Swarming Models with Repulsive-Attractive Effects

J. A. Carrillo

Imperial College London

Lecture 1, Ravello 2013

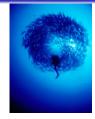
Outline

- Motivations
 - Collective Behavior Models
 - Variations
 - Fixed Speed models
 - 1st order Models
- 2 Outline of the course
- 3 Transversal Tool: Wasserstein Distances
 - Definition
 - Properties

Outline

- Motivations
 - Collective Behavior Models
 - Variations
 - Fixed Speed models
 - 1st order Models
- 2 Outline of the course
- Transversal Tool: Wasserstein Distances
 - Definition
 - Properties

Swarming by Nature or by design?



Fish schools and Birds flocks.

Highly developed social organization: insects (locusts, ants, bees ...), fishes, birds micro-organisms (myxo-bacteria, ...) and artificial robots for unmanned vehicle operation.

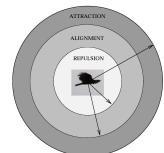
Interaction regions between individuals'

Aoki, Helmerijk et al., Barbaro, Birnir et al

• Repulsion Region: R_k .

Attraction Region: A_k.

• Orientation Region: O_k .



Highly developed social organization: insects (locusts, ants, bees ...), fishes, birds, micro-organisms (myxo-bacteria, ...) and artificial robots for unmanned vehicle operation.

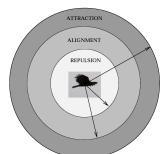
Interaction regions between individuals

^a Aoki, Helmerijk et al., Barbaro, Birnir et al

• Repulsion Region: R_k

• Attraction Region: A_k .

• Orientation Region: O_k .



Highly developed social organization: insects (locusts, ants, bees ...), fishes, birds, micro-organisms (myxo-bacteria, ...) and artificial robots for unmanned vehicle operation.

Interaction regions between individuals^a

• Repulsion Region: R_k .

• Attraction Region: A_k .

• Orientation Region: O_k .

ALIGNMENT
REPULSION

Aoki, Helmerijk et al., Barbaro, Birnir et al.

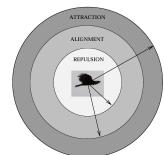
Highly developed social organization: insects (locusts, ants, bees ...), fishes, birds, micro-organisms (myxo-bacteria, ...) and artificial robots for unmanned vehicle operation.

Interaction regions between individuals^a

• Repulsion Region: R_k .

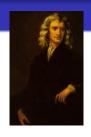
• Attraction Region: A_k .

• Orientation Region: O_k .



Aoki, Helmerijk et al., Barbaro, Birnir et al.

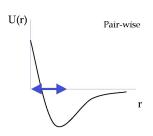
$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ m\frac{dv_i}{dt} = (\alpha - \beta |v_i|^2)v_i - \sum_{j \neq i} \nabla U(|x_i - x_j|). \end{cases}$$



- Self-propulsion and friction terms
- Attraction/Repulsion modeled by an

$$U(r) = -C_A e^{-r/\ell_A} + C_R e^{-r/\ell_R}$$

$$C = C_R/C_A > 1, \ell = \ell_R/\ell_A < 1$$
 and $C\ell^2 < 1$:



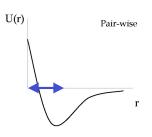
$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ m\frac{dv_i}{dt} = (\alpha - \beta |v_i|^2)v_i - \sum_{j \neq i} \nabla U(|x_i - x_j|). \end{cases}$$

Model assumptions:

- Self-propulsion and friction terms determines an asymptotic speed of $\sqrt{\alpha/\beta}$.
- Attraction/Repulsion modeled by an

$$U(r) = -C_A e^{-r/\ell_A} + C_R e^{-r/\ell_R}$$

$$C = C_R/C_A > 1, \ell = \ell_R/\ell_A < 1$$
 and $C\ell^2 < 1$:



$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ m\frac{dv_i}{dt} = (\alpha - \beta |v_i|^2)v_i - \sum_{j \neq i} \nabla U(|x_i - x_j|). \end{cases}$$

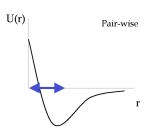
Model assumptions:

- Self-propulsion and friction terms determines an asymptotic speed of $\sqrt{\alpha/\beta}$.
- Attraction/Repulsion modeled by an effective pairwise potential U(x).

$$U(r) = -C_A e^{-r/\ell_A} + C_R e^{-r/\ell_R}.$$

One can also use Bessel functions in 2D and 3D to produce such a potential.

$$C = C_R/C_A > 1$$
, $\ell = \ell_R/\ell_A < 1$ and $C\ell^2 < 1$:



$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ m\frac{dv_i}{dt} = (\alpha - \beta |v_i|^2)v_i - \sum_{j \neq i} \nabla U(|x_i - x_j|). \end{cases}$$

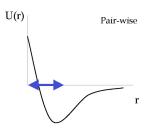
Model assumptions:

- Self-propulsion and friction terms determines an asymptotic speed of $\sqrt{\alpha/\beta}$.
- Attraction/Repulsion modeled by an effective pairwise potential U(x).

