Deterministic Particle Methods for Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

Interaction-Driven Dynamics for Collective Behavior: Derivation, Model Hierarchies and Pattern Stability

J. A. Carrillo

Imperial College London

Lecture 4, L'Aquila 2015

Deterministic Particle Methods for Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

Outline

Problem & Motivation

• Minimization of the Interaction Energy

2 Deterministic Particle Methods for Diffusions

- Γ-Convergence
- Numerical Scheme and Simulations

3 Deterministic Particle Methods for Aggregation-Diffusions

- Approximation
- The Keller-Segel Model

Problem & Motivation	Deterministic Particle Method
•00000	

Deterministic Particle Methods for Aggregation-Diffusions

Minimization of the Interaction Energy

Outline

1

Problem & Motivation

• Minimization of the Interaction Energy

2 Deterministic Particle Methods for Diffusions

- Γ-Convergence
- Numerical Scheme and Simulations

Deterministic Particle Methods for Aggregation-Diffusions

- Approximation
- The Keller-Segel Model

Deterministic Particle Methods for Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

→_{x,}

Minimization of the Interaction Energy

Aggregation for particles - Continuum Model

One particle attracted/repelled by a fixed location x = a

 $\dot{X} = -\nabla U(X - a)$ $U(x) = U(-x), U(0) = 0, U \in C(\mathbb{R}^d, \mathbb{R}) \cap C^1(\mathbb{R}^d/\{0\}, \mathbb{R})$

Deterministic Particle Methods for Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

Minimization of the Interaction Energy

Aggregation for particles - Continuum Model

One particle attracted/repelled by a fixed location x = a

 $\dot{X} = -\nabla U(X - a)$ $U(x) = U(-x), U(0) = 0, U \in C(\mathbb{R}^d, \mathbb{R}) \cap C^1(\mathbb{R}^d/\{0\}, \mathbb{R})$

Multiple particles attracted by one another

$$\dot{X}_i = -\sum_{j \neq i} m_j \nabla U(X_i - X_j)$$

 $\rho(t, x) =$ density of particle at time *t*

$$v(x) = -\int_{\mathbb{R}^d} \nabla U(x-y) \ \rho(y) dy$$

So $v = -\nabla U * \rho$:

 $\begin{cases} \rho_t + \operatorname{div} \rho v = 0\\ v = -\nabla U * \rho \end{cases}$

Deterministic Particle Methods for Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

Minimization of the Interaction Energy

Aggregation for particles - Continuum Model

One particle attracted/repelled by a fixed location x = a

 $\dot{X} = -\nabla U(X - a)$ $U(x) = U(-x), U(0) = 0, U \in C(\mathbb{R}^d, \mathbb{R}) \cap C^1(\mathbb{R}^d/\{0\}, \mathbb{R})$

Multiple particles attracted by one another

$$\dot{X}_i = -\sum_{j \neq i} m_j \nabla U(X_i - X_j)$$

 $\rho(t, x) =$ density of particle at time *t*

$$v(x) = -\int_{\mathbb{R}^d} \nabla U(x-y) \ \rho(y) dy$$

So $v = -\nabla U * \rho$:

$$\begin{cases} \rho_t + \operatorname{div} \rho v = 0\\ v = -\nabla U * \rho \end{cases}$$

Minimization of the Interaction Energy

Formal Gradient Flow

Basic Properties

- Conservation of the center of mass.
- **2** Liapunov Functional: Gradient flow of

$$\mathcal{F}[\rho] = \frac{1}{2} \iint U(x - y) \ \rho(x) \ \rho(y) \ dxdy$$

with respect to the Wasserstein distance *W*₂. (C., McCann, Villani; RMI 2003, ARMA 2006).

The macroscopic equation can be rewritten as

$$\frac{\partial \rho}{\partial t}(t,x) = \operatorname{div}\left(\rho(t,x)\nabla\left[\frac{\delta \mathcal{F}}{\delta \rho}(t,x)\right]\right) \ .$$

with entropy dissipation:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{F}[\rho(t)] = -\int_{\mathbb{R}^2} \rho(t,x) \left| \nabla \frac{\delta \mathcal{F}}{\delta \rho}(t,x) \right|^2 \, dx \, .$$

Minimization of the Interaction Energy

Formal Gradient Flow

Basic Properties

- Conservation of the center of mass.
- **2** Liapunov Functional: Gradient flow of

$$\mathcal{F}[\rho] = \frac{1}{2} \iint U(x - y) \ \rho(x) \ \rho(y) \ dxdy$$

with respect to the Wasserstein distance *W*₂. (C., McCann, Villani; RMI 2003, ARMA 2006).

The macroscopic equation can be rewritten as

$$\frac{\partial \rho}{\partial t}(t,x) = \operatorname{div}\left(\rho(t,x)\nabla\left[\frac{\delta \mathcal{F}}{\delta \rho}(t,x)\right]\right) \ .$$

with entropy dissipation:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{F}[\rho(t)] = -\int_{\mathbb{R}^2} \rho(t,x) \left| \nabla \frac{\delta \mathcal{F}}{\delta \rho}(t,x) \right|^2 \, dx \, .$$

Minimization of the Interaction Energy

Formal Gradient Flow

Basic Properties

- Conservation of the center of mass.
- **2** Liapunov Functional: Gradient flow of

$$\mathcal{F}[\rho] = \frac{1}{2} \iint U(x - y) \ \rho(x) \ \rho(y) \ dxdy$$

with respect to the Wasserstein distance *W*₂. (C., McCann, Villani; RMI 2003, ARMA 2006).

The macroscopic equation can be rewritten as

$$\frac{\partial \rho}{\partial t}(t,x) = \operatorname{div}\left(\rho(t,x)\nabla\left[\frac{\delta \mathcal{F}}{\delta \rho}(t,x)\right]\right) \ .$$

with entropy dissipation:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{F}[\rho(t)] = -\int_{\mathbb{R}^2} \rho(t,x) \left| \nabla \frac{\delta \mathcal{F}}{\delta \rho}(t,x) \right|^2 \, dx \, .$$

Deterministic Particle Methods for Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

Minimization of the Interaction Energy

Sliding down in a Energy Landscape

Finite Dimensional Gradient flows

A *gradient flow* in \mathbb{R}^d defined by an energy \mathcal{F} is given by

$$\frac{dx_t}{dt} = -\nabla \mathcal{F}(x_t) \,.$$

It is the continuous version of the *steepest descent* on the energy landscape determined by \mathcal{F} given by the implicit Euler scheme: given a time step Δt and an approximation to the solution at time $t_k = k\Delta t$, we find the approximation at time t_{k+1} by solving

$$x_{k+1} = x_k - \Delta t \nabla \mathcal{F}(x_{k+1}) \,.$$

which is equivalent under convexity conditions to the following variational problem: Solve

$$x_{k+1} = \arg\min_{x \in \mathbb{R}^d} \left\{ \frac{1}{2\Delta t} |x - x_k|^2 + \mathcal{F}(x) \right\}$$

with $|\cdot|$ the euclidean norm.

