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Abstract

Many problems in complex analysis can be reduced to the evaluation of
the universal spectrum: the supremum of multifractal spectra of harmonic
measures for all planar domains. Its exact value is still unknown, with
very few estimates available. We start with a brief survey of related
problems and available estimates from above. Then we discuss in more
detail estimates from below, describing the search for a fractal domain
which attains the maximal possible spectrum.

1 Introduction

It became apparent during the last decade that extremal configurations in many
important problems in classical complex analysis exhibit complicated fractal
structure. This makes such problems more difficult to approach than similar
ones where extremal objects are smooth. A striking example is given by coeffi-
cient problem for two standard classes of univalent functions S and X.

1.1 Coefficient problems for univalent functions

Let D = {z : |z| < 1} be the unit disc and D_ = {|z| > 1} be its complement.
The classes S and ¥ are defined by

S ={¢(2) = z+azz®> + azz®> + ..., ¢ is univalent on D} ,

and
={o(z) =2+ biz '+ bz 2+ ..., ¢ is univalent on D_}.

Univalent means analytic and injective, the letters S and ¥ stand for German
schlicht. Here and below we use a, and b, to denote the Taylor coefficients of
functions from S (or S, = SN L) and X correspondingly. A complete descrip-
tion of all possible coefficient sequences (a,) and (b,) is perhaps beyond reach.
So one asks what are the maximal possible values of individual coefficients, es-
pecially when n tends to infinity. The long history behind this question goes
back to works of Koebe and Bieberbach.



Class S. It is easy to see that the Koebe function k(z) = Y 7 nz" is in
fact a univalent map from the unit disk to the plane with a half-line (—o0,1/4]
removed. It was conjectured by Bieberbach [8] in 1916 that this function is
extremal in the class S, namely that for any function there one has |a,| < n.

The Bieberbach conjecture was proved by de Branges [17] in 1985 with the
help of Loewner evolution [40, 39] which we discuss below. The asymptotical
behavior of max|a,| was settled much earlier by Littlewood. In 1925 [35] he
showed by an elegant argument that |a,| < en for any function ¢ € S.

Class Y. The corresponding problem for class ¥ appears more difficult, with
even the question of asymptotic behavior still wide open.

Bieberbach [7] showed in 1914 using his area theorem that |b,| < 1/4/n.
While it is easy to produce examples of functions belonging to ¥ with |b,| > 1/n,
Littlewood showed in [34] that those are not extremal. Moreover it is unclear
how to construct an extremal function.

Not just the problem of finding the sharp upper bound for |b,|, but even
determining the correct decay rate is extremely difficult. We define
Y¢ = limsup llog bn

n—oo 108

+1,

i.e. 4 is the smallest number v such that |b,| < n?~'. We then define v = 75
as the supremum of v4’s over all ¢ € X. To find the value of v one has to solve
two problems: prove a sharp estimate from above and construct a function
exhibiting the extremal decay rate of coefficients.

The origins of the difficulties for the class ¥ were explained by Carleson and
Jones [13] in 1992. Define another constant 4 to be the growth rate of lengths
of Green’s lines I's = ¢ ({2 : |2| =1+ 6}):

. loglength (T's)
By = limsup ——————=,
¢ 50 |log d|

and let 8 = fx be the supremum of 34’s over all ¢ € X. Define 3, B, vs, and
Bs as the corresponding constants for the classes S, = SN L>® and S.

Theorem 1 (Carleson & Jones, 1992). The following holds:
Y=B=n=0B<vs=B:=2.

The inequalities v < 3 for all the three pairs are due to Littlewood [35],
who used them in the proof that |a,| < en. The apparent equality was quite
unexpected. Indeed, Littlewood’s argument was quite transparent and in one
place used seemingly irreversible inequality. For a function ¢(z) = 3" ax2* in



the class S he wrote

elength (Ty/,) > (1—1) / ¢/ (2)]|dz|
|z|=1-1/n

n

/ 1= ()8 > ‘ / zl-"qs'(z)de‘
|z|=1-1/n

= ‘/zl_"Zkakzk_ldH = ‘/Zkakzk_"dQ
& k

Essentially the same argument is valid for the other two classes, and it follows
immediately that v4 < B5. Note that to have an identity, one must attain an
approximate equality in the triangle inequality marked by (*). Thus 2! "¢/ ()
should have approximately the same argument around the circle. Carleson and
Jones achieved this by a small perturbation of ¢, while preserving change in 34
and 7.

