FREE AND FRAGMENTING FILLING LENGTH
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Asstract. The filling length of an edge-circuif in the Cayley 2-complex of a finite pre-
sentation of a group is the minimal integer lendttsuch that there is a combinatorial
null-homotopy ofy down to a base point through loops of length at masiVe introduce
similar notions in which the null-homotopy is not requiredik a base point, and in which
the contracting loop is allowed to bifurcate. We exhibit augy in which the resulting
filling invariants exhibit dramatically diierent behaviour to the standard notion of filling
length. We also define the corresponding filling invariaoisRiemannian manifolds and
translate our results to this setting.
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1. INTRODUCTION

Consider a vertical cylinde€E ¢ R® of heighth whose base has diametér< h.
Let S be the surface formed by the curved portiond®&nd the disc cappingfbits top.
Topologically,S is a closed 2-disc. The loofS can be homotoped i6 to a constant
loop through loops of length at masd by lifting it up the cylinder and then contracting it
across the top df. However, if we insist on keeping a basepoint@fixed in the course
of the null-homotopy then we will encounter far longer loopsme of length at leash2

In this article we will bring to light similar contrasts beten basepoint-fixed and basepoint-
free null-nomotopies for loops in the Cayley 2-compRay?(P) of a finite presentatiof?
of a groupl’. Wordsw that represent 1 il (null-homotopiovords) correspond to edge-
circuitszy, in Cay?(#). The filling length FL() of w was defined by Gromov [13] and in
a combinatorial context is the minimal lengdthsuch that there is a basepoint-preserving
combinatorial null-homotopwf 1y, through loops of length at mokt (A closely related
notion called LNCH was considered by Gersten in [9].) We deRRL{w), thefree filling
lengthof w, likewise but without holding a basepoint fixed, and FRF), (the fragment-
ing free filling lengthof w, by also allowing the contracting loops to bifurcate. Diethi
definitions are given in Section 2.

Our first goal is to construct a finite presentation in which(Land FFL{) differ
dramatically for an infinite sequence of null-homotopic d®bf increasing length. [Our
notational conventions ar@,[b] = a_‘b~!ab, a® = b-labanda™® = b~*a'b. Forf,g:

N — N, we write f < g when there exist€ > 0 such that for alh we havef(n) <
Cg(Cn+C)+Cn+C, which gives an equivalence relation expressing qualéatgreement
of the growths off andg: write f ~ gifand only if f < gandg < f.]

Theorem A. LetI be the group given by the aspherical presentation

Q = (abtT,r | &a?2[tal][ral,[T,1[rT]).
For n € N define w := [T,ara”"]. Then w is null-homotopic inQ, has length/(wy) =
8n + 8, andFFL(wWy,) =~ n, butFL(w,) =~ 2".
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We assume the reader is familiar withn Kampen diagramg4] is a recent survey);
they can be thought of @®mbinatorial homotopy disdsr loops in the Cayley 2-complex
of a presentation. We show that there are van Kampen diagkarftss w, that, owing to
geometry like that in our cylinder example, have FE.I.)(s nand FL(&n) ~ 2", Indeed,
we will show that every van Kampen diagranfor w, has intrinsi¢ diameter= 2; it will
then follow that FL{v,) > 2".

The area Area() and intrinsic diameter IDiam{ of w are the least integers and
D, respectively, such that there is a van Kampen diagranwfaith A 2-cells or with
intrinsic diameteD. For M = Area IDiam, FL, FFL or FFFL one definefilling functions
M : N — N for finitely presented groups:

M(n) := max{ M(w) | w null-homotopic and’(w) < n}.

(The argument of M — diagram, word or integer — determinesigsining; the potential
for ambiguity is tolerated as it spares us from a terminologgr-load.) In the case M
Area, the functiorM(n) is theDehn function

In spite of Theorem A, the filling functions FL and FFL f@& are ~-equivalent: we
will see in Section 3 that any van Kampen diagramwgr:= [T, a®ra”ra”rta™®']
has twopeaksand the savings that can be made by escaping the basepoird Byveger
significant. On the other hand, if we allow our loops to bifatecthen they can pass over
peaks independently. So FFFL exhibits markedijedent behaviour.

Theorem B. The filling functiondDiam, FL, FFL, FFFL : N — N for Q satisfy

IDiam(n) ~ FL(n) =~ FFL(n) ~ Area(n) 2"
FFFL() n.

1R

R

We remark thal” has the properties IDiam) =~ Area(n) and FLf) ~ Area), which
may seem incongruous in a non-hyperbolic groups. In canfaagiroups where Areaj ~
n® for somex > 2 one knows that IDianm) < n®~! — see [11].

Theorems A and B are proved in Section 3, modulo a number ofiayxpropositions
postponed to Section 4. The remainder of this article isadd to establishing the cre-
dentials of FL, FFL and FFFL for inclusion in the pantheon Bifii invariants: we relate
them to other filling functions and interpret them in termslgforithmic complexity.

As explained in [11], FL can be thought of as a space-comfylexéasure in that Fi)
is the minimalL such thatw can be converted to the empty word through a sequence
of words of length at most, each obtained from the previous by free reduction, free
expansion, or applying a relator. We will show in Section atthFL and FFFL can be
interpreted in a similar way: by allowing an additional ogéwn of conjugation we get
FFL(w), and further including the move that replaces a ward uv by a pair of wordsu, v
we get FFFL(). This point of view is useful for calculations and allowstagrove that,
as for FL, given a finite presentation, Araga(s at most an exponential of FFFL. This and
other relationships are spelt out in the following theorarnich shows, in particular, that
Q of Theorem A provides an example of Arepputgrowing FFFLL) as extremely as is
possible.

Theorem C. Let# be a finite presentation. There is a constant C, depending amP,
such that for all ne N the Dehn, filling length, free filling length, and fragmeutiftee

lthe maximum distance between two vertices as measured ibicatarial metric oA®
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filling length functionsArea FFL, FFFL : N — N of £ satisfy
cFFFLN)

FFL(n) < FL(n) < CArea) + n.

Area()

<
FFFL() <

In Section 5 we prove that, up te-equivalence, Fl{), FFL(n) and FFFL() are all
guasi-isometry invariants among finitely presented grdgspsin particular, they are group
invariants — cf. [12, Theorem 8.1]).

Theorem D. If £ and®’ are finite presentations of quasi-isometric groups then
FLp ~ FLp:, FFLp ~ FFLp, and FFFLp ~ FFFLp.