Deterministic Particle Methods for Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

Minimization of the Interaction Energy

Sliding down in a Energy Landscape

Finite Dimensional Gradient flows

A *gradient flow* in \mathbb{R}^d defined by an energy \mathcal{F} is given by

$$\frac{dx_t}{dt} = -\nabla \mathcal{F}(x_t) \,.$$

It is the continuous version of the *steepest descent* on the energy landscape determined by \mathcal{F} given by the implicit Euler scheme: given a time step Δt and an approximation to the solution at time $t_k = k\Delta t$, we find the approximation at time t_{k+1} by solving

$$x_{k+1} = x_k - \Delta t \nabla \mathcal{F}(x_{k+1}) \,.$$

which is equivalent under convexity conditions to the following variational problem: Solve

$$x_{k+1} = \arg\min_{x \in \mathbb{R}^d} \left\{ \frac{1}{2\Delta t} |x - x_k|^2 + \mathcal{F}(x) \right\}$$

with $|\cdot|$ the euclidean norm.

Deterministic Particle Methods for Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

Minimization of the Interaction Energy

Sliding down in a Energy Landscape

Finite Dimensional Gradient flows

A *gradient flow* in \mathbb{R}^d defined by an energy \mathcal{F} is given by

$$\frac{dx_t}{dt} = -\nabla \mathcal{F}(x_t) \,.$$

It is the continuous version of the *steepest descent* on the energy landscape determined by \mathcal{F} given by the implicit Euler scheme: given a time step Δt and an approximation to the solution at time $t_k = k\Delta t$, we find the approximation at time t_{k+1} by solving

$$x_{k+1} = x_k - \Delta t \nabla \mathcal{F}(x_{k+1}) \,.$$

which is equivalent under convexity conditions to the following variational problem: Solve

$$x_{k+1} = \arg\min_{x \in \mathbb{R}^d} \left\{ \frac{1}{2\,\Delta t} |x - x_k|^2 + \mathcal{F}(x) \right\}$$

with $|\cdot|$ the euclidean norm.

Deterministic Particle Methods for Diffusion

Deterministic Particle Methods for Aggregation-Diffusions

Minimization of the Interaction Energy

JKO scheme (Jordan-Kinderlehrer-Otto)

A discrete time approximation of the PDE is obtained by solving a sequences of variational problem.

- Choose a time step Δt .
- Solve

$$\rho_{k+1} = \arg\min_{\rho \in \mathcal{P}_2^o(\mathbb{R}^d)} \left\{ \frac{1}{2\Delta t} W_2^2(\rho, \rho_k) + \mathcal{F}(\rho) \right\}$$

• As $\Delta t \rightarrow 0$ it converges to the solution of a weak form of

 $\begin{cases} \rho_t + \operatorname{div} \rho v = 0\\ v = -\nabla U * \rho \end{cases}$

The convergence for smooth C^1 potentials U with at most quadratic growth at infinity given in "Gradient Flow in Metric Spaces" book by Ambrosio, Gigli, Savaré, 2005.

Deterministic Particle Methods for Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

Minimization of the Interaction Energy

JKO scheme (Jordan-Kinderlehrer-Otto)

A discrete time approximation of the PDE is obtained by solving a sequences of variational problem.

- Choose a time step Δt .
- Solve

$$\rho_{k+1} = \arg \min_{\rho \in \mathcal{P}_2^o(\mathbb{R}^d)} \left\{ \frac{1}{2\,\Delta t} W_2^2(\rho, \rho_k) + \mathcal{F}(\rho) \right\}$$

• As $\Delta t \rightarrow 0$ it converges to the solution of a weak form of

$$\begin{cases} \rho_t + \operatorname{div} \rho v = 0\\ v = -\nabla U * \rho \end{cases}$$

The convergence for smooth C^1 potentials U with at most quadratic growth at infinity given in "Gradient Flow in Metric Spaces" book by Ambrosio, Gigli, Savaré, 2005.

Deterministic Particle Methods for Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

Minimization of the Interaction Energy

JKO scheme (Jordan-Kinderlehrer-Otto)

A discrete time approximation of the PDE is obtained by solving a sequences of variational problem.

- Choose a time step Δt .
- Solve

$$\rho_{k+1} = \arg\min_{\rho \in \mathcal{P}_2^o(\mathbb{R}^d)} \left\{ \frac{1}{2\,\Delta t} W_2^2(\rho, \rho_k) + \mathcal{F}(\rho) \right\}$$

• As $\Delta t \rightarrow 0$ it converges to the solution of a weak form of

$$\begin{cases} \rho_t + \operatorname{div} \rho v = 0\\ v = -\nabla U * \rho \end{cases}$$

The convergence for smooth C^1 potentials U with at most quadratic growth at infinity given in "Gradient Flow in Metric Spaces" book by Ambrosio, Gigli, Savaré, 2005.

Deterministic Particle Methods for Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

Minimization of the Interaction Energy

JKO scheme (Jordan-Kinderlehrer-Otto)

A discrete time approximation of the PDE is obtained by solving a sequences of variational problem.

- Choose a time step Δt .
- Solve

$$\rho_{k+1} = \arg\min_{\rho \in \mathcal{P}_2^o(\mathbb{R}^d)} \left\{ \frac{1}{2\,\Delta t} W_2^2(\rho, \rho_k) + \mathcal{F}(\rho) \right\}$$

• As $\Delta t \rightarrow 0$ it converges to the solution of a weak form of

$$\begin{cases} \rho_t + \operatorname{div} \rho v = 0\\ v = -\nabla U * \rho \end{cases}$$

The convergence for smooth C^1 potentials U with at most quadratic growth at infinity given in "Gradient Flow in Metric Spaces" book by Ambrosio, Gigli, Savaré, 2005.

Deterministic Particle Methods for Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

Minimization of the Interaction Energy

JKO scheme (Jordan-Kinderlehrer-Otto)

A discrete time approximation of the PDE is obtained by solving a sequences of variational problem.

