $\eta = \sup_{x \in \mathcal{Q}_1, y \in \mathcal{Q}_2} |\kappa(x y)|$.

 Consider discretized boxes
- $\mathcal{Q}_1^{\varepsilon} = \{x_i\}_{i \in I}, \ \mathcal{Q}_2^{\varepsilon} = \{y_i\}_{j \in J}.$

Apply finite-dimensional arguments to control correlations.

- Set $\eta = \sup_{x \in \mathcal{Q}_1, y \in \mathcal{Q}_2} |\kappa(x y)|$.
- Consider discretized boxes

$$\mathcal{Q}_1^{\varepsilon} = \{x_i\}_{i \in I}, \ \mathcal{Q}_2^{\varepsilon} = \{y_j\}_{j \in J}.$$

- Apply finite-dimensional arguments to control correlations.
- Justify that discretized events approximate continuous events.

Theorem (see Chapter 1 of Pit82)

For any $A^{\varepsilon} \in \mathcal{F}_1^{\varepsilon}$ and $B^{\varepsilon} \in \mathcal{F}_2^{\varepsilon}$,

$$|\mathbb{P}[A^{\varepsilon} \cap B^{\varepsilon}] - \mathbb{P}[A^{\varepsilon}]\mathbb{P}[B^{\varepsilon}]| \le C(r/\varepsilon)^{4}\eta$$

where $C < +\infty$ is an absolute constant.

Theorem (see Chapter 1 of Pit82)

For any $A^{\varepsilon} \in \mathcal{F}_1^{\varepsilon}$ and $B^{\varepsilon} \in \mathcal{F}_2^{\varepsilon}$,

$$|\mathbb{P}[A^{\varepsilon} \cap B^{\varepsilon}] - \mathbb{P}[A^{\varepsilon}]\mathbb{P}[B^{\varepsilon}]| \le C(r/\varepsilon)^{4}\eta$$

where $C < +\infty$ is an absolute constant.

... see also [NSV05], [BG16] and [BM17].

Theorem (see Chapter 1 of Pit82)

For any $A^{\varepsilon} \in \mathcal{F}_1^{\varepsilon}$ and $B^{\varepsilon} \in \mathcal{F}_2^{\varepsilon}$,

$$|\mathbb{P}[A^{\varepsilon} \cap B^{\varepsilon}] - \mathbb{P}[A^{\varepsilon}]\mathbb{P}[B^{\varepsilon}]| \le C(r/\varepsilon)^{4}\eta$$

where $C < +\infty$ is an absolute constant.

... see also [NSV05], [BG16] and [BM17].

In particular, A^{ε} and B^{ε} are asymptotically independent when

$$\eta(R) \le C(r/\varepsilon)^{-4-\delta}$$

for some $\delta > 0$. Of course, ε must tend to 0 to approximate topological events properly.

The punchline...

Theorem (RV18)

Let A (resp. B) be either a crossing event or a component counting event on Q_1 (resp. Q_2).

$$|\mathbb{P}[A \cap B] - \mathbb{P}[A]\mathbb{P}[B]| \le Cr^4\eta$$

where $C < +\infty$ is an absolute constant.

Theorem (RV18)

Let A (resp. B) be either a crossing event or a component counting event on Q_1 (resp. Q_2).

$$|\mathbb{P}[A \cap B] - \mathbb{P}[A]\mathbb{P}[B]| \le Cr^4\eta$$

where $C < +\infty$ is an absolute constant.

In particular, A and B are asymptotically independent when

$$\eta(R) \le Cr^{-4-\delta}$$

for some $\delta > 0$.

More precisely,

More precisely, a **crossing event** on a box $\mathcal Q$ is an event of the form

"There is a continuous black path inside Q joining two given sides of Q."

More precisely, a **crossing event** on a box $\mathcal Q$ is an event of the form

"There is a continuous black path inside Q joining two given sides of Q."

...and a **component counting event** on a box Q is an event measureable with respect to the random variable

"Number of connected components of \mathcal{D}_+ contained inside \mathcal{Q} ."

▶ Discretize : Define $X = f|_{\mathcal{Q}_1^{\varepsilon}}$ and $Y = f|_{\mathcal{Q}_2^{\varepsilon}}$.

