
ON THE GROWTH OF GROUPS AND AUTOMORPHISMS

MARTIN R. BRIDSON

Abstract. We consider the growth functions βΓ(n) of amalgamated free products Γ =
A ∗C B, where A ∼= B are finitely generated, C is free abelian and |A/C| = |A/B| = 2. For
every d ∈ N there exist examples with βΓ(n) ' nd+1βA(n). There also exist examples with
βΓ(n) ' en. Similar behaviour is exhibited among Dehn functions.

For Slava Grigorchuk, in friendship, with great respect.

The first purpose of this note is to present explicit examples of groups which show that if one
amalgamates two groups with polynomial growth of degree δ along isomorphic subgroups
of index two, then the growth of the resulting group may be polynomial of degree δ + 1,
polynomial of greater degree, or may be exponential. Similar jump behaviour is exhibited for
Dehn functions of finite-index amalgams of both virtually abelian and virtually free groups.

Let G be a group with finite generating set S. The growth function βG,S(n) counts the
number of elements of G that can be expressed as a word of length at most n in the generators
S and their inverses. If S ′ is another finite generating set for G then there exists a constant
k > 0 such that βG,S(n) ≤ βG,S′(kn). We write f(n) � g(n) when functions f, g : N → N
are related by a constant in this way, and we write f(n) ' g(n) if, in addition, g(n) � f(n).
It is common to omit the subscript S from βG,S(n) and write βG(n) with the understanding
that this function is only well-defined up to 'equivalence. Note that if H ⊂ G is a subgroup
of finite index, then βH(n) ' βG(n).

All finitely generated groups have growth � en, because cn ' en if c > 1, and if c > 2|S|
then there are less than cn reduced words of length n over the alphabet S±1. In his landmark
paper [9], R. Grigorchuk proved that there exist finitely generated groups G of intermediate
growth, i.e. eδn � βG(n) � eηn where 0 < δ < η < 1 (see also [10], [11]). On the other
hand, the growth of every known finitely presented group is either ' en or else ' nd for
some d ∈ N. A celebrated theorem of M. Gromov [13] states that if βG(n) � np, then G has
a nilpotent subgroup G0 of finite index and βG(n) ' nd where d ≤ p is an integer that can
be calculated in terms of the ranks of the factors of lower central series of G0. See [12] for a
wide-ranging survey of results concerning the growth of groups; also [14] Chap. VI.

Let Γ = A ∗C B be an amalgamated free product of finitely generated groups. We assume
that C has index at least 2 in both A and B. It follows immediately from the normal form
theorem for amalgamated free products that Γ has exponential growth if |A/C| ≥ 3.
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We consider the case |A/C| = |B/C| = 2. Since C is normal in both A and B, it is normal
in Γ. Thus we have a short exact sequence 1 → C → Γ → D∞ → 1, where D∞ = Z2 ∗ Z2 is
infinite dihedral.

Remark 1. Each of the constructions described below exploits the simple observation that,
given any group C and any infinite dihedral group D ⊂ Aut(C), one can construct C o D
by amalgamating two groups of the form C o Z2 along the visible copies of C.

Given any exact sequence of of finitely generated groups 1 → N → Γ → Q→ 1 it is easy
to see that βN(n)βQ(n) � βΓ(n). Here are some examples where this bound is not sharp.

Example 1. Let {x1, . . . , xm} be a basis for Zm and let |v| denote the distance of v from
the identity in the corresponding word metric. Associated to each φ ∈ GLm(Z) one has the
semi-direct product Zm oφ Z = 〈x1, . . . , xm, t | ∀i, j, [xi, xj] = 1, txit

−1 = φ(xi)〉.

(i) If φ has an eigenvalue λ with |λ| > 1, then ‖φn‖ := maxi |φn(xi)| grows as an exponential
function of n. To see this, one observes that there exists a linear map L : Cm → C and
vectors v ∈ Zm such that L ◦ φ = λL and L(v) 6= 0; one then checks that for any integer
r > 1/|λ, the elements tr and v generate a free semigroup of rank 2 in G = Zm oφ Z, and
therefore G has exponential growth — see page 189 of [14].

(ii) By direct calculation (or by [1]) one sees that if ψ2 =

(
1 1
0 1

)
then the Heisenberg group

G2 = Z2oψ2 Z has growth ' n4. More generally, if ψ2d ∈ GL2d(Z) is the matrix with d blocks
of ψ2 down the diagonal and zeros elsewhere, then G2d = Z2d oψ2d

Z has growth ' n3d+1.

