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Abstract. In 1970 Alexander Grothendieck [6] posed the following problem: let Γ1 and
Γ2 be finitely presented, residually finite groups, and let u : Γ1 → Γ2 be a homomorphism
such that the induced map of profinite completions û : Γ̂1 → Γ̂2 is an isomorphism; does it
follow that u is an isomorphism?

In this paper we settle this problem by exhibiting pairs of groups u : P ↪→ Γ such that Γ is
a direct product of two residually finite hyperbolic groups, P is a finitely presented subgroup
of infinite index, P is not abstractly isomorphic to Γ, but û : P̂ → Γ̂ is an isomorphism.

The same construction also allows us to settle a second problem of Grothendieck by
exhibiting finitely presented, residually finite groups P that have infinite index in their
Tannaka duality groups clA(P) for every commutative ring A 6= 0.

1. Introduction

The profinite completion of a group Γ is the inverse limit of the directed system of finite
quotients of Γ; it is denoted by Γ̂. If Γ is residually finite then the natural map Γ →
Γ̂ is injective. In [6] Grothendieck discovered a remarkably close connection between the
representation theory of a finitely generated group and its profinite completion: if A 6= 0 is
a commutative ring and u : Γ1 → Γ2 is a homomorphism of finitely generated groups, then
û : Γ̂1 → Γ̂2 is an isomorphism if and only the restriction functor u∗A : RepA(Γ2) → RepA(Γ1)
is an equivalence of categories, where RepA(Γ) is the category of finitely presented A-modules
with a Γ-action.

Grothendieck investigated under what circumstances û : Γ̂1 → Γ̂2 being an isomorphism
implies that u is an isomorphism of the original groups. This led him to pose the celebrated
problem:

Grothendieck’s First Problem. Let Γ1 and Γ2 be finitely presented, residually finite
groups and let u : Γ1 → Γ2 be a homomorphism such that û : Γ̂1 → Γ̂2 is an isomorphism of
profinite groups. Does it follow that u is an isomorphism from Γ1 onto Γ2?

A negative solution to the corresponding problem for finitely generated groups was given
by Platonov and Tavgen [11] (also [12]). The methods used in [11] subsequently inspired
Bass and Lubotzky’s construction of finitely generated linear groups that are super-rigid
but are not of arithmetic type [1]. In the course of their investigations, Bass and Lubotzky

discovered a host of other finitely generated, residually finite groups such that û : Γ̂1 → Γ̂2 is
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an isomorphism but u : Γ1 → Γ2 is not. All of these examples are based on a fibre-product
construction, and it seems that none are finitely presentable. Indeed, as the authors of [1]
note, “a result of Grunewald ([7] Prop. B) suggests that [such fibre products are] rarely
finitely presented.”

In [13] L. Pyber constructed continuously many pairs of 4-generator groups u : Γ1 → Γ2

such that û : Γ̂1 → Γ̂2 is an isomorphism but Γ1 6∼= Γ2. Once again, these groups are not
finitely presented.

The emphasis on finite presentability in Grothendieck’s problem is a consequence of his
original motivation for studying profinite completions: he wanted to understand the extent
to which the topological fundamental group of a complex projective variety determines the
algebraic fundamental group. Let X be a connected, smooth projective scheme over C with
base point x and let Xan be the associated complex variety. Grothendieck points out that the
profinite completion of the topological fundamental group π1(X

an, x) (although defined by
transcendental means) admits a purely algebraic description as the étale fundamental group
of X. Since Xan is compact and locally simply-connected, its fundamental group π1(X

an, x)
is finitely presented.

In this article we settle Grothendieck’s problem in the negative. In order to do so, we
too exploit a fibre product construction; but it is a more subtle one that makes use of the
techniques developed in [2] to construct unexpected finitely presented subgroups of direct
products of hyperbolic groups. The key idea in this construction is to gain extra finiteness
in the fibre product by presenting arbitrary finitely presented groups Q as quotients of 2-
dimensional hyperbolic groups H rather than as quotients of free groups. One gains finiteness
by ensuring that the kernel of H → Q is finitely generated; to do so one exploits ideas of Rips
[14]. In the current setting we also need to ensure that the groups we consider are residually
finite. To this end, we employ a refinement of the Rips construction due to Wise [15].
The first step in our construction involves the manufacture of groups that have aspherical
balanced presentations and no proper subgroups of finite index (see Section 4).

