Gradient Flows: Qualitative Properties &
Numerical Schemes

J. A. Carrillo

Imperial College London

RICAM, December 2014



Outline

0 Modelling & First Properties
@ Applied Mathematics: Collective Behavior Models
@ Modelling Chemotaxis
@ First Properties
@ Pure Mathematics: Gradient Flows

e Transversal Tool: Wasserstein Distances
@ Definition
@ Properties

o Gradient Flows
@ Xariational Scheme

o JKO Convergence: subcritical case PKS
@ Entropy: bound from below
@ Convergence

e 1D Case
@ 1D Convergence
@ Numerical Experiments



Modelling & First Properties
[ Jelelelele]

Applied Mathematics: Collective Behavior Models

Outline

o Modelling & First Properties
@ Applied Mathematics: Collective Behavior Models



Modelling & First Properties
(o] Jelelele]
Applied Mathematics: Collective Behavior Models

Swarming by Nature or by design?

Tho ghysice o flocking

Fish schools and Birds flocks.
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Individual Based Models (Particle models)

Swarming = Aggregation of agents of similar size and body type generally moving in
a coordinated way.

Highly developed social organization: insects (locusts, ants, bees ...), fishes, birds,
micro-organisms (myxo-bacteria, ...) and artificial robots for unmanned vehicle

operation.
ATTRACTION

Interaction regions between individuals®

aAokl, Helmerijk et al., Barbaro, Birnir et al.
@ Repulsion Region: Ry.
@ Attraction Region: Ag.

@ Orientation Region: O.
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D’Orsogna, Bertozzi et al. model (PRL 2006):
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2nd Order Model: Newton’s like equations

D’Orsogna, Bertozzi et al. model (PRL 2006):
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Vi,

m %= (= By 3 IW (s - ).

J#Ei

Model assumptions:

@ Self-propulsion and friction terms
determines an asymptotic speed of W(r)

ve/B.

Pair-wise
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D’Orsogna, Bertozzi et al. model (PRL 2006):
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Vi,

m %= (= By 3 IW (s - ).
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Model assumptions:

@ Self-propulsion and friction terms
determines an asymptotic speed of

\/a_/ﬁ_ W(r) Pair-wise
@ Attraction/Repulsion modeled by an
effective pairwise potential U(x).

W(r) = —Cue 1" 4 Cre 'R,

One can also use Bessel functions in 2D
and 3D to produce such a potential.
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Applied Mathematics: Collective Behavior Models

2nd Order Model: Newton’s like equations

D’Orsogna, Bertozzi et al. model (PRL 2006):

@ = ‘7'
dr "
dv; a2
w5 (o B T TW )
dt ji
Model assumptions: C; Cr/Ca>1,£="Lg/ls < 1and
Cl <1

@ Self-propulsion and friction terms
determines an asymptotic speed of

\/a_/ﬁ_ W(r) Pair-wise
@ Attraction/Repulsion modeled by an
effective pairwise potential U(x).

W(r) = —Cue 1" 4 Cre 'R,

One can also use Bessel functions in 2D
and 3D to produce such a potential.
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Model with an asymptotic speed

Typical patterns: milling, double milling or flocking:
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1st Order Friction Model:

Edelshtein-Keshet, Mogilner (JMB 2000): Assume the variations of the velocity and
speed are much smaller than spatial variations, then from Newton’s equation:

2
d Xi dx,-
o—

m—. o + > VW (lxi-x]) =0

J#i

Xy
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1st Order Friction Model:

Edelshtein-Keshet, Mogilner (JMB 2000): Assume the variations of the velocity and
speed are much smaller than spatial variations, then from Newton’s equation:

dzx,- dx,-
+to— + W(lxi—x|) =0
mgy o'y Sl
so finally, we obtain
dx,-
=— W(|x; — x;
dr ;V (Jxi = x;1)
1'

Xy
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1st Order Friction Model:

Edelshtein-Keshet, Mogilner (JMB 2000): Assume the variations of the velocity and
speed are much smaller than spatial variations, then from Newton’s equation:

dzx,- dx,
m—. +o ;VW(|x,—xJ|) 0
so finally, we obtain
dx; 4 _ , 90+ di 0
L SVW(|xi - x)) in the continuum setting = v (pv) =
dt j#i ' =-VW=xp
1'

Xy
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1st Order Friction Model:

