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A. The filling length of an edge-circuitη in the Cayley 2-complex of a finite pre-
sentation of a group is the minimal integer lengthL such that there is a combinatorial
null-homotopy ofη down to a base point through loops of length at mostL. We introduce
similar notions in which the null-homotopy is not required to fix a base point, and in which
the contracting loop is allowed to bifurcate. We exhibit a group in which the resulting
filling invariants exhibit dramatically different behaviour to the standard notion of filling
length. We also define the corresponding filling invariants for Riemannian manifolds and
translate our results to this setting.
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1. I

Consider a vertical cylinderC ⊆ R3 of height h whose base has diameterd ≪ h.
Let S be the surface formed by the curved portion ofC and the disc capping off its top.
Topologically,S is a closed 2-disc. The loop∂S can be homotoped inS to a constant
loop through loops of length at mostπd by lifting it up the cylinder and then contracting it
across the top ofC. However, if we insist on keeping a basepoint on∂S fixed in the course
of the null-homotopy then we will encounter far longer loops, some of length at least 2h.

In this article we will bring to light similar contrasts between basepoint-fixed and basepoint-
free null-homotopies for loops in the Cayley 2-complexCay2(P) of a finite presentationP
of a groupΓ. Wordsw that represent 1 inΓ (null-homotopicwords) correspond to edge-
circuitsηw in Cay2(P). The filling length FL(w) of w was defined by Gromov [13] and in
a combinatorial context is the minimal lengthL such that there is a basepoint-preserving
combinatorial null-homotopyof ηw through loops of length at mostL. (A closely related
notion called LNCH was considered by Gersten in [9].) We define FFL(w), thefree filling
lengthof w, likewise but without holding a basepoint fixed, and FFFL(w), the fragment-
ing free filling lengthof w, by also allowing the contracting loops to bifurcate. Detailed
definitions are given in Section 2.

Our first goal is to construct a finite presentation in which FL(w) and FFL(w) differ
dramatically for an infinite sequence of null-homotopic words of increasing length. [Our
notational conventions are [a, b] = a−1b−1ab, ab

= b−1ab anda−b
= b−1a−1b. For f , g :

N → N, we write f � g when there existsC > 0 such that for alln we have f (n) ≤
Cg(Cn+C)+Cn+C, which gives an equivalence relation expressing qualitative agreement
of the growths off andg: write f ≃ g if and only if f � g andg � f .]

Theorem A. LetΓ be the group given by the aspherical presentation

Q := 〈 a, b, t,T, τ | aba−2, [t, a], [τ, at], [T, t], [τ,T] 〉.

For n ∈ N define wn := [T, a−bn
τabn

]. Then wn is null-homotopic inQ, has lengthℓ(wn) =
8n+ 8, andFFL(wn) ≃ n, butFL(wn) ≃ 2n.
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We assume the reader is familiar withvan Kampen diagrams([4] is a recent survey);
they can be thought of ascombinatorial homotopy discsfor loops in the Cayley 2-complex
of a presentation. We show that there are van Kampen diagrams∆̂n for wn that, owing to
geometry like that in our cylinder example, have FFL(∆̂n) � n and FL(̂∆n) ≃ 2n. Indeed,
we will show that every van Kampen diagram∆ for wn has intrinsic1 diameter� 2n; it will
then follow that FL(wn) � 2n.

The area Area(w) and intrinsic diameter IDiam(w) of w are the least integersA and
D, respectively, such that there is a van Kampen diagram forw with A 2-cells or with
intrinsic diameterD. For M = Area, IDiam,FL,FFL or FFFL one definesfilling functions
M : N→ N for finitely presented groups:

M(n) := max
{

M(w) | w null-homotopic andℓ(w) ≤ n
}
.

(The argument of M — diagram, word or integer — determines itsmeaning; the potential
for ambiguity is tolerated as it spares us from a terminologyover-load.) In the case M=
Area, the functionM(n) is theDehn function.

In spite of Theorem A, the filling functions FL and FFL forQ are≃-equivalent: we
will see in Section 3 that any van Kampen diagram forw′n := [T, a−bn

τabn
τabn

τ−1a−bn
]

has twopeaksand the savings that can be made by escaping the basepoint areno longer
significant. On the other hand, if we allow our loops to bifurcate then they can pass over
peaks independently. So FFFL exhibits markedly different behaviour.

Theorem B. The filling functionsIDiam,FL,FFL,FFFL :N→ N for Q satisfy

IDiam(n) ≃ FL(n) ≃ FFL(n) ≃ Area(n) ≃ 2n

FFFL(n) ≃ n.

We remark thatΓ has the properties IDiam(n) ≃ Area(n) and FL(n) ≃ Area(n), which
may seem incongruous in a non-hyperbolicgroups. In contrast, for groups where Area(n) ≃
nα for someα ≥ 2 one knows that IDiam(n) � nα−1 – see [11].

Theorems A and B are proved in Section 3, modulo a number of auxiliary propositions
postponed to Section 4. The remainder of this article is dedicated to establishing the cre-
dentials of FL, FFL and FFFL for inclusion in the pantheon of filling invariants: we relate
them to other filling functions and interpret them in terms ofalgorithmic complexity.

As explained in [11], FL can be thought of as a space-complexity measure in that FL(w)
is the minimalL such thatw can be converted to the empty word through a sequence
of words of length at mostL, each obtained from the previous by free reduction, free
expansion, or applying a relator. We will show in Section 2 that FFL and FFFL can be
interpreted in a similar way: by allowing an additional operation of conjugation we get
FFL(w), and further including the move that replaces a wordw = uvby a pair of wordsu, v
we get FFFL(w). This point of view is useful for calculations and allows usto prove that,
as for FL, given a finite presentation, Area(n) is at most an exponential of FFFL. This and
other relationships are spelt out in the following theorem,which shows, in particular, that
Q of Theorem A provides an example of Area(n) outgrowing FFFL(n) as extremely as is
possible.

Theorem C. LetP be a finite presentation. There is a constant C, depending only onP,
such that for all n∈ N the Dehn, filling length, free filling length, and fragmenting free

1the maximum distance between two vertices as measured in combinatorial metric on∆(1)
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filling length functionsArea,FFL,FFFL :N→ N ofP satisfy

Area(n) ≤ CFFFL(n)

FFFL(n) ≤ FFL(n) ≤ FL(n) ≤ C Area(n) + n.

In Section 5 we prove that, up to≃-equivalence, FL(n), FFL(n) and FFFL(n) are all
quasi-isometry invariants among finitely presented groups(so, in particular, they are group
invariants – cf. [12, Theorem 8.1]).

Theorem D. If P andP′ are finite presentations of quasi-isometric groups then

FLP ≃ FLP′ , FFLP ≃ FFLP′ , and FFFLP ≃ FFFLP′ .

In Section 6 we define analogous filling invariants FLX(n), FFLX(n) and FFFLX(n) de-
scribing the geometry of null-homotopies for rectifiable loops in arbitrary metric spacesX,
and we prove:

Theorem E. Suppose a groupΓ with finite presentationP = 〈A | R〉 acts properly and
cocompactly by isometries on a simply connected geodesic metric space X for which there
existµ, L > 0 such that every loop of length less thanµ admits a based null-homotopy of
filling length less than L. ThenFLP ≃ FLX, FFLP ≃ FFLX andFFFLP ≃ FFFLX.