In the following statement “hyperbolic” is in the sense of Gromov [5], and “dimension” is
geometric dimension (thus H has a compact, 2-dimensional, classifying space K(H, 1)).

Theorem 1.1. There exist residually finite, 2-dimensional, hyperbolic groups H and finitely
presented subgroups P ↪→ Γ := H × H of infinite index, such that P is not abstractly
isomorphic to Γ, but the inclusion u : P ↪→ Γ induces an isomorphism û : P̂ → Γ̂.

Explicit examples of such pairs P ↪→ Γ are described in Section 7. In Section 8 we describe
an abundance of further examples by assigning such a pair P ↪→ Γ to every group that has
a classifying space with a compact 3-skeleton.

In Section 3.1 of [6] Grothendieck considers the category C ′ of those groups K which
have the property that, given any homomorphism u : G1 → G2 of finitely presented groups,
if û : Ĝ1 → Ĝ2 is an isomorphism then the induced map f 7→ f ◦ u gives a bijection
Hom(G2, K) → Hom(G1, K). He notes that his results give many examples of groups in C ′
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and asks whether there exist finitely presented, residually finite groups that are not in C ′.
The groups Γ that we construct in Theorem 1.1 give concrete examples of such groups.

In Section 3.3 of [6] Grothendieck described an idea for reconstructing a residually finite
group from the tensor product structure of its representation category RepA(Γ). He encoded
this tensor product structure into a Tannaka duality group clA(Γ) (as explained in Section
10) and posed the following problem.

Grothendieck’s Second Problem. Let Γ be a finitely presented, residually finite group. Is
the natural monomorphism from Γ to clA(Γ) an isomorphism for every non-zero commutative
ring A, or at least some suitable commutative ring A 6= 0?

From our examples in Theorem 1.1 and the functoriality properties of the Tannaka duality
group, it is obvious that there cannot be a commutative ring A so that the natural map
Γ → clA(Γ) is an isomorphism for all residually finite groups Γ. In Section 10 we prove the
following stronger result.

Theorem 1.2. If P is one of the (finitely presented, residually finite) groups constructed in
Theorem 1.1, then P is of infinite index in clA(P ) for every commutative ring A 6= 0.

In 1980 Lubotzky [9] exhibited finitely presented, residually finite groups Γ such that
Γ → clZ(Γ) is not surjective, thus providing a negative solution of Grothendieck’s Second
Problem for the fixed ring A = Z.

2. Fibre Products and the 1-2-3 Theorem

Associated to any short exact sequence of groups

1 → N → H
π→ Q → 1

one has the fibre product P ⊂ H ×H,

P := {(h1, h2) | π(h1) = π(h2)}.

Let N1 = N × {1} and N2 = {1} × N . It is clear that P ∩ (H × {1}) = N1, that
P ∩ ({1} ×H) = N2, and that P contains the diagonal ∆ = {(h, h) | h ∈ H} ∼= H. Indeed
P = N1 · ∆ = N2 · ∆ ∼= N o H, where the action in the semi-direct product is simply
conjugation.

Lemma 2.1. If H is finitely generated and Q is finitely presented, P is finitely generated.

Proof. Since Q is finitely presented, N ⊂ H is finitely generated as a normal subgroup. To
obtain a finite generating set for P , one chooses a finite normal generating set for N1 and
then appends a generating set for ∆ ∼= H. �

The question of when P is finitely presented is much more subtle. If N is not finitely
generated as an abstract group, then in general one expects to have to include infinitely
many relations in order to force the generators of N1 to commute with the generators of
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N2. Even when N is finitely generated, one may still encounter problems. These problems
are analysed in detail in Sections 1 and 2 of [2], where the following “1-2-3 Theorem” is
established.

Recall that a discrete group Γ is said to be of type Fn if there exists an Eilenberg-Maclane
space K(Γ, 1) with only finitely many cells in the n-skeleton.

Theorem 2.2. Let 1 → N → H
π→ Q → 1 be an exact sequence of groups. Suppose that N

is finitely generated, H is finitely presented, and Q is of type F3. Then the fibre product

P := {(h1, h2) | π(h1) = π(h2)} ⊆ H ×H

is finitely presented.

We shall apply this theorem first in the case where the group Q has an aspherical presen-
tation. In this setting, the process of writing down a presentation of P in terms of π and Q is
much easier than in the general case — see Theorem 2.2 of [2]. The process becomes easier
again if the aspherical presentation of Q is obtained from a presentation of H by simply
deleting all occurences of a set of generators of N . The effective nature of the process in this
case will be exemplified in Section 7.