Edelshtein-Keshet, Mogilner (JMB 2000): Assume the variations of the velocity and
speed are much smaller than spatial variations, then from Newton’s equation

dzx,- dx,
m=n; ta ;VWGM_XJD 0
so finally, we obtain
dx; 4 _ , 90+ di 0
@ > VW(|xi-x])  inthe continuum setting = v (pv) =
dt JE ! - —VW *p

Purely Aggregative Case: W: RY — R

Xy
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Cell movement and aggregation by chemical interaction.
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KS System

Keller-Segel System:

Cells positions are assumed to fluctuate, in the sense of a Brownian motion, around
the dominated trend to follow the trail of the largest concentration of
chemoattractant:

x' = ve(x, £) +T(1).

where I'(#) is a Wiener process with fixed variance.
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KS System

Keller-Segel System:

Cells positions are assumed to fluctuate, in the sense of a Brownian motion, around
the dominated trend to follow the trail of the largest concentration of
chemoattractant:

x' = ve(x, £) +T(1).
where I'(#) is a Wiener process with fixed variance. The chemoattractant diffuses
spatially and is produced by the cells themselves.

@x,t =An(x,t) = xV-(n(x,t)Ve(x,t xeR?, >0,
ot

8(' 2
—(x,1)=Ac(x,1) = n(x, 1)—ac(x, X , ,
8t( t)-Ac(x,1) = n(x,t) (x,1) eR™, >0
n(x,t=0)=n9>0 xeR?.

Patlak (1953), Keller-Segel (1971), Nanjundiah (1973).
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PKS System

O

8—;()(, 1) = An(x,t) = xV-(n(x,1)Ve(x, 1)) xeR*, >0,
1

c(x,1) = “3 f log |x — y|n(y, 1) dy xeR?, >0,
T JR?2

n(x,t=0)=np >0 xeR%.

Huge Literature: Horstmann reviews (2003& 2004), Perthame review (2004).
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PKS System

O

8—;()(, 1) = An(x,t) = xV-(n(x,1)Ve(x, 1)) xeR*, >0,
1

c(x,1) = “3 f log |x — y|n(y, 1) dy xeR?, >0,
T JR?2

n(x,t=0)=np >0 xeR%.

Huge Literature: Horstmann reviews (2003& 2004), Perthame review (2004).
Smoluchowski-Poisson in gravitational collapse literature.

Conservations:

@ Conservation of mass:

M := /R2 no(x) dx = fRz n(x,t) dx

@ Conservation of center of mass:

M, :=f xno(x) dx=/ xn(x,t) dx .
R2 R?
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We shall say that n € C°([0, T); Lyeq (R”)) is a weak solution to the PKS system
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Second Moment

Distributional Solution:

We shall say that n € C°([0, T); Lyeq (R”)) is a weak solution to the PKS system if
for all test functions 1 € D(R?),

d / _
o fRz Y(x)n(x, 1) dx =

fRZAQ/)(x)n(x,t)dx—%[ / [Vi(x)-Vy(y)]- |x NE n(x,t)n(y,t) dxdy

holds in the distributional sense in (0, 7) and n(0) = no.
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Distributional Solution:

We shall say that n € C°([0, T); Lyeq (R”)) is a weak solution to the PKS system if
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Struggle between diffusion and aggregation. Balance between these two
mechanisms happens precisely at the critical mass x M = 8 .
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Second Moment

Distributional Solution:

We shall say that n € C°([0, T); Lyeq (R”)) is a weak solution to the PKS system if
for all test functions 1 € D(R?),

d / _
o fRz Y(x)n(x, 1) dx =

[ a0t nde- 25 [ v - veo))-

holds in the distributional sense in (0, 7) and n(0) = no.

|x NE n(x,t)n(y,t)dxdy

Evolution of second moment:

[ w2 n(x, 1) dx = 4M — XM,
dt 2

Struggle between diffusion and aggregation. Balance between these two
mechanisms happens precisely at the critical mass x M = 8 .

Fix M =1 and M, = 0 without loss of generality.
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@ Subcritical Case, x < 8 7: Jiagger-Luckhaus (1992) without optimal critical
mass.
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Cases

PKS Cases:

@ Subcritical Case, x < 8 7: Jiagger-Luckhaus (1992) without optimal critical
mass. Dolbeault-Perthame (2004), Blanchet-Dolbeault-Perthame (2006) proved
global existence of free-energy solutions.

@ Supercritical Case, x > 8 7: Herrero-Xelazquez (1996) particular solutions
blow up in finite time. Xelazquez (2002-2004) proves formal asymptotic
expansions for the behavior after blow-up. Dolbeault-Schmeiser (2007) have
introduced a concept of solution due to Poupaud for dealing with solutions after
blow-up.