The identity v = 8 explains the nature of extremal maps ¢: those maximize
the length of Green’s lines I'5. For class S the boundary 02 of the image domain
Q = ¢(D) may be unbounded, so the Green’s lines can be long because of large
diameter. This is exactly what happens for the extremal Koebe function. For
classes ¥ and Sy the situation is different: 92 is compact. So for the length of
Green’s lines to be large, they must “wiggle” a lot, and 02 must be of infinite
length (even dimy 09 > 1 for 8 > 0). This difference explains why the problem
for class S is much easier than for classes X and S;. So we know that extremal
domains for the latter classes should be fractal (self-similar), but there is no
understanding of their origin or structure.

= 27|an| .

1.2 Multifractal analysis of harmonic measure

The work [42] of Makarov put this problem in a proper perspective, utilizing
the language of multifractal analysis, an intensively developing interdisciplinary
subject on the border between mathematics and physics. The concepts were in-
troduced by Mandelbrot in 1971 in [44, 45]. We use the definitions that appeared
in 1986 in a seminal physics paper [22] by Halsey, Jensen, Kadanoff, Procac-
cia, Shraiman who tried to understand and describe scaling laws of physical
measures on different fractals of physical nature (strange attractors, stochastic
fractals like DLA, etc.). Multifractal analysis studies different multifractal spec-
tra (which quantatively describe the sets where certain scaling laws apply to the
mass concentration), their interrelation, and connections to other properties of
the underlying measure.

There are various definitions of spectra, in our context constructions similar
to the grand ensemble in statistical mechanics lead to the integral means spec-
trum which for a given function ¢ € ¥ (or the corresponding domain ¢(D_)) is
defined by

log [T |9/ (re™)|'d8
t) = 1 0
Folt) 3= B gt - 1)

,tER.



The universal integral means spectrum B(t) is defined as the supremum of (4 (t)
for all ¢ € X. Clearly the constant § is equal to B(1).

Let w be the harmonic measure, i.e. the image under the map ¢ of the
normalized length on the unit circle. Another useful function is the dimension
spectrum which is defined as the dimension of the set of points, where harmonic
measure satisfies a certain power law:

fla) == dim{z: w (B(z,0)) ~ 6%, 5—)0}, a> %

Here dim stands for the Hausdorff or Minkowski dimension, leading to possibly
different spectra. Of course, in the general situation there will be many points,
where measure behaves differently at different scales, so one has to add lim sup’s
and liminf’s to the definition above — consult [42] for details. The wuniversal
dimension spectrum F(a) is defined as the supremum of f(a)’s over all ¢ €
3. Note that by Beurling’s theorem the minimal possible power a for simply
connected domains is 1/2, which corresponds to points at the tips of the inward
pointing spikes.

The basic question about dimensional structure of harmonic measure on
planar domains was resolved by Makarov [41] in 1985 when he showed that
dimension of harmonic measure (i.e. minimal Hausdorff dimension of the Borel
support) on simply-connected domains is always one, and Jones and Wolff [26]
proved that for multiply connected domains it is always at most one. In the
language of spectra Makarov’s theorem corresponds to the behavior of F(«)
near o = 1 and B(t) near ¢t = 0, see discussion in [42].

Makarov [42] developed in 1999 the general multifractal framework for har-
monic measure. Among other things he showed that Hausdorff and Minkowski
versions of universal spectra coincide (while they might differ for individual
maps), and that universal integral means and dimension spectra are connected
by a Legendre transform:

B(t) —t+1=sup (F(a) —t)/a,
a>0 (1)
F(a)= irgf (t+a(B(t)—t+1)).

The same holds for spectra of individual maps, provided the corresponding
domains are “nice” fractals. Makarov extended Carleson-Jones fractal approx-
imation from B(1) to B(t), see below. He gave a complete characterization
of all functions which can occur as spectra: those are presicely all positive
convex functions which are majorated by the universal spectrum and satisfy
B(t) —tp'(t+) > —1. In the same paper Makarov described how the universal
spectrum is related to many other problems in the geometric function theory.
We will mention several connections later.