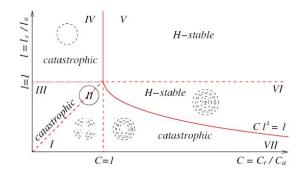
$$U(r) = -C_A e^{-r/\ell_A} + C_R e^{-r/\ell_R}.$$

One can also use Bessel functions in 2D and 3D to produce such a potential.

$$C = C_R/C_A > 1$$
, $\ell = \ell_R/\ell_A < 1$ and $C\ell^2 < 1$:



Classification of possible patterns: Morse potential. D'Orsogna, Bertozzi et al. model (PRL 2006).



Model with an asymptotic speed

Typical patterns: milling, double milling or flocking:



Velocity consensus model

Cucker-Smale Model (IEEE Automatic Control 2007):

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ \frac{dv_i}{dt} = \sum_{j=1}^{N} a_{ij} (v_j - v_i), \end{cases}$$

with the communication rate, $\gamma > 0$:

$$a_{ij} = a(|x_i - x_j|) = \frac{1}{(1 + |x_i - x_j|^2)^{\gamma}}.$$

Cucker-Smale Model (IEEE Automatic Control 2007):

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ \frac{dv_i}{dt} = \sum_{j=1}^{N} a_{ij} (v_j - v_i), \end{cases}$$

with the communication rate, $\gamma \geq 0$:

$$a_{ij} = a(|x_i - x_j|) = \frac{1}{(1 + |x_i - x_j|^2)^{\gamma}}.$$

Asymptotic flocking: $\gamma < 1/2$; Cucker-Smale.

General Proof for $0 < \gamma \le 1/2$; C.-Fornasier-Rosado-Toscani.

Outline

- Motivations
 - Collective Behavior Models
 - Variations
 - Fixed Speed models
 - 1st order Models
- - Definition
 - Properties

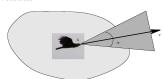
Leadership, Geometrical Constraints, and Cone of Influence

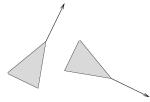
Cucker-Smale with local influence regions:

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ \frac{dv_i}{dt} = \sum_{j \in \Sigma_i(t)} a(|x_i - x_j|)(v_j - v_i), \end{cases}$$

where $\Sigma_i(t) \subset \{1, \dots, N\}$ is the set of dependence, given by

$$\Sigma_i(t) := \left\{ 1 \le \ell \le N : \frac{(x_\ell - x_i) \cdot v_i}{|x_\ell - x_i| |v_i|} \ge \alpha \right\}$$





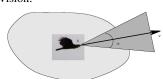
Cucker-Smale with local influence regions:

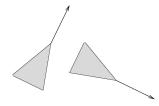
$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ \frac{dv_i}{dt} = \sum_{j \in \Sigma_i(t)} a(|x_i - x_j|)(v_j - v_i), \end{cases}$$

where $\Sigma_i(t) \subset \{1, \dots, N\}$ is the set of dependence, given by

$$\Sigma_i(t) := \left\{ 1 \le \ell \le N : \frac{(x_\ell - x_i) \cdot v_i}{|x_\ell - x_i| |v_i|} \ge \alpha \right\}.$$

Cone of Vision:



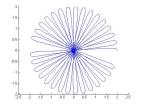


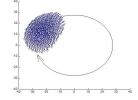
Roosting Forces

Adding a roosting area to the model:

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ \frac{dv_i}{dt} = (\alpha - \beta |v_i|^2)v_i - \sum_{j \neq i} \nabla U(|x_i - x_j|) - v_i^{\perp} \nabla_{x_i} \left[\phi(x_i) \cdot v_i^{\perp} \right]. \end{cases}$$
with the roosting potential ϕ given by $\phi(x) := \frac{b}{4} \left(\frac{|x|}{R_{\text{Roost}}} \right)^4.$
Roosting effect: milling flocks $N = 400$, $R_{\text{roost}} = 20$.