@ Critical Case, x = 8 7: Infinite-time aggregation, infinitely many stationary
states: Biler-Karch-Laurengot-Nadzieja (2006), Blanchet-C.-Masmoudi (2008),
Blanchet-Carlen-C. (2012), Carlen-C.-Loss (2010), Carlen-Figalli (2013).
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1
n(t.,x):Rd(t) ( (1), R )) and c(x, t)—v(v’(t) R(t))

with

R(t)=vV1+2t and 7(1)=1ogR() .
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1
n(t.,x):Rd(t) ( (1), R )) and c(x, t)—v(v’(t) R(t))

with

R(t)=vV1+2t and 7(1)=1ogR() .
The rescaled system with p(0,x) = p° = ng > 0 is

(t,x) [x = xVv(t,x)]} >0, xeR?,

1
v(t,x):fﬂlogH*p(I,x) >0, xeR?.
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Let us define the rescaled functions p and v by:

1
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Rescaled System

Let us define the rescaled functions p and v by:

1
n(t.,x):Rd(t) ( (1), R )) and c(x, t)—v(T(t) R(t))

with

R(t)=vV1+2t and 7(1)=1ogR() .
The rescaled system with p(0,x) = p° = ng > 0 is

(t,x) [x = xVv(t,x)]} >0, xeR?,

1
v(t,x) = ——— log|-| * p(z,x) >0, xeR?.
dm
In the rescaled variables, the free energy becomes
Glo)= [ p(togp() dx+ 5 [ 1P p(x) dxs 55 ([ 1ogl | p(x) p(2) axay

In any dimensions, the critical value is x. = 2d4°T.
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Nonlinear diffusion PKS system

Xolume effects can be taken into account by considering nonlinear diffusion
(Calvez& C., IMPA 2006) as:

%(l,.}c) =div[Vp"(t,x) = p(t,x)Ve(t,x)] >0, xeRY,

-Ac(t,x) =p(t,x), >0, xeR?,
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Xolume effects can be taken into account by considering nonlinear diffusion
(Calvez& C., IMPA 2006) as:

%(l,x) =div[Vp"(t,x) = p(t,x)Ve(t,x)] >0, xeRY,
-Ac(t,x) =p(t,x), >0, xeR?,

Free Energy:
The corresponding free energy is

m

_ 0 3 Ca /]
}—m[p](t) . ﬁd m—1 dx 2 Rd xRd

——7 P(t,x) p(t,y) dxdy
x -y

with ¢ := (d - 2)2 7% /T(d]2).
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Nonlinear diffusion PKS system

Xolume effects can be taken into account by considering nonlinear diffusion
(Calvez& C., IMPA 2006) as:

%(l,x) =div[Vp"(t,x) = p(t,x)Ve(t,x)] >0, xeRY,
-Ac(t,x) =p(t,x), >0, xeR?,
Free Energy:

The corresponding free energy is

m

_ 0 3 Ca /]
}—m[p](t) . ﬁd m—1 dx 2 Rd xRd

——7 P(t,x) p(t,y) dxdy
x -y

with ¢ := (d - 2)2 7% /T(d]2).

Diffusion to compensate exactly drift by scaling (Blanchet, C. & Laurencot, CXPDE
2008) is
mq:=2(d-1)/d.
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General Entropy Functional!

with
Ulp] = fd U(p(x))dx internal energy
R

= /]Rd X(x)p(x)dx

1

Wip] = 23 Jau

W(x-y)p(x)p(y)dxdy interaction energy

1J.A. Carrillo, R.J. McCann & C. Xillani, RMI 2003 & ARMA 2006.
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General Entropy Functional!

with
Ulp] = fRd U(p(x))dx internal energy
= /]Rd X(x)p(x)dx

1
Wiel=5 |,

Let us write the formal gradient flow equation as before:

W(x-y)p(x)p(y)dxdy interaction energy

dp . OF d
By —dlv(pv 5[)), (xeR%1>0).

1J.A. Carrillo, R.J. McCann & C. Xillani, RMI 2003 & ARMA 2006.
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Pure Mathematics: Gradient Flows

General Entropy Functional!

with
Ulp] = fRd U(p(x))dx internal energy
= /]Rd X(x)p(x)dx

1
Wiel=5 |,

Let us write the formal gradient flow equation as before:

W(x-y)p(x)p(y)dxdy interaction energy

dp . OF d
By —dlv(pv 5[)), (xeR%1>0).

and the dissipation of entropy is defined as

d

SFlol=-Dlp] with Dlo)= [ [efo(x)ds,
with
oF
V—.

