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Swarming by Nature or by design?

Tho ghysice o flocking

Fish schools and Birds flocks.
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Individual Based Models (Particle models)

Swarming = Aggregation of agents of similar size and body type generally moving in
a coordinated way.

Highly developed social organization: insects (locusts, ants, bees ...), fishes, birds,
micro-organisms (myxo-bacteria, ...) and artificial robots for unmanned vehicle

operation.
ATTRACTION

Interaction regions between individuals”

aAoki, Helmerijk et al., Barbaro, Birnir et al.
@ Repulsion Region: Ry.
@ Attraction Region: Ay.

@ Orientation Region: Ok.

Metric versus Topological Interaction
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2nd Order Model: Newton’s like equations

D’Orsogna, Bertozzi et al. model (PRL 2006):
dx,-

=y

E - Ly
mﬂ =(a—p \Vi|2)Vf - ZVU(LX,' =)
dt ‘ j#i ‘

U(r)

Pair-wise
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2nd Order Model: Newton’s like equations

dv; 2
L= (=B l)vi— > VU(x = x)).

J#

Model assumptions:

@ Self-propulsion and friction terms
determines an asymptotic speed of U
Jalp.

@ Attraction/Repulsion modeled by an
effective pairwise potential U(x).

Pair-wise

U(r)= —Cae "t Cre R,

One can also use Bessel functions in 2D
and 3D to produce such a potential.
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2nd Order Model: Newton’s like equations

dv; 2
L= (=B l)vi— > VU(x = x)).

J#

Model assumptions: C=Cr/Cx>1,L=1lg/ls <1and
CP <1
@ Self-propulsion and friction terms

determines an asymptotic speed of U
Va/B.

@ Attraction/Repulsion modeled by an
effective pairwise potential U (x).

Pair-wise

U(r)= —Cae "t Cre R,

One can also use Bessel functions in 2D
and 3D to produce such a potential.
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Model with an asymptotic velocity

Classification of possible patterns: Morse potential. D’Orsogna, Bertozzi et al.

model (PRL 2006).
= ]V
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Model with an asymptotic speed

Typical patterns: milling, double milling or flocking:
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Velocity consensus model

Cucker-Smale Model (IEEE Automatic Control 2007):
dxi
dt
dV,‘

]\/
o= Z aij (vj = i) ,
p

with the communication rate, v > 0:

= Vi,

1

ay = allxi —5) = G Ey
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Velocity consensus model

Cucker-Smale Model (IEEE Automatic Control 2007):
dxi
dt
dV,‘

]\/
o= Z aij (vj = i) ,
p

with the communication rate, v > 0:

= Vi,

(b —f) =
aij = al |(xXi — Xj|) = = -
! ! (1 + [ —x2)”
Asymptotic flocking: v < 1/2; Cucker-Smale.

General Proof for 0 < v < 1/2; C.-Fornasier-Rosado-Toscani.
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[e] Jele}
Variations

Leadership, Geometrical Constraints, and Cone of Influence

Cucker-Smale with local influence regions:

E =V,
S LR e
JEX; (1)

where ¥;(r) C {1,...,N} is the set of dependence, given by

2,‘(1‘) = {ISKSNMZO‘}
x| vi
Cone of Vision:
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Variations

Roosting Forces

Adding a roosting area to the model:

dx _
d "

dv; 2 i 1L e 1
= (=B — D VU —x)) =t Vi [6(x) - vit]

i 4
. . . . b
with the roosting potential ¢ given by ¢(x) := — (ﬂ) .
4 RRoost
Roosting effect: milling flocks N = 400, Rioost = 20.
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Adding Noise

Self-Propelling/Friction/Interaction with Noise Particle Model:
Xi:ZVh
dvi= | (o= Bil*)vi = Vi, Y U(xi — x|) | dt+ V20 dli(r)
jF#i

where I';(¢) are N independent copies of standard Wiener processes with values in
R and ¢ > 0 is the noise strength.
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Adding Noise

Self-Propelling/Friction/Interaction with Noise Particle Model:

Xi = vi,

dvi= | (o= Bil*)vi = Vi, Y U(xi — x|) | dt+ V20 dli(r)
jF#i
where I';(¢) are N independent copies of standard Wiener processes with values in
R? and ¢ > 0 is the noise strength. The Cucker—Smale Particle Model with Noise:

dxizzvmh,

N

dvi = a(l —xil) (v — vi)di +

J=1

N
20 " a(lx; — x|) dTi(r) .
j=1
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Vicsek’s model