Roosting effect: milling flocks N = 400, $R_{\text{roost}} = 20$.





Self-Propelling/Friction/Interaction with Noise Particle Model:

$$\begin{cases} \dot{x}_i = v_i, \\ dv_i = \left[(\alpha - \beta |v_i|^2) v_i - \nabla_{x_i} \sum_{j \neq i} U(|x_i - x_j|) \right] dt + \sqrt{2\sigma} d\Gamma_i(t) , \end{cases}$$

where $\Gamma_i(t)$ are N independent copies of standard Wiener processes with values in \mathbb{R}^d and $\sigma > 0$ is the noise strength. The Cucker–Smale Particle Model with Noise:

$$\begin{cases} dx_i = v_i dt, \\ dv_i = \sum_{j=1}^{N} a(|x_j - x_i|)(v_j - v_i) dt + \sqrt{2\sigma \sum_{j=1}^{N} a(|x_j - x_i|)} d\Gamma_i(t) \end{cases}$$

Self-Propelling/Friction/Interaction with Noise Particle Model:

$$\begin{cases} x_i = v_i, \\ dv_i = \left[(\alpha - \beta |v_i|^2) v_i - \nabla_{x_i} \sum_{j \neq i} U(|x_i - x_j|) \right] dt + \sqrt{2\sigma} d\Gamma_i(t) , \end{cases}$$

where $\Gamma_i(t)$ are N independent copies of standard Wiener processes with values in \mathbb{R}^d and $\sigma > 0$ is the noise strength. The Cucker–Smale Particle Model with Noise:

$$\begin{cases} dx_i = v_i dt, \\ dv_i = \sum_{j=1}^N a(|x_j - x_i|)(v_j - v_i) dt + \sqrt{2\sigma \sum_{j=1}^N a(|x_j - x_i|)} d\Gamma_i(t). \end{cases}$$

Outline

Motivations

- Motivations
 - Collective Behavior Models
 - Variations
 - Fixed Speed models
 - 1st order Models
- - Definition
 - Properties

Vicsek's model

Assume N particles moving at unit speed: reorientation & diffusion:

$$\begin{cases} dX_t^i = V_t^i dt, \\ dV_t^i = \sqrt{2} P(V_t^i) \circ dB_t^i - P(V_t^i) \left(\frac{1}{N} \sum_{j=1}^N K(X_t^i - X_t^j)(V_t^i - V_t^j) \right) dt. \end{cases}$$

$$P(v) = I - \frac{v \otimes v}{|v|^2}.$$

$$\begin{cases} dX_t^i = V_t^i \, dt, \\ dV_t^i = \sqrt{2} \, P(V_t^i) \circ dB_t^i - P(V_t^i) \left(\frac{1}{N} \sum_{j=1}^N K(X_t^i - X_t^j) (V_t^i - V_t^j) \right) dt. \end{cases}$$

Here P(v) is the projection operator on the tangent space at v/|v| to the unit sphere in \mathbb{R}^d , i.e.,

$$P(v) = I - \frac{v \otimes v}{|v|^2}.$$

Noise in the Stratatonovich sense: imposed by the rigorous construction of the Brownian motion on a manifold. Rigorous derivation: Bolley-Cañizo-C.

Main issue: phase transition? Degond-Liu-Frouvelle.

$$\begin{cases} dX_t^i = V_t^i dt, \\ dV_t^i = \sqrt{2} P(V_t^i) \circ dB_t^i - P(V_t^i) \left(\frac{1}{N} \sum_{j=1}^N K(X_t^i - X_t^j) (V_t^i - V_t^j) \right) dt. \end{cases}$$

Here P(v) is the projection operator on the tangent space at v/|v| to the unit sphere in \mathbb{R}^d , i.e.,

$$P(v) = I - \frac{v \otimes v}{|v|^2}.$$

Noise in the Stratatonovich sense: imposed by the rigorous construction of the Brownian motion on a manifold. Rigorous derivation: Bolley-Cañizo-C.

Main issue: phase transition? Degond-Liu-Frouvelle

$$\begin{cases} dX_{t}^{i} = V_{t}^{i} dt, \\ dV_{t}^{i} = \sqrt{2} P(V_{t}^{i}) \circ dB_{t}^{i} - P(V_{t}^{i}) \left(\frac{1}{N} \sum_{j=1}^{N} K(X_{t}^{i} - X_{t}^{j})(V_{t}^{i} - V_{t}^{j})\right) dt. \end{cases}$$

Here P(v) is the projection operator on the tangent space at v/|v| to the unit sphere in \mathbb{R}^d , i.e.,

$$P(v) = I - \frac{v \otimes v}{|v|^2}.$$

Noise in the Stratatonovich sense: imposed by the rigorous construction of the Brownian motion on a manifold. Rigorous derivation: Bolley-Cañizo-C.