- Choose a time step Δt .
- Solve

$$\rho_{k+1} = \arg\min_{\rho \in \mathcal{P}_2^o(\mathbb{R}^d)} \left\{ \frac{1}{2\,\Delta t} W_2^2(\rho, \rho_k) + \mathcal{F}(\rho) \right\}$$

• As $\Delta t \rightarrow 0$ it converges to the solution of a weak form of

```
\begin{cases} \rho_t + \operatorname{div} \rho v = 0\\ v = -\nabla U * \rho \end{cases}
```

The convergence for smooth C^1 potentials U with at most quadratic growth at infinity given in "Gradient Flow in Metric Spaces" book by Ambrosio, Gigli, Savaré, 2005.

Minimization of the Interaction Energy

How to deal with concentrations?

Let U(x) = k(|x|) be a radial fully attractive potential with its only possible singularity located at zero such that

- Given an initial condition in $L^1 \cap L^\infty$ (Bertozzi, C., Laurent; Nonlinearity

Minimization of the Interaction Energy

How to deal with concentrations?

Let U(x) = k(|x|) be a radial fully attractive potential with its only possible singularity located at zero such that

- Given an initial condition in $L^1 \cap L^\infty$ (Bertozzi, C., Laurent; Nonlinearity

Deterministic Particle Methods for Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

Minimization of the Interaction Energy

How to deal with concentrations?

Let U(x) = k(|x|) be a radial fully attractive potential with its only possible singularity located at zero such that

No-Osgood condition:

$$\int_0^L \frac{dr}{k'(r)} < +\infty,$$

- Given an initial condition in $L^1 \cap L^\infty$ (Bertozzi, C., Laurent; Nonlinearity 2009) or in $L^1 \cap L^p$ for p > d/(d-1) (Bertozzi, Laurent, Rosado; CPAM 2011), the solutions blow up in finite time.
- Assume additionally that U is λ-convex: U(x) λ/2 |x|² is convex, then one can construct a well-posedness theory for measures going over the blow-up time in a unique way (C., Di Francesco, Figalli, Laurent, Slepcev; Duke MJ 2012). This assumption restrict the possible singularities at the origin, U(x) ≃ |x|^α locally at 0, with 1 ≤ α < 2, for instance.
- The solutions are doomed to a Total Collapse on their center of mass in finite time. Blow-up time generically different from Total Collapse time.

Deterministic Particle Methods for Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

Minimization of the Interaction Energy

How to deal with concentrations?

Let U(x) = k(|x|) be a radial fully attractive potential with its only possible singularity located at zero such that

$$\int_0^L \frac{dr}{k'(r)} < +\infty,$$

- Given an initial condition in $L^1 \cap L^\infty$ (Bertozzi, C., Laurent; Nonlinearity 2009) or in $L^1 \cap L^p$ for p > d/(d-1) (Bertozzi, Laurent, Rosado; CPAM 2011), the solutions blow up in finite time.
- Assume additionally that U is λ-convex: U(x) λ/2 |x|² is convex, then one can construct a well-posedness theory for measures going over the blow-up time in a unique way (C., Di Francesco, Figalli, Laurent, Slepcev; Duke MJ 2012). This assumption restrict the possible singularities at the origin, U(x) ≃ |x|^α locally at 0, with 1 ≤ α < 2, for instance.
- The solutions are doomed to a Total Collapse on their center of mass in finite time. Blow-up time generically different from Total Collapse time.

Deterministic Particle Methods for Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

Minimization of the Interaction Energy

How to deal with concentrations?

Let U(x) = k(|x|) be a radial fully attractive potential with its only possible singularity located at zero such that

$$\int_0^L \frac{dr}{k'(r)} < +\infty,$$

- Given an initial condition in $L^1 \cap L^\infty$ (Bertozzi, C., Laurent; Nonlinearity 2009) or in $L^1 \cap L^p$ for p > d/(d-1) (Bertozzi, Laurent, Rosado; CPAM 2011), the solutions blow up in finite time.
- Assume additionally that U is λ-convex: U(x) λ/2 |x|² is convex, then one can construct a well-posedness theory for measures going over the blow-up time in a unique way (C., Di Francesco, Figalli, Laurent, Slepcev; Duke MJ 2012). This assumption restrict the possible singularities at the origin, U(x) ≃ |x|^α locally at 0, with 1 ≤ α < 2, for instance.
- The solutions are doomed to a Total Collapse on their center of mass in finite time. Blow-up time generically different from Total Collapse time.

Deterministic Particle Methods for Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

Minimization of the Interaction Energy

How to deal with concentrations?

Let U(x) = k(|x|) be a radial fully attractive potential with its only possible singularity located at zero such that

$$\int_0^L \frac{dr}{k'(r)} < +\infty,$$

- Given an initial condition in $L^1 \cap L^\infty$ (Bertozzi, C., Laurent; Nonlinearity 2009) or in $L^1 \cap L^p$ for p > d/(d-1) (Bertozzi, Laurent, Rosado; CPAM 2011), the solutions blow up in finite time.
- Assume additionally that U is λ-convex: U(x) λ/2 |x|² is convex, then one can construct a well-posedness theory for measures going over the blow-up time in a unique way (C., Di Francesco, Figalli, Laurent, Slepcev; Duke MJ 2012). This assumption restrict the possible singularities at the origin, U(x) ≃ |x|^α locally at 0, with 1 ≤ α < 2, for instance.
- The solutions are doomed to a Total Collapse on their center of mass in finite time. Blow-up time generically different from Total Collapse time.

Deterministic Particle Methods for Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

Γ -Convergence

Outline

Problem & Motivation

Minimization of the Interaction Energy

2 Deterministic Particle Methods for Diffusions

Γ-Convergence

Numerical Scheme and Simulations

Deterministic Particle Methods for Aggregation-Diffusions

- Approximation
- The Keller-Segel Model

Problem	& M	
	oc	

Deterministic Particle Methods for Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

 Γ -Convergence

Internal Energy

$$E\colon \mathcal{P}(\mathbb{R}^d) o \mathbb{R} \cup \{-\infty, +\infty\}$$
 by

$$E(\rho) = \begin{cases} \int_{\mathbb{R}} H(\rho(x)) \, dx \text{ if } \rho \in \mathcal{P}_{\mathrm{ac},2}(\mathbb{R}^d) \\ +\infty \quad \text{otherwise} \end{cases}$$

where $H: [0, \infty) \to \mathbb{R}$ is the density of *internal energy* satisfying H(0) = 0.