On the basis of work of Brennan, Carleson, Jones, Makarov and computer
experiments Krétzer [30] in 1996 formulated the

Universal spectrum conjecture 1.

B(t) =t2/4 for |t| < 2 and B(t) = |t| — 1 for |t| > 2.



which by the work of Makarov is equivalent to
Universal spectrum conjecture 2. F(a) =2 —1/a for a > 1/2.

These conjectures are based on several others, discussed below. Unfortu-
nately, besides numerical, there is not much evidence to support them. All
known methods to obtain estimates from above seem to be essentially non-
sharp. It is unclear at the moment which approach could lead to the sharp
estimates from above. So it becomes even more important to search for ex-
tremal configurations in the hope that they will help to understand underlying
structure and produce estimates from above as well. In this note we give an
exposition of available methods.

1.3 Survey of related problems

Before discussing the values of the universal spectra we would like to briefly
mention some of the problems which can be reduced to its study. For an exten-
sive discussion, see [42].

The Brennan’s conjecture. Brennan [11] conjectured that any conformal
map v : Q@ — D satisfies for all positive e

J[ @I cane) <.

where m is the planar Lebesgue measure. By considering the inverse map, it is
easy to see that this conjecture equivalent to B(—2) = 1. See the paper [14] of
Carleson and Makarov and the Ph.D. thesis [6] of Bertilsson for reformulations
and partial results. For the best known upper bounds for B(—2) see recent
papers by Shimorin [53] and Hedenmalm, Shimorin [24].

The Holder domains conjecture. Let the map ¢ be Hoélder continuous:
¢ € SNHBl(n). Jones and Makarov proved (see [25] and [42, Th. 4.3]) that the
Hausdorff dimension of the boundary of the image domain Q = ¢(D) satisfies

dimpoN <2-Cn,

for some positive constant C'. They conjectured that for small values of n the
constant C' can be taken arbitrarily close to 1.

It turns out that the universal spectrum conjecture suggests an even stronger
statement. Indeed, a corollary of Makarov’s theory (see [42, 43] by Makarov and
Pommerenke) is that the universal spectrum B,(t) for the class S N H&l(n) is
equal to

B(t), t<ty,,
(1 —=n)(t —ty) + B(ty), t=>ty,
where ¢, is such that the tangent to B(t) at t = ¢, has a slope 1 — 7. On the
other hand the maximal possible dimension of 91 is the root of the equation

B,(t)=t—1.



After combining these statements and plugging in B(t) = t?/4, an easy calcula-
tion then shows that the universal spectrum conjecture for ¢ € [0, 2] is equivalent
to the Hélder domains congecture, which states that the following estimate holds
and is sharp for n-Ho6lder domains:

dimpoN <2—17.

Multiply connected domains. One can define similar spectra for multiply
connected domains. Since the class of domains is larger, they are a priori dif-
ferent (e.g. the integral means spectrum cannot be defined or rather is infinite
for multiply connected domains when ¢ is negative). However a combination of
results of Binder, Makarov, Smirnov [10] and Binder, Jones [9] proves that they
coincide whenever both are finite (i.e. B’s for ¢t > 0 and F’s for a > 1/2).

Value distribution of entire functions. There is yet another constant a
studied by Littlewood [36], which is the smallest a such that

|p'| ate
sup / dm < const(e)n Ve>0
peP. Jo 1+ |p? (© ’ ’

where P, is the collection of all polynomials of degree n. The mentioned results
together with Eremenko [20] and Beliaev, Smirnov [4] imply that a = B(1).
Since « is more difficult to estimate it greatly improves the previously known
estimates 1.11-107° < a < 1/2 — 27264 from [1, 33)].

The constant a plays role in a seemingly unrelated problem in value distri-
bution of entire functions. Under assumption that @ < 1/2 (proved only later
by Lewis and Wu [33]) Littlewood proved in [36] a surprising theorem: for any
entire function f of finite order most roots of f(z) = w for any w lie in a small
set. This can be quantified in several ways, one particular implication is that
for any entire function f of finite order p > 0 there is a set E such that for any
w for sufficiently large R most roots of f(z) = w inside {|z| < R} lie in E while

Area(E N {|z| < R}) < R272(1/270)

See [36, 4] for an exact formulation.

