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ON LITTLEWOOD’S CONSTANTS

D. BELIAEV anD S. SMIRNOV

ABSTRACT

In two papers Littlewood studied seemingly unrelated constants: the best a such that for any
polynomial f of degree m the areal integral of its spherical derivative is at most const - n®, and
the extremal growth rate 8 of the length of Green’s equipotentials for simply connected domains.
We show that these two constants coincide, thus greatly improving known estimates on a.

1. Introduction

In this paper we study the growth rate as n — oo of the quantity

An, = supJ L|2dm,
31+l

where supremum is taken over all polynomials g of degree n, D is the unit disc {|z| < 1}, and m
denotes two-dimensional Lebesgue measure. We are interested in the best o such that A, < n®
(which means that for every ¢ > 0 there is a constant Ce with Ap, < Cen®t¢). In [12] Littlewood
observed that 0 < a < 1/2 and conjectured that o < 1/2. The problem of determining the best
possible a appears under the number 4.18 in Hayman’s problem list [9].

It is easy to show that there is a constant ¢ such that for any rational function g of degree n

lg'|
———dm < cy/n.
J 1+1g2 —
D
Note that integrand is a modulus of the spherical derivative g, of g (i.e. derivative with respect to
spherical metric) and that in D the spherical measure dm. is comparable to the Lebesgue measure
dm. So our integral can be estimated by

1/2 1/2
|| \ghlama < | 1glama < (j \g:,|2dma) (j dma)
D C C C
= (2rn)'/2(2m)'/2 = 2xy/m,

here we use that rational function of degree n maps complex sphere to itself n-to-1 so the area of
the image is n times bigger than the area of the sphere. In particular this argument shows that
a<1/2.

Littlewood’s conjecture was proved in [15] by Lewis and Wu, who improving upon the work [6]
of Eremenko and Sodin obtained an explicit upper estimate o < 1/2 — 27264 Tater Eremenko in
[5] obtained a positive lower bound on a.

Following works by Eremenko and Sodin [6] and Lewis and Wu [15] we exploit connection
between this problem and the extremal behavior of harmonic measure.

Our main result is that « is related to the growth rate of Green’s lines length. In the case of
simply connected domains 2 we define S as

loglength{z : G(z) =
Jim sup oglength{z : G(z) 5},
e—0 log1/e
where G is the Green’s function with pole at infinity and we define

B = sup Ba,
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where supremum is taken over all simply connected domains 2. In the non simply connected case
one needs more elaborate definition and we use the multifractal analysis technique.
For a given domain Q we define the packing spectrum wq(t) as

sup {q : V6 > 03§ — packing {B} with Zdiam(B)tw(B)q > 1} ,

where w is the harmonic measure in 2 and §-packing is a collection of disjoint open sets whose
diameters do not exceed 4. Note that this definition is valid for any domain with compact boundary
and for ¢t = 1 it is analogous to Bq (see [16] for the proof of fq = mq(1) for simply connected Q) .
We define the universal spectrum 7(t) as the supremum of m(t) over all planar domains Q
with compact boundary.
The main result of this paper is the following theorem:

MAIN THEOREM. For any positive € there exists a constant ¢ = c(g) such that
An < en™(te,

FEquivalently
a <w(l).

REMARK 1. Our proof actually implies that for ¢ € [0, 2]
¢
J ( lg'] ) < en™(2—+e,
N

Of interest to us are also 7p(t) and mp sc(t) which are suprema of 7q(t) over all domains of
attraction to infinity for polynomial mappings and simply connected domains of attraction to
infinity for polynomial mappings correspondingly (see [3] for background on complex dynamics).
It is clear that mp sc < mp < m, but a priori they might differ.