3. A Residually Finite Version of the Rips Construction

In [14], E. Rips described an algorithm that, given a finite group presentation, will con-
struct a short exact sequence of groups 1 → N → H → Q → 1, where Q is the group with
the given presentation, H is a small-cancellation group (a certain type of hyperbolic group
with an aspherical presentation), and N is a 2-generator group. There have since been a
number of refinements of Rips’s original construction, engineered so as to ensure that the
group H has additional desirable properties; the price that one must pay for such desirable
properties is an increase in the number of generators of N . The variant that we require is due
to Wise [15], who refined the Rips construction so as to ensure that the small-cancellation
group obtained is residually finite.

Theorem 3.1. There is an algorithm that associates to every finite group presentation P a
short exact sequence of groups

1 → N → H → Q → 1,

where Q is the group presented by P, the group N is generated by three elements, and the
group H is a torsion-free, residually-finite, hyperbolic group (satisfying the small cancellation
condition C ′(1

6
)).

The explicit nature of the Rips-Wise construction will be demonstrated in Section 7.

4. Some Seed Groups

In this section we describe the group presentations that we will use as our initial input
to the constructions in the preceding sections. We remind the reader that associated to any
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finite group-presentation one has the compact combinatorial 2-complex that has one vertex,
one directed edge e(a) corresponding to each generator a of the presentation, and one 2-
cell corresponding to each relator; the boundary of the 2-cell corresponding to the relator
r = a1 . . . al is attached to the 1-skeleton by the loop e(a1) . . . e(al). The presentation is
said to be aspherical if this presentation complex has a contractible universal covering. A
presentation is said to be balanced if it has the same number of generators as relators.

Proposition 4.1. There exist infinite groups Q, given by finite, aspherical, balanced presen-
tations, such that Q has no non-trivial finite quotients.

Explicit examples will be given in Sections 4.1 and 4.2. The balanced nature of the
presentations we construct will be used in the following way.

Lemma 4.2. If Q has a finite, balanced presentation and H1(Q, Z) = 0, then H2(Q, Z) = 0.

Proof. Writing F for the free group on the given generators of Q, and R for the normal
closure of the given relations, we have a short exact sequence 1 → R → F → Q → 1. From
this we obtain an exact sequence of abelian groups:

0 → R ∩ [F, F ]

[R,F ]
→ R

[R, F ]
→ F

[F, F ]
→ F

R [F, F ]
→ 0.

Hopf’s formula identifies the first group in this sequence as H2(Q, Z). We have assumed
that H1(Q, Z) = 0, and F/[F, F ] is free abelian, of rank n say. Thus, splitting the middle
arrow, we get R/[R,F ] ∼= H2(Q, Z)⊕ Zn.

The abelian group R/[R,F ] is generated by the images of the given relations of Q, of
which there are only n. Thus H2(Q, Z) must be trivial. �

There are many groups of the type described in the above proposition. We shall describe
one family of famous examples and one family that is more novel. In both cases one sees
that the presentations are aspherical by noting that they are built-up from infinite cyclic
groups by repeatedly forming amalgamated free products and HNN extensions along free
subgroups. The natural presentations of such groups are aspherical.1 Explicitly:

Lemma 4.3. Suppose that for i = 1, 2 the presentation Gi = 〈Ai | Ri〉 is aspherical, and
suppose that the words ui,1, . . . , ui,n generate a free subgroup of rank n in Gi. Then

〈A1, A2 | R1, R2, u1,1u
−1
2,1, . . . , u1,nu

−1
2,n〉

is an aspherical presentation of the corresponding amalgamated free product G1 ∗Fn G2.

Similarly, if v1,1, . . . , v1,n generate a free subgroup of rank n in G1, then

〈A1, t | R1, t−1u1,1tv
−1
1,1, . . . , t

−1u1,ntv
−1
1,n〉

1For example, suppose X is an aspherical presentation complex for A and Y is an aspherical presentation
complex for B, and injections i : F → A and j : F → B are given, where F is a finitely generated free group.
One can realise i and j by cellular maps I : Z → X and J : Z → Y where Z is a compact graph with one
vertex v. An aspherical presentation complex for A ∗F B is then obtained as X ∪ (Z × [0, 1])∪Y modulo the
equivalence relation generated by (z, 0) ∼ I(z), (z, 1) ∼ J(z) and (v, t) ∼ (v, 1) for all z ∈ Z and t ∈ [0, 1].
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is an aspherical presentation of the corresponding HNN extension G1∗Fn.