Universal spectra for other classes of maps. It was shown by Makarov in
[42] that universal spectra for many other classes of univalent maps (e.g. Holder
continuous, with bounds on the dimension of the boundary of the image domain,
with k-fold symmetry) can be easily obtained from the universal spectrum B(t)
for the class ¥. For example, while the universal spectrum for Sy is the same:
By(t) = B(t), the universal spectrum B, (t) for the class S satisfies

B,(t) = max(B(t),3t —1) .

In particular, one notices immedeately that v, = Bs(1) = 2.



This ideology can be applied to an old problem about coefficients of m-fold
symmetric univalent functions:

¢(Z) =2+ am+1zm+1 + a2m+1z2m+1 +....

Szegd conjectured that |a,| = O(n~'12/™). This conjecture was proved for
m = 1 by Littlewood [35, Th. 20], for m = 2 by Littlewood and Paley [37],
for m = 3 and (with a logarithmic correction) for m = 4 by Levin [32]. On
the other hand, Littlewood [34] proved that the conjecture fails for large m.
Makarov proved [42] that the universal spectrum Bl™(t) for m-fold symmetric
functions satisfies

BI™l(t) = max {B(t), (1 + %) t— 1} .

Particularly the growth rate of coefficients is given by

2/m—1, m<2/B(1),
B(1)—1, m>2/B(1).

This theorem together with Carleson and Jones conjecture suggests that Szegt
conjecture holds for k£ < 8 and fails for £ > 9. The previously known estimates
for B(1) show that Szegd conjecture holds for k = 1,2,3,4, and fails for & >
12. Our improved estimate B(1) > 0.23 (see Theorem 5 below) implies that
conjecture is indeed wrong for £ > 9.

1.4 Estimating universal spectra

The known results about universal spectra use variety of approaches to produce
estimates from above and below. At present the estimates from above are rather
far from being sharp, and it is unclear which methods can possibly give exact
results. In the hope to gain understanding we concentrate in the next sections on
estimates from below, that is on constructing (fractal) maps with large spectra.
There is also hope that eventually the universal spectrum will be evaluated
exactly by showing that it is equal to the spectrum of some particular “fractal”
map, for which it can be calculated (cf. discussion of fractal approximation
below).

Before we pass to fractal examples, we sketch the situation with estimates
from above, using B(1) as an example. See also problems 6.5, 6.7, and 6.8 from
the Hayman’s problem list [23] and the survey paper [51] and books [49, 50] by
Pommerenke.

Conjectural value of v = v, = B(1) is 1/4, but existing estimates are quite
far. The first result in this direction is due to Bieberbach [7] who in 1914 used
his area theorem to prove that v < 1/2. Littlewood, Paley, and Levin proved
aforementioned estimates on |a,| for k-fold symmetric functions for k = 1, 2, 3, 4.
Clunie and Pommerenke in [16] proved that v < 1/2—1/300 and 5 < 1/2—¢ for
some € > 0. They used a differential inequality on [ |¢'(r€)|® for a fixed small



0. Carleson and Jones [13] established that v = 7, and used Marcinkiewicz
integrals to prove v < 0.49755. This estimate was improved by Makarov and
Pommerenke [43] to v < 0.4886 and then by Grinshpan and Pommerenke [21]
to v < 0.4884. The best current estimate is due to Hedenmalm and Shimorin
[24] who quite recently proved that B(1) < 0.46.

2 Searching for extremal fractals

It is clear that extremal domains should be fractal. There are several standard
classes of fractals that one can study. For most of them the fractal approximation
holds. This means that the supremum of spectra over this particular class of
fractals is equal to the universal spectrum. These results can help to understand
the nature of extremal domains, but it is not clear if one can get any upper
bound in this way. Another problem is that it is extremely difficult to work
with harmonic measure on fractals because the radial behavior of conformal
map depends on arg z in a highly non-regular way. We will argue that solution
to this problem might lie in considering random fractals, when averaging over
many maps makes behavior of ¢' statistically the same for all values of arg z.
Below we give a short overview of fractals and methods that were used in the
search of lower bounds.

2.1 Lacunary series

The first estimate from below is due to Littlewood [34] who disproved for large
m the Szegd conjecture about coefficients of m-fold symmetric functions: using
lacunary series he constructed an explicit function with |a,| > A(m)n~1+e/logm
for infinitely many n, where A is a universal constant. Much later Clunie [15]
used the same technique for class ¥ and constructed a function with |b,| >
n%902=1 for infinitely many n. Similar technique was used by Pommerenke
[47, 48], see the discussion below.

