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Minimization of the Interaction Energy

Aggregation for particles - Continuum Model

One particle attracted/repelled by a fixed location x = a

Ẋ = −∇U(X − a) U(x) = U(−x),U(0) = 0 ,U ∈ C(Rd,R) ∩ C1(Rd/{0},R)

Multiple particles attracted by one another

Ẋi = −
∑
j 6=i

mj ∇U(Xi − Xj)

ρ(t, x) = density of particle at time t

v(x) = −
∫
Rd
∇U(x− y) ρ(y)dy

So v = −∇U ∗ ρ : {
ρt + divρv = 0
v = −∇U ∗ ρ
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Minimization of the Interaction Energy

Formal Gradient Flow
Basic Properties

1 Conservation of the center of mass.
2 Liapunov Functional: Gradient flow of

F [ρ] =
1
2

∫∫
U(x− y) ρ(x) ρ(y) dxdy

with respect to the Wasserstein distance W2.
(C., McCann, Villani; RMI 2003, ARMA 2006).

The macroscopic equation can be rewritten as

∂ρ

∂t
(t, x) = div

(
ρ(t, x)∇

[
δF
δρ

(t, x)

])
.

with entropy dissipation:

d
dt
F [ρ(t)] = −

∫
R2
ρ(t, x)

∣∣∣∣∇δFδρ (t, x)

∣∣∣∣2 dx .
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Minimization of the Interaction Energy

Sliding down in a Energy Landscape

Finite Dimensional Gradient flows

A gradient flow in Rd defined by an energy F is given by

dxt

dt
= −∇F(xt) .

It is the continuous version of the steepest descent on the energy landscape
determined by F given by the implicit Euler scheme: given a time step ∆t and an
approximation to the solution at time tk = k∆t, we find the approximation at time
tk+1 by solving

xk+1 = xk −∆t∇F(xk+1) .

which is equivalent under convexity conditions to the following variational problem:
Solve

xk+1 = arg min
x∈Rd

{
1

2 ∆t
|x− xk|2 + F(x)

}
with | · | the euclidean norm.
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Minimization of the Interaction Energy

JKO scheme (Jordan-Kinderlehrer-Otto)

A discrete time approximation of the PDE is obtained by solving a sequences of
variational problem.

Choose a time step ∆t.

Solve

ρk+1 = arg min
ρ∈Po

2 (R
d)

{
1

2 ∆t
W2

2 (ρ, ρk) + F(ρ)

}

As ∆t→ 0 it converges to the solution of a weak form of{
ρt + divρv = 0
v = −∇U ∗ ρ

The convergence for smooth C1 potentials U with at most quadratic growth at infinity
given in "Gradient Flow in Metric Spaces" book by Ambrosio, Gigli, Savaré, 2005.

Is this theory with initial data measures really necessary?
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Minimization of the Interaction Energy

How to deal with concentrations?

Let U(x) = k(|x|) be a radial fully attractive potential with its only possible
singularity located at zero such that

No-Osgood condition:
∫ L

0

dr
k′(r)

< +∞,

Then we are doomed to deal with concentrations in finite time.

Given an initial condition in L1 ∩ L∞ (Bertozzi, C., Laurent; Nonlinearity
2009) or in L1 ∩ Lp for p > d/(d − 1) (Bertozzi, Laurent, Rosado; CPAM
2011), the solutions blow up in finite time.

Assume additionally that U is λ-convex: U(x)− λ
2 |x|

2 is convex, then one can
construct a well-posedness theory for measures going over the blow-up time in
a unique way (C., Di Francesco, Figalli, Laurent, Slepcev; Duke MJ 2012).
This assumption restrict the possible singularities at the origin, U(x) ' |x|α
locally at 0, with 1 ≤ α < 2, for instance.

The solutions are doomed to a Total Collapse on their center of mass in finite
time. Blow-up time generically different from Total Collapse time.
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Γ-Convergence

Internal Energy

E : P(Rd)→ R ∪ {−∞,+∞} by

E(ρ) =


∫
R
H(ρ(x)) dx if ρ ∈ Pac,2(Rd)

+∞ otherwise

,

where H : [0, ∞) → R is the density of internal energy satisfying H(0) = 0.

