Modelling & First Properties	Transversal Tool: Wasserstein Distances		JKO Convergence: subcritical case PKS	1D Case
000000000000000000000000000000000000000	00000000	0000	00000000	0000000000000

Gradient Flows: Qualitative Properties & Numerical Schemes

J. A. Carrillo

Imperial College London

RICAM, December 2014

Modelling & First Properties	Transversal Tool: Wasserstein Distances	Gradient Flows	JKO Convergence: subcritical case PKS	1D Case 00000000000000
0.11				

Outline

Modelling & First Properties

- Applied Mathematics: Collective Behavior Models
- Modelling Chemotaxis
- First Properties
- Pure Mathematics: Gradient Flows

2 Transversal Tool: Wasserstein Distances

- Definition
- Properties
- 3 Gradient Flows
 - Xariational Scheme
- 4 JKO Convergence: subcritical case PKS
 - Entropy: bound from below
 - Convergence
- 5 1D Case
 - ID Convergence
 - Numerical Experiments

Modelling & First Properties	Transversal Tool: Wasserstein Distances	Gradient Flows	JKO Convergence: subcritical case PKS	1D Case	
• 00000 0000000000000000000000000000000					
Applied Mathematics: Collective Behavior Models					
Outline					

Modelling & First Properties

• Applied Mathematics: Collective Behavior Models

- Modelling Chemotaxis
- First Properties
- Pure Mathematics: Gradient Flows

2 Transversal Tool: Wasserstein Distances

- Definition
- Properties
- 3 Gradient Flows
 - Xariational Scheme
- 4 JKO Convergence: subcritical case PKS
 - Entropy: bound from below
 - Convergence
- 5 1D Case
 - ID Convergence
 - Numerical Experiments

Gradient Flows

JKO Convergence: subcritical case PKS 000000000 1D Case 00000000000000

Applied Mathematics: Collective Behavior Models

Swarming by Nature or by design?

Fish schools and Birds flocks.

Applied Mathematics: Collective Behavior Models

Individual Based Models (Particle models)

Swarming = Aggregation of agents of similar size and body type generally moving in a coordinated way.

Highly developed social organization: insects (locusts, ants, bees ...), fishes, birds, micro-organisms (myxo-bacteria, ...) and artificial robots for unmanned vehicle operation.

Interaction regions between individuals^a

^{*a*}Aoki, Helmerijk et al., Barbaro, Birnir et al.

- **Repulsion** Region: R_k .
- Attraction Region: A_k .
- Orientation Region: O_k.

1D Case 00000000000000

Applied Mathematics: Collective Behavior Models

Individual Based Models (Particle models)

Swarming = Aggregation of agents of similar size and body type generally moving in a coordinated way.

Highly developed social organization: insects (locusts, ants, bees ...), fishes, birds, micro-organisms (myxo-bacteria, ...) and artificial robots for unmanned vehicle operation.

Interaction regions between individuals^a

^{*a*}Aoki, Helmerijk et al., Barbaro, Birnir et al.

- **Repulsion** Region: R_k .
- Attraction Region: A_k .
- Orientation Region: O_k.

ID Case 000000000000000

Applied Mathematics: Collective Behavior Models

Individual Based Models (Particle models)

Swarming = Aggregation of agents of similar size and body type generally moving in a coordinated way.

Highly developed social organization: insects (locusts, ants, bees ...), fishes, birds, micro-organisms (myxo-bacteria, ...) and artificial robots for unmanned vehicle operation.

Interaction regions between individuals^a

^aAoki, Helmerijk et al., Barbaro, Birnir et al.

- **Repulsion** Region: R_k .
- Attraction Region: A_k .
- Orientation Region: *O_k*.

2nd Order Model: Newton's like equations

D'Orsogna, Bertozzi et al. model (PRL 2006):

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ m\frac{dv_i}{dt} = (\alpha - \beta |v_i|^2)v_i - \sum_{j \neq i} \nabla W(|x_i - x_j|). \end{cases}$$

Model assumptions:

- Self-propulsion and friction terms determines an asymptotic speed of √α/β.
- Attraction/Repulsion modeled by an effective pairwise potential U(x).

 $W(r) = -C_A e^{-r/\ell_A} + C_R e^{-r/\ell_R}.$

One can also use Bessel functions in 2D and 3D to produce such a potential.

 $C = C_R/C_A > 1, \ \ell = \ell_R/\ell_A < 1$ and $C\ell^2 < 1$:

2nd Order Model: Newton's like equations

D'Orsogna, Bertozzi et al. model (PRL 2006):

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ m\frac{dv_i}{dt} = (\alpha - \beta |v_i|^2)v_i - \sum_{j \neq i} \nabla W(|x_i - x_j|). \end{cases}$$

Model assumptions:

- Self-propulsion and friction terms determines an asymptotic speed of $\sqrt{\alpha/\beta}$.
- Attraction/Repulsion modeled by an effective pairwise potential U(x).

 $W(r) = -C_A e^{-r/\ell_A} + C_R e^{-r/\ell_R}.$

One can also use Bessel functions in 2D and 3D to produce such a potential.

 $C = C_R/C_A > 1, \ \ell = \ell_R/\ell_A < 1$ and $C\ell^2 < 1$:

2nd Order Model: Newton's like equations

D'Orsogna, Bertozzi et al. model (PRL 2006):

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ m\frac{dv_i}{dt} = (\alpha - \beta |v_i|^2)v_i - \sum_{j \neq i} \nabla W(|x_i - x_j|). \end{cases}$$

Model assumptions:

- Self-propulsion and friction terms determines an asymptotic speed of $\sqrt{\alpha/\beta}$.
- Attraction/Repulsion modeled by an effective pairwise potential U(x).

 $W(r) = -C_A e^{-r/\ell_A} + C_R e^{-r/\ell_R}.$

One can also use Bessel functions in 2D and 3D to produce such a potential.

 $C = C_R/C_A > 1, \ \ell = \ell_R/\ell_A < 1$ and $C\ell^2 < 1$:

2nd Order Model: Newton's like equations

D'Orsogna, Bertozzi et al. model (PRL 2006):

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ m\frac{dv_i}{dt} = (\alpha - \beta |v_i|^2)v_i - \sum_{j \neq i} \nabla W(|x_i - x_j|). \end{cases}$$

Model assumptions:

- Self-propulsion and friction terms determines an asymptotic speed of $\sqrt{\alpha/\beta}$.
- Attraction/Repulsion modeled by an effective pairwise potential U(x).

 $W(r) = -C_A e^{-r/\ell_A} + C_R e^{-r/\ell_R}.$

One can also use Bessel functions in 2D and 3D to produce such a potential.

$$C = C_R/C_A > 1, \ \ell = \ell_R/\ell_A < 1$$
 and $C\ell^2 < 1$:

Modelling & First Properties	Transversal Tool: Wasserstein Distances		JKO Convergence: subcritical case PKS	1D Case	
000000000000000000000000000000000000000					
Applied Mathematics: Collective Bel	navior Models				
Model with an asymptotic speed					

Typical patterns: milling, double milling or flocking:

Modelling & First Properties	Transversal Tool: Wasserstein Distances	JKO Convergence: subcritical case PKS	1D Case
000000000000000000000000000000000000000			
Applied Mathematics: Collective Beh	avior Models		

Edelshtein-Keshet, Mogilner (JMB 2000): Assume the variations of the velocity and speed are much smaller than spatial variations, then from Newton's equation:

$$m\frac{d^2x_i}{d^2t} + \alpha\frac{dx_i}{dt} + \sum_{j\neq i}\nabla W(|x_i - x_j|) = 0$$

so finally, we obtain

$$\frac{dx_i}{dt} = -\sum_{j \neq i} \nabla W(|x_i - x_j|) \quad \text{in the continuum setting} \Rightarrow \begin{cases} \frac{\partial \rho}{\partial t} + \operatorname{div}(\rho) \\ \nu = -\nabla W * \end{cases}$$

Modelling & First Properties	Transversal Tool: Wasserstein Distances		JKO Convergence: subcritical case PKS	1D Case	
000000000000000000000000000000000000000	00000000	0000	00000000	0000000000000	
Applied Mathematics: Collective Behavior Models					

Edelshtein-Keshet, Mogilner (JMB 2000): Assume the variations of the velocity and speed are much smaller than spatial variations, then from Newton's equation:

$$m\frac{d^2x_i}{d^2t} + \alpha\frac{dx_i}{dt} + \sum_{j\neq i} \nabla W(|x_i - x_j|) = 0$$

so finally, we obtain

$$\frac{dx_i}{dt} = -\sum_{j \neq i} \nabla W(|x_i - x_j|) \quad \text{in the continuum setting} \Rightarrow \begin{cases} \frac{\partial \rho}{\partial t} + \operatorname{div}\left(x_i - x_j\right) \\ v = -\nabla W \end{cases}$$

Modelling & First Properties	Transversal Tool: Wasserstein Distances		JKO Convergence: subcritical case PKS	1D Case	
000000000000000000000000000000000000000					
Applied Mathematics: Collective Behavior Models					

Edelshtein-Keshet, Mogilner (JMB 2000): Assume the variations of the velocity and speed are much smaller than spatial variations, then from Newton's equation:

$$m\frac{d^2x_i}{d^2t} + \alpha\frac{dx_i}{dt} + \sum_{j\neq i} \nabla W(|x_i - x_j|) = 0$$

so finally, we obtain

 $\frac{dx_i}{dt} = -\sum_{j \neq i} \nabla W(|x_i - x_j|) \quad \text{in the continuum setting} \Rightarrow \begin{cases} \frac{\partial \rho}{\partial t} + \operatorname{div}(\rho v) = 0\\ v = -\nabla W * \rho \end{cases}$

Modelling & First Properties	Transversal Tool: Wasserstein Distances		JKO Convergence: subcritical case PKS	1D Case	
000000000000000000000000000000000000000					
Applied Mathematics: Collective Behavior Models					

Edelshtein-Keshet, Mogilner (JMB 2000): Assume the variations of the velocity and speed are much smaller than spatial variations, then from Newton's equation:

$$m\frac{d^2x_i}{d^2t} + \alpha\frac{dx_i}{dt} + \sum_{j\neq i}\nabla W(|x_i - x_j|) = 0$$

so finally, we obtain

 $\frac{dx_i}{dt} = -\sum_{j \neq i} \nabla W(|x_i - x_j|) \quad \text{in the continuum setting} \Rightarrow \begin{cases} \frac{\partial \rho}{\partial t} + \operatorname{div}(\rho v) = 0\\ v = -\nabla W * \rho \end{cases}$

Modelling & First Properties	Transversal Tool: Wasserstein Distances	JKO Convergence: subcritical case PKS	1D Case
000000000000000000000000000000000000000			
Modelling Chemotaxis			
Outline			

Modelling & First Properties

• Applied Mathematics: Collective Behavior Models

Modelling Chemotaxis

- First Properties
- Pure Mathematics: Gradient Flows

2 Transversal Tool: Wasserstein Distances

- Definition
- Properties
- 3 Gradient Flows
 - Xariational Scheme
- 4 JKO Convergence: subcritical case PKS
 - Entropy: bound from below
 - Convergence
- 5 1D Case
 - ID Convergence
 - Numerical Experiments

Modelling & First Properties	Transversal Tool: Wasserstein Distances	JKO Convergence: subcritical case PKS	1D Case
000000000000000000000000000000000000000			
Modelling Chemotaxis			
Chemotaxis			

Cell movement and aggregation by chemical interaction.

Modelling & First Properties	Transversal Tool: Wasserstein Distances		JKO Convergence: subcritical case PKS	1D Case
000000000000000000000000000000000000000	000000000	0000	00000000	0000000000000
Modelling Chemotaxis				
KS System				

Keller-Segel System:

Cells positions are assumed to fluctuate, in the sense of a Brownian motion, around the dominated trend to follow the trail of the largest concentration of chemoattractant:

 $x' = \nabla c(x,t) + \Gamma(t).$

where $\Gamma(t)$ is a Wiener process with fixed variance. The chemoattractant diffuses spatially and is produced by the cells themselves.

$$\begin{aligned} \frac{\partial n}{\partial t}(x,t) &= \Delta n(x,t) - \chi \nabla \cdot (n(x,t) \nabla c(x,t)) & x \in \mathbb{R}^2, \ t > 0, \\ \frac{\partial c}{\partial t}(x,t) - \Delta c(x,t) &= n(x,t) - \alpha c(x,t) & x \in \mathbb{R}^2, \ t > 0, \\ n(x,t=0) &= n_0 \ge 0 & x \in \mathbb{R}^2. \end{aligned}$$

Patlak (1953), Keller-Segel (1971), Nanjundiah (1973).

Modelling & First Properties	Transversal Tool: Wasserstein Distances	JKO Convergence: subcritical case PKS	1D Case
000000000000000000000000000000000000000			
Modelling Chemotaxis			
KS System			

Keller-Segel System:

Cells positions are assumed to fluctuate, in the sense of a Brownian motion, around the dominated trend to follow the trail of the largest concentration of chemoattractant:

 $x' = \nabla c(x,t) + \Gamma(t).$

where $\Gamma(t)$ is a Wiener process with fixed variance. The chemoattractant diffuses spatially and is produced by the cells themselves.

$$\frac{\partial n}{\partial t}(x,t) = \Delta n(x,t) - \chi \nabla \cdot (n(x,t) \nabla c(x,t)) \qquad x \in \mathbb{R}^2, \ t > 0,$$
$$\frac{\partial c}{\partial t}(x,t) - \Delta c(x,t) = n(x,t) - \alpha c(x,t) \qquad x \in \mathbb{R}^2, \ t > 0,$$
$$n(x,t=0) = n_0 \ge 0 \qquad x \in \mathbb{R}^2.$$

Patlak (1953), Keller-Segel (1971), Nanjundiah (1973).

Modelling & First Properties	Transversal Tool: Wasserstein Distances	JKO Convergence: subcritical case PKS	1D Case
000000000000000000000000000000000000000			
Modelling Chemotaxis			
KS System			

Keller-Segel System:

Cells positions are assumed to fluctuate, in the sense of a Brownian motion, around the dominated trend to follow the trail of the largest concentration of chemoattractant:

 $x' = \nabla c(x,t) + \Gamma(t).$

where $\Gamma(t)$ is a Wiener process with fixed variance. The chemoattractant diffuses spatially and is produced by the cells themselves.

$$\frac{\partial n}{\partial t}(x,t) = \Delta n(x,t) - \chi \nabla \cdot (n(x,t) \nabla c(x,t)) \qquad x \in \mathbb{R}^2, \ t > 0$$

$$\frac{\partial c}{\partial t}(x,t) - \Delta c(x,t) = n(x,t) - \alpha c(x,t) \qquad x \in \mathbb{R}^2, \ t > 0$$

$$n(x,t=0) = n_0 \ge 0 \qquad x \in \mathbb{R}^2.$$

Patlak (1953), Keller-Segel (1971), Nanjundiah (1973).