4.1. The Higman Groups. Graham Higman [8] constructed the following group and
showed that it has no proper subgroups of finite index.

J4 = 〈a1, a2, a3, a4 | a−1
2 a1a2a

−2
1 , a−1

3 a2a3a
−2
2 , a−1

4 a3a4a
−2
3 , a−1

1 a4a1a
−2
4 〉.

One can build this group as follows. First note that B = 〈x, y | y−1xyx−2〉 is aspherical,
by Lemma 4.3. Take two pairs of copies of B and amalgamate each pair by identifying the
letter x in one copy with the letter y in the other copy. In each of the resulting amalgams,
G1 and G2, the unidentified copies of x and y generate a free group (by Britton’s Lemma).
The group J4 is obtained from G1 and G2 by amalgamating these free subgroups. Lemma
4.3 assures us that the resulting presentation (i.e. the one displayed above) is aspherical.

The group is clearly infinite since we have constructed it as a non-trivial amalgamated
free product. Entirely similar arguments apply to the group

Jn = 〈a1 . . . , an | a−1
i ai−1aia

−2
i−1 (i = 2, . . . , n); a−1

1 ana1a
−2
n 〉

for each integer n ≥ 4.

Higman [8] provides an elementary proof that these groups have no non-trivial finite
quotients. In particular, H1(Jn, Z) = 0; hence H2(Jn, Z) = 0, by Lemma 4.2.

4.2. Amalgamating Non-Hopfian Groups. Fix p ≥ 2 and consider

G = 〈a1, a2 | a−1
1 ap

2a1 = ap+1
2 〉.

This group admits the non-injective epimorphism φ(a1) = a1, φ(a2) = ap
2. The non-trivial

element c = [a2, a
−1
1 a2a1] lies in the kernel of φ. Britton’s Lemma tells us that a1 and c

generate a free subgroup of rank 2.

Observe that if π : G → R is a homomorphism to a finite group, then π(c) = 1. Indeed,
if π(c) 6= 1 then we would have infinitely many distinct maps G → R, namely π ◦ φn,
contradicting the fact that there are only finitely many homomorphisms from any finitely
generated group to any finite group.

We amalgamate two copies G′ and G′′ of G by setting c′ = a′′1 and a′1 = c′′. Lemma 4.3
tells us that the natural presentation of the resulting amalgam is aspherical. Under any
homomorphism from this amalgam G′ ∗F2 G′′ to a finite group, c′(= a′′1) and c′′(= a′1) must
map trivially, which forces the whole group to have trivial image.

Thus for each p ≥ 2 we obtain the following aspherical presentation of a group with no
non-trivial finite quotients.

Bp = 〈a1, a2, b1, b2 | a−1
1 ap

2a1a
−p−1
2 , b−1

1 bp
2b1b

−p−1
2 , a−1

1 [b2, b
−1
1 b2b1], b−1

1 [a2, a
−1
1 a2a1]〉.

5. The Platonov-Tavgen Criterion

As noted in [1], one can abstract the following criterion from the arguments in [11].
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Theorem 5.1. Let 1 → N → H → Q → 1 be a short exact sequence of groups and let
P ⊂ H × H be the associated fibre product. If H is finitely generated, Q has no finite
quotients, and H2(Q, Z) = 0, then the inclusion u : P ↪→ H × H induces an isomorphism

û : P̂ → Ĥ × Ĥ.

For the sake of completeness, we include a proof of this criterion, distilled from [11].

Proof. Let Γ = H ×H. The surjectivity of û is equivalent to the statement that there is no
proper subgroup of finite index G ⊂ Γ that contains P . If there were such a subgroup, then
we would have N ×N ⊂ P ⊂ G, and G/(N ×N) would be a proper subgroup of finite index
in (H/N)× (H/N), of which we have supposed there are none.

In order to show that û is injective, it is enough to prove that given any normal subgroup
of finite index R ⊂ P , there exists a subgroup of finite index S ⊂ Γ such that S ∩ P ⊆ R.
Note that L1 := R∩ (N ×{1}), which is normal in P and of finite index in N1 = (N ×{1}),
is also normal in H1 = H × {1}, because the action of (h, 1) ∈ H1 by conjugation on L1 is
the same as the action of (h, h) ∈ P . Similar considerations apply to N2 = ({1} × N) and
L2 = R ∩N2.

