next up previous
Next: WaveletSquare.m Up: Haar and Multiwavelet homogenization Previous: PeriodicExtension.m


Smoothing.m

Usage : resu=Smoothing(sig,Type,NbIter,BType)
   
  e.g. resu=Smoothing(A,'Haar','auto')
   
Input : sig a \( n\times n\times \left( 1,2\textrm{ or }3\right) \)array representing
   
  an isotropic diffusion operator coefficient
   
  \( \frac{d}{dx}\textrm{sig}(x,y)\frac{d}{dx}+\frac{d}{dy}\textrm{sig}(x,y)\frac{d}{dy} \)
   
  a diagonal diffusion operator coefficient
   
  \( \frac{d}{dx}\textrm{sig}(x,y,1)\frac{d}{dx}+\frac{d}{dy}\textrm{sig}(x,y,2)\frac{d}{dy} \)
   
  a symmetric diffusion operator coefficient
   
  \( \frac{d}{dx}\textrm{sig}(x,y,1)\frac{d}{dx}+\frac{d}{dy}\textrm{sig}(x,y,2)\frac{d}{dy}+ \)
   
  \( \frac{d}{dx}\textrm{sig}(x,y,3)\frac{d}{dy}+\frac{d}{dy}\textrm{sig}(x,y,3)\frac{d}{dx} \)
   
  type can be 'Haar' or 'MW'
   
  NbIter can be any number or 'auto' which means the smoothing method
   
  determines itself when to stop (variations between two steps less than \( 5\% \))
   
  BType (optional), if set to 2, sets globally periodic boundary
   
  condition instead of local ones.


The output is a smoothed image, homogenized locally according to the Haar or Multiwavelet homogenization formulas.


See also HaarSmoothing (Paragraph A.7), MWSmoothing (Paragraph A.9) and AnalyticWaveHom (Paragraph A.1).


next up previous
Next: WaveletSquare.m Up: Haar and Multiwavelet homogenization Previous: PeriodicExtension.m
Yves Capdeboscq 2002-01-15