Let us consider N particles in Rd denoted by xN := (x1,N , . . . , xN,N) ∈ RNd, where N
is a positive integer. For all i ∈ {1, . . . ,N}, let us write Bi,N := B(xi,N ,Ri,N) the open
ball of centre xi,N and radius

Ri,N =
1
2

min
j6=i
|xi,N − xj,N |.

For these N particles consider

ρN =
1
N

N∑
i=1

1
|Bi,N |

χBi,N ,



icreauab

Problem & Motivation Deterministic Particle Methods for Diffusions Deterministic Particle Methods for Aggregation-Diffusions

Γ-Convergence

Internal Energy

E : P(Rd)→ R ∪ {−∞,+∞} by

E(ρ) =


∫
R
H(ρ(x)) dx if ρ ∈ Pac,2(Rd)

+∞ otherwise

,

where H: [0, ∞) → R is the density of internal energy satisfying H(0) = 0.

Let us consider N particles in Rd denoted by xN := (x1,N , . . . , xN,N) ∈ RNd, where N
is a positive integer. For all i ∈ {1, . . . ,N}, let us write Bi,N := B(xi,N ,Ri,N) the open
ball of centre xi,N and radius

Ri,N =
1
2

min
j6=i
|xi,N − xj,N |.

For these N particles consider

ρN =
1
N

N∑
i=1

1
|Bi,N |

χBi,N ,



icreauab

Problem & Motivation Deterministic Particle Methods for Diffusions Deterministic Particle Methods for Aggregation-Diffusions

Γ-Convergence

Approximated Internal Energy

Given
AN(Rd) =

{
µ ∈ P(Rd) such that ∃xN ∈ RNd, µ = δxN

}
.

The discrete energy EN : AN(Rd)→ R ∪ {−∞,+∞} by

EN(µ) =

∫
R

H

(
1
N

N∑
i=1

1
|Bi,N |

χBi,N (x)

)
dx,

where Bi,N = B(xi,N ,Ri,N) with xN satisfying µ = δxN . Note that

|Bi,N | = CdRd
i,N =

Cd

2
(min

j 6=i
|xi,N − xj,N |)d,

where Cd = |B(0, 1)| is the volume of the unit ball in dimension d. We clearly have
E(ρN) = EN(µ).
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Γ-Convergence

Γ-Convergence Result

Logarithmic Entropy: Given

EN(µ) = − 1
N

N∑
i=1

log

(
NCd

2d

(
min
j 6=i
|xi,N − xj,N |

)d
)
,

then it Γ-converges in d2 to the logarithmic entropy E[µ].

Nonlinear Entropy: The same holds for

EN(µ) =

∫
R

1
(m− 1)Nm

(
N∑

i=1

1
|Bi,N |

χBi,N (x)

)m

dx

Γ-converging to

E(ρ) =

∫
R

ρm(x)

m− 1
dx if ρ ∈ Pac,2(Rd).
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Numerical Scheme and Simulations

Discrete JKO scheme
For any N particles in Rd, we denote their weights by w = (w1, . . . ,wN) ∈ RN ,
which we assume to satisfy

∑N
i=1 wi = 1 and wi ≥ 0 for all i ∈ {1, . . . ,N}. For any

such w ∈ RN , define

Pw(Rd) =

{
ρ ∈ P(Rd) such that ∃x = (x1, . . . , xN) ∈ RNd, ρ =

N∑
i=1

wi

|B(xi,Ri)|
χB(xi,Ri)

}
,

where
Ri =

1
2

min
j 6=i
|xi − xj|.

Note that

|B(xi,Ri)| = CdRd
i =

Cd

2

(
min
j 6=i
|xi − xj|

)d

,

where Cd = |B(0, 1)| is the volume of the unit ball of dimension d.

Discrete Particle JKO scheme:

F(ρ̃) =
1

2∆t
d2

2(ρ, ρ̃) + E(ρ̃), −→ FN(ρ̃) =
N∑

i=1

wi
(xi − x̃i)

2

2∆t
+ EN(ρ̃),
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j 6=i
|xi − xj|

)d

,

where Cd = |B(0, 1)| is the volume of the unit ball of dimension d.