Let us consider N particles in \mathbb{R}^d denoted by $x_N := (x_{1,N}, \ldots, x_{N,N}) \in \mathbb{R}^{Nd}$, where N is a positive integer. For all $i \in \{1, \ldots, N\}$, let us write $B_{i,N} := B(x_{i,N}, R_{i,N})$ the open ball of centre $x_{i,N}$ and radius

$$R_{i,N} = rac{1}{2} \min_{j
eq i} |x_{i,N} - x_{j,N}|.$$

For these *N* particles consider

$$ho_N = rac{1}{N} \sum_{i=1}^N rac{1}{|B_{i,N}|} \chi_{B_{i,N}},$$

Problem & Motivation	Deterministic Particle Methods for Diffusions	Deterministic Particle Methods
	000000	
T C		

Internal Energy

$$E: \mathcal{P}(\mathbb{R}^d) \to \mathbb{R} \cup \{-\infty, +\infty\} \text{ by}$$
$$E(\rho) = \begin{cases} \int_{\mathbb{R}} H(\rho(x)) \, dx \text{ if } \rho \in \mathcal{P}_{ac,2}(\mathbb{R}^d) \\ +\infty & \text{otherwise} \end{cases}$$

where H: $[0, \infty) \to \mathbb{R}$ is the density of *internal energy* satisfying H(0) = 0.

Let us consider *N* particles in \mathbb{R}^d denoted by $x_N := (x_{1,N}, \ldots, x_{N,N}) \in \mathbb{R}^{Nd}$, where *N* is a positive integer. For all $i \in \{1, \ldots, N\}$, let us write $B_{i,N} := B(x_{i,N}, R_{i,N})$ the open ball of centre $x_{i,N}$ and radius

$$R_{i,N} = \frac{1}{2} \min_{j \neq i} |x_{i,N} - x_{j,N}|.$$

For these *N* particles consider

$$\rho_N = rac{1}{N} \sum_{i=1}^N rac{1}{|B_{i,N}|} \chi_{B_{i,N}},$$

Problem & Motivation 000000 Γ-Convergence Deterministic Particle Methods for Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

Approximated Internal Energy

Given

$$\mathcal{A}_N(\mathbb{R}^d) = \left\{ \mu \in \mathcal{P}(\mathbb{R}^d) \text{ such that } \exists x_N \in \mathbb{R}^{Nd}, \mu = \delta_{x_N}
ight\}.$$

The discrete energy $E_N \colon \mathcal{A}_N(\mathbb{R}^d) \to \mathbb{R} \cup \{-\infty, +\infty\}$ by

$$E_N(\mu) = \int_{\mathbb{R}} H\left(rac{1}{N}\sum_{i=1}^Nrac{1}{|B_{i,N}|}\chi_{B_{i,N}}(x)
ight)\,\mathrm{d}x,$$

where $B_{i,N} = B(x_{i,N}, R_{i,N})$ with x_N satisfying $\mu = \delta_{x_N}$. Note that

$$|B_{i,N}| = C_d R_{i,N}^d = \frac{C_d}{2} (\min_{j \neq i} |x_{i,N} - x_{j,N}|)^d,$$

where $C_d = |B(0, 1)|$ is the volume of the unit ball in dimension *d*. We clearly have $E(\rho_N) = E_N(\mu)$.

Deterministic Particle Methods for Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

 Γ -Convergence

Γ -Convergence Result

• Logarithmic Entropy: Given

$$E_N(\mu) = -rac{1}{N}\sum_{i=1}^N \log\left(rac{NC_d}{2^d}\left(\min_{j
eq i}|x_{i,N}-x_{j,N}|
ight)^d
ight)\,,$$

then it Γ -converges in d_2 to the logarithmic entropy $E[\mu]$.

• Nonlinear Entropy: The same holds for

$$E_N(\mu) = \int_{\mathbb{R}} \frac{1}{(m-1)N^m} \left(\sum_{i=1}^N \frac{1}{|B_{i,N}|} \chi_{B_{i,N}}(x) \right)^m dx$$

 Γ -converging to

$$E(
ho) = \int_{\mathbb{R}} rac{
ho^m(x)}{m-1} \,\mathrm{d}x \quad \mathrm{if} \
ho \in \mathcal{P}_{\mathrm{ac},2}(\mathbb{R}^d).$$

Deterministic Particle Methods for Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

 Γ -Convergence

Γ -Convergence Result

• Logarithmic Entropy: Given

$$E_N(\mu) = -rac{1}{N}\sum_{i=1}^N \log\left(rac{NC_d}{2^d}\left(\min_{j
eq i}|x_{i,N}-x_{j,N}|
ight)^d
ight)\,,$$

then it Γ -converges in d_2 to the logarithmic entropy $E[\mu]$.

• Nonlinear Entropy: The same holds for

$$E_N(\mu) = \int_{\mathbb{R}} \frac{1}{(m-1)N^m} \left(\sum_{i=1}^N \frac{1}{|B_{i,N}|} \chi_{B_{i,N}}(x) \right)^m \, \mathrm{d}x$$

 Γ -converging to

$$E(
ho) = \int_{\mathbb{R}} rac{
ho^m(x)}{m-1} \,\mathrm{d}x \quad \mathrm{if} \
ho \in \mathcal{P}_{\mathrm{ac},2}(\mathbb{R}^d).$$

Deterministic Particle Methods for Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

Numerical Scheme and Simulations

Outline

Problem & Motivation

Minimization of the Interaction Energy

2 Deterministic Particle Methods for Diffusions

- Γ-Convergence
- Numerical Scheme and Simulations

Deterministic Particle Methods for Aggregation-Diffusions

- Approximation
- The Keller-Segel Model

Deterministic Particle Methods for Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

Numerical Scheme and Simulations

Discrete JKO scheme

For any *N* particles in \mathbb{R}^d , we denote their weights by $w = (w_1, \ldots, w_N) \in \mathbb{R}^N$, which we assume to satisfy $\sum_{i=1}^N w_i = 1$ and $w_i \ge 0$ for all $i \in \{1, \ldots, N\}$. For any such $w \in \mathbb{R}^N$, define

$$\mathcal{P}_w(\mathbb{R}^d) = \left\{ \rho \in \mathcal{P}(\mathbb{R}^d) \text{ such that } \exists x = (x_1, \dots, x_N) \in \mathbb{R}^{Nd}, \rho = \sum_{i=1}^N \frac{w_i}{|B(x_i, R_i)|} \chi_{B(x_i, R_i)} \right\}$$

where

$$R_i=\frac{1}{2}\min_{j\neq i}|x_i-x_j|.$$

Note that

$$|B(x_i,R_i)| = C_d R_i^d = \frac{C_d}{2} \left(\min_{j \neq i} |x_i - x_j| \right)^d,$$

where $C_d = |B(0, 1)|$ is the volume of the unit ball of dimension *d*.

