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Nonlinear continuity equations

Let us consider a time dependent unknown probability density p(7,-) on a domain
0 c RY, which satisfies the nonlinear continuity equation

0p ==V (pu):=V-(pV [U'(p) +V+W=p]).
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Nonlinear continuity equations

Let us consider a time dependent unknown probability density p(7,-) on a domain
0 c RY, which satisfies the nonlinear continuity equation

0p ==V (pu):=V-(pV [U'(p) +V+W=p]).

@ U:R" — R denotes the internal energy.
@ V:RY - Ris the confining potential.

@ W:R? - R corresponds to an interaction potential.

. . e . _ g
Nonlinear velocity is given by u = -V 5

entropy functional

, where F denotes the free energy or

1

Fp)= [ u(pds+ [ V@ptder 3 [ Wle=y)p)p(y)dsdy.

Free energy is decreasing along trajectories

CF0) =~ [, o Dluw ).
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Nonlinear continuity equations

Included models:
@ U(s) =slogs, V =0, W = 0 heat equation.
U(s) = —s , V=W =0 porous medium (m > 1) or fast diffusion (0 < m < 1).

U(s) =slogs, V =0, W given, Patlak-Keller-Segel model.

U=0,V=0,W=log(—|x]) or W = 1[x|* - }|x|* correspond to
attraction-(repulsion) potentials in swarming, herding and aggregation models.

°
@ U(s) = slogs, V given, W = 0, Fokker Planck equations.
°
°

(a) Dictyostelium discoideum (b) Fish school
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Gradient flow formalism!

@ Solutions p can be constructed by the following variational scheme:
o) carg inf { 5 () + F(p)}
t =3 peic | 2 At t 5

with K = {p e L, (R?) : [o, p(x)dx = M, |xp e L'(R")}.

1Jordan, Kinderlehrer and Otto (1999); Otto (1996, 2001); Ambrosio, Gigli and Savare
(2005); Villani(2003).....
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Gradient flow formalism!

@ Solutions p can be constructed by the following variational scheme:
o) carg inf { 5 () + F(p)}
t =3 peic | 2 At t 5

with K = {p e L, (R?) : [o, p(x)dx = M, |xp e L'(R")}.
@ Quadratic Euclidean Wasserstein distance dw between two probability
measures p and v,

dy(p,v) = inf fwl|x7 T(x)du(x).

Tw=T#pn

@ Variational scheme corresponds to the time discretization of an abstract
gradient flow in the space of probability measures.

@ Solutions can be constructed by this variational scheme; naturally preserve
positivity and the free-energy decreasing property.

1Jordan, Kinderlehrer and Otto (1999); Otto (1996, 2001); Ambrosio, Gigli and Savare
(2005); Villani(2003).....
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Gradient flow formalism

For a given diffeomorphism ® € D the corresponding density p € K is given by

p=®#L" Lo which is equivalent to p(®(x)) det(D®) = 1 on Q

for sufficiently smooth functions.
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Gradient flow formalism

@ Let 2 and ) be smooth, open, bounded and connected subsets of RY. We denote
by ® € D the set of diffeomorphisms from € to © (mapping 9 onto H).
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Gradient flow formalism

@ Let 2 and ) be smooth, open, bounded and connected subsets of RY. We denote
by ® € D the set of diffeomorphisms from € to © (mapping 9 onto H).
@ Doing the change of variables by the diffeomorphism p = ®#L?, we get

I(@):fS)@(detD®)dx+A2V(¢(x))dx+%L/QW(@(X)—@(}'))M[I)&
with U (s) =sU(1/s) forall s > 0.
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Gradient flow formalism

@ Let 2 and ) be smooth, open, bounded and connected subsets of RY. We denote
by ® € D the set of diffeomorphisms from € to © (mapping 9 onto H).
@ Doing the change of variables by the diffeomorphism p = ®#L?, we get

I(@):fQ\Il(detDCID)dx+v/QV(d)(x))dx+%LLW(@(X)—@(}'))dxdy.
with U (s) =sU(1/s) forall s > 0.

