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Mesoscopic models

Model with asymptotic velocity + Attraction/Repulsion:
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Mesoscopic models

Model with asymptotic velocity + Attraction/Repulsion:

Lty W+ divl(a— AP — v, (V. % p)f] = .

Velocity consensus Model:

of - V—w o PR
a +v-Vyf =V, [(/&2(/ W.f@:”ﬁ) dy dW).f(X-,‘vt)}

=E() (xv,1)

Orientation, Attraction and Repulsion:

% + v Vif —divy [(V2U * p)f] = Vo - [€(F) (x, v, 0)f (x, v, 1)] -
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Definition of the distance

Transporting measures:

Given T : RY — R? mesurable, we say that v = T#, if v[K] := p[T~" (K)] for all
mesurable sets K C R?, equivalently
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Transporting measures:

Given T : RY — R? mesurable, we say that v = T#, if v[K] := p[T~" (K)] for all
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Random variables:

Say that X is a random variable with law given by p, is to say
X :(Q, A, P) — (R By) is a mesurable map such that X#P = p, i.e.,

/li%.’d px)du = Az(cp 0X)dP =E[p(X)].




Kinetic Models and measure solutions
[e]e] lelele]
Vlasov-like Models

Definition of the distance

Transporting measures:

Given T : RY — R? mesurable, we say that v = T#, if v[K] := p[T~" (K)] for all
mesurable sets K C R?, equivalently

/ pdv = / (poT)du for all ¢ € C,(RY).
R4 R4

Random variables:

Say that X is a random variable with law given by p, is to say
X :(Q, A, P) — (R By) is a mesurable map such that X#P = p, i.e.,

[ ewdu= [ (oox)ap=Eewn).

Kantorovich-Rubinstein-Wasserstein Distance p = 1, 2:
W (p,v) = infix vy {E[|X — Y[’}




Kinetic Models and measure solutions
[e]e] lelele]
Vlasov-like Models

Definition of the distance
Transporting measures:

Given T : RY — R? mesurable, we say that v = T#, if v[K] := p[T~" (K)] for all
mesurable sets K C R?, equivalently

/ pdv = / (poT)du for all ¢ € C,(RY).
R4 R4

Random variables:

Say that X is a random variable with law given by p, is to say
X :(Q, A, P) — (R By) is a mesurable map such that X#P = p, i.e.,

[ ewdu= [ (oox)ap=Eewn).

Kantorovich-Rubinstein-Wasserstein Distance p = 1, 2:
W (p,v) = infix vy {E[|X — Y[’}

where (X, Y) are couples of random variables with p and v as respective laws.
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Well-posedness in probability measures!

Existence, uniqueness and stability

Take a potential U € Cz(R?), and fy a measure on R? x R with compact support.
There exists a solution f € C([0, +00); P1(R?)) in the sense of solving the equation
through the characteristics: f; := P'#fy with P' the flow map associated to the
equation.

1 Dobrushin-Hepp-Neunzert, 1977-79 for the Vlasov.
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Well-posedness in probability measures!

Existence, uniqueness and stability

Take a potential U € Cz(R?), and fy a measure on R? x R with compact support.
There exists a solution f € C([0, +00); P1(R?)) in the sense of solving the equation
through the characteristics: f; := P'#fy with P' the flow map associated to the
equation.

Moreover, the solutions remains compactly supported for all time with a possibly
growing in time support.

Moreover, given any two solutions f and g with initial data f; and g, there is an
increasing function depending on the size of the support of the solutions and the
parameters, such that

Wi(fi, &) < a(r) Wi(fo, go)

1 Dobrushin-Hepp-Neunzert, 1977-79 for the Vlasov.
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Convergence of the particle method

@ Empirical measures: if x;,v; : [0, T) — R, fori = 1,..., N, is a solution to the

ODE system,
dX[
— =V
dt '
al - +
dr

then the f : [0, T) — Py (R?) given by

N
It =D midq )
i=1

is the solution corresponding to initial atomic measures.
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Vlasov-like Models

Convergence of the particle method

@ Empirical measures: if x;,v; : [0, T) — R, fori = 1,..., N, is a solution to the

ODE system,

dX[

— =V

dt ' ) )

. . orientation
propulsion-friction attraction-repulsion
N
dv,- 2 !
o = (la=Bwlv - D omVU(lxi —x1) + Y myag (v —vi) .

JF#i J=1

then the f : [0, T) — Py (R?) given by

N
(1) =D midq )
i=1

is the solution corresponding to initial atomic measures.

@ Convergence of approximations of measures by particles due to the stability at
any given time T as an alternative derivation of the kinetic models.
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Mean-Field Limit

Just take as many particles as needed in order to have

Wi(fi, ) < () Wilfo,fd) =0 asN — oo

by sampling the initial data in a suitable way.
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Vlasov-like Models

Mean-Field Limit

Just take as many particles as needed in order to have

Wi(fi, ) < () Wilfo,fd) =0 asN — oo

by sampling the initial data in a suitable way.