Assume N particles moving at unit speed: reorientation & diffusion:
dXi = Vidt,

i
av, =V2P(V)) o dB, — P(V) | & SOKX=X)(V, — V) | ar.

j=1

Here P(v) is the projection operator on the tangent space at v/|v| to the unit sphere
inR% ie.,

VRV

P(yv) =1 —
R TTE

Noise in the Stratatonovich sense: imposed by the rigorous construction of the
Brownian motion on a manifold. Rigorous derivation: Bolley-Caiiizo-C.

Main issue: phase transition? Degond-Liu-Frouvelle.
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1st Order Friction Model:

Edelshtein-Keshet, Mogilner (JMB 2000): Assume the variations of the velocity and
speed are much smaller than spatial variations, then from Newton’s equation:

dzx,' dxi
"o T +;VU(‘xi —x[)=0
JF1
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so finally, we obtain

dx,'
il > VU(x - x)

i
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Edelshtein-Keshet, Mogilner (JMB 2000): Assume the variations of the velocity and
speed are much smaller than spatial variations, then from Newton’s equation:

m d zx,'

d?t

dx;
ta x—i—ZVU\x, x)) =
J#L

so finally, we obtain
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—' =— Z VU(|xi — xj|) in the continuum setting = {
JAL
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1st Order Friction Model:

Edelshtein-Keshet, Mogilner (JMB 2000): Assume the variations of the velocity and
speed are much smaller than spatial variations, then from Newton’s equation:

dx; dx,
m-o + o —‘,—ZVU (|xi —x]) =
J#L
so finally, we obtain
d” di )) =
@ =— Z VU(|xi — xj|) in the continuum setting = +div (pv)
i v=—-VUxp

Flock Solutions: stationary states x; of the 1st order model are connected to
particular solutions of the Bertozzi etal 2nd order model of the form

xi(l) = xf + tvg

with vo fixed with |v|* = %
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1st Order Friction Model:

Edelshtein-Keshet, Mogilner (JMB 2000): Assume the variations of the velocity and
speed are much smaller than spatial variations, then from Newton’s equation:

m d zx,'

d?t

dx;
ta x—i—ZVU\x, x)) =
J#L

so finally, we obtain

d” +div (pv) =

dx; . . .
i =— E VU(|xi — xj|) in the continuum setting = { _—
v=-VUx*p

J#I

Flock Solutions: stationary states x; of the 1st order model are connected to
particular solutions of the Bertozzi etal 2nd order model of the form

xi(l) = xf + tvg

with vo fixed with |v|* = %

For which potentials do we evolve towards some nontrivial steady states/patterns?
Is there any implication of the stability from first to 2nd order models?
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Mathematical Questions:

@ What are the continuum models associated to these systems as the number of
individuals gets larger and larger? Mean-field limits.

@ What is the good analytical framework to deal with the possible concentration
of mass in finite/infinite time in space or in velocity?

@ What is the good analytical framework to deal with particles and continuum
solutions at the same time?

@ How to deal with the stability of patterns, which perturbations?
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Schedule:

@ Lecture 2: Second order Models - Kinetic Equations for Swarming: measure
solutions - mean field limit with/without noise.

@ Lectures 3-4: First order Models - Aggregation Equations: derivation and
mean-field limit, stability/instability of steady states for repulsive/attractive
potentials. Qualitative properties of Steady States.

@ Lecture 5-6: Second order Models - Kinetic Equations for Swarming: Flock
solutions: Stability. Mill Solutions: Instability. Hydrodynamic models: mills
and double mills. Asymptotic Speed Models as friction limits.
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Definition of the distance!

Transporting measures:

Given T : RY — R mesurable, we say that v = T#p, if v[K] := u[T~" (K)] for all
mesurable sets K C R, equivalently

lC. Villani, AMS Graduate Texts (2003).
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Definition

1

Definition of the distance

Transporting measures:

Given T : RY — R mesurable, we say that v = T#p, if v[K] := u[T~" (K)] for all
mesurable sets K C R, equivalently

/wdv:/(on)du
JRd R4

for all ¢ € C,(RY).