Main issue: phase transition? Degond-Liu-Frouvelle.

$$\begin{cases} dX_{t}^{i} = V_{t}^{i} dt, \\ dV_{t}^{i} = \sqrt{2} P(V_{t}^{i}) \circ dB_{t}^{i} - P(V_{t}^{i}) \left(\frac{1}{N} \sum_{j=1}^{N} K(X_{t}^{i} - X_{t}^{j})(V_{t}^{i} - V_{t}^{j})\right) dt. \end{cases}$$

Here P(v) is the projection operator on the tangent space at v/|v| to the unit sphere in \mathbb{R}^d , i.e.,

$$P(v) = I - \frac{v \otimes v}{|v|^2}.$$

Noise in the Stratatonovich sense: imposed by the rigorous construction of the Brownian motion on a manifold. Rigorous derivation: Bolley-Cañizo-C.

Main issue: phase transition? Degond-Liu-Frouvelle.

Outline

- Motivations
 - Collective Behavior Models
 - Variations
 - Fixed Speed models
 - 1st order Models
- - Definition
 - Properties

$$m\frac{d^2x_i}{d^2t} + \alpha \frac{dx_i}{dt} + \sum_{i \neq i} \nabla U(|x_i - x_j|) = 0$$

so finally, we obtain

$$\frac{dx_i}{dt} = -\sum_{j \neq i} \nabla U(|x_i - x_j|) \qquad \text{in the continuum setting} \Rightarrow \begin{cases} \frac{\partial \rho}{\partial t} + \operatorname{div}(\rho v) = 0 \\ v = -\nabla U * \rho \end{cases}$$

Flock Solutions: stationary states x_i^s of the 1st order model are connected to particular solutions of the Bertozzi et al 2nd order model of the form

$$x_i(t) = x_i^s + t v_0$$

with v_0 fixed with $|v_0|^2 = \frac{\alpha}{\beta}$

$$m\frac{d^2x_i}{d^2t} + \alpha \frac{dx_i}{dt} + \sum_{i \neq i} \nabla U(|x_i - x_j|) = 0$$

so finally, we obtain

$$\frac{dx_i}{dt} = -\sum_{j \neq i} \nabla U(|x_i - x_j|) \qquad \text{in the continuum setting} \Rightarrow \begin{cases} \frac{\partial \rho}{\partial t} + \operatorname{div}(\rho v) = 0 \\ v = -\nabla U * \rho \end{cases}$$

Flock Solutions: stationary states x_i^s of the 1st order model are connected to particular solutions of the Bertozzi et al 2nd order model of the form

$$x_i(t) = x_i^s + t v_0$$

with v_0 fixed with $|v_0|^2 = \frac{\alpha}{\beta}$

$$m\frac{d^2x_i}{d^2t} + \alpha \frac{dx_i}{dt} + \sum_{i \neq i} \nabla U(|x_i - x_j|) = 0$$

so finally, we obtain

$$\frac{dx_i}{dt} = -\sum_{j \neq i} \nabla U(|x_i - x_j|) \qquad \text{in the continuum setting} \Rightarrow \begin{cases} \frac{\partial \rho}{\partial t} + \operatorname{div}(\rho v) = 0 \\ v = -\nabla U * \rho \end{cases}$$

Flock Solutions: stationary states x_i^s of the 1st order model are connected to particular solutions of the Bertozzi et l 2nd order model of the form

$$x_i(t) = x_i^s + t v_0$$

with v_0 fixed with $|v_0|^2 = \frac{\alpha}{\beta}$

1st Order Friction Model:

Edelshtein-Keshet, Mogilner (JMB 2000): Assume the variations of the velocity and speed are much smaller than spatial variations, then from Newton's equation:

$$m\frac{d^2x_i}{d^2t} + \alpha\frac{dx_i}{dt} + \sum_{j\neq i} \nabla U(|x_i - x_j|) = 0$$

so finally, we obtain

$$\frac{dx_i}{dt} = -\sum_{j \neq i} \nabla U(|x_i - x_j|) \qquad \text{in the continuum setting} \Rightarrow \begin{cases} \frac{\partial \rho}{\partial t} + \operatorname{div}(\rho v) = 0 \\ v = -\nabla U * \rho \end{cases}$$

