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Aggregation for particles - Continuum Model
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Formal Gradient Flow

Basic Properties

@ Conservation of the center of mass.

@ Liapunov Functional: Gradient flow of

Flo] = % / / U(x —y) p(x) p(y) dxdy

with respect to the Wasserstein distance Ws.
(C., McCann, Villani; RMI 2003, ARMA 2006).
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Formal Gradient Flow

Basic Properties

@ Conservation of the center of mass.

@ Liapunov Functional: Gradient flow of

Flo] = % / / U(x —y) p(x) p(y) dxdy

with respect to the Wasserstein distance Ws.
(C., McCann, Villani; RMI 2003, ARMA 2006).

The macroscopic equation can be rewritten as

%(nx) = div (p(t,x)v {%(r,x)D .

with entropy dissipation:

Vé'—}—(t.,x)

5p dx .
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It is the continuous version of the steepest descent on the energy landscape
determined by F given by the implicit Euler scheme: given a time step Az and an
approximation to the solution at time # = kAt, we find the approximation at time
tr+1 by solving
Xk+1 = Xk — AtV}'(ka) .
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Sliding down in a Energy Landscape

Finite Dimensional Gradient flows
A gradient flow in R? defined by an energy F is given by

% =—-VF(x).
It is the continuous version of the steepest descent on the energy landscape
determined by F given by the implicit Euler scheme: given a time step Az and an
approximation to the solution at time # = kAt, we find the approximation at time
tr+1 by solving
Xk+1 = Xk — AtV}'(ka) .

which is equivalent under convexity conditions to the following variational problem:
Solve

. 1
Xj41 = arg min {mh—xk\z +.7—"(x)}

xER

with | - | the euclidean norm.
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@ As Ar — 0 it converges to the solution of a weak form of

pr+divpy =0
v=—-VUx*p

The convergence for smooth C! potentials U with at most quadratic growth at infinity
given in "Gradient Flow in Metric Spaces" book by Ambrosio, Gigli, Savaré, 2005.

Is this theory with initial data measures really necessary?
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How to deal with concentrations?

Let U(x) = k(|x|) be a radial fully attractive potential with its only possible
singularity located at zero such that

L
No-Osgood condition: / dr < +o00,
o K(r)
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How to deal with concentrations?

Let U(x) = k(|x|) be a radial fully attractive potential with its only possible
singularity located at zero such that

L
No-Osgood condition: / dr < +o00,
o K(r)

Then we are doomed to deal with concentrations in finite time.

@ Given an initial condition in L' N L (Bertozzi, C., Laurent; Nonlinearity
2009) orin L' N LP forp > d /(d — 1) (Bertozzi, Laurent, Rosado; CPAM
2011), the solutions blow up in finite time.

@ Assume additionally that U is A-convex: U(x) — 5 |x|” is convex, then one can

construct a well-posedness theory for measures going over the blow-up time in

a unique way (C., Di Francesco, Figalli, Laurent, Slepcev; Duke MJ 2012).

This assumption restrict the possible singularities at the origin, U(x) =~ |x|*

locally at 0, with 1 < « < 2, for instance.

@ The solutions are doomed to a Total Collapse on their center of mass in finite
time. Blow-up time generically different from Total Collapse time.
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Internal Energy

E: P(RY) — RU {—00,+0c0} by

H(p(x)) dxif p € Pac 2(R?
E(p) = / (p(x)) dxif p € Puc2(RY) 7

+o00 otherwise

where H : [0, 00) — R is the density of internal energy satisfying H(0) = 0.
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[e] Jele}

I"-Convergence

Internal Energy

E: P(RY) — RU {—00,+0c0} by

/\ H(p(x)) dx if p € Pac 2(RY)
E(p) =q %
+00 otherwise
where H: [0, o0) — R is the density of internal energy satisfying H(0) = 0.