(iii) To obtain the maximum degree of polynomial growth among groups of the form G =
Zm oφ Z, one can take φ ∈ GLm(Z) to be any upper-triangular matrix with ones on the
diagonal, non-negative entries above the diagonal, and strictly positive entries in the super-
diagonal. The growth n 7→ ‖φn‖ of such φ is polynomial of degree m− 1, and βG(n) '
n

1
2
(m2+m+2).

We return to the consideration of 1 → C → A∗CB → D∞ → 1. After passing to the cyclic
subgroup of index 2 in D∞ we can split this sequence to obtain a subgroup Γ0 = C oφ Z of
index 2 in Γ = A ∗C B. The above examples show that the growth of Γ depends very much
on the automorphism φ ∈ Aut(C).

Remark 2. If A and B have polynomial growth and C has index 2 in both A and B, then
A ∗C B must have either polynomial or exponential growth. Indeed, by Gromov’s Theorem
[13], A and B are virtually nilpotent, hence A ∗C B, being commensurable with C o Z, is
virtually solvable. Solvable groups cannot have intermediate growth [16].

Theorem 1. For each integer d > 2 there exist groups of the form Γ = A ∗C A with
βΓ(n) ' en, where A ∼= A = Zd oα Z2 and C ∼= Zd has index 2 in A and A.
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Proof. Fix a basis {x, y} of Z2. Let A2 = Z2 oα Z2 where α ∈ GL2(Z) has matrix

(
−1 0
0 1

)
.

Let φ =

(
1 2
0 1

)
. We amalgamate A2 and A2 along Z2 by the identifications x = φ(x) and

y = φ(y) to obtain Γ = Z2 o D∞, where Z2 = 〈x, y〉 and in the action of D∞ = 〈a, a〉, the

involution a acts on Z2 as α while a acts as φ−1αφ, which has matrix

(
−2 −3
1 2

)
. Thus Γ

contains as a subgroup of finite index Γ0 = Z2 oψ Z where ψ = αφ−1αφ, which describes the

action of aa, has matrix

(
2 3
1 2

)
. This matrix is hyperbolic (its eigenvalues are 2±

√
3). It

follows that Γ0, and hence Γ, has exponential growth.

Entirely similar constructions yield examples with A = Zd o Z2. Indeed it suffices to
extend the given α, φ ∈ GL2(Z) to automorphisms of Zd that act trivially on all but the first
two elements of a basis. �

Proposition 2. For each d ∈ N there exist groups of the form Γd = B ∗C B with βΓd
(n) '

nd+1βB(n), where B ∼= B = Z2d oαd
Z2 and C ∼= Z2d has index 2 in B and B.

Proof. Fix a basis for Z2d and let αd be the involution whose matrix has d copies of α (the
involution of the previous proposition) down the diagonal and zeros elsewhere. As in the

previous proposition, we amalgamate Z2d and Z2d
but this time replacing φ by the unipotent

automorphism ψ2d ∈ GL2d(Z) of Example 1(ii). Arguing as above, we see that the resulting
amalgam Γ has as a subgroup of index two Z2d oψ2

2d
Z, because ψ2

2d = αd(ψ
−1
2d αdψ2d). And

Z2d oψ2
2d

Z is a subgroup of index 2 in the group G2d of Example 1(ii). �

One obtains torsion-free versions of the above phenomena by replacing Z2 with Z and by
taking C to be Z2d o 2Z.

Different choices of upper-triangular dihedral subgroups in GLm(Z) can be used to vary
the jump in the degree of growth obtained in Proposition 2; the examples given were chosen
for their simplicity. The following example enjoys the greatest possible degree of polynomial
growth among amalgams of the form (Zm oα Z2) ∗Zm (Zm oα′ Z2).

Example 2. Let U ∈ GLm(Z) be the upper-triangular matrix with all diagonal entries
equal to 1 and all entries above the diagonal equal to 2. Let E be the diagonal matrix
diag(1,−1, 1,−1, . . . ). One calculates that P := EU has order 2 in GLm(Z). Thus Zm oU Z
is a subgroup of index 2 in (Zm oP Z2) ∗Zm (Zm oE Z2). As noted in Example 1(iii), the
growth of Zm oU Z is 1

2
(m2 +m+ 2).

