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Abstract. A subgroup of a product of n surface groups is of type FPn if and only if it contains
a subgroup of finite index that is itself a product of (at most n) surface groups.
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By a surface group we mean the fundamental group of a connected 2-manifold. Such

a group is either free (of finite or countably infinite rank) or else has a subgroup

of index at most two with a presentation of the form Pg ¼ ha1; b1; . . . ; ag; bgj

½a1; b1� . . . ½ag; bg�i.

In this paper we shall calculate the finiteness properties of all subgroups of (finite)

direct products of surface groups. Uncountably many nonisomorphic groups arise as

such subgroups [4], and a celebrated theorem of Stallings [14] and Bieri [1] shows

that the full range of possible finiteness properties is to be found amongst these

examples.

In contrast to this diversity, we shall prove that the only subgroups that enjoy the

fullest degree of homological finiteness are the most obvious ones:

THEOREM A. Let G be a subgroup of a direct product of n surface groups. If G is of

type FPn, then G is virtually a direct product of at most n finitely generated surface

groups.
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In the case of products of free groups, this theorem generalizes results of Grune-

wald [6], Meinert [11], Johnson [8, 9], and Baumslag and Roseblade [4]. In this last

article Baumslag and Roseblade showed that a finitely presented subgroup of a direct

product of two free groups is virtually a direct product of free groups (see also [2, 13]).

Trying to better understand and generalize their result was the starting point of this

investigation.

Note that if G is a subgroup of a direct product A� B such that G \ A is trivial,

then G is isomorphic (via projection) to a subgroup of B. (Here and elsewhere we

abuse notation by using A to denote the subgroup A� 1 of A� B.) Thus

Theorem A is an easy consequence of the following generalization of results of [4]:

THEOREM B. Let F1; . . . ;Fn be surface groups ðnot necessarily finitely generatedÞ.

Let G be a subgroup of their direct product F1 � � � � � Fn and assume that each

Li ¼ G \ Fi is nontrivial for i ¼ 1; . . . ; n.

If we arrange the notation so that L1; . . . ;Lr are not finitely generated and

Lrþ1; . . . ;Ln are finitely generated, then G contains a subgroup of finite index G0 such

that

ð1Þ G0 ¼ B� F 0
rþ1 � � � � � F 0

n, where each Fi
0 is a finitely generated subgroup of Fi

and B is a subgroup of F1 � � � � � Fr,

ð2Þ if r5 1, then HrðB;ZÞ is not finitely generated.

In particular, if precisely r5 1 of the Li are not finitely generated, then G is not of

type FPr.

This result settles questions raised in [2, 5, 8, 11]. Notice that the theorem imme-

diately generalizes to products of finite extensions of surface groups.

1. Ingredients Needed in the Proof

The ingredients in the proof are surface group analogues of those used by Baumslag

and Roseblade [4] for free groups together with induction. In this section we estab-

lish the required facts for surface groups.

1.1. SPECTRAL SEQUENCES

The following spectral sequence observation from the homology of groups enables

us to carry out an inductive argument.

LEMMA 1.1. Let Q be a group of cohomological dimension at most 2 and consider a

short exact sequence 1! N! E! Q! 1. If H1ðQ;HkðNÞÞ is not finitely generated

for some k5 0 then Hkþ1ðEÞ is not finitely generated.

Proof. Consider the Lyndon–Hochschild–Serre spectral sequence with E2p;q ¼

HpðQ;HqðNÞÞ (see p. 171 [3] for example). Since Q has dimension at most 2, the only
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nonzero terms in the E2 page of the spectral sequence are in columns 0, 1 and 2. In

particular there are no nonzero derivatives involving the terms in column 1, and

therefore H1ðQ;HkðNÞÞ ¼ E
2
1;k ¼ E

1
1;k is a section (¼ quotient of a subgroup) of

Hkþ1ðEÞ.

1.2. FINDING PRIMITIVE ELEMENTS

Recall that an element a in a free group F is said to be primitive if a is part of a free

basis for F. We need the following easy observation:

LEMMA 1.2. If a is primitive in F and L4F is any subgroup containing a, then a is

also primitive in L.

Proof. Since a is primitive, we can realize F as the fundamental group of a wedge

of simple loops joined at a base point where one of the loops a represents a. Since
a 2 L, in the covering space corresponding to L, the loop a lifts to a simple loop ~aa at
the base point which represents a. Then the usual method of finding a basis for L

includes a in the basis. (Alternatively, this lemma can be deduced from the Kurosh

Subgroup Theorem.)

According to a theorem of M. Hall [7] (see also [15]), for any nontrivial element

b 2 F, the cyclic subgroup hbi is a free factor of a subgroup F̂F of finite index in F.