The sequences of particle solutions becomes a Cauchy sequence with the distance W,

converging to the solution of the kinetic equation.
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Vlasov-like Models

Mean-Field Limit

Just take as many particles as needed in order to have

Wi(fi, ) < () Wilfo,fd) =0 asN — oo

by sampling the initial data in a suitable way.

The sequences of particle solutions becomes a Cauchy sequence with the distance W,
converging to the solution of the kinetic equation.
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Hauray-Jabin 2011: mean field limit for Vlasov with potentials such that
|VU| < r~®, with o < 1 with initial data for Vlasov in L' N L.
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Proof of the Theorem

Conditions on E:

@ E is continuous on [0, 7] x R?,

@ For some C > 0,
|E(t,x)| < Ce(1 + |x]), forallz,x € [0,T] x RY, and

@ E s locally Lipschitz with respect to x, i.e., for any compact set K C R there is
some Lg > 0 such that

|E(t,x) — E(t,y)| < Lx|x — yl, t€0,T], x,y€eK.
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Proof of the Theorem

Of +v - Vof + E-Vof +divi((or = Bv[*)vf) =0,
which is a linear first-order equation. The associated characteristic system of ODE’s

1S
d
—X=V,
dt ’

%v — E(t,X) + V(a— B|V]).
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Proof of the Theorem

Of +v - Vof + E-Vof +divi((or = Bv[*)vf) =0,
which is a linear first-order equation. The associated characteristic system of ODE’s

is
d
—X=V,
dt '
d 2
EV =E(t,X)+ V(a—B1|V]).
Flow Map:

Given (Xo, Vo) € R? x R? there exists a unique solution (X, V) to the ODE system in
C'([0, T); R? x RY) satisfying X(0) = X, and V(0) = Vo. In addition, there exists a
constant C which depends only on T, |Xo|, |Vol, v, 8 and the constant Cg, such that

1(X(1), V()| < |(Xo, Vo)| e forall 1 € [0,T].
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Proof of the Theorem

We can thus consider the flow at time ¢ € [0, T') of ODE’s equations
Te :RYx R - R x R

Again by basic results in ode’s, the map (¢, x,v) — Tg(x,v) = (X, V) with (X, V) the
solution at time 7 to the ODE system with initial data (x, v), is jointly continuous in
(t,x,v).
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Proof of the Theorem

We can thus consider the flow at time ¢ € [0, T') of ODE’s equations
Te :RYx R - R x R
Again by basic results in ode’s, the map (¢, x,v) — Tg(x,v) = (X, V) with (X, V) the
solution at time 7 to the ODE system with initial data (x, v), is jointly continuous in
(t,x,v).
For a measure fy € P;(R? x R?), the function
F00,T) = Pi(R x RY), 1 fi == Ti#f

is the unique measure solution to the linear PDE.
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@ Taking characteristics with initial data inside a fixed ball then there exists R > 0
depending on 7', in which the whole trajectories are inside a possibly larger ball
of radius R for all times t € [0, T].
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Proof of the Theorem

Estimates on characteristics:

@ Taking characteristics with initial data inside a fixed ball then there exists R > 0
depending on 7', in which the whole trajectories are inside a possibly larger ball
of radius R for all times t € [0, T].

@ For some constant C which depends only on «, 3, R and Lipg (E"), for all P in
Br

o

Ta(P) — T (P)| < © El - E

sup
s€[0,7)

1o (Bg) |

@ For some constant C as before

|7—Er(P1) — 7}’(1‘)2)| < |P1 — Pz‘ eC-lx(LiPR(Es)+l)1/.&-7 = [07 T}.
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Proof of the Theorem

Error on transported measures through different flows:

Let 71,75 : RY — R? be two Borel measurable functions. Also, take feP (Rd)‘
Then,
Wi(Ti#f, 2#f) < H,TI - 7§‘|L%(5uppf’) :

Continuity in time for solutions of the linear transport:

Wi(TE#f, Ta#tf) < Clt—s|, foranyt,s € [0,T].
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Proof of the Theorem

Error on transported measures through different flows:

Let 71,75 : RY — R? be two Borel measurable functions. Also, take feP (Rd)‘
Then,

Wi (ﬂ#f’TZ#f) < H,TI - %HLx(prf) :

Continuity in time for solutions of the linear transport:

Wi(TE#f, Ta#tf) < Clt—s|, foranyt,s € [0,T].

Error on transported measures through different initial data:

Take a locally Lipschitz map 7 : R — R? and f, g € P1(R"), both with compact
support contained in the ball Bg. Then,

Wi(TH#f, T#g) < LWi(f.3g),

where L is the Lipschitz constant of 7 on the ball Bg.