As the universal cover of any closed connected Riemmian manifold satisfies these con-
ditions and (as is well known) every finitely presentable group is the fundamental group of
such a manifold, we can use Theorem E and its analogues for Area and IDiam (proved in
[4, 6]) to obtain the following results from Theorem A and B.

Corollary F. There exists a closed connected Riemannian manifold M such that

IDiamM̃(n) ≃ FLM̃(n) ≃ FFLM̃(n) ≃ AreaM̃(n) ≃ 2n

FFFLM̃(n) ≃ n.

Moreover, there is an infinite sequence of loops cn in M̃ such thatℓ(cn) → ∞, FFLM̃(cn) ≃
n, andFLM̃(cn) ≃ 2n.

(Strictly speaking, the final part is not a direct corollary of the prior results, but it follows
from the methods of Section 6: thewn of Theorem A can be used to constructword-
like loopscn with ℓ(cn) ≃ ℓ(wn); van Kampen diagrams witnessing to the upper bounds
FFL(wn) � n and FL(wn) � 2n can be translated into fillings ofcn showing FFL̃M(cn) � n
and FLM̃(cn) � 2n; and every null-homotopy ofcn in M̃ has filling length� 2n because
the filling-disc corresponding to a null-homotopy facilitates a van Kampen diagram forwn

with ≃similar filling length.)

Natural questions that remain open include the following.

Open problem 1.1. Does there exist a finite presentation for which FL(n) ; FFL(n)?

Open problem 1.2. Does there exist a finite presentation for which IDiam(n) ; FL(n)?

In reference to the first of these problems we note that for a finite presentation〈A | R〉 of
a groupG, the presentation〈A∪ {t} | R〉 for G∗Z satisfies FL(n) ≃ FFL(n) for the following
reason. Ifwn is a word overP with FL(wn) = FL(n) then FFL([wn, t]) ≥ 2+ℓ(wn)+FL(wn)
since any diagram for [wn, t] is a diagram forwn joined to a diagram forwn

−1 by a t-edge,
and the most efficient way to shell such a diagram (from the point-of-view of FFL) is to
shell thewn diagram, then collapse thet-edge, and then shell thewn

−1 diagram.
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The second problem was posed by Gromov [13,§5C]. A negative answer would imply
that thedouble exponential upper bound[7, 8] on the Dehn (i.e. area) function in terms
of IDiam(n) could be improved to a single exponential using the single exponential upper
bound [11, 13] for Area(n) in terms of FL(n).

Acknowledgement.The second author is grateful for support from NSF grant 0404767 and
for the hospitality of the Centre de Recerca Matemàtica in Barcelona during the writing of
this article.

2. T    

Let ∆ be adiagram; that is, a finite, planar, contractible, combinatorial 2-complex; i.e.
a van Kampen diagram bereft of any group theoretic decorations. Before discussing filling
length, we recall from [11] a combinatorial notion of null-homotopy called ashelling.

Definition 2.1. A shellingS = (∆i) of ∆ is a sequence of diagrams

∆ = ∆0, ∆1, . . . , ∆m,

in which each∆i+1 is obtained from∆i by one of theshelling movesdefined below and
depicted in Figure 1.

• 1-cell collapse.Remove a pair (e1, e0) wheree1 is a 1-cell withe0 ∈ ∂e1 ande1 is
attached to the rest of∆i only by one of its end vertices, e0. (We call such ane1

a spike.)
• 1-cell expansion.Cut along some 1-celle1 in ∆i that has a vertexe0 in ∂∆i , in such

a way thate0 ande1 are doubled.
• 2-cell collapse.Remove a pair (e2, e1) wheree2 is a 2-cell which has some edge

e1 ∈ (∂e2 ∩ ∂∆i). The effect on the boundary circuit is to replacee1 with ∂e2
r e1.

We say that the shellingS is full when∆m is a single vertex. Afull shelling to a base
vertex⋆ = ∆m on ∂∆ is a full shelling in which⋆ is preserved throughout the sequence
(∆i). In particular, in every1-cell collapse e0 , ⋆, and in every1-cell expansionon ∆i

wheree0 = ⋆ a choice is made as to which of the two copies ofe0 is to be⋆ in ∆i+1.
We define afull fragmenting shellingS of ∆ by adapting the definition of a full shelling

to allow each∆i to be a disjoint union of finitely many diagrams, insisting that∆m be a set
of vertices; we also allow one extra type of move:

• Fragmentation.∆i+1 is the disjoint union of∆′i and∆′′i , where∆i = ∆
′
i ∪ ∆

′′
i and

∆
′
i ∩ ∆

′′
i is a single vertex.

1-cell

1-cell 2-cell

fragmentation

collapsecollapse

expansion

F 1. Shelling moves.

For a shellingS, defineℓ(S) := maxi ℓ(∂∆i), whereℓ(∂∆i) denotes the sum of the
lengths of the boundary circuits of the components of∆i . Then thefilling lengthFL(∆, ⋆),
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thefree filling lengthFFL(∆), and thefragmented free filling lengthFFFL(∆) are the mini-
mum ofℓ(S) asS ranges over all full shellings to⋆, full shellings, and all full fragmenting
free shellings of∆, respectively. This notation emphasizes the fact that FL(∆, ⋆) is defined
with respect to a base vertex⋆ ∈ ∂∆ but FFL(∆) and FFFL(∆) are not.

LetP = 〈A | R〉 be a finite presentation of a groupΓ. Define the filling length FL(w) of
a null-homotopic wordw in a presentationP = 〈A | R〉 by

FL(w) := min
{
FL(∆, ⋆) | ∆ a van Kampen diagram forw

}
,

and FFL(w) and FFFL(w) likewise.

A sequenceS = w0, . . . ,wm of null-homotopic words is anull-sequenceif eachwi+1 is
obtained fromwi by one of the following moves:

• Free reduction.Remove a subwordaa−1 or a−1a from wi , wherea ∈ A.
• Free expansion.This is the inverse of a free reduction.
• Application of a relator.Replace a subwordu of wi by a wordv such that a cyclic

conjugate ofuv−1 is inR±1.

We define two more moves:

• Cyclic conjugation.Replacewi by a cyclic permutation.
• Fragmentation.Replace a wordw = uv by a pair of wordsu, v. (In effect, insert a

letter intow that represents a blank space.)

To employ the fragmentation move we must generalise our definition of a null-sequence
so that eachwi is a finite sequence of words, and when we perform any of the operations
listed above we execute it on one of the words inwi .

The proof of the following reassuring lemma is straightforward. The “ only if” part is
well known (indeed, freely reducing, freely expanding, andapply relators suffices). The
“if” part can be proved by an easy induction on the number of fragmentation moves used.

Lemma 2.2. A word w overP represents the identity if and only if it can be reduced to a
sequence of empty words by free reductions, free expansions, applying relators, cyclically
conjugating, and fragmenting.