Lemma 5.2. Let H be a finitely generated group, and let L ⊂ N be normal subgroups of
H. Assume N/L is finite, Q = H/N has no finite quotients and H2(Q, Z) = 0. Then there
exists a subgroup S1 ⊂ H of finite index such that S1 ∩N = L.

Proof. Let M be the kernel of the action H → Aut(N/L) by conjugation. Since M has finite
index in H, it maps onto Q. Thus we have a central extension

1 → (N/L) ∩ (M/L) → M/L → Q → 1.

Because Q perfect, it has a universal central extension. Because H2(Q, Z) = 0, this
extension is trivial. Thus every central extension of Q splits. In particular M/L retracts
onto (N/L) ∩ (M/L). We define S1 to be the kernel of resulting homomorphism M →
(N/L) ∩ (M/L). �

Returning to the proof of Theorem 5.1, we now have subgroups of finite index S1 ⊂ H×{1}
and S2 ⊂ {1} ×H such that Si ∩ Ni = Li for i = 1, 2. Thus S := S1S2 intersects N1N2 in
L1L2 = R ∩N1N2.

Consider p ∈ P r R. Since P and R have the same image in Q × Q = Γ/N1N2 (namely
the diagonal) there exists r ∈ R such that pr ∈ N1N2 r R. Since N1N2 ∩ S = N1N2 ∩R, we
conclude p /∈ S. Hence P ∩ S ⊆ R. �

6. Proof of the Main Theorem

We begin with a finite aspherical presentation for one of the seed groups Jn or Bp con-
structed in Section 4; let Q be such a group. By applying the Rips-Wise construction from
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Section 3 we obtain a short exact sequence

1 → N → H → Q → 1

with H a residually finite (2-dimensional) hyperbolic group and N a finitely generated sub-
group. The 1-2-3 Theorem (Section 2) tells us that the fibre product P ⊂ H ×H associated
to this sequence is finitely presented. Since Q is infinite, P is a subgroup of infinite index.
The sequence 1 → N → H → Q → 1 satisfies the Platonov-Tavgen criterion (Section 5),

and hence the inclusion u : P ↪→ H ×H induces an isomorphism û : P̂ → Ĥ × Ĥ.

To see that P is not abstractly isomorphic to Γ = H × H, we appeal to the fact that
centralizers of non-trivial elements in torsion-free hyperbolic groups are cyclic [5]. Indeed
this observation allows us to characterize H × {1} and {1} × H as the only non-abelian
subgroups of Γ that are the centralizers of non-cyclic subgroups of Γ r {1}. The subgroups
{1} × N and N × {1} of P are characterized in the same way. Thus if P were abstractly
isomorphic to Γ, then H would be isomorphic to N . But H is finitely presented whereas N
is not [3].

7. An Explicit Example

In this section we give explicit presentations for a pair of groups P ↪→ H ×H satisfying
the conclusion of the Theorem 1.1. The fact that we are able to do so illustrates the con-
structive nature of the proof of the 1-2-3 Theorem (in the aspherical case) and the Rips-Wise
construction.

Although they are explicit, our presentations are not small: the presentation of P has
ten generators and seventy seven relations, and the sum of the lengths of the relations is
approximately eighty thousand.

As seed group we take

J4 = 〈a1, a2, a3, a4 | a−1
2 a1a2a

−2
1 , a−1

3 a2a3a
−2
2 , a−1

4 a3a4a
−2
3 , a−1

1 a4a1a
−2
4 〉.

In general, given a presentation of a group has r generators and m relations, the hyperbolic
group produced by the Rips-Wise construction will have r+3 generators and m+6r relations.

7.1. A Presentation of H. There are seven generators,

a1, a2, a3, a4, x1, x2, x3,

subject to the relations

(S1) aε
ixja

−ε
i = Vijε(x) for i ∈ {1, 2, 3, 4}, j ∈ {1, 2, 3}, ε = ±1,

and

(S2) a−1
2 a1a2a

−2
1 = U1(x), a−1

3 a2a3a
−2
2 = U2(x), a−1

4 a3a4a
−2
3 = U3(x), a−1

1 a4a1a
−2
4 = U4(x),

where Vijε(x) = vijεx3v
′
ijεx

−1
3 for j = 1, 2, and Vi3ε(x) = vi3εx3v

′
i3ε, and Ui(x) = uix3u

′
ix
−1
3 ,

with the 56 words ui, u
′
i, vijε, v

′
ijε being (in any order)

{x1x
5n
2 x1x

5n+1
2 x1x

5n+2
2 x1x

5n+3
2 x1x

5n+4
2 | n = 1, . . . , 56}.
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The point about this last set of words is that it satisfies the c(5) small cancellation condition;
any other such set of words would serve the same purpose (see [15]).