In Section 6 we define analogous filling invariantsxf), FFLx(n) and FFFLk(n) de-
scribing the geometry of null-homotopies for rectifiableps in arbitrary metric spaces
and we prove:

Theorem E. Suppose a group with finite presentatio? = (A | R) acts properly and
cocompactly by isometries on a simply connected geodesiicrsgace X for which there
existu, L > 0 such that every loop of length less thamdmits a based null-homotopy of
filling length less than L. ThelALy ~ FLx, FFLp ~ FFLx andFFFLy ~ FFFLy.

As the universal cover of any closed connected Riemmianfoldrsatisfies these con-
ditions and (as is well known) every finitely presentableugrés the fundamental group of
such a manifold, we can use Theorem E and its analogues farare IDiam (proved in
[4, 6]) to obtain the following results from Theorem A and B.

Corollary F. There exists a closed connected Riemannian manifold M sath t
IDiamg(n) =~ FLg(n) =~ FFLg(n) = Aregg(n) 2"
FFFLg(n) n.

Moreover, there is an infinite sequence of loop&cM such thatt(c,) — o, FFLg(cn) =
n, andFLg(c,) =~ 2"

R

R

(Strictly speaking, the final part is not a direct corollafithee prior results, but it follows
from the methods of Section 6: thw, of Theorem A can be used to construedrd-

like loopsc, with £(c,) =~ ¢(wy,); van Kampen diagrams witnessing to the upper bounds
FFL(W,) < nand FL{v,) < 2" can be translated into fillings @f, showing FFlg(c,) < n

and Flg(cn) < 27 and every null-homotopy of, in M has filling length> 2" because
the filling-disc corresponding to a null-homotopy facilééa a van Kampen diagram for,

with ~similar filling length.)

Natural questions that remain open include the following.
Open problem 1.1. Does there exist a finite presentation for which £ FFL(n)?
Open problem 1.2. Does there exist a finite presentation for which IDiajr¢ FL(n)?

In reference to the first of these problems we note that foiit fimesentatioq# | R) of
agroupG, the presentatio@iA U {t} | R) for G+Z satisfies FL) ~ FFL(n) for the following
reason. Ifw, is a word overP with FL(w,) = FL(n) then FFL(Wn, t]) > 2+ ¢(whp) + FL(wWp)
since any diagram fom,, t] is a diagram fom, joined to a diagram fow,* by at-edge,
and the mostf@cient way to shell such a diagram (from the point-of-view &Ll is to
shell thew, diagram, then collapse tlieedge, and then shell tvg,~* diagram.
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The second problem was posed by Gromov FB]. A negative answer would imply
that thedouble exponential upper bourd, 8] on the Dehn (i.e. area) function in terms
of IDiam(n) could be improved to a single exponential using the singfmaential upper
bound [11, 13] for Areaq) in terms of FL@).

Acknowledgementhe second author is grateful for support from NSF grant @8@4nd
for the hospitality of the Centre de Recerca MatematicaarcBlona during the writing of
this article.

2. THREE NOTIONS OF FILLING LENGTH

Let A be adiagram that is, a finite, planar, contractible, combinatorialdvplex; i.e.
a van Kampen diagram bereft of any group theoretic decoraitiBefore discussing filling
length, we recall from [11] a combinatorial notion of nuthotopy called ahelling

Definition 2.1. A shellingS = (A;) of A is a sequence of diagrams
A = AO’ A]J e Am,

in which eachA;, is obtained fromA; by one of theshelling moveslefined below and
depicted in Figure 1.

e 1-cell collapse Remove a paird, €°) wheree! is a 1-cell withe® € et ande! is
attached to the rest df; only by one of its end vertices €°. (We call such am
aspike)

e 1-cell expansionCut along some 1-cedf in A; that has a vertes® in dA;, in such
a way thate” ande! are doubled.

e 2-cell collapse.Remove a pairé?, ') where€? is a 2-cell which has some edge
e € (0€? N A)). The dfect on the boundary circuit is to replagewith e? \ e,

We say that the shelling is full whenAp, is a single vertex. Aull shelling to a base
vertexx = Ap ondA is a full shelling in whichx is preserved throughout the sequence
(A). In particular, in everyl-cell collapse & # *, and in everyl-cell expansioron A;
whereey = x a choice is made as to which of the two copiegpik to bex in Aj,;.

We define dull fragmenting shellingS of A by adapting the definition of a full shelling
to allow each); to be a disjoint union of finitely many diagrams, insistingtth,, be a set
of vertices; we also allow one extra type of move:

e Fragmentation.Aj,; is the disjoint union of\{ andA{”, whereA; = A/ U A!” and
Al N A is a single vertex.

1-cell 2-cell
collapse coIIapse
\

1-cell fragmentatio

expansion

Ficure 1. Shelling moves.

For a shellingS, define{(S) := max ¢(0Ai), where{(dA;) denotes the sum of the
lengths of the boundary circuits of the componentg;ofThen thdilling lengthFL(A, x),
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thefree filling lengthFFL(A), and thefragmented free filling lengtRFFL(A) are the mini-
mum of£(S) asS ranges over all full shellings t®, full shellings, and all full fragmenting
free shellings ofA, respectively. This notation emphasizes the fact thatFk] is defined
with respect to a base vertaxe dA but FFL@A) and FFFLQA) are not.

Let® = (A | R) be afinite presentation of a grolip Define the filling length FLy) of
a null-homotopic wordv in a presentatio® = (A | R) by

FL(W) := min{FL(A, %) | A a van Kampen diagram fav},
and FFL() and FFFL) likewise.

A sequenceS = Wy, . . ., Wy, of null-homotopic words is aull-sequencd eachw;,; is
obtained fromw; by one of the following moves:

e Free reductionRemove a subworda! or a~ta from w;, wherea € A.
e Free expansionThis is the inverse of a free reduction.
e Application of a relatorReplace a subwordof w; by a wordv such that a cyclic
conjugate ouv ! is in R*L,
We define two more moves:

e Cyclic conjugationReplacew; by a cyclic permutation.
e FragmentationReplace a wordv = uv by a pair of wordsy, v. (In effect, insert a
letter intow that represents a blank space.)

To employ the fragmentation move we must generalise ouritlefirof a null-sequence
so that eachw; is a finite sequence of words, and when we perform any of theatipas
listed above we execute it on one of the wordwsin

The proof of the following reassuring lemma is straightfard: The “ only if” part is
well known (indeed, freely reducing, freely expanding, amgply relators sfiices). The
“if” part can be proved by an easy induction on the numberadmentation moves used.