In [5] Eremenko essentially proved that 7p,sc(1) < o (he works under assumption that polyno-
mials are hyperbolic, but it can be easily avoided). Binder, Makarov, and Smirnov in [1] showed
that 7p sc(t) = mp(t) for t > 0. Recently Binder and Jones announced the proof of the identity
7wp(t) = w(t), which together with our theorem completes the circle:

a < m(1) = mp(1) = mp,se(l) < o

There is yet another growth (or rather decay) rate that is related to o and was also studied by
Littlewood. The growth rate -y of coefficients of univalent functions in D~ is defined by
log |b
7 := sup limsup M +1,

$ m—oo logn

where the first supremum is taken over all functions ¢(z) = z + >.°2; bp2z~™ that are univalent
in D~ . Littlewood proved [13, 14] that 8 > <. Much later Carleson and Jones [4] showed that
v = B. Summing it all up, we arrive at:

COROLLARY.
a=pB=79=m(l) = mp,sc(l). (1.1)

The corollary uses aforementioned (yet unpublished) result of Binder and Jones. Note that a
well-known conjecture (see [4, 16, 11, 17]) states that w(t) = (2 — t)2/4 for |t| < 2, in particular
a = 8 =y = 1/4. The best published estimates for 3 are

[171 [8]
0.17 < B < 0.4884,

so the same estimates hold for @, which is a significant improvement over previously known
_s 12 4 64
1.11:1075 < o < 1/2—27264,

Recently, Hedenmalm and Shimorin released preprint ([10]) with the estimate 8 < 0.46. And
authors recently obtained a computer assisted estimate from below: 8 > 0.23 (in preparation).



ON LITTLEWOOD’S CONSTANTS 3

1.1. Connection to the value distribution of entire functions

Before giving the proof we would like to remark that the reason for Littlewood’s interest in this
problem was the following striking corollary of his conjecture (see [12]):

LITTLEWOOD’S CONDITIONAL THEOREM. Assume that a < 1/2. If f is an entire function of
order 0 < p < oo then for any 0 < 6 < 1/2 — « there is a “small” set S such that “almost all”
roots of any equation f(z) = w lie in S. Namely

Area(S N B(R)) 1
Area(B(R)) © (RZGP) ’

R — o0,

and for all w

R — o0,

#{z € B(R) : f(z) =w} o (Rp(l/z—a—o)> )

where B(R) is a disc of radius R centered at the origin.

2. Proof of The Main Theorem

It is a standard fact (for details see [16] and [7]) that 7 (¢) is finite, convex, and strictly decreasing
on [0, 2], and hence for any small § we can choose ¢ so small that

w(l—2¢) —7(1) < 4.

We will also use a more elaborate fact (which follows from multifractal formalism and fractal
approximation — see [16]), that there is a constant const(¢,¢), such that for any disjoint collection
of cubes {Q} of size < 1 one has

X:L*J(Q)W(t)l(Q)H'E < const(t, €).
Q

Let g be a polynomial of degree at most n and a; its zeros. Consider a set where |g| is big, i.e.
|g| > m. We can easily estimate integral over this set by

g (e -
[ < [t ioggy
D

14192 = lgl
DN{|g|>n} D
2.1
i (2.1)
-1 -1
=n <n~"-2wn = 27.
J Z Z—a;|
p li=1

Now consider a complementary set where |g| is small, which is contained inside the disc of
radius 3/2

3
9= {21 lg(a)| <mlel < 2},
and let W = {Q;} be a Whitney decomposition of 2. We note that
9'(2)|?

LA S22 N,
(1 +19(2)1*)?
is the Riesz measure associated with the nonnegative subharmonic function

log(1 2
L log+1g)

du(z) = 4n~t zdy,

n
Then by Riesz representation theorem
2w
H(B(,7) < o J (u(z + 2rei®) — u(z))do. 2.2)
0
Hence for every cube Q; we have
log(1 + n)

mQj) L e———.
n

Fix a cube Q; such that Q; NI # () and denote by §; a point at 9 such that d(¢;, Q;) < 21(Q;).
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Then from (2.2)

wQj)

IA

< "Flute; +81(Q;)e) — u(g;))do
0 (2.3)
< fu(z) — ()] -

max c
2€B(&;,81(Q;))

Denote by G(z) the Green’s function for C \ Q with pole at infinity. Extend G to a continuous
subharmonic function in C by setting G = 0 on Q.