Flock Solutions: stationary states x_i^s of the 1st order model are connected to particular solutions of the Bertozzi et l 2nd order model of the form

$$x_i(t) = x_i^s + tv_0$$

with v_0 fixed with $|v_0|^2 = \frac{\alpha}{\beta}$.

$$m\frac{d^2x_i}{d^2t} + \alpha \frac{dx_i}{dt} + \sum_{i \neq i} \nabla U(|x_i - x_j|) = 0$$

so finally, we obtain

$$\frac{dx_i}{dt} = -\sum_{j \neq i} \nabla U(|x_i - x_j|) \qquad \text{in the continuum setting} \Rightarrow \begin{cases} \frac{\partial \rho}{\partial t} + \operatorname{div}(\rho v) = 0 \\ v = -\nabla U * \rho \end{cases}$$

Flock Solutions: stationary states x_i^s of the 1st order model are connected to particular solutions of the Bertozzi et l 2nd order model of the form

$$x_i(t) = x_i^s + tv_0$$

with v_0 fixed with $|v_0|^2 = \frac{\alpha}{\beta}$.

Mathematical Questions:

- What are the continuum models associated to these systems as the number of individuals gets larger and larger? Mean-field limits.
- What is the good analytical framework to deal with the possible concentration of mass in finite/infinite time in space or in velocity?
- What is the good analytical framework to deal with particles and continuum solutions at the same time?
- How to deal with the stability of patterns, which perturbations?

Mathematical Questions:

- What are the continuum models associated to these systems as the number of individuals gets larger and larger? Mean-field limits.
- What is the good analytical framework to deal with the possible concentration of mass in finite/infinite time in space or in velocity?
- What is the good analytical framework to deal with particles and continuum solutions at the same time?
- How to deal with the stability of patterns, which perturbations?

Mathematical Questions:

- What are the continuum models associated to these systems as the number of individuals gets larger and larger? Mean-field limits.
- What is the good analytical framework to deal with the possible concentration of mass in finite/infinite time in space or in velocity?
- What is the good analytical framework to deal with particles and continuum solutions at the same time?
- How to deal with the stability of patterns, which perturbations?

Mathematical Questions:

- What are the continuum models associated to these systems as the number of individuals gets larger and larger? Mean-field limits.
- What is the good analytical framework to deal with the possible concentration of mass in finite/infinite time in space or in velocity?
- What is the good analytical framework to deal with particles and continuum solutions at the same time?
- How to deal with the stability of patterns, which perturbations?

Schedule:

- Lecture 2: Second order Models Kinetic Equations for Swarming: measure solutions - mean field limit with/without noise.
- Lectures 3-4: First order Models Aggregation Equations: derivation and mean-field limit, stability/instability of steady states for repulsive/attractive potentials. Qualitative properties of Steady States.
- Lecture 5-6: Second order Models Kinetic Equations for Swarming: Flock solutions: Stability. Mill Solutions: Instability. Hydrodynamic models: mills and double mills. Asymptotic Speed Models as friction limits.

Schedule:

- Lecture 2: Second order Models Kinetic Equations for Swarming: measure solutions - mean field limit with/without noise.
- Lectures 3-4: First order Models Aggregation Equations: derivation and mean-field limit, stability/instability of steady states for repulsive/attractive potentials. Qualitative properties of Steady States.
- Lecture 5-6: Second order Models Kinetic Equations for Swarming: Flock solutions: Stability. Mill Solutions: Instability. Hydrodynamic models: mills and double mills. Asymptotic Speed Models as friction limits.

Schedule:

- Lecture 2: Second order Models Kinetic Equations for Swarming: measure solutions - mean field limit with/without noise.
- Lectures 3-4: First order Models Aggregation Equations: derivation and mean-field limit, stability/instability of steady states for repulsive/attractive potentials. Qualitative properties of Steady States.
- Lecture 5-6: Second order Models Kinetic Equations for Swarming: Flock solutions: Stability. Mill Solutions: Instability. Hydrodynamic models: mills and double mills. Asymptotic Speed Models as friction limits.