Lemma 2.2. A word w overP represents the identity if and only if it can be reduced to a
sequence of empty words by free reductions, free expansipplying relators, cyclically
conjugating, and fragmenting.

For a null-sequencs, definet(S) := max ¢(w;) where, if fragmentation moves are
employed,£(w;) is the sum of the lengths of words in the sequewceProposition 1 in
[11] says that for all null-homotopic words, we have FL{) = ming ¢(S), quantifying
over null-sequences for w that employfree reductionsfree expansionandapplications
of relators We add the following.

Proposition 2.3. Quantifying over all null-sequenceS for a null-homotopic word w,
wherefree reductionfree expansionapplications of relatorsandcyclic conjugatiorare

allowed, we hav&FL(w) = ming ¢(S). If, additionally, we allowfragmentationsve get
FFFL{W) = ming £(S).

Proof. The proof in [11] that mig £(S) < FL(w) is straightforward because the words
around the boundary of the van Kampen diagrams in the codraefudl shelling form

a null-sequence. Each word in the sequence of boundary virtie course of dree
shelling of a van Kampen diagram is only defined up to cyclinjggation, as a base-
vertex is not kept fixed during the shelling. It is then easgde that mig £(S) < FFL(w),
qguantifying over all all null-sequences for w that usefree reduction free expansion
applications of relatorsandcyclic conjugation Introducingfragmentationmoves into
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the shelling, produceBagmentationsn the corresponding null-sequence. And we see
mings £(S) < FFFL(W).

The reverse bounds require more care. Given a null-sequefarew involving appli-
cations of relationsindfree expansionandreductionswe seek to construct a van Kampen
diagram with a shelling during which the lengths of the baamyctircuit remain at most
{(8). This can be done by starting with an edge-loop labelleavphgnd filling it in by
attaching a 2-cell on evegpplication of a relator by attaching a 1-cell on evefgee ex-
pansion by folding together two adjacent 1-cells on evémge reduction However it is
possible that the resulting complex will not be planar: Besgs or other cycles may be
pinched df (for example, when an inverse paia ! is inserted and then removed). Re-
moving these cycles gives a van Kampen diagtawith FL(A) < ¢(w). This is explained
carefully in [11]. If S also usegyclic conjugatiommoves then no extra complications are
added to the construction af If S also use$ragmentationshen the corresponding move
in the course of the construction afis to identify two vertices so that an inner boundary
circuit is changed from a topological circle to a figure-¢igh O

Remark 2.4. (Filling length and space complexi}y Envisaging a null-sequence to be
the course of a calculation on a Turing tape, we see thatfis(the non-deterministic
space complexity of the following approach to solving therdvproblem for®: write

w on the tape and then exhaustively apply relators and perfagenreductions and free
expansions. A sequence of moves that conweitdo the empty word amounts to a proof
thatw represents 1 i and FL{) is the minimal upper bound on the number of places on
the tape that have to be used in the calculation (see [10]doe ohetails). If we allow cyclic
conjugation then the non-deterministic space complexsitiffL{w). If we also include
fragmentation then the non-deterministic space compgléxiEFFLW) plus the maximum
number of blank spaces separating the words; that is, batieEL () and 2 FFFL{).

The following inequalities are easy
(1) FFFLW) < FFL(W) FL(W) < K Areafw) + £(w),
(2) IDiam(w) FL(W),
whereK is a constant depending only gh (See [11] or [13].) Similar inequalities, for
example IDiamf) < FL(n) for all n, relate the corresponding filling functions (defined in
Section 1).

It is well known [11, 13] that there is a constadt that depends only of, such that
the Dehn function ArealN — N of # satisfies

Areaf) < cFL()

for all n. This is essentially the Time-Space bound of algorithmimplexity: the number
of different words of length FIn) on an alphabet of siz€ is CFL(n), and asw admits

a null-sequence that does not include repeated w@ﬁg,(n) is an upper bound on the
number of times relations are applied in the null-sequemcetence on Area). The
same proof applies to FFFL and so with (1) gives Theorem C.

<
<

3. Proors oF THEOREMS A AND B

Proof of Theorem AWe exploit a technique due to the first author in [3] to showt tha
intrinsic diameter IDiam,) of w,, = [T, a'ra”"] is at least 2.
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Ficure 2. A van Kampen diagram for w, with a subdiagranx.

Supposer : A — Cay*(Q) is a van Kampen diagram fov,. Figure 2 is a schematic
depiction ofA and Figure 3 shows an explicit example whea 3. We seek an edge-path
win A, along which reads a word in which the exponent sum of thertettis 2". A T-
corridor throughA connects the two letterE in w,. Along each side of this corridor we

read a wordu in {tﬂ,rﬂ}*. LetX be a subdiagram of with boundary made up of one

side of theT-corridor and a portion oA labelleda™"ra”. A 7-corridor inZ joins the
rin a?ra” to some edge-labelledin u. Let uy be the prefix ofu such that the letter
immediately followingug is this, and then lej: be the edge-path along the side of the
7-corridor running from the vertex at the end@f" to the vertex at the end af. Let

ve{(at ﬂ}* be the word along. Thenup = a?'vin Q. Killing T, t andr, retractsQ onto
the subpresentatiof@, b | a° = a2). Sov = a” in (a,b | a = a2), wherev € {aﬂ}* is v
with all letterst*! removed. It follows that the exponent sum of the letterg ia 2" and
hence that: has the asserted property.

Killing all generators other thaindefines a retractiop of Q onto(t) = Z that is distance

decreasing with respect to word metrics. But the image oft : A — Z has diameter at
least 2 on account ofi. So IDiamfv,) > 2", as claimed.

It is easy to check that the van Kampen diagn&m‘or w;, constructed below admits a
shelling down to their base vertex that realises the bour{@ifl< 2". So, as IDiam{,) <
FL(wy), we deduce that IDiam,) ~ FL(wy,) =~ 2".