€:V[U’[p]+X+W*p]: 3p

1J.A. Carrillo, R.J. McCann & C. Xillani, RMI 2003 & ARMA 2006.
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Nonlinear continuity equations

Included models:

@ U(s) =slogs, X =0, W = 0 heat equation.

@ U(s) = -15s", X = W = 0 porous medium (m > 1) or fast diffusion (0 < m < 1).
U(s) = slogs, X given, W = 0, Fokker Planck equations.
U(s) = slogs, X =0, W =log(|x|), Patlak-Keller-Segel model.

U=0,X=0,W =1 x|’ correspond to attraction-(repulsion) potentials in
swarming, herding and aggregation models.

v

(a) Dictyostelium discoideum (b) Fish school
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Definition of the distance?

Transporting measures:

Given T : RY — R? mesurable, we say that v = T#pu, if v[K] := u[T~"(K)] for all
mesurable sets K ¢ R?, equivalently

2C. Xillani, AMS Graduate Texts (2003).
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Definition

Definition of the distance?

Transporting measures:

Given T : RY — R? mesurable, we say that v = T#pu, if v[K] := u[T~"(K)] for all
mesurable sets K ¢ R?, equivalently

pdv = /l(ngT)d,u,
Rd

R

for all ¢ € C,(R?).

Random variables:

Say that X is a random variable with law given by p, is to say
X:(Q,A,P) — (R, B,) is a mesurable map such that X#P = y, i.e.,

[ e@dn= [ (pox)dpP=E[o(x)].

I

2C. Xillani, AMS Graduate Texts (2003).
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Two piles of sand!

Energy needed to transport m kg of sand from x = a to x = b:

‘ energy = mla — b|* ‘

P

L2777
o SSETN

d%(pl , p2) = Among all possible ways to transport the mass from p; to p», find the
one that minimizes the total energy
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Definition

Two piles of sand!

Energy needed to transport m kg of sand from x = a to x = b:

‘ energy = mla — b|* ‘

P

L2777
o SSETN

d%(pl , p2) = Among all possible ways to transport the mass from p; to p», find the
one that minimizes the total energy

Blpr.p) = [ =T dpr()
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Definition of the distance

Kantorovich-Rubinstein-Wasserstein Distance p = 1, 2:

diuv)=into{ [ e-spdnen)
RE xR

where the transference plan 7 runs over the set of joint probability measures on
R? x RY with marginals y and v € P,(R)
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random variables with © and v as respective laws.
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Definition

Definition of the distance

Kantorovich-Rubinstein-Wasserstein Distance p = 1, 2:

& (1, v)= infr { I, =t ants, y)} = infery (E[IX - Y]}

where the transference plan 7 runs over the set of joint probability measures on
R? x R? with marginals y and v € P,(R?) and (X, Y) are all possible couples of
random variables with © and v as respective laws.

Monge’s optimal mass transport problem:
Find
1/p
I:= il%f{fd |x - T(x)] du(x); v = T#u}
R
Take 7 = (1ga x T)#u as transference plan 7.
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Three examples

ﬂ d3(8a,0) =la— b’

3
o

d>(p,dx,) = f Xo - y[dp(y)
= Xar (p)
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@ Convergence of measures: da (., 1) — 0 is equivalent to p, — u weakly-* as
measures and convergence of second moments.
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then
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Properties

Euclidean Wasserstein Distance

Convergence Properties

@ Convergence of measures: da (., 1) — 0 is equivalent to p, — u weakly-* as
measures and convergence of second moments.

© Weak lower semicontinuity: Given p, — p and v, — v weakly-* as measures,
then
dr(p,v) < liminfda (i, vn).