Discrete Particle JKO scheme:

$$F(\tilde{
ho}) = rac{1}{2\Delta t} d_2^2(
ho, \tilde{
ho}) + E(\tilde{
ho}), \qquad \longrightarrow \qquad F_N(\tilde{
ho}) = \sum_{i=1}^N w_i rac{(x_i - \tilde{x}_i)^2}{2\Delta t} + E_N(\tilde{
ho}),$$

Deterministic Particle Methods for Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

Numerical Scheme and Simulations

Discrete JKO scheme

For any *N* particles in \mathbb{R}^d , we denote their weights by $w = (w_1, \ldots, w_N) \in \mathbb{R}^N$, which we assume to satisfy $\sum_{i=1}^N w_i = 1$ and $w_i \ge 0$ for all $i \in \{1, \ldots, N\}$. For any such $w \in \mathbb{R}^N$, define

$$\mathcal{P}_w(\mathbb{R}^d) = \left\{ \rho \in \mathcal{P}(\mathbb{R}^d) \text{ such that } \exists x = (x_1, \dots, x_N) \in \mathbb{R}^{Nd}, \rho = \sum_{i=1}^N \frac{w_i}{|B(x_i, R_i)|} \chi_{B(x_i, R_i)} \right\}$$

where

$$R_i=\frac{1}{2}\min_{j\neq i}|x_i-x_j|.$$

Note that

$$|B(x_i,R_i)| = C_d R_i^d = \frac{C_d}{2} \left(\min_{j \neq i} |x_i - x_j| \right)^d,$$

where $C_d = |B(0, 1)|$ is the volume of the unit ball of dimension *d*.

Discrete Particle JKO scheme:

$$F(\tilde{\rho}) = \frac{1}{2\Delta t} d_2^2(\rho, \tilde{\rho}) + E(\tilde{\rho}), \qquad \longrightarrow \qquad F_N(\tilde{\rho}) = \sum_{i=1}^N w_i \frac{(x_i - \tilde{x}_i)^2}{2\Delta t} + E_N(\tilde{\rho}),$$

Deterministic Particle Methods for Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

Numerical Scheme and Simulations

Numerical Simulation: Heat and Fokker-Planck Equations

Deterministic Particle Methods for Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

Approximation

Outline

Problem & Motivation

Minimization of the Interaction Energy

2 Deterministic Particle Methods for Diffusions

- Γ-Convergence
- Numerical Scheme and Simulations

Deterministic Particle Methods for Aggregation-Diffusions Approximation

• The Keller-Segel Model

Deterministic Particle Methods for Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

Approximation

Deterministic Particle Methods for Aggregation-Diffusions (d = 1)

Consider the gradient flow

$$\frac{\mathrm{d}\rho}{\mathrm{d}t}(t) = -\nabla_{\mathcal{P}_{\mathrm{ac},2}(\mathbb{R})} E(\rho(t)) \quad \text{on } \mathbb{R}_+.$$

 $\rho \colon \mathbb{R}_+ \to \mathcal{P}_{\mathrm{ac},2}(\mathbb{R})$ and $\nabla_{\mathcal{P}_{\mathrm{ac},2}(\mathbb{R})}$ is the 2-Wasserstein gradient:

$$\nabla_{\mathcal{P}_{\mathrm{ac},2}(\mathbb{R})} E(\rho) = -\nabla \cdot \left(\rho \nabla \frac{\delta E}{\delta \rho}\right) \quad \text{for any } \rho \in \mathcal{P}_{\mathrm{ac},2}(\mathbb{R})$$

where $\frac{\delta E}{\delta \rho}$ is the first variation density of E at point ρ .

 $E: \mathcal{P}_{\mathrm{ac},2}(\mathbb{R}) \to \overline{\mathbb{R}} \text{ is the energy functional}$ $E(\rho) = \int_{\mathbb{R}} \left(H(\rho(x)) + U * \rho(x) \right) \, \mathrm{d}x \quad \text{for any } \rho \in \mathcal{P}_{\mathrm{ac},2}(\mathbb{R}),$

where $H: [0, \infty) \to \mathbb{R}$ is the **density of internal energy** and $U: \mathbb{R} \to \mathbb{R} \cup \{+\infty\}$ a symmetric **interaction potential**.

Deterministic Particle Methods for Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

Approximation

Deterministic Particle Methods for Aggregation-Diffusions (d = 1)

Consider the gradient flow

$$\frac{\mathrm{d}\rho}{\mathrm{d}t}(t) = -\nabla_{\mathcal{P}_{\mathrm{ac},2}(\mathbb{R})} E(\rho(t)) \quad \text{on } \mathbb{R}_+.$$

 $\rho \colon \mathbb{R}_+ \to \mathcal{P}_{\mathrm{ac},2}(\mathbb{R})$ and $\nabla_{\mathcal{P}_{\mathrm{ac},2}(\mathbb{R})}$ is the 2-Wasserstein gradient:

$$\nabla_{\mathcal{P}_{\mathrm{ac},2}(\mathbb{R})} E(\rho) = -\nabla \cdot \left(\rho \nabla \frac{\delta E}{\delta \rho} \right) \quad \text{for any } \rho \in \mathcal{P}_{\mathrm{ac},2}(\mathbb{R})$$

where $\frac{\delta E}{\delta \rho}$ is the first variation density of *E* at point ρ .

$$E: \mathcal{P}_{\mathrm{ac},2}(\mathbb{R}) \to \overline{\mathbb{R}} \text{ is the energy functional}$$
$$E(\rho) = \int_{\mathbb{R}} \left(H(\rho(x)) + U * \rho(x) \right) \, \mathrm{d}x \quad \text{for any } \rho \in \mathcal{P}_{\mathrm{ac},2}(\mathbb{R}),$$

where $H: [0, \infty) \to \mathbb{R}$ is the density of internal energy and $U: \mathbb{R} \to \mathbb{R} \cup \{+\infty\}$ a symmetric interaction potential.

Approximation

Deterministic Particle Methods for Aggregation-Diffusions

Take any $N \ge 2$ increasingly ordered particles $\{x_1, \ldots, x_N\} \subset \mathbb{R}$ with weights $\{w_i, \ldots, w_N\} \subset (0, 1)$.

