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Minimization of the Interaction Energy

Aggregation for particles - Continuum Model

One particle attracted/repelled by a fixed location x = a

Ẋ = −∇U(X − a) U(x) = U(−x),U(0) = 0 ,U ∈ C(Rd,R) ∩ C1(Rd/{0},R)

Multiple particles attracted by one another

Ẋi = −
∑
j 6=i

mj ∇U(Xi − Xj)

ρ(t, x) = density of particle at time t

v(x) = −
∫
Rd
∇U(x− y) ρ(y)dy

So v = −∇U ∗ ρ : {
ρt + div∂ρv = 0
v = −∇U ∗ ρ
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Minimization of the Interaction Energy

Aggregation Equation

{
ρt + div ρv = 0
v = −∇U ∗ ρ

ρ(t, x) : density
v(t, x): velocity field
x ∈ Rd, t > 0

U : Rd → R
“interaction potential”

−∇U : Rd → Rd

“attracting/repulsing field”

For which interaction repulsive/attractive potentials do we get convergence towards
some nontrivial steady states?

How can we find these stationary states and what are their properties?
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Minimization of the Interaction Energy

Formal Gradient Flow
Basic Properties

1 Conservation of the center of mass.
2 Liapunov Functional: Gradient flow of

F [ρ] =
1
2

∫∫
U(x− y) ρ(x) ρ(y) dxdy

with respect to the Wasserstein distance W2.
(C., McCann, Villani; RMI 2003, ARMA 2006).

The macroscopic equation can be rewritten as

∂ρ

∂t
(t, x) = div

(
ρ(t, x)∇

[
δF
δρ

(t, x)

])
.

with entropy dissipation:

d
dt
F [ρ(t)] = −

∫
R2
ρ(t, x)

∣∣∣∣∇δFδρ (t, x)

∣∣∣∣2 dx .
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Minimization of the Interaction Energy

Minimization of the Interaction Energy
Minimization Problem

We want to find local minimizers of the total interaction energy

F [µ] :=
1
2

∫∫
Rd×Rd

U(x− y) dµ(x)dµ(y) .

in some set of probability measures P(Rd).

What is the right topology to talk about measures being close?
Recurrent Question in many fields:

Statistical Mechanics & Crystallization: Typically very singular potentials at
zero: Lennard-Jones.

Semiconductors - Astrophysics - Chemotaxis: Macroscopic model obtained
from Vlasov Equation under certain limits. Newtonian Potential.

Economic Applications: Mean Field Games, Cournot-Nash Equilibria.

Fractional Diffusion: More singular than Newtonian repulsion but still locally
integrable potentials. Levy Flights.

Random Matrices: Eigenvalue distributions.
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Collective Behavior Models

Individual Based Models (Particle models)
Swarming = Aggregation of agents of similar size and body type generally moving in
a coordinated way.
Highly developed social organization: insects (locusts, ants, bees ...), fish, birds,
micro-organisms,... and artificial robots for unmanned vehicle operation.

Interaction regions between individualsa

aAoki, Helmerijk et al., Barbaro, Birnir et al.

Repulsion Region: Rk.

Attraction Region: Ak.

Orientation Region: Ok.
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Steady States - (Local) Minimizers

Nontrivial patterns? - Particle Simulations
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Steady States - (Local) Minimizers

Summary: Particle Simulations d = 2
Potential a = 4,

b = 2.1

Potential a = 4,
b = 0.85

Potential a = 4,
b = 1.85

Potential a = 4,
b = 0.05

Potential a = 4,
b = 1.1

Ẋi = −
∑
j 6=i

mj ∇U(Xi−Xj)

U(x) =
|x|a

a
− |x|

b

b
2− d ≤ b < a
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Steady States - (Local) Minimizers

Spherical shell

A spherical shell for some radius R is a stationary state for the aggregation equation
for radial potentials.

R

FrFa
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Local Minimizers: Dimensionality of the support

W∞-Topology

The W∞-distance is defined as the optimal maximal mass displacement given by

W∞(µ, ν) = inf
π∈Π(µ,ν)

sup
(x,y)∈supp(π)

|x− y| ,

It is a good topology since it is closer to linearization around equilibrium of
dynamical systems.

It is the coarser topology among Wasserstein distances since all of them are
ordered.

Then, a local minimizer in W2 is a local minimizer in W∞ but not viceversa.