The bound FFL{;) =< n follows from Proposition 4.4. Nonetheless we will sketch a
proof since the salient ideas, developing the cylinder gtarftom Section 1, appear here
more transparently than in the more general contexts of@edt

The van Kampen diagraﬁ;g for ws is depicted in Figure 3. The analogous construction
of the diagram&n for w, should be clear. Within, there are four triangular subdiagrams
over the subpresentatida,t | [a,t]), in which strings ofa-edges run vertically (in the
sense of Figure 3). Cut along each of these strings (excege i length 2at the left and
right sides of the diagrams) and insert back-to-back cagfiéise (a, b | a° = a?)-diagrams
Qy thatshortcut & to a worduy of length~ log, k < n. Theseshortcut diagramg$), are
constructed in Proposition 4.1 and the way they are inséstsown (in a more general
context) in Figure 8. Call the resulting diagran

For 0 < k < 2" let ok be the edge-paths i, forming concentric squares in Figure 3,
labelled bya“T a*r~1akT~*a*r. Next, for 0< k < 2" definep to be the edge-path ifv,
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Ficure 3. The van Kampen diagrafxg for ws.

that is obtained fromy by replacing each subwoat* by its shortcuu ™. (In particular
px = dAn.) Note that for alk, the length ofpy is < n.

We now briefly describe a full shelling &f, that realises the bound FRA() < n. Inthe
course of this shelling we encounter the subdiagram,dahat havepy as their boundary
loops. The following lemma concerning the diagratysof Proposition 4.1 is the key to
shelling the subdiagram boundeddyy; down to that bounded k. During this shelling,
the length of the boundary loop reamins less than a lineatiimmofn because logk < n.

Lemma 3.1. LetIT be the van Kampen diagram comprising a cop¥f; and a copy
Qy joined to each side of a t-corridor along sides labelléd’a Let x be a vertex oIl
located at the start of either of the paths labellédatong the sides of the t-corridor. Then
FL(IT, %) < log, k.

The proof of this lemma becomes clear when one considersucamtly running the
shellings ofQ,; andQy of Proposition 4.1, and a shelling of theorridor.

We complete the proof of Theorem A by noting that the lowerdzbEFL{v,) > nis
trivial as FFL@,) > ¢(wp) = 8n+ 8, and so FFLy,) ~ n. O

Proof of Theorem BThe lower bound of 2on IDiam{w,) established above proves that
2" < IDiam(n). So by (1) in Section 2 we see thadt 2 FL(n) < Arean) and FFL) <
Area() forallne N,

To establish 2 < FFL(n) we show that the words

w, = [T, a”ra”ra”r1a™]
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satisfy FFL{v,) > 2. Figure 4 shows a van Kampen diagramigrbuilt up of a copy of
the diagram\, for wy, a [T, 7]-2-cell, and a mirror image af,. Thusw;, is null-homotopic.

- (at)?

'T

Fiure 4. A van Kampen diagram fow,.

To show that FFL4’) > 2" for all van Kampen diagrama’ for w;, we develop the
argument used to establish the lower bound on diameter ipribef of Theorem A. A
T-corridor runs througy’, and as there are three occurrences iofw;, and three of2,
eachr is joined to ar~! by ar-corridor that crosses the-corridor. This is illustrated
in Figure 5; note that generically the behaviour of the chmrs could be more complex
because eachcorridor could cross th&-corridor multiple times. As shown in Figure 5,
letus, up anduz be the words along the sides of the initial portions of thbesedr-corridors
running from the first, second and thirdn w;, and ending where the corridor first meets
the T-corridor. (Sou; = uz = (at)?’ andu, is the empty word in the example of Figure 4.)

Retracting@ onto the subpresentatida, b | b~tab = a?) by killing T, t andr we see
that the exponent sum of the letter and hence also df in u; and inug is 2", while
the exponent sum in, is 0. The word along the side of the-corridor is of the form
V1TVoTV3TV4 Wherey, € {tﬂ,rﬂ}* andy; runs to the vertex at the end offori = 1,2,3
(see Figure 5). By, considering the retractiomadnto(t) in whicha, b, 7, T are killed, we
see that the exponent sumtaf v; is 2" fori = 1,4 and is—-2" fori = 2, 3.

SupposeS = (A)) is a full shelling ofA’, in the course of which the base vertex is not
required to be kept fixed. The retractigrin which all generators other tharare killed,
defines a distance decreasing ngapf Q onto(t) = Z. And the edge-circuip o |6A{ :
O0A] — Z has length at most(dA{). There are natural combinatorial maps: A] —

A’ (only prevented from being injective ldy-cell expansioimoves) under whicly;(0A])
forms a contracting sequence of edge-circuits. il the least integer such tha(dA;)
includes either the vertex at the endwfor at the start of,, — these are ringed by small
circles in Figure 5. We will explain why(0A() is at least 2 when this vertex is at the
end ofvy. A similar argument will show the same result to hold wheis the vertex at
the start ofv4. Some vertey on v, must be included i;(0A]) because the contracting
edge-circuit cannot have yet crossed the vertex at theafteut So

FFLMW,) > £(04) > [6(X) - o(y)l > 2,

as required.
Itis clear thaih > FFFL(n) because for all null-homotopic wordswe have FFFL{) >
£(w). Proposition 4.7, which is the culmination of a sequengeropositions in Section 4,
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Ficure 5. A van Kampen diagramy’ for w,.

will give FFFL(n) ~ n. Theorem C will then give us Area) < 2" and the proof of the
theorem will be complete. O

4. AUXILIARY PROPOSITIONS

In this section we provide a number of results which buildaptoposition 4.7 where
we prove a linear upper bound on FFR).{n the presentatio® of Theorem A. We begin
in Proposition 4.1 with a technical result giving carefutntrolled shellings of diagrams
Q thatshortcut & in (a,b | a® = a?) to a word of length< log, k. Next Proposition 4.2
claims the filling length ofp := (a, b, t | a’a~?, [a, t]) admits a linear upper bound.

Proposition 4.4 gives a linear upper bound on R#ALfor null-homotopic words iR
that have exactly one pair of letteFsT~* and one pair, 72, with the occurrences of the
T+! alternating with those of the*!. We show that such words have diagrams with one
T- and oner-corridor with these corridors crossing only once. Thesgdims can be
thought of agowers and are exemplified the diagramg for w,, constructed in the proof
of Theorem A. In the proof of Proposition 4.4 we refer back tog®sition 4.3 which
provides controlled shellings for the four subdiagrams ttwaer diagram breaks up into if
we remove thd - andr-corridors.