- ▶ Discretize : Define $X = f|_{\mathcal{Q}_1^{\varepsilon}}$ and $Y = f|_{\mathcal{Q}_2^{\varepsilon}}$.
 - ▶ Take A^{ε} depending on the signs of X and B^{ε} depending on the signs of Y.
 - ▶ The relation of A^{ε} with X: we say that i is **pivotal** for A^{ε} if.
 - "The sign of X_i determines whether or not $X \in A^{\varepsilon}$ "

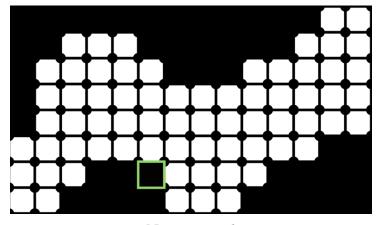
- ▶ Discretize : Define $X = f|_{\mathcal{Q}_1^{\varepsilon}}$ and $Y = f|_{\mathcal{Q}_2^{\varepsilon}}$.
 - ▶ Take A^{ε} depending on the signs of X and B^{ε} depending on the signs of Y.
 - ▶ The relation of A^{ε} with X : we say that i is **pivotal** for A^{ε} if.
 - "The sign of X_i determines whether or not $X \in A^{\varepsilon}$ "

 $I_i(A) := \mathbb{P}\left[\operatorname{Piv}_i(A) \mid X_i = 0\right].$

- \triangleright The influence of i on A is

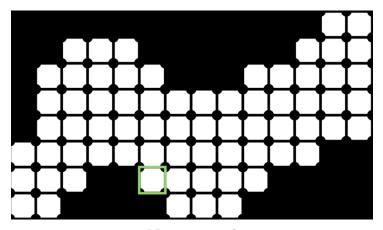
For topological events $\mathrm{Piv}_i(A^{\varepsilon})$ implies an " ε -saddle point" at x_i .

For topological events $\mathrm{Piv}_i(A^{\varepsilon})$ implies an " ε -saddle point" at x_i .



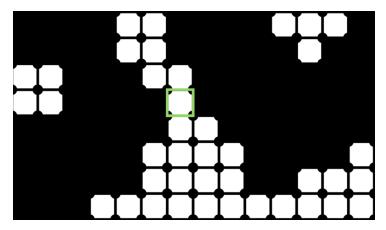
Not pivotal

For topological events $\operatorname{Piv}_i(A^{\varepsilon})$ implies an " ε -saddle point" at i.



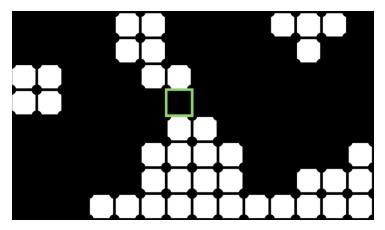
Not pivotal

For topological events $\mathrm{Piv}_i(A^{\varepsilon})$ implies an " ε -saddle point" at i.



Pivotal

For topological events $\mathrm{Piv}_i(A^\varepsilon)$ implies an " $\varepsilon\text{-saddle point"}$ at i.



Pivotal

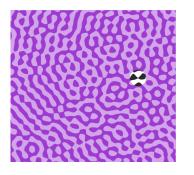
An ε -saddle point at x_i means $(f(x_i), \nabla_{x_i} f)$ is ε -small.

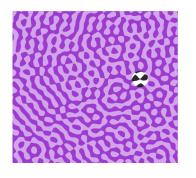
Conditioning on $f(x_i) = 0$,

An ε -saddle point at x_i means $(f(x_i), \nabla_{x_i} f)$ is ε -small.

Conditioning on $f(x_i) = 0$,

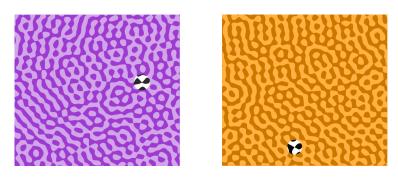
$$I_i(A) \approx \varepsilon^2$$
.





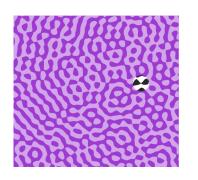
The correlation of A^{ε} and B^{ε} should be :

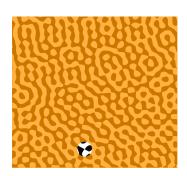
$$\approx \sum_{i \in \mathcal{Q}_1^{\varepsilon}, \ j \in \mathcal{Q}_2^{\varepsilon}} I_i(A^{\varepsilon}) \times \kappa(x_i - y_j) \times I_j(B^{\varepsilon})$$



The correlation of A^{ε} and B^{ε} should be :

$$\leq C(r/\varepsilon)^2 \times (r/\varepsilon)^2 \times \varepsilon^2 \times \eta \times \varepsilon^2$$
.





So that:

$$|\mathbb{P}[A^{\varepsilon} \cap B^{\varepsilon}] - \mathbb{P}[A^{\varepsilon}]\mathbb{P}[B^{\varepsilon}]| \le Cr^{4}\eta.$$

Two applications...

For R > 0 let N(R) be the number of connected components of \mathcal{D}_+ contained inside the box $[-R,R]^2$.

Theorem (NS15)

Under some mild condition on κ , there exists $\nu = \nu(\kappa) > 0$ such that

$$\frac{N(R)}{R^2} \stackrel{p.s \ and \ L^1}{\longrightarrow} \nu$$
 .