Modelling & First Properties	Transversal Tool: Wasserstein Distances	JKO Convergence: subcritical case PKS	1D Case
000000000000000000000000000000000000000			
First Properties			
Outline			

Modelling & First Properties

- Applied Mathematics: Collective Behavior Models
- Modelling Chemotaxis

First Properties

• Pure Mathematics: Gradient Flows

2 Transversal Tool: Wasserstein Distances

- Definition
- Properties
- 3 Gradient Flows
 - Xariational Scheme
- 4 JKO Convergence: subcritical case PKS
 - Entropy: bound from below
 - Convergence
- 5 1D Case
 - ID Convergence
 - Numerical Experiments

Modelling & First Properties	Transversal Tool: Wasserstein Distances	Gradient Flows	JKO Convergence: subcritical case PKS	1D Case
000000000000000000000000000000000000000	00000000	0000	00000000	0000000000000
First Properties				
PKS System				

$$\begin{aligned} &\frac{\partial n}{\partial t}(x,t) = \Delta n(x,t) - \chi \nabla \cdot (n(x,t) \nabla c(x,t)) & x \in \mathbb{R}^2, \ t > 0, \\ &c(x,t) = -\frac{1}{2\pi} \int_{\mathbb{R}^2} \log |x - y| \, n(y,t) \, dy & x \in \mathbb{R}^2, \ t > 0, \\ &n(x,t=0) = n_0 \ge 0 & x \in \mathbb{R}^2. \end{aligned}$$

Huge Literature: Horstmann reviews (2003& 2004), Perthame review (2004). Smoluchowski-Poisson in gravitational collapse literature.

Conservations:

• Conservation of mass:

$$M := \int_{\mathbb{R}^2} n_0(x) \, dx = \int_{\mathbb{R}^2} n(x,t) \, dx$$

$$M_1 := \int_{\mathbb{R}^2} x n_0(x) dx = \int_{\mathbb{R}^2} x n(x,t) dx .$$

Modelling & First Properties	Transversal Tool: Wasserstein Distances	JKO Convergence: subcritical case PKS	1D Case
000000000000000000000000000000000000000			
First Properties			
PKS System			

$$\frac{\partial n}{\partial t}(x,t) = \Delta n(x,t) - \chi \nabla \cdot (n(x,t) \nabla c(x,t)) \qquad x \in \mathbb{R}^2, \ t > 0$$

$$c(x,t) = -\frac{1}{2\pi} \int_{\mathbb{R}^2} \log |x-y| \, n(y,t) \, dy \qquad x \in \mathbb{R}^2, \ t > 0$$

$$n(x,t=0) = n_0 \ge 0 \qquad x \in \mathbb{R}^2.$$

Huge Literature: Horstmann reviews (2003& 2004), Perthame review (2004). Smoluchowski-Poisson in gravitational collapse literature.

Conservations:

• Conservation of mass:

$$M \coloneqq \int_{\mathbb{R}^2} n_0(x) \, dx = \int_{\mathbb{R}^2} n(x,t) \, dx$$

$$M_1 := \int_{\mathbb{R}^2} x n_0(x) dx = \int_{\mathbb{R}^2} x n(x,t) dx .$$

Modelling & First Properties	Transversal Tool: Wasserstein Distances	JKO Convergence: subcritical case PKS	1D Case
000000000000000000000000000000000000000			
First Properties			
PKS System			

$$\frac{\partial n}{\partial t}(x,t) = \Delta n(x,t) - \chi \nabla \cdot (n(x,t) \nabla c(x,t)) \qquad x \in \mathbb{R}^2, \ t > 0,$$
$$c(x,t) = -\frac{1}{2\pi} \int_{\mathbb{R}^2} \log |x - y| n(y,t) \ dy \qquad x \in \mathbb{R}^2, \ t > 0,$$
$$n(x,t=0) = n_0 \ge 0 \qquad x \in \mathbb{R}^2.$$

Huge Literature: Horstmann reviews (2003& 2004), Perthame review (2004). Smoluchowski-Poisson in gravitational collapse literature.

Conservations:

• Conservation of mass:

$$M := \int_{\mathbb{R}^2} n_0(x) \, dx = \int_{\mathbb{R}^2} n(x,t) \, dx$$

$$M_1 := \int_{\mathbb{R}^2} x \, n_0(x) \, dx = \int_{\mathbb{R}^2} x \, n(x,t) \, dx \; .$$

Modelling & First Properties	Transversal Tool: Wasserstein Distances	JKO Convergence: subcritical case PKS	1D Case
000000000000000000000000000000000000000			
First Properties			
PKS System			

$$\frac{\partial n}{\partial t}(x,t) = \Delta n(x,t) - \chi \nabla \cdot (n(x,t) \nabla c(x,t)) \qquad x \in \mathbb{R}^2, \ t > 0$$

$$c(x,t) = -\frac{1}{2\pi} \int_{\mathbb{R}^2} \log |x-y| \, n(y,t) \, dy \qquad x \in \mathbb{R}^2, \ t > 0$$

$$n(x,t=0) = n_0 \ge 0 \qquad x \in \mathbb{R}^2.$$

Huge Literature: Horstmann reviews (2003& 2004), Perthame review (2004). Smoluchowski-Poisson in gravitational collapse literature.

Conservations:

• Conservation of mass:

$$M := \int_{\mathbb{R}^2} n_0(x) \, dx = \int_{\mathbb{R}^2} n(x,t) \, dx$$

$$M_1 := \int_{\mathbb{R}^2} x n_0(x) \ dx = \int_{\mathbb{R}^2} x n(x,t) \ dx \ .$$

Modelling & First Properties	Transversal Tool: Wasserstein Distances	Gradient Flows	JKO Convergence: subcritical case PKS	1D Case	
000000000000000000000000000000000000000	000000000	0000	000000000	000000000000000	
First Properties					
Second Moment					

We shall say that $n \in C^0([0,T); L^1_{weak}(\mathbb{R}^2))$ is a weak solution to the PKS system if for all test functions $\psi \in \mathcal{D}(\mathbb{R}^2)$,

$$\frac{d}{dt} \int_{\mathbb{R}^2} \psi(x) n(x,t) dx = \int_{\mathbb{R}^2} \Delta \psi(x) n(x,t) dx - \frac{\chi}{4\pi} \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \left[\nabla \psi(x) - \nabla \psi(y) \right] \cdot \frac{x - y}{|x - y|^2} n(x,t) n(y,t) dx dy$$

holds in the distributional sense in (0, T) and $n(0) = n_0$.

Evolution of second moment:

$$\frac{d}{dt}\int_{\mathbb{R}^2} |x|^2 n(x,t) \, dx = 4M - \frac{\chi}{2\pi}M^2,$$

Struggle between diffusion and aggregation. Balance between these two mechanisms happens precisely at the critical mass $\chi M = 8 \pi$.

Modelling & First Properties	Transversal Tool: Wasserstein Distances		JKO Convergence: subcritical case PKS	1D Case
000000000000000000000000000000000000000	00000000	0000	00000000	000000000000000000000000000000000000000
First Properties				
Second Mom	ent			

We shall say that $n \in C^0([0,T); L^1_{weak}(\mathbb{R}^2))$ is a weak solution to the PKS system if for all test functions $\psi \in \mathcal{D}(\mathbb{R}^2)$,

$$\frac{d}{dt} \int_{\mathbb{R}^2} \psi(x) n(x,t) \, dx = \int_{\mathbb{R}^2} \Delta \psi(x) n(x,t) \, dx - \frac{\chi}{4\pi} \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \left[\nabla \psi(x) - \nabla \psi(y) \right] \cdot \frac{x - y}{|x - y|^2} n(x,t) n(y,t) \, dx \, dy$$

holds in the distributional sense in (0, T) and $n(0) = n_0$.

Evolution of second moment:

$$\frac{d}{dt}\int_{\mathbb{R}^2} |x|^2 n(x,t) \, dx = 4M - \frac{\chi}{2\pi}M^2$$

Struggle between diffusion and aggregation. Balance between these two mechanisms happens precisely at the critical mass $\chi M = 8 \pi$.

Modelling & First Properties	Transversal Tool: Wasserstein Distances		JKO Convergence: subcritical case PKS	1D Case
000000000000000000000000000000000000000	00000000	0000	00000000	000000000000000000000000000000000000000
First Properties				
Second Mom	ent			

We shall say that $n \in C^0([0,T); L^1_{weak}(\mathbb{R}^2))$ is a weak solution to the PKS system if for all test functions $\psi \in \mathcal{D}(\mathbb{R}^2)$,

$$\frac{d}{dt} \int_{\mathbb{R}^2} \psi(x) n(x,t) \, dx = \int_{\mathbb{R}^2} \Delta \psi(x) n(x,t) \, dx - \frac{\chi}{4\pi} \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \left[\nabla \psi(x) - \nabla \psi(y) \right] \cdot \frac{x - y}{|x - y|^2} n(x,t) n(y,t) \, dx \, dy$$

holds in the distributional sense in (0, T) and $n(0) = n_0$.

Evolution of second moment:

$$\frac{d}{dt}\int_{\mathbb{R}^2}|x|^2\,n(x,t)\,dx=4M-\frac{\chi}{2\pi}M^2,$$

Struggle between diffusion and aggregation. Balance between these two mechanisms happens precisely at the critical mass $\chi M = 8 \pi$.

Modelling & First Properties	Transversal Tool: Wasserstein Distances		JKO Convergence: subcritical case PKS	1D Case
000000000000000000000000000000000000000	00000000	0000	00000000	000000000000000000000000000000000000000
First Properties				
Second Mom	ent			

We shall say that $n \in C^0([0,T); L^1_{weak}(\mathbb{R}^2))$ is a weak solution to the PKS system if for all test functions $\psi \in \mathcal{D}(\mathbb{R}^2)$,

$$\frac{d}{dt} \int_{\mathbb{R}^2} \psi(x) n(x,t) \, dx = \int_{\mathbb{R}^2} \Delta \psi(x) n(x,t) \, dx - \frac{\chi}{4\pi} \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \left[\nabla \psi(x) - \nabla \psi(y) \right] \cdot \frac{x - y}{|x - y|^2} n(x,t) n(y,t) \, dx \, dy$$

holds in the distributional sense in (0, T) and $n(0) = n_0$.

Evolution of second moment:

$$\frac{d}{dt}\int_{\mathbb{R}^2}|x|^2\,n(x,t)\,dx=4M-\frac{\chi}{2\pi}M^2,$$

Struggle between diffusion and aggregation. Balance between these two mechanisms happens precisely at the critical mass $\chi M = 8 \pi$.

Modelling & First Properties	Transversal Tool: Wasserstein Distances		JKO Convergence: subcritical case PKS	1D Case
000000000000000000000000000000000000000	00000000	0000	00000000	000000000000000000000000000000000000000
First Properties				
Second Mom	ent			

We shall say that $n \in C^0([0,T); L^1_{weak}(\mathbb{R}^2))$ is a weak solution to the PKS system if for all test functions $\psi \in \mathcal{D}(\mathbb{R}^2)$,

$$\frac{d}{dt} \int_{\mathbb{R}^2} \psi(x) n(x,t) \, dx = \int_{\mathbb{R}^2} \Delta \psi(x) n(x,t) \, dx - \frac{\chi}{4\pi} \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \left[\nabla \psi(x) - \nabla \psi(y) \right] \cdot \frac{x - y}{|x - y|^2} n(x,t) n(y,t) \, dx \, dy$$

holds in the distributional sense in (0, T) and $n(0) = n_0$.

Evolution of second moment:

$$\frac{d}{dt}\int_{\mathbb{R}^2}|x|^2\,n(x,t)\,dx=4M-\frac{\chi}{2\pi}M^2,$$

Struggle between diffusion and aggregation. Balance between these two mechanisms happens precisely at the critical mass $\chi M = 8 \pi$.

Modelling & First Properties	Transversal Tool: Wasserstein Distances	JKO Convergence: subcritical case PKS	1D Case
000000000000000000000000000000000000000			
First Properties			
Second Mom	ent		

We shall say that $n \in C^0([0,T); L^1_{weak}(\mathbb{R}^2))$ is a weak solution to the PKS system if for all test functions $\psi \in \mathcal{D}(\mathbb{R}^2)$,

$$\frac{d}{dt} \int_{\mathbb{R}^2} \psi(x) n(x,t) \, dx = \int_{\mathbb{R}^2} \Delta \psi(x) n(x,t) \, dx - \frac{\chi}{4\pi} \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \left[\nabla \psi(x) - \nabla \psi(y) \right] \cdot \frac{x - y}{|x - y|^2} n(x,t) n(y,t) \, dx \, dy$$

holds in the distributional sense in (0, T) and $n(0) = n_0$.

Evolution of second moment:

$$\frac{d}{dt}\int_{\mathbb{R}^2}|x|^2\,n(x,t)\,dx=4M-\frac{\chi}{2\pi}M^2,$$

Struggle between diffusion and aggregation. Balance between these two mechanisms happens precisely at the critical mass $\chi M = 8 \pi$.

Modelling & First Properties	Transversal Tool: Wasserstein Distances		JKO Convergence: subcritical case PKS	1D Case
000000000000000000000000000000000000000	00000000	0000	00000000	0000000000000
First Properties				
Cases				

- Subcritical Case, $\chi < 8 \pi$: Jägger-Luckhaus (1992) without optimal critical mass. Dolbeault-Perthame (2004), Blanchet-Dolbeault-Perthame (2006) proved global existence of free-energy solutions.
- **Supercritical Case**, $\chi > 8\pi$; Herrero-Xelazquez (1996) particular solutions blow up in finite time. Xelazquez (2002-2004) proves formal asymptotic expansions for the behavior after blow-up. Dolbeault-Schmeiser (2007) have introduced a concept of solution due to Poupaud for dealing with solutions after blow-up.
- **Critical Case**, $\chi = 8 \pi$: Infinite-time aggregation, infinitely many stationary states: Biler-Karch-Laurençot-Nadzieja (2006), Blanchet-C.-Masmoudi (2008), Blanchet-Carlen-C. (2012), Carlen-C.-Loss (2010), Carlen-Figalli (2013).

Modelling & First Properties	Transversal Tool: Wasserstein Distances	JKO Convergence: subcritical case PKS	1D Case
000000000000000000000000000000000000000			
First Properties			
Cases			

- Subcritical Case, $\chi < 8 \pi$: Jägger-Luckhaus (1992) without optimal critical mass. Dolbeault-Perthame (2004), Blanchet-Dolbeault-Perthame (2006) proved global existence of free-energy solutions.
- **Supercritical Case**, $\chi > 8\pi$; Herrero-Xelazquez (1996) particular solutions blow up in finite time. Xelazquez (2002-2004) proves formal asymptotic expansions for the behavior after blow-up. Dolbeault-Schmeiser (2007) have introduced a concept of solution due to Poupaud for dealing with solutions after blow-up.
- **Critical Case**, $\chi = 8 \pi$: Infinite-time aggregation, infinitely many stationary states: Biler-Karch-Laurençot-Nadzieja (2006), Blanchet-C.-Masmoudi (2008), Blanchet-Carlen-C. (2012), Carlen-C.-Loss (2010), Carlen-Figalli (2013).