Next, in Proposition 4.5, we establish an upper bound on F®j-hat is linear inf(w),
for null-homotopic wordsv in Q that have exactly one pair of lettefsT 1. The essential
idea here is to find a diagram that can be fragmented into a euoftsubdiagrams, one
for eachr-corridor that crosses the-corridor, and apply Proposition 4.4 to each of these
subdiagrams. Proposition 4.6 takes care of the case wheneeithno lette in w. Finally,
we prove Proposition 4.7: given a word that is null-homotapiQ we construct a diagram
that can be fragmented into subdiagrams each of which coatainost onerT -corridor,
and then we apply Propositions 4.5 and 4.6.

Proposition 4.1. Let® be the presentatiota, b | a° = a?). Fix k > 0. There is a word i
of length at mos12 + 4 log, k such that = a in . Moreover, there is @-van Kampen
diagramQy with boundary word u,~* (as read from a vertex) satisfying the following
condition: if u is the subarc 0PQy along which one readskathen there is a shelling
S = Quo, ..., Qp that collapseg) = Qo to * = Qyp, such that eacldyy; is a subdiagram
of Q and, expressing the boundary circuit Qf; as y; followed byv;, wherey; is the
maximal length subarc @iy that starts atk and followsu, we have/(v)) < 12+ 4 log, k.

Proof. Let m be the least integer such thdf 22 k. Som < 1+ log,k. LetE be the
standard van Kampen diagram that demonstrates the eqaflity a®" and is depicted in
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Figure 6 in the casm = 4. Let (&) be the shelling oE in which eaclE; is a subdiagram
of 2 andZ;,; is obtained fronE; as follows. A 1-cell collapse is performed orspike
of Z; if possible. Otherwise, of the rightmost 2-cells i, let € be the lowest in the
sense of Figure 6. Let' be the right-most edge of the lower horizontal sidefof Then
e € 05;. Perform a 2-cell collapse oe4 e'). As an illustration, the numbers in the 2-cells
in Figure 6 show the order in which the 2-cells are collapsed.

When there is no spike &, its anticlockwise boundary circuit, starting fromfollows
horizontal(in the sense of Figure 6) edges labelledabyhen travelsipwardsthrough the
boundary ofm 2-cells (visiting at most three 1-cells of each) and tdeacendback tox
along edges labelldd Removing the initial horizontal path, the number of edgasdrsed
is at most #n. And, as the total length of the 1-dimensional portion8&fis at most 8, and
m < 1 + log, k, we deduce that the length 8; minus the length of the initial horizontal
arc, is at most 12 4 log, k.

In the case&k = 2™ we find that defining?; := Z; for all i > 0 gives the asserted result.
For the cas& # 2™, letc be the maximunisuch thagX is a prefix of the wordv one reads
anticlockwise aroundz;, starting fromx. Then definingi, := w1, wherew = a‘w, and

Qi ;= Ecj foralli > 0, we have our result. O
a
b 4 b
b 11 3 b
b 14 10 7 2 b
by15¢1137y12y 9y8 Y6 Y5711 b

*aaaaaaaaaaaaaaaa

Ficure 6. The van Kampen diagraifor aZ'a™,

Proposition 4.2. The filling length functiorL : N — N of
Q = <(abt|ada?[at])
admits a linear upper bound.

Proof. Corollary E1 of [2] says that an HNN extension of a finitely geated free group
with finitely many stable letters, in which the associateldgsoups are all finitely gener-
ated, is asynchronously automatic. This applie@toTheorem 3.1 in [9] says (in flerent
language) that if a group is asynchronously combable tisditlibg length function admits
a linear upper bound. O

Proposition 4.3. Suppos¢at) “wt! is a null-homotopic word iRy = (a, b, t | aa=2, [t, a]).
LetA be the 1-dimensional van Kampen diagram for

tl(at) (at)<tat -V
constructed by assembling 1-cellskd as depicted at the right in Figure 7. There is a

Qo-van Kampen diagram for (at)"*wt! with the following properties. There is a shelling
of A through a sequence of diagrams= Ag, A, ...,Am = A with the portion t(at)‘k
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of 9A left undisturbed throughout (see Figure 7). hebe the maximal length arc of the
boundary circuit ofA; contained entirely im\. There exists G 0, depending only o
such that L= max(£(dA;) — £(vj)) < Ce(w).

Proof. We consider first the cade> 0. In Qy we find thatw™* = ti(at)™ = tika™ =
ti~ku, 1, whereuy is the word of Proposition 4.1 that has length at most 4bg, k. These
equalities are displayed in the left-most diagram of Figrerhich shows the framework
of the van Kampenr: a union of a diagram\’ for ti-%u, 1w, a diagramA” for (at) ™ ujtk
and a tripod; the lower triangular region in the figure folgsta give a tripod, the exact
configuration of which depends on the relative signg, éfand j — k.

Note thatj — k = £;(w) < £(w) asQq retracts ontdt) = Z. Andk < 2/™ because killing
t retractsy onto®. It follows thatf(u) < 12+ 46(w) and£(t~<utw) < 26(w) + £(u) <
12+ 6¢(w). By Proposition 4.2 we can take to be a van Kampen diagram for<u,—w
with filling length at most a constant times 1&6¢(w). We can cut along the edge-path in
A labelled byut=0-9 leavingA’ attached to the rest of the diagram at only one vertex,
and then shell’, and in the process the length of the ridat)-¥-portion of the boundary
curve has length at most a constant tini@s).

The wordtk(at)a* admits an obvious diagram with vertidatorridors (as shown in
Figure 8) of heighk—1, k-2, ..., 1. We cut along the vertical paths labelled by powers of
aand insert copies of the diagraf2sof Proposition 4.1 and their mirrorimages, as shown
in Figure 8 (illustrated in the case= 6). The shellings of Lemma 3.1 can be composed to
give a shelling down ta\ that realises the asserted bound.on O

Ficure 8. A”.
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Proposition 4.4. Suppose w is a null-homotopic word over
Q:=(abt T, | aa?tal[ral,[T.1[rT])

such thatfr(w) = ¢:(w) = 2 and the occurrences of*f and r** alternate in w. Then
FFL(w) < C£(w) where C> 0 depends only oQ.