By the maximum principle for domain C \ Q we obtain G(z) > log|2z/3| for any z € C\ Q,
hence

4
G(z) > log 3 for |z| = 2.
By the maximum principle for domain 2D \ Q, we have

u(e) - u(e) < MaG() (1og3)  for 2| <2,

where M2 = max|,|=» u(z).
If we let z; be a center of Q; and w be a harmonic measure on C\ Q with pole at infinity then
by previous inequality and (2.3) we have

w(@j) < [u(z) — u()]T

max c
z€B(£;,81(Q;))

4\ 1
<ec (log —) M max G(z) < cM> max G(z2).
3 2€B(£;,81(Q;)) 2€B(z;,161(Q;))
By Harnack’s inequality right hand side is less than
|dz|

cM>3 J G(z)727r32l(Qj)’

0B(2,321(Q;))
which by Riesz representation formula equals to
321(Q;)

an | D)

dt < eMaw(B(zj,321(Q;)))-

So finally we have
w(Q;) < const Mz w(B(zj,32l(Q;)))- (2.4)

By Schwarz’s inequality we have

lg'| _n1/2 -1/2 lg']
dxdy =n Z n dxdy

1 2 1 2
21+l Qew 3, +lgl
1/2 1/2
< lnl/2 Z J %dwdy J dzdy
=2 1+ [g]2)2
QEW \g. n(1+ %) ;
1 1 (1 _
<on'? 3T p(@)YAU@y) = 50t 3D w(Q) M2 T2 (@) " 2(Qy)
Q;eW Q;eEW
loa(1 1/2—m(1—2¢)
< cntl? (M) wQ;) (@)

Q;EW

<on™ W N Q)" =2i(Qy),

Q;€ED

where D is the family of all dyadic squares with the side length less then 32 that intersect 2, € is
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a small positive number, and C is a constant. By (2.4) we can estimate the last sum

an(1)+6 E M(Qj)w(l—Qe)l(Qj)
Q;€D

< CMznw(IH—& § E w(Qj)7r(1—2s)l(Qj)(1—2s)+sl(Qj)s
k=1 1(Q)=1/2

— CMQH"(IH"S § 2%5 E w(Qj)r(l—?s)l(Qj)(1—25)+E
=17 1@ ) S 2k

o0
< C Man™(D+8 3 2,15 const(e) < n™ M+ const(e) Ma.
k=1

Now assume the following dichotomy: For any € > 0 there exists a constant const(e) such that
for any polynomial g of degree n
M> < const(e)n®, (2.6)
or
Q] <1/n. (2.7)

Then if (2.6) holds then the desired estimate follows from (2.5):

J 7] < constnp™ (D) +ets,
1+ g2 —

Q

But both € and ¢ can be made arbitrary small we have the desired estimate.
If (2.7) holds then even better estimate follows from Schwartz’ inequality:

1/2 1/2
J o'l - J lg' |2 Jl
T+l = \J 1 +]g/?)?
Q Q

Q
(L ‘-"3')1/2 VI < v/Zenl9Y] < V2T

Therefore it remains to prove the dichotomy.

IA

Proof of the dichotomy. Assume that M2 > n®. Recalling the definition M> = SUP|,|=2 log(1+

|912)/n, we deduce that sup,_s|g| > exp(n'*<) so the set Q where |g| < n cannot have big
measure.
We can write g as ¢ = PQ, where

Pz)=X [] z-a), Q@) =x ] (z—a).
lag|>4 la;|<4
Let m be the degree of P, then

log [ |A| H la;| | —mlog2 <log|P(z)| <log | |A| H la;| | +mlog2,
lai|>4 la;|>4

when |z| < 2. Since |Q(z)| < 6™ for |z| < 2, it follows that

ue% log |[P(z)| > sup log|P(2)[3™™ > log (exp(n't€)37"6™™) > ~nlte
z

2]=2

3

N | =

if n is sufficiently large. Since log |PQ| =log|g| < m in Q we can write
1 1
log |Q(2)| <log|PQ| ~log |[P| <m — _n'** < —2nl*e, z€ @

if n is large enough. Therefore, {2 is contained in the union of disks {z : [z — a;| < exp(—n®/4)}.
Hence

1
Q] < nrm exp(fins) <1/n when n is sufficiently large.

This proves the dichotomy for n > N(e), for degree n bounded from above by N(¢) the dichotomy
is easy by compactness argument (and anyway, it suffices to prove the estimate for polynomials
of sufficiently large degree). This completes the proof of the main theorem.
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