The method consisted of writing a specific Taylor series convergent in D
and using argument principle to check that the resulting function is a schlicht
map. It turns out that such series describe maps to fractal domains. Since it
is much easier to construct analytic functions (rather than univalent ones) it
is interesting whether more advanced univalence criteria can be used to obtain
interesting examples.

2.2 Geometric snowflakes

Canonical geometric construction, called snowflake, was introduced by von Koch
[28, 29] as an example of a nowhere differentiable curve. We start with a “build-
ing block” — a polygon P = Fy. The construction proceeds in the following
fashion: to obtain P41, a part of each side of P, is replaced by a scaled copy
of P. In the limit a fractal called snowflake is obtained, which we identify with



a conformal map of D_ to its complement. Carleson and Jones proved that to
find the value of § it is enough to study snowflakes.

Let Ysnowtiake be the class of conformal mappings whose image domain is
a snowflake, and set Bspowfiake = SUP B¢, where the supremum is taken over all
snowflakes ¢ € Tspouwfiake- Then

Theorem 2 (Fractal approximation, Carleson & Jones, 1992).

Bsnowflake = ,8 .

Makarov developed their machinery to extend the result to the multifractal
spectra. In [42, Th. 5.1] he gives a complete proof in the multiply connected sit-
uation (when one works with Cantor sets rather than von Koch snowflakes), and
outlines it in the simply connected case. Again, Fynow fiake (@) and Binow fiake (t)
are defined as suprema of fs(a) and By (t) over ¢ € Esnowfiake:

Theorem 3 (Fractal approximation, Makarov, 1999).

anowflake(a) = F(a) ’
Bsnowflake(t) = B(t) .

Fractal approximation tells us that it is enough to study harmonic measure
on snowflakes. Construction of the snowflake is geometric, so it is easy to control
dimensions, but estimating harmonic measure is much harder.

2.3 Julia sets

Harmonic measure arises in a natural way for Julia sets of polynomials. If p(z)
is a polynomial, we denote by F, its domain of attraction to infinity, that is the
set of z such that iterates p(p(...p(z)...)) tend to infinity. The Julia set of p
is then the boundary of Fo,. It was demonstrated by Brolin [12] that harmonic
measure on Fo, is balanced (has constant Jacobian under mapping by p) and
by Lyubich [38] that it maximizes entropy. Similarly multifractal spectra have
dynamical meaning. For example the integral means spectrum is related to the
thermodynamical pressure:

B(t)—t+1 = sup {I(,u)—t/logp'd,u}/logdegp,

where the supremum is taken over all invariant measures p and I(u) denotes
entropy, see [42] and the references therein. This provides more tools to analyze
harmonic measure, for example establishing its dimension in this particular case
is easier and has more intuitive reasons, than in general case — compare [46] of
Manning to Makarov’s [41] treatment of the general situation.

Carleson and Jones [13] studied numerically g for domains of attraction to
infinity for quadratic polynomials f(z) = 22+ ¢, and obtained non-rigorous esti-
mate § = 0.24 for ¢ = —0.560 + 0.6640¢. The Figure 1 shows the corresponding
Julia set. Based on this computer experiment and on analogy with conformal



Figure 1: Julia set for 22 — 0.56 + 0.6644

field theory they conjectured that B(1) = 1/4.

Recently Binder and Jones [9] proved fractal approximation by Julia sets.
Together with theorem by Binder, Makarov, and Smirnov [10] it implies that
B(t) = Bpe(t), t > 0, where By, is the (a priori larger) universal spectrum for
multiply connected domains. It is conjectured by Jones that there is a fractal
approximation by quadratic polynomials. If true the universal spectrum will
probably be attained by the Mandelbrot set.

Despite this progress, it is still unclear whether one can employ Julia sets to
estimate the universal spectra — rigorous dimension estimates are very hard in
this class of fractals.

2.4 Conformal snowflakes

We would like to introduce a new class of random conformal snowflakes. This
class is interesting because fractal aproximation holds, while estimates of the
spectra reduce to (much simpler) eigenvalue estimates for integral equations.
Also it appears that even simple building blocks lead to snowflakes with rather
large spectrum. We start with a determenistic construction, which is related to
those used by Littlewood and Pommerenke.