Proof. In any van Kampen diagram for w there is on€r -corridor and oner-corridor.
The condition that the occurrences Bf! andr*! in w alternate is equivalent to saying
that these corridors cross at least onca.n

TakeA to be a minimal area diagram. We argue that the two corridossexactly once.
The words along the sides of tlieandr-corridors are of the formy t“a,t? . .. t%*ap and

Bi(atyBa(at)= .. . (aty 1B, wheree, i = +1 ande; € tﬂ}* andg; € {(at ﬂ}* for all
i. Further, then; andB; must be reduced because otherwiseiould not be a reduced
diagram and hence not be of minimal area. Suppose, for aambation, that thel and
T-corridors cross more than once. Then there is a subdiageaebn the two corridors

with boundary wordvg = uvwhereu € {tﬂ}* andv € {(at)il}*. Killing all the generators
other thart retractsQ onto(t) = Z and sof;(wp) = 0. It follows thaté,;(we) = O because
killing t, 7 andT retractsQ onto the subpresentatighin which a has infinite order. So
is not freely reduced and we have a contradiction.

An additional feature of a minimal area diagram is that itte@ms noT or r-annulus.
This can be proved by a similar method to the above.

Conclude that\ consists of & -corridor, ar-corridor and four subdiagrams of the form
where Proposition 4.3 applies. Produce a new van Kampemadiay for w by replacing
the four subdiagrams that minimise the lengttof Proposition 4.3. A shelling of\’
realising the asserted bound is obtained by running sksliaf the four subdiagrams and
the two corridors concurrently in the obvious way so thatdlagram is eventually shelled
to the [r, T]-2-cell, and then to a single vertex. O

Proposition 4.5. Suppose w is a null-homotopic worddh(defined above) ané (w) = 2.
ThenFFFLW) < C¢(w) where C> 0 depends only oQ.

Proof. Let A be a reduced van Kampen diagram ¥ar We will use the layout of the-
corridors and the on&-corridor inA as a template for the construction of another van Kam-
pen diagram\, for w that will admit a shelling realising the asserted bound.

Suppose is ar-corridor in A that does not cross the-corridor. The wordae along
the sides of is in {(af)}* and is reduced becauads a reduced diagram, and so must be
(at) for somek e Z. Killing all defining generators other thadrretractsQ onto(t). So
k < £(1), whereA is a portion of the boundary circuit @f connecting the end points of a
side ofC.

If follows that if we remove any number efcorridors that do not cross tHecorridor
from A, then the length of the boundary circuit of each connectedpmment is at most
2¢(w).

Suppose we remoadl of ther-corridors that do not cross tAecorridor fromA. Define
Ao to be the connected component that containgteerridor. All of the other connected
components have boundary words that are null-homotopic in

Qo = (a,b,t|a’a [t a]),

which is both a retract and a subpresentatio@.0DbtainA; from A by replacing all these
subdiagrams bg,-diagrams of minimal FFL.
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Repeating the following gives a shelling af down toAq in the course of which the
boundary circuit has length at maSg£(w), whereCy is a constant that depends only on
Q. Choose a-corridorC in A; such that, of the tow components we get by remodng
that which does not contain tiecorridor contains ne-corridor. Cut along one side ¢f
usingl-cell expansiomnmoves, and onfagmentatiormove. Next usd.-cell collapseand
2-cell collapsemoves to remove the 2-cells alo@gBy the remarks above, both connected
components have boundary circuits of length at mééwR Collapse the component that
does not contain th&-corridor down to a single vertex using a minimal FFL shejlin
in the course of which the boundary circuit has length at raastnstant timesw) by
Proposition 4.2. (In fact, a shelling downaAg within the required bound, can be achieved
without the fragmentation move if care is taken over basgpgi

It remains to show that the womtlhy arounddAq admits a van Kampen diagram with a
full, fragmenting, free shelling in which the sum of the Iémg of the boundaries of the
components are at most a constant tif{@®). For then we can taka, to beA; with Ag
replaced by this diagram.

First supposé,(wp) = 0. Thenwyg is null-homotopic in the retraa®; = ( a,b,t, T |
aPa=?,[t,a],[T,t] ), and the length of th&-corridor in any reduced;-diagramA;, for wo
is at mostf(wp)/2 on account of the retraction onft). Assume that the two components
of A we get on removing th&-corridor areQo-diagrams of minimal FFL. Then we can
collapseA; by shelling each of these components andTheorridor in turn, and using
Proposition 4.2 it is easy to check that the length of the blamycircuit remains at most a
constant timeg(wp).

Next supposé.(Wo) = 2. Then Proposition 4.4 applies and gives us the result we.nee

Tt TT
Wi T | T —> Wi T| |y T
N L ~ |
< T e 7E LT
T8 = T T

Ficure 9. Shelling away one-corridor.

Finally, supposé€.(Wo) > 2. Then there is a subwordw;7~¢ in wy, wheree = =1,
:(Wq) = 0 andér(wy) = 1. Ast®wit~¢ = wy in Q, there is aQ-van Kampen diagram for
wp that we can shell by cutting along an edge-path labelledbio cut the diagram into
two, as shown in Figure 9, and the shelling the two compon@nie of these components
is a diagram for®wy 2w, 1, and this we shell first as per Proposition 4.4. The remaining
component has boundary lengtfwy) — 2 and includes two fewer letters?, and so by
continuing inductively we can find a shelling for which FFFL&t most a constant times
f(Wo) m}

Proposition 4.6. Suppose w is a null-homotopic word in
Q. :=(ab,t,r|aa? [t a],[raf ).
ThenFL(w) < C¢(w) where C> 0 depends only o@y.

Proof. The method used in the proof of Proposition 4.4, to reduckd@ase where all the
7-corridors cross th&-corridor, gives this result. O
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Proposition 4.7. Suppose w is a null-homotopic worddh ThenFFFL(w) < C¢(w) where
C > 0 depends only oQ.

Proof. The cases wher& (w) = 0 and{t(w) = 2 are dealt with by Propositions 4.6 and
4.4, respectively. For the cage(w) > 2 we take a similar approach to that used in the
proof of Proposition 4.4 to control FFFg).

There is a subword*w;T~¢ in w, wheree = +1 andT*w;T~% = w; in Q. So we
can find aQ-van Kampen diagram fow that can be severed into two components, one of
which is a diagram fofr w; T~w; 71, and the other of which is a diagram for a word of
length£(w) — 2 that has two fewer lettef&*X. The former of these two components can be
shelled as per Proposition 4.4. Continuing inductively ee that the other componentcan
be taken to be a diagram that admits a shelling in which thethary circuit has length at
most a constant timegw). O

5. QUASI-ISOMETRY INVARIANCE

In this section we prove Theorem D. Our approach is to momhitev filling length, in
its three guises, behaves in the standard proof that fingsemtability is a quasi-isometry
invariant [5, page 143]. As careful quantified versions af troof are well established
([1], addressing Area, is the first in print), our exposititare will be brief.