For a null-sequenceS, defineℓ(S) := maxi ℓ(wi) where, if fragmentation moves are
employed,ℓ(wi) is the sum of the lengths of words in the sequencewi . Proposition 1 in
[11] says that for all null-homotopic wordsw, we have FL(w) = minS ℓ(S), quantifying
over null-sequencesS for w that employfree reductions, free expansionsandapplications
of relators. We add the following.

Proposition 2.3. Quantifying over all null-sequencesS for a null-homotopic word w,
wherefree reduction, free expansion, applications of relators, andcyclic conjugationare
allowed, we haveFFL(w) = minS ℓ(S). If, additionally, we allowfragmentationswe get
FFFL(w) = minS ℓ(S).

Proof. The proof in [11] that minS ℓ(S) ≤ FL(w) is straightforward because the words
around the boundary of the van Kampen diagrams in the course of a full shelling form
a null-sequence. Each word in the sequence of boundary wordsin the course of afree
shelling of a van Kampen diagram is only defined up to cyclic conjugation, as a base-
vertex is not kept fixed during the shelling. It is then easy tosee that minS ℓ(S) ≤ FFL(w),
quantifying over all all null-sequencesS for w that usefree reduction, free expansion,
applications of relators, andcyclic conjugation. Introducingfragmentationmoves into
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the shelling, producesfragmentationsin the corresponding null-sequence. And we see
minS ℓ(S) ≤ FFFL(w).

The reverse bounds require more care. Given a null-sequenceS for w involving appli-
cations of relationsandfree expansionsandreductions, we seek to construct a van Kampen
diagram with a shelling during which the lengths of the boundary circuit remain at most
ℓ(S). This can be done by starting with an edge-loop labelled byw, and filling it in by
attaching a 2-cell on everyapplication of a relator, by attaching a 1-cell on everyfree ex-
pansion, by folding together two adjacent 1-cells on everyfree reduction. However it is
possible that the resulting complex will not be planar: 2-spheres or other cycles may be
pinched off (for example, when an inverse pairaa−1 is inserted and then removed). Re-
moving these cycles gives a van Kampen diagram∆ with FL(∆) ≤ ℓ(w). This is explained
carefully in [11]. IfS also usescyclic conjugationmoves then no extra complications are
added to the construction of∆. If S also usesfragmentationsthen the corresponding move
in the course of the construction of∆ is to identify two vertices so that an inner boundary
circuit is changed from a topological circle to a figure-eight. �

Remark 2.4. (Filling length and space complexity.) Envisaging a null-sequence to be
the course of a calculation on a Turing tape, we see that FL(w) is the non-deterministic
space complexity of the following approach to solving the word problem forP: write
w on the tape and then exhaustively apply relators and performfree reductions and free
expansions. A sequence of moves that convertsw into the empty word amounts to a proof
thatw represents 1 inP and FL(w) is the minimal upper bound on the number of places on
the tape that have to be used in the calculation (see [10] for more details). If we allow cyclic
conjugation then the non-deterministic space complexity is FFL(w). If we also include
fragmentation then the non-deterministic space complexity is FFFL(w) plus the maximum
number of blank spaces separating the words; that is, between FFFL(w) and 2 FFFL(w).

The following inequalities are easy

FFFL(w) ≤ FFL(w) ≤ FL(w) ≤ K Area(w) + ℓ(w),(1)

IDiam(w) ≤ FL(w),(2)

whereK is a constant depending only onP. (See [11] or [13].) Similar inequalities, for
example IDiam(n) ≤ FL(n) for all n, relate the corresponding filling functions (defined in
Section 1).

It is well known [11, 13] that there is a constantC, that depends only onP, such that
the Dehn function Area :N→ N of P satisfies

Area(n) ≤ CFL(n)

for all n. This is essentially the Time-Space bound of algorithmic complexity: the number
of different words of length FL(n) on an alphabet of sizeC is CFL(n), and asw admits
a null-sequence that does not include repeated words,CFL(n) is an upper bound on the
number of times relations are applied in the null-sequence and hence on Area(w). The
same proof applies to FFFL and so with (1) gives Theorem C.

3. P  T A  B

Proof of Theorem A.We exploit a technique due to the first author in [3] to show that the
intrinsic diameter IDiam(wn) of wn = [T, a−bn

τabn
] is at least 2n.
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∆

ΣΣ

u0

µ

u
u

u
v

bn

bn

bn bn

bnbn

bn

bn

bn

bn

bnbn

a a

aa

aa

TT

τ

τ

τ

τ

F 2. A van Kampen diagram∆ for wn with a subdiagramΣ.

Supposeπ : ∆ → Cay2(Q) is a van Kampen diagram forwn. Figure 2 is a schematic
depiction of∆ and Figure 3 shows an explicit example whenn = 3. We seek an edge-path
µ in ∆, along which reads a word in which the exponent sum of the letters t is 2n. A T-
corridor through∆ connects the two lettersT in wn. Along each side of this corridor we

read a wordu in
{
t±1, τ±1

}⋆
. Let Σ be a subdiagram of∆ with boundary made up of one

side of theT-corridor and a portion of∂∆ labelleda−bn
τabn

. A τ-corridor inΣ joins the
τ in a−bn

τabn
to some edge-labelledτ in u. Let u0 be the prefix ofu such that the letter

immediately followingu0 is this τ, and then letµ be the edge-path along the side of the
τ-corridor running from the vertex at the end ofa−bn

to the vertex at the end ofu0. Let

v ∈
{
(at)±1

}⋆
be the word alongµ. Thenu0 = abn

v in Q. Killing T, t andτ, retractsQ onto

the subpresentation〈a, b | ab
= a2〉. Sov = abn

in 〈a, b | ab
= a2〉, wherev ∈

{
a±1
}⋆

is v

with all letterst±1 removed. It follows that the exponent sum of the letters inv is 2n and
hence thatµ has the asserted property.

Killing all generators other thant defines a retractionφ ofQ onto〈t〉 � Z that is distance
decreasing with respect to word metrics. But the image ofφ ◦ π : ∆ → Z has diameter at
least 2n on account ofµ. So IDiam(wn) ≥ 2n, as claimed.

It is easy to check that the van Kampen diagram∆̂n for wn constructed below admits a
shelling down to their base vertex that realises the bound FL(wn) � 2n. So, as IDiam(wn) ≤
FL(wn), we deduce that IDiam(wn) ≃ FL(wn) ≃ 2n.

The bound FFL(wn) � n follows from Proposition 4.4. Nonetheless we will sketch a
proof since the salient ideas, developing the cylinder example from Section 1, appear here
more transparently than in the more general contexts of Section 4.

The van Kampen diagram̂∆3 for w3 is depicted in Figure 3. The analogous construction
of the diagram∆̂n for wn should be clear. Within̂∆n there are four triangular subdiagrams
over the subpresentation〈a, t | [a, t]〉, in which strings ofa-edges run vertically (in the
sense of Figure 3). Cut along each of these strings (except those of length 2n at the left and
right sides of the diagrams) and insert back-to-back copiesof the〈a, b | ab

= a2〉-diagrams
Ωk thatshortcut ak to a worduk of length∼ log2 k � n. Theseshortcut diagramsΩk are
constructed in Proposition 4.1 and the way they are insertedis shown (in a more general
context) in Figure 8. Call the resulting diagram∆n.