@ Completeness: The space P>(R?) endowed with the distance > is a complete
metric space.
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In one dimension, denoting by F(x) the distribution function of p,

F(x) = [; dp,
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Properties

One dimensional Case

Distribution functions:

In one dimension, denoting by F(x) the distribution function of p,

F(x) = [; dp,

we can define its pseudo inverse:
F'(n) = inf{x: F(x) >n} forn e (0,1),

we have F~' : ((0,1),B1),dn) — (R, B:) is a random variable with law p, i.e.,
F'dn =
1
[ erdu= [ e m)dn=Ep(0].
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One dimensional Case

Wasserstein distance:

In one dimension, it can be checked” that given two measures . and v with
distribution functions F(x) and G(y) then, (F~' x G™")#tdn has joint distribution
function H(x,y) = min(F(x), G(y)). Therefore, in one dimension, the optimal plan
is given by 7 (x,y) = (F~' x G™")#dn, and thus

aW. Hoeffding (1940); M. Fréchet (1951); A. Pulvirenti, G. Toscani, Annali Mat. Pura Appl. (1996).
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Properties

One dimensional Case

Wasserstein distance:

In one dimension, it can be checked” that given two measures . and v with
distribution functions F(x) and G(y) then, (F~' x G™")#tdn has joint distribution
function H(x,y) = min(F(x), G(y)). Therefore, in one dimension, the optimal plan
is given by 7 (x,y) = (F~' x G™")#dn, and thus

an) = ([ m-c @y an) =1 -6

1 <p<oo.

aW. Hoeffding (1940); M. Fréchet (1951); A. Pulvirenti, G. Toscani, Annali Mat. Pura Appl. (1996).
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Nonlinear continuity equations

Let us consider a time dependent unknown probability density p(7,-) on a domain
Q c RY, which satisfies the nonlinear continuity equation

Op=-V-(pu):= V-(pV[U’(p)+X+W>ep]).
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Q c RY, which satisfies the nonlinear continuity equation

Op=-V-(pu):= V-(pV[U’(p)+X+W>ep]).

@ U:R" — R denotes the internal energy.
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@ W:R? - R corresponds to an interaction potential.
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Nonlinear velocity is given by u = -V 5

entropy functional
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Xariational Scheme

Nonlinear continuity equations

Let us consider a time dependent unknown probability density p(7,-) on a domain
Q c RY, which satisfies the nonlinear continuity equation

Op=-V-(pu):= V-(pV[U’(p)+X+W>ep]).

@ U:R" — R denotes the internal energy.
@ X:RY - R is the confining potential.

@ W:R? - R corresponds to an interaction potential.

. . e . _ g
Nonlinear velocity is given by u = -V 5

entropy functional

, where F denotes the free energy or

Fo)= [ uyan+ [ XEpCdr+ 3 [ W= )p()p()dsdy.

Free energy is decreasing along trajectories

CFO0) =~ [, o Dluw ).
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A gradient flow in RY defined by an energy F is given by
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Finite Dimensional Gradient flows
A gradient flow in RY defined by an energy F is given by

% =-VF(x).
It is the continuous version of the steepest descent on the energy landscape
determined by F given by the implicit Euler scheme: given a time step Az and an
approximation to the solution at time #; = kAf, we find the approximation at time #+1
by solving
Xiw1 = Xk — AtV F (Xes1) -
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Xariational Scheme

Sliding down in a Energy Landscape

Finite Dimensional Gradient flows
A gradient flow in RY defined by an energy F is given by

d.x;
o - VF(x:).
It is the continuous version of the steepest descent on the energy landscape
determined by F given by the implicit Euler scheme: given a time step Az and an
approximation to the solution at time #; = kAf, we find the approximation at time #+1
by solving
Xiw1 = Xk — AtV F (Xes1) -

which is equivalent under convexity conditions to the following variational problem:
Solve

. 1
Xkp1 = argmin gy {E'X -xl+ .7-"(.)()}

with | - | the euclidean norm.




Gradient Flows
[e]e]e] ]
Xariational Scheme

Gradient flow formalism?

@ Solutions p can be constructed by the following variational scheme:
PN, € argmin pexc {ZA A5 (pas, p) + ]-'(p)}

with K = {p e L, (R?) : [o, p(x)dx = M, |x’p e L'(R")}.

3Jordan, Kinderlehrer and Otto (1999); Otto (1996, 2001); Ambrosio, Gigli and Savare
(2005); Xillani(2003).....



Gradient Flows
[e]e]e] ]
Xariational Scheme

Gradient flow formalism?

@ Solutions p can be constructed by the following variational scheme:
pia; € argmin pec {Ldﬁ(p&a p) + T-(p)}
2At ’ '
with K = {p e L, (R?) : [o, p(x)dx = M, |x’p e L'(R")}.

@ Xariational scheme corresponds to the time discretization of an abstract
gradient flow in the space of probability measures.

