
icreauab

Gradient Flows Numerical schemes 2D Simulations

Gradient Flows: Qualitative Properties &
Numerical Schemes

J. A. Carrillo

Imperial College London

RICAM, December 2014



icreauab

Gradient Flows Numerical schemes 2D Simulations

Outline

1 Gradient Flows
Models
Gradient flows
Evolving diffeomorphisms

2 Numerical schemes
Explicit/Implicit-in-time discretization
Initialization & Full Algorithm

3 2D Simulations
Diffusions
Merging
Blow-up



icreauab

Gradient Flows Numerical schemes 2D Simulations

Models

Outline

1 Gradient Flows
Models
Gradient flows
Evolving diffeomorphisms

2 Numerical schemes
Explicit/Implicit-in-time discretization
Initialization & Full Algorithm

3 2D Simulations
Diffusions
Merging
Blow-up



icreauab

Gradient Flows Numerical schemes 2D Simulations

Models

Nonlinear continuity equations

Let us consider a time dependent unknown probability density ρ(t, ⋅) on a domain
Ω ⊂ Rd, which satisfies the nonlinear continuity equation

∂tρ = −∇ ⋅ (ρu) ∶= ∇ ⋅ (ρ∇ [U′(ρ) + V +W ∗ ρ]) .

U ∶ R+ → R denotes the internal energy.

V ∶ Rd → R is the confining potential.

W ∶ Rd → R corresponds to an interaction potential.

Nonlinear velocity is given by u = −∇ δF
δρ

, where F denotes the free energy or
entropy functional

F(ρ) = ∫
Rd

U(ρ)dx + ∫
Rd

V(x)ρ(x)dx + 1
2 ∫Rd×Rd

W(x − y)ρ(x)ρ(y)dxdy.

Free energy is decreasing along trajectories

d
dt
F(ρ)(t) = −∫

Rd
ρ(x, t)∣u(x, t)∣2dx.
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Nonlinear continuity equations

Included models:

U(s) = s log s, V = 0, W = 0 heat equation.

U(s) = 1
m−1 sm, V = W = 0 porous medium (m > 1) or fast diffusion (0 < m < 1).

U(s) = s log s, V given, W = 0, Fokker Planck equations.

U(s) = s log s, V = 0, W given, Patlak-Keller-Segel model.

U = 0, V = 0, W = log(−∣x∣) or W = 1
2 ∣x∣

2 − 1
4 ∣x∣

4 correspond to
attraction-(repulsion) potentials in swarming, herding and aggregation models.

(a) Dictyostelium discoideum (b) Fish school
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Gradient flows

Gradient flow formalism1

Solutions ρ can be constructed by the following variational scheme:

ρn+1
∆t ∈ arg inf

ρ∈K
{ 1

2∆t
d2

2(ρn
∆t, ρ) +F(ρ)} ,

with K = {ρ ∈ L1
+(Rd) ∶ ∫Rd ρ(x)dx = M, ∣x∣2ρ ∈ L1(Rd)}.

Quadratic Euclidean Wasserstein distance dW between two probability
measures µ and ν,

d2
2(µ, ν) ∶= inf

T∶ν=T#µ
∫

Rd
∣x − T(x)∣2dµ(x).

Variational scheme corresponds to the time discretization of an abstract
gradient flow in the space of probability measures.

Solutions can be constructed by this variational scheme; naturally preserve
positivity and the free-energy decreasing property.

1Jordan, Kinderlehrer and Otto (1999); Otto (1996, 2001); Ambrosio, Gigli and Savare
(2005); Villani(2003).....
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Evolving diffeomorphisms

Gradient flow formalism
For a given diffeomorphism Φ ∈ D the corresponding density ρ ∈ K is given by

ρ = Φ#Ld ⌞Ω which is equivalent to ρ(Φ(x)) det(DΦ) = 1 on Ω

for sufficiently smooth functions.
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Evolving diffeomorphisms

Gradient flow formalism

Let Ω and Ω̃ be smooth, open, bounded and connected subsets of Rd. We denote
by Φ ∈ D the set of diffeomorphisms from Ω̄ to ¯̃Ω (mapping ∂Ω onto ∂Ω̃).
Doing the change of variables by the diffeomorphism ρ = Φ#Ld, we get

I(Φ) = ∫
Ω

Ψ(det DΦ)dx + ∫
Ω

V(Φ(x))dx + 1
2 ∫Ω

∫
Ω

W(Φ(x) −Φ(y))dxdy.

with Ψ(s) = s U(1/s) for all s > 0.