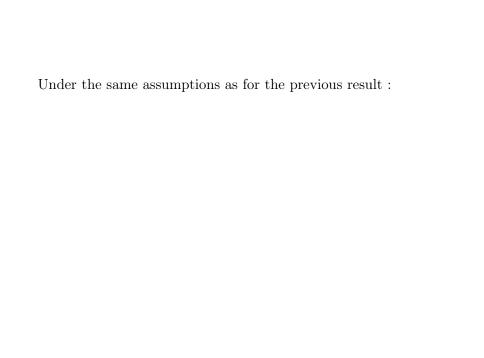
For R > 0 let N(R) be the number of connected components of \mathcal{D}_+ contained inside the box $[-R, R]^2$.

Theorem (NS15)

Under some mild condition on κ , there exists $\nu = \nu(\kappa) > 0$ such that

$$rac{N(R)}{R^2} \stackrel{p.s \ and \ L^1}{\longrightarrow}
u$$
 .

However: there is no control of the speed of convergence.



Under the same assumptions as for the previous result:

Theorem (RV18)

Assume that $|\kappa(x)| \leq C|x|^{-\alpha}$ for some $\alpha > 4$. Then, for all $\varepsilon > 0$ and $0 < \delta < \alpha - 4$.

$$\mathbb{P}\left[N(R) < (\nu - \varepsilon)R^2\right] < CR^{4-\alpha+\delta}$$

$$\mathbb{P}\left[N(R) \le (\nu - \varepsilon)R^2\right] \le CR^{4-\alpha+\delta}.$$

Under the same assumptions as for the previous result :

Theorem (RV18)

Assume that $|\kappa(x)| \leq C|x|^{-\alpha}$ for some $\alpha > 4$. Then, for all $\varepsilon > 0$ and $0 < \delta < \alpha - 4$,

$$\mathbb{P}\left[N(R) \le (\nu - \varepsilon)R^2\right] \le CR^{4-\alpha+\delta}.$$

Note that this is only a lower concentration result.

Let Cross(R) be the event that there exists a black path in the box $[0, 2R] \times [0, R]$ joining the left and right sides.

Let Cross(R) be the event that there exists a black path in the box $[0,2R] \times [0,R]$ joining the left and right sides. Then,

 $\mathbb{P}[\operatorname{Cross}(R)] \in [c, 1-c]$.

Theorem (BG16, BM17, RV18)

Assume that $\kappa(x) \geq 0$ and $|\kappa(x)| \leq C|x|^{-\alpha}$ for some $\alpha > 4$.

Assume that
$$\kappa(x) \geq 0$$
 and $|\kappa(x)| \leq C|x|^{-\alpha}$ for some $\alpha > 1$.
Then, there is $c = c(\kappa) > 0$ such that for each $R \geq 1$,

What's next?

▶ Decoupling in any dimension, for general topological events : work in progress with Dmitry Beliaev and Stephen Muirhead.

- ▶ Decoupling in any dimension, for general topological events: work in progress with Dmitry Beliaev and Stephen Muirhead.
- ▶ Upper concentration for N(R). Much more difficult than lower concentration...

- ▶ Decoupling in any dimension, for general topological events: work in progress with Dmitry Beliaev and Stephen Muirhead.
 - ▶ Upper concentration for N(R). Much more difficult than lower concentration...
 - Going below $\alpha > 4$ for certain events: work in progress by

Stephen Muirehead and Hugo Vanneuville.

- ▶ Decoupling in any dimension, for general topological events: work in progress with Dmitry Beliaev and Stephen Muirhead.
- ▶ Upper concentration for N(R). Much more difficult than lower concentration...
- Going below $\alpha > 4$ for certain events: work in progress by

Stephen Muirehead and Hugo Vanneuville.

▶ What about vector valued fields?

- ▶ Decoupling in any dimension, for general topological events: work in progress with Dmitry Beliaev and Stephen Muirhead.
 - ▶ Upper concentration for N(R). Much more difficult than lower concentration...

 - Going below $\alpha > 4$ for certain events: work in progress by Stephen Muirehead and Hugo Vanneuville.

▶ What about topological functionals of the fields?

▶ What about vector valued fields?

Thanks for listening!

References:

- ▶ BG16 : Percolation of random nodal lines, by Vincent Beffara and Damien Gayet
- ▶ BM17 : Discretization schemes for level sets of planar Gaussian fields, Dmitry Beliaev and Stephen Muirhead
- ▶ NS05 : Transportation to random zeroes by the gradient flow, by Fedor Nazarov and Mikhail Sodin
- ▶ NS15 : Asymptotic laws for the spatial distribution and the number of connected components of zero sets of Gaussian random functions by Fedor Nazarov and Mikhail Sodin
- ▶ Pit82 : Gaussian Stochastic Processes, Vladimir I. Piterbarg, Transl. of Math. Monographs, Vol 148
- ► RV18 : Quasi-independence for nodal lines by Alejandro Rivera and Hugo Vanneuville

alejandro.rivera@univ-grenoble-alpes.fr