Discrete Particle JKO scheme:

F(ρ̃) =
1

2∆t
d2

2(ρ, ρ̃) + E(ρ̃), −→ FN(ρ̃) =

N∑
i=1

wi
(xi − x̃i)

2

2∆t
+ EN(ρ̃),
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Numerical Simulation: Heat and Fokker-Planck Equations
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Approximation

Deterministic Particle Methods for Aggregation-Diffusions (d = 1)

Consider the gradient flow
dρ
dt

(t) = −∇Pac,2(R)E(ρ(t)) on R+.

ρ : R+ → Pac,2(R) and∇Pac,2(R) is the 2-Wasserstein gradient:

∇Pac,2(R)E(ρ) = −∇ ·
(
ρ∇δE

δρ

)
for any ρ ∈ Pac,2(R),

where δE
δρ

is the first variation density of E at point ρ.

E : Pac,2(R)→ R is the energy functional

E(ρ) =

∫
R

(H(ρ(x)) + U ∗ ρ(x)) dx for any ρ ∈ Pac,2(R),

where H : [0,∞) → R is the density of internal energy and U : R → R ∪
{+∞} a symmetric interaction potential.
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Take any N ≥ 2 increasingly ordered particles {x1, . . . , xN} ⊂ R with weights
{wi, . . . ,wN} ⊂ (0, 1).

The diffusion part of the energy is not defined on Dirac masses, so spread out the mass
of each particle: write Bi := BRi (xi) the open ball of centre xi and radius

Ri = 1
2 min(∆xi+1,∆xi) ,

and define

ρN =

N∑
i=1

wiχBi

di
∈ Pac,2(R) ,

where di := |Bi|.
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Assume H(0) = 0 and compute∫
R

H(ρN(x)) dx =

∫
R

H

(
1
N

N∑
i=1

χBi (x)

|Bi|

)
dx =

N∑
i=1

diH
(

wi

di

)
.

Define now the discrete energy EN : RN → R by

EN(x) =

N∑
i=1

diH
(

wi

di

)
+

1
2

N∑
i=1

N∑
j=1
j6=i

wiwjU(xi − xj), x ∈ RN .
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We define a discrete gradient flow:

w
dx
dt

(t)∈ − ∂EN(x(t)) for all t ∈ R+,

where w dx
dt is the vector (w1x1, . . . ,wNxN) ∈ RN if we write x := (x1, . . . , xN),

and ∂ stands for the subdifferential.

EN : RN → R is the discrete energy functional

EN(x) =
N∑

i=1

diH
(

wi

di

)
+

1
2

N∑
i=1

N∑
j=1
j6=i

wiwjU(xi − xj)

for all x ∈ RN .

Remark. The gradient flow has here the structure of a differential inclusion since
the discrete energy EN has no well-defined gradient because of the presence of the
minimum function (in di).
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Definition (p-approximation of minimum function). Let us define, for any p > 0,
the function minp : [0,∞)2 → [0,∞) as

minp(x, y) =


(

x−p + y−p

2

)−1/p

for all x, y ∈ (0,∞)

0 otherwise
.

We define the p-approximated discrete energy by

EN,p =

N∑
i=1

wi log
wi

di,p
+

1
2

N∑
i=1

N∑
j=1
j6=i

wiwjU(xi − xj) ,

where di,p := minp(∆xi+1,∆xi), for all i ∈ {1, . . . ,N}.
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Deterministic Particle Methods for Aggregation-Diffusions

The p-approximated discrete energy EN,p has a well-defined gradient.

The p-approximated gradient flows writes then as the ODE system

wi
dxi

dt
(t) = −∇xi EN,p(x1(t), . . . , xN(t)) for all t ∈ R+.

EN,p : RN → R is the p-approximated discrete energy functional

EN,p(x) =
N∑

i=1

wi log
wi

di,p
+

1
2

N∑
i=1

N∑
j=1
j 6=i

wiwjU(xi − xj)

for all x ∈ RN , where di,p := minp(∆xi+1,∆xi).



icreauab

Problem & Motivation Deterministic Particle Methods for Diffusions Deterministic Particle Methods for Aggregation-Diffusions

Approximation

Deterministic Particle Methods for Aggregation-Diffusions

The p-approximated discrete energy EN,p has a well-defined gradient.