Modelling & First Properties	Transversal Tool: Wasserstein Distances	JKO Convergence: subcritical case PKS	1D Case
000000000000000000000000000000000000000			
First Properties			
Cases			

- Subcritical Case, $\chi < 8 \pi$: Jägger-Luckhaus (1992) without optimal critical mass. Dolbeault-Perthame (2004), Blanchet-Dolbeault-Perthame (2006) proved global existence of free-energy solutions.
- Supercritical Case, $\chi > 8 \pi$: Herrero-Xelazquez (1996) particular solutions blow up in finite time. Xelazquez (2002-2004) proves formal asymptotic expansions for the behavior after blow-up. Dolbeault-Schmeiser (2007) have introduced a concept of solution due to Poupaud for dealing with solutions after blow-up.
- **Critical Case**, $\chi = 8 \pi$: Infinite-time aggregation, infinitely many stationary states: Biler-Karch-Laurençot-Nadzieja (2006), Blanchet-C.-Masmoudi (2008), Blanchet-Carlen-C. (2012), Carlen-C.-Loss (2010), Carlen-Figalli (2013).

Modelling & First Properties	Transversal Tool: Wasserstein Distances	JKO Convergence: subcritical case PKS	1D Case
000000000000000000000000000000000000000			
First Properties			
Cases			

- Subcritical Case, $\chi < 8 \pi$: Jägger-Luckhaus (1992) without optimal critical mass. Dolbeault-Perthame (2004), Blanchet-Dolbeault-Perthame (2006) proved global existence of free-energy solutions.
- Supercritical Case, $\chi > 8 \pi$: Herrero-Xelazquez (1996) particular solutions blow up in finite time. Xelazquez (2002-2004) proves formal asymptotic expansions for the behavior after blow-up. Dolbeault-Schmeiser (2007) have introduced a concept of solution due to Poupaud for dealing with solutions after blow-up.
- **Critical Case**, $\chi = 8 \pi$: Infinite-time aggregation, infinitely many stationary states: Biler-Karch-Laurençot-Nadzieja (2006), Blanchet-C.-Masmoudi (2008), Blanchet-Carlen-C. (2012), Carlen-C.-Loss (2010), Carlen-Figalli (2013).
| Modelling & First Properties | Transversal Tool: Wasserstein Distances | | JKO Convergence: subcritical case PKS | 1D Case |
|---|---|------|---------------------------------------|---------------|
| 000000000000000000000000000000000000000 | 00000000 | 0000 | 00000000 | 0000000000000 |
| First Properties | | | | |
| Cases | | | | |

PKS Cases:

- Subcritical Case, $\chi < 8 \pi$: Jägger-Luckhaus (1992) without optimal critical mass. Dolbeault-Perthame (2004), Blanchet-Dolbeault-Perthame (2006) proved global existence of free-energy solutions.
- Supercritical Case, $\chi > 8\pi$: Herrero-Xelazquez (1996) particular solutions blow up in finite time. Xelazquez (2002-2004) proves formal asymptotic expansions for the behavior after blow-up. Dolbeault-Schmeiser (2007) have introduced a concept of solution due to Poupaud for dealing with solutions after blow-up.
- **Critical Case**, $\chi = 8 \pi$: Infinite-time aggregation, infinitely many stationary states: Biler-Karch-Laurençot-Nadzieja (2006), Blanchet-C.-Masmoudi (2008), Blanchet-Carlen-C. (2012), Carlen-C.-Loss (2010), Carlen-Figalli (2013).

Modelling & First Properties	Transversal Tool: Wasserstein Distances		JKO Convergence: subcritical case PKS	1D Case
000000000000000000000000000000000000000	00000000	0000	00000000	0000000000000
First Properties				
Cases				

PKS Cases:

- Subcritical Case, $\chi < 8 \pi$: Jägger-Luckhaus (1992) without optimal critical mass. Dolbeault-Perthame (2004), Blanchet-Dolbeault-Perthame (2006) proved global existence of free-energy solutions.
- Supercritical Case, $\chi > 8\pi$: Herrero-Xelazquez (1996) particular solutions blow up in finite time. Xelazquez (2002-2004) proves formal asymptotic expansions for the behavior after blow-up. Dolbeault-Schmeiser (2007) have introduced a concept of solution due to Poupaud for dealing with solutions after blow-up.
- **Critical Case**, $\chi = 8 \pi$: Infinite-time aggregation, infinitely many stationary states: Biler-Karch-Laurençot-Nadzieja (2006), Blanchet-C.-Masmoudi (2008), Blanchet-Carlen-C. (2012), Carlen-C.-Loss (2010), Carlen-Figalli (2013).

D 110				
First Properties				
000000000000000000000000000000000000000	00000000	0000	00000000	0000000000000
Modelling & First Properties	Transversal Tool: Wasserstein Distances	Gradient Flows	JKO Convergence: subcritical case PKS	1D Case

Let us define the rescaled functions ρ and v by:

$$n(t,x) = \frac{1}{R^d(t)} \rho\left(\tau(t), \frac{x}{R(t)}\right)$$
 and $c(x,t) = v\left(\tau(t), \frac{x}{R(t)}\right)$

with

$$R(t) = \sqrt{1+2t}$$
 and $\tau(t) = \log R(t)$.

The rescaled system with $\rho(0, x) = \rho^0 = n_0 \ge 0$ is

$$\begin{bmatrix} \frac{\partial \rho}{\partial t}(t,x) = \Delta \rho(t,x) + \nabla \cdot \{\rho(t,x) [x - \chi \nabla v(t,x)]\} & t > 0, \ x \in \mathbb{R}^d, \\ v(t,x) = -\frac{1}{d\pi} \log |\cdot| * \rho(t,x) & t > 0, \ x \in \mathbb{R}^d. \end{bmatrix}$$

In the rescaled variables, the free energy becomes

$$\mathcal{G}[\rho] = \int_{\mathbb{R}^d} \rho(x) \log \rho(x) \, dx + \frac{1}{2} \int_{\mathbb{R}^d} |x|^2 \, \rho(x) \, dx + \frac{\chi}{2 \, d \, \pi} \iint_{\mathbb{R}^d \times \mathbb{R}^d} |x - y| \, \rho(x) \, \rho(y) \, dx \, dy$$

In any dimensions, the critical value is $\chi_c = 2d^2 \pi$.

Modelling & First Properties	Transversal Tool: Wasserstein Distances	Gradient Flows	JKO Convergence: subcritical case PKS	1D Case
000000000000000000000000000000000000000				
First Properties				
D 110				

Let us define the rescaled functions ρ and v by:

$$n(t,x) = \frac{1}{R^d(t)} \rho\left(\tau(t), \frac{x}{R(t)}\right)$$
 and $c(x,t) = v\left(\tau(t), \frac{x}{R(t)}\right)$

with

$$R(t) = \sqrt{1+2t}$$
 and $\tau(t) = \log R(t)$.

The rescaled system with $\rho(0, x) = \rho^0 = n_0 \ge 0$ is

$$\begin{aligned} \frac{\partial \rho}{\partial t}(t,x) &= \Delta \rho(t,x) + \nabla \cdot \{\rho(t,x) \left[x - \chi \nabla v(t,x) \right] \} & t > 0, \ x \in \mathbb{R}^d, \\ v(t,x) &= -\frac{1}{d\pi} \log |\cdot| * \rho(t,x) & t > 0, \ x \in \mathbb{R}^d. \end{aligned}$$

In the rescaled variables, the free energy becomes

$$\mathcal{G}[\rho] = \int_{\mathbb{R}^d} \rho(x) \log \rho(x) \, dx + \frac{1}{2} \int_{\mathbb{R}^d} |x|^2 \, \rho(x) \, dx + \frac{\chi}{2 \, d \, \pi} \iint_{\mathbb{R}^d \times \mathbb{R}^d} |x - y| \, \rho(x) \, \rho(y) \, dx \, dy$$

In any dimensions, the critical value is $\chi = 2d^2 \pi$

Modelling & First Properties	Transversal Tool: Wasserstein Distances	Gradient Flows	JKO Convergence: subcritical case PKS	1D Case
000000000000000000000000000000000000000				
First Properties				
D 110				

Let us define the rescaled functions ρ and v by:

$$n(t,x) = \frac{1}{R^d(t)} \rho\left(\tau(t), \frac{x}{R(t)}\right)$$
 and $c(x,t) = v\left(\tau(t), \frac{x}{R(t)}\right)$

with

$$R(t) = \sqrt{1+2t}$$
 and $\tau(t) = \log R(t)$.

The rescaled system with $\rho(0, x) = \rho^0 = n_0 \ge 0$ is

$$\begin{cases} \frac{\partial \rho}{\partial t}(t,x) = \Delta \rho(t,x) + \nabla \cdot \{\rho(t,x) \left[x - \chi \nabla v(t,x) \right] \} & t > 0, \ x \in \mathbb{R}^d, \\ v(t,x) = -\frac{1}{d\pi} \log |\cdot| * \rho(t,x) & t > 0, \ x \in \mathbb{R}^d. \end{cases}$$

In the rescaled variables, the free energy becomes

$$\mathcal{G}[\rho] = \int_{\mathbb{R}^d} \rho(x) \log \rho(x) \, dx + \frac{1}{2} \int_{\mathbb{R}^d} |x|^2 \, \rho(x) \, dx + \frac{\chi}{2 \, d \, \pi} \iint_{\mathbb{R}^d \times \mathbb{R}^d} |x - y| \, \rho(x) \, \rho(y) \, dx \, dy$$

Modelling & First Properties	Transversal Tool: Wasserstein Distances	Gradient Flows	JKO Convergence: subcritical case PKS	1D Case
000000000000000000000000000000000000000				
First Properties				
D 110				

Let us define the rescaled functions ρ and v by:

$$n(t,x) = \frac{1}{R^d(t)} \rho\left(\tau(t), \frac{x}{R(t)}\right)$$
 and $c(x,t) = v\left(\tau(t), \frac{x}{R(t)}\right)$

with

$$R(t) = \sqrt{1+2t}$$
 and $\tau(t) = \log R(t)$.

The rescaled system with $\rho(0, x) = \rho^0 = n_0 \ge 0$ is

$$\begin{cases} \frac{\partial \rho}{\partial t}(t,x) = \Delta \rho(t,x) + \nabla \cdot \{\rho(t,x) \left[x - \chi \nabla v(t,x) \right] \} & t > 0, \ x \in \mathbb{R}^d, \\ v(t,x) = -\frac{1}{d\pi} \log |\cdot| * \rho(t,x) & t > 0, \ x \in \mathbb{R}^d. \end{cases}$$

In the rescaled variables, the free energy becomes

$$\mathcal{G}[\rho] = \int_{\mathbb{R}^d} \rho(x) \log \rho(x) \, dx + \frac{1}{2} \int_{\mathbb{R}^d} |x|^2 \, \rho(x) \, dx + \frac{\chi}{2 \, d \, \pi} \iint_{\mathbb{R}^d \times \mathbb{R}^d} |x - y| \, \rho(x) \, \rho(y) \, dx \, dy$$

In any dimensions, the critical value is $\chi_c = 2d^2\pi$.

Nonlinear diffusion PKS system

Xolume effects can be taken into account by considering nonlinear diffusion (Calvez& C., JMPA 2006) as:

$$\begin{cases} \frac{\partial \rho}{\partial t}(t,x) &= \operatorname{div}\left[\nabla \rho^{m}(t,x) - \rho(t,x)\nabla c(t,x)\right] & t > 0, \ x \in \mathbb{R}^{d}, \\ -\Delta c(t,x) &= \rho(t,x), & t > 0, \ x \in \mathbb{R}^{d}, \end{cases}$$

Free Energy:

The corresponding free energy is

$$\mathcal{F}_m[\rho](t) \coloneqq \int_{\mathbb{R}^d} \frac{\rho^m}{m-1} \, dx - \frac{c_d}{2} \iint_{\mathbb{R}^d \times \mathbb{R}^d} \frac{1}{|x-y|^{d-2}} \, \rho(t,x) \, \rho(t,y) \, dx \, dy$$

with $c_d^{-1} \coloneqq (d-2)2 \pi^{d/2} / \Gamma(d/2)$.

Diffusion to compensate exactly drift by scaling (Blanchet, C. & Laurençot, CXPDE 2008) is

 $m_d \coloneqq 2(d-1)/d.$

Nonlinear diffusion PKS system

Xolume effects can be taken into account by considering nonlinear diffusion (Calvez& C., JMPA 2006) as:

$$\begin{cases} \frac{\partial \rho}{\partial t}(t,x) &= \operatorname{div}\left[\nabla \rho^m(t,x) - \rho(t,x)\nabla c(t,x)\right] & t > 0, \ x \in \mathbb{R}^d, \\ -\Delta c(t,x) &= \rho(t,x), & t > 0, \ x \in \mathbb{R}^d, \end{cases}$$

Free Energy:

The corresponding free energy is

$$\mathcal{F}_m[\rho](t) \coloneqq \int_{\mathbb{R}^d} \frac{\rho^m}{m-1} \, dx - \frac{c_d}{2} \iint_{\mathbb{R}^d \times \mathbb{R}^d} \frac{1}{|x-y|^{d-2}} \, \rho(t,x) \, \rho(t,y) \, dx \, dy$$

with $c_d^{-1} \coloneqq (d-2)2 \pi^{d/2} / \Gamma(d/2)$.

Diffusion to compensate exactly drift by scaling (Blanchet, C. & Laurençot, CXPDE 2008) is

 $m_d \coloneqq 2(d-1)/d.$

Nonlinear diffusion PKS system

Xolume effects can be taken into account by considering nonlinear diffusion (Calvez& C., JMPA 2006) as:

$$\begin{cases} \frac{\partial \rho}{\partial t}(t,x) &= \operatorname{div}\left[\nabla \rho^m(t,x) - \rho(t,x)\nabla c(t,x)\right] & t > 0, \ x \in \mathbb{R}^d, \\ -\Delta c(t,x) &= \rho(t,x), & t > 0, \ x \in \mathbb{R}^d, \end{cases}$$

Free Energy:

The corresponding free energy is

$$\mathcal{F}_m[\rho](t) \coloneqq \int_{\mathbb{R}^d} \frac{\rho^m}{m-1} \, dx - \frac{c_d}{2} \iint_{\mathbb{R}^d \times \mathbb{R}^d} \frac{1}{|x-y|^{d-2}} \, \rho(t,x) \, \rho(t,y) \, dx \, dy$$

with $c_d^{-1} := (d-2)2 \pi^{d/2} / \Gamma(d/2)$.