For 0≤ k ≤ 2n let ρ̂k be the edge-paths in̂∆n, forming concentric squares in Figure 3,
labelled byakTa−kτ−1akT−1a−kτ. Next, for 0≤ k ≤ 2n defineρk to be the edge-path in∆n
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a

a

a

a

bbbbbb

bbb

bbb

bbb

bbb

bbb

bbb

TT
tttttttt tttttttt

tttttttttttttttt

τ

τ

⋆

F 3. The van Kampen diagram̂∆3 for w3.

that is obtained from ˆρk by replacing each subworda±k by its shortcutuk
±1. (In particular

ρ2n = ∂∆n.) Note that for allk, the length ofρk is � n.
We now briefly describe a full shelling of∆n that realises the bound FFL(wn) � n. In the

course of this shelling we encounter the subdiagrams of∆n that haveρk as their boundary
loops. The following lemma concerning the diagramsΩk of Proposition 4.1 is the key to
shelling the subdiagram bounded byρk+1 down to that bounded byρk. During this shelling,
the length of the boundary loop reamins less than a linear function ofn because log2 k ≤ n.

Lemma 3.1. LetΠ be the van Kampen diagram comprising a copy ofΩk+1 and a copy
Ωk joined to each side of a t-corridor along sides labelled ak+1. Let⋆ be a vertex on∂Π
located at the start of either of the paths labelled ak along the sides of the t-corridor. Then
FL(Π, ⋆) � log2 k.

The proof of this lemma becomes clear when one considers concurrently running the
shellings ofΩk+1 andΩk of Proposition 4.1, and a shelling of thet-corridor.

We complete the proof of Theorem A by noting that the lower bound FFL(wn) � n is
trivial as FFL(wn) ≥ ℓ(wn) = 8n+ 8, and so FFL(wn) ≃ n. �

Proof of Theorem B.The lower bound of 2n on IDiam(wn) established above proves that
2n � IDiam(n). So by (1) in Section 2 we see that 2n � FL(n) � Area(n) and FFL(n) �
Area(n) for all n ∈ N.

To establish 2n � FFL(n) we show that the words

w′n := [T, a−bn
τabn

τabn
τ−1a−bn

]
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satisfy FFL(w′n) ≥ 2n. Figure 4 shows a van Kampen diagram forw′n built up of a copy of
the diagram̂∆n for wn, a [T, τ]-2-cell, and a mirror image of̂∆n. Thusw′n is null-homotopic.

a a

aa

a a

aa

bn

bn bn

bn

bn

bnbn

bn

bn

bn bn

bn

bnbn

a2n

a2n

a2n

a2n

a2n

a2n

a2n

a2n

t2
n

t2
n

t2
n

t2
n

t2
n

t2
n

t2
n

t2
n

(at)2n

(at)2n

TT

τ

τ

τ

τ

τ

τ

⋆

F 4. A van Kampen diagram forw′n.

To show that FFL(∆′) ≥ 2n for all van Kampen diagrams∆′ for w′n we develop the
argument used to establish the lower bound on diameter in theproof of Theorem A. A
T-corridor runs through∆′, and as there are three occurrences ofτ in w′n and three ofτ−1,
eachτ is joined to aτ−1 by a τ-corridor that crosses theT-corridor. This is illustrated
in Figure 5; note that generically the behaviour of the corridors could be more complex
because eachτ-corridor could cross theT-corridor multiple times. As shown in Figure 5,
letu1, u2 andu3 be the words along the sides of the initial portions of these threeτ-corridors
running from the first, second and thirdτ in w′n and ending where the corridor first meets
theT-corridor. (Sou1 = u3 = (at)2n

andu2 is the empty word in the example of Figure 4.)
RetractingQ onto the subpresentation〈a, b | b−1ab = a2〉 by killing T, t andτ we see

that the exponent sum of the lettera, and hence also oft, in u1 and in u3 is 2n, while
the exponent sum inu2 is 0. The word along the side of theT-corridor is of the form
v1τv2τv3τv4 wherevi ∈

{
t±1, τ±1

}∗
andvi runs to the vertex at the end ofui for i = 1, 2, 3

(see Figure 5). By, considering the retraction ofQ onto〈t〉 in whicha, b, τ,T are killed, we
see that the exponent sum oft in vi is 2n for i = 1, 4 and is−2n for i = 2, 3.

SupposeS = (∆′i ) is a full shelling of∆′, in the course of which the base vertex is not
required to be kept fixed. The retractionφ in which all generators other thant are killed,
defines a distance decreasing mapφ of Q onto 〈t〉 � Z. And the edge-circuitφ ◦ π

∣∣∣∂∆′i :
∂∆′i → Z has length at mostℓ(∂∆′i ). There are natural combinatorial mapsψi : ∆′i →
∆
′ (only prevented from being injective by1-cell expansionmoves) under whichψi(∂∆′i )

forms a contracting sequence of edge-circuits. Leti be the least integer such thatψi(∂∆′i )
includes either the vertex at the end ofv1 or at the start ofv4 – these are ringed by small
circles in Figure 5. We will explain whyℓ(∂∆′i ) is at least 2n when this vertexx is at the
end ofv1. A similar argument will show the same result to hold whenx is the vertex at
the start ofv4. Some vertexy on v4 must be included inψi(∂∆′i ) because the contracting
edge-circuit cannot have yet crossed the vertex at the startof v4. So

FFL(w′n) ≥ ℓ(∂∆′i ) ≥ |φ(x) − φ(y)| ≥ 2n,

as required.
It is clear thatn ≥ FFFL(n) because for all null-homotopic wordsw we have FFFL(w) ≥

ℓ(w). Proposition 4.7, which is the culmination of a sequence ofpropositions in Section 4,
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u1 u2 u3v1 v2 v3 v4
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⋆

F 5. A van Kampen diagram∆′ for w′n.

will give FFFL(n) ≃ n. Theorem C will then give us Area(n) � 2n and the proof of the
theorem will be complete. �

4. A 

In this section we provide a number of results which build up to Proposition 4.7 where
we prove a linear upper bound on FFFL(n) in the presentationQ of Theorem A. We begin
in Proposition 4.1 with a technical result giving carefullycontrolled shellings of diagrams
Ωk thatshortcut ak in 〈a, b | ab

= a2〉 to a word of length� log2 k. Next Proposition 4.2
claims the filling length ofQ0 := 〈a, b, t | aba−2, [a, t]〉 admits a linear upper bound.

Proposition 4.4 gives a linear upper bound on FFL(w) for null-homotopic words inQ
that have exactly one pair of lettersT,T−1 and one pairτ, τ−1, with the occurrences of the
T±1 alternating with those of theτ±1. We show that such words have diagrams with one
T- and oneτ-corridor with these corridors crossing only once. These diagrams can be
thought of astowers, and are exemplified the diagrams∆n for wn constructed in the proof
of Theorem A. In the proof of Proposition 4.4 we refer back to Proposition 4.3 which
provides controlled shellings for the four subdiagrams that towerdiagram breaks up into if
we remove theT- andτ-corridors.