Kinetic els and measure solutions
O00000e
Proof

Proof of the Theorem

Wi(fi, g) = Wi (T #fo, T, #80)

IN AN A

IA



Kinetic Models and measure solutio
O00000e
Proof

Proof of the Theorem

Wi(fi, g) = Wi (T #fo, T, #80)

S WI(T; 4o, T, #f0) + Wi (T, #fo, T, #o)
<

IN

IA



Kinetic els and measure solutions
O00000e
Proof

Proof of the Theorem

Wi(fi, &) = Wi (T #fo, T, #8o)
S WI(T; 4o, T, #f0) + Wi (T, #fo, T, #o)
S H77 - 7:”L°°(suppf0) +L’ Wl(ﬁ)»go)

<

<



Kinetic els and measure solutions
O00000e
Proof

Proof of the Theorem

Wi(fi, &) = Wi (T #fo, T, #8o)
S WI(T; 4o, T, #f0) + Wi (T, #fo, T, #o)
S H77 - 7:”L°°(suppf0) +L’ Wl(ﬁ)»go)

1
<o [ Elf) — Elgll ey d+ LV ()

<



Kinetic Models and measure solutions
O00000e
Proof

Proof of the Theorem

Wi(fi, &) = Wi (T #fo, T, #8o)
S WI(T; 4o, T, #f0) + Wi (T, #fo, T, #o)
S H77 - 7:”L°°(suppf0) +L’ Wl(ﬁ)»go)

1
<o [ Elf) — Elgll ey d+ LV ()

t
< CGsLipy(VU) / “UIW(f, g) ds + e Wi (fo, go).
0
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Rigorous Statement of the Mean-Field Limit

Aggregation Equation:
{ Op~+ V- (pu) =0, with u(t,x) := —VU * p, t>0, xeR’,
p(0,x) := po(x), x € RY,
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Particle Approximation and Empirical distribution p(7):
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withm; > 0,i=1,...,N. We set VU(0) = 0 even if singular at the origin.
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Setting of the problem

Rigorous Statement of the Mean-Field Limit

Aggregation Equation:
{ Op~+ V- (pu) =0, with u(t,x) := —VU * p, t>0, xeR’,
p(0,x) := po(x), x € RY,

Particle Approximation and Empirical distribution p(7):

Xi(t) = — ijVU(Xi(f) - X)),
X:(0) :X?/,ﬁ i=1,...,N.

N N
pn (t) = Zmifsx,»(z), Zmi = /d po(x)dx =1,
i=1 i=1 R
withm; > 0,i=1,...,N. We set VU(0) = 0 even if singular at the origin.

The convergence:

“pty — p° weakly-x as measures == py(t) — p(t) weakly-* as measures
Sfor small time or for every time?”

is a natural question.
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Quantities to Control: the W -distance between p(t) and py(¢), and the minimum
inter-particle distance:

1) = Ween(0), (1)), ma(0) i= _min_ (1X(0) = X,(0)

with 7° := 1(0) and 1%, := 7,(0).
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with 7° := 1(0) and 1%, := 7,(0).
Assumptions on the potential U: it is C* except at the origin, where it might have a
singularity. We set U(0) = 0 by definition, and

c
‘x|]+a’

IVU(x)| < and |D’U(x)| < vV x € RY\{0},

C
I

for—1 <a<d-1.



Mean-Field Limit for 1st Order Model
[eleY Yo}
Setting of the problem

Rigorous Statement of the Mean-Field Limit

Quantities to Control: the W -distance between p(t) and py(¢), and the minimum
inter-particle distance:

1) = Ween(0), (1)), ma(0) i= _min_ (1X(0) = X,(0)

with 7° := 1(0) and 1%, := 7,(0).
Assumptions on the potential U: it is C* except at the origin, where it might have a
singularity. We set U(0) = 0 by definition, and
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Note that due to the assumptions on U, we can always find 1 < p < oo such that

(o + 1)p’ < d, and thus VU belongs to W' (RY).

loc
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Setting of the problem

Rigorous Statement of the Mean-Field Limit

Quantities to Control: the W -distance between p(t) and py(¢), and the minimum

inter-particle distance:

1) = Ween(0), (1)), ma(0) i= _min_ (1X(0) = X,(0)

with 7° := 1(0) and 1%, := 7,(0).

Assumptions on the potential U: it is C* except at the origin, where it might have a
singularity. We set U(0) = 0 by definition, and

C 2 C d
[VU(x)| < FE and |D°U(x)| < Pk Vx e R\{0},

for—1 <a<d-1.

Note that due to the assumptions on U, we can always find 1 < p < oo such that

(o + 1)p’ < d, and thus VU belongs to W,.” (R?).