The diffusion part of the energy is not defined on Dirac masses, so spread out the mass of each particle: write $B_i := B_{R_i}(x_i)$ the open ball of centre x_i and radius

$$R_i = \frac{1}{2}\min(\Delta x_{i+1}, \Delta x_i) ,$$

and define

$$\rho_N = \sum_{i=1}^N rac{w_i \chi_{\mathcal{B}_i}}{d_i} \in \mathcal{P}_{\mathrm{ac},2}(\mathbb{R}) ,$$

where $d_i := |B_i|$.

Approximation

Deterministic Particle Methods for Aggregation-Diffusions

Take any $N \ge 2$ increasingly ordered particles $\{x_1, \ldots, x_N\} \subset \mathbb{R}$ with weights $\{w_i, \ldots, w_N\} \subset (0, 1)$.

The diffusion part of the energy is not defined on Dirac masses, so spread out the mass of each particle: write $B_i := B_{R_i}(x_i)$ the open ball of centre x_i and radius

$$R_i = \frac{1}{2}\min(\Delta x_{i+1}, \Delta x_i) ,$$

and define

$$ho_N = \sum_{i=1}^N rac{w_i \chi_{\mathcal{B}_i}}{d_i} \in \mathcal{P}_{\mathrm{ac},2}(\mathbb{R}) \;,$$

where $d_i := |B_i|$.

Deterministic Particle Methods for Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

Approximation

Deterministic Particle Methods for Aggregation-Diffusions

Assume H(0) = 0 and compute

$$\int_{\mathbb{R}} H(\rho_N(x)) \, \mathrm{d}x = \int_{\mathbb{R}} H\left(\frac{1}{N} \sum_{i=1}^N \frac{\chi_{B_i}(x)}{|B_i|}\right) \, \mathrm{d}x = \sum_{i=1}^N d_i H\left(\frac{w_i}{d_i}\right)$$

Define now the **discrete energy** $E_N \colon \mathbb{R}^N \to \overline{\mathbb{R}}$ by

$$E_N(x) = \sum_{i=1}^N d_i H\left(\frac{w_i}{d_i}\right) + \frac{1}{2} \sum_{\substack{i=1\\j\neq i}}^N \sum_{\substack{j=1\\j\neq i}}^N w_i w_j U(x_i - x_j), \quad x \in \mathbb{R}^N$$

Deterministic Particle Methods for Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

Approximation

Deterministic Particle Methods for Aggregation-Diffusions

Assume H(0) = 0 and compute

$$\int_{\mathbb{R}} H(\rho_N(x)) \, \mathrm{d}x = \int_{\mathbb{R}} H\left(\frac{1}{N} \sum_{i=1}^N \frac{\chi_{B_i}(x)}{|B_i|}\right) \, \mathrm{d}x = \sum_{i=1}^N d_i H\left(\frac{w_i}{d_i}\right)$$

Define now the **discrete energy** $E_N \colon \mathbb{R}^N \to \overline{\mathbb{R}}$ by

$$E_N(x) = \sum_{i=1}^N d_i H\left(\frac{w_i}{d_i}\right) + \frac{1}{2} \sum_{i=1}^N \sum_{\substack{j=1\\j\neq i}}^N w_i w_j U(x_i - x_j), \quad x \in \mathbb{R}^N$$

Deterministic Particle Methods for Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

Approximation

Deterministic Particle Methods for Aggregation-Diffusions

We define a discrete gradient flow:

$$w \frac{\mathrm{d}x}{\mathrm{d}t}(t) \in -\partial E_N(x(t)) \quad \text{for all } t \in \mathbb{R}_+,$$

where $w \frac{dx}{dt}$ is the vector $(w_1x_1, \ldots, w_Nx_N) \in \mathbb{R}^N$ if we write $x := (x_1, \ldots, x_N)$, and ∂ stands for the subdifferential.

$$E_N \colon \mathbb{R}^N \to \overline{\mathbb{R}} \text{ is the discrete energy functional}$$
$$E_N(x) = \sum_{i=1}^N d_i H\left(\frac{w_i}{d_i}\right) + \frac{1}{2} \sum_{\substack{i=1\\j \neq i}}^N \sum_{\substack{j=1\\j \neq i}}^N w_i w_j U(x_i - x_j)$$
for all $x \in \mathbb{R}^N$.

Remark. The gradient flow has here the structure of a **differential inclusion** since the discrete energy E_N has no well-defined gradient because of the presence of the minimum function (in d_i).

Deterministic Particle Methods for Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

Approximation

Deterministic Particle Methods for Aggregation-Diffusions

We define a discrete gradient flow:

$$w \frac{\mathrm{d}x}{\mathrm{d}t}(t) \in -\partial E_N(x(t)) \quad \text{for all } t \in \mathbb{R}_+,$$

where $w \frac{dx}{dt}$ is the vector $(w_1x_1, \ldots, w_Nx_N) \in \mathbb{R}^N$ if we write $x := (x_1, \ldots, x_N)$, and ∂ stands for the subdifferential.

$$E_{N} \colon \mathbb{R}^{N} \to \overline{\mathbb{R}} \text{ is the discrete energy functional}$$
$$E_{N}(x) = \sum_{i=1}^{N} d_{i}H\left(\frac{w_{i}}{d_{i}}\right) + \frac{1}{2}\sum_{i=1}^{N}\sum_{\substack{j=1\\j\neq i}}^{N} w_{i}w_{j}U(x_{i} - x_{j})$$
for all $x \in \mathbb{R}^{N}$.

Remark. The gradient flow has here the structure of a **differential inclusion** since the discrete energy E_N has no well-defined gradient because of the presence of the minimum function (in d_i).

Deterministic Particle Methods for Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

Approximation

Deterministic Particle Methods for Aggregation-Diffusions

We define a discrete gradient flow:

$$w \frac{\mathrm{d}x}{\mathrm{d}t}(t) \in -\partial E_N(x(t)) \quad \text{for all } t \in \mathbb{R}_+,$$

where $w \frac{dx}{dt}$ is the vector $(w_1x_1, \ldots, w_Nx_N) \in \mathbb{R}^N$ if we write $x := (x_1, \ldots, x_N)$, and ∂ stands for the subdifferential.

$$E_{N} \colon \mathbb{R}^{N} \to \overline{\mathbb{R}} \text{ is the discrete energy functional}$$
$$E_{N}(x) = \sum_{i=1}^{N} d_{i}H\left(\frac{w_{i}}{d_{i}}\right) + \frac{1}{2}\sum_{i=1}^{N}\sum_{\substack{j=1\\j\neq i}}^{N} w_{i}w_{j}U(x_{i} - x_{j})$$
for all $x \in \mathbb{R}^{N}$.