Next, in Proposition 4.5, we establish an upper bound on FFFL(w) that is linear inℓ(w),
for null-homotopic wordsw in Q that have exactly one pair of lettersT,T−1. The essential
idea here is to find a diagram that can be fragmented into a number of subdiagrams, one
for eachτ-corridor that crosses theT-corridor, and apply Proposition 4.4 to each of these
subdiagrams. Proposition 4.6 takes care of the case where there is no letterT in w. Finally,
we prove Proposition 4.7: given a word that is null-homotopic inQ we construct a diagram
that can be fragmented into subdiagrams each of which contain at most oneT-corridor,
and then we apply Propositions 4.5 and 4.6.

Proposition 4.1. LetP be the presentation〈a, b | ab
= a2〉. Fix k > 0. There is a word uk

of length at most12+ 4 log2 k such that uk = ak in P. Moreover, there is aP-van Kampen
diagramΩk with boundary word akuk

−1 (as read from a vertex⋆) satisfying the following
condition: if µ is the subarc of∂Ωk along which one reads ak, then there is a shelling
S = Ωk0, . . . ,Ωkp that collapsesΩk = Ωk0 to ⋆ = Ωkp, such that eachΩki is a subdiagram
of Ωk and, expressing the boundary circuit ofΩki as µi followed byνi , whereµi is the
maximal length subarc of∂Ωki that starts at⋆ and followsµ, we haveℓ(νi) ≤ 12+4 log2 k.

Proof. Let m be the least integer such that 2m ≥ k. So m < 1 + log2 k. Let Ξ be the
standard van Kampen diagram that demonstrates the equalityabm

= a2m
and is depicted in
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Figure 6 in the casem= 4. Let (Ξi) be the shelling ofΞ in which eachΞi is a subdiagram
of Ξ andΞi+1 is obtained fromΞi as follows. A 1-cell collapse is performed on aspike
of Ξi if possible. Otherwise, of the rightmost 2-cells inΞi , let e2 be the lowest in the
sense of Figure 6. Lete1 be the right-most edge of the lower horizontal side ofe2. Then
e1 ∈ ∂Ξi . Perform a 2-cell collapse on (e2, e1). As an illustration, the numbers in the 2-cells
in Figure 6 show the order in which the 2-cells are collapsed.

When there is no spike inΞi , its anticlockwise boundary circuit, starting from⋆, follows
horizontal(in the sense of Figure 6) edges labelled bya, then travelsupwardsthrough the
boundary ofm 2-cells (visiting at most three 1-cells of each) and thendescendsback to⋆
along edges labelledb. Removing the initial horizontal path, the number of edges traversed
is at most 4m. And, as the total length of the 1-dimensional portions of∂Ξi is at most 8, and
m< 1+ log2 k, we deduce that the length of∂Φi minus the length of the initial horizontal
arc, is at most 12+ 4 log2 k.

In the casek = 2m we find that definingΩi := Ξi for all i ≥ 0 gives the asserted result.
For the casek , 2m, let c be the maximumi such thatak is a prefix of the wordw one reads
anticlockwise around∂Ξi , starting from⋆. Then defininguk := w0

−1, wherew = akw0 and
Ωki := Ξc+i for all i ≥ 0, we have our result. �
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F 6. The van Kampen diagramΞ for a24
a−b4

.

Proposition 4.2. The filling length functionFL : N→ N of

Q0 := 〈a, b, t | aba−2, [a, t]〉

admits a linear upper bound.

Proof. Corollary E1 of [2] says that an HNN extension of a finitely generated free group
with finitely many stable letters, in which the associated subgroups are all finitely gener-
ated, is asynchronously automatic. This applies toQ0. Theorem 3.1 in [9] says (in different
language) that if a group is asynchronously combable then its filling length function admits
a linear upper bound. �

Proposition 4.3. Suppose(at)−kwt j is a null-homotopic word inQ0 = 〈a, b, t | aba−2, [t, a]〉.
LetΛ be the 1-dimensional van Kampen diagram for

t j(at)−k(at)k−1at−( j−1)

constructed by assembling 1-cells inR2 as depicted at the right in Figure 7. There is a
Q0-van Kampen diagram∆ for (at)−kwt j with the following properties. There is a shelling
of ∆ through a sequence of diagrams∆ = ∆0,∆1, . . . ,∆m = Λ with the portion tj(at)−k
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of ∂∆ left undisturbed throughout (see Figure 7). Letνi be the maximal length arc of the
boundary circuit of∆i contained entirely inΛ. There exists C> 0, depending only onQ0

such that L:= maxi(ℓ(∂∆i) − ℓ(νi)) ≤ Cℓ(w).

Proof. We consider first the casek ≥ 0. In Q0 we find thatw−1
= t j(at)−k

= t j−ka−k
=

t j−kuk
−1, whereuk is the word of Proposition 4.1 that has length at most 12+4 log2 k. These

equalities are displayed in the left-most diagram of Figure7, which shows the framework
of the van Kampen∆: a union of a diagram∆′ for t j−kuk

−1w, a diagram∆′′ for (at)−kuktk

and a tripod; the lower triangular region in the figure folds up to give a tripod, the exact
configuration of which depends on the relative signs ofj, k and j − k.

Note thatj − k = ℓt(w) ≤ ℓ(w) asQ0 retracts onto〈t〉 � Z. Andk ≤ 2ℓ(w) because killing
t retractsQ0 ontoP. It follows thatℓ(uk) ≤ 12+ 4ℓ(w) andℓ(t j−kuk

−1w) ≤ 2ℓ(w) + ℓ(uk) ≤
12+ 6ℓ(w). By Proposition 4.2 we can take∆′ to be a van Kampen diagram fort j−kuk

−1w
with filling length at most a constant times 12+ 6ℓ(w). We can cut along the edge-path in
∆ labelled byukt−( j−k), leaving∆′ attached to the rest of the diagram at only one vertex,
and then shell∆′, and in the process the length of the non-t j(at)−k-portion of the boundary
curve has length at most a constant timesℓ(w).

The wordtk(at)−kak admits an obvious diagram with verticalt-corridors (as shown in
Figure 8) of heightk−1, k−2, . . . , 1. We cut along the vertical paths labelled by powers of
a and insert copies of the diagramsΩi of Proposition 4.1 and their mirror images, as shown
in Figure 8 (illustrated in the casek = 6). The shellings of Lemma 3.1 can be composed to
give a shelling down toΛ that realises the asserted bound onL. �

uk
(at)k(at)k(at)k

t jt jt j

tkt j−k

w

∆i

∆
′

∆
′′

∆m = Λ∆ = ∆0

≤ L

F 7. Shelling∆ down toΛ.
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Proposition 4.4. Suppose w is a null-homotopic word over

Q := 〈 a, b, t,T, τ | aba−2, [t, a], [τ, at], [T, t], [τ,T] 〉

such thatℓT(w) = ℓτ(w) = 2 and the occurrences of T±1 and τ±1 alternate in w. Then
FFL(w) ≤ Cℓ(w) where C> 0 depends only onQ.

Proof. In any van Kampen diagram∆ for w there is oneT-corridor and oneτ-corridor.
The condition that the occurrences ofT±1 andτ±1 in w alternate is equivalent to saying
that these corridors cross at least once in∆.