Denote by X' the class of univalent maps of D_ = {|z| > 1} into itself,
preserving infinity. Fix an integer k > 2. We define the Koebe k-root transform
of p € X' by Kpd(z) = ¥/#(2%) € X'. The first generation of the snowflake
is given by some function ®; = ¢ € ¥'. Let ®,(2) = Kiad(z). The n-th
approximation to the snowflake is given by f, = ®o(P1(...Pp(2)...)). We
define conformal snowflake as the limit f =1lim f,,. Let y = ¢ ' and g,, = f,, .

10



It is easy to check that

fn+1(z) =¢ (\k/ fn(zk)> )
gnt1(2) = {/ gn (P(2)*) .
Therefore the limit map g = lim g,, satisfies

9(2)F = g(¥(2)*) -

So g semi-conjugates dynamical systems z —+ z* and z — 9(2)* on D_, and the
resulting snowflake is a Julia set of ¥ acting on D_ (i.e. the attractor of inverse
iterates). Because construction is based on iterated conformal maps, harmonic
measure is easier to handle than in the case of geometric snowflakes, and even
polynomial Julia sets.

It turns out that there is a fractal approximation for conformal snowflakes:

Theorem 4 (Fractal approximation). Let B.s;(t) be the universal integral
means spectrum for conformal snowflakes, then

B.ss(t) = B(t) .

The proof is quite similar to the proof of fractal approximation for snowflakes
due to Carleson and Jones. We sketch the proof for the case t = 1, the complete
proof appears in [2]. Let us choose a function ¢ such that it has a long Green’s
line with potential 1/k, namely length (T x(¢)) ~ kP, with 8 = B(1). Then
for ®; = X/¢(2%") the Green’s line with potential 1/k’ has length ~ k®. One
can argue that the length of Green’s line for f,, is the product of the lengths of
Green’s lines for ®;’s, since those oscillate on different scales:

n
length (T'y /g (&g 0 &1 0--- 0 &) & [ [ length (Ty /45 (8;)) ~ k™,
=0

and it follows that the specific snowflake we constructed almost attains the
universal 3.

As we noted above Pommerenke used a similar construction in [47, 48] to
produce maps with large coefficients. Let

1-A )””qk

1 — Azme*

or(2) = 2 (

where A and ¢ are parameters. He studied functions fj defined recursively by
fr(2) = fe—1(¢r(2)). Using this construction he first found functions from
Sy and ¥ with |ay], |by| > constn®13%~1 and then improved the estimate to
|an|, |bn| > const n®17~1. Later Kayumov [27] used this technique to prove that
B(t) > t?/5 for 0 < t < 2/5.

11
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Figure 2: Random conformal snowflake from Theorem 5

2.5 Random conformal snowflakes

Conformal snowflakes are easier to work with than Julia sets or geometric
snowflakes. However they share the same problem: behavior of f' depends on
symbolic dynamics of the argz. To solve this problem we introduce a random
rotation on every step:

gnt1(2) = /gn (P(e¥2)F) (2)

where 6, are independent random variables uniformly distributed in [0, 27].
Capacity estimates show that there exist a limiting random conformal map
g = goo, and sending n — oo we obtain the stationarity of g under the random
transformation (2):

9(z) = {/9(¥(e’2)") , 3)

where 6 is uniformly distributed in [0, 27, and equality should be understood in
the sense of random maps having the same distribution. Using (3) one can write
a similar equation for the derivative ¢', and also integral equations (depending
on the building block and k) for the expectations like E|g’'|*. This reduces
the determination of the spectrum of a random conformal snowflake to the
evaluation of the spectral radius of a particular integral operator (7) on the
half-line. While its exact value seems beyond reach for the time being, one can
obtain decent estimates. As an example, we prove in [2] the following

Theorem 5. There is a particular snowflake with 5(1) > 0.23.

This snowflake is generated by a simple slit map. The Figures 2 and 3 show
its third generation and the blow up of its boundary with three Green’s lines.

The general theory of random conformal snowflakes is developed in [2, 3].
In particular the fractal approximation Theorem 4 extends to the random con-
formal snowflakes. Since the building blocks can be taken smooth and relate
to the spectra in a simple way, we hope that eventually one might be able to
develop some kind of a variational principle, which together with the fractal
approximation might yield estimates from above.