Classic L2-gradient flow: Evans, Savin and Gangbo (2004)

Φn+1
∆t ∈ arg inf

Φ∈D
{ 1

2∆t
∥Φn

∆t −Φ∥2
L2(Ω) + I(Φ)}

converges to solutions of the PDE

∂Φ

∂t
∶= u(t) ⋆Φ

= ∇ ⋅ [Ψ′(det DΦ)(cof DΦ)T] −∇V ○Φ − ∫
Ω
∇W(Φ(x) −Φ(y))dy,
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Evolving diffeomorphisms

Generalization of Gradient flow formalism

Let us denote by c(x, y) ∶ Rd ×Rd Ð→ R+ with c is radially symmetric as
c(x, y) = c(x − y) = c(∣x − y∣).

Generalized gradient flow

Several authors (Agueh, Ambrosio-Gigli-Savaré, McCann-Puel) proved for different
costs that the scheme

ρn+1
∆t ∈ arg infρ∈Kc

{∆t inf
Π∈Γ(ρn

∆t, ρ)
{∫

Rd×Rd
c( x − y

∆t
) dΠ(x, y)} +F(ρ)} ,

where Γ(ρn
∆t, ρ) is the set of measures in the product space Rd ×Rd with marginals

ρn
∆t and ρ respectively, is convergent to a solution of the PDE

∂ρ

∂t
= −∇ ⋅ (ρuc) ∶= ∇ ⋅ {ρ∇c∗ [∇ (U′ (ρ) + V +W ∗ ρ)]} ,

with c∗ the Legendre transform of c.
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Evolving diffeomorphisms

Generalization of Gradient flow formalism

The p-Laplacian equation and the doubly nonlinear equation.-

∂ρ

∂t
= ∇ ⋅ [∣∇ρm∣p−2 ∇ρm] ,

with 1 < p <∞, m ≥ mc ∶= d−p
d(p−1) . The cost is given by c(x) = ∣x∣q/q with q the

conjugate exponent of p and the internal energy given by

U(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
p − 1

s ln s if m = 1
p − 1

msγ

γ(γ − 1) , γ = m + p − 2
p − 1

if m ≠ 1
p − 1

.

.
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Evolving diffeomorphisms

Generalization of Gradient flow formalism

The relativistic heat equation.-

∂ρ

∂t
= ∇ ⋅

⎛
⎝
ρ

∇ρ√
ρ2 + ∣∇ρ∣2

⎞
⎠
= ∇ ⋅

⎛
⎝
ρ

∇ logρ√
1 + ∣∇ logρ∣2

⎞
⎠
.

Here, the cost function is given by

c(x) = { 1 −
√

1 − ∣x∣2 if ∣x∣ ≤ 1
+∞ if ∣x∣ > 1.

,

with c∗(x) =
√

1 + ∣x∣2 − 1 and the logarithmic entropy functional.
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Evolving diffeomorphisms

Lagrangian Coordinates

PDE for the evolving diffeomorphisms Φ is the Lagrangian coordinate
representation of the original Eulerian formulation for ρ, in 1D it is the
monotone rearrangement.

Heat equation

∂ρ

∂t
= ρxx ⇒ ∂Φ

∂t
= − ∂

∂x
( 1

Φx
) = Φxx

(Φx)2 ,

Porous medium equation

∂ρ

∂t
= ∂xx(ρm) ⇒ ∂Φ

∂t
= − ∂

∂x
( 1
(Φx)m

) = m
Φxx

(Φx)m+1 .

Relativistic heat equation

ρt =
⎛
⎝
ρ

ρx√
ρ2 + ∣ρx∣2

⎞
⎠

x

⇒ Φt =
⎛
⎝

Φx√
Φ4 + ∣Φx∣2

⎞
⎠

x

.
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1D Diffusion: Simulations
1D simulation of the PME for m = 2 and the relativistic equation:

(c) Density ρ (d) Diffeomorphism Φ
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m ≠ 1
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Evolving diffeomorphisms

Why do we make our life so much harder ?

Automatic mesh adaptation and mesh merging in regions of high density.

A Dirac Delta corresponds to a degeneration of the transport map - numerically
more tractable than blow-up for densities.

Energy dissipation and positivity.

Entropy Dissipation in a bounded domain for Φ:

d
dt
I(Φ(t)) = −∫

Ω
∣u(t) ∗Φ∣2 dx − ∫

∂Ω
Ψ′(det DΦ) ηT(cof DΦ)T ∂Φ

∂t
dx

from which, we conclude that the natural boundary condition associated to the
variational scheme for Φ is:

ηT(cof DΦ)T ∂Φ

∂t
= (cof DΦ)η ⋅ ∂Φ

∂t
= 0 on ∂Ω.