The relations (S1) ensure that the subgroup N := 〈x1, x2, x3〉 is normal in H, and the
relations (S2) ensure that H/N is isomorphic to J4 via the map ai 7→ ai implicit in the
notation. �

In order to present the fibre product P ⊂ H ×H associated to the short exact sequence
1 → N → H → J4 → 1, we need the following notation.

For each j ∈ {1, 2, 3} we introduce generators xL
j to represent (xj, 1) and xR

j to represent

(1, xj). Given a word W (x) in the letters x = {x1, x2, x3}, we write W (xL) for the word
obtained by making the formal substitutions xj 7→ xL

j ; and likewise for W (xR). We introduce
generators Ai to represent (ai, ai) ∈ H.

The following presentation is a special case of Theorem 2.2 of [2]. Our notation (S1) and
(S2) agrees with that of [2]; the additional sets of relations (S3) and Zσ of [2] are empty in
the current setting.

7.2. A Presentation of P . There are ten generators,

A1, A2, A3, A4, x
L
1 , xL

2 , xL
3 , xR

1 , xR
2 , xR

3 ,

subject to the relations

A−1
i+1AiAi+1A

−2
i = Ui(x

L)Ui(x
R) (for i = 1, 2, 3) and A−1

1 A4A1A
−2
4 = U4(x

L)U4(x
R),

and
[xL

j , xR
k ] = 1 for all j, k ∈ {1, 2, 3},

and

Aε
ix

L
j A−ε

i = Vijε(x
L) and Aε

ix
R
j A−ε

i = Vijε(x
R) for i ∈ {1, 2, 3, 4}, j ∈ {1, 2, 3}, ε = ±1,

where the words Ui and Vijε are as above. �

8. An Abundance of Examples

In this section we describe a construction that associates to every group of type F3 a pair
of groups P ↪→ Γ satisfying the conclusion of Theorem 1.1.

The following lemma is a special case of the general phenomenon that if a class of groups
G is closed under the formation of HNN extensions and amalgamated free products along
finitely generated free groups, then one can embed groups G ∈ G into groups G ∈ G that
have no finite quotients, preserving desirable geometric properties of G; see [4].

Let F3 denote the class of groups of type F3. The mapping cylinder construction sketched
in Section 4 shows that F3 is closed under the formation of HNN extensions and amalgamated
free products along finitely generated free groups.

Lemma 8.1. Every G ∈ F3 can be embedded in a group G ∈ F3 that has no proper subgroups
of finite index.
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Proof. We may assume that G is generated by elements {a1, . . . , an} of infinite order, for if
necessary we can replace G by G ∗ Z and {a1, . . . , an} by {a1t, . . . , ant, t}, where Z = 〈t〉.

Let Q be an aspherical group with no non-trivial finite quotients, as described in Section
4. We fix a non-trivial element q ∈ Q and modify G by repeatedly forming amalgamated
free products with copies of Q as follows. Let G1 = G ∗Z Q, where a1 ∈ G is identified with
q ∈ Q. Then, for i = 2, . . . , n, let Gi = Gi−1 ∗Z Q, where ai ∈ G ⊂ Gi−1 is identified with
q ∈ Q. Let G = Gn.

Since Q has no non-trivial finite quotients, any homomorphism from G to a finite group
must kill each copy of Q and hence each of the generators ai. �

The group G produced by the above construction is perfect and hence has a universal
central extension (see Chapter 5 of [10], for example):

1 → H2(G, Z) → G̃ → G → 1,

where G̃ is superperfect, i.e. H1(G̃, Z) = H2(G̃, Z) = 0. Since G and H2(G, Z) lie in F3, so
does G̃. Moreover, since G has no non-trivial finite quotients, neither does G̃: since G̃ is
perfect, such a quotient could not be abelian, so factoring out the image of H2(G, Z) would
yield a non-trivial finite quotient of G.