12



Figure 3: Blow up of the boundary of the random conformal snowflake from
Theorem 5 with three Green’s lines

The random conformal snowflakes can be considered as Julia sets of random
sequences of schlicht maps. One can similarly study the spectra for more tradi-
tional Julia sets of random sequences of polynomials. Unfortunately, after some
technical difficulties one arrives at integral equations which are rather hard to
work with.

2.6 Schramm-Loewner Evolutions

A very interesting class of random “conformal” fractals was recently introduced
by Schramm [52]. The whole plane Schramm-Loewner Evolution with parameter
k>0, or SLE,, is defined as the solution of the Loewner equation (cf. [40, 39])

fr(2) +¢&
fr(2) =&

where the driving force is given by &, = exp(i1/kB;) with B, being the standard
one-dimensional Brownian motion. The initial condition is

Or fr(2) = f+(2) (4)

Tgrzlooe* fr(z)==z2.

This equation describes the evolution of random univalent maps f, from D_
onto C\ H,. One calls SLE, this family of random maps, as well as the family

13



of random hulls H,. See Lawler’s book [31] for the proof of existence and basic
properties.

The traces of the Schramm-Loewner evolutions are the only possible confor-
mally invariant scaling limits of cluster perimeters in critical lattice models. As
such the values of their spectra were (non-rigorously) predicted by the physicist
Duplantier [18, 19] by means of Conformal Field Theory and Quantum Gravity
arguments:

Theorem 6 (CFT prediction, Duplantier, 2000). The f(a) spectrum for
the bulk of SLE, is equal to

(25 —¢)(a —1)?

He)=a- g1

where ¢ is the central charge which is related to k by

_ (6=r)(6—16/r)
= 1 .

The prediction should be understood as the “mean” or the “almost sure”
value of the spectra.

Below we sketch a rigorous proof of the Duplantier’s prediction, given by
us in [2, 5]. As in the case of conformal snowflakes, stationarity implies that
expressions like E|f’ (z)| satisfy certain equations. This time the equation turns
out to be a heat equation (5) with variable coefficients, and asymptotics of
solutions can be evaluated exactly.

The maximal value of such spectra is attained for k = 4:

foy=2-—1 k=4,

2 4a-2’
which gives for example 5(1) = 3 — 2v/2 ~ 0.17. So SLE does not have a large
spectrum, but at present it is perhaps the only fractal where the spectra can be
written exactly.

In hope of obtaining large spectrum it is natural to generalize SLE, consider-
ing other driving forces. In our derivations the Markov property plays essential
role, so the first logical choice would be to consider Lévy processes. One can ap-
ply the same technique as in the case of SLE and reduce the problem of finding
the spectrum to the analysis of a particular integro-differential equation, but at
present we do not have good rigorous estimates of its spectral radius. On the
other hand, numerical experiments by us and by Kim and Meyer suggest that
Loewner Evolution driven by Cauchy process has a large spectrum. In view of
Theorems 5 and 6 there is certainly no fractal approximation by SLE’s, but
one can argue that a fractal approximation principle could hold in the class of
“Lévy-Loewner Evolutions.”

3 Estimates of spectra for random fractals

For random fractals it is very natural to study the mean spectrum, i.e. behavior
of E|f'(2)|t instead of |f'(z)|*. When available, correlation estimates can be
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used to show that the mean spectrum is attained by almost every realization
of the fractal. Moreover, one can show using Makarov’s fractal approximation
theorem that the universal spectrum is greater than the mean spectrum for any
class of fractals, so if we are looking for the estimates from below it suffices.

Random models that we mentioned above have some kind of stationarity.
This means that E|f'(z)|! is invariant with respect to some random transforma-
tion which implies that it is a solution of a particular equation. Usually it is
much easier to analyze the asymptotic behavior of solutions rather than average
local behavior of conformal maps. Below we describe how to apply these ideas
in the case of SLE and random conformal snowflakes.