Take∆ to be a minimal area diagram. We argue that the two corridors cross exactly once.
The words along the sides of theT andτ-corridors are of the formα1tǫ1α2tǫ2 . . . tǫp−1αp and

β1(at)µ1β2(at)µ2 . . . (at)µq−1βq, whereǫi , µi = ±1 andαi ∈
{
t±1
}⋆

andβi ∈
{
(at)±1

}⋆
for all

i. Further, theαi andβi must be reduced because otherwise∆ would not be a reduced
diagram and hence not be of minimal area. Suppose, for a contradiction, that theT and
τ-corridors cross more than once. Then there is a subdiagram between the two corridors

with boundary wordw0 = uvwhereu ∈
{
t±1
}⋆

andv ∈
{
(at)±1

}⋆
. Killing all the generators

other thant retractsQ onto〈t〉 = Z and soℓt(w0) = 0. It follows thatℓa(w0) = 0 because
killing t, τ andT retractsQ onto the subpresentationP in which a has infinite order. Soν
is not freely reduced and we have a contradiction.

An additional feature of a minimal area diagram is that it contains noT or τ-annulus.
This can be proved by a similar method to the above.

Conclude that∆ consists of aT-corridor, aτ-corridor and four subdiagrams of the form
where Proposition 4.3 applies. Produce a new van Kampen diagram∆′ for w by replacing
the four subdiagrams that minimise the lengthL of Proposition 4.3. A shelling of∆′

realising the asserted bound is obtained by running shellings of the four subdiagrams and
the two corridors concurrently in the obvious way so that thediagram is eventually shelled
to the [τ,T]-2-cell, and then to a single vertex. �

Proposition 4.5. Suppose w is a null-homotopic word inQ (defined above) andℓT(w) = 2.
ThenFFFL(w) ≤ Cℓ(w) where C> 0 depends only onQ.

Proof. Let ∆ be a reduced van Kampen diagram forw. We will use the layout of theτ-
corridors and the oneT-corridor in∆ as a template for the construction of another van Kam-
pen diagram∆2 for w that will admit a shelling realising the asserted bound.

SupposeC is aτ-corridor in∆ that does not cross theT-corridor. The wordwC along
the sides ofC is in {(at)}⋆ and is reduced because∆ is a reduced diagram, and so must be
(at)k for somek ∈ Z. Killing all defining generators other thant retractsQ onto 〈t〉. So
k ≤ ℓ(λ), whereλ is a portion of the boundary circuit of∆ connecting the end points of a
side ofC.

If follows that if we remove any number ofτ-corridors that do not cross theT-corridor
from ∆, then the length of the boundary circuit of each connected component is at most
2ℓ(w).

Suppose we removeall of theτ-corridors that do not cross theT-corridor from∆. Define
∆0 to be the connected component that contains theT-corridor. All of the other connected
components have boundary words that are null-homotopic in

Q0 = 〈a, b, t | a
ba−2, [t, a]〉,

which is both a retract and a subpresentation ofQ. Obtain∆1 from∆ by replacing all these
subdiagrams byQ0-diagrams of minimal FFL.
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Repeating the following gives a shelling of∆1 down to∆0 in the course of which the
boundary circuit has length at mostC0ℓ(w), whereC0 is a constant that depends only on
Q. Choose aτ-corridorC in ∆1 such that, of the tow components we get by removingC,
that which does not contain theT-corridor contains noτ-corridor. Cut along one side ofC
using1-cell expansionmoves, and onefragmentationmove. Next use1-cell collapseand
2-cell collapsemoves to remove the 2-cells alongC. By the remarks above, both connected
components have boundary circuits of length at most 2ℓ(w). Collapse the component that
does not contain theT-corridor down to a single vertex using a minimal FFL shelling,
in the course of which the boundary circuit has length at mosta constant times 2ℓ(w) by
Proposition 4.2. (In fact, a shelling down to∆0 within the required bound, can be achieved
without the fragmentation move if care is taken over basepoints.)

It remains to show that the wordw0 around∂∆0 admits a van Kampen diagram with a
full, fragmenting, free shelling in which the sum of the lengths of the boundaries of the
components are at most a constant timesℓ(w0). For then we can take∆2 to be∆1 with ∆0

replaced by this diagram.
First supposeℓτ(w0) = 0. Thenw0 is null-homotopic in the retractQ1 := 〈 a, b, t,T |

aba−2, [t, a], [T, t] 〉, and the length of theT-corridor in any reducedQ1-diagram∆′0 for w0

is at mostℓ(w0)/2 on account of the retraction onto〈t〉. Assume that the two components
of ∆′0 we get on removing theT-corridor areQ0-diagrams of minimal FFL. Then we can
collapse∆′0 by shelling each of these components and theT-corridor in turn, and using
Proposition 4.2 it is easy to check that the length of the boundary circuit remains at most a
constant timesℓ(w0).

Next supposeℓτ(w0) = 2. Then Proposition 4.4 applies and gives us the result we need.

τ τ
τ

τ
ττ

τ τ
τ

τ
ττ

τετε

τετε

w1

w1

w1

w1

w1 T TT T

F 9. Shelling away oneτ-corridor.

Finally, supposeℓτ(w0) > 2. Then there is a subwordτεw1τ
−ε in w0, whereε = ±1,

ℓτ(w1) = 0 andℓT(w1) = 1. Asτεw1τ
−ε
= w1 in Q, there is aQ-van Kampen diagram for

w0 that we can shell by cutting along an edge-path labelled byw1 to cut the diagram into
two, as shown in Figure 9, and the shelling the two components. One of these components
is a diagram forτεw1τ

−εw1
−1, and this we shell first as per Proposition 4.4. The remaining

component has boundary lengthℓ(w0) − 2 and includes two fewer lettersτ±1, and so by
continuing inductively we can find a shelling for which FFFL is at most a constant times
ℓ(w0). �

Proposition 4.6. Suppose w is a null-homotopic word in

Q2 := 〈 a, b, t, τ | aba−2, [t, a], [τ, at] 〉.

ThenFL(w) ≤ Cℓ(w) where C> 0 depends only onQ2.

Proof. The method used in the proof of Proposition 4.4, to reduce to the case where all the
τ-corridors cross theT-corridor, gives this result. �
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Proposition 4.7. Suppose w is a null-homotopic word inQ. ThenFFFL(w) ≤ Cℓ(w) where
C > 0 depends only onQ.

Proof. The cases whereℓT(w) = 0 andℓT(w) = 2 are dealt with by Propositions 4.6 and
4.4, respectively. For the caseℓT(w) > 2 we take a similar approach to that used in the
proof of Proposition 4.4 to control FFFL(w0).

There is a subwordTεw1T−ε in w, whereε = ±1 andTεw1T−ε = w1 in Q. So we
can find aQ-van Kampen diagram forw that can be severed into two components, one of
which is a diagram forTεw1T−εw1

−1, and the other of which is a diagram for a word of
lengthℓ(w)− 2 that has two fewer lettersT±1. The former of these two components can be
shelled as per Proposition 4.4. Continuing inductively we see that the other component can
be taken to be a diagram that admits a shelling in which the boundary circuit has length at
most a constant timesℓ(w). �

5. Q- 

In this section we prove Theorem D. Our approach is to monitorhow filling length, in
its three guises, behaves in the standard proof that finite presentability is a quasi-isometry
invariant [5, page 143]. As careful quantified versions of this proof are well established
([1], addressing Area, is the first in print), our expositionhere will be brief.