The corresponding boundary conditions for the density are no flux, i.e.

u ⋅ n = 0 on ∂Ω,
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Evolving diffeomorphisms

Boundary conditions

BC’s in Lagrangian formulation are

nT(cof DΦ)T ∂Φ

∂t
= (cof DΦ)n ⋅ ∂Φ

∂t
= 0.

On the square Ω = [−1, 1]2 these boundary conditions translate to

∂Φ1

∂t
∂Φ2

∂x2
− ∂Φ2

∂t
∂Φ2

∂x1
= 0 for x1 = −1, x1 = 1

−∂Φ1

∂t
∂Φ1

∂x2
+ ∂Φ2

∂t
∂Φ1

∂x1
= 0 for x2 = −1, x2 = 1.

Consider only diffeomorphisms which map each edge of ∂Ω to the
corresponding one of ∂Ω̃ without rotation. This reduces to

Φ1(t,±1) = ±1
∂Φ2

∂t
∂Φ2

∂x1
= 0 for x1 = ±1

Φ2(t,±1) = ±1
∂Φ1

∂t
∂Φ1

∂x2
= 0 for x2 = ±1.
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Explicit/Implicit-in-time discretization

Implicit Euler scheme: Minimization then discretization

Φn+1 −Φn

∆t
= ∇ ⋅ [Ψ′(det DΦn+1)(cof DΦn+1)T] +∇V ○Φn+1+∫ ∇W(Φn+1(x) −Φn+1(y))dy

Conforming finite element discretization

F(Φn+1, ϕ) = 1
∆t ∫Ω

(Φn+1 −Φn)ϕ(x)dx − ∫ ∇V(Φn+1)ϕ(x)dx

− ∫
Ω
[∫

Ω
∇W(Φn+1(x) −Φn+1(y))dy]ϕ(x)dx

+ ∫
Ω

Ψ′(det DΦn+1)(cof DΦn+1)T∇ϕ(x)dx.

One can use the lowest order H1 conforming finite elements, i.e.

Φ(x1, x2) =∑
k
(Φ1

k

Φ2
k
)ϕk(x1, x2).

(work in preparation with Ranetbauer and Wolfram - locals!, wait for next
week)
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Explicit/Implicit-in-time discretization

Explicit Euler scheme: Minimization then discretization

Φn+1 −Φn

∆t
= ∇ ⋅ [Ψ′(det DΦn)(cof DΦn)T] +∇V ○Φn+∫ ∇W(Φn(x) −Φn(y))dy

Full discretization by finite differences and quadrature formulas for the
derivatives and integral for interactions, (C.-Moll, SISC 2009).

To avoid problems at the boundaries with approximation with second
derivatives, we need to be careful.

Let us consider a discretization Φi,j on a uniform symmetric cartesian grid
Ω = [−1, 1]2 of Φ with mesh sizes ∆x = ∆x1 = ∆x2 = 2/N. Let us introduce the
following notations

(D←Φ)i,j =
1

∆x
(Φi,j −Φi−1,j) , (D→Φ)i,j =

1
∆x

(Φi+1,j −Φi,j)

and
(D↓Φ)i,j =

1
∆x

(Φi,j −Φi,j−1) , (D↑Φ)i,j =
1

∆x
(Φi,j+1 −Φi,j),

for all grid points i, j = 1, . . . ,N − 1.
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Explicit/Implicit-in-time discretization

Explicit Euler scheme: Minimization then discretization
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Figure : Schematic representation of the order of derivatives approximation.

Since for compactly supported densities, we have det(DΦ)→ +∞ at the boundary,
we impose that

Ψ′(det DΦ)∂Φ2

∂x2
= 0 for x1 = ±1 ,

which reflects that Ψ′(+∞) = 0.
Let us remark that the condition Ψ′(∞) = 0 is equivalent to f (0+) = 0 with
f (s) = U(s) − sU′(s), and the nonlinear diffusion term is originally ∆f (ρ).
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Explicit/Implicit-in-time discretization

Explicit schemes: Further comments

We use explicit Euler if diffusive terms are present if not we use explicit 4th
order RK schemes since the resulting approximation is a large ODE couple
system, we see degeneracy of the long time asymptotics otherwise.

The reported spatial discretization of the 2nd order terms leads to a CFL
condition of the type

∥Ψ′(det DΦ)∥L∞
∆t
∆x2

≤ 1
2
.

This condition reduces to the one in Gosse-Toscani in the 1D case that
preserves the monotonocity for diffusion equations in 1D.
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Initialization & Full Algorithm

Calculating the initial diffeomorphism

Rectangular mesh: diffeomorphism can be constructed by subsequently solving two
one-dimensional Monge-Kantorovich problems in x1 and x2 direction,
(Angenenet-Haker-Tannebaum).