We have quasi-isometric groupsandI” with finite presentation® = (A | R) and
P = (A | R'), respectively. So there is a quasi-isoemtry (I',dg) — (I, ds) with
quasi-inversg : (I",dg ) — (T, dg).

We begin by showing Fk ~ FLp .

Suppose’ is an edge-circuit in the Cayley graph#®f, visiting vertices/, v1, ..., Vn =
Vo in order. Consider a circuji in the Cayley graplCay*(®) of £ obtained by joining
the successive vertices gfvo), g(v1), . . ., 9(vn) by geodesics. Note thé#fp) is at most a
constant timeg(o’). Fill p with a van Kampen diagram over® admitting a shellingS of
filling length FLy(£(p)) and usef to mapA© to I”. Then joinf(a) to f(b) by a geodesic
whenevera andb are the end points of an edgeAn The result is a combinatorial map
- A — Cay}(#) filling a loop pj, whereA;, is obtained from\ by subdividing each
of its edges into edge-paths of length at most some constant.

Interpolate betweep’ andpy by joiningv; to f(g(v)) for everyi, to build a mapr; :
A® — Cay'(#") whereA; is obtained froma; by attaching an annulus of n 2-cells
around the boundary.

One obtains a shelling; of A| down to the base vertex witf{S;) at most a constant
times (1+ FLp(£(0))) by first shelling awayA to leave just a stalk frona to f(g(vo)), and
then running a shelling k), modelled onS; wheneverS demands the collapse of a 1-cell
in A, one collapses all the 1-cells in the corresponding edge+pa.

Unfortunately, although the words labelling the 2-cellsAgfare null-homotopic they
may fail to be inR’, soA’ is not yet a van Kampen diagram ovet. To rectify this one
should replace the 2-cells @f, by van Kampen diagrams ovéY, each of area at most
some uniform constant. But a problem arises in that van Kandeggrams can be singular
2-discs, so gluing them in place of 2-cells may destroy pignaOne gets around this by
replacing the 2-cells oA} one at a time in the following manner. If the boundary circuit
of the 2-cell€? that is to be replaced is not embedded, then we focus on theenost
embedded circuit- in the 1-skeleton that encloses a disc contairghgthis has length
less than the boundary circuit ef). We delete the entire subdiagram enclosedrtgnd
replace it with a van Kampen for the word labellimg The result is a van Kampen diagram
A, for p” over®’. We obtain a shelling,, for A/, by alteringS’: each time we discarded
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some connected component of the set of edges inside samgecontract it (more strictly,
its pre-image) and all the 2-cells it encloses to a singléexén every one of the diagrams
comprising the shelling, and each time we fill some 2-e&lvith a van Kampen diagram
D we shell out all ofD when we had been due to perform a 2-cell collapse move?on
[This could fail to give a shelling when a 2-cell collapse raavS; removes a pairef, e'),
wheree! is one of the now contracted edges — but then a 1-cell expafdiowed by a 2-
cell collapse producing the samgéezt can be used instead.] Thétdience betweef(S))
and{(S5) is then at most some additive constant. Deduce that ELFL». Interchanging
P and?’ we have Flp < FLp and so Flp ~ FLgp.

The proof that FFkL ~ FFLy is essentially the same, except we consider free shellings,
we discard the stalk betweegnand f (g(vo)), and we replace Fk(¢(0)) by FFLp(¢(0)). To
show FFFlp ~ FFFLp we additionally allow free and fragmenting shellings andusge
FFFLp(£(0)) in place of Flp(£(p)); no further technical concerns arise.

6. RIEMANNIAN VERSUS COMBINATORIAL FILLING LENGTH

Suppose : [0,1] — Xis aloop in a metric space.

A based null-homotopy ldf cis a continuous mapl : [0, 1]> — X for whichH(0, ) =
H(1,t) = ¢(0) for all t and, definingH; : [0,1] — X by H(s) = H(s 1), we haveHy = ¢
andH(s) = ¢(0) for all s.

A free null-homotopy Hbf ¢ is a continuous mapl : [0, 1]> — X such thatH(0,t) =
H(1,t) for all t, andHo andH; arec and a constant function, respectively.

Let S be the set of subspacBwf [0, 1] that have [01] x {0} ¢ S and are the union of
a finite family of closed triangular dises = [(a;, 0), (b;, 0), (¢, di)] with ¢ € [a;, b] and
di € (0,1]. The fibresS; of the projection mapping points & to their second co-ordinate
are disjoint union$;|:‘;1 It; x {t} of closed intervals;;. At finitely many criticalt-valuest;,
some of the intervals comprising the fibre bifurcate or gskato a point.

A free and fragmenting null-homotopy® c is a continuous mapl : S — X for some
S € S where, definindH; to be the restriction oH to S;, we find thatHy = ¢, thatH; is
constant orly; for all i, and thaH(x) = Hi(y) for all t, whenevex andy are the end points
of somely;. We definef(H;) to be the sum of the lengths of theloops inX defined by
H;. Note that takinds to be a single triangle reduces to the case of a free null-tapyo

In each of the three settings above defi(td) = supy; £(H:), and then

FL(c) = inf{¢(H)| based null-homotopids of c}
FFL(c) = inf{¢(H)| free null-homotopie#i of c }
FFFLc) = inf{£(H)| free and fragmenting null-homotopiksof c}.

For M = FL, FFL or FFFL, define M : [0, o) — [0, o) by
Mx () = sup{ M(c) | null-homotopic loopg with £(c) <1}.

The following lemma gives gficient conditions for Fk, FFLx and FFFly to be well-
defined — conditions enjoyed by the universal cover of angedaconnected Riemannian
manifold, for example.

Lemma 6.1. Suppose X is the universal cover of a compact geodesic sp&mewhich
there exisj, L > 0 such that every loop of length less thaadmits a based null-homotopy
of filling length less than L. TheRLx, FFLx and FFFLx are well-defined functions
[0, ) — [0, ).
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Proof. The proof of Lemma 2.2 in [6] can readily be adapted to thistextn In brief,
we first show that every rectifiable loa@pin X admits a based null-homotopy with finite
filling length — apply a compactness argument to an arbitbased null-homotopy fas to
partitionc into finitely many loops of length at mogt by hypothesis each such loop has
finite filling length and it follows that has finite filling length.

