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Collective Behavior Models

Swarming by Nature or by design?

Fish schools and Birds flocks.
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Collective Behavior Models

Individual Based Models (Particle models)

Swarming = Aggregation of agents of similar size and body type generally moving in
a coordinated way.

Highly developed social organization: insects (locusts, ants, bees ...), fishes, birds,
micro-organisms (myxo-bacteria, ...) and artificial robots for unmanned vehicle
operation.

Interaction regions between individualsa

aAoki, Helmerijk et al., Barbaro, Birnir et al.

Repulsion Region: Rk.

Attraction Region: Ak.

Orientation Region: Ok.

Metric versus Topological Interaction
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Collective Behavior Models

2nd Order Model: Newton’s like equations

D’Orsogna, Bertozzi et al. model (PRL 2006):
dxi

dt
= vi,

m
dvi

dt
= (α− β |vi|2)vi −

∑
j 6=i

∇U(|xi − xj|).

Model assumptions:

Self-propulsion and friction terms
determines an asymptotic speed of√
α/β.

Attraction/Repulsion modeled by an
effective pairwise potential U(x).

U(r) = −CAe−r/`A + CRe−r/`R .

One can also use Bessel functions in 2D
and 3D to produce such a potential.

C = CR/CA > 1, ` = `R/`A < 1 and
C`2 < 1:
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Collective Behavior Models

Model with an asymptotic velocity

Classification of possible patterns: Morse potential. D’Orsogna, Bertozzi et al.
model (PRL 2006).
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Collective Behavior Models

Model with an asymptotic speed

Typical patterns: milling, double milling or flocking:
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Collective Behavior Models

Velocity consensus model

Cucker-Smale Model (IEEE Automatic Control 2007):
dxi

dt
= vi,

dvi

dt
=

N∑
j=1

aij (vj − vi) ,

with the communication rate, γ ≥ 0:

aij = a(|xi − xj|) =
1

(1 + |xi − xj|2)γ
.

Asymptotic flocking: γ < 1/2; Cucker-Smale.
General Proof for 0 < γ ≤ 1/2; C.-Fornasier-Rosado-Toscani.
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Variations

Leadership, Geometrical Constraints, and Cone of Influence

Cucker-Smale with local influence regions:
dxi

dt
= vi ,

dvi

dt
=
∑

j∈Σi(t)

a(|xi − xj|)(vj − vi) ,

where Σi(t) ⊂ {1, . . . ,N} is the set of dependence, given by

Σi(t) :=

{
1 ≤ ` ≤ N :

(x` − xi) · vi

|x` − xi||vi|
≥ α

}
.

Cone of Vision:
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Variations

Roosting Forces

Adding a roosting area to the model:
dxi

dt
= vi,

dvi

dt
= (α− β |vi|2)vi −

∑
j 6=i

∇U(|xi − xj|)− v⊥i ∇xi

[
φ(xi) · v⊥i

]
.

with the roosting potential φ given by φ(x) :=
b
4

(
|x|

RRoost

)4

.

Roosting effect: milling flocks N = 400,Rroost = 20.
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Variations

Adding Noise

Self-Propelling/Friction/Interaction with Noise Particle Model:
ẋi = vi,

dvi =

(α− β |vi|2)vi −∇xi

∑
j 6=i

U(|xi − xj|)

 dt +
√

2σ dΓi(t) ,

where Γi(t) are N independent copies of standard Wiener processes with values in
Rd and σ > 0 is the noise strength. The Cucker–Smale Particle Model with Noise:

dxi = vidt ,

dvi =

N∑
j=1

a(|xj − xi|)(vj − vi) dt +

√√√√2σ
N∑

j=1

a(|xj − xi|) dΓi(t) .
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Fixed Speed models

Vicsek’s model

Assume N particles moving at unit speed: reorientation & diffusion:
dXi

t = V i
t dt,

dV i
t =
√

2 P(V i
t ) ◦ dBi

t − P(V i
t )

 1
N

N∑
j=1

K(Xi
t−Xj

t)(V i
t − V j

t )

 dt.

Here P(v) is the projection operator on the tangent space at v/|v| to the unit sphere
in Rd, i.e.,

P(v) = I − v⊗ v
|v|2 .

Noise in the Stratatonovich sense: imposed by the rigorous construction of the
Brownian motion on a manifold. Rigorous derivation: Bolley-Cañizo-C.

Main issue: phase transition? Degond-Liu-Frouvelle.
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1st order Models

1st Order Friction Model:

Edelshtein-Keshet, Mogilner (JMB 2000): Assume the variations of the velocity and
speed are much smaller than spatial variations, then from Newton’s equation:

m
d2xi

d2t
+ α

dxi

dt
+
∑
j 6=i

∇U(|xi − xj|) = 0

so finally, we obtain

dxi

dt
= −

∑
j 6=i

∇U(|xi − xj|) in the continuum setting V

{
∂ρ
∂t + div (ρv) = 0
v = −∇U ∗ ρ

Flock Solutions: stationary states xs
i of the 1st order model are connected to

particular solutions of the Bertozzi etal 2nd order model of the form

xi(t) = xs
i + tv0

with v0 fixed with |v0|2 = α
β

.