3Jordan, Kinderlehrer and Otto (1999); Otto (1996, 2001); Ambrosio, Gigli and Savare
(2005); Xillani(2003).....
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@ Solutions p can be constructed by the following variational scheme:
pia; € argmin pec {Ldﬁ(p&a p) + T-(p)}
2At ’ '

with K = {p e L, (R?) : [o, p(x)dx = M, |x’p e L'(R")}.

@ Xariational scheme corresponds to the time discretization of an abstract
gradient flow in the space of probability measures.

@ Solutions can be constructed by this variational scheme; naturally preserve
positivity and the free-energy decreasing property.

3Jordan, Kinderlehrer and Otto (1999); Otto (1996, 2001); Ambrosio, Gigli and Savare
(2005); Xillani(2003).....



Gradient Flows
[e]e]e] ]

Xariational Scheme

Gradient flow formalism?

@ Solutions p can be constructed by the following variational scheme:
pia; € argmin pec {Ldﬁ(p&a p) + T-(p)}
2At ’ '

with K = {p e L, (R?) : [o, p(x)dx = M, |x’p e L'(R")}.
@ Xariational scheme corresponds to the time discretization of an abstract

gradient flow in the space of probability measures.

@ Solutions can be constructed by this variational scheme; naturally preserve
positivity and the free-energy decreasing property.

@ Under general assumptions on smooth potentials W and X and internal energy
U together with A-convexity, this scheme is shown to be convergent, see AGS
book.

3Jordan, Kinderlehrer and Otto (1999); Otto (1996, 2001); Ambrosio, Gigli and Savare
(2005); Xillani(2003).....
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Log HLS Inequality by Carlen& Loss

Let f be a non-negative function in L' (R?) such that f logf and f log(1 + |x|*) belong
to L' (RY).
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Log HLS Inequality by Carlen& Loss

Let f be a non-negative function in L' (R?) such that f logf and f log(1 + |x|*) belong

to L'(RY). If

fRdfdle,

[ f@oef @ axed [ [ pr)togls -l dxdy> - C(@)

then

with C(d) := (1/2) log 7 + (1/d) log[T'(d/2)/T'(d)] + (1/2) [ (d) — ¥ (d[2)] where
1) is the logarithmic derivative of the I'-function.
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Entropy: bound from below

Log HLS Inequality by Carlen& Loss

Let f be a non-negative function in L' (R?) such that f logf and f log(1 + |x|*) belong

to L'(RY). If
fRdfdxz 1,

[ f@oef @ axed [ [ pr)togls -l dxdy> - C(@)

then

with C(d) := (1/2) log 7 + (1/d) log[T'(d/2)/T'(d)] + (1/2) [ (d) — ¥ (d[2)] where
1) is the logarithmic derivative of the I'-function.

Equality cases:

The equality is only achieved by

1 2\
”("):@(Hmz)

its translations and dilations Ay (x) = Ah(\x).
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Let us define the rescaled functions p and v by:

n(t,x) = R"(t) ((r),}%) and c(x, ;)_V(T(f) R(t))

with

R(t) =142t and 7(r) =logR(7) .
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Entropy: bound from below

Rescaled System

M =1 and general dimension in this part keeping the convolution.
Let us define the rescaled functions p and v by:

n(t,x) = R"(t) ((r),}%) and c(x, ;)_V(T(f) R(t))

with

R(t) =142t and 7(r) =logR(7) .
The rescaled system with p(0,x) = p° = ng > 0 is
dp d
i(hx) = Ap(t,x) + V-{p(t,x) [x — xVv(t,x)]} >0, xe R

1
v(t,x):—ﬂlog\~|*p(t,x) >0, xeR?.



JKO Convergence: subcritical case PKS
[e]e] le]ele]

Entropy: bound from below

Rescaled System

M =1 and general dimension in this part keeping the convolution.
Let us define the rescaled functions p and v by:

n(t,x) = R"(t) ((r),l%) and c(x, ;)_V(T(f) R([))

with

R(t) =142t and 7(r) =logR(7) .
The rescaled system with p(0,x) = p° = ng > 0 is
dp d
i(hx) = Ap(t,x) + V-{p(t,x) [x — xVv(t,x)]} >0, xe R

1
v(t,x):—ﬂlog\~|*p(t,x) >0, xeR?.