Classic Lz—gradient flow: Evans, Savin and Gangbo (2004)

n+l1

1 n
PR earg inf { ——[Ph, - D72 + (D)
oD | 2Af1 )

converges to solutions of the PDE

e =u(t) »®

:v-[qﬂ(detp@)(com@)ﬁ—vvoq>—[QVW(<1>(x)—q>(y))dy,
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Generalization of Gradient flow formalism

Let us denote by c(x,y) : RY x RY — R* with ¢ is radially symmetric as
c(x,y) = c(x-y) = c(lx -]
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Generalization of Gradient flow formalism

Let us denote by c(x,y) : RY x RY — R* with ¢ is radially symmetric as
c(xy) = c(x-y) = c(k -y
Generalized gradient flow

Several authors (Agueh, Ambrosio-Gigli-Savaré, McCann-Puel) proved for different
costs that the scheme

n+1 x-
pAr €arginf {At nerg}f ){[\Ww ( A )dH(x \)}+.7:(/’)}

Ar P

where I'(p'A;, p) is the set of measures in the product space R x R? with marginals
A, and p respectively,
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Generalization of Gradient flow formalism

Let us denote by c(x,y) : RY x RY — R* with ¢ is radially symmetric as
c(xy) = c(x-y) = c(k -y
Generalized gradient flow

Several authors (Agueh, Ambrosio-Gigli-Savaré, McCann-Puel) proved for different
costs that the scheme

n+1 x-
pAr €arginf {At nerg}f ){[\Ww ( A )dH(x \)}+.7:(/’)}

Ar P

where I'(p'A;, p) is the set of measures in the product space R x R? with marginals
P'a, and p respectively, is convergent to a solution of the PDE
dp

5 =~V (pue) =V {pve” [V (U (p) + V+ W p)]},

with ¢* the Legendre transform of c.
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Evolving diffeomorphisms

Generalization of Gradient flow formalism

The p-Laplacian equation and the doubly nonlinear equation.-
Op mp— n
E —V-[\Vp P2 vp }
with 1 <p < oo, m>m = d(p . The cost is given by c(x) =
conjugate exponent of p and the internal energy given by

|x|?/q with g the

| .
p_lsns ool
U(s) =




Gradient Flows
00000800000
Evolving diffeomorphisms

Generalization of Gradient flow formalism

The relativistic heat equation.-

0 \% Vlo
o VP VP V1 +[VlogpP
Here, the cost function is given by

C(x):{ 1-/1-]xP  iffx <1

+00 if x> 1.’

with ¢*(x) = /1 + |x|*> — 1 and the logarithmic entropy functional.




Gradient Flows
00000080000
Evolving diffeomorphisms

Lagrangian Coordinates

@ PDE for the evolving diffeomorphisms & is the Lagrangian coordinate
representation of the original Eulerian formulation for p, in 1D it is the
monotone rearrangement.
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Lagrangian Coordinates

@ PDE for the evolving diffeomorphisms & is the Lagrangian coordinate
representation of the original Eulerian formulation for p, in 1D it is the
monotone rearrangement.

@ Heat equation

ap 9% 8(1)7@”

o P T or T o\,
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Lagrangian Coordinates

@ PDE for the evolving diffeomorphisms & is the Lagrangian coordinate
representation of the original Eulerian formulation for p, in 1D it is the
monotone rearrangement.

@ Heat equation

Op 0P 0 ( 1 ) Dy
w7 T P = ., - T a\x )~ 2
ot ot Ox \ &, (®,)
@ Porous medium equation
ap m (94) 8 1 (I).\.\
a. - an’ = T = .
ot X (p ) = ot Ox ( (q),\')m ) m (¢,\‘)m+l
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Lagrangian Coordinates

@ PDE for the evolving diffeomorphisms & is the Lagrangian coordinate
representation of the original Eulerian formulation for p, in 1D it is the
monotone rearrangement.