Outline

- Motivations
 - Collective Behavior Models
 - Variations
 - Fixed Speed models
 - 1st order Models
- Outline of the course
- 3 Transversal Tool: Wasserstein Distances
 - Definition
 - Properties

Transporting measures:

Given $T: \mathbb{R}^d \longrightarrow \mathbb{R}^d$ mesurable, we say that $\nu = T \# \mu$, if $\nu[K] := \mu[T^{-1}(K)]$ for all mesurable sets $K \subset \mathbb{R}^d$, equivalently

$$\int_{\mathbb{R}^d} arphi \, d
u = \int_{\mathbb{R}^d} (arphi \circ T) \, d\mu$$

for all $\varphi \in C_o(\mathbb{R}^d)$.

Random variables

Say that X is a random variable with law given by μ , is to say $X: (0, A, P) \longrightarrow (\mathbb{R}^d, \mathcal{B}_t)$ is a mesurable map such that X # P = t

$$\int_{\mathbb{R}^d} \varphi(x) \, d\mu = \int_{\Omega} (\varphi \circ X) \, dP = \mathbb{E} \left[\varphi(X) \right].$$

¹C. Villani, AMS Graduate Texts (2003).

Definition of the distance¹

Transporting measures:

Given $T: \mathbb{R}^d \longrightarrow \mathbb{R}^d$ mesurable, we say that $\nu = T \# \mu$, if $\nu[K] := \mu[T^{-1}(K)]$ for all mesurable sets $K \subset \mathbb{R}^d$, equivalently

$$\int_{\mathbb{R}^d} \varphi \, d\nu = \int_{\mathbb{R}^d} (\varphi \circ T) \, d\mu$$

for all $\varphi \in C_o(\mathbb{R}^d)$.

$$\int_{\mathbb{R}^d} \varphi(x) \, d\mu = \int_{\Omega} (\varphi \circ X) \, dP = \mathbb{E} \left[\varphi(X)
ight].$$

¹C. Villani, AMS Graduate Texts (2003).

Transporting measures:

Given $T: \mathbb{R}^d \longrightarrow \mathbb{R}^d$ mesurable, we say that $\nu = T \# \mu$, if $\nu[K] := \mu[T^{-1}(K)]$ for all mesurable sets $K \subset \mathbb{R}^d$, equivalently

$$\int_{\mathbb{R}^d} \varphi \, d\nu = \int_{\mathbb{R}^d} (\varphi \circ T) \, d\mu$$

for all $\varphi \in C_o(\mathbb{R}^d)$.

Random variables:

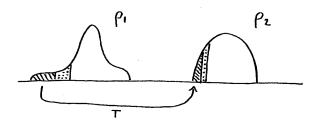
Say that *X* is a random variable with law given by μ , is to say $X: (\Omega, \mathcal{A}, P) \longrightarrow (\mathbb{R}^d, \mathcal{B}_d)$ is a mesurable map such that $X \# P = \mu$, i.e.,

$$\int_{\mathbb{R}^d} \varphi(x) \, d\mu = \int_{\Omega} (\varphi \circ X) \, dP = \mathbb{E} \left[\varphi(X) \right].$$

¹C. Villani, AMS Graduate Texts (2003).

Energy needed to transport m kg of sand from x = a to x = b:

energy =
$$m |a - b|^2$$

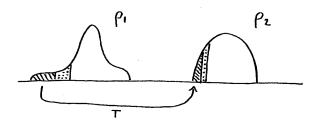


 $W_2^2(\rho_1, \rho_2) =$ Among all possible ways to transport the mass from ρ_1 to ρ_2 , find the one that minimizes the total energy

$$W_2^2(\rho_1, \rho_2) = \int_{\mathbb{R}^d} |x - T(x)|^2 d\rho_1(x)$$

Energy needed to transport m kg of sand from x = a to x = b:

energy =
$$m |a - b|^2$$



 $W_2^2(\rho_1, \rho_2) =$ Among all possible ways to transport the mass from ρ_1 to ρ_2 , find the one that minimizes the total energy

$$W_2^2(\rho_1, \rho_2) = \int_{\mathbb{R}^d} |x - T(x)|^2 d\rho_1(x)$$

Kantorovich-Rubinstein-Wasserstein Distance $p = 1, 2, \infty$:

$$W_p^p(\mu,\nu) = \inf_{\pi} \left\{ \iint_{\mathbb{R}^d \times \mathbb{R}^d} |x-y|^p d\pi(x,y) \right\} = \inf_{(X,Y)} \left\{ \mathbb{E}\left[|X-Y|^p \right] \right\}$$

where the transference plan π runs over the set of joint probability measures on $\mathbb{R}^d \times \mathbb{R}^d$ with marginals μ and $\nu \in \mathcal{P}_p(\mathbb{R}^d)$ and (X,Y) are all possible couples of random variables with μ and ν as respective laws.