RM where N

Let us consider N particles in R denoted by xy := (X1, ..., Xy ) €
is a positive integer. For all i € {1,..., N}, let us write Bi,y := B(xin, Ri,v) the open

ball of centre x; y and radius

1 .
R,g/v = —min ‘)C,"N — XjN|-
' 2 j#i

For these N particles consider

PN = 72 ‘Buleb’lx
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Approximated Internal Energy

Given
AN(R’/) = { TS P(Rd) such that Ixy € RN’/, = dw} .

The discrete energy Ey: Av(R?) = R U {—o00, 400} by

EN(“:/ ( Z:IB,NIXB’“ >dx

where By = B(xin, Rin) with xy satisfying y1 = d,,. Note that
Cq, .
|Biw| = CaRiy = == (min [xix — xv])",
2 A

where C; = |B(0, 1)| is the volume of the unit ball in dimension d. We clearly have
E(pn) = En ().
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['-Convergence Result

@ Logarithmic Entropy: Given

d
N /1 =N Z] ( 2([( (rggl ‘Xi,N _-’Cj,A/‘) ) )

then it I'-converges in d, to the logarithmic entropy E[u].
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['-Convergence Result

@ Logarithmic Entropy: Given

d
N /1 =N Z] ( 2([( (rggl ‘Xi,N _-’Cj,A/‘) ) )

then it I'-converges in d, to the logarithmic entropy E[u].

@ Nonlinear Entropy: The same holds for

1 1 !
EN(AL‘L) = /R (m — I)Nm <Z Bi’NIXBi,N(x)> dx

I'-converging to

E(p) = / LECIIPN if p € Pac2(RY).
R

, m— 1
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Discrete JKO scheme

For any N particles in R?, we denote their weights by w = (wy, ..., wy) € RY,
which we assume to satisfy 3%, w; = 1 and w; > Oforalli € {1,...,N}. For any
such w € R", define

r
Pu(RY) = {p € P(R?) such that 3x = (x1,...,xv) €RY, p=>" w(:’R_)'xB@,,m} ~
i=1 S

where 1
Ri = — min |x; — xj|.
i 2 i — x|
Note that
Cu ¢
|B(x,-,R,-)| = CdRij = — (mm \x; — )C/'|> ,
2\ j# ’

where Cq = |B(0, 1)| is the volume of the unit ball of dimension d.
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Discrete JKO scheme

For any N particles in R?, we denote their weights by w = (wy, ..., wy) € RY,
which we assume to satisfy 3%, w; = 1 and w; > Oforalli € {1,...,N}. For any
such w € R", define

Pu(RY) = {p € P(R?) such that 3x = (x,...,xy) € RY p= Z |B JXscuR >} :

where

1
R = = min |x; — x;.
i=3 I;f;gl lxi — x|
Note that .
1B, R)| = CaR! = <2 (min v —x])
2\ j# k
where Cq = |B(0, 1)| is the volume of the unit ball of dimension d.

Discrete Particle JKO scheme:

N ~\2

~ Xi — Xi ~
——d>(p, p) + E(p), — Fn(p) = Zw[% + En(p),

i=1

F() = 55,
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Numerical Scheme and Simulations

Numerical Simulation: Heat and Fokker-Planck Equations
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Deterministic Particle Methods for Aggregation-Diffusions (d = 1)

Consider the gradient flow

d
D) =~V ,mE(p(®) onRy.

p: Ry = P 2(R) and Vi, (r) is the 2-Wasserstein gradient:

OF
Vpac.Z(R)E(p) = —V ' (pV%> for any p € Pac,Z(R),

where % is the first variation density of E at point p.
P
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Deterministic Particle Methods for Aggregation-Diffusions (d = 1)

Consider the gradient flow

d
D) =~V ,mE(p(®) onRy.

p: Ry = P 2(R) and Vi, (r) is the 2-Wasserstein gradient:

OF
Vpac.Z(R)E(p) = —V ' (pV%> for any p € Pac,Z(R),

where % is the first variation density of E at point p.
P

E: Pac2(R) — R is the energy functional

E(p) = / (H(p(x)) + U # p(x)) dx forany p € Pue(R),

where H: [0,00) — R is the density of internal energy and U: R — R U
{+00} a symmetric interaction potential.
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Deterministic Particle Methods for Aggregation-Diffusions

Take any N > 2 increasingly ordered particles {xi,...,xy} C R with weights
{W,’, - 7W}\/} C (0, 1).