3.1 Exact solutions for SLE

Let f, : D_ — H, be the whole plane SLE,. Then e~7 f. has the same distri-
bution as fy (see [31] for the proof). One can check that F(z) = E[e~"|f.(2)|*]
is a t-covariant martingale with respect to the filtration generated by the driving
force By, s < 7. This implies that F(z) = F(r,8) solves the second order PDE:

r* +4r2(1 —rcos) — 1
( (r2 —2rcosf +1)2
r(r2 —1) 2r sin 6
r2—2rcos@+1"" 12 —2rcosf+1

—1)F+
()
K
Fg+§Fgg=0.

Here the first term is contributed by ¢-covariance, the second and the third form
the derivative in the direction of the Loewner flow (with constant driving force),
whereas the forth term is the generator of the driving force — the Brownian
motion.

For such an equation it appears possible to analyze exactly the behavior of
solutions as r — 14. Applying formally Frobenius theory one can obtain the
local solution near the singular “growth” point (8,r) = (0,1), which e.g. for
t <t.=3(4+ k)?/(32k) has the form

r=17"-((r=1)*+6)7, (6)
for
A+kK)?—(4+k)\/(4+ k)2 — 8kt
4k ’
44k —+/(4+ k)% — 8kt
2K '
Tweaking the formula (6) one constructs global sub- and super-solutions of
the PDE (5) which behave as (r — 1) when » — 14. So by the maximum
principle any solution has such asymptotics. So for ¢ < ¢, the mean spectrum
B« (t) is equal to B(t). It is easy to see that mean spectrum is a convex function
bounded by the universal spectrum. The latter is equal to ¢ — 1 for ¢ > 2 and
since BL(t.—) = 1, one easily infers that B.(t) = B(t.) +t — t. for t > t,.
The derived spectrum S,(t) is the Legendre transform (1) of the Duplantier’s
prediction for f(a). Details of the proof appear in [2, 5].

B = B(ta’i) = —t+

v = (k) =
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Our reasoning applies to the case of Loewner Evolution driven by a Lévy
process with generator A. The function F'(z) satisfies the same equation (5),
with the term £ Fyg substituted by AF. We are not able to perform a rigorous
analysis of the resulting equations yet, but this direction of investigations seems
rather promising.

3.2 Estimates for snowflakes

Let f be a random conformal snowflake as defined in Section 2.5. Construction
of f, is such that it seems impossible to deduce an equation for E|f'|*, which
seems to be the main obstacle to the exact determination of the corresponding
spectra.

We work with the inverse function g instead. The spectrum S(t) of the
snowflake is roughly speaking the smallest b such that

2
/(r—l)b_l/ | (re®®)|tdbdr < oo .
1 0

In terms of the inverse function g it means that we should study the integrability
of |g'|>"*(|g|—1)" "' near r = 1+. The latter is comparable to |g' /g|> *1log® ™" |g|,
for whose expectations we can derive an integral equation. Set

F(2) = F(12]) =E[lg'(2)/9(=) "1og"" |9 (2)]] ,

by the presence of rotation in (3) the function F' depends on |z| only.

The mean spectrum of a snowflake is the minimal b such that F' is integrable
near 1+. Using stationarity of g, namely plugging in instead of g the right hand
side of (3), we write

F(r)

Elg'(r)/9(r)* 108"~ 19(r)]]

g' (W (re) )’ (re)ip(re?)

=" 9 (Y re®)h)

k

QtC%mwm%ﬂng,

where 6 has a uniform distribution in [0, 27[. The right hand side can be rewrit-
ten as to separate the expectation with respect to the (independent) distribu-
tions of g and 6:

/%%lywvww)
0

g (re®)F)
By the definition of F' the expectation under the integral is equal to F (i (re?)¥),
hence F' satisfies the integral equation

2—t

|¢/(rei9)¢(,’.ei9)k—1 |2—t d_o
kb1 2

log" ™! Ig(zb(reio)'“)ll

27
Py =k" | F(re®)) - po(re) 1 (re )2 B2
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and we are searching for the value of b when it ceases to be integrable near
1+. Thus finding f3 is reduced to evaluation of the spectral radius in £! of the
integral operator Q:

ﬁ
2

@A) = [ Qe ) ey (e ¥

It does not seem possible to find the spectral radius exactly in terms of ¢ and
k, but one can write good estimates by majoration or approximation. In this
way we prove Theorem 5 by showing that §(1) > 0.23 for a snowflake generated
by a simple slit map (it maps D_ onto D_ with a straight slit of length 73) and
k =13, see Figures 2 and 3.
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