Random variables:

Say that X is a random variable with law given by p, is to say
X :(Q, A, P) — (R B,) is a mesurable map such that X#P = p, i.e.,

/ﬂ:, ) dp = ‘/9(99 0X)dP =E[p(X)].

lC. Villani, AMS Graduate Texts (2003).
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Two piles of sand!

Energy needed to transport m kg of sand fromx = atox = b:

‘ energy = m|a — b|?

W3 (p1, p2) = Among all possible ways to transport the mass from p; to p», find the
one that minimizes the total energy
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Definition

Two piles of sand!

Energy needed to transport m kg of sand fromx = atox = b:

‘ energy = mla —

W3 (p1, p2) = Among all possible ways to transport the mass from p; to p», find the
one that minimizes the total energy

2(p1, p2) / = T(x)[* dpi (x)
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where the transference plan 7 runs over the set of joint probability measures on
R x R? with marginals z and v € P,(R?)
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Definition of the distance

Kantorovich-Rubinstein-Wasserstein Distance p = 1,2, co:

Wll;(ﬂ, v)=inf, { // |x — y‘/’ dTr(x,y)} = inf(yxy) {]E [|X _ Y‘p]}
J JRrd xRd

where the transference plan 7 runs over the set of joint probability measures on
R? x R? with marginals y and v € P,(R¢) and (X, Y) are all possible couples of
random variables with p and v as respective laws.

Woo(p,v) = _inf sup  |x—y[,
TEL(2) (x,y) Esupp()
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Definition of the distance

Kantorovich-Rubinstein-Wasserstein Distance p = 1,2, co:

wier)=int { [ e spant) | = infen 01X~ 1)
J JREXRA

where the transference plan 7 runs over the set of joint probability measures on
R? x R? with marginals y and v € P,(R¢) and (X, Y) are all possible couples of
random variables with p and v as respective laws.

Woo(p,v) = _inf sup  |x—y[,
mEL(2) (x,y) Esupp(r)

Monge’s optimal mass transport problem:
Find

1/p
I:= iI;f{/Rd |x = T(x)]P du(x); v = T#,u} .

Take yr = (1ga X T)#u as transference plan 7.
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Three examples

ﬂ W3 (84, 8) = |a — b|?

3
o

W2(p, bx,) = / X0 — v dp()

— Var (p)
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@ Convergence of measures: W, (., 1) — 0 is equivalent to u, — p weakly-*
as measures and convergence of second moments.
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Euclidean Wasserstein Distance

Convergence Properties

@ Convergence of measures: W, (., 1) — 0 is equivalent to u, — p weakly-*
as measures and convergence of second moments.

@ Weak lower semicontinuity: Given p, — p and v, — v weakly-* as
measures, then
Wa(p, v) < liminf Wa(pn, va).
n— oo

@ Completeness: The space PZ(R") endowed with the distance W, is a complete
metric space.
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Properties

One dimensional Case

Distribution functions:
In one dimension, denoting by F(x) the distribution function of s,
Fo= [ au

we can define its pseudo inverse:
F~'(n) = inf{x : F(x) > n} forn € (0,1),

we have F~! : ((0,1),B1),dn) — (R, B1) is a random variable with law 1, i.e.,
F~l'4dn = p
g

/ o) dji = / P(F~ () dn = E (X)) .

J0
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One dimensional Case

Wasserstein distance:

In one dimension, it can be checked” that given two measures p and v with
distribution functions F(x) and G(y) then, (F~' x G~')#dn has joint distribution
function H(x,y) = min(F(x), G(y)). Therefore, in one dimension, the optimal plan
is given by 7 (x,y) = (F~' x G™")#dn, and thus

aW. Hoeffding (1940): M. Fréchet (1951); A. Pulvirenti, G. Toscani, Annali Mat. Pura Appl. (1996).
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One dimensional Case

Wasserstein distance:

In one dimension, it can be checked” that given two measures p and v with
distribution functions F(x) and G(y) then, (F~' x G~')#dn has joint distribution
function H(x,y) = min(F(x), G(y)). Therefore, in one dimension, the optimal plan
is given by 7 (x,y) = (F~' x G™")#dn, and thus

1/p

W) = ( [ = wran) " =F -a!

1 (R)

1 <p<oo.

aW. Hoeffding (1940): M. Fréchet (1951); A. Pulvirenti, G. Toscani, Annali Mat. Pura Appl. (1996).
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