$$W_{\infty}(\mu,\nu) = \inf_{\pi \in \Pi(\mu,\nu)} \sup_{(x,y) \in \text{supp}(\pi)} |x-y|.$$

Monge's optimal mass transport problem

Find

$$I := \inf_{T} \left\{ \int_{\mathbb{R}^d} |x - T(x)|^p \, d\mu(x); \ \nu = T \# \mu \right\}^{1/p}$$

Take $\gamma_T = (1_{\mathbb{R}^d} \times T) \# \mu$ as transference plan π

Kantorovich-Rubinstein-Wasserstein Distance $p = 1, 2, \infty$:

$$W_p^p(\mu,\nu) = \inf_{\pi} \left\{ \iint_{\mathbb{R}^d \times \mathbb{R}^d} |x - y|^p d\pi(x,y) \right\} = \inf_{(X,Y)} \left\{ \mathbb{E} \left[|X - Y|^p \right] \right\}$$

where the transference plan π runs over the set of joint probability measures on $\mathbb{R}^d \times \mathbb{R}^d$ with marginals μ and $\nu \in \mathcal{P}_p(\mathbb{R}^d)$ and (X,Y) are all possible couples of random variables with μ and ν as respective laws.

$$W_{\infty}(\mu,\nu) = \inf_{\pi \in \Pi(\mu,\nu)} \sup_{(x,y) \in \operatorname{supp}(\pi)} |x - y|,$$

Monge's optimal mass transport problem

Find

$$I := \inf_{T} \left\{ \int_{\mathbb{R}^d} |x - T(x)|^p d\mu(x); \ \nu = T \# \mu \right\}^{1/p}$$

Take $\gamma_T = (1_{\mathbb{R}^d} \times T) \# \mu$ as transference plan π .

Definition of the distance

Kantorovich-Rubinstein-Wasserstein Distance $p = 1, 2, \infty$:

$$W_p^p(\mu,\nu) = \inf_{\pi} \left\{ \iint_{\mathbb{R}^d \times \mathbb{R}^d} |x - y|^p d\pi(x,y) \right\} = \inf_{(X,Y)} \left\{ \mathbb{E}\left[|X - Y|^p \right] \right\}$$

where the transference plan π runs over the set of joint probability measures on $\mathbb{R}^d \times \mathbb{R}^d$ with marginals μ and $\nu \in \mathcal{P}_p(\mathbb{R}^d)$ and (X,Y) are all possible couples of random variables with μ and ν as respective laws.

$$W_{\infty}(\mu, \nu) = \inf_{\pi \in \Pi(\mu, \nu)} \sup_{(x, y) \in \text{supp}(\pi)} |x - y|,$$

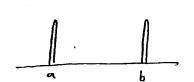
Monge's optimal mass transport problem:

Find

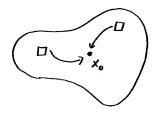
$$I := \inf_{T} \left\{ \int_{\mathbb{R}^d} |x - T(x)|^p d\mu(x); \ \nu = T \# \mu \right\}^{1/p}.$$

Take $\gamma_T = (1_{\mathbb{R}^d} \times T) \# \mu$ as transference plan π .

Definition



$$W_2^2(\delta_a,\delta_b)=|a-b|^2$$



$$W_2^2(\rho, \delta_{X_0}) = \int |X_0 - y|^2 d\rho(y)$$

= Var (\rho)

- - Collective Behavior Models
 - Variations
 - Fixed Speed models
 - 1st order Models
- Transversal Tool: Wasserstein Distances
 - Definition
 - Properties

Euclidean Wasserstein Distance

Convergence Properties

- **Onvergence of measures:** $W_2(\mu_n, \mu) \to 0$ is equivalent to $\mu_n \to \mu$ weakly-* as measures and convergence of second moments.
- **(a)** Weak lower semicontinuity: Given $\mu_n \rightharpoonup \mu$ and $\nu_n \rightharpoonup \nu$ weakly-* as measures, then

$$W_2(\mu,\nu) \leq \liminf_{n\to\infty} W_2(\mu_n,\nu_n).$$

Completeness: The space $\mathcal{P}_2(\mathbb{R}^d)$ endowed with the distance W_2 is a complete metric space.