Weak Solutions: p € L°°(0, T; (L' N L7)(R?)) N C([0, T], P1(R?)), with initial data
po € (731 ﬂLP)(Rd).
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Rigorous Statement of the Mean-Field Limit

Main Result.-

Let p be a solution to the aggregation equation up to time 7 > 0, such that
p € L>(0,T; (L' nL")(RY)) N C([0, T], Pi (RY)), with initial data

e (PiNL)R),0<a< —1+d/p,and 1 < p < 0.
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p € L>(0,T; (L' nL")(RY)) N C([0, T], Pi (RY)), with initial data

PP e PiNLP)RY),0< a< —1+d/p',and 1 < p < co. Furthermore, we assume
13 converges to p° for the distance do as the number of particles N goes to infinity,

Woo(uxy,po) —0 as N — oo,

and that the initial quantities 1°, 1), satisfy
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N—soo (n9)1+e
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Setting of the problem

Rigorous Statement of the Mean-Field Limit

Main Result.-

Let p be a solution to the aggregation equation up to time 7 > 0, such that

p € L>(0,T; (L' nL")(RY)) N C([0, T], Pi (RY)), with initial data

PP e PiNLP)RY),0< a< —1+d/p',and 1 < p < co. Furthermore, we assume
13 converges to p° for the distance do as the number of particles N goes to infinity,

Woo(uxy,po) —0 as N — oo,

and that the initial quantities 1°, 1), satisfy

(770)11//1’

N—soo (n9)1+e

Under the previous assumptions on the potential, for N large enough the associated
particle system is well-defined up to time 7', in the sense that there is no collision
between particles before that time, and moreover

wun(t) = p(r) weakly-* as measures as N — oo, forall ¢€ [0,7].
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Strategy of the Proof

@ In Step A, we estimate the growth of the W, Wasserstein distance between the
continuum and the discrete solutions 7 that involves 7 itself and 7,, in the form:

d77 d/p’ — [
L < cnlloll (140" ).
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@ In Step A, we estimate the growth of the W, Wasserstein distance between the
continuum and the discrete solutions 7 that involves 7 itself and 7,, in the form:

d77 d/p’ — [
L < cnlloll (140" ).

@ In Step B, we estimate the decay of the minimum inter-particle distance 7.,
which also involves the terms 1 and 7,, in the form:
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Ideas of the Proof

Strategy of the Proof

@ In Step A, we estimate the growth of the W, Wasserstein distance between the
continuum and the discrete solutions 7 that involves 7 itself and 7,, in the form:

d77 d/p’ — [
L < cnlloll (140" ).

@ In Step B, we estimate the decay of the minimum inter-particle distance 7.,

which also involves the terms 1 and 7,, in the form:
d”]ﬂl a )/ —_ «@
S > —Colpll (14707 5, )

@ In Step C, under the assumption of a well prepared initial approximation, we
combine the estimates above to conclude the desired result.
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Step A: Well-defined characteristics

The assumptions on the potential lead to

20x — |

IVU(x) — VU(y)| < min(|x], [y[)o+!
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Step A: Well-defined characteristics

The assumptions on the potential lead to

20x — |

IVU(x) — VU(y)| < min(|x], [y[)o+!

Given the velocity fields u(x,7) = =V U % p and “uy := —V U * uy". We define the
flows:

%(\If(t; 5,%)) = u(t;s, ¥ (;5,x)),
U(s;s,x) =X,
forall s,z € [0, 7], and

d
E(\IIN(t; $,%)) = un(t; s, ¥n(t;5,x)),

Uy (s;s,x) =x,

defined for all s, € [0, T)] since nJ, > 0.
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Step A: Well-defined Flows

ult, ) —u)| < [ [VUG=2) = VUG = Dlple,2) e
Rd
1
<2lx — t,z)d
<2k y'/Rd min(x =, [y — i I E

1
<4|x— —(t,2) dz.
< 4lx —y| sup /Rd ‘X_Z|a+lp(,1) z

xER4
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Step A: Well-defined Flows

ult,) = ue.)| < [ [VU(r=2) = VUG = 2lpl0.5) ds

1
re Min(|x — z[, [y — 2]

< 20x -y o p(t,z) dz

1
<4|x— —(t,2) dz.
< 4lx —y| sup /Rd ‘X_Z|a+lp(,1) z

xER4

Now, splitting the last integral into the near- and far-field sets A := {z: |x — z| > 1}
and B := R? — A and estimating the two terms, we deduce

. 1 . 1 1/p’

[ et <o+ ([ ) o0l
R z B A

< Cllell,

for all x € R due to the assumption (1 4 a)p’ < d.
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Step A: Estimate of the evolution of W,

Fixed 0 < 7o < min(7, T, ) and choose an optimal transport map for W, denoted by
T between p(to) and pn(t0); pv(t0) = T #p(t0).
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Step A: Estimate of the evolution of W,

Fixed 0 < 7o < min(7, T, ) and choose an optimal transport map for W, denoted by
T between p(to) and pn(t0); pv(t0) = T #p(t0).

The solution of the aggregation equation is given by p(t) = W¥(#;t0, - )#p(0) and
Obvious]y MN(’) = \I/N(l‘; fo, * )#/J,N(lo) for ¢t > 1.
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Step A: Estimate of the evolution of W,

Fixed 0 < 7o < min(7, T, ) and choose an optimal transport map for W, denoted by
T between p(to) and pn(t0); pv(t0) = T #p(t0).

