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Abstract. Explicit constructions are given to illustrate the loss of control
that ensues when one replaces the regular languages of automatic group
theory with larger families of languages.

The results of [2] show that one can distinguish between various classes of
combable groups by analyzing the grammatical complexity of the combings
that the groups admit. That work clarifies the boundaries of automatic group
theory [8] and complements the results of [4], in which Gilman and I proved
that one can bring all 3-manifolds groups within the compass of automatic
group theory by allowing indexed languages in place of regular languages.

The purpose of the present note is to record some observations in the spirit
of [2] and [3]. Although these observations are not difficult to prove, I feel
that they are worth recording because they provide clear illustrations of the
somewhat wild behaviour that one encounters when one replaces the regular
languages of automatic group theory with larger classes such as context-free
languages or indexed languages. In contrast to the results of [3], the wildness
that we exemplify here does not concern the structure of the class of groups
that admit the specified type of combing. Rather, it concerns the range of
combings that individual groups (even well-understood ones) admit when one
relaxes the regularity assumption.

For example, we shall prove that although infinite hyperbolic groups have a
unique automatic structure up to equivalence, all such groups admit infinitely
many inequivalent context-free combings.

1. Combings

A choice of generating set for a group G is a surjective monoid homomor-
phism µ : Σ∗ → G, where Σ∗ is the free monoid on the set Σ. We shall always
assume that Σ is finite. It is convenient to assume that Σ is equipped with
an involution, written s 7→ s−1, such that µ(s−1) = µ(s)−1, and we shall do so
without further comment. We write |w| to denote the length of a word w ∈ Σ∗.
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We consider maps σ : G → Σ∗ such that µ ◦ σ(g) = g for all g ∈ G. It is
often fruitful to regard σ(g) as a choice of discrete path from 1 ∈ G to g: at
integer times t ≤ |σ(g)| this path visits the group element µ(σ(g)t), where wt
denotes the prefix of length t in a word w.

The map σ is called a combing of G with the (synchronous) fellow-traveller
property if the paths to adjacent vertices stay uniformly close together. More
precisely, there should exist a constant K > 0 such that for all g, g′ ∈ G,

(1.1) d(µ(σ(g)t), µ(σ(g′)t)) ≤ K d(g, g′)

for all t ≤ max{|σ(g)|, |σ(g′)|}, where d is the word metric associated to our
choice of generators, i.e. the unique left-invariant metric on G such that d(1, g)
is the length of the shortest word in µ−1(g).

One calls σ a bicombing if it satisifes the additional condition:

(1.2) d(µ(s.σ(s−1gs′)t), µ(σ(g)t)) ≤ K

for all s, s′ ∈ Σ and g ∈ G.
Let A is a full abstract family of languages, such as the regular languages

Reg, the context-free languages CF, or the indexed languages Ind. One says
that σ is an A-combing if it satisfies the fellow-traveller property and the image
of σ is a language in the class A. In the special case A = Reg, an A-combing
is called an automatic structure for G. Correspondingly, one has A-bicombings
and biautomatic structures.

We refer the reader to Hopcroft and Ullman [10] for an introduction to formal
language theory, and to Epstein et al. [8] for a thorough account of how the
study of such languages came to play an important role in group theory and
geometry/topology.

A celebrated theorem of Muller and Schupp [11] (which relies on Dunwoody’s
accessibility Theorem [7]) states that, given a finite generating set for a group
G, the set of words representing the identity in G is a context-free language if
and only if G contains a free subgroup of finite index. We need an easy part
of this result:

Lemma 1.1. If F is a free group with finite generating set Σ = Σ−1, then the
set of words in Σ∗ that represent the identity in F is a context-free language.

Proof. We’ll describe a pushdown automaton M over the alphabet Σ whose
accepted language is the given set of words. The stack alphabet of M is
S ∪ S−1, where S is a fixed basis for F .

Let k be the maximum of the lengths of the reduced words {σa : a ∈ Σ} in
the letters S±1 such that σa = a in F . When the head of M reads an input
letter a ∈ Σ, it pops the word w of length k written at the top of the stack
and replaces it with the freely reduced form of the word wσa, where k is the
minimum of k and the height of the stack. M accepts on empty stack. �
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Corollary 1.2. Let G be a group with a finite set of generators µ : Σ∗ → G.
Let L ⊂ Σ∗ be a regular language. If φ : G→ F is an epimorphism to a finitely
generated free group, then {w ∈ L | µ(w) ∈ kerφ} is context-free.

Proof. According to the lemma, the language {w ∈ Σ∗ | φ ◦ µ(w) = 1} is
context-free. The intersection of a context-free language and a regular language
is always context-free (see [10]). �

2. combings of hyperbolic and automatic groups

Rather than indulging in a general discussion, let us explore the point made
in the abstract of this paper by looking at Reg-combings and CF-combings for
hyperbolic and automatic groups.

We work modulo Hausdorff equivalence: two combings of a finitely generated
group G, say σ : G → Σ∗ and σ′ : G → Σ∗, are said to be equivalent is there
exists a constant C > 0 such that the Hausdorff distance between σ(g) and
σ′(g) is less than C for all g ∈ G, where we regard words as discrete paths in
G and distance is measured with respect to an arbitrary word metric. (This is
an easy notion of equivalence to state and it is sufficient for our purposes, but
in many settings it is wiser to consider more refined notions of equivalence —
cf. [1] and [12].)

Associated to any combing one has the length function

Lσ(n) := max{|σ(g)| | d(1, g) ≤ n}.

In general one wishes to remove the dependence of Lσ on the choice of word
metric and to concentrate on the qualitative growth of Lσ; this is achieved by
focusing on the ' equivalence class of Lσ, where ' is the standard relation
of geometric group theory. We shall be concerned only with the condition
Lσ(n) ' n, which is equivalent to the statement that there exists a constant
K > 0 such that |σ(γ)| ≤ K d(1, γ) for every γ ∈ Γ.

Theorem 2.1. Let Γ be a hyperbolic group.

(1) Up to equivalence, Γ admits a unique Reg-combing1.

(2) If Γ is non-elementary and F 6= 1 is a free group, then every epi-
morphism Γ → F with infinite kernel gives rise to infinitely many
inequivalent CF-combings σ of Γ, each with Lσ(n) ' n.

We should offset the second part of the theorem by pointing out that there
exist infinitely many equivalence classes of CF-combings on any infinite auto-
matic group for rather trivial reasons; see Proposition 2.5.

Proof. The first part of this theorem is a well-known result due to Jim Cannon
— indeed this is the result that began automatic group theory [6]. We recall

1i.e. automatic structure
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the essential points of the proof for the reader’s convenience (see Sections 3.2
to 3.5 of [8] or Sections III.H.1 and III.Γ.2 of [5] for details).

First, one uses Cannon’s finite cone types argument to prove that for any
fixed generating set µ : Σ → Γ, the set of geodesic words in Σ∗ is a reg-
ular language. One then obtains a regular combing by choosing the “best”
geodesics: linearly order Σ and give Σ∗ the induced lexicographical ordering
— u ≺ w if u is shorter than w or has the same length and precedes it in the
≺-dictionary; because the language of geodesics is regular, {w ∈ Σ∗ | µ(u) =
µ(w) implies u ≺ w} is as well.

It follows easily from the definition of a hyperbolic group that any combing
of Γ by geodesics satisfies condition (1.2), and hence is biautomatic. Indeed
something much stronger than (1.2) is true: there is a constant K = K(δ, λ, ε)
such that if two (λ, ε)-quasi-geodesics in a δ-hyperbolic geodesic space begin
and end a distance 1 apart, then the Hausdorff distance between their images
is less than K. (Recall that a path c : [0, T ]→ X in a metric space is a (λ, ε)-
quasi-geodesic if 1

λ
|t− t′| − ε ≤ d(c(t), c(t′)) ≤ λ|t− t′|+ ε for all t, t′ ∈ [0, T ].)

Since the combing lines of an automatic structure are always (λ, ε)-quasi-
geodesics (where λ and ε depend only on the automatic structure — Lemma
2.3.9 of [8]), the above stability property shows that, up to equivalence, every
automatic structure on a hyperbolic group is equivalent to the geodesic one
described above.

We now turn to the second part of the theorem.

Lemma 2.2. Let F be the free group with finite basis B, and let Γ = N oF be
a group with biautomatic structure σ : Γ → Σ∗. Given γ ∈ Γ, write γ = wn,
where w is a freely-reduced word over B±1 and n ∈ N .

Then σ̃(γ) := wσ(n) is a CF-combing Γ→ (Σ ∪ B±1)∗, and Lσ̃(m) ' m.

Proof. First we check that σ̃ satisfies condition (1.1). If γ = wn and b ∈ B±1

then σ̃(γb) = wbσ(b−1nb), where wb is the freely reduced form of wb. Thus
σ̃(γ) and σ̃(γb) have a common prefix (of length |w|±1) followed by the suffixes
bσ(b−1nb) and σ(n), or else σ(b−1nb) and b−1σ(n). In either case, the paths
from 1 ∈ Γ determined by σ̃(γ) and σ̃(γb) fellow-travel because σ satisifes
condition (1.2).

In order to prove that Lσ̃(m) ' m, we need the following observations.
First, in the word metric associated to Σ∪B±1, for any w ∈ F and n ∈ N one
has d(1, wn) ≥ k−1 |w| where k is the maximum length of the projections of
the s ∈ Σ to F . Secondly, because σ is a biautomatic structure, Lσ(m) ' m,
so there is a constant K such that σ(γ) ≤ K d(1, γ) for all γ. Finally, by the
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triangle inequality, d(1, n) = d(w,wn) ≤ d(w, 1) + d(1, wn) ≤ |w|+ d(1, wn).

|σ̃(wn)| = |w|+ |σ(n)|

≤ |w|+K d(1, n)

≤ |w|+K (|w|+ d(1, wn))

= (1 +K)|w|+K d(1, wn) ≤ [k(1 +K) +K] d(1, wn).

The product L1L2 of a regular language L1 and a context-free language L2 is
context-free. The language of reduced words over B±1 is regular, and according
to Corollary 1.2 the language σ(N) is context-free. �

Returning to the proof of the theorem, we consider a map h : Γ� F , choose
a basis {b1, . . . , bn} for F , and choose a splitting bi 7→ b̃i ∈ Γ to get Γ = NoF .
Using the resulting factorisations γ = wn, we define σ̃(γ) = wσ(n), where σ
is the geodesic combing of Γ described in the proof of (1) and w is a reduced

word in the letters b̃±1
i . The lemma tells us that σ̃ is a CF-combing of Γ, with

Lσ̃(m) ' m.
By varying the splitting of h, one obtains inequivalent combings of Γ. For

example, since N is infinite it contains an element, s say, such that s and b̃1

generate a free subgroup of rank 2 (see [9] or Section III.Γ.2 of [5]). For each

i ∈ Z we may change our splitting of h by replacing b̃1 with b̂1 = sib̃1; this
will result in a CF-combing where the combing line for b̃r1 begins (sib̃1)r . . . .

If i 6= j, the prefixes (sib̃1)r and (sj b̃1)r can be forced arbitrarily far apart by
increasing r. �

Remarks 2.3. (1) Lemma 2.2 may be viewed in the following general context: if
G = NoQ is bicombable with combing σG, and Q is combable with a combing
σQ that has the comparable lengths property2 (σQ may be totally unrelated to
σG), then σ(qn) := σQ(q)σG(n) defines a combing of G that satisfies condition
(1.1) and has length � LσG(n) + LσQ(n).

(2) Although the non-regular combings in the above theorem have linear
length functions, their combing lines are never quasi-geodesic: certain subpaths
of the combing lines will be extremely (metrically) inefficient. This behaviour
is manifest in the first of the following examples.

Examples 2.4. (1) We apply the construction of Lemma 2.2 with the role of
Γ played by the free group F (a, b), decomposed by the obvious splitting of the
map F (a, b) → Z that sends a to a generator and b to the identity. In this
case we obtain a CF-combing σ : F → {a, a−1, b, b−1}∗ in which σ((ab)n) =
an(a−1)n−1(ba)n−1b.

2e.g. if σQ is an automatic structure; see [2] for the general definition.
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(2) Z = 〈t〉 admits infinitely many (uninteresting) inequivalent CF-combings
σ with Lσ(n) ' n. Indeed for any positive integers m 6= m′, the following CF-
combings σm, σm

′
: Z→ {t, t−1}∗ are inequivalent: σm(ti) = tmi(t−1)(m−1)i.

Continuing the theme of the above example, we note that on any infinite
automatic group one can construct infinitely many (pathological) inequivalent
CF-combings of linear length.

Proposition 2.5. Let σ : Γ → Σ∗ be an automatic structure, let t ∈ Γ be an
element of infinite order, and let m be a positive integer. Define σm : Γ →
(Σ ∪ {t, t−1})∗ by σm(g) = σ(g)tm |σ(g)|t−m |σ(g)|.

Then, σm is a CF-combing with Lσm(n) ' n. If m1 6= m2, then σm1 and
σm2 are not equivalent.

Proof. We shall prove that σm(Γ) is context-free by describing a pushdown
automaton M over the alphabet (Σ ∪ {t, t−1}) that accepts precisely this lan-
guage.
M consists of a finite state automatonM0 whose accepted language is σ(Γ)

and a stack with a 1-letter stack alphabet. We decree thatM should stop and
reject a word if in the course of reading it any letter s ∈ Σ occurs after an
occurrence of t±1. Also, M rejects the word if it reads a t after a t−1. Thus
all accepted words will be of the form uv with u ∈ Σ∗ and v ∈ {t}∗{t−1}∗.

AsM reads the word u from the input tape, the FSAM0 computes whether
or not u is in the image of σ; at the same time m letters are pushed on the
stack for each letter of u that is read. When u has been read completely, the
computation continues if and only if u is in the image of σ.

If the computation continues, as M reads each letter t from v it pushes a
further m letters on the stack. Finally, as M reads each letter t−1, it pops
2m letters from the stack. The word uv is accepted by M only if the stack is
empty when the tape has been read completely. �
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