Remark. The gradient flow has here the structure of a differential inclusion since the discrete energy E_N has no well-defined gradient because of the presence of the minimum function (in d_i).

Deterministic Particle Methods for Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

Approximation

Deterministic Particle Methods for Aggregation-Diffusions

Definition (*p*-approximation of minimum function). Let us define, for any p > 0, the function $\min_p : [0, \infty)^2 \to [0, \infty)$ as

$$\min_p(x,y) = \begin{cases} \left(\frac{x^{-p} + y^{-p}}{2}\right)^{-1/p} & \text{for all } x, y \in (0,\infty) \\ 0 & \text{otherwise} \end{cases}.$$

We define the *p*-approximated discrete energy by

$$E_{N,p} = \sum_{i=1}^{N} w_i \log \frac{w_i}{d_{i,p}} + \frac{1}{2} \sum_{i=1}^{N} \sum_{\substack{j=1\\j \neq i}}^{N} w_i w_j U(x_i - x_j)$$

where $d_{i,p} := \min_p(\Delta x_{i+1}, \Delta x_i)$, for all $i \in \{1, \ldots, N\}$.

Deterministic Particle Methods for Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

Approximation

Deterministic Particle Methods for Aggregation-Diffusions

Definition (*p*-approximation of minimum function). Let us define, for any p > 0, the function $\min_{p} : [0, \infty)^2 \to [0, \infty)$ as

$$\min_p(x, y) = \begin{cases} \left(\frac{x^{-p} + y^{-p}}{2}\right)^{-1/p} & \text{for all } x, y \in (0, \infty) \\ 0 & \text{otherwise} \end{cases}.$$

We define the *p*-approximated discrete energy by

$$E_{N,p} = \sum_{i=1}^{N} w_i \log \frac{w_i}{d_{i,p}} + \frac{1}{2} \sum_{i=1}^{N} \sum_{\substack{j=1\\j \neq i}}^{N} w_i w_j U(x_i - x_j) ,$$

where $d_{i,p} := \min_p(\Delta x_{i+1}, \Delta x_i)$, for all $i \in \{1, \ldots, N\}$.

Problem & Motivation 000000 Approximation Deterministic Particle Methods for Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

The *p*-approximated discrete energy $E_{N,p}$ has a well-defined gradient.

The *p*-approximated gradient flows writes then as the ODE system

$$w_i \frac{\mathrm{d}x_i}{\mathrm{d}t}(t) = -\nabla_{x_i} E_{N,p}(x_1(t), \dots, x_N(t)) \quad \text{for all } t \in \mathbb{R}_+.$$

 $E_{N,p} \colon \mathbb{R}^N \to \overline{\mathbb{R}}$ is the *p*-approximated discrete energy functional

$$E_{N,p}(x) = \sum_{i=1}^{N} w_i \log \frac{w_i}{d_{i,p}} + \frac{1}{2} \sum_{\substack{i=1\\j \neq i}}^{N} \sum_{\substack{j=1\\j \neq i}}^{N} w_i w_j U(x_i - x_j)$$

for all $x \in \mathbb{R}^N$, where $d_{i,p} := \min_p(\Delta x_{i+1}, \Delta x_i)$.

Problem & Motivation 000000 Approximation Deterministic Particle Methods for Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

The *p*-approximated discrete energy $E_{N,p}$ has a well-defined gradient.

The *p*-approximated gradient flows writes then as the ODE system

$$w_i \frac{\mathrm{d}x_i}{\mathrm{d}t}(t) = -\nabla_{x_i} E_{N,p}(x_1(t), \dots, x_N(t)) \quad \text{for all } t \in \mathbb{R}_+.$$

 $E_{N,p} \colon \mathbb{R}^N \to \overline{\mathbb{R}} \text{ is the } p\text{-approximated discrete energy functional}$ $E_{N,p}(x) = \sum_{i=1}^N w_i \log \frac{w_i}{d_{i,p}} + \frac{1}{2} \sum_{i=1}^N \sum_{\substack{j=1\\j \neq i}}^N w_i w_j U(x_i - x_j)$ for all $x \in \mathbb{R}^N$, where $d_{i,p} := \min_p(\Delta x_{i+1}, \Delta x_i)$.

Problem & Motivation 000000 Approximation Deterministic Particle Methods for Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

The *p*-approximated discrete energy $E_{N,p}$ has a well-defined gradient.

The *p*-approximated gradient flows writes then as the ODE system

$$w_i \frac{\mathrm{d}x_i}{\mathrm{d}t}(t) = -\nabla_{x_i} E_{N,p}(x_1(t), \dots, x_N(t)) \quad \text{for all } t \in \mathbb{R}_+.$$

 $E_{N,p} \colon \mathbb{R}^N \to \overline{\mathbb{R}}$ is the *p*-approximated discrete energy functional

$$E_{N,p}(x) = \sum_{i=1}^{N} w_i \log \frac{w_i}{d_{i,p}} + \frac{1}{2} \sum_{i=1}^{N} \sum_{\substack{j=1\\ i \neq i}}^{N} w_i w_j U(x_i - x_j)$$

for all $x \in \mathbb{R}^N$, where $d_{i,p} := \min_p(\Delta x_{i+1}, \Delta x_i)$.

Deterministic Particle Methods for Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

Approximation

Deterministic Particle Methods for Aggregation-Diffusions

For the heat equation $(H(x) = x \log x \text{ and } W = 0)$ we are able to show that the *p*-approximated gradient flow converges to the continuum gradient flow in the Serfaty sense.¹

To find the solution to the *p*-approximated ODE system we use an explicit version of the following JKO scheme:

$$x^{n+1} := \operatorname*{argmin}_{x \in \mathbb{R}^N} \left(\sum_{i=1}^N w_i \frac{(x_i^n - x_i)^2}{2\Delta t} + E_{N,p}(x) \right) \,.$$

¹Carrillo, Huang, Patacchini, Sternberg, Wolansky, in preparation.

Deterministic Particle Methods for Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

Approximation

Deterministic Particle Methods for Aggregation-Diffusions

For the heat equation $(H(x) = x \log x \text{ and } W = 0)$ we are able to show that the *p*-approximated gradient flow converges to the continuum gradient flow in the Serfaty sense.¹

To find the solution to the *p*-approximated ODE system we use an explicit version of the following JKO scheme:

$$x^{n+1} := \operatorname*{argmin}_{x \in \mathbb{R}^N} \left(\sum_{i=1}^N w_i \frac{(x_i^n - x_i)^2}{2\Delta t} + E_{N,p}(x) \right).$$

¹Carrillo, Huang, Patacchini, Sternberg, Wolansky, in preparation.