The diffusion part of the energy is not defined on Dirac masses, so spread out the mass
of each particle: write B; := Bg,(x;) the open ball of centre x; and radius

Ri = % min(AxH_] 5 Axi) )
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Deterministic Particle Methods for Aggregation-Diffusions

Take any N > 2 increasingly ordered particles {xi,...,xy} C R with weights
{W,’, - 7W}\/} C (0, 1).

The diffusion part of the energy is not defined on Dirac masses, so spread out the mass
of each particle: write B; := Bg,(x;) the open ball of centre x; and radius

‘Ri = %min(AxH_],Axi) )

and define

N
Wi ;
PN = Z iXB, € Pac,Z(R) 5

where d; := |B].
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Deterministic Particle Methods for Aggregation-Diffusions

Assume H(0) = 0 and compute

/RH(pN(x))dx:/RH (’bixﬁg@) dx:éd,-H (%)
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Deterministic Particle Methods for Aggregation-Diffusions

Assume H(0) = 0 and compute

/RH(pN(x))dx:/RH<;’iXB (x

Define now the discrete energy Ey: RV — R by

)> dx:id,-H(”;").

N N
zd, (%) + %ZZ WU —x), x € RY|

~.

~.




Deterministic Particle Methods for A, gation-Diffusions
[e]e]e]e] Telele]
Approximation

Deterministic Particle Methods for Aggregation-Diffusions

We define a discrete gradient flow:

w%(t)e — OEy(x(r)) forall € Ry,

where w% is the vector (wixi, ..., wyxy) € RY if we write x := (x1,...,xn),
and O stands for the subdifferential.
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Deterministic Particle Methods for Aggregation-Diffusions

We define a discrete gradient flow:

dx

dt()e OEn(x(t)) forallz € Ry,

where w% is the vector (wixi, ..., wyxy) € RY if we write x := (x1,...,xn),
and O stands for the subdifferential.

En: RY — Ris the discrete energy functional

=Y () 45 3wt =

i=1 j=1
J#i

for all x € R,
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Deterministic Particle Methods for Aggregation-Diffusions

We define a discrete gradient flow:

dx
dt( )€ — OEn(x(r)) forallt € Ry,
where w% is the vector (wixi, ..., wyxy) € RY if we write x := (x1,...,xn),

and O stands for the subdifferential.

En: RY — Ris the discrete energy functional

=Y () 45 3wt =

i=1 j=1
J#i

for all x € R,

Remark. The gradient flow has here the structure of a differential inclusion since

the discrete energy Ex has no well-defined gradient because of the presence of the
minimum function (in d;).
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Definition (p-approximation of minimum function). Let us define, for any p > 0,
the function min,,: [0, 00)? — [0, 00) as

X—P + y—P
min, (x,y) = 2
0 otherwise

—1/p
) forall x,y € (0, 00)
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Deterministic Particle Methods for Aggregation-Diffusions

Definition (p-approximation of minimum function). Let us define, for any p > 0,
the function min,,: [0, 00)? — [0, 00) as

—p —p\ ~1/p
(%) forall x,y € (0, 00)

0 otherwise

min, (x,y) =

We define the p-approximated discrete energy by

N

N
1
+ 2 E 1 wiw;U(xi — ;) |,
=

N
Ey, = E wi
i=1

i

-~

where d;, := min,(Axit1, Ax;), foralli € {1,...,N}.
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Deterministic Particle Methods for Aggregation-Diffusions

The p-approximated discrete energy Ey,, has a well-defined gradient.
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Deterministic Particle Methods for Aggregation-Diffusions

The p-approximated discrete energy Ey,, has a well-defined gradient.