In the rescaled variables, the free energy becomes

Glol= [ pytogpe) ax+ 3 [ 1 o) ave 2 [ togle-(x) p(y) axdy
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Estimates from below

A priori estimates

The functional G is bounded from below on the set
K= {P c LL(]RZ[)://p(t’X) =1, ‘X|2p € Ll(Rd)7 /lp([,x)|logp(l‘,x)‘ dx< oo}
R R

if and only if x < x. = 2d°.
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Estimates from below

A priori estimates

The functional G is bounded from below on the set
K= {P c LL(]RZ[)://p(t’X) =1, ‘X|2p € Ll(Rd)7 /lp([,x)|logp(l‘,x)‘ dx< oo}
R R

if and only if x < y. := 2 d*n. In addition, if x < x. we have on every subset

{g<c},
i) no concentration: [d pllogp| < C,
R

ii) mass confinement: f , |x|2p <C,
R

As a consequence, every level subset {G < C} is equi-integrable.
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Estimates from below: Proof

Step 1.- Rewrite

1

Glo)(1) = (1-0) [ p(t,x) logp(r.) de+ 3 [ I p(r.2) dx

1 X f ]
- ,x) 1 , — , ) log|x -y |-
voa| g [ p(tx)togp(n) dre =X [ p(6x) p(n,y) loghe -] dr

Log HLS inequality controls the third term if we choose 6 = x/xe.
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Estimates from below: Proof

Step 1.- Rewrite
1 5
Glo)(1) = (1-0) [ p(t,x) logp(r.) de+ 3 [ I p(r.2) dx
1 X
— ,x) 1 R e R ) log [x —y )|
voa| g [ o) togp(n) dve =X [ o(0) p(1,9) logla -] dr oy

Log HLS inequality controls the third term if we choose 6 = x/xe.

Step 2.- For any probability density u € L (R?) with finite second moment and
entropy, u log u is uniformly bounded in L' (R?) and we have

1 2
/ u(x)|logu(x)| dx < f u(x) (10gu(x) + f\x\Z) dx +dlog(4m) + = .
R4 Rd 2 e
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Estimates from below: Proof

Step 3.- We finish the proof for the subcritical case in which 6 < 1 since

Gl)(1) > (1-0) [ p(1,x)[1og p(t, )| dr + : [ o) e+ C.
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Estimates from below: Proof

Step 3.- We finish the proof for the subcritical case in which 6 < 1 since

Gl)(1) > (1-0) [ p(1,x)[1og p(t, )| dr + : [ o) e+ C.

Step 4.- Scaling px (x) = Ap(\x)

-2

Glpa) = Glo1+d (1= ) togr+ 2 of p dr.

X R4

A~ G[pa] is clearly not bounded from below if x > x..
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Convergence

Existence of minimizers

We consider a time-step 7 > 0, an initial datum p° € P5° (R"). We introduce the
sequence (o ),en recursively defined by p? = p° and

n . 1 n
P e arg inf ., {g[p] + Ed;(pﬂp)} .
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Convergence

Existence of minimizers

We consider a time-step 7 > 0, an initial datum p° € P5° (R‘I). We introduce the
sequence (o ),en recursively defined by p? = p° and

n . l n
/77—+] €arg lnf/)elc {g[ﬁ] + ng(/%ﬂ P)} :

Existence of minimizers:

Let po satisfies
(1+[x*)no e LY (RY) and ng logno e L' (R') .

and x < X, then there recursively exists a minimizer to the previous problem.
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Convergence Theorem

Theorem

Under assumptions
(1+[x*)no e LY (R?) and no logno € L'(R) ,

let us construct the family (p+)rso as

(n+ l)T—tI
T

t—nt n n
pr(t) = ( d+ Vo )#Pr
with V" being the optimal map transporting p" onto ", for any
telnt,(n+1)7).




Convergence

Convergence Theorem

Theorem

Under assumptions
(1+[x*)no e LY (R?) and no logno € L'(R) ,

let us construct the family (p+)rso as

(n+ l)T—tI
T

t—nt n n
pr(t) = ( d+ Vo )#Pr
with V" being the optimal map transporting p" onto ", for any
telnt,(n+1)7).

If X < Xe, then the family (p+) >0 admits a sub-sequence converging weakly in
C°([0, T, Lyea (RY)) to a distributional solution of the PKS system.
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1D Convergenc:

Brief Remainder

In the case of the real line, consider p and v two absolutely continuous measures
with respect to the Lebesgue measure, of respective densities f and g, and of
cumulative distribution functions F' and G. As the cumulative distribution function is
non-decreasing we can define the pseudo-inverse function by

X(z) =F '(z) :=inf{x : F(x) >z} .
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Brief Remainder

In the case of the real line, consider p and v two absolutely continuous measures
with respect to the Lebesgue measure, of respective densities f and g, and of
cumulative distribution functions F' and G. As the cumulative distribution function is
non-decreasing we can define the pseudo-inverse function by

X(z) =F '(z) :=inf{x : F(x) >z} .