Basic Hypotheses:
(H1) U is a bounded from below lower semi-continuous function in L1

loc(Rd).
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Local Minimizers: Dimensionality of the support

Euler-Lagrange Conditions

W∞ EL-Conditions

Assume that U satisfies (H1) and let µ be a local compactly supported minimizer of
the energy F [µ] in the W∞ ball or radius ε. Then any point x0 ∈ supp(µ) is a local
minimimum of ψ = U ∗ µ in the sense that

ψ(x0) ≤ ψ(x) for a.e. x ∈ Bε(x0).

Note that ε is uniform on the support of µ.

W2 EL-Conditions

Under the same assumptions, if µ is a W2-local minimizer of the energy, then the
potential ψ satisfy

(i) ψ(x) = (U ∗ µ)(x) = 2F [µ] µ-a.e.

(ii) ψ(x) = (U ∗ µ)(x) ≥ 2F [µ] for a.e. x ∈ Rd.

Regularity??
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Local Minimizers: Dimensionality of the support

Mild versus Strong Repulsive potentials
Support is essentially 0-dimensional for b > 2.

Let U ∈ C2(RN) be a radially symmetric potential which behaves like −|x|b/b in a
neighborhood of the origin with b > 2.

Then a local minimizer of the interaction energy F with respect to W∞ cannot have a
s-dimensional smooth components for any 1 ≤ s ≤ d.

Dimension of the Support depends on 2− d < b < 2.

Assume that µ is a local minimizer of the interaction energy F with respect to W∞
such that U is radial with U(x) ∼ −|x|b near zero and 2− d < b < 2. If µ contains
s-Haussdorff dimensional connected components in its support, then s ≥ 2− b.

(Balagué, C., Laurent, Raoul; ARMA 2013)

Strategy: Pure variational approach: by contradiction we build better competitors.
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such that U is radial with U(x) ∼ −|x|b near zero and 2− d < b < 2. If µ contains
s-Haussdorff dimensional connected components in its support, then s ≥ 2− b.
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Geometry of support of d∞ -local minimizers

Macroscopic Models: Repulsive-Attractive Potentials

Assume the following hypotheses on U hold.

(H1) U ∈ C2(Rd) and U is radially symmetric.

(H2) U is bounded from below and U(0) = 0.

(H3) There exists R > 0 with U(x) < 0 for all |x| < R and U(x) ≥ 0 for all |x| ≥ R.

(H4) Fix α > 2. We write Ũ(|x|) := U(x) and Ũp(r) := Ũ(pr)
pα for any p > 0 and

r ≥ 0. There exists a constant C > 0 such that{
Ũp(r)→ −Crα

Ũ′p(r)→ −Cαrα−1
as p→ 0 for all r ≥ 0.

Second variation of energy.- Let µ be a d∞-local minimizer of E with E(µ) < +∞.
There exists δ > 0 such that for all x0 ∈ suppµ we have∫

Rd×Rd
U(x− y) dν(x) dν(y) ≥ 0

for any measure ν with suppν ⊂ suppµ ∩ B(x0, δ) and ν(Rd) = 0.
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Geometry of support of d∞ -local minimizers

Macroscopic Models: Repulsive-Attractive Potentials

Theorem.1 Let µ be a W∞-local minimizer of E. Then each point of suppµ is
isolated; in particular µ is atomic.

Steps of proof.

Suppose 0, x1,−x2 ∈ suppµ∩B(0, δ). Choose νλ = −δ0 +λδx1 + (1−λ)δ−x2

in place of ν in the second variation and get, for an appropriate choice of λ,√
−U(x1) +

√
−U(x2) ≥

√
−U(x1 + x2).

Assume, by homogeneity, that x1 + x2 = pe1, where e1 is the first unit vector of
the orthonormal base of Rd, and p > 0 is a small rescaling parameter. From the
above inequality, get√

−U(x1) +
√
−U(pe1 − x1) ≥

√
−U(pe1).

1Carrillo, Figalli, Patacchini, in preparation.
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Geometry of support of d∞ -local minimizers

Macroscopic Models: Repulsive-Attractive Potentials

Write x1 = p(te1 + y), where y ∈ Rd with zero first coordinate, and, by ho-
mogeneity, t ∈ [0, 1]. Then, using that |x1| ≤ pt + p|y| and |pe1 − x1| ≤
p(1 − t) + p|y|, and that, for any x ∈ Rd and p small enough,

√
−U(px) is

radially non-decreasing as a function of x ∈ Rd, get√
−Ũ(p(t + |y|)) +

√
−Ũ(p((1− t) + |y|)) ≥

√
−Ũ(p).