The solution of the aggregation equation is given by p(t) = W¥(#;t0, - )#p(0) and
obviously uy () = Wy (t; 10, - )#pun(to) fort > 1o. We also notice that for ¢ > 1,

T'#p(t) = un(t), where T' = Uy(t;10,-) 0 T 0 U(to;1,-).
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Step A: Estimate of the evolution of W,

Fixed 0 < 7o < min(7, T, ) and choose an optimal transport map for W, denoted by
T between p(to) and pn(t0); pv(t0) = T #p(t0).

The solution of the aggregation equation is given by p(t) = W¥(#;t0, - )#p(0) and
obviously uy () = Wy (t; 10, - )#pun(to) fort > 1o. We also notice that for ¢ > 1,

T'#p(t) = un(t), where T' = Uy(t;10,-) 0 T 0 U(to;1,-).

By Definition of the W, Wasserstein distance, we get

0(1) = Wee (v (1), (1) < |9 (8510,) = Un (310, ) © T°| oo
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Ideas of the Proof

Step A: Estimate of the evolution of W,

Fixed 0 < 7o < min(7, T, ) and choose an optimal transport map for W, denoted by
T between p(to) and pn(t0); pv(t0) = T #p(t0).

The solution of the aggregation equation is given by p(t) = W¥(#;t0, - )#p(0) and
obviously uy () = Wy (t; 10, - )#pun(to) fort > 1o. We also notice that for ¢ > 1,

T'#p(t) = un(t), where T' = Uy(t;10,-) 0 T 0 U(to;1,-).

By Definition of the W, Wasserstein distance, we get
0(t) = Woo (un (1), p(1)) < ¥ (5510,-) = Un(;10,-) © T oo

‘We notice that

4 (W (ts10, 7)) — Wt 10, )

dt = un(to, T°(x)) — u(to, x).

=ty
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Ideas of the Proof

Step A: Estimate of the evolution of W,

Fixed 0 < 7o < min(7, T, ) and choose an optimal transport map for W, denoted by
T between p(to) and pn(t0); pv(t0) = T #p(t0).

The solution of the aggregation equation is given by p(t) = W¥(#;t0, - )#p(0) and
obviously uy () = Wy (t; 10, - )#pun(to) fort > 1o. We also notice that for ¢ > 1,

T'#p(t) = un(t), where T' = Uy(t;10,-) 0 T 0 U(to;1,-).

By Definition of the W, Wasserstein distance, we get
0(t) = Woo (un (1), p(1)) < ¥ (5510,-) = Un(;10,-) © T oo

‘We notice that

4 (W (ts10, 7)) — Wt 10, )

dt = un(to, T°(x)) — u(to, x).

=ty

and thus
d
SN 0,) 0 T = W(tit0, o], < lwlto, ) o T° = i oo

=Ty
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Step A: Estimate of the evolution of W,

we now note tha

uy (t0, T'(x)) — u(to,x) = — | VU(T’(x) — y)dun(t0,y / VU(x —y)p(to,y

R4
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Step A: Estimate of the evolution of W,

we now note tha

un (10, TO()) — uto %) = — | VUT'(6) — Y)dpux (10, y /VUx— plto,y)dy

== [ (VU@ = T0) = VUl =) plto. )y
and thus dtn

< Csup [ [VU(T(x) = T(y) = VU(x = y)|p(y)dy.

d t xeRd JRA
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Step A: Estimate of the evolution of W,

We now note thal

un(to, T°(x)) — u(to, x) = — 5 VU(T"(x) — y)dpn (10, y / VU(x —y)p(to,y)dy
=- /R (VUT ) = T°6) - VU~ y)) Pl )y

and thus d; —c s [ IVU(T (x) — T(y) — VU(x — y)|p(y)dy.

We decompose the integral on RY into the near- and the far-field parts as
A:={z:|x—z| >4n}and B:= R? — A, to get

2(x =T+ 1y=THI)
B | (] 70 — 7o)’

)dy < Cnlpl|.
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Step A: Estimate of the evolution of W,

We now note thal

un(to, T°(x)) — u(to, x) = — 5 VU(T"(x) — y)dpn (10, y / VU(x —y)p(to,y)dy
=- /R (VUT ) = T°6) - VU~ y)) Pl )y

and thus d; —c s [ IVU(T (x) — T(y) — VU(x — y)|p(y)dy.

We decompose the integral on RY into the near- and the far-field parts as
A:={z:|x—z| >4n}and B:= R? — A, to get

2(x =T+ 1y=THI)
B | (] 70 — 7o)’

)dy < Cnlpl|.

and

7, < / PO) 4t / %dyscmd/”’—wnd/” ol
B B m

[x — y|*

Using that n,, < 27, one obtains the estimate in Step A.
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Step B: Estlmate of the evolution of 7,

Xi = Xj| >

—Jun (X;) — un(X;)]

- / VUGG =) = VU )| dn ()

\Y

=— | VUK =T©) = VUX = T)lp(y)dy,

Rd

where 7T is the optimal map satisfying (1) = T#p(1).
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Step B: Estlmate of the evolution of 7,

1Xi = Xj| = —|un(Xi) — un (X))]

I \/

/ VUK —y) = VU — )| dyn ()

IVUXi = T(y)) = VUX; = TO)I p()dy,

Rd
where 7T is the optimal map satisfying (1) = T#p(1).