We have quasi-isometric groupsΓ andΓ′ with finite presentationsP = 〈A | R〉 and
P′ = 〈A′ | R′〉, respectively. So there is a quasi-isoemtryf : (Γ, dA) → (Γ′, dA′) with
quasi-inverseg : (Γ′, dA′)→ (Γ, dA).

We begin by showing FLP ≃ FLP′ .
Supposeρ′ is an edge-circuit in the Cayley graph ofP′, visiting verticesv0, v1, . . . , vn =

v0 in order. Consider a circuitρ in the Cayley graphCay1(P) of P obtained by joining
the successive vertices ofg(v0), g(v1), . . . , g(vn) by geodesics. Note thatℓ(ρ) is at most a
constant timesℓ(ρ′). Fill ρ with a van Kampen diagram∆ overP admitting a shellingS of
filling length FLP(ℓ(ρ)) and usef to map∆(0) to Γ′. Then join f (a) to f (b) by a geodesic
whenevera andb are the end points of an edge in∆. The result is a combinatorial map
π′0 : ∆′0

(1) → Cay1(P′) filling a loopρ′0, where∆′0 is obtained from∆ by subdividing each
of its edges into edge-paths of length at most some constant.

Interpolate betweenρ′ andρ′0 by joining vi to f (g(vi)) for every i, to build a mapπ′1 :
∆
′
1

(1) → Cay1(P′) where∆′1 is obtained from∆′0 by attaching an annulusA of n 2-cells
around the boundary.

One obtains a shellingS′1 of ∆′1 down to the base vertex withℓ(S′1) at most a constant
times (1+ FLP(ℓ(ρ))) by first shelling awayA to leave just a stalk fromv0 to f (g(v0)), and
then running a shelling of∆′0 modelled onS; wheneverS demands the collapse of a 1-cell
in ∆, one collapses all the 1-cells in the corresponding edge-path in∆′0.

Unfortunately, although the words labelling the 2-cells of∆′1 are null-homotopic they
may fail to be inR′, so∆′1 is not yet a van Kampen diagram overP′. To rectify this one
should replace the 2-cells of∆′1 by van Kampen diagrams overP′, each of area at most
some uniform constant. But a problem arises in that van Kampen diagrams can be singular
2-discs, so gluing them in place of 2-cells may destroy planarity. One gets around this by
replacing the 2-cells of∆′1 one at a time in the following manner. If the boundary circuit
of the 2-celle2 that is to be replaced is not embedded, then we focus on the innermost
embedded circuitσ in the 1-skeleton that encloses a disc containinge2 (this has length
less than the boundary circuit ofe2). We delete the entire subdiagram enclosed byσ and
replace it with a van Kampen for the word labellingσ. The result is a van Kampen diagram
∆
′
2 for ρ′ overP′. We obtain a shellingS′2 for ∆′2 by alteringS′1: each time we discarded
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some connected component of the set of edges inside someσ we contract it (more strictly,
its pre-image) and all the 2-cells it encloses to a single vertex in every one of the diagrams
comprising the shelling, and each time we fill some 2-celle2 with a van Kampen diagram
D we shell out all ofD when we had been due to perform a 2-cell collapse move one2.
[This could fail to give a shelling when a 2-cell collapse move inS′1 removes a pair (e2, e1),
wheree1 is one of the now contracted edges – but then a 1-cell expansion followed by a 2-
cell collapse producing the same effect can be used instead.] The difference betweenℓ(S′1)
andℓ(S′2) is then at most some additive constant. Deduce that FLP′ � FLP. Interchanging
P andP′ we have FLP � FLP′ and so FLP ≃ FLP′ .

The proof that FFLP ≃ FFLP′ is essentially the same, except we consider free shellings,
we discard the stalk betweenv0 and f (g(v0)), and we replace FLP(ℓ(ρ)) by FFLP(ℓ(ρ)). To
show FFFLP ≃ FFFLP′ we additionally allow free and fragmenting shellings and weuse
FFFLP(ℓ(ρ)) in place of FLP(ℓ(ρ)); no further technical concerns arise.

6. R    

Supposec : [0, 1]→ X is a loop in a metric spaceX.
A based null-homotopy Hof c is a continuous mapH : [0, 1]2→ X for which H(0, t) =

H(1, t) = c(0) for all t and, definingHt : [0, 1] → X by Ht(s) = H(s, t), we haveH0 = c
andH1(s) = c(0) for all s.

A free null-homotopy Hof c is a continuous mapH : [0, 1]2 → X such thatH(0, t) =
H(1, t) for all t, andH0 andH1 arec and a constant function, respectively.

LetS be the set of subspacesS of [0, 1]2 that have [0, 1] × {0} ⊂ S and are the union of
a finite family of closed triangular discs∆i = [(ai, 0), (bi, 0), (ci, di)] with ci ∈ [ai , bi] and
di ∈ (0, 1]. The fibresSt of the projection mapping points inS to their second co-ordinate
are disjoint unions

⊔kt

i=1 I t,i × {t} of closed intervalsI t,i . At finitely many criticalt-valuesτi ,
some of the intervals comprising the fibre bifurcate or collapse to a point.

A free and fragmenting null-homotopy Hof c is a continuous mapH : S→ X for some
S ∈ S where, definingHt to be the restriction ofH to St, we find thatH0 = c, thatH1 is
constant onI1,i for all i, and thatHt(x) = Ht(y) for all t, wheneverx andy are the end points
of someI t,i . We defineℓ(Ht) to be the sum of the lengths of thekt loops inX defined by
Ht. Note that takingS to be a single triangle reduces to the case of a free null-homotopy.

In each of the three settings above defineℓ(H) := supt∈[0,1] ℓ(Ht), and then

FL(c) = inf
{
ℓ(H) | based null-homotopiesH of c

}

FFL(c) = inf
{
ℓ(H) | free null-homotopiesH of c

}

FFFL(c) = inf
{
ℓ(H) | free and fragmenting null-homotopiesH of c

}
.

For M = FL,FFL or FFFL, define MX : [0,∞)→ [0,∞) by

MX(l) = sup
{

M(c) | null-homotopic loopsc with ℓ(c) ≤ l
}
.

The following lemma gives sufficient conditions for FLX, FFLX and FFFLX to be well-
defined – conditions enjoyed by the universal cover of any closed connected Riemannian
manifold, for example.

Lemma 6.1. Suppose X is the universal cover of a compact geodesic space Yfor which
there existµ, L > 0 such that every loop of length less thanµ admits a based null-homotopy
of filling length less than L. ThenFLX, FFLX and FFFLX are well-defined functions
[0,∞)→ [0,∞).
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Proof. The proof of Lemma 2.2 in [6] can readily be adapted to this context. In brief,
we first show that every rectifiable loopc in X admits a based null-homotopy with finite
filling length – apply a compactness argument to an arbitrarybased null-homotopy forc to
partitionc into finitely many loops of length at mostµ; by hypothesis each such loop has
finite filling length and it follows thatc has finite filling length.