Remark 3. Groups of the form Zm oφ Z and their finite extensions are not asynchronously
automatic if φ ∈ GLm(Z) has infinite order [8], [3]. Thus the above examples show that
when one amalgamates a pair of automatic groups (indeed virtually abelian groups) along
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subgroups of index 2, the result need not even be asynchronously automatic. In contrast,
groups of the form Zn ∗C Zm are always automatic. See [2] for further conditions that
guarantee the (asynchronous) automaticity of amalgams.

Dehn Functions.

Recall that the Dehn function of a finitely presented group Γ measures the complexity of
the word problem in Γ by giving a bound on the number of defining relations that one must
apply in order to show that a word in the generators represents the identity; the bound is
given as a function of the length of the word. The asymptotic nature of Dehn functions is
unaffected by passage to finite-index subgroups. A finitely generated virtually abelian group
is either virtually cyclic or else has a quadratic Dehn function. In [5] we proved that any
group of the form Zm oφ Z has Dehn function ' n2‖φn‖. Our earlier examples are therefore
sufficient to prove the following results, which are similar to constructions of N. Macura [15].

Proposition 3. There exist groups A1 and A2 with quadratic Dehn functions and isomorphic
subgroups Ai ⊃ Ci ∼= C of index 2, such that the Dehn function of A1 ∗C A2 is exponential.

Proposition 4. For each d ≥ 2, there exist groups A1
∼= A2 with quadratic Dehn functions

and isomorphic subgroups Ai ⊃ Ci ∼= C of index 2, such that the Dehn function of A1 ∗C A2

is polynomial of degree d.

In contrast to Zm o Z, free-by-cyclic groups have linear or quadratic Dehn functions [6].
On the other hand, it is proved in [4] that if F and L are finitely generated non-abelian
free groups, then the Dehn function of a semi-direct product F oΦ L depends heavily on the
growth1 of the automorphisms in Φ(L) ⊂ Aut(F). If Γ = F oΦ L and the image of Φ is
cyclic 〈φ〉, then the Dehn function of Γ is δΓ(n) ' n2‖φn‖, where ‖φn‖ is defined to be the
maximum of the lengths of the words φn(ai) for a fixed basis {a1, . . . , am} of F . It follows
that δΓ(n) is polynomial of degree at most m+ 1 or else is exponential (see [4]).

Theorem 5. Let F be a free group of rank m. Given any integer d with 2 ≤ d ≤ m + 1,
one can construct a group of the form Γ = A ∗F B so that the F is normal in A and B, with
|A/F | = |B/F | = 4, and the Dehn function of Γ is polynomial of degree d.

There also exist such groups with exponential Dehn functions.

Proof. We shall describe in detail how to construct an example where the Dehn function
is polynomial of degree m + 1. Polynomials of lesser degree can be obtained by writing
F = Fk ∗ Fl and restricting our construction of automorphisms to Fk then extending by the
identity on Fl. Exponential examples are obtained by replacing the Û we construct by any
element of exponential growth that is contained in an infinite dihedral subgroup.

1There are several natural ways to define the growth of an automorphism of a finitely generated group;
for abelian and free groups, these definitions are all equivalent [4].
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The automorphism U of Zm described in Example 2 lifts to the following automorphism
Û of the free group F = Free(a1, . . . , am),

Û(a1) = a1 and Û(ai) = a1a2 . . . ai−1aiai−1 . . . a2a1 for i ≥ 2.

Since Û is a positive automorphism, the length of Û(ai) is the `1-norm of U(ai) ∈ Zm

with respect to the basis {a1, . . . , am}, and hence the growth of Û is the same as that of
U ∈ GLm(Z), namely polynomial of degree m− 1.

Let τ ∈ Aut(F) be the involution ai 7→ a
ε(i)
i where ε(i) = (−1)i+1. One calculates that

σ = τÛ is an involution. Thus Û is a generator of the cyclic subgroup of index 2 in the
dihedral group ∆ = 〈σ, τ〉 ⊂ Aut(F).

Let A = F oσ Z4 where the generator of Z4 acts as σ, and let B = F oτ Z4 where the
generator of Z4 acts as τ . By amalgamating the visible copies of F in A and B we obtain
Γ = A ∗F B ∼= F oΨ (Z4 ∗ Z4), where the image of Ψ is ∆. By passing to a subgroup of
index four in Z4 ∗ Z4 we obtain a subgroup of finite index in Γ of the form F oΦ L with L
free and Φ(L) = 〈Û〉. Since ‖Ûn‖ ' nm−1, it follows from [4] that the Dehn function of Γ is
polynomial of degree m+ 1. �
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