Deterministic Particle Methods for Diffusio

Deterministic Particle Methods for Aggregation-Diffusions

The Keller-Segel Model

Outline

Problem & Motivation

• Minimization of the Interaction Energy

2 Deterministic Particle Methods for Diffusions

- Γ-Convergence
- Numerical Scheme and Simulations

3 Deterministic Particle Methods for Aggregation-Diffusions

- Approximation
- The Keller-Segel Model

Deterministic Particle Methods for Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

The Keller-Segel Model

Deterministic Particle Methods for Aggregation-Diffusions

The Keller-Segel equation $(H(x) = x \log x \text{ and } W(x) = 2\chi \log |x|)$.

$$\frac{\partial \rho}{\partial t} = \Delta \rho + 2\chi \nabla \cdot (\rho \nabla \log |\cdot| * \rho) \quad \text{on } \mathbb{R}_+ \times \mathbb{R},$$

where χ is an interaction parameter quantifying the "strength" of the attraction.

Write $M_2(t) := \int_{\mathbb{R}} |x|^2 d\rho(t, x)$. Theoretically, it is easy to check that

$$\frac{\mathrm{d}M_2}{\mathrm{d}t}(t) = 2(1-\chi) \quad \text{for all } t \in [0,\infty).$$

Thus we have three cases:

Subcritical. $\chi < 1$: solutions exist for all times; the diffusion wins over the attraction.

Critical. $\chi = 1$.

Supercritical. $\chi > 1$: solutions cease to exist after a finite time; the attraction wins over the diffusion.

Deterministic Particle Methods for Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

The Keller-Segel Model

Deterministic Particle Methods for Aggregation-Diffusions

The Keller-Segel equation $(H(x) = x \log x \text{ and } W(x) = 2\chi \log |x|)$.

$$\frac{\partial \rho}{\partial t} = \Delta \rho + 2\chi \nabla \cdot (\rho \nabla \log |\cdot| * \rho) \quad \text{on } \mathbb{R}_+ \times \mathbb{R},$$

where χ is an interaction parameter quantifying the "strength" of the attraction.

Write $M_2(t) := \int_{\mathbb{R}} |x|^2 d\rho(t, x)$. Theoretically, it is easy to check that

$$\frac{\mathrm{d}M_2}{\mathrm{d}t}(t) = 2(1-\chi) \quad \text{for all } t \in [0,\infty).$$

Thus we have three cases:

Subcritical. $\chi < 1$: solutions exist for all times; the diffusion wins over the attraction.

Critical. $\chi = 1$.

Supercritical. $\chi > 1$: solutions cease to exist after a finite time; the attraction wins over the diffusion.

Deterministic Particle Methods for Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

The Keller-Segel Model

Deterministic Particle Methods for Aggregation-Diffusions

Write $M_2^{N,p}(t) := \int_{\mathbb{R}} |x|^2 d\rho_{N,p}(t,x)$, where $\rho_{N,p} = \sum_{i=1}^{N} \frac{w_i \chi_{B_i}}{d_{i,p}}$. Interestingly, using our *p*-approximated discrete gradient flow, we can compute $\frac{dM_2^{N,p}}{dt}(t) = 2(1-\chi) + \mathop{\mathcal{O}}_{N \to \infty}(1) \quad \text{for all } t \in [0,\infty).$

Adaptive time step. To catch blow-up we implement the following adaptive time step method.

- Initialize $\Delta t = 10^{-5}$ and fix $\varepsilon < 1$.
- (a) If $\Delta t > \frac{\varepsilon d_{i,p}}{2\left|\frac{dx_i}{dt}\right|}$, then define $\Delta t_i := \frac{\varepsilon d_{i,p}}{2\left|\frac{dx_i}{dt}\right|}$.
- Let *I* be the set of indices for which the if-loop above was entered. If $I = \emptyset$, then choose $\Delta t = \Delta t$. If $I \neq \emptyset$, then choose $\Delta t = \min_{i \in I} \Delta_i$.

If
$$\Delta t < 10^{-7}$$
, then stop.

Deterministic Particle Methods for Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

The Keller-Segel Model

Deterministic Particle Methods for Aggregation-Diffusions

Write $M_2^{N,p}(t) := \int_{\mathbb{R}} |x|^2 d\rho_{N,p}(t,x)$, where $\rho_{N,p} = \sum_{i=1}^{N} \frac{w_i \chi_{B_i}}{d_{i,p}}$. Interestingly, using our *p*-approximated discrete gradient flow, we can compute $\frac{dM_2^{N,p}}{dt}(t) = 2(1-\chi) + \mathop{\mathcal{O}}_{N \to \infty}(1) \quad \text{for all } t \in [0,\infty).$

Adaptive time step. To catch blow-up we implement the following adaptive time step method.

- Initialize $\Delta t = 10^{-5}$ and fix $\varepsilon < 1$.
- $\ \, \textbf{If } \Delta t > \frac{\varepsilon d_{i,p}}{2\left|\frac{\mathrm{d} t_i}{\mathrm{d} t}\right|}, \text{ then define } \Delta t_i := \frac{\varepsilon d_{i,p}}{2\left|\frac{\mathrm{d} x_i}{\mathrm{d} t}\right|}.$
- **(a)** Let *I* be the set of indices for which the if-loop above was entered. If $I = \emptyset$, then choose $\Delta t = \Delta t$. If $I \neq \emptyset$, then choose $\Delta t = \min_{i \in I} \Delta_i$.

If
$$\Delta t < 10^{-7}$$
, then stop.

Deterministic Particle Methods for Diffusions

Deterministic Particle Methods for Aggregation-Diffusions

The Keller-Segel Model

Deterministic Particle Methods for Aggregation-Diffusions

Figure : Evolution of second order moment with $\chi = 1.5$ and N = 100 (left). Evolution of positions before numerical blow-up with $\chi = 1.5$ and N = 50 (right).

Deterministic Particle Methods for Diffusions 0000000 Deterministic Particle Methods for Aggregation-Diffusions

The Keller-Segel Model

Deterministic Particle Methods for Aggregation-Diffusions

Videos.

Keller Segel – $\chi = 1.5$; N = 100; one Gaussian Keller Segel – $\chi = 3$; N = 100; two Gaussians