Decomposing in near- and far-field parts the domain R? as
A:={y:|X;i —y| >2nand |X; — y| > 2n} and B := R? — A, we can estimate
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Step B: Estlmate of the evolution of 7,

1Xi = Xj| = —|un(Xi) — un (X))]

I \/

/ VUK —y) = VU — )| dyn ()

IVUXi = T(y)) = VUX; = TO)I p()dy,

Rd
where 7T is the optimal map satisfying (1) = T#p(1).

Decomposing in near- and far-field parts the domain R? as
A:={y:|X;i —y| >2nand |X; — y| > 2n} and B := R? — A, we can estimate

/A VUK — T() — VUK — T6))| pl)dy

20X, — X|
/ min(X — T0), 1K, — T PO

a 1 1
< 2Py, - x| / I p()dy < Cullpll,
A \Xi

ylett X — ylet!
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Step B: Estimate of the evolution of W,

For the integral over 3, we use that as soon as X; # 7T (y), then

1 1
< T~ A/ N\l 77
<X —ToR <

and VU(X; — T (y)) = 0 otherwise, and similarly for X;.

IVUXi =T (y))
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Step B: Estimate of the evolution of W,

For the integral over 3, we use that as soon as X; # 7T (y), then

1 1
< T~ A/ N\l 77
<X —ToR <

and VU(X; — T (y)) = 0 otherwise, and similarly for X;.

IVUXi =T (y))

A simple Holder computation implies that

/B VU — T()) — VU — T0))| p0)dy < Cr’? 2]l



Mean-Field Limit for 1st Order Model
0000000 e00
Ideas of the Proof

Step B: Estimate of the evolution of W,

For the integral over 3, we use that as soon as X; # 7T (y), then

1 1
< T~ A/ N\l 77
<X —ToR <

and VU(X; — T (y)) = 0 otherwise, and similarly for X;.

IVUXi =T (y))

A simple Holder computation implies that
[ VU= T0) = VU0 = T0)] o)y < €l

Putting together we finally conclude the estimate in Step B.
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Step C: Closing the Argument

d+ ;- «a

L < onlloll (140 ),

dt

dnm d/p’  — @

dt 2 _CanpH <1 + 7}[/, 77771(]+ )> 5

for € [0, min(T, T3))).
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Step C: Closing the Argument

d+77 d/p’ —(l+a
L < onlloll (140 ),

dnm d/p’  —(14+«
I el (140" )

for € [0, min(T, T3))).

IN

Y

For this, we set

f(t) = 77(l) g(t) = T]’”(()l) and £N — (770)41//)’ (n’(’)’),(|+(x)-

)
,UU o
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Step C: Closing the Argument

d+ ;- «a
L < onlloll (140 ),
dt
dT],,, d/p’, —(1+a)
> ~Conlpll (1407 nn Y
dt
for t € [0, min(7, T}))).
For this, we set
nlt N (1 d/p’ a
70 =10, 0= "0 and = (7 ()

Note that £y depends on the number of particles N. It yields

CL < Clplr (1+ 6 s,

d " (o
% > —Cliollg (14 &g ).



Mean-Field Limit for 1st Order Model
0000000080
Ideas of the Proof

Step C: Closing the Argument

d+ ;- «a
L < onlloll (140 ),
dt
dT],,, d/p’, —(1+a)
> ~Conlpll (1407 nn Y
dt
for t € [0, min(7, T}))).
For this, we set
t m a )l — [e%
70 =10, 0= "0 and = (7 ()

Note that £y depends on the number of particles N. It yields

CL < Clplr (1+ 6 s,

d " (o
% > —Cliollg (14 &g ).

Observe that f(0) = g(0) = 1 and & — 0 as N goes to infinity.
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Step C: Closing the Argument

Then, there exists a positive constant 7 < T} for sufficiently large N such that

af? g1 <1 for 1€ 0,TV],
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Then, there exists a positive constant 7 < T} for sufficiently large N such that
Enfir gm0 <1 for te0,TV],

Then it follows that £ (1) < 211" and  g(r) > e~2I°ll,
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Step C: Closing the Argument

Then, there exists a positive constant 7 < T} for sufficiently large N such that
Enfir gm0 <1 for te0,TV],

Then it follows that £ (1) < 211" and  g(r) > e~2I°ll,
This yields ngd/P’g—(l-Fa) < gNeZ(d/p'+(1+a))HpH1, that is,

B log (&)
2(d/p" + (L+a))llpll’

enfi" g+ <1 holds for 1 <

so that

- log(én) N
2djp + (Lt el =
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Step C: Closing the Argument

Then, there exists a positive constant 7 < T} for sufficiently large N such that
Enfir gm0 <1 for te0,TV],

Then it follows that f(r) < e*1°1" and g(r) > e~2I°Il",
This yields ngd/p’g—(H—a) < &NeZ(d/p'+(1+a))HpH1, that is,

log(éw)
2(d/p" + (1 +a))llpll’

enfi" g+ <1 holds for ¢ < —

so that

_ log(&w) N
2djp + (L+ el =

Our assumption for the initial data finally implies

liminf 7V > lim — log(&w) =00,

N-voo N=oo 2(d/p + (14 a))pll

and thus for N large enough, T < TV < T}'. This completes the proof.