Divide the inequality above by pα/2 and obtain√
−Ũp(t + |y|) +

√
−Ũp((1− t) + |y|) ≥

√
−Ũp(1).

By (H4) get, as p→ 0,

(t + |y|)α/2 + ((1− t) + |y|)α/2 ≥ 1
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Geometry of support of d∞ -local minimizers

Macroscopic Models: Repulsive-Attractive Potentials

For all s ∈ [0, 1] and z ∈ Rd, define

sα(s, z) = (s + |z|)α/2 + ((1− s) + |z|)α/2 − 1,

and define, for any two distinct points v, v′ ∈ Rd, the open set

Sα(v, v′) :=

{
w ∈ Rd | sα

(
|πw− v|
|v− v′| , πw− w

)
< 0
}
,

where π denotes the orthogonal projection on the segment [v, v′].

What we have shown: for any y0, y1 ∈ suppµ, asymptotically close, there cannot
be a third point in suppµ ∩ Sα(y0, y1).
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Geometry of support of d∞ -local minimizers

Macroscopic Models: Repulsive-Attractive Potentials

For any two distinct points v, v′ ∈ Rd, define the open “double cone” with open-
ing τ > 0 by

Cτ (v, v′) :=

{
w ∈ Rd | dist(w, [v, v′])

min{|πw− v|, |πw− v′|} < τ

}
,

where [v, v′] denotes the segment joining v to v′ and π denotes the orthogonal
projection on the segment [v, v′].

Since α > 2, r 7→ rα/2 is a convex function on [0,+∞), and so Sα(y0, y1) is a
convex set. Therefore we can fit a double cone generated by y0 and y1 inside it.

We can actually compute the opening γ(α) of the cone that fits in Sα(y0, y1) with
maximal volume:

γ(α) =
1

2α/2−1 − 1.

Finish the proof by contradiction. Suppose y0 is not an isolated point, then it can
be approached by a sequence of points in suppµ in some direction. Therefore,
using (H4) we know that, close enough to y0, one can find two points belonging
to this sequence, say xk and xk+1, such that xk+1 ∈ Cγ(α)(y0, xk).
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Minimizers for Repulsive-Attractive Potentials

Existence Global Minimizers

Non-HStable: Energy at infinity cost more than near the origin, i.e., the potential U
satisfies

(H5) There exists µ ∈ P(Rd) compactly supported such that F [µ] < 0.

(H5) lim
|x|→∞

U(x) ≥ 0.

Main Theorem

Assume that the radial potential U satisfies Hypotheses (H1), (H5), and is increasing
outside a large ball. Then there exists a global minimiser for the energy F .
Furthermore, any such global minimiser has compact support.

(Cañizo, C., Patacchini; preprint 2014)
Main ideas: Uniform repartition of the mass over the support.

(Simione, Slepcev, Topaloglou; preprint 2014)
Lions Concentration Compactness Principle
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Minimizers for Repulsive-Attractive Potentials

Key Estimate
By (H1) for R large enough:

ER := min
{
F [µ] | µ ∈ PR(Rd)

}
≤ E∗ < 0

Euler-Lagrange: for ρR-almost all z ∈ suppρR we have

1
2

∫
R

U(z− x) dρR(x) = ER.

Choose A ∈ R with 1
2 Umin ≤ E∗ < A < 0 and r′ > 0 with U(x) ≥ 2A for |x| ≥ r′.

Then for ρR-almost every z we have

2ER =

∫
R

U(z− x) dρR(x)

=

∫
B(z,r′)

U(z− x) dρR(x) +

∫
Rd\B(z,r′)

U(z− x) dρR(x)

≥ Umin

∫
B(z,r′)

dρR(x) + 2A
∫
Rd\B(z,r′)

dρR(x) = (Umin − 2A)

∫
B(z,r′)

dρR(x) + 2A,

Rearranging terms:∫
B(z,r′)

dρR(x) ≥ A− ER

A− 1
2 Umin

≥ A− E∗
A− 1

2 Umin
=: m.
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dρR(x) + 2A
∫
Rd\B(z,r′)

dρR(x) = (Umin − 2A)

∫
B(z,r′)

dρR(x) + 2A,

Rearranging terms:∫
B(z,r′)

dρR(x) ≥ A− ER

A− 1
2 Umin

≥ A− E∗
A− 1

2 Umin
=: m.
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Choose A ∈ R with 1
2 Umin ≤ E∗ < A < 0 and r′ > 0 with U(x) ≥ 2A for |x| ≥ r′.