Thus b is primitive in F̂F. We record this as

LEMMA 1.3. If b is a nontrivial element in a free group F, then b is a primitive

element in some subgroup of finite index in F.

Similarly, if S is a closed orientable surface, an element a 2 p1ðSÞ is said to be pri-
mitive if the free homotopy class of a contains a nonseparating simple closed curve

on S. Such an a can be chosen to be the generator a1 in the standard presentation

p1ðSÞ ¼ ha1; b1; . . . ; ag; bgj ½a1; b1� . . . ½ag; bg� ¼ 1i.

We need the analogues of the previous two lemmas for closed surface groups.

LEMMA 1.4. If S is a closed orientable surface and a1 is primitive in p1ðSÞ and
L4p1ðSÞ is any subgroup containing a1, then a1 is also primitive in L.
Proof. We can assume the notation is chosen so that the primitive element is a1 in

the standard presentation. Suppose a1 is contained in the subgroup L. If L has finite

index, then the simple loop representing a1 lifts in the corresponding covering space

to a simple nonseparating loop which again represents a primitive element.

If L has infinite index, then L is free and we need to show a1 is part of a basis. The

surface S has a cell decomposition consisting of a single 2-cell with 4g boundary

edges which get identified according to the defining relation of Pg. S can then be tri-
angulated by joining each boundary vertex and the midpoint of each boundary edge

to a single central point in the 2-cell. In this triangulation, there are two triangles, say

D1 and D2, with all three vertices in common and sharing a common edge so that a1 is
represented by a loop consisting of two edges in the boundary of D1 [ D2.
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Let ~SS be the triangulated covering space corresponding to L. In the textbooks by

Massey [10, pp. 199, 200] and Stillwell [16, pp. 142–144] are proofs that p1ð ~SSÞ is free.
They construct inductively a basis for the fundamental group which is the union of

bases for expanding finite subcomplexes which deformation retract onto a subgraph.

D1 [ D2 lifts homeomorphically to the union of two triangles ~DD1 [ ~DD2 and it is clear
we can start the construction with these so that the lift of the loop representing a1 is

the first basis element. This proves the lemma.

LEMMA 1.5. Let S be a closed orientable surface of genus at least 2 and let

a 2 G ¼ p1ðSÞ be a non-trivial element which is not a proper power. There is a finite
index subgroup of G in which a is primitive.
Proof. This result is an application of the fact that surface groups are LERF (see

[12]). Fix a metric of constant curvature on S and let a be a closed geodesic on S
representing the free homotopy class of a. If a is not simple, then a contains a proper
embedded subloop a0. Since the length of the closed geodesic homotopic to a0 has
length less than a, and a is not a proper power, the conjugacy class represented by a0

does not intersect the cyclic subgroup generated by a. Since p1S is LERF, we may
pass to a subgroup of finite index H � p1S that contains hai but has empty inter-
section with the conjugacy class ½a0�.
The loop a lifts to a loop in the finite sheeted covering ŜS! S corresponding to H

but a0 does not. Thus the lift of a has fewer self-intersection points (counted with
multiplicity) than a. By repeating this argument a finite number of times (with p1ŜS
in place of p1S) we obtain a finite sheeted covering in which a is represented by a
simple closed loop. If this closed loop separates, then p1ŜS is a free product with amal-
gamation A �hai B. We can take a further 2-sheeted covering corresponding to any

subgroup of index 2 not containing A or B. The element a belongs to such a sub-

group (since it is null-homologous) and in the corresponding covering is represented

by a simple nonseparating loop.

1.3. FREE DIFFERENTIAL CALCULUS

We want to apply the spectral sequence observation of 1.1 when there is a primitive

element which acts trivially. The following is from [4]:

LEMMA 1.6. Let F be a free group and suppose M is a right F-module. If a primitive

element of F acts trivially on M, then the homology group H1ðF;MÞ contains an iso-

morphic copy of M.

Proof. We may suppose that a1; a2; . . . is a basis for F and that a1 acts trivially

on M. Recall that H1ðF;MÞ is the kernel of the map
L
M!M defined by

ðm1;m2; . . .Þ 7!m1ð1� a1Þ þm2ð1� a2Þ þ � � �

Clearly the first summand M lies in the kernel since a1 acts trivially.
We need a similar result for closed orientable surface groups. To calculate the

homology of such a group one uses the free differential calculus (Fox derivatives)
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to write down the second boundary map in chain complexes of modules over the

group ring of a closed surface (see [3], pp. 45, 46).