Next suppose has length and assume (by shrinkingif necessary) that balls of radius
pin Y lift to X. CoverY with a maximal collection of disjoint balls of radiyg10 > 0;
let A c X be the set of lifts of their centres. Subdividénto m < 1 + 10¢/u arcs with
end-pointsy;, each of length at mogt/10; eachy; lies within/5 of someu; € A; form a
piecewise geodesic loap approximating: by connecting-up thesg. Loops made up of
the portion ofc from v; to vi,; and geodesical, ui.1], [Ui, vi] and [ui,1, Vi41] have length
at mostu, and so homotopy discs for these loops together fooullar betweerc andc’.
By passing across these discs one at a time, it is possiblEnotopc across the collar to
a loop made up of’ and a stalk of lengtja/5 from ¢(0) to aug, encountering loops only
of length at most a constant (dependingloandy) timesl en route. Modulo the action
of 71Y, there are only finitely many such piecewise geodesic loapk asc’ and, by our
earlier argument, each one admits a filling of finite fillingd¢h. It follows that Fly, and
hence FFl and FFFLly, are well-defined functions. O

Proof of Theorem EFix a basepoinp € X. Define a quasi-isometid mapping the Cay-
ley graph ofP = (A | R) to X by choosing a geodesic fromto its translate - p for each
a € A, and then extending equivariantly. L'#tbe a quasi-isometry frorX to I" sending
X € X to somey such thaty.p is a point ofl".p closest tax.

A path in X is calledword-like (following [4]) if it is the image inX of an edge-path in
the Cayley graph. For eache R, letc: denote the word-like loop iX, based ap that is
the image of an edge-circuit in the Cayley graph labelleldap the Cayley 2-complex of
% to X by choosing a disc-filling arising from a based null-homgtoffinite filling length
for eachc;.

We will show first that Fly < FLp, FFLx < FFLpy and FFFlx < FFFLp. As in the
proof of Lemma 6.1, a collar between an arbitrary rectifidbtg c in X and a word-like
loop ¢/, can be used to show there is no change intldasses of Fi, FFLx or FFFLx
if one takes the suprema in their definitions to be over fiinfjword-like loops only: for
FLx one notes that can be homotoped across the collar to a loop base@athat is
obtained front’ by attaching a stalk froro(0) toc’(0), and one need pass through loops of
length no more tha@(c) + C en route, wher€ is a constant independentaffor FFLx
and FFFl, the stalk is abandoned and the homotopy is betvessrdc'.

One gets an upper bound on the filling length of a word-likepledn X by taking
the image inX of a minimal filling length van Kampen diagramn The progress of the
boundary circuit in the course of a shelling dfdictates a sequence of stages in a null-
homotopy ofc. Using Lemma 6.1, we can interpolate between these stagasniay
that increases the length of the curve by no more than aniegldibnstant, and so we
get FLx < FLp. The proof that FFk < FFLp and FFFly < FFFLy can be completed
likewise.

Now we address Rt < FLx. Consider a word-like loop : [0, 1] — X corresponding
to a null-homotopic wordv over P of lengthn. Fix a constanl > maxex dx(p, a.p).
Then{(c) < An. LetH : [0,1]> — X be a based null-homotopy ofwith filling length
at most 1+ FLx(An). By uniform continuity, there exists > 0 such that™ € Z and
dx(H(a), H(b)) < 1 for all a, b € [0, 1]? with dg=(a, b) < &.
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Subdivide [01]? into £7! rectangles separated by the lirtes tj wheret; = je and
j=0,1,...,&7L. Forall sucht = tj, take 0= 50 < &1 < ... < &k = 1in such a way that
for all i, the restriction oH; to [s, S.i+1] is an arc of length at mogtandk; < 1+ ¢(Hy)/A.
Mark the pointssg, ..., Sk on each of the lines= t;. Then, forallj = 0,1,. el
and alli = 1,2,...,k;, — 1, join (s, t;) to (s.i-,tj+1) by a straight-line segment where
(s, tj+1) is the first marked point reached from( tj.1) by increasing thes-coordinate.
Note that

(3) d(Hy, (s), Hyo(80)) < 1+ 4

In the same way, foralj = 1,...,s*andforalli=1,..., ki, — 1 such thatg;, t;) is not
the terminal vertex of one of the edges we just connected (i, tj) to some &, tj-1)
for which

(4) d(Hy, (8) Hy o (80)) < 1+ 2,

so as to produce a diagramin which every 2-cell has boundary circuit of combinatorial
length at most 4.
Orient every edge of A arbitrarily and define

Ge 1= P(Hy()¥(Hi(s)™

when the initial and terminal points efare s,t) and @, t’), respectively. It follows from
(3) and (4) that in the word metric assocaitediohe distance from 1 tge, denotedge, is
at most a constat = K(A). Subdividee into a path ofge| edges; give each of these new
edges an orientation and a labelling by a lettefiiso that one reads a word representing
ge along the path. Make all the choices in the construction aliowsuch a way that
labels the ling = 0 and all the other edges A are labelled b.

The shelling 4;) of A which strips away the rectangles from left to right, shelleach
in turn from top to bottom, has

miaxt’(Ai) < K(1+ FLx(an)) + 4K.

Letw; be the word one reads around the boundary circul; oEach 2-cell in each; has
boundary circuit labelled by a null-homotopic word that nmey be inR, but has length at
most K. So it is possible to interpolate between thieo produce a null-sequence (as in
Section 2) forw = wp with respect tadP; in this seqeunce every word has length at most
K(1+ FLx(4an)) + 4K plus a universal constant. Thus#L< FLx, as required.

That FFlp < FFLx can be proved in the same way. The argument needs to be dedelop
further to show that FFRL < FFFLx. Given the word-like loog, one takes a free and
fragmenting null-homotopid : S — X of ¢ with £(H) at most FFFk(¢£(c)) + 1 andwith
the property that whenever loops of length less than soroefixed constant appear, those
loops are contracted to points before any further bifuoretioccur. This implies that for
all t, the number of connected componekt# the fibreS; = |_|:‘;l It x {t} is at most a
constant times (% ¢(H;)). For the construction oA we inscribeS with the arcs of its
intersection with the lines = t; and with the additional lines = 7, wherer; are the
critical t-values ofH. UsingH; and¥ as before, we subdivide the fibg into edges and
label each of it& connected components by a null-homotopic word — this wosksedore,
except we additionally insist that the end points of the etbsitervalsl;; comprisingS;
be included amongst thg — this may add; to the total length the words alortg, but
the argument given above ensures that this additional sost more than a constant times
(1 + £(Hy)). O
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