Next supposec has lengthl and assume (by shrinkingµ if necessary) that balls of radius
µ in Y lift to X. CoverY with a maximal collection of disjoint balls of radiusµ/10 > 0;
let Λ ⊂ X be the set of lifts of their centres. Subdividec into m ≤ 1 + 10ℓ/µ arcs with
end-pointsvi , each of length at mostµ/10; eachvi lies withinµ/5 of someui ∈ Λ; form a
piecewise geodesic loopc′ approximatingc by connecting-up theseui . Loops made up of
the portion ofc from vi to vi+1 and geodesics [ui , ui+1], [ui , vi] and [ui+1, vi+1] have length
at mostµ, and so homotopy discs for these loops together form acollar betweenc andc′.
By passing across these discs one at a time, it is possible to homotopc across the collar to
a loop made up ofc′ and a stalk of lengthµ/5 from c(0) to au0, encountering loops only
of length at most a constant (depending onL andµ) times l en route. Modulo the action
of π1Y, there are only finitely many such piecewise geodesic loops such asc′ and, by our
earlier argument, each one admits a filling of finite filling length. It follows that FLX, and
hence FFLX and FFFLX, are well-defined functions. �

Proof of Theorem E.Fix a basepointp ∈ X. Define a quasi-isometryΦ mapping the Cay-
ley graph ofP = 〈A | R〉 to X by choosing a geodesic fromp to its translatea · p for each
a ∈ A, and then extending equivariantly. LetΨ be a quasi-isometry fromX to Γ sending
x ∈ X to someγ such thatγ.p is a point ofΓ.p closest tox.

A path inX is calledword-like(following [4]) if it is the image inX of an edge-path in
the Cayley graph. For eachr ∈ R, let cr denote the word-like loop inX, based atp that is
the image of an edge-circuit in the Cayley graph labelledr. Map the Cayley 2-complex of
P to X by choosing a disc-filling arising from a based null-homotopy of finite filling length
for eachcr .

We will show first that FLX � FLP, FFLX � FFLP and FFFLX � FFFLP. As in the
proof of Lemma 6.1, a collar between an arbitrary rectifiableloop c in X and a word-like
loop c′, can be used to show there is no change in the≃ classes of FLX, FFLX or FFFLX

if one takes the suprema in their definitions to be over fillings of word-like loops only: for
FLX one notes thatc can be homotoped across the collar to a loop based atc(0) that is
obtained fromc′ by attaching a stalk fromc(0) toc′(0), and one need pass through loops of
length no more thanCℓ(c) +C en route, whereC is a constant independent ofc; for FFLX

and FFFLX, the stalk is abandoned and the homotopy is betweenc andc′.
One gets an upper bound on the filling length of a word-like loop c in X by taking

the image inX of a minimal filling length van Kampen diagram∆. The progress of the
boundary circuit in the course of a shelling of∆ dictates a sequence of stages in a null-
homotopy ofc. Using Lemma 6.1, we can interpolate between these stages ina way
that increases the length of the curve by no more than an additive constant, and so we
get FLX � FLP. The proof that FFLX � FFLP and FFFLX � FFFLP can be completed
likewise.

Now we address FLP � FLX. Consider a word-like loopc : [0, 1] → X corresponding
to a null-homotopic wordw overP of lengthn. Fix a constantλ > maxa∈A dX(p, a.p).
Thenℓ(c) ≤ λn. Let H : [0, 1]2 → X be a based null-homotopy ofc with filling length
at most 1+ FLX(λn). By uniform continuity, there existsε > 0 such thatε−1 ∈ Z and
dX(H(a),H(b)) ≤ 1 for all a, b ∈ [0, 1]2 with dE2(a, b) ≤ ε.
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Subdivide [0, 1]2 into ε−1 rectangles separated by the linest = t j wheret j = jε and
j = 0, 1, . . . , ε−1. For all sucht = t j , take 0= st,0 < st,1 < . . . < st,kt = 1 in such a way that
for all i, the restriction ofHt to [st,i , st,i+1] is an arc of length at mostλ andkt ≤ 1+ℓ(Ht)/λ.
Mark the pointsst,0, . . . , st,kt on each of the linest = t j . Then, for all j = 0, 1, . . . , ε−1 − 1
and all i = 1, 2, . . . , kt j − 1, join (st,i , t j) to (st,i′ , t j+1) by a straight-line segment where
(st,i′ , t j+1) is the first marked point reached from (st,i , t j+1) by increasing thes-coordinate.
Note that

(3) d(Ht j (st,i),Ht j+1(st,i′)) ≤ 1+ λ.

In the same way, for allj = 1, . . . , ε−1 and for alli = 1, . . . , kt j − 1 such that (st,i , t j) is not
the terminal vertex of one of the edges we just connected, join (st,i , t j) to some (xt,i′ , t j−1)
for which

(4) d(Ht j (st,i),Ht j−1(st,i′)) ≤ 1+ λ,

so as to produce a diagram∆ in which every 2-cell has boundary circuit of combinatorial
length at most 4.

Orient every edgee of ∆ arbitrarily and define

ge := Ψ(Ht′ (s′))Ψ(Ht(s))−1

when the initial and terminal points ofe are (s, t) and (s′, t′), respectively. It follows from
(3) and (4) that in the word metric assocaited toA the distance from 1 toge, denoted|ge|, is
at most a constantK = K(A). Subdividee into a path of|ge| edges; give each of these new
edges an orientation and a labelling by a letter inA so that one reads a word representing
ge along the path. Make all the choices in the construction above in such a way thatw
labels the linet = 0 and all the other edges in∂∆ are labelled bye.

The shelling (∆i) of ∆ which strips away the rectangles from left to right, shelling each
in turn from top to bottom, has

max
i
ℓ(∆i) ≤ K(1+ FLX(λn)) + 4K.

Let wi be the word one reads around the boundary circuit of∆i . Each 2-cell in each∆i has
boundary circuit labelled by a null-homotopic word that maynot be inR, but has length at
most 4K. So it is possible to interpolate between thewi to produce a null-sequence (as in
Section 2) forw = w0 with respect toP; in this seqeunce every word has length at most
K(1+ FLX(λn)) + 4K plus a universal constant. Thus FLP � FLX, as required.

That FFLP � FFLX can be proved in the same way. The argument needs to be developed
further to show that FFFLP � FFFLX. Given the word-like loopc, one takes a free and
fragmenting null-homotopyH : S → X of c with ℓ(H) at most FFFLX(ℓ(c)) + 1 andwith
the property that whenever loops of length less than some prior fixed constant appear, those
loops are contracted to points before any further bifurcations occur. This implies that for
all t, the number of connected componentskt in the fibreSt =

⊔kt
i=1 I t,i × {t} is at most a

constant times (1+ ℓ(Ht)). For the construction of∆ we inscribeS with the arcs of its
intersection with the linest = t j and with the additional linest = τi , whereτi are the
critical t-values ofH. UsingHt andΨ as before, we subdivide the fibreSt into edges and
label each of itskt connected components by a null-homotopic word – this works as before,
except we additionally insist that the end points of the closed intervalsI t,i comprisingSt

be included amongst thesi – this may addkt to the total length the words alongSt, but
the argument given above ensures that this additional cost is no more than a constant times
(1+ ℓ(Ht)). �
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