LEMMA 1.7. Let G ¼ ha1; b1; . . . ; bgj ½a1; b1� . . . ½ag; bg�i be the group of a closed

orientable surface, and suppose that M is a (right) ZG-module on which a1 acts tri-

vially ðso that Mð1� a1Þ ¼ 0Þ. If M has infinite Z-rank, then so does H1ðG;MÞ.

Proof. The presentation

G ¼ ha1; b1; . . . ; ag; bg j a1b1a
�1
1 b

�1
1 . . . agbga

�1
g b

�1
g i

is aspherical, and gives rise to a resolution

F : 0! ZG!
d2

ZG2g!
d1

ZG!
e

Z ! 0

of free (left) ZG-modules. Here E is the augmentation map, d1 is given by

d1ðm1; . . . ;m2gÞ ¼ m1ð1� a1Þ þm2ð1� b1Þ þ � � � þm2gð1� bgÞ;

and d2 by the Fox derivatives of the relator

R � a1b1a
�1
1 b

�1
1 . . . agbga

�1
g b

�1
g :

d2ðmÞ ¼ m
@R

@a1
;m

@R

@b1
; . . . ;m

@R

@bg

� �
:

Recall that, for a basis element x and word R in a free group, the Fox derivative

@R=@x is determined by the recursive rules

@x

@x
¼ 1;

@RS

@x
¼

@R

@x
þ R

@S

@x
:

In particular it follows that @1=@x ¼ 0 and @x�1=@x ¼ �x�1. In our case, each basis

element appears exactly twice in the relator R, and we can express the Fox derivative

as a sum of two terms:

@R

@ai
¼ ða1b1a

�1
1 b

�1
1 . . . ai�1bi�1a

�1
i�1b

�1
i�1Þð1� aibia

�1
i Þ;

@R

@bi
¼ ða1b1a

�1
1 b

�1
1 . . . ai�1bi�1a

�1
i�1b

�1
i�1Þðai � aibia

�1
i b

�1
i Þ:

SinceM is a right ZG-module, we may calculate H�ðG;MÞ as the homology of the

chain complex (of Z-modules)

M�ZG F : 0!M!
d2
M2g!

d1
M! 0:

Here, again, d2 is given by the Fox derivatives:

d2ðmÞ ¼ m
@R

@a1
;m

@R

@b1
; . . . ;m

@R

@bg

� �
:
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Now the fact that a1 acts trivially allows us to simplify the expressions for some of

the Fox derivatives. In particular, note that a1b1a
�1
1 b

�1
1 acts trivially on M, since a1

does. Hence the expression for d2ðmÞ can be written as

d2ðmÞ ¼ mð1� b1Þ; 0;mð1� a2b2a
�1
2 Þ;m

@R

@b2
; . . . ;m

@R

@bg

� �
:

Also note that @R=@b2 acts on M by

m
@R

@b2
¼ ma2 �ma2b2a

�1
2 b

�1
2 :

We will need the following two subgroups of the module M:

A ¼ m 2M : m
@R

@b1
¼ m

@R

@a2
¼ � � � ¼ m

@R

@bg
¼ 0

� �

and

B ¼ m 2M : m
@R

@a1
¼ 0

� �
¼ fm 2M : mð1� b1Þ ¼ 0g:

Observe that B1 ¼ 0� B� 0� � � � � 0 lies in the kernel of d1 and B1 \ d2ðMÞ ¼ 0 by

the above formula for d2ðmÞ. Hence, B is isomorphic to a subgroup of H1ðG;MÞ.

Moreover if d2ðmÞ 2 0�M� � � � �M then mð1� b1Þ ¼ 0 so that m 2 B. Thus

d2ðBÞ ¼ d2ðMÞ \ ð0�M� � � � �MÞ:

Next consider

A1 ¼ 0� 0� Aa2b2a
�1
2 � 0� � � � � 0:

This group is contained in the kernel of d1, since

ma2b2a
�1
2 ð1� a2Þ ¼ �m

@R

@b2
b2 ¼ 0

for all m 2 A by definition of A. Hence,

A1
A1 \ d2ðMÞ

¼
A1

A1 \ d2ðBÞ

is isomorphic to a subgroup of H1ðG;MÞ.

Suppose now on the contrary that H1ðG;MÞ has finite Z-rank. Then so do B and

A1=ðA1 \ d2ðBÞÞ and hence also A1 ffi A.

Since Mð1� a1Þ ¼ 0, the subgroup M1 :¼M� 0� � � � � 0 is contained in the

kernel of d1. Thus M1=ðM1 \ d2ðMÞÞ is contained in H1ðG;MÞ and, hence, has finite

Z-rank. Note also that

M1 \ d2ðMÞ ffi A
@R

@a1
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and hence

M1

M1 \ d2ðMÞ
ffi

M

Að@R=@a1Þ
:

But Að@R=@a1Þ has finite Z-rank since A does. Thus M has finite Z-rank which is a

contradiction. This completes the proof.