Triangular mesh: No natural ordering !
The Monge-Ampère equation gives the optimal transportation plan T = T(x): unique
minimizing map is the gradient of a convex function u, i.e. T0 = ∇ϕ, which satisfies
the MA equation

det(D2ϕ(x)) = 1
ρo(∇ϕ(x)) .



icreauab

Gradient Flows Numerical schemes 2D Simulations

Initialization & Full Algorithm

Calculating the initial diffeomorphism

Rectangular mesh: diffeomorphism can be constructed by subsequently solving two
one-dimensional Monge-Kantorovich problems in x1 and x2 direction,
(Angenenet-Haker-Tannebaum).

Triangular mesh: No natural ordering !
The Monge-Ampère equation gives the optimal transportation plan T = T(x): unique
minimizing map is the gradient of a convex function u, i.e. T0 = ∇ϕ, which satisfies
the MA equation

det(D2ϕ(x)) = 1
ρo(∇ϕ(x)) .



icreauab

Gradient Flows Numerical schemes 2D Simulations

Initialization & Full Algorithm

Numerical simulations

Numerical solver:

1 Given an initial density ρ0 = ρ0(x) calculate the corresponding initial
diffeomorphism by either determining the solution of the Monge Ampere
equation or by succesive 1D transport maps.

2 Map the optimal transportation plan to the initial diffeomorphism Φ0(x) = T0.
3 Apply the explicit-in-time discretization for Φ = Φ(x, t).

4 Reconstruct the corresponding density ρ = ρ(x, t) via

ρ(Φ(x, t), t) det(DΦ(x, t)) = 1.
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Diffusions

Linear Fokker-Planck Equation
Linear Diffusion:

Starting with parabola initial data and with U(s) = s log s, V = ∣x∣2/2 and W = 0:

∂tρ = ∇ ⋅ (∇ρ + xρ) .
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Diffusions

NonLinear Diffusion
Porous Medium Equation:

Starting with parabola initial data and with U(s) = s/2, V = W = 0:

∂tρ = ∇ ⋅ (∇ρ2 + xρ) .
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NonLinear Diffusion
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Merging

Relativistic Heat Equation
Flux-Limited Diffusion:

∂ρ

∂t
= ∇ ⋅

⎛
⎝
ρ

∇ρ√
ρ2 + ∣∇ρ∣2

⎞
⎠
= ∇ ⋅

⎛
⎝
ρ

∇ logρ√
1 + ∣∇ logρ∣2

⎞
⎠
.
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Blow-up

Swarming Model
Aggregation Equation:

Starting with parabola initial data and with U(s) = 0, V = 0, and W(x) = −e−∣x∣:

∂tρ = ∇ ⋅ [(∇W ∗ ρ)ρ] .
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Blow-up

Chemotaxis Model
PKS Equation:

Starting with parabola initial data and with U(s) = s log s, V = 0, and
W(x) = χ

2π log ∣x∣:
∂tρ = ∇ ⋅ [∇ρ + (∇W ∗ ρ)ρ] .

top right χ = 7π at t = 500, bottom left χ = 9π at t = 0.025, bottom right χ = 9π at
t = 0.02586440688.
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Blow-up

Attraction: W(x) = 1
2 ∣x∣

2

(a) t = 0.2 (b) t = 0.8 (c) Entropy

(d) t = 0.2 (e) t = 0.8
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Blow-up

Attraction-repulsion:W(x) = −1
2 ∣x∣

2
+

1
4 ∣x∣

4

(f) t = 0.8 (g) t = 1.4 (h) Entropy

(i) t = 0.8 (j) t = 1.4
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Blow-up

Attraction-repulsion: W(x) = 1
2 ∣x∣

2
− ln(∣x∣),

V(x) = −1
4 ln(∣x∣)

(k) t = 0.4 (l) t = 1 (m) Entropy

(n) t = 0.4 (o) t = 1
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Blow-up

Conclusions

The gradient flow interpretation induces a natural Lagrangian particle method
on a grid or moving mesh method.

It is a good solution to track accurately blow-up time and profiles and
degenerate diffusion problems.

It allows for merging of densities and finding stationary states for competing
attractive-repulsive effects.

Further improvements needs to be done to reconstruct better the density and to
approximate the evolution of the diffeomorphisms with higher order accuracy.

References:

1 C.-Moll (SISC 2009), C.-Caselles-Moll (PLMS 2013).
2 C.-Ranetbauer-Wolfram (work in preparation)
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