We now proceed as in Section 6: Wise’s modification of the Rips construction yields a
short exact sequence 1 → N → H → G̃ → 1 with H a residually finite hyperbolic group;
the 1-2-3 Theorem assures us that the associated fibre product P is finitely presented (this
time with a less obvious presentation); and the Platonov-Tavgen criterion tells us that the

inclusion P ↪→ Γ := H ×H induces an isomorphism P̂ → Γ̂.

9. Varying the Subgroup

Let Γ be a residually finite group. We record two remarks concerning the number of
subgroups uP : P ↪→ Γ for which ûP is an isomorphism.

We fix an infinite group G̃ as in the previous section and let H and N be constructed
accordingly.

Proposition 9.1. The direct sum H2n of 2n copies of H contains at least n non-isomorphic,
finitely presented, subgroups P such that P ↪→ H2n induces an isomorphism P̂ → Ĥ2n.

Proof. We have a short exact sequence 1 → N → H
π→ G̃ → 1. For each integer r = 1, . . . , n

we consider the epimorphism πr : Hn → G̃r that maps the first r factors by π and maps
the remaining n− r factors trivially. The kernel of this map is N r ×Hn−r, which is finitely
generated. G̃r ∈ F3 is superperfect and has no non-trivial finite quotients. Thus, as in
Section 6, we conclude that the fibre product associated to πr is a finitely presented group
whose inclusion Pr ↪→ H2n induces an isomorphism on profinite completions.

As in Section 6, one can see that Pr is not isomorphic to Ps when r 6= s by considering
the structure of centralizers in Pr. �
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Proposition 9.2. If F is a free group of rank at least three, then there exist infinitely many
non-isomorphic finitely generated subgroups P of infinite index such that uP : P ↪→ F × F
induces an isomorphism ûP : P̂ → F̂ × F̂ .

Proof. In Section 4 we constructed infinitely many non-isomorphic finitely presented groups
Br, each of which can be generated by three elements; these groups have no finite quotients
and H2(Br, Z) = 0.

Lemma 2.1 shows that the fibre product Pr ⊂ F×F associated to each short exact sequence
1 → N → F → Br → 1 is finitely generated, and the Platonov-Tavgen criterion applies to
the inclusion Pr ↪→ F×F . As in previous arguments, one sees that the subgroup N×N ⊂ Pr

is uniquely determined by the structure of centralizers in Pr. And since Pr/(N ×N) ∼= Br,
it follows that Pq is not isomorphic to Pr if q 6= r. �

It is an open problem to establish an analogous result for finitely presented groups. For
this it would be enough to construct a finitely presented group Γ with the following property:
there exist infinitely many non-isomorphic superperfect groups Q ∈ F3, each with no non-
trivial finite quotients, and short exact sequences 1 → NQ → Γ → Q → 1 with NQ finitely
generated.

10. Grothendieck’s Tannaka Duality Groups

In this section we explain our negative solution to Grothendieck’s Second Problem.

We began this paper by recalling the principal result of Grothendieck’s paper [6]: a homo-

morphism u : Γ1 → Γ2 between residually finite groups induces an isomorphism û : Γ̂1 → Γ̂2

if and only if the restriction functor uA : RepA(Γ2) → RepA(Γ1) is an equivalence of cate-
gories for every (or even one) non-zero commutative ring A.

After proving this theorem and posing the first of the problems we stated in our intro-
duction, Grothendieck outlines an idea for answering that question in the affirmative. His
idea is that one should try to reconstruct a residually finite group Γ from its representation
category RepA(Γ) using the tensor product structure, as we shall now explain.

Let Mod(A) denote the category of all finitely generated A-modules and consider the
forgetful functor

F : RepA(Γ) → Mod(A).

In resonance with his ideas on Tannaka duality, Grothendieck defines clA(Γ) to be the group
of natural self-transformations of the functor F that are compatible with the tensor product
⊗A. Thus an element α ∈ clA(Γ) is a collection (αM) of A-linear isomorphisms αM : F(M) →
F(M), one for each M ∈ Ob(RepA(Γ)), satisfying the following two conditions:
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(1) for all M, N ∈ Ob(RepA(Γ)) and all Γ-equivariant, A-linear maps ϕ : M → N , the
diagram

F(M)
F(ϕ)−→ F(N)yαM

yαN

F(M)
F(ϕ)−→ F(N)

is commutative;

(2) for all M, N ∈ Ob(RepA(Γ)) we have αM⊗AN = αM ⊗A αN .