Stochastic Mean-Field Limit
©000000
Setting of the problem

Outline

e Stochastic Mean-Field Limit
@ Setting of the problem



Stochastic Mean-Field Limit
0®00000
Setting of the problem

Stochastic Particle System

General Interacting Particle System with Noise:




Stochastic Mean-Field Limit
0®00000
Setting of the problem

Stochastic Particle System

General Interacting Particle System with Noise:

N interacting R*-valued processes (X, V/);>o with 1 < i < N solution of

dX! = Vidt,
N

i i i i l i j i j
dVi = \2dB. — F(X!, V})dr — N > H(X] - X],V, — Vi)t

=1

with independent and commonly distributed initial data (X(’), V(’)) with 1 <i < N.
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Stochastic Particle System

General Interacting Particle System with Noise:

N interacting R*-valued processes (X, V/);>o with 1 < i < N solution of

dX! = Vidt,
. . o 1 & . o .
dVi = \2dB. — F(X!, V})dr — N > H(X] - X],V, — Vi)t

=1

with independent and commonly distributed initial data (X(’), V(’)) with 1 <i < N.

Empirical Measure:

N
- 1
N
‘f[ - N Z 6()(;'"/]1
i=1
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Coupling Method 1

Stochastic Particle System Associated to PDE:

N interacting processes (Yf, Vﬁ),zo solutions of the kinetic McKean-Vlasov type
equation on R*:

dX, =V dt
dVi, = \2dB, — F(X;,V})dt — H = f,(X,, V) dt,
(Xo, Vo) = (X0, V), fi = law(X,, V).
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Setting of the problem

Coupling Method 1

Stochastic Particle System Associated to PDE:

N interacting processes (Yf, Vﬁ),zo solutions of the kinetic McKean-Vlasov type
equation on R*:

dX, = V,dt
dV, = V2dB, — F(X;, V})dt — H % f,(X;, V1) dt,
(Y:)nvf)) = (X(i)-, V(i))a fi= law(Y:,Vﬁ).
The stochastic processes are independent and identically distributed according to

Ofs +v-Vifi = Afi + Vo - (F+Hxf)f,), t>0,xveR.
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Coupling Method 2

Conjecture: The N interacting processes (X!, Vi)i>0 behave as N — oo like the
processes (X, V;):>o associated to the PDE.
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Coupling Method 2

Conjecture: The N interacting processes (X!, Vi)i>0 behave as N — oo like the
processes (X, V;):>o associated to the PDE.

More precisely, the objective is to estimate the convergence as N — oo of

E[1X; — XiI* + Vi = Vi['] <e)



Stochastic Mean-Field Limit
000@000
Setting of the problem

Coupling Method 2

Conjecture: The N interacting processes (X!, Vi)i>0 behave as N — oo like the
processes (X, V;):>o associated to the PDE.

More precisely, the objective is to estimate the convergence as N — oo of

E[1X; — XiI* + Vi = Vi['] <e)

Consequences

1. f,(l) of any of the particles X/ at time # converges to f; as N goes to infinity:

Wi (V. f) <E[IX =X + Vi = Vil"] <e(N).
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Coupling Method 3

Consequences

2. Propagation of chaos: The law f,(k) of any k particles (X!, V/) converges to the
tensor product /¥ as N goes to infinity:

Wi (Y £85) < ke(N).
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Setting of the problem

Coupling Method 3

Consequences

2. Propagation of chaos: The law f,(k) of any k particles (X!, V/) converges to the
tensor product /¥ as N goes to infinity:

Wi (Y £85) < ke(N).

3. Convergence of the empirical measure f* to f;: if ( is a Lipschitz map on R*,

then
1 o ' 2
E ‘N;‘P(Xnvr)f‘/kw@df/
o R 1 N P 2
<2E |[o(X), V) — (X, VI + ’NZ’»D(XLVI)*/IM/‘; }
i—1 J R
C
< e(N —
<e( )+N
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Main Result

Previous Results: If the functions involved F and H are globally Lipschitz then there
are classical results by Snitzman and Meleard, implying that

The typical F and H in our Cucker-Smale and D’Orsogna etal model are not globally
Lipschitz.
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Main Result

Previous Results: If the functions involved F and H are globally Lipschitz then there
are classical results by Snitzman and Meleard, implying that

The typical F and H in our Cucker-Smale and D’Orsogna etal model are not globally
Lipschitz.