@ Heat equation

Op 0P 0 ( 1 ) Dy
w7 T P = ., - T a\x )~ 2
ot ot Ox \ &, (®,)
@ Porous medium equation
ap m (94) 8 1 (I).\.\
a. - an’ = T = .
ot X (p ) = ot Ox ( (q),\')m ) m (¢,\‘)m+l

@ Relativistic heat equation

[N

Px :
pr=| p— = ¢, =—1 .
’ (\/p%va)\ ’ (\/4>4+<1>x|2)x
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1D Diffusion: Simulations

1D simulation of the PME for m = 2 and the relativistic equation:

" Newon metned Il difeaargnin
+ B profle 0s ~fmal dfeomorpnisn

01 0z 03 04 05 08 07 03 03 1 0 o 0z 03 04 05 08 07 08 03 1

(c) Density p (d) Diffeomorphism &

time=0.2
time=05
time=1

] 05 1 05 1 % EE) 0 15 2
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Evolv ffeomorphisms

Why do we make our life so much harder ?
@ Automatic mesh adaptation and mesh merging in regions of high density.

@ A Dirac Delta corresponds to a degeneration of the transport map - numerically
more tractable than blow-up for densities.

@ Energy dissipation and positivity.
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Evolving diffeomorphisms

Why do we make our life so much harder ?
@ Automatic mesh adaptation and mesh merging in regions of high density.

@ A Dirac Delta corresponds to a degeneration of the transport map - numerically
more tractable than blow-up for densities.

@ Energy dissipation and positivity.

Entropy Dissipation in a bounded domain for ®:

d 2 0P
@) = - f lu(z) + ®F dx — f U’ (det D®) 71 (cof DB) L= dx
dr Q o0 ot
from which, we conclude that the natural boundary condition associated to the
variational scheme for @ is:
0P
o

The corresponding boundary conditions for the density are no flux, i.e.

nT(cofoé)Tag = (cof D®)n - 0  ondQ.

u-n=0on o,
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Boundary conditions

@ BC’s in Lagrangian formulation are

DD
nT(cofDé)T% = (cof D®)n - 0@7 =0.
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Evolving diffeomorphisms

Boundary conditions

@ BC’s in Lagrangian formulation are

0P

Fo L) )
T T

fD®) L= = (cof DD - <= = 0.

n' (co ) o (co n By

@ On the square = [~1, 1]* these boundary conditions translate to

901002 _9%20%2 (g s gy =1
ot Oxy o ox B
6@1 a®l+&@:0f0rx2:_lax2:1'

S0 O o
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Evolving diffeomorphisms

Boundary conditions

@ BC’s in Lagrangian formulation are
o 0P
T T
fDP) — = (cof D®)n- — =0.
n' (co ) o (co n By

@ On the square = [~1, 1]* these boundary conditions translate to

021 0% 082002 (e oy =1
o ox o1 om o
6@1 aél &@:Oform=—l»x2:l'

"ot om | ot om

@ Consider only diffeomorphisms which map each edge of <2 to the
corresponding one of 02 without rotation. This reduces to
0P, 00,
D (t,£1) = £1 — — =0f ==1
(1) ==+ o on orx; =+

0P, 0P,
Do(t,+1) = £1 — —— =0f ==+1.
2(f,£1) =+ 5 o orx; =+
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Implicit Euler scheme: Minimization then discretization

(DII+1 _P"
- v. [\Ij/(detD(I)rH—])(COfD(I)rH-I)T] +UVo ‘1)”+l+fVW((I)"+] (x) - ! (»))dy
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Explicit/Implicit-in-time discretization

Implicit Euler scheme: Minimization then discretization

(DII+1 _P"
- v. [\Ij/(detD(I)rH—])(COfD(I)rH-I)T] +UVo ‘1)”+l+fVW((I)"+] (x) - ! (»))dy

@ Conforming finite element discretization
F(®n+l’¢) _ é f(¢n+l _ @")go(x)dx— / VV(@’HI)QO(X)dx
Q
- L1 vw@ e - o o) | ey
alJo

+ f U (det D" ) (cof D®") Vo (x)dx.
Q
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Implicit Euler scheme: Minimization then discretization

(DII+1 _P"
- v. [\Ij/(detD(I)rH—])(COfD(I)rH-I)T] +UVo ‘1)”+l+fVW((I)”+] (x) - ! (»))dy

@ Conforming finite element discretization
1
F@" ) = 1 [ (@ = 0p(de— [ Tv(@)p(xds
Q
- [ vw@ ) - e o)as] e
alJo
+f\I/'(detD(I)"“)(cofD@"“)TVga(x)dx.
Q
@ One can use the lowest order H' conforming finite elements, i.e.
q)]
D(xi, ;1) = 2| 3 | Pr(xi,x2).
k <I>k

(work in preparation with Ranetbauer and Wolfram - locals!, wait for next
week)
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Explicit Euler scheme: Minimization then discretization

(I)n+l _ (I)”

T = V[V (detDO") (cof D) ] + TV 0 @'+ / TW(D" (x) - " (y))dy
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Explicit Euler scheme: Minimization then discretization
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@ Full discretization by finite differences and quadrature formulas for the
derivatives and integral for interactions, (C.-Moll, SISC 2009).
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@ Full discretization by finite differences and quadrature formulas for the
derivatives and integral for interactions, (C.-Moll, SISC 2009).

@ To avoid problems at the boundaries with approximation with second
derivatives, we need to be careful.
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Explicit/Implicit-in-time discretization

Explicit Euler scheme: Minimization then discretization

(I)n+l _ (I)”

T = V[V (detDO") (cof D) ] + TV 0 @'+ / TW(D" (x) - " (y))dy

@ Full discretization by finite differences and quadrature formulas for the
derivatives and integral for interactions, (C.-Moll, SISC 2009).

@ To avoid problems at the boundaries with approximation with second
derivatives, we need to be careful.

Let us consider a discretization ®;; on a uniform symmetric cartesian grid
Q = [-1,1]* of ® with mesh sizes Ax = Ax; = Ax, = 2/N. Let us introduce the
following notations

- 1 N 1
(D" @)= Kx( = ®iiy) , (D7®)iy= A*x(q%ﬂ,j—q)ixf)

and | |
(D'®);; = Kx( = ®ij1) , (D'®);; = B@nm - o),

for all grid points i,j = 1,...,N - 1.
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Explicit Euler scheme: Minimization then discretization

-

-t

Figure : Schematic representation of the order of derivatives approximation.
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Explicit Euler scheme: Minimization then discretization

-
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Figure : Schematic representation of the order of derivatives approximation.

Since for compactly supported densities, we have det(D®) — +oo at the boundary,

we impose that
0P,

U’ (det D®)

=0forx; = +1,

which reflects that U'(+o00) = 0.
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Explicit/Implicit-in-time discretization

Explicit Euler scheme: Minimization then discretization

-

-t

Figure : Schematic representation of the order of derivatives approximation.

Since for compactly supported densities, we have det(D®) — +oo at the boundary,

we impose that
0P,

U’ (det D®)

=0forx; = +1,

which reflects that U'(+o00) = 0.
Let us remark that the condition ' (o) = 0 is equivalent to f(0+) = 0 with
f(s) =U(s) - sU'(s), and the nonlinear diffusion term is originally Af(p).



Explicit/Implicit-in-time discretization

Explicit schemes: Further comments

@ We use explicit Euler if diffusive terms are present if not we use explicit 4th
order RK schemes since the resulting approximation is a large ODE couple
system, we see degeneracy of the long time asymptotics otherwise.
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Explicit schemes: Further comments

@ We use explicit Euler if diffusive terms are present if not we use explicit 4th
order RK schemes since the resulting approximation is a large ODE couple
system, we see degeneracy of the long time asymptotics otherwise.

@ The reported spatial discretization of the 2nd order terms leads to a CFL
condition of the type

Ar 1

T’ (det DP) | <=
[ (det D®) 1 = <



Explicit/Implicit-in-time discretization

Explicit schemes: Further comments

@ We use explicit Euler if diffusive terms are present if not we use explicit 4th
order RK schemes since the resulting approximation is a large ODE couple
system, we see degeneracy of the long time asymptotics otherwise.

@ The reported spatial discretization of the 2nd order terms leads to a CFL
condition of the type

At 1
U’ (det DD) |1 < -
|V (detD®) 1= o < 5
@ This condition reduces to the one in Gosse-Toscani in the 1D case that
preserves the monotonocity for diffusion equations in 1D.
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Initialization & Full Algorithm

Calculating the initial diffeomorphism

Rectangular mesh: diffeomorphism can be constructed by subsequently solving two
one-dimensional Monge-Kantorovich problems in x; and x, direction,
(Angenenet-Haker-Tannebaum).
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Initialization & Full Algorithm

Calculating the initial diffeomorphism

Rectangular mesh: diffeomorphism can be constructed by subsequently solving two
one-dimensional Monge-Kantorovich problems in x; and x, direction,
(Angenenet-Haker-Tannebaum).

Triangular mesh: No natural ordering !

The Monge-Ampere equation gives the optimal transportation plan 7 = T'(x): unique
minimizing map is the gradient of a convex function u, i.e. To = V¢, which satisfies
the MA equation

1

det(D*¢(x)) = PG




Initialization & Full Algorithm

Numerical simulations

Numerical solver:

@ Given an initial density po = po(x) calculate the corresponding initial
diffeomorphism by either determining the solution of the Monge Ampere
equation or by succesive 1D transport maps.

© Map the optimal transportation plan to the initial diffeomorphism ®(x) = Tp.
© Apply the explicit-in-time discretization for ® = ®(x, ).

© Reconstruct the corresponding density p = p(x, r) via

p(D(x,1),1) det(DP(x,1)) = 1.
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2D Simulations
[e] le}

Diffusions

Linear Fokker-Planck Equation
Linear Diffusion:

Starting with parabola initial data and with U(s) = slogs, V = |x*/2 and W = 0:

Op=V-(Vp+xp).
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Diffusions

NonLinear Diffusion

Porous Medium Equation:

Starting with parabola initial data and with U(s) =s/2, V=W =0:

Op=V- (sz +xp).

)

1ol
/
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@ Merging
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NonLinear Diffusion

0005

2D Simulations
[e] e}




2D Simulations
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Merging

Relativistic Heat Equation
Flux-Limited Diffusion:

0 \Y Vlo
»_g |, p v {, g\
o N V1 +[VlogpP
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Blow-up

Swarming
Aggregation Equation:

Starting with parabola initial data and with U(s) = 0, V = 0, and W(x) = —¢ M

Op=V-[(VW=p)p].
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2D Simulations
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Blow-up

Chemotaxis Model
PKS Equation:

Starting with parabola initial data and with U(s) = slogs, V =0, and
W(x) = 5 log|x:
op=V-[Vp+ (VW *p)p].
top right x = 77 at ¢ = 500, bottom left x = 97 at r = 0.025, bottom right x = 97 at
t = 0.02586440688.
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Blow-up

Attraction: W(x) = 3|x|?

N

(a) t=0.2 (b) r=0.8 (c) Entropy

dr=0.2 (e) t=0.8
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Attraction-repulsion: W (x) = =% |x|? + g |x/*

" S

#) t=0.8 (g)t=14 (h) Entropy

. P o
. ) - .

(i) 1=08 () t=14



Blow-up

Attraction-repulsion: W (x) = 3[x|> - In(|x|),
V(x) = —51In(Jx|)

vy |

k) t=0.4 Mr=1 (m) Entropy

o y o

(m) t=04 (o) t=1
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Conclusions

@ The gradient flow interpretation induces a natural Lagrangian particle method
on a grid or moving mesh method.
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@ Itis a good solution to track accurately blow-up time and profiles and
degenerate diffusion problems.
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Conclusions

@ The gradient flow interpretation induces a natural Lagrangian particle method
on a grid or moving mesh method.
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