Diffusion to compensate exactly drift by scaling (Blanchet, C. & Laurençot, CXPDE 2008) is

 $m_d \coloneqq 2(d-1)/d.$

Modelling & First Properties	Transversal Tool: Wasserstein Distances		JKO Convergence: subcritical case PKS	1D Case
000000000000000000000000000000000000000	00000000	0000	00000000	000000000000000000000000000000000000000
Pure Mathematics: Gradient Flows				
Outline				

Modelling & First Properties

- Applied Mathematics: Collective Behavior Models
- Modelling Chemotaxis
- First Properties

• Pure Mathematics: Gradient Flows

2 Transversal Tool: Wasserstein Distances

- Definition
- Properties
- 3 Gradient Flows
 - Xariational Scheme
- 4 JKO Convergence: subcritical case PKS
 - Entropy: bound from below
 - Convergence
- 5 1D Case
 - ID Convergence
 - Numerical Experiments

Modelling & First Properties 00000000000000000 Pure Mathematics: Gradient Flows Transversal Tool: Wasserstein Distances

Gradient Flows

JKO Convergence: subcritical case PKS 000000000

Fulle Mathematics: Gradient Flows

General Entropy Functional¹

$$\mathcal{F}[\rho] = \mathcal{U}[\rho] + \mathcal{X}[\rho] + \mathcal{W}[\rho]$$

with

$$\mathcal{U}[\rho] = \int_{\mathbb{R}^d} U(\rho(x)) \, dx \quad \text{internal energy}$$
$$\mathcal{X}[\rho] = \int_{\mathbb{R}^d} X(x)\rho(x) \, dx \quad \text{confinement energy}$$
$$\mathcal{W}[\rho] = \frac{1}{2} \int_{\mathbb{R}^{2d}} W(x-y)\rho(x)\rho(y) \, dx \, dy \quad \text{interaction energy}$$

Let us write the formal gradient flow equation as before:

$$\frac{\partial \rho}{\partial t} = \operatorname{div}\left(\rho \nabla \frac{\delta \mathcal{F}}{\delta \rho}\right), \qquad (x \in \mathbb{R}^d, t > 0).$$

and the dissipation of entropy is defined as

$$\frac{d}{dt}\mathcal{F}[\rho] = -D[\rho] \quad \text{with} \quad D[\rho] = \int_{\mathbb{R}^d} |\xi|^2 \rho(x) \, dx,$$

with

$$\xi = \nabla \left[U'[\rho] + X + W * \rho \right] = \nabla \frac{\delta \mathcal{F}}{\delta \rho}.$$

¹J.A. Carrillo, R.J. McCann & C. Xillani, RMI 2003 & ARMA 2006.

Modelling & First Properties Pure Mathematics: Gradient Flows

Transversal Tool: Wasserstein Distances

General Entropy Functional¹

 $\mathcal{F}[\rho] = \mathcal{U}[\rho] + \mathcal{X}[\rho] + \mathcal{W}[\rho]$

with

$$\mathcal{U}[\rho] = \int_{\mathbb{R}^d} U(\rho(x)) \, dx \quad \text{internal energy}$$
$$\mathcal{X}[\rho] = \int_{\mathbb{R}^d} X(x)\rho(x) \, dx \quad \text{confinement energy}$$
$$\mathcal{W}[\rho] = \frac{1}{2} \int_{\mathbb{R}^{2d}} W(x-y)\rho(x)\rho(y) \, dx \, dy \quad \text{interaction energy}$$

Let us write the formal gradient flow equation as before:

$$\frac{\partial \rho}{\partial t} = \operatorname{div}\left(\rho \nabla \frac{\delta \mathcal{F}}{\delta \rho}\right), \qquad (x \in \mathbb{R}^d, t > 0).$$

$$\frac{d}{dt}\mathcal{F}[\rho] = -D[\rho] \quad \text{with} \quad D[\rho] = \int_{\mathbb{R}^d} |\xi|^2 \rho(x) \, dx,$$

$$\xi = \nabla \left[U'[\rho] + X + W * \rho \right] = \nabla \frac{\delta \mathcal{F}}{\delta \rho}.$$

¹J.A. Carrillo, R.J. McCann & C. Xillani, RMI 2003 & ARMA 2006.

Modelling & First Properties Pure Mathematics: Gradient Flows

Transversal Tool: Wasserstein Distances

General Entropy Functional¹

 $\mathcal{F}[\rho] = \mathcal{U}[\rho] + \mathcal{X}[\rho] + \mathcal{W}[\rho]$

with

$$\mathcal{U}[\rho] = \int_{\mathbb{R}^d} U(\rho(x)) \, dx \quad \text{internal energy}$$
$$\mathcal{X}[\rho] = \int_{\mathbb{R}^d} X(x)\rho(x) \, dx \quad \text{confinement energy}$$
$$\mathcal{W}[\rho] = \frac{1}{2} \int_{\mathbb{R}^{2d}} W(x-y)\rho(x)\rho(y) \, dx \, dy \quad \text{interaction energy}$$

Let us write the formal gradient flow equation as before:

$$\frac{\partial \rho}{\partial t} = \operatorname{div}\left(\rho \nabla \frac{\delta \mathcal{F}}{\delta \rho}\right), \qquad (x \in \mathbb{R}^d, t > 0).$$

and the dissipation of entropy is defined as

$$\frac{d}{dt}\mathcal{F}[\rho] = -D[\rho] \quad \text{with} \quad D[\rho] = \int_{\mathbb{R}^d} |\xi|^2 \rho(x) \, dx,$$

with

$$\xi = \nabla \left[U'[\rho] + X + W * \rho \right] = \nabla \frac{\delta \mathcal{F}}{\delta \rho}.$$

¹J.A. Carrillo, R.J. McCann & C. Xillani, RMI 2003 & ARMA 2006.

Aodelling & First Properties	Transversal Tool: Wasserstein Distances	JKO Convergence: subcritical case PKS	1D Case
•••••••••••••			
Pure Mathematics: Gradient Flows			

Nonlinear continuity equations

Included models:

- $U(s) = s \log s, X = 0, W = 0$ heat equation.
- $U(s) = \frac{1}{m-1}s^m$, X = W = 0 porous medium (m > 1) or fast diffusion (0 < m < 1).
- $U(s) = s \log s$, X given, W = 0, Fokker Planck equations.
- $U(s) = s \log s, X = 0, W = \log(|x|)$, Patlak-Keller-Segel model.
- $U = 0, X = 0, W = \frac{1}{a}|x|^a \frac{1}{b}|x|^b$ correspond to attraction-(repulsion) potentials in swarming, herding and aggregation models.

(a) Dictyostelium discoideum

(b) Fish school

Modelling & First Properties	Transversal Tool: Wasserstein Distances	JKO Convergence: subcritical case PKS	1D Case
	00000000		
Definition			
Outline			

Modelling & First Properties

- Applied Mathematics: Collective Behavior Models
- Modelling Chemotaxis
- First Properties
- Pure Mathematics: Gradient Flows

2 Transversal Tool: Wasserstein Distances

- Definition
- Properties
- 3 Gradient Flows
 - Xariational Scheme
- 4 JKO Convergence: subcritical case PKS
 - Entropy: bound from below
 - Convergence
- 5 1D Case
 - ID Convergence
 - Numerical Experiments

Modelling & First Properties	Transversal Tool: Wasserstein Distances	JKO Convergence: subcritical case PKS	1D Case
	00000000		
Definition			
Definition of	the distance ²		

Transporting measures:

Given $T : \mathbb{R}^d \longrightarrow \mathbb{R}^d$ mesurable, we say that $\nu = T \# \mu$, if $\nu[K] := \mu[T^{-1}(K)]$ for all mesurable sets $K \subset \mathbb{R}^d$, equivalently

$$\int_{\mathbb{R}^d} \varphi \, d\nu = \int_{\mathbb{R}^d} (\varphi \circ T) \, d\mu$$

for all $\varphi \in C_o(\mathbb{R}^d)$.

Random variables:

Say that X is a random variable with law given by μ , is to say $X : (\Omega, \mathcal{A}, P) \longrightarrow (\mathbb{R}^d, \mathcal{B}_d)$ is a mesurable map such that $X \# P = \mu$, i.e.

$$\int_{\mathbb{R}^d} \varphi(x) \, d\mu = \int_{\Omega} (\varphi \circ X) \, dP = \mathbb{E} \left[\varphi(X) \right].$$

²C. Xillani, AMS Graduate Texts (2003).

Modelling & First Properties	Transversal Tool: Wasserstein Distances	JKO Convergence: subcritical case PKS	1D Case
	00000000		
Definition			
Definition of	the distance ²		

Transporting measures:

Given $T : \mathbb{R}^d \longrightarrow \mathbb{R}^d$ mesurable, we say that $\nu = T \# \mu$, if $\nu[K] := \mu[T^{-1}(K)]$ for all mesurable sets $K \subset \mathbb{R}^d$, equivalently

$$\int_{\mathbb{R}^d} \varphi \, d\nu = \int_{\mathbb{R}^d} (\varphi \circ T) \, d\mu$$

for all $\varphi \in C_o(\mathbb{R}^d)$.

Random variables:

Say that X is a random variable with law given by μ , is to say $X : (\Omega, \mathcal{A}, P) \longrightarrow (\mathbb{R}^d, \mathcal{B}_d)$ is a mesurable map such that $X \# P = \mu$, i.e.

$$\int_{\mathbb{R}^d} \varphi(x) \, d\mu = \int_{\Omega} (\varphi \circ X) \, dP = \mathbb{E} \left[\varphi(X) \right].$$

²C. Xillani, AMS Graduate Texts (2003).

Modelling & First Properties	Transversal Tool: Wasserstein Distances	JKO Convergence: subcritical case PKS	1D Case
	00000000		
Definition			
Definition of	the distance ²		

Transporting measures:

Given $T : \mathbb{R}^d \longrightarrow \mathbb{R}^d$ mesurable, we say that $\nu = T \# \mu$, if $\nu[K] := \mu[T^{-1}(K)]$ for all mesurable sets $K \subset \mathbb{R}^d$, equivalently

$$\int_{\mathbb{R}^d} \varphi \, d\nu = \int_{\mathbb{R}^d} (\varphi \circ T) \, d\mu$$

for all $\varphi \in C_o(\mathbb{R}^d)$.

Random variables:

Say that *X* is a random variable with law given by μ , is to say $X: (\Omega, \mathcal{A}, P) \longrightarrow (\mathbb{R}^d, \mathcal{B}_d)$ is a mesurable map such that $X \# P = \mu$, i.e.,

$$\int_{\mathbb{R}^d} \varphi(x) \, d\mu = \int_{\Omega} (\varphi \circ X) \, dP = \mathbb{E} \left[\varphi(X) \right].$$

²C. Xillani, AMS Graduate Texts (2003).

Energy needed to transport *m* kg of sand from x = a to x = b:

 $d_2^2(\rho_1, \rho_2)$ = Among all possible ways to transport the mass from ρ_1 to ρ_2 , find the one that minimizes the total energy

$$d_2^2(\rho_1,\rho_2) = \int |x-T(x)|^2 d\rho_1(x)$$

Energy needed to transport *m* kg of sand from x = a to x = b:

 $d_2^2(\rho_1, \rho_2)$ = Among all possible ways to transport the mass from ρ_1 to ρ_2 , find the one that minimizes the total energy

$$d_2^2(\rho_1,\rho_2) = \int |x-T(x)|^2 d\rho_1(x)$$

Modelling & First Properties	Transversal Tool: Wasserstein Distances	JKO Convergence: subcritical case PKS	1D Case
	00000000		
Definition			
Definition of	the distance		

Kantorovich-Rubinstein-Wasserstein Distance p = 1, 2:

$$d_p^p(\mu,\nu) = \inf_{\pi} \left\{ \iint_{\mathbb{R}^d \times \mathbb{R}^d} |x-y|^p d\pi(x,y) \right\} = \inf_{(X,Y)} \left\{ \mathbb{E}\left[|X-Y|^p \right] \right\}$$

where the transference plan π runs over the set of joint probability measures on $\mathbb{R}^d \times \mathbb{R}^d$ with marginals μ and $\nu \in \mathcal{P}_p(\mathbb{R}^d)$ and (X, Y) are all possible couples of random variables with μ and ν as respective laws.

Monge's optimal mass transport problem:

Find

$$I := \inf_{T} \left\{ \int_{\mathbb{R}^d} |x - T(x)|^p \, d\mu(x); \, \nu = T \# \mu \right\}^{1/p}$$

Take $\gamma_T = (1_{\mathbb{R}^d} \times T) \# \mu$ as transference plan π .

Modelling & First Properties	Transversal Tool: Wasserstein Distances	JKO Convergence: subcritical case PKS	1D Case
	00000000		
Definition			
Definition of	the distance		

Kantorovich-Rubinstein-Wasserstein Distance p = 1, 2:

$$d_p^p(\mu,\nu) = \inf_{\pi} \left\{ \iint_{\mathbb{R}^d \times \mathbb{R}^d} |x-y|^p d\pi(x,y) \right\} = \inf_{(X,Y)} \left\{ \mathbb{E} \left[|X-Y|^p \right] \right\}$$

where the transference plan π runs over the set of joint probability measures on $\mathbb{R}^d \times \mathbb{R}^d$ with marginals μ and $\nu \in \mathcal{P}_p(\mathbb{R}^d)$ and (X, Y) are all possible couples of random variables with μ and ν as respective laws.

Monge's optimal mass transport problem:

Find

$$I := \inf_{T} \left\{ \int_{\mathbb{R}^d} |x - T(x)|^p \, d\mu(x); \, \nu = T \# \mu \right\}^{1/p}$$

Take $\gamma_T = (1_{\mathbb{R}^d} \times T) \# \mu$ as transference plan π .

Modelling & First Properties	Transversal Tool: Wasserstein Distances	JKO Convergence: subcritical case PKS	1D Case
	00000000		
Definition			
Definition of	the distance		

Kantorovich-Rubinstein-Wasserstein Distance p = 1, 2:

$$d_p^p(\mu,\nu) = \inf_{\pi} \left\{ \iint_{\mathbb{R}^d \times \mathbb{R}^d} |x-y|^p d\pi(x,y) \right\} = \inf_{(X,Y)} \left\{ \mathbb{E} \left[|X-Y|^p \right] \right\}$$

where the transference plan π runs over the set of joint probability measures on $\mathbb{R}^d \times \mathbb{R}^d$ with marginals μ and $\nu \in \mathcal{P}_p(\mathbb{R}^d)$ and (X, Y) are all possible couples of random variables with μ and ν as respective laws.

Monge's optimal mass transport problem:

Find

$$I := \inf_{T} \left\{ \int_{\mathbb{R}^d} |x - T(x)|^p \, d\mu(x); \, \nu = T \# \mu \right\}^{1/p}$$

Take $\gamma_T = (1_{\mathbb{R}^d} \times T) \# \mu$ as transference plan π .

Modelling & First Properties	Transversal Tool: Wasserstein Distances		JKO Convergence: subcritical case PKS	1D Case
000000000000000000000000000000000000000	000000000	0000	00000000	0000000000000
Definition				
Three examp	les			

$$\begin{aligned} d_2^2(\rho, \delta_{X_0}) &= \int |X_0 - y|^2 d\rho(y) \\ &= \operatorname{Xar}(\rho) \end{aligned}$$

Modelling & First Properties	Transversal Tool: Wasserstein Distances	Gradient Flows	JKO Convergence: subcritical case PKS 000000000	1D Case 00000000000000
Properties				
Outline				

Modelling & First Properties

- Applied Mathematics: Collective Behavior Models
- Modelling Chemotaxis
- First Properties
- Pure Mathematics: Gradient Flows

2 Transversal Tool: Wasserstein Distances

- Definition
- Properties
- 3 Gradient Flows
 - Xariational Scheme
- 4 JKO Convergence: subcritical case PKS
 - Entropy: bound from below
 - Convergence
- 5 1D Case
 - ID Convergence
 - Numerical Experiments

Modelling & First Properties	Transversal Tool: Wasserstein Distances		JKO Convergence: subcritical case PKS	1D Case
000000000000000000000000000000000000000	000000000	0000	00000000	0000000000000
Properties				

Euclidean Wasserstein Distance

Convergence Properties

• Convergence of measures: $d_2(\mu_n, \mu) \rightarrow 0$ is equivalent to $\mu_n \rightarrow \mu$ weakly-* as measures and convergence of second moments.

Weak lower semicontinuity: Given µ_n → µ and ν_n → ν weakly-* as measures, then

 $d_2(\mu,\nu) \leq \liminf_{n\to\infty} d_2(\mu_n,\nu_n).$

Some completeness: The space $\mathcal{P}_2(\mathbb{R}^d)$ endowed with the distance d_2 is a complete metric space.

Modelling & First Properties	Transversal Tool: Wasserstein Distances		JKO Convergence: subcritical case PKS	1D Case
000000000000000000000000000000000000000	000000000	0000	00000000	000000000000000000
Properties				

Euclidean Wasserstein Distance

Convergence Properties

- Convergence of measures: $d_2(\mu_n, \mu) \rightarrow 0$ is equivalent to $\mu_n \rightarrow \mu$ weakly-* as measures and convergence of second moments.
- **Weak lower semicontinuity:** Given $\mu_n \rightharpoonup \mu$ and $\nu_n \rightharpoonup \nu$ weakly-* as measures, then

$$d_2(\mu,\nu) \leq \liminf_{n\to\infty} d_2(\mu_n,\nu_n).$$

Completeness: The space $\mathcal{P}_2(\mathbb{R}^d)$ endowed with the distance d_2 is a complete metric space.

Modelling & First Properties	Transversal Tool: Wasserstein Distances		JKO Convergence: subcritical case PKS	1D Case
000000000000000000000000000000000000000	000000000	0000	00000000	000000000000000000000000000000000000000
Properties				

Euclidean Wasserstein Distance

Convergence Properties

- Convergence of measures: $d_2(\mu_n, \mu) \rightarrow 0$ is equivalent to $\mu_n \rightarrow \mu$ weakly-* as measures and convergence of second moments.
- **Weak lower semicontinuity:** Given $\mu_n \rightharpoonup \mu$ and $\nu_n \rightharpoonup \nu$ weakly-* as measures, then

$$d_2(\mu,\nu) \leq \liminf_{n\to\infty} d_2(\mu_n,\nu_n).$$

Some completeness: The space $\mathcal{P}_2(\mathbb{R}^d)$ endowed with the distance d_2 is a complete metric space.

Modelling & First Properties	Transversal Tool: Wasserstein Distances		JKO Convergence: subcritical case PKS	1D Case
000000000000000000000000000000000000000	000000000	0000	00000000	000000000000000000000000000000000000000
Properties				
One dimensi	onal Case			

Distribution functions:

In one dimension, denoting by F(x) the distribution function of μ ,

$$F(x)=\int_{-\infty}^{x}d\mu,$$

we can define its pseudo inverse:

$$F^{-1}(\eta) = \inf\{x : F(x) > \eta\}$$
 for $\eta \in (0, 1)$,

we have $F^{-1}: ((0,1), \mathcal{B}_1), d\eta) \longrightarrow (\mathbb{R}, \mathcal{B}_1)$ is a random variable with law μ , i.e., $F^{-1} # d\eta = \mu$

$$\int_{\mathbb{R}} \varphi(x) \, d\mu = \int_0^1 \varphi(F^{-1}(\eta)) \, d\eta = \mathbb{E}\left[\varphi(X)\right].$$

Modelling & First Properties	Transversal Tool: Wasserstein Distances		JKO Convergence: subcritical case PKS	1D Case	
	000000000				
Properties					
One dimensional Case					

Distribution functions:

In one dimension, denoting by F(x) the distribution function of μ ,

$$F(x) = \int_{-\infty}^{x} d\mu$$

we can define its pseudo inverse:

$$F^{-1}(\eta) = \inf\{x : F(x) > \eta\}$$
 for $\eta \in (0, 1)$,

we have $F^{-1}: ((0,1), \mathcal{B}_1), d\eta) \longrightarrow (\mathbb{R}, \mathcal{B}_1)$ is a random variable with law μ , i.e., $F^{-1} \# d\eta = \mu$ $\int_{\mathbb{R}} \varphi(x) d\mu = \int_0^1 \varphi(F^{-1}(\eta)) d\eta = \mathbb{E}[\varphi(X)].$

Modelling & First Properties	Transversal Tool: Wasserstein Distances	Gradient Flows	JKO Convergence: subcritical case PKS	1D Case
	00000000			
Properties				

One dimensional Case

Wasserstein distance:

In one dimension, it can be checked^{*a*} that given two measures μ and ν with distribution functions F(x) and G(y) then, $(F^{-1} \times G^{-1}) # d\eta$ has joint distribution function $H(x, y) = \min(F(x), G(y))$. Therefore, in one dimension, the optimal plan is given by $\pi_{opt}(x, y) = (F^{-1} \times G^{-1}) # d\eta$, and thus

$$d_p(\mu,\nu) = \left(\int_0^1 \left[F^{-1}(\eta) - G^{-1}(\eta)\right]^p d\eta\right)^{1/p} = \|F^{-1} - G^{-1}\|_{L^p(\mathbb{R})}$$

 $1 \le p < \infty$.

^aW. Hoeffding (1940); M. Fréchet (1951); A. Pulvirenti, G. Toscani, Annali Mat. Pura Appl. (1996).

Modelling & First Properties	Transversal Tool: Wasserstein Distances	Gradient Flows	JKO Convergence: subcritical case PKS	1D Case		
	00000000					
Properties						
One dimensional Case						

Wasserstein distance:

In one dimension, it can be checked^{*a*} that given two measures μ and ν with distribution functions F(x) and G(y) then, $(F^{-1} \times G^{-1}) # d\eta$ has joint distribution function $H(x, y) = \min(F(x), G(y))$. Therefore, in one dimension, the optimal plan is given by $\pi_{opt}(x, y) = (F^{-1} \times G^{-1}) # d\eta$, and thus

$$d_p(\mu,\nu) = \left(\int_0^1 [F^{-1}(\eta) - G^{-1}(\eta)]^p \, d\eta\right)^{1/p} = \|F^{-1} - G^{-1}\|_{L^p(\mathbb{R})}$$

 $1 \le p < \infty$.

^aW. Hoeffding (1940); M. Fréchet (1951); A. Pulvirenti, G. Toscani, Annali Mat. Pura Appl. (1996).

Modelling & First Properties	Transversal Tool: Wasserstein Distances	Gradient Flows	JKO Convergence: subcritical case PKS	1D Case
		0000		
Xariational Scheme				
Outline				

Modelling & First Properties

- Applied Mathematics: Collective Behavior Models
- Modelling Chemotaxis
- First Properties
- Pure Mathematics: Gradient Flows

2 Transversal Tool: Wasserstein Distances

- Definition
- Properties

3 Gradient Flows

- Xariational Scheme
- 4 JKO Convergence: subcritical case PKS
 - Entropy: bound from below
 - Convergence
- 5 1D Case
 - ID Convergence
 - Numerical Experiments

Nonlinear continuity equations						
Xariational Scheme						
000000000000000000000000000000000000000	00000000	0000	00000000	000000000000000000000000000000000000000		
Modelling & First Properties	Transversal Tool: Wasserstein Distances	Gradient Flows	JKO Convergence: subcritical case PKS	1D Case		

Let us consider a time dependent unknown probability density $\rho(t, \cdot)$ on a domain $\Omega \subset \mathbb{R}^d$, which satisfies the nonlinear continuity equation

$$\partial_t \rho = -\nabla \cdot (\rho u) \coloneqq \nabla \cdot \left(\rho \nabla \left[U'(\rho) + X + W * \rho \right] \right).$$

- $U: \mathbb{R}^+ \to \mathbb{R}$ denotes the internal energy.
- $X : \mathbb{R}^d \to \mathbb{R}$ is the confining potential.
- $W : \mathbb{R}^d \to \mathbb{R}$ corresponds to an interaction potential.

Nonlinear velocity is given by $u = -\nabla \frac{\delta \mathcal{F}}{\delta \rho}$, where \mathcal{F} denotes the free energy or entropy functional

$$\mathcal{F}(\rho) = \int_{\mathbb{R}^d} U(\rho) dx + \int_{\mathbb{R}^d} X(x) \rho(x) dx + \frac{1}{2} \int_{\mathbb{R}^d \times \mathbb{R}^d} W(x-y) \rho(x) \rho(y) dx dy.$$

Free energy is decreasing along trajectories

$$\frac{d}{dt}\mathcal{F}(\rho)(t) = -\int_{\mathbb{R}^d} \rho(x,t) |u(x,t)|^2 dx.$$

Nonlinear continuity equations						
Xariational Scheme						
000000000000000000000000000000000000000	00000000	0000	00000000	000000000000000000000000000000000000000		
Modelling & First Properties	Transversal Tool: Wasserstein Distances	Gradient Flows	JKO Convergence: subcritical case PKS	1D Case		

Let us consider a time dependent unknown probability density $\rho(t, \cdot)$ on a domain $\Omega \subset \mathbb{R}^d$, which satisfies the nonlinear continuity equation

$$\partial_t \rho = -\nabla \cdot (\rho u) := \nabla \cdot (\rho \nabla [U'(\rho) + X + W * \rho]).$$

- $U: \mathbb{R}^+ \to \mathbb{R}$ denotes the internal energy.
- $X : \mathbb{R}^d \to \mathbb{R}$ is the confining potential.
- $W : \mathbb{R}^d \to \mathbb{R}$ corresponds to an interaction potential.

Nonlinear velocity is given by $u = -\nabla \frac{\delta \mathcal{F}}{\delta \rho}$, where \mathcal{F} denotes the free energy or entropy functional

$$\mathcal{F}(\rho) = \int_{\mathbb{R}^d} U(\rho) dx + \int_{\mathbb{R}^d} X(x) \rho(x) dx + \frac{1}{2} \int_{\mathbb{R}^d \times \mathbb{R}^d} W(x-y) \rho(x) \rho(y) dx dy$$

Free energy is decreasing along trajectories

$$\frac{d}{dt}\mathcal{F}(\rho)(t) = -\int_{\mathbb{R}^d} \rho(x,t) |u(x,t)|^2 dx.$$

Nonlinear continuity equations						
Xariational Scheme						
000000000000000000000000000000000000000	00000000	0000	00000000	000000000000000000000000000000000000000		
Modelling & First Properties	Transversal Tool: Wasserstein Distances	Gradient Flows	JKO Convergence: subcritical case PKS	1D Case		

Let us consider a time dependent unknown probability density $\rho(t, \cdot)$ on a domain $\Omega \subset \mathbb{R}^d$, which satisfies the nonlinear continuity equation

$$\partial_t \rho = -\nabla \cdot (\rho u) \coloneqq \nabla \cdot \left(\rho \nabla \left[U'(\rho) + X + W * \rho \right] \right).$$

- $U: \mathbb{R}^+ \to \mathbb{R}$ denotes the internal energy.
- $X : \mathbb{R}^d \to \mathbb{R}$ is the confining potential.
- $W : \mathbb{R}^d \to \mathbb{R}$ corresponds to an interaction potential.

Nonlinear velocity is given by $u = -\nabla \frac{\delta \mathcal{F}}{\delta \rho}$, where \mathcal{F} denotes the free energy or entropy functional

$$\mathcal{F}(\rho) = \int_{\mathbb{R}^d} U(\rho) dx + \int_{\mathbb{R}^d} X(x) \rho(x) dx + \frac{1}{2} \int_{\mathbb{R}^d \times \mathbb{R}^d} W(x-y) \rho(x) \rho(y) dx dy.$$

Free energy is decreasing along trajectories

$$\frac{d}{dt}\mathcal{F}(\rho)(t) = -\int_{\mathbb{R}^d} \rho(x,t) |u(x,t)|^2 dx.$$
Nonlinear continuity equations						
Xariational Scheme						
000000000000000000000000000000000000000	00000000	0000	00000000	000000000000000000000000000000000000000		
Modelling & First Properties	Transversal Tool: Wasserstein Distances	Gradient Flows	JKO Convergence: subcritical case PKS	1D Case		

Let us consider a time dependent unknown probability density $\rho(t, \cdot)$ on a domain $\Omega \subset \mathbb{R}^d$, which satisfies the nonlinear continuity equation

$$\partial_t \rho = -\nabla \cdot (\rho u) \coloneqq \nabla \cdot \left(\rho \nabla \left[U'(\rho) + X + W * \rho \right] \right).$$

- $U: \mathbb{R}^+ \to \mathbb{R}$ denotes the internal energy.
- $X : \mathbb{R}^d \to \mathbb{R}$ is the confining potential.
- $W : \mathbb{R}^d \to \mathbb{R}$ corresponds to an interaction potential.

Nonlinear velocity is given by $u = -\nabla \frac{\delta \mathcal{F}}{\delta \rho}$, where \mathcal{F} denotes the free energy or entropy functional

$$\mathcal{F}(\rho) = \int_{\mathbb{R}^d} U(\rho) dx + \int_{\mathbb{R}^d} X(x) \rho(x) dx + \frac{1}{2} \int_{\mathbb{R}^d \times \mathbb{R}^d} W(x-y) \rho(x) \rho(y) dx dy.$$

Free energy is decreasing along trajectories

$$\frac{d}{dt}\mathcal{F}(\rho)(t)=-\int_{\mathbb{R}^d}\rho(x,t)|u(x,t)|^2dx.$$

Modelling & First Properties	Transversal Tool: Wasserstein Distances	Gradient Flows	JKO Convergence: subcritical case PKS	1D Case
		0000		
Kariational Scheme				

Sliding down in a Energy Landscape

Finite Dimensional Gradient flows

A *gradient flow* in \mathbb{R}^d defined by an energy \mathcal{F} is given by

$$\frac{dx_t}{dt}=-\nabla\mathcal{F}(x_t)\,.$$

It is the continuous version of the *steepest descent* on the energy landscape determined by \mathcal{F} given by the implicit Euler scheme: given a time step Δt and an approximation to the solution at time $t_k = k\Delta t$, we find the approximation at time t_{k+1} by solving

$$x_{k+1} = x_k - \Delta t \nabla \mathcal{F}(x_{k+1}).$$

which is equivalent under convexity conditions to the following variational problem: Solve

$$x_{k+1} = \operatorname{argmin}_{x \in \mathbb{R}^d} \left\{ \frac{1}{2\Delta t} |x - x_k|^2 + \mathcal{F}(x) \right\}$$

with $|\cdot|$ the euclidean norm.

Modelling & First Properties	Transversal Tool: Wasserstein Distances	Gradient Flows	JKO Convergence: subcritical case PKS	1D Case		
000000000000000000000000000000000000000	00000000	0000	00000000	0000000000000		
Xariational Scheme						
Sliding down in a Energy Landscape						

Finite Dimensional Gradient flows

A *gradient flow* in \mathbb{R}^d defined by an energy \mathcal{F} is given by

$$\frac{dx_t}{dt}=-\nabla\mathcal{F}(x_t)\,.$$

It is the continuous version of the *steepest descent* on the energy landscape determined by \mathcal{F} given by the implicit Euler scheme: given a time step Δt and an approximation to the solution at time $t_k = k\Delta t$, we find the approximation at time t_{k+1} by solving

$$x_{k+1} = x_k - \Delta t \nabla \mathcal{F}(x_{k+1}).$$

which is equivalent under convexity conditions to the following variational problem: Solve

$$x_{k+1} = \operatorname{argmin}_{x \in \mathbb{R}^d} \left\{ \frac{1}{2\Delta t} |x - x_k|^2 + \mathcal{F}(x) \right\}$$

with $|\cdot|$ the euclidean norm.

Sliding down in a Energy Landscape						
Xariational Scheme						
000000000000000000000000000000000000000	00000000	0000	00000000	000000000000000000000000000000000000000		
Modelling & First Properties	Transversal Tool: Wasserstein Distances	Gradient Flows	JKO Convergence: subcritical case PKS	1D Case		

Finite Dimensional Gradient flows

A *gradient flow* in \mathbb{R}^d defined by an energy \mathcal{F} is given by

$$\frac{dx_t}{dt}=-\nabla\mathcal{F}(x_t)\,.$$

It is the continuous version of the *steepest descent* on the energy landscape determined by \mathcal{F} given by the implicit Euler scheme: given a time step Δt and an approximation to the solution at time $t_k = k\Delta t$, we find the approximation at time t_{k+1} by solving

$$x_{k+1} = x_k - \Delta t \nabla \mathcal{F}(x_{k+1}).$$

which is equivalent under convexity conditions to the following variational problem: Solve

$$x_{k+1} = \operatorname{argmin}_{x \in \mathbb{R}^d} \left\{ \frac{1}{2\Delta t} |x - x_k|^2 + \mathcal{F}(x) \right\}$$

with $|\cdot|$ the euclidean norm.

Gradient flow formalism ³					
Xariational Scheme					
000000000000000000000000000000000000000	00000000	0000	00000000	00000000000000	
Modelling & First Properties	Transversal Tool: Wasserstein Distances	Gradient Flows	JKO Convergence: subcritical case PKS	1D Case	

$$\rho_{\Delta t}^{n+1} \in \operatorname{argmin}_{\rho \in \mathcal{K}} \left\{ \frac{1}{2\Delta t} d_2^2(\rho_{\Delta t}^n, \rho) + \mathcal{F}(\rho) \right\},\,$$

- Xariational scheme corresponds to the time discretization of an abstract gradient flow in the space of probability measures.
- Solutions can be constructed by this variational scheme; naturally preserve positivity and the free-energy decreasing property.
- Under general assumptions on smooth potentials W and X and internal energy U together with λ-convexity, this scheme is shown to be convergent, see AGS book.

³Jordan, Kinderlehrer and Otto (1999); Otto (1996, 2001); Ambrosio, Gigli and Savare (2005); Xillani(2003).....

Gradient flow formalism ³					
Xariational Scheme					
000000000000000000000000000000000000000	00000000	0000	00000000	000000000000000000000000000000000000000	
Modelling & First Properties	Transversal Tool: Wasserstein Distances	Gradient Flows	JKO Convergence: subcritical case PKS	1D Case	

$$\rho_{\Delta t}^{n+1} \in \operatorname{argmin}_{\rho \in \mathcal{K}} \left\{ \frac{1}{2\Delta t} d_2^2(\rho_{\Delta t}^n, \rho) + \mathcal{F}(\rho) \right\},\,$$

- Xariational scheme corresponds to the time discretization of an abstract gradient flow in the space of probability measures.
- Solutions can be constructed by this variational scheme; naturally preserve positivity and the free-energy decreasing property.
- Under general assumptions on smooth potentials W and X and internal energy U together with λ-convexity, this scheme is shown to be convergent, see AGS book.

³Jordan, Kinderlehrer and Otto (1999); Otto (1996, 2001); Ambrosio, Gigli and Savare (2005); Xillani(2003).....

Gradient flow formalism ³					
Xariational Scheme					
000000000000000000000000000000000000000	00000000	0000	00000000	00000000000000	
Modelling & First Properties	Transversal Tool: Wasserstein Distances	Gradient Flows	JKO Convergence: subcritical case PKS	1D Case	

$$\rho_{\Delta t}^{n+1} \in \operatorname{argmin}_{\rho \in \mathcal{K}} \left\{ \frac{1}{2\Delta t} d_2^2(\rho_{\Delta t}^n, \rho) + \mathcal{F}(\rho) \right\},\,$$

- Xariational scheme corresponds to the time discretization of an abstract gradient flow in the space of probability measures.
- Solutions can be constructed by this variational scheme; naturally preserve positivity and the free-energy decreasing property.
- Under general assumptions on smooth potentials W and X and internal energy U together with λ-convexity, this scheme is shown to be convergent, see AGS book.

³Jordan, Kinderlehrer and Otto (1999); Otto (1996, 2001); Ambrosio, Gigli and Savare (2005); Xillani(2003).....

Gradient flow formalism ³					
Xariational Scheme					
000000000000000000000000000000000000000	00000000	0000	00000000	00000000000000	
Modelling & First Properties	Transversal Tool: Wasserstein Distances	Gradient Flows	JKO Convergence: subcritical case PKS	1D Case	

$$\rho_{\Delta t}^{n+1} \in \operatorname{argmin}_{\rho \in \mathcal{K}} \left\{ \frac{1}{2\Delta t} d_2^2(\rho_{\Delta t}^n, \rho) + \mathcal{F}(\rho) \right\},\,$$

- Xariational scheme corresponds to the time discretization of an abstract gradient flow in the space of probability measures.
- Solutions can be constructed by this variational scheme; naturally preserve positivity and the free-energy decreasing property.
- Under general assumptions on smooth potentials W and X and internal energy U together with λ-convexity, this scheme is shown to be convergent, see AGS book.

³Jordan, Kinderlehrer and Otto (1999); Otto (1996, 2001); Ambrosio, Gigli and Savare (2005); Xillani(2003).....

Modelling & First Properties	Transversal Tool: Wasserstein Distances	JKO Convergence: subcritical case PKS	1D Case
		•00000000	
Entropy: bound from below			
Outline			

Modelling & First Properties

- Applied Mathematics: Collective Behavior Models
- Modelling Chemotaxis
- First Properties
- Pure Mathematics: Gradient Flows

2 Transversal Tool: Wasserstein Distances

- Definition
- Properties
- 3 Gradient Flows
 - Xariational Scheme

4 JKO Convergence: subcritical case PKS

- Entropy: bound from below
- Convergence

5 1D Case

- ID Convergence
- Numerical Experiments

Modelling & First Properties	Transversal Tool: Wasserstein Distances	Gradient Flows	JKO Convergence: subcritical case PKS	1D Case
			00000000	
Entropy: bound from below				

Log HLS Inequality by Carlen& Loss

Let *f* be a non-negative function in $L^1(\mathbb{R}^d)$ such that $f \log f$ and $f \log(1 + |x|^2)$ belong to $L^1(\mathbb{R}^d)$. If

then

$$\int_{\mathbb{R}^d} f(x) \log f(x) \, \mathrm{d}x + d \iint_{\mathbb{R}^d \times \mathbb{R}^d} f(x) f(y) \log |x - y| \, \mathrm{d}x \, \mathrm{d}y \ge -C(d)$$

with $C(d) := (1/2) \log \pi + (1/d) \log[\Gamma(d/2)/\Gamma(d)] + (1/2)[\psi(d) - \psi(d/2)]$ where ψ is the logarithmic derivative of the Γ -function.

Equality cases:

The equality is only achieved by

$$h(x) = \frac{1}{|S^d|} \left(\frac{2}{1+|x|^2}\right)^d$$

its translations and dilations $h_{\lambda}(x) = \lambda^d h(\lambda x)$.

Modelling & First Properties	Transversal Tool: Wasserstein Distances	Gradient Flows	JKO Convergence: subcritical case PKS	1D Case
			00000000	000000000000000000000000000000000000000
Entropy: bound from below				

Log HLS Inequality by Carlen& Loss

Let f be a non-negative function in $L^1(\mathbb{R}^d)$ such that $f \log f$ and $f \log(1 + |x|^2)$ belong to $L^1(\mathbb{R}^d)$. If $\int_{\mathbb{R}^d} f \, dx = 1,$

then

$$\int_{\mathbb{R}^d} f(x) \log f(x) \, \mathrm{d}x + d \iint_{\mathbb{R}^d \times \mathbb{R}^d} f(x) f(y) \log |x - y| \, \mathrm{d}x \, \mathrm{d}y \ge -C(d)$$

with $C(d) := (1/2) \log \pi + (1/d) \log [\Gamma(d/2)/\Gamma(d)] + (1/2)[\psi(d) - \psi(d/2)]$ where ψ is the logarithmic derivative of the Γ -function.

Equality cases:

The equality is only achieved by

$$h(x) = \frac{1}{|S^d|} \left(\frac{2}{1+|x|^2}\right)^d$$

its translations and dilations $h_{\lambda}(x) = \lambda^d h(\lambda x)$.

Modelling & First Properties	Transversal Tool: Wasserstein Distances	Gradient Flows	JKO Convergence: subcritical case PKS	1D Case
			00000000	000000000000000000000000000000000000000
Entropy: bound from below				

Log HLS Inequality by Carlen& Loss

Let f be a non-negative function in $L^1(\mathbb{R}^d)$ such that $f \log f$ and $f \log(1 + |x|^2)$ belong to $L^1(\mathbb{R}^d)$. If $\int_{\mathbb{R}^d} f \, dx = 1,$

then

$$\int_{\mathbb{R}^d} f(x) \log f(x) \, \mathrm{d}x + d \iint_{\mathbb{R}^d \times \mathbb{R}^d} f(x) f(y) \log |x - y| \, \mathrm{d}x \, \mathrm{d}y \ge -C(d)$$

with $C(d) := (1/2) \log \pi + (1/d) \log[\Gamma(d/2)/\Gamma(d)] + (1/2)[\psi(d) - \psi(d/2)]$ where ψ is the logarithmic derivative of the Γ -function.

Equality cases:

The equality is only achieved by

$$h(x) = \frac{1}{|S^d|} \left(\frac{2}{1+|x|^2}\right)^d$$

its translations and dilations $h_{\lambda}(x) = \lambda^d h(\lambda x)$.

Modelling & First Properties	Transversal Tool: Wasserstein Distances	JKO Convergence: subcritical case PKS	1D Case
		00000000	
Entropy: bound from below			

M = 1 and general dimension in this part keeping the convolution.

Let us define the rescaled functions ρ and v by:

$$n(t,x) = \frac{1}{R^d(t)} \rho\left(\tau(t), \frac{x}{R(t)}\right) \text{ and } c(x,t) = v\left(\tau(t), \frac{x}{R(t)}\right)$$

with

$$R(t) = \sqrt{1+2t}$$
 and $\tau(t) = \log R(t)$.

The rescaled system with $\rho(0, x) = \rho^0 = n_0 \ge 0$ is

$$\frac{\partial \rho}{\partial t}(t,x) = \Delta \rho(t,x) + \nabla \cdot \{\rho(t,x) \left[x - \chi \nabla v(t,x) \right] \} \qquad t > 0, \ x \in \mathbb{R}^d,$$
$$v(t,x) = -\frac{1}{d\pi} \log |\cdot| * \rho(t,x) \qquad t > 0, \ x \in \mathbb{R}^d.$$

$$\mathcal{G}[\rho] = \int_{\mathbb{R}^d} \rho(x) \log \rho(x) \, \mathrm{d}x + \frac{1}{2} \int_{\mathbb{R}^d} |x|^2 \, \rho(x) \, \mathrm{d}x + \frac{\chi}{2 \, d \, \pi} \iint_{\mathbb{R}^d \times \mathbb{R}^d} \log |x - y| \, \rho(x) \, \rho(y) \, \mathrm{d}x \, \mathrm{d}y$$

Modelling & First Properties	Transversal Tool: Wasserstein Distances	JKO Convergence: subcritical case PKS	1D Case
		00000000	
Entropy: bound from below			

M = 1 and general dimension in this part keeping the convolution. Let us define the rescaled functions ρ and v by:

$$n(t,x) = \frac{1}{R^d(t)} \rho\left(\tau(t), \frac{x}{R(t)}\right) \text{ and } c(x,t) = v\left(\tau(t), \frac{x}{R(t)}\right)$$

with

$$R(t) = \sqrt{1+2t}$$
 and $\tau(t) = \log R(t)$.

The rescaled system with $\rho(0, x) = \rho^0 = n_0 \ge 0$ is

$$\begin{aligned} \frac{\partial \rho}{\partial t}(t,x) &= \Delta \rho(t,x) + \nabla \cdot \{\rho(t,x) \left[x - \chi \nabla v(t,x) \right] \} \\ v(t,x) &= -\frac{1}{d\pi} \log |\cdot| * \rho(t,x) \end{aligned} \qquad t > 0, \ x \in \mathbb{R}^d . \end{aligned}$$

$$\mathcal{G}[\rho] = \int_{\mathbb{R}^d} \rho(x) \log \rho(x) \, \mathrm{d}x + \frac{1}{2} \int_{\mathbb{R}^d} |x|^2 \, \rho(x) \, \mathrm{d}x + \frac{\chi}{2 \, d \, \pi} \iint_{\mathbb{R}^d \times \mathbb{R}^d} |x - y| \, \rho(x) \, \rho(y) \, \mathrm{d}x \, \mathrm{d}y$$

Modelling & First Properties	Transversal Tool: Wasserstein Distances	JKO Convergence: subcritical case PKS	1D Case
		00000000	
Entropy: bound from below			

M = 1 and general dimension in this part keeping the convolution. Let us define the rescaled functions ρ and v by:

$$n(t,x) = \frac{1}{R^d(t)} \rho\left(\tau(t), \frac{x}{R(t)}\right)$$
 and $c(x,t) = v\left(\tau(t), \frac{x}{R(t)}\right)$

with

$$R(t) = \sqrt{1+2t}$$
 and $\tau(t) = \log R(t)$.

The rescaled system with $\rho(0, x) = \rho^0 = n_0 \ge 0$ is

$$\frac{\partial \rho}{\partial t}(t,x) = \Delta \rho(t,x) + \nabla \cdot \{\rho(t,x) [x - \chi \nabla v(t,x)]\} \qquad t > 0, \ x \in \mathbb{R}^d,$$

$$v(t,x) = -\frac{1}{d\pi} \log |\cdot| * \rho(t,x) \qquad t > 0, \ x \in \mathbb{R}^d.$$

$$\mathcal{G}[\rho] = \int_{\mathbb{R}^d} \rho(x) \log \rho(x) \, \mathrm{d}x + \frac{1}{2} \int_{\mathbb{R}^d} |x|^2 \, \rho(x) \, \mathrm{d}x + \frac{\chi}{2 \, d \, \pi} \iint_{\mathbb{R}^d \times \mathbb{R}^d} |x - y| \, \rho(x) \, \rho(y) \, \mathrm{d}x \, \mathrm{d}y$$

Modelling & First Properties	Transversal Tool: Wasserstein Distances	JKO Convergence: subcritical case PKS	1D Case
		00000000	
Entropy: bound from below			

M = 1 and general dimension in this part keeping the convolution. Let us define the rescaled functions ρ and v by:

$$n(t,x) = \frac{1}{R^d(t)} \rho\left(\tau(t), \frac{x}{R(t)}\right)$$
 and $c(x,t) = v\left(\tau(t), \frac{x}{R(t)}\right)$

with

$$R(t) = \sqrt{1+2t}$$
 and $\tau(t) = \log R(t)$.

The rescaled system with $\rho(0, x) = \rho^0 = n_0 \ge 0$ is

$$\begin{aligned} \frac{\partial \rho}{\partial t}(t,x) &= \Delta \rho(t,x) + \nabla \cdot \{\rho(t,x) \left[x - \chi \nabla v(t,x) \right] \} \\ t &> 0, \ x \in \mathbb{R}^d, \\ \psi(t,x) &= -\frac{1}{d\pi} \log |\cdot| * \rho(t,x) \\ t &> 0, \ x \in \mathbb{R}^d. \end{aligned}$$

$$\mathcal{G}[\rho] = \int_{\mathbb{R}^d} \rho(x) \log \rho(x) \, \mathrm{d}x + \frac{1}{2} \int_{\mathbb{R}^d} |x|^2 \, \rho(x) \, \mathrm{d}x + \frac{\chi}{2 \, d \, \pi} \, \iint_{\mathbb{R}^d \times \mathbb{R}^d} \log |x - y| \, \rho(x) \, \rho(y) \, \mathrm{d}x \, \mathrm{d}y$$

Modelling & First Properties	Transversal Tool: Wasserstein Distances		JKO Convergence: subcritical case PKS	1D Case	
			00000000		
Entropy: bound from below					
Estimates from balow					

A priori estimates

The functional \mathcal{G} is bounded from below on the set

$$\mathcal{K} \coloneqq \left\{ \rho \in L^1_+(\mathbb{R}^d) \colon \int_{\mathbb{R}^d} \rho(t,x) = 1, \, |x|^2 \, \rho \in L^1(\mathbb{R}^d), \, \int_{\mathbb{R}^d} \rho(t,x) |\log \rho(t,x)| \, \mathrm{d}x < \infty \right\}$$

if and only if $\chi \leq \chi_c \coloneqq 2 d^2 \pi$. In addition, if $\chi < \chi_c$ we have on every subset $\{\mathcal{G} \leq C\}$,

i) no concentration:
$$\int_{\mathbb{R}^d} \rho |\log \rho| \le C$$

ii) mass confinement: $\int_{\mathbb{R}^d} |x|^2 \rho \le C$

As a consequence, every level subset $\{\mathcal{G} \leq C\}$ is equi-integrable.

Modelling & First Properties	Transversal Tool: Wasserstein Distances	Gradient Flows	JKO Convergence: subcritical case PKS	1D Case	
Entropy: bound from below		0000			
Estimates from below					

A priori estimates

The functional \mathcal{G} is bounded from below on the set

$$\mathcal{K} \coloneqq \left\{ \rho \in L^1_+(\mathbb{R}^d) \colon \int_{\mathbb{R}^d} \rho(t,x) = 1, \, |x|^2 \, \rho \in L^1(\mathbb{R}^d), \, \int_{\mathbb{R}^d} \rho(t,x) |\log \rho(t,x)| \, \mathrm{d}x < \infty \right\}$$

if and only if $\chi \leq \chi_c := 2 d^2 \pi$. In addition, if $\chi < \chi_c$ we have on every subset $\{\mathcal{G} \leq C\},\$

i) *no concentration:*
$$\int_{\mathbb{R}^d} \rho |\log \rho| \le C$$
,

ii) mass confinement: $\int_{\mathbb{R}^d} |x|^2 \rho \leq C$,

As a consequence, every level subset $\{\mathcal{G} \leq C\}$ is equi-integrable.

Modelling & First Properties	Transversal Tool: Wasserstein Distances	JKO Convergence: subcritical case PKS	1D Case
		00000000	
Entropy: bound from below			

Estimates from below: Proof

Step 1.- Rewrite

$$\mathcal{G}[\rho](t) = (1-\theta) \int_{\mathbb{R}^d} \rho(t,x) \log \rho(t,x) \, \mathrm{d}x + \frac{1}{2} \int_{\mathbb{R}^d} |x|^2 \rho(t,x) \, \mathrm{d}x \\ + \theta d \left[\frac{1}{d} \int_{\mathbb{R}^d} \rho(t,x) \log \rho(t,x) \, \mathrm{d}x + \frac{\chi}{2d^2 \pi \theta} \iint_{\mathbb{R}^d \times \mathbb{R}^d} \rho(t,x) \rho(t,y) \log |x-y| \, \mathrm{d}x \, \mathrm{d}y \right].$$

Log HLS inequality controls the third term if we choose $\theta = \chi/\chi_c$.

Step 2.- For any probability density $u \in L^1_+(\mathbb{R}^d)$ with finite second moment and entropy, $u \log u$ is uniformly bounded in $L^1(\mathbb{R}^d)$ and we have

$$\int_{\mathbb{R}^d} u(x) \left| \log u(x) \right| \, \mathrm{d}x \le \int_{\mathbb{R}^d} u(x) \left(\log u(x) + \frac{1}{2} |x|^2 \right) \, \mathrm{d}x + d \log(4\pi) + \frac{2}{e} \, .$$

Modelling & First Properties	Transversal Tool: Wasserstein Distances	JKO Convergence: subcritical case PKS	1D Case
		00000000	
Entropy: bound from below			

Step 1.- Rewrite

Estimates from below: Proof

$$\begin{aligned} \mathcal{G}[\rho](t) &= (1-\theta) \int_{\mathbb{R}^d} \rho(t,x) \log \rho(t,x) \, \mathrm{d}x + \frac{1}{2} \int_{\mathbb{R}^d} |x|^2 \, \rho(t,x) \, \mathrm{d}x \\ &+ \theta d \left[\frac{1}{d} \int_{\mathbb{R}^d} \rho(t,x) \log \rho(t,x) \, \mathrm{d}x + \frac{\chi}{2 \, d^2 \pi \, \theta} \iint_{\mathbb{R}^d \times \mathbb{R}^d} \rho(t,x) \, \rho(t,y) \log |x-y| \, \mathrm{d}x \, \mathrm{d}y \right]. \end{aligned}$$

Log HLS inequality controls the third term if we choose $\theta = \chi/\chi_c$.

Step 2.- For any probability density $u \in L^1_+(\mathbb{R}^d)$ with finite second moment and entropy, $u \log u$ is uniformly bounded in $L^1(\mathbb{R}^d)$ and we have

$$\int_{\mathbb{R}^d} u(x) |\log u(x)| \, \mathrm{d}x \le \int_{\mathbb{R}^d} u(x) \left(\log u(x) + \frac{1}{2} |x|^2 \right) \, \mathrm{d}x + d \log(4\pi) + \frac{2}{e}$$

Modelling & First Properties	Transversal Tool: Wasserstein Distances		JKO Convergence: subcritical case PKS	1D Case
			000000000	
Entropy: bound from below				
T	11 5	^		

Estimates from below: Proof

Step 3.- We finish the proof for the subcritical case in which $\theta < 1$ since

$$\mathcal{G}[\rho](t) \geq (1-\theta) \int_{\mathbb{R}^d} \rho(t,x) \left| \log \rho(t,x) \right| \, \mathrm{d}x + \frac{\theta}{2} \int_{\mathbb{R}^d} \left| x \right|^2 \rho(t,x) \, \mathrm{d}x + C.$$

Step 4.- Scaling $\rho_{\lambda}(x) = \lambda^{d} \rho(\lambda x)$

$$\mathcal{G}[\rho_{\lambda}] = \mathcal{G}[\rho] + d\left(1 - \frac{\chi}{\chi_c}\right) \log \lambda + \frac{\lambda^{-2} - 1}{2} \int_{\mathbb{R}^d} |x|^2 \rho \, \mathrm{d}x \, .$$

 $\lambda \mapsto \mathcal{G}[\rho_{\lambda}]$ is clearly not bounded from below if $\chi > \chi_c$.

Modelling & First Properties	Transversal Tool: Wasserstein Distances		JKO Convergence: subcritical case PKS	1D Case
			000000000	
Entropy: bound from below				
T	11 5	^		

Estimates from below: Proof

Step 3.- We finish the proof for the subcritical case in which $\theta < 1$ since

$$\mathcal{G}[\rho](t) \geq (1-\theta) \int_{\mathbb{R}^d} \rho(t,x) \left| \log \rho(t,x) \right| \, \mathrm{d}x + \frac{\theta}{2} \int_{\mathbb{R}^d} \left| x \right|^2 \rho(t,x) \, \mathrm{d}x + C.$$

Step 4.- Scaling $\rho_{\lambda}(x) = \lambda^{d} \rho(\lambda x)$

$$\mathcal{G}[\rho_{\lambda}] = \mathcal{G}[\rho] + d\left(1 - \frac{\chi}{\chi_c}\right) \log \lambda + \frac{\lambda^{-2} - 1}{2} \int_{\mathbb{R}^d} |x|^2 \rho \, \mathrm{d}x \, .$$

 $\lambda \mapsto \mathcal{G}[\rho_{\lambda}]$ is clearly not bounded from below if $\chi > \chi_c$.

Modelling & First Properties	Transversal Tool: Wasserstein Distances		JKO Convergence: subcritical case PKS	1D Case
000000000000000000000000000000000000000	00000000	0000	0000000000	000000000000000000000000000000000000000
Convergence				
Outline				

Modelling & First Properties

- Applied Mathematics: Collective Behavior Models
- Modelling Chemotaxis
- First Properties
- Pure Mathematics: Gradient Flows

2 Transversal Tool: Wasserstein Distances

- Definition
- Properties
- 3 Gradient Flows
 - Xariational Scheme

4 JKO Convergence: subcritical case PKS

- Entropy: bound from below
- Convergence
- 5 1D Case
 - ID Convergence
 - Numerical Experiments

Modelling & First Properties	Transversal Tool: Wasserstein Distances		JKO Convergence: subcritical case PKS	1D Case	
			000000000		
Convergence					
Existence of minimizers					

We consider a time-step $\tau > 0$, an initial datum $\rho^0 \in \mathcal{P}_2^{\mathrm{ac}}(\mathbb{R}^d)$. We introduce the sequence $(\rho_{\tau}^n)_{n \in \mathbb{N}}$ recursively defined by $\rho_{\tau}^0 = \rho^0$ and

$$\rho_{\tau}^{n+1} \in \arg \inf_{\rho \in \mathcal{K}} \left\{ \mathcal{G}[\rho] + \frac{1}{2\tau} d_2^2(\rho_{\tau}^n, \rho) \right\} \; .$$

Existence of minimizers:

Let ρ_0 satisfies

$$(1 + |x|^2) n_0 \in L^1_+(\mathbb{R}^d)$$
 and $n_0 \log n_0 \in L^1(\mathbb{R}^d)$.

and $\chi < \chi_c$, then there recursively exists a minimizer to the previous problem.

Modelling & First Properties	Transversal Tool: Wasserstein Distances		JKO Convergence: subcritical case PKS	1D Case
000000000000000000000000000000000000000	00000000	0000	000000000	0000000000000
Convergence				
Existence of	minimizers			

We consider a time-step $\tau > 0$, an initial datum $\rho^0 \in \mathcal{P}_2^{\mathrm{ac}}(\mathbb{R}^d)$. We introduce the sequence $(\rho_{\tau}^n)_{n \in \mathbb{N}}$ recursively defined by $\rho_{\tau}^0 = \rho^0$ and

$$\rho_{\tau}^{n+1} \in \arg \inf_{\rho \in \mathcal{K}} \left\{ \mathcal{G}[\rho] + \frac{1}{2\tau} d_2^2(\rho_{\tau}^n, \rho) \right\} .$$

Existence of minimizers:

Let ρ_0 satisfies

$$(1 + |x|^2) n_0 \in L^1_+(\mathbb{R}^d)$$
 and $n_0 \log n_0 \in L^1(\mathbb{R}^d)$.

and $\chi < \chi_c$, then there recursively exists a minimizer to the previous problem.

Modelling & First Properties	Transversal Tool: Wasserstein Distances		JKO Convergence: subcritical case PKS	1D Case	
000000000000000000000000000000000000000	00000000	0000	00000000	00000000000000	
Convergence					
Convergence Theorem					

Theorem

Under assumptions

$$(1 + |x|^2) n_0 \in L^1_+(\mathbb{R}^d)$$
 and $n_0 \log n_0 \in L^1(\mathbb{R}^d)$,

let us construct the family $(\rho_{\tau})_{\tau>0}$ *as*

$$\rho_{\tau}(t) = \left(\frac{(n+1)\tau - t}{\tau} \operatorname{Id} + \frac{t - n\tau}{\tau} \nabla \varphi^{n}\right) \# \rho_{\tau}^{n}$$

with $\nabla \varphi^n$ being the optimal map transporting ρ_{τ}^n onto ρ_{τ}^{n+1} , for any $t \in [n\tau, (n+1)\tau)$.

If $\chi < \chi_c$, then the family $(\rho_{\tau})_{\tau>0}$ admits a sub-sequence converging weakly in $\mathcal{C}^0([0,T], L^1_{\text{weak}}(\mathbb{R}^d))$ to a distributional solution of the PKS system.

Modelling & First Properties	Transversal Tool: Wasserstein Distances		JKO Convergence: subcritical case PKS	1D Case	
			00000000		
Convergence					
Convergence Theorem					

Theorem

Under assumptions

$$(1 + |x|^2) n_0 \in L^1_+(\mathbb{R}^d)$$
 and $n_0 \log n_0 \in L^1(\mathbb{R}^d)$,

let us construct the family $(\rho_{\tau})_{\tau>0}$ *as*

$$\rho_{\tau}(t) = \left(\frac{(n+1)\tau - t}{\tau} \operatorname{Id} + \frac{t - n\tau}{\tau} \nabla \varphi^{n}\right) \# \rho_{\tau}^{n}$$

with $\nabla \varphi^n$ being the optimal map transporting ρ_{τ}^n onto ρ_{τ}^{n+1} , for any $t \in [n\tau, (n+1)\tau)$.

If $\chi < \chi_c$, then the family $(\rho_{\tau})_{\tau>0}$ admits a sub-sequence converging weakly in $\mathcal{C}^0([0,T], L^1_{\text{weak}}(\mathbb{R}^d))$ to a distributional solution of the PKS system.

Modelling & First Properties	Transversal Tool: Wasserstein Distances		JKO Convergence: subcritical case PKS	1D Case
000000000000000000000000000000000000000	00000000	0000	00000000	•••••
1D Convergence				
Outline				

Modelling & First Properties

- Applied Mathematics: Collective Behavior Models
- Modelling Chemotaxis
- First Properties
- Pure Mathematics: Gradient Flows

2 Transversal Tool: Wasserstein Distances

- Definition
- Properties
- 3 Gradient Flows
 - Xariational Scheme
- 4 JKO Convergence: subcritical case PKS
 - Entropy: bound from below
 - Convergence
- 5 1D Case
 - 1D Convergence
 - Numerical Experiments

Modelling & First Properties	Transversal Tool: Wasserstein Distances	Gradient Flows	JKO Convergence: subcritical case PKS 000000000	1D Case ○●○○○○○○○○○○
1D Convergence				
Brief Remain	nder			

In the case of the real line, consider μ and ν two absolutely continuous measures with respect to the Lebesgue measure, of respective densities *f* and *g*, and of cumulative distribution functions *F* and *G*. As the cumulative distribution function is non-decreasing we can define the pseudo-inverse function by

 $X(z) = F^{-1}(z) := \inf\{x : F(x) \ge z\}$.

The transport map is $\varphi' = F^{-1} \circ G$ and the Wasserstein distance can be expressed in the following more tractable way

$$d_2^2(\mu,\nu) = \int_0^1 |F^{-1}(w) - G^{-1}(w)|^2 \,\mathrm{d}w \,.$$

Modelling & First Properties	Transversal Tool: Wasserstein Distances	Gradient Flows	JKO Convergence: subcritical case PKS 000000000	1D Case ○●○○○○○○○○○○
1D Convergence				
Brief Remain	nder			

In the case of the real line, consider μ and ν two absolutely continuous measures with respect to the Lebesgue measure, of respective densities *f* and *g*, and of cumulative distribution functions *F* and *G*. As the cumulative distribution function is non-decreasing we can define the pseudo-inverse function by

 $X(z) = F^{-1}(z) := \inf\{x : F(x) \ge z\}$.

The transport map is $\varphi' = F^{-1} \circ G$ and the Wasserstein distance can be expressed in the following more tractable way

$$d_2^2(\mu,\nu) = \int_0^1 |F^{-1}(w) - G^{-1}(w)|^2 \,\mathrm{d}w \,.$$

Modelling & First Properties	Transversal Tool: Wasserstein Distances	Gradient Flows	JKO Convergence: subcritical case PKS	1D Case
				000000000000000000000000000000000000000
1D Convergence				
~	~ .			

Implicit Euler Scheme

Let F_n and F_{n+1} be the cumulative distribution functions associated respectively to ρ_{τ}^n and ρ_{τ}^{n+1} .

By the expression of the Wasserstein distance on the real line, the JKO scheme can be rewritten in terms of $X_n = F_n^{-1}$ and $X_{n+1} = F_{n+1}^{-1}$ as the gradient flow of the inverse distribution function subject to L^2 -metric structure:

$$X_{n+1} = \inf_{W} \left[\mathcal{G}[W] + \frac{1}{2\tau} \|W - X_n\|_{L^2(0,1)}^2 \right] \,.$$

The Euler-Lagrange equation is

$$-\frac{X_{n+1}(w) - X_n(w)}{\tau} = \frac{\partial}{\partial w} \left[\left(\frac{\partial X_{n+1}(w)}{\partial w} \right)^{-1} \right] + X_{n+1}(w) + \frac{\chi}{\pi} H[X_{n+1}]$$

where H corresponds to the Hilbert transform defined by

$$H[X](w) := \frac{1}{\pi} \lim_{\varepsilon \to 0} \int_{|X(w) - X(z)| \ge \varepsilon} \frac{1}{X(w) - X(z)} \, \mathrm{d}z.$$

Modelling & First Properties	Transversal Tool: Wasserstein Distances	Gradient Flows	JKO Convergence: subcritical case PKS	1D Case		
000000000000000000000000000000000000000	000000000	0000	000000000	000000000000000000000000000000000000000		
1D Convergence						
	~ 1					
Implicit Fuler Scheme						
Inplicit Lait						

Let F_n and F_{n+1} be the cumulative distribution functions associated respectively to ρ_{τ}^n and ρ_{τ}^{n+1} .

By the expression of the Wasserstein distance on the real line, the JKO scheme can be rewritten in terms of $X_n = F_n^{-1}$ and $X_{n+1} = F_{n+1}^{-1}$ as the gradient flow of the inverse distribution function subject to L^2 -metric structure:

$$X_{n+1} = \inf_{W} \left[\mathcal{G}[W] + \frac{1}{2\tau} \|W - X_n\|_{L^2(0,1)}^2 \right] \,.$$

The Euler-Lagrange equation is

$$-\frac{X_{n+1}(w) - X_n(w)}{\tau} = \frac{\partial}{\partial w} \left[\left(\frac{\partial X_{n+1}(w)}{\partial w} \right)^{-1} \right] + X_{n+1}(w) + \frac{\chi}{\pi} H[X_{n+1}]$$

where H corresponds to the Hilbert transform defined by

$$H[X](w) := \frac{1}{\pi} \lim_{\varepsilon \to 0} \int_{|X(w) - X(z)| \ge \varepsilon} \frac{1}{X(w) - X(z)} \, \mathrm{d}z.$$

Modelling & First Properties	Transversal Tool: Wasserstein Distances	Gradient Flows	JKO Convergence: subcritical case PKS	1D Case		
000000000000000000000000000000000000000	000000000	0000	000000000	000000000000000000000000000000000000000		
1D Convergence						
	~ 1					
Implicit Fuler Scheme						
Inplicit Lait						

Let F_n and F_{n+1} be the cumulative distribution functions associated respectively to ρ_{τ}^n and ρ_{τ}^{n+1} .

By the expression of the Wasserstein distance on the real line, the JKO scheme can be rewritten in terms of $X_n = F_n^{-1}$ and $X_{n+1} = F_{n+1}^{-1}$ as the gradient flow of the inverse distribution function subject to L^2 -metric structure:

$$X_{n+1} = \inf_{W} \left[\mathcal{G}[W] + \frac{1}{2\tau} \|W - X_n\|_{L^2(0,1)}^2 \right] \,.$$

The Euler-Lagrange equation is

$$-\frac{X_{n+1}(w)-X_n(w)}{\tau}=\frac{\partial}{\partial w}\left[\left(\frac{\partial X_{n+1}(w)}{\partial w}\right)^{-1}\right]+X_{n+1}(w)+\frac{\chi}{\pi}H[X_{n+1}]$$

where H corresponds to the Hilbert transform defined by

$$H[X](w) := \frac{1}{\pi} \lim_{\varepsilon \to 0} \int_{|X(w) - X(z)| \ge \varepsilon} \frac{1}{X(w) - X(z)} \, \mathrm{d}z.$$

		1		
1D Convergence				
000000000000000000000000000000000000000	00000000	0000	00000000	000000000000000000000000000000000000000
Modelling & First Properties	Transversal Tool: Wasserstein Distances	Gradient Flows	JKO Convergence: subcritical case PKS	1D Case

Theorem on Fully Discrete Scheme

If we set $X_n^i := X_n(ih)$, for any $i = 0 \cdots N$, and Nh = 1, the finite difference discretisation in space is the following implicit Euler scheme in rescaled variables,

$$-\frac{X_{n+1}^i-X_n^i}{\tau} = \frac{1}{X_{n+1}^{i+1}-X_{n+1}^i} - \frac{1}{X_{n+1}^i-X_{n+1}^{i-1}} + X_{n+1}^i + \frac{\chi}{\pi} \sum_{j \neq i} \frac{1}{X_{n+1}^i-X_{n+1}^j} \; .$$

with initial condition X_0 associated to ρ_0 .

We impose Neumann boundary conditions in the *X*-problem, so that the 'centre of mass' is conserved:

$$\forall n \; \sum_{i=0}^{N} X_n^i = 0.$$

Theorem

Assume $\chi(1-h) < \chi_c$. Then the solution of the numerical scheme converges to a unique steady-state of the problem with exponential rate.

		1		
1D Convergence				
000000000000000000000000000000000000000	00000000	0000	00000000	000000000000000000000000000000000000000
Modelling & First Properties	Transversal Tool: Wasserstein Distances	Gradient Flows	JKO Convergence: subcritical case PKS	1D Case

Theorem on Fully Discrete Scheme

If we set $X_n^i := X_n(ih)$, for any $i = 0 \cdots N$, and Nh = 1, the finite difference discretisation in space is the following implicit Euler scheme in rescaled variables,

$$-\frac{X_{n+1}^i-X_n^i}{\tau} = \frac{1}{X_{n+1}^{i+1}-X_{n+1}^i} - \frac{1}{X_{n+1}^i-X_{n+1}^{i-1}} + X_{n+1}^i + \frac{\chi}{\pi} \sum_{j \neq i} \frac{1}{X_{n+1}^i-X_{n+1}^j} \; .$$

with initial condition X_0 associated to ρ_0 .

We impose Neumann boundary conditions in the *X*-problem, so that the 'centre of mass' is conserved:

$$\forall n \ \sum_{i=0}^{N} X_n^i = 0.$$

Theorem

Assume $\chi(1-h) < \chi_c$. Then the solution of the numerical scheme converges to a unique steady-state of the problem with exponential rate.

		1		
1D Convergence				
000000000000000000000000000000000000000	00000000	0000	00000000	000000000000000000000000000000000000000
Modelling & First Properties	Transversal Tool: Wasserstein Distances	Gradient Flows	JKO Convergence: subcritical case PKS	1D Case

Theorem on Fully Discrete Scheme

If we set $X_n^i := X_n(ih)$, for any $i = 0 \cdots N$, and Nh = 1, the finite difference discretisation in space is the following implicit Euler scheme in rescaled variables,

$$-\frac{X_{n+1}^i-X_n^i}{\tau} = \frac{1}{X_{n+1}^{i+1}-X_{n+1}^i} - \frac{1}{X_{n+1}^i-X_{n+1}^{i-1}} + X_{n+1}^i + \frac{\chi}{\pi} \sum_{j \neq i} \frac{1}{X_{n+1}^i-X_{n+1}^j} \; .$$

with initial condition X_0 associated to ρ_0 .

We impose Neumann boundary conditions in the *X*-problem, so that the 'centre of mass' is conserved:

$$\forall n \ \sum_{i=0}^{N} X_n^i = 0.$$

Theorem

Assume $\chi(1-h) < \chi_c$. Then the solution of the numerical scheme converges to a unique steady-state of the problem with exponential rate.
Modelling & First Properties	Transversal Tool: Wasserstein Distances	Gradient Flows	JKO Convergence: subcritical case PKS	1D Case
Numerical Experiments				
Outline				

Modelling & First Properties

- Applied Mathematics: Collective Behavior Models
- Modelling Chemotaxis
- First Properties
- Pure Mathematics: Gradient Flows

2 Transversal Tool: Wasserstein Distances

- Definition
- Properties
- 3 Gradient Flows
 - Xariational Scheme
- JKO Convergence: subcritical case PKS
 - Entropy: bound from below
 - Convergence
- 5 1D Case
 - 1D Convergence
 - Numerical Experiments

Modelling & First Properties	Transversal Tool: Wasserstein Distances	Gradient Flows	JKO Convergence: subcritical case PKS 000000000	1D Case ○○○○○●○○○○○○
Numerical Experiments				
Not rescaled:	$\chi = \pi$			

Initial data:

$$X_0^i = 2 \frac{w_i - 0.5}{\left[(w_i + 0.01) (1.01 - w_i) \right]^{1/4}} ,$$

Modelling & First Properties	Transversal Tool: Wasserstein Distances		JKO Convergence: subcritical case PKS	1D Case
000000000000000000000000000000000000000	00000000	0000	00000000	00000000000000
Numerical Experiments				
Rescaled var	iables: $\chi = \pi$			

Initial data:

$$X_0^i = 2 \frac{w_i - 0.5}{\left[\left(w_i + 0.01 \right) \left(1.01 - w_i \right) \right]^{1/4}} ,$$

Modelling & First Properties	Transversal Tool: Wasserstein Distances		JKO Convergence: subcritical case PKS	1D Case
000000000000000000000000000000000000000	00000000	0000	00000000	00000000000000
Numerical Experiments				
Rescaled var	iables: $\chi = \pi$			

Two peaks initial data:

$$X_0^i = \frac{\exp\left[10 (w_i - 0.5)\right] - 1}{\left[(w_i + 0.01) (1.01 - w_i)\right]^{1/4}},$$

Modelling & First Properties	Transversal Tool: Wasserstein Distances	Gradient Flows	JKO Convergence: subcritical case PKS	1D Case
Numerical Experiments		0000		
Not rescaled:	$\chi = (5/2) \pi$			

Initial data:

$$X_0^i = 2 \frac{w_i - 0.5}{\left[\left(w_i + 0.01 \right) \left(1.01 - w_i \right) \right]^{1/4}},$$

Modelling & First Properties	Transversal Tool: Wasserstein Distances	Gradient Flows	JKO Convergence: subcritical case PKS	1D Case ○○○○○○○○●○○○
Numerical Experiments				
Not rescaled:	$\chi = 3\pi$			

Two symmetric peaks:

$$X_0^i = \frac{\exp\left[10 (w_i - 0.5)\right] - 1}{\left[(w_i + 0.01) (1.01 - w_i)\right]^{1/4}},$$

Modelling & First Properties	Transversal Tool: Wasserstein Distances	Gradient Flows	JKO Convergence: subcritical case PKS 000000000	1D Case ○○○○○○○○○○●○○
Numerical Experiments				
Not rescaled:	$\chi = 3\pi$			

Two asymmetric peaks:

$$X_0^i = \frac{\exp\left[10 (w_i - 0.45)\right] - 1}{\left[(w_i + 0.01) (1.01 - w_i)\right]^{1/4}},$$

Modelling & First Properties	Transversal Tool: Wasserstein Distances		JKO Convergence: subcritical case PKS	1D Case
000000000000000000000000000000000000000	00000000	0000	00000000	00000000000000000
Numerical Experiments				
Not rescaled:	$\chi = 5\pi$			

Two symmetric peaks:

$$X_0^i = \frac{\exp\left[10 (w_i - 0.5)\right] - 1}{\left[(w_i + 0.01) (1.01 - w_i)\right]^{1/4}},$$

Modelling & First Properties	Transversal Tool: Wasserstein Distances	Gradient Flows	JKO Convergence: subcritical case PKS	1D Case
Numerical Experiments		0000	00000000	000000000000
Conclusions				

- The gradient flow interpretation induces a natural lagrangian or particle method on a grid or moving mesh method.
- It is a good solution to track accurately blow-up time and profiles for variant of KS in 1D.
- References:

Blanchet-Calvez-C. (SINUM 2008)

Modelling & First Properties	Transversal Tool: Wasserstein Distances	Gradient Flows	JKO Convergence: subcritical case PKS 000000000	1D Case ○○○○○○○○○○○○
Numerical Experiments				
Conclusions				

- The gradient flow interpretation induces a natural lagrangian or particle method on a grid or moving mesh method.
- It is a good solution to track accurately blow-up time and profiles for variant of KS in 1D.
- References:

Modelling & First Properties	Transversal Tool: Wasserstein Distances	Gradient Flows	JKO Convergence: subcritical case PKS 000000000	1D Case ○○○○○○○○○○○○
Numerical Experiments				
Conclusions				

- The gradient flow interpretation induces a natural lagrangian or particle method on a grid or moving mesh method.
- It is a good solution to track accurately blow-up time and profiles for variant of KS in 1D.
- References:

Blanchet-Calvez-C. (SINUM 2008)