The p-approximated gradient flows writes then as the ODE system

wi
dxi

dt
(t) = −∇xi EN,p(x1(t), . . . , xN(t)) for all t ∈ R+.

EN,p : RN → R is the p-approximated discrete energy functional

EN,p(x) =
N∑

i=1

wi log
wi

di,p
+

1
2

N∑
i=1

N∑
j=1
j 6=i

wiwjU(xi − xj)

for all x ∈ RN , where di,p := minp(∆xi+1,∆xi).



icreauab

Problem & Motivation Deterministic Particle Methods for Diffusions Deterministic Particle Methods for Aggregation-Diffusions

Approximation

Deterministic Particle Methods for Aggregation-Diffusions

The p-approximated discrete energy EN,p has a well-defined gradient.

The p-approximated gradient flows writes then as the ODE system

wi
dxi

dt
(t) = −∇xi EN,p(x1(t), . . . , xN(t)) for all t ∈ R+.

EN,p : RN → R is the p-approximated discrete energy functional

EN,p(x) =
N∑

i=1

wi log
wi

di,p
+

1
2

N∑
i=1

N∑
j=1
j 6=i

wiwjU(xi − xj)

for all x ∈ RN , where di,p := minp(∆xi+1,∆xi).



icreauab

Problem & Motivation Deterministic Particle Methods for Diffusions Deterministic Particle Methods for Aggregation-Diffusions

Approximation
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For the heat equation (H(x) = x log x and W = 0) we are able to show that the
p-approximated gradient flow converges to the continuum gradient flow in the
Serfaty sense.1

To find the solution to the p-approximated ODE system we use an explicit version of
the following JKO scheme:

xn+1 := argmin
x∈RN

(
N∑

i=1

wi
(xn

i − xi)
2

2∆t
+ EN,p(x)

)
.

1Carrillo, Huang, Patacchini, Sternberg, Wolansky, in preparation.
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The Keller-Segel Model

Deterministic Particle Methods for Aggregation-Diffusions

The Keller-Segel equation (H(x) = x log x and W(x) = 2χ log |x|).
∂ρ

∂t
= ∆ρ+ 2χ∇ · (ρ∇ log | · | ∗ ρ) on R+ × R,

where χ is an interaction parameter quantifying the “strength” of the attrac-
tion.

Write M2(t) :=
∫
R |x|

2 dρ(t, x). Theoretically, it is easy to check that

dM2

dt
(t) = 2(1− χ) for all t ∈ [0,∞).

Thus we have three cases:

Subcritical. χ < 1: solutions exist for all times; the diffusion wins over the
attraction.

Critical. χ = 1.

Supercritical. χ > 1: solutions cease to exist after a finite time; the attraction wins
over the diffusion.
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Deterministic Particle Methods for Aggregation-Diffusions

Write MN,p
2 (t) :=

∫
R |x|

2 dρN,p(t, x), where ρN,p =
∑N

i=1
wiχBi

di,p
. Interestingly,

using our p-approximated discrete gradient flow, we can compute

dMN,p
2

dt
(t) = 2(1− χ) + O

N→∞
p→∞

(1) for all t ∈ [0,∞).

Adaptive time step. To catch blow-up we implement the following adaptive time step
method.

1 Initialize ∆t = 10−5 and fix ε < 1.

2 If ∆t > εdi,p

2
∣∣∣ dxi

dt

∣∣∣ , then define ∆ti :=
εdi,p

2
∣∣∣ dxi

dt

∣∣∣ .

3 Let I be the set of indices for which the if-loop above was entered. If I = ∅, then
choose ∆t = ∆t. If I 6= ∅, then choose ∆t = mini∈I ∆i.

4 If ∆t < 10−7, then stop.
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Figure : Evolution of second order moment with χ = 1.5 and N = 100 (left).
Evolution of positions before numerical blow-up with χ = 1.5 and N = 50 (right).
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Videos.
Keller Segel – χ = 1.5; N = 100; one Gaussian
Keller Segel – χ = 3; N = 100; two Gaussians
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