2. Proof of Theorem B

Since the conclusion of the theorem allows us to pass to a subgroup of finite index,

we may immediately replace the given G by its intersection with the product of the

orientation-preserving subgroups of any closed surface factors Fi. Also, if any of the

surface groups is Z � Z corresponding to a 2-torus, we choose to regard this as

the product of two surface groups with Z (free of rank 1) fundamental group. In

other words, we may assume that all of the Fi are either free or else have a presenta-

tion of the form of Pg with g5 2.

Let Li be as in the statement of the theorem. Let ri : G! Fi be the projection of G

to Fi. Observe that Pi ¼ riðGÞ is a surface group and Li ¼ G \ riðGÞ is normal in Pi.
In particular, if Li is finitely generated, then it must be of finite index in Pi. In this

case, the subgroup G0 ¼ r�1i ðLiÞ has finite index in G and riðG
0Þ ¼ Li. Thus Li splits

as a direct factor of G0.

Applying this to each of those factors Fi with i > r for which Li is finitely gener-

ated produces a subgroup G1 ¼ \ni¼rr
�1
i ðLiÞ of finite index in G with G1 ¼ B1�

Lrþ1 � � � � � Ln where B1 ¼ G \ ðF1 � � � � � FrÞ.

We now turn our attention to the Li which are not finitely generated. Since each of

L1; . . . ;Lr is nontrivial, there is some 1 6¼ ci 2 Li ¼ G \ Pi. By Lemmas 1.3 and 1.5,

each ci is primitive in a subgroup P̂Pi of finite index in Pi. Let G0 ¼ G1\

r�11 ðP̂P1Þ \ � � � \ r�1r ðP̂rPrÞ. Then B ¼ G0 \ B1 has finite index in B1, each ci 2 G0 \ Fi
and each ci is primitive in riðG0Þ for i ¼ 1; . . . ; r.

Of course, G0 has finite index in G and G0 ¼ B� Lrþ1 � � � � � Ln. Theorem B is

now an immediate consequence of the following:

LEMMA 2.1. Let B be a subgroup of a direct product of r surface groups

F1 � � � � � Fr where each Fi is free or the group of a closed orientable surface of genus

at least 2. Let ri denote the projection from B to Fi and put Pi ¼ riðBÞ. Suppose the
following:

ð1Þ each of the intersections Li ¼ B \ Fi is not finitely generated; and

ð2Þ each Li contains an element that is primitive in Pi.

Then HrðB;ZÞ is not finitely generated.

Proof. We shall prove the lemma by induction on r. The case r ¼ 1 is trivial. In

the inductive step we consider the projection of B onto the last factor:

1! N! B! Pr ! 1:

SUBGROUPS OF DIRECT PRODUCTS OF SURFACE GROUPS 101



N is the intersection of B with F1 � � � � � Fr�1 and its intersections with the factors Fi
are those of B (for i ¼ 1; . . . ; r� 1). In particular, each Li still contains a primitive

element of riðNÞ. Thus, by induction, we may assume that Hr�1ðN;ZÞ is not finitely

generated.

Now M ¼ Hr�1ðN;ZÞ can be viewed as a right Pr-module coming from the con-

jugation action of B on N. By hypothesis Pr contains a primitive element which lies

in Lr and hence acts trivially on N. Thus by Lemma 1.6 or 1.7, H1ðPr;MÞ is not

finitely generated. That is, H1ðPr;Hr�1ðN;ZÞÞ is not finitely generated. Hence, by

Lemma 1.1, HrðB;ZÞ is not finitely generated.

This completes the proof of the Lemma and, hence, Theorem B.

We note that an argument similar to the above also establishes the following

general fact:

PROPOSITION 2.2. Let 1! N! G! F! 1 be a short exact sequence of groups

such that

ð1Þ F is a surface group,

ð2Þ CGðNÞ 6� N, and

ð3Þ the kth integral homology HkðN;ZÞ is not finitely generated.

Then G has a finite index subgroup G0 whose ðkþ 1Þst integral homology Hkþ1ðG0;ZÞ

is not finitely generated.

Proof. Since CGðNÞ 6� N, the quotient F contains a non-trivial element c which

acts trivially on H�ðN;ZÞ. Since F is a surface group, c is primitive in some subgroup

F0 of finite index in F. Let G0 be the preimage of F0 in G which also has finite index.

By Lemma 1.6 or 1.7, H1ðG0;HkðN;ZÞÞ is not finitely generated. Hence, by

Lemma 1.1, Hkþ1ðG0;ZÞ is not finitely generated.
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