Then for ρR-almost every z we have

2ER =

∫
R

U(z− x) dρR(x)

=

∫
B(z,r′)

U(z− x) dρR(x) +

∫
Rd\B(z,r′)

U(z− x) dρR(x)

≥ Umin

∫
B(z,r′)

dρR(x) + 2A
∫
Rd\B(z,r′)

dρR(x) = (Umin − 2A)

∫
B(z,r′)

dρR(x) + 2A,

Rearranging terms:∫
B(z,r′)

dρR(x) ≥ A− ER

A− 1
2 Umin

≥ A− E∗
A− 1

2 Umin
=: m.



icreauab

Problem & Motivation Macroscopic Models: Repulsive-Attractive Potentials Conclusions

Minimizers for Repulsive-Attractive Potentials

Examples

Power-laws & Morse Potentials

Consider the following potentials for all x ∈ Rd and CA,CR, `A, `R > 0:

(i) (Power-law potential) U(x) =
|x|a

a
− |x|

b

b
with −d < b < a,

(ii) (Morse potential) U(x) = CRe−
|x|
`R − CAe−

|x|
`A with either `A < `R and

CA
CR
<
(
`R
`A

)d
,

with the convention |x|
0

0 = log |x|.
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Discrete To Continuum: Power-law Case

(C., Chipot, Huang; preprint 2014)

Discrete Setting: Find
IN = inf

x∈(Rd)N
FN(x) ,

with

FN(x1, · · · , xN) =

N∑
i 6=j

(
|xi − xj|a

a
− |xi − xj|b

b

)
.

Uniform Control of the support

Suppose that 1 ≤ b < a. Then the diameter of any global minimizer of FN achieving
the infimum IN is bounded independently of N.

Key Idea: use Euler-Lagrange and a convexity argument for the repulsive potential to
estimate the distance between the two particles the furthest away.
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Minimizers for Repulsive-Attractive Potentials

Regularity of Local Minimizers

(H6) The function Ua(x) := U(x)− V(x) with V being the Newtonian potential in
dimension d satisfies:

∆Ua ∈ Lp
loc(R

d) for some p ∈ (d,∞]

with ∆Ua bounded below.

Main Theorem

Assume that the potential U satisfies Hypotheses (H1) and (H6). Then any µ
compactly supported W∞ local minimizer of the energy F is bounded uniformly,
i.e., µ = ρ(x)dLd with ρ ∈ L∞(Rd).

(C., Delgadino, Mellet; preprint 2014)
Main ideas: Obstacle problems to obtain information out of the Euler-Lagrange
conditions (Nash equilibria conditions).

It works for more-singular-than-Newtonian repulsion at the origin.
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Minimizers for Repulsive-Attractive Potentials

Obstacle Problem
Continuity of the potential

Assume that the potential U satisfies Hypotheses (H1) and (H3). Let µ be a W∞
local minimizer of E. Then the potential ψ(x) := U ∗ µ(x) associated to µ is a
continuous function in RN .

Implicit Obstacle Problem

For all x0 ∈ supp(µ), the potential function ψ is equal, in Bε(x0), to the unique
solution of the obstacle problem

ϕ ≥ C0, in Bε(x0)
−∆ϕ ≥ −F(x), in Bε(x0)
−∆ϕ = −F(x), in Bε(x0) ∩ {ϕ > C0}

ϕ = ψ, on ∂Bε(x0),

where C0 = ψ(x0) and F(x) = ∆Ua ∗ µ ∈ Lp
loc(R

d). Furthermore, the density µ is
given by

µ = −∆ψ + F.

Particular Case: Newtonian repulsion and quadratic confinement, the global
minimizer is the characteristic of a ball with unit mass upto translations.
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Conclusions

The dimensionality of the support of local minimizers of the interaction energy
can be classified in terms of the repulsion strength of the potential near zero.

If the strength of the repulsion is stronger than or equal to Newtonian, they are
bounded uniformly.

Compactly supported global minimizers exist under the reasonable condition
that it costs less energy to be near the origin than to be at infinity.

References:

1 Balagué-C.-Laurent-Raoul (Physica D & ARMA 2013).
2 Cañizo-C.-Patacchini (to appear in ARMA 2015).
3 C.-Delgadino-Mellet (preprint 2014).
4 C.-Figalli-Patacchini (in preparation).
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