For which potentials do we evolve towards some nontrivial steady states/patterns?
Is there any implication of the stability from first to 2nd order models?
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Mathematical Questions:
What are the continuum models associated to these systems as the number of
individuals gets larger and larger? Mean-field limits.

What is the good analytical framework to deal with the possible concentration
of mass in finite/infinite time in space or in velocity?

What is the good analytical framework to deal with particles and continuum
solutions at the same time?

How to deal with the stability of patterns, which perturbations?
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Schedule:

Lecture 2: Second order Models - Kinetic Equations for Swarming: measure
solutions - mean field limit with/without noise.

Lectures 3-4: First order Models - Aggregation Equations: derivation and
mean-field limit, stability/instability of steady states for repulsive/attractive
potentials. Qualitative properties of Steady States.

Lecture 5-6: Second order Models - Kinetic Equations for Swarming: Flock
solutions: Stability. Mill Solutions: Instability. Hydrodynamic models: mills
and double mills. Asymptotic Speed Models as friction limits.
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Definition

Definition of the distance1

Transporting measures:

Given T : Rd −→ Rd mesurable, we say that ν = T#µ, if ν[K] := µ[T−1(K)] for all
mesurable sets K ⊂ Rd, equivalently∫

Rd
ϕ dν =

∫
Rd

(ϕ ◦ T) dµ

for all ϕ ∈ Co(Rd).

Random variables:

Say that X is a random variable with law given by µ, is to say
X : (Ω,A,P) −→ (Rd,Bd) is a mesurable map such that X#P = µ, i.e.,∫

Rd
ϕ(x) dµ =

∫
Ω

(ϕ ◦ X) dP = E [ϕ(X)] .

1C. Villani, AMS Graduate Texts (2003).
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Two piles of sand!

Energy needed to transport m kg of sand from x = a to x = b:

energy = m |a− b|2

W2
2 (ρ1, ρ2) = Among all possible ways to transport the mass from ρ1 to ρ2, find the

one that minimizes the total energy

W2
2 (ρ1, ρ2) =

∫
Rd
|x− T(x)|2 dρ1(x)
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Definition

Definition of the distance
Kantorovich-Rubinstein-Wasserstein Distance p = 1, 2,∞:

Wp
p (µ, ν)= infπ

{∫∫
Rd×Rd

|x− y|p dπ(x, y)

}
= inf(X,Y) {E [|X − Y|p]}

where the transference plan π runs over the set of joint probability measures on
Rd × Rd with marginals µ and ν ∈ Pp(Rd) and (X, Y) are all possible couples of
random variables with µ and ν as respective laws.

W∞(µ, ν) = inf
π∈Π(µ,ν)

sup
(x,y)∈supp(π)

|x− y| ,

Monge’s optimal mass transport problem:

Find

I := inf
T

{∫
Rd
|x− T(x)|p dµ(x); ν = T#µ

}1/p

.

Take γT = (1Rd × T)#µ as transference plan π.
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Three examples

W2
2 (δa, δb) = |a− b|2

W2
2 (ρ, δX0 ) =

∫
|X0 − y|2 dρ(y)

= Var (ρ)
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Properties

Euclidean Wasserstein Distance

Convergence Properties

1 Convergence of measures: W2(µn, µ)→ 0 is equivalent to µn ⇀ µ weakly-*
as measures and convergence of second moments.

2 Weak lower semicontinuity: Given µn ⇀ µ and νn ⇀ ν weakly-* as
measures, then

W2(µ, ν) ≤ lim inf
n→∞

W2(µn, νn).

3 Completeness: The space P2(Rd) endowed with the distance W2 is a complete
metric space.
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Properties

One dimensional Case

Distribution functions:

In one dimension, denoting by F(x) the distribution function of µ,

F(x) =

∫ x

−∞
dµ,

we can define its pseudo inverse:

F−1(η) = inf{x : F(x) > η} for η ∈ (0, 1),

we have F−1 : ((0, 1),B1), dη) −→ (R,B1) is a random variable with law µ, i.e.,
F−1#dη = µ ∫

R
ϕ(x) dµ =

∫ 1

0
ϕ(F−1(η)) dη = E [ϕ(X)] .
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Properties

One dimensional Case

Wasserstein distance:

In one dimension, it can be checkeda that given two measures µ and ν with
distribution functions F(x) and G(y) then, (F−1 × G−1)#dη has joint distribution
function H(x, y) = min(F(x),G(y)). Therefore, in one dimension, the optimal plan
is given by πopt(x, y) = (F−1 × G−1)#dη, and thus

Wp(µ, ν) =

(∫ 1

0
[F−1(η)− G−1(η)]p dη

)1/p

= ‖F−1 − G−1‖Lp(R)

1 ≤ p ≤ ∞.

aW. Hoeffding (1940); M. Fréchet (1951); A. Pulvirenti, G. Toscani, Annali Mat. Pura Appl. (1996).
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