The p-approximated gradient flows writes then as the ODE system

w,«%(l) — VL Eny (1), ... o (t)) forallf€ Ry
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Deterministic Particle Methods for Aggregation-Diffusions

The p-approximated discrete energy Ey,, has a well-defined gradient.

The p-approximated gradient flows writes then as the ODE system

w,«%(l) — VL Eny (1), ... o (t)) forallf€ Ry

En,p: RY — R is the p-approximated discrete energy functional

Enp(x Z Wi 1og d w;U X;)

11/1
J#i

for all x € RY, where d; p := min, (Axiy1, Axi).
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For the heat equation (H(x) = xlogx and W = 0) we are able to show that the
p-approximated gradient flow converges to the continuum gradient flow in the
Serfaty sense.'

! Carrillo, Huang, Patacchini, Sternberg, Wolansky, in preparation.
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Deterministic Particle Methods for Aggregation-Diffusions

For the heat equation (H(x) = xlogx and W = 0) we are able to show that the
p-approximated gradient flow converges to the continuum gradient flow in the
Serfaty sense.'

To find the solution to the p-approximated ODE system we use an explicit version of
the following JKO scheme:

F = argmin (Z wi——— + Eyp(x )) .

XERN

! Carrillo, Huang, Patacchini, Sternberg, Wolansky, in preparation.
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Deterministic Particle Methods for Aggregation-Diffusions

The Keller-Segel equation (H(x) = xlogx and W(x) = 2x log |x|).

% =Ap+2xV - (pViog|-|*xp) onRi xR,

where Y is an interaction parameter quantifying the “strength” of the attrac-
tion.




Deterministic Particle Methods for Ag; on-Diffusions
(o] lelele]
The Keller-Segel Model

Deterministic Particle Methods for Aggregation-Diffusions

The Keller-Segel equation (H(x) = xlogx and W(x) = 2x log |x|).

% =Ap+2xV - (pViog|-|*xp) onRi xR,

where Y is an interaction parameter quantifying the “strength” of the attrac-
tion.

Write M>(t) := [, |x|* dp(t, x). Theoretically, it is easy to check that

%(r) =2(1—-yx) forallz € [0,00).
Thus we have three cases:

Subcritical. x < 1: solutions exist for all times; the diffusion wins over the
attraction.

Critical. x = 1.

Supercritical. x > 1: solutions cease to exist after a finite time; the attraction wins
over the diffusion.
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Deterministic Particle Methods for Aggregation-Diffusions

Write M) (1) = S 1xI* dpw p (1, x), where py, = P S Interestingly,
»

using our p-approximated discrete gradient flow, we can compute

dmy”
dr

0 =201-x%) +Ngm(1) forall 7 € [0, 00).

p—ro0
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Write M) (1) = S 1xI* dpw p (1, x), where py, = P S Interestingly,
»

using our p-approximated discrete gradient flow, we can compute

dmy”
dr

0 =201-x%) +Ngm(1) forall 7 € [0, 00).

p—ro0

Adaptive time step. To catch blow-up we implement the following adaptive time step
method.

@ Initialize Ar = 10> and fix £ < 1.
Q IfAr> chf;’f’ , then define At; := ZE‘E .

2 dr

dr

@ Let ! be the set of indices for which the if-loop above was entered. If I = (), then
choose At = At. If I # (), then choose At = min;e; A;.

@ If Ar < 1077, then stop.
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© numerical ]
theoretical
04

\W/

Second order moment
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t

Figure : Evolution of second order moment with xy = 1.5 and N = 100 (left).
Evolution of positions before numerical blow-up with xy = 1.5 and N = 50 (right).
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Videos.
Keller Segel — x = 1.5; N = 100; one Gaussian
Keller Segel — x = 3; N = 100; two Gaussians
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