There is an obvious group homomorphism tΓA : Γ → clA(Γ) defined by tΓA(γ)M := (γ|M) for
all γ ∈ Γ and M ∈ Ob(RepA(Γ)). If Γ is residually finite and A 6= 0, this homomorphism is
injective.

The assignment Γ 7→ clA(Γ) extends to a covariant functor clA on the category of groups:
clA assigns to a group homomorphism u : Γ1 → Γ2, the homomorphism ũA : clA(Γ1) →
clA(Γ2) that sends α = (αM) ∈ clA(Γ1) to ũA(α) ∈ clA(Γ2) according to the rule

ũA(α)N := αu∗A(N) (N ∈ Ob(RepA(Γ2))).

Note that ũA(tΓ1
A (Γ1)) = tΓ2

A (Γ2).

If we restrict our attention to residually finite groups, then we may conflate Γ with tΓA(Γ).
Grothendieck’s Second Problem can now be stated as:

Grothendieck’s Second Problem. If Γ is finitely presented and residually finite, then is
Γ = clA(Γ) for every commutative ring A 6= 0, or at least for a suitable ring A?

This problem is closely related to Grothendieck’s First Problem, as we shall explain now.

Let u : Γ1 → Γ2 be a monomorphism of residually finite groups and suppose that û :
Γ̂1 → Γ̂2 is an isomorphism. Grothendieck deduces from the main result of his paper [6]
that if there is a commutative ring A 6= 0 such that Γ1 = clA(Γ1) and Γ2 = clA(Γ2), then
u : Γ1 → Γ2 is an isomorphism.

Grothendieck identifies suitable rings A in startling generality. For example, he proves
that Γ = clZ(Γ) for all arithmetic groups Γ that have the congruence subgroup property.

In contrast, we prove:

Theorem 10.1. If P is one of the (finitely presented, residually finite) groups constructed
in Theorem 1.1, then P is of infinite index in clA(P ) for every commutative ring A 6= 0.

Proof. Let A 6= 0 be a commutative ring. The inclusion u : P → Γ constructed in Theorem
1.1 induces an isomorphism û : P̂ → Γ̂ and hence (by Grothendieck’s result) an equivalence
of categories u∗A : RepA(Γ) → RepA(P ). Since u∗A is an equivalence, ũA : clA(P ) → clA(Γ) is
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an isomorphism.
P

u−→ ΓytPA

ytΓA

clA(P )
ũA−→ clA(Γ)

The index of P in Γ is infinite, so consideration of the above commutative diagram shows
that the index of P in clA(P ) is infinite. �

The only previous progress on Grothendieck’s Second Problem was achieved by Alex
Lubotzky in [9]. The following is a somewhat rough description of his results (see [9] for
details). Note that in these examples, in contrast to our Theorem 10.1, the rings A are
chosen in relation with the groups Γ.

Lubotzky first extended the result of Grothendieck mentioned above by proving that if Γ
is an arithmetic group that has the weak congruence subgroup property (i.e. the congruence
kernel CΓ ⊂ Γ is finite and abelian), then clZ(Γ) ∼= CΓ × Γ. Thus clZ(Γ) can be a nontrivial
finite extension of Γ.

Lubotzky also proved that if Γ is an S-arithmetic group where the finite set of primes S
enters nontrivially into the definition of Γ, then clZ(Γ) = Γ̂. Thus he discovered examples
in which clZ(Γ) is an uncountable extension of Γ. Moreover, such examples show that the
index of Γ in clA(Γ) can depend on the ring A, because in certain cases there exists a ring
of S-arithmetic integers A such that clA(Γ) = Γ.

References

[1] H. Bass and A. Lubotzky, Nonarithmetic superrigid groups: counterexamples to Platonov’s conjecture,
Annals of Math. 151 (2000), 1151–1173.

[2] G. Baumslag, M.R. Bridson, C.F. Miller III, H. Short, Fibre products, non-positive curvature, and
decision problems, Comm. Math. Helv. 75 (2000), 457–477.

[3] R. Bieri, Normal subgroups in duality groups and in groups of cohomological dimension 2, J. Pure and
Appl. Algebra 7 (1976), 35–51.

[4] M.R. Bridson, Controlled embeddings into groups that have no non-trivial finite quotients, Geom. Topol.
Monogr. 1 (1998), 99–116.

[5] M. Gromov, Hyperbolic groups, in ‘Essays in group theory’ (S.M. Gersten, ed Math. Sci. Res. Inst.
Publ., 8, Springer, New York, 1987, pp. 75-263.
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