Euclidean Wasserstein Distance

Convergence Properties

- **Onvergence of measures:** $W_2(\mu_n, \mu) \to 0$ is equivalent to $\mu_n \to \mu$ weakly-* as measures and convergence of second moments.
- **②** Weak lower semicontinuity: Given $\mu_n \rightharpoonup \mu$ and $\nu_n \rightharpoonup \nu$ weakly-* as measures, then

$$W_2(\mu,\nu) \leq \liminf_{n\to\infty} W_2(\mu_n,\nu_n).$$

Completeness: The space $\mathcal{P}_2(\mathbb{R}^d)$ endowed with the distance W_2 is a complete metric space.

Euclidean Wasserstein Distance

Convergence Properties

- **Onvergence of measures:** $W_2(\mu_n, \mu) \to 0$ is equivalent to $\mu_n \rightharpoonup \mu$ weakly-* as measures and convergence of second moments.
- **Weak lower semicontinuity:** Given $\mu_n \rightharpoonup \mu$ and $\nu_n \rightharpoonup \nu$ weakly-* as measures, then

$$W_2(\mu,\nu) \leq \liminf_{n\to\infty} W_2(\mu_n,\nu_n).$$

Ompleteness: The space $\mathcal{P}_2(\mathbb{R}^d)$ endowed with the distance W_2 is a complete metric space.

One dimensional Case

Distribution functions:

In one dimension, denoting by F(x) the distribution function of μ ,

$$F(x) = \int_{-\infty}^{x} d\mu,$$

we can define its pseudo inverse:

$$F^{-1}(\eta) = \inf\{x : F(x) > \eta\}$$
 for $\eta \in (0, 1)$.

we have $F^{-1}:((0,1),\mathcal{B}_1),d\eta)\longrightarrow (\mathbb{R},\mathcal{B}_1)$ is a random variable with law μ , i.e., $F^{-1}\#d\eta=\mu$

$$\int_{\mathbb{R}} \varphi(x) \, d\mu = \int_{0}^{1} \varphi(F^{-1}(\eta)) \, d\eta = \mathbb{E} \left[\varphi(X) \right]$$

One dimensional Case

Distribution functions:

In one dimension, denoting by F(x) the distribution function of μ ,

$$F(x) = \int_{-\infty}^{x} d\mu,$$

we can define its pseudo inverse:

$$F^{-1}(\eta) = \inf\{x : F(x) > \eta\}$$
 for $\eta \in (0, 1)$,

we have $F^{-1}:((0,1),\mathcal{B}_1),d\eta)\longrightarrow (\mathbb{R},\mathcal{B}_1)$ is a random variable with law μ , i.e., $F^{-1}\#dn=\mu$

$$\int_{\mathbb{R}} \varphi(x) d\mu = \int_{0}^{1} \varphi(F^{-1}(\eta)) d\eta = \mathbb{E} \left[\varphi(X) \right].$$

Wasserstein distance:

In one dimension, it can be checked^a that given two measures μ and ν with distribution functions F(x) and G(y) then, $(F^{-1} \times G^{-1}) \# d\eta$ has joint distribution function $H(x,y) = \min(F(x),G(y))$. Therefore, in one dimension, the optimal plan is given by $\pi_{opt}(x,y) = (F^{-1} \times G^{-1}) \# d\eta$, and thus

$$W_p(\mu,
u) = \left(\int_0^1 [F^{-1}(\eta) - G^{-1}(\eta)]^p d\eta\right)^{1/p} = \|F^{-1} - G^{-1}\|_{L^p(\mathbb{R})}$$

$$1 \le p \le \infty$$

^aW. Hoeffding (1940); M. Fréchet (1951); A. Pulvirenti, G. Toscani, Annali Mat. Pura Appl. (1996).

Wasserstein distance:

In one dimension, it can be checked^a that given two measures μ and ν with distribution functions F(x) and G(y) then, $(F^{-1} \times G^{-1}) \# d\eta$ has joint distribution function $H(x,y) = \min(F(x),G(y))$. Therefore, in one dimension, the optimal plan is given by $\pi_{opt}(x,y) = (F^{-1} \times G^{-1}) \# d\eta$, and thus

$$W_p(\mu, \nu) = \left(\int_0^1 [F^{-1}(\eta) - G^{-1}(\eta)]^p d\eta\right)^{1/p} = \|F^{-1} - G^{-1}\|_{L^p(\mathbb{R})}$$

$$1 \le p \le \infty$$
.

^aW. Hoeffding (1940); M. Fréchet (1951); A. Pulvirenti, G. Toscani, Annali Mat. Pura Appl. (1996).