The transport map is ¢’ = F~' oG and the Wasserstein distance can be expressed in
the following more tractable way

1 2
d5(p,v) = / IF'(w) -G~ (W) dw .
0
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By the expression of the Wasserstein distance on the real line, the JKO scheme can
be rewritten in terms of X, = F,' and X,.41 = F;,, as the gradient flow of the inverse
distribution function subject to L>—metric structure:
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Xowr =igf [ GV + - IW - Xl )]



1D Convergence

Implicit Euler Scheme

Let F, and F,+; be the cumulative distribution functions associated respectively to p;
n+1

and p".

By the expression of the Wasserstein distance on the real line, the JKO scheme can
be rewritten in terms of X, = F,' and X,.41 = F;,, as the gradient flow of the inverse
distribution function subject to L>—metric structure:

. 1 2
Xoen = inf| GIW] + - IW = X, o]
The Euler-Lagrange equation is

) o) _ 0 [ D)
T T Ow ow

—1 )
) :| +Xn+l(w) + %H[pr]]
where H corresponds to the Hilbert transform defined by

1 1
HIX](w) = — i f 4.
[X]0w) = 2 limy X -x@e X(w) ~X(2)
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Theorem on Fully Discrete Scheme

If we set X,’; := X,,(ih), for any i = 0---N, and Nh = 1, the finite difference
discretisation in space is the following implicit Euler scheme in rescaled variables,

Xﬂ+1"xﬁ _ 1 1
T Toxitl i X —x-!

n+1 n+l n+l n+1

1
_x

n+l

i X
+Xr1+l + ; Z Xi
JFE Apgl

with initial condition X, associated to po.
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We impose Neumann boundary conditions in the X-problem, so that the "centre of
mass’ is conserved:
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Theorem on Fully Discrete Scheme

If we set X,’; := X,,(ih), for any i = 0---N, and Nh = 1, the finite difference
discretisation in space is the following implicit Euler scheme in rescaled variables,

i i
X/Hrl_xn _ 1 _ 1 +Xi +KZ;
. Tyt _xi X _ xi-! nel T L xi X
n+1 n+1 n+1 n+1 JFL Al T Pl

with initial condition X, associated to po.
We impose Neumann boundary conditions in the X-problem, so that the "centre of

mass’ is conserved:

Theorem
Assume x (1 = h) < xc. Then the solution of the numerical scheme converges to a
unique steady-state of the problem with exponential rate.
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Numerical Experiments

Not rescaled: y =7

Initial data:
Starting with the centered compactly supported initial data,
i w; — 0.5
[(w; +0.01) (1.01 —w;)]"*’
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Numerical Experiments

Rescaled variables: xy =7

Initial data:
Starting with the centered compactly supported initial data,
i w; — 0.5
[(w; +0.01) (1.01 —w;)]"*’
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Numerical Experiments

Rescaled variables: xy =7

Two peaks initial data:
Starting with the centered compactly supported initial data,

yi - op[10(wi-05)] -1
" (i +0.01) (1.01 - wi)]V*
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Numerical Experiments

Not rescaled: x = (5/2) 7

Initial data:
Starting with the centered compactly supported initial data,
i Wi — 0.5
[(w; +0.01) (1.01 —w;)]"/*’
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Numerical Experiments

Not rescaled: y = 37

Two symmetric peaks:
Starting with the centered compactly supported initial data,
X exp[10 (w; - 0.5)] -1
[(wi+0.01) (1.01 —w;)]"/*’
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Numerical Experiments

Not rescaled: y = 37

Two asymmetric peaks:
Starting with the centered compactly supported initial data,
xi_ _CXp [10 (wi—0.45)] -1
[(w; +0.01) (1.01 —w;)]"/*”
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Numerical Experiments

Not rescaled: y = 57

Two symmetric peaks:

Starting with the centered compactly supported initial data,
exp[10 (w;—0.5)] -1

[(wi+0.01) (1.01 —w;)]"/*’

X =
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Conclusions

@ The gradient flow interpretation induces a natural lagrangian or particle method
on a grid or moving mesh method.

@ Itis a good solution to track accurately blow-up time and profiles for variant of
KS in ID.

@ References:

@ Blanchet-Calvez-C. (SINUM 2008)
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