Hypotheses:
Assume that F and H with H(—x, —v) = —H(x, v), satisfy

—(v=w) - (F(x,v) — F(x,w)) <Alv—w|’
[F(x,v) = F(y,v)| < Lmin{lx — y[, 1}(1 + ")

for all x, y, v, w in R?, and analogously for H instead of F.
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Main Result 2

Properties of the Stochastic Processes and PDE:

Assume that the particle system and the processes have global solutions on [0, T
with initial data (Xp, Vi) such that the uniform moment condition holds:

sup |H(x — y,v — w)|dfi(x,v)dfi(y, w) + / (x* + M )dfy(x, v)} < 400
R2d

0<i<T~J R4

with f; = law(X,, V}) and some p’ > p.
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Main Result 2

Properties of the Stochastic Processes and PDE:
Assume that the particle system and the processes have global solutions on [0, T
with initial data (X, V;) such that the uniform moment condition holds:

|H(x — y,v — w)|dfi(x,v)dfi(y, w) + / (x* + e"w/ )dfy(x, v)} < +o0
R2d

sup
0<i<7\ JRad

with f; = law(fi,Vi) and some p’ > p.
Result:

For all 0 < e < 1 there exists a constant C such that
1 i i C
E[|X17Xr| +|Vrfvr‘ } < Nl—e

forall0 <¢t<TandN > 1.
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Fluctuations: x! ;== X! — X,,vi:=V/ =V, i=1,...,N.
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Proof

Step 0.- Fluctuations:

Fluctuations: ' := X/ — X\, vi ;= V! = V. i=1,...,N.
Coupling: the Brownian motions (B;),>¢ are equal for the stochastic interacting
particle system and for the processes

dx' =V dt,
&' = — (FX', V) = F(X',V'))dr

-8 2 (H =XV = V) = () (T )
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Proof

Step 0.- Fluctuations:

Fluctuations: ' := X/ — X\, vi ;= V! = V. i=1,...,N.
Coupling: the Brownian motions (B;),>¢ are equal for the stochastic interacting
particle system and for the processes

dx' =V dt,
&' = — (FX', V) = F(X',V'))dr
1 & o i
-5 (H(X’—X-’, Vi— V) — (H x)(X, V’)) d.
=1
Consider the quantity
a(n) =E [|¥ + ]

independent of the label i by symmetry.
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Step 0.- Fluctuations:

23 (W] =B V] < 5a0)

and

E [W] = -E [v‘ C(F(X V) — F(Y",V"))}

| —
S

N
1 . o i
- SE|S v‘-(H(X’—X’,V‘—V’)—H*f,(X,V)) — I+ D
—



Stochastic Mean-Field Limit
000800
Proof

Step 1.- Localization Estimate for /;:

Using the hypotheses on F:

I <AE @v'ﬂ +LE [\v"| min{|’|, 1} (1 + \\7’\”)] =In+Ll.
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Step 1.- Localization Estimate for /;:

Using the hypotheses on F:
I <AE @v'ﬂ +LE [\v"| min{|’|, 1} (1 + \\7’\”)] =In+Ll.
Localizing in V + Markov’s inequality:

N2 [ e o T a1\ /2
e < (14 Ra() + 5 (B[V]7]) 7 (e B [¢7])
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Step 1.- Localization Estimate for /;:

Using the hypotheses on F:
I <AE @v'ﬂ +LE [\v"| min{|’|, 1} (1 + \\7’\”)] =In+Ll.
Localizing in V + Markov’s inequality:

N2 [ e o T a1\ /2
e < (14 Ra() + 5 (B[V]7]) 7 (e B [¢7])

Final Estimate: given 7 > 0, there exists C > 0 such that
L<COA+r)al)+Ce "

holds forall > Oand all 0 < ¢ < T.
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Step 2.- Localization Estimate for /;:

L=—1E [EN:V"- <H(X’7Xj., Vi — Vi) H(x’x’,viv/)>]
_ 1y [vi- (H(o, 0) — (H *_f;)()?[,Vi))]
_ %E [ﬁ: V- <H(XL)?’,VLV/) —(H af;)(x”,v"))]

JFI
=:D + I + bs.
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Step 2.- Localization Estimate for /;:

N
h= -y [Z v (HX XV V) H(x"x’,v"V”)]

j=1

- %E [vi : (H(o, 0)— (H *f;)()?",v"))}
_ %E [%N; V- <H(XL)?’,VLV/) —(H af;)(x”,v"))]

=:D + I + bs.

Localization in />; and />, + Argument of Law of Large Numbers (Snitzman):

NN
wsy E)” (| Srr)) s v

where ¥ := HX' —X , V' =V) — (H+£)(X', V') forj > 2.
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Step 3.- Conclusion:

First Result: given T > 0, there exists C > 0 such that

()< C+r)alt) +Ce™ + %\/(1(1) <C(l+r)al)+Ce "+ %

forallr € [0,T],allN > 1 and all r > