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Talk 1. (André) Introduction and overview.

This is going to be an introduction to this term’s topic, a conjectural relation between super-
symmetric quantum field theories and cohomology theories, and in particular elliptic coho-
mology. Introduce/sketch these notions (SuSy QFTs and (topological) modular forms), give
an idea of Stolz-Teichner’s main conjecture, and possibly comment on relations to physics
(see also talks 7 and 8).

References (none of these lists are exhaustive): [ST04, Seg87, Seg07]

Talk 2. Supermanifolds and de Rham cohomology

Throughout this seminar, we will meet supermanifolds frequently. Introduce supermanifolds
via two approaches: via ringed spaces and via their functor of points. Show how deformation
classes of smooth supersymmetric quantum field theories of dimension (0|1) on a manifold
M reproduce the de Rham cohomology of M , and comment on the fact that there is only a
single deformation class of (0|0)-dimensional field theories on M .

References: The result on (0|1)-dimensional field theories are in [HKST11], References on
supermanifolds include [Rog07, DM99, Fre99, Sac08]

Talk 3. (1|1)-dimensional field theories and K-theory I

The goal of this and the next talk is to survey the relation between K-theory and (1|1)-
dimensional Euclidean field theories [HST10] (please use this version!). This talk will cover
several models for K- and KO-theory and their equivalence. Recall Clifford algebras and their
periodicity and survey sections 1–5 of [HST10] (if short on time, focus on models (1), (4) and
(5) for KO-theory).

Talk 4. (Filippos?) (1|1)-dimensional field theories and K-theory II

This talk will explain the notion of supersymmetric field theories with geometric data [HST10,
Section 6] and how these form a topological space. The main goal is to explain that this
topological space is a classifying space for KO-theory [HST10, Theorem 6.29]. If time permits,
say a few words about the models for K-theory spectra from sections 7 and 8.

Talk 5. Integrality and holomorphicity of the RR partition function

In this talk we start to uncover the relation between (2|1)-CFTs and topological modular
forms. Introduce the notion of a CFT of degree n [ST04, Def. 2.3.16] and its partition
function [ST04, Def. 3.3.5]. Explain the statement that this partition function is a weak
integral modular form [ST04, Thm. 3.3.14], comment on the relation to K-theory [ST04,
Thm. 1.0.2].

Talk 6. (Severin) Sigma models with values in string manifolds

Explain/sketch Witten’s computation of the index of the Dirac operator on the free loop
space of a manifold M , the original approach to the Witten genus [Wit88, Wit87]. Explain
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that when M is spin, the Witten genus is integral (see also [Sto96]). Explain the notion of
a string structure (e.g. [Sto96]) and its relation to the Witten genus. For a modern point of
view, related to the Stolz-Teichner programme, towards the Witten genus and its modularity
on string manifolds, survey [BE19].

Talk 7. Detecting π3(tmf) = Z/24Z

The elliptic genus is a map (see also Talk 5)

{Minimally SuSy 2d QFTs with anomaly n} −→ {Modular forms of weight n/2}

A lot of the subtle information about tmf is contained in its torsion groups, which are lost
when passing to modular forms. Conjecturally, the above map has a lift

{Minimally SuSy 2d QFTs with anomaly n} −→ πn(tmf) ,

and thus field theories should detect this torsion. For n = 3, we have π3(tmf) = Z/24Z,
and a map from field theories exhibiting this has been constructed; survey this construction
from [GJFW19, GJF19].

Talk 8. The spectrum of supersymmetric QFTs

Explain how the collection of supersymmetric QFTs assembles into a spectrum, which is
conjectured to be equivalent to tmf, and survey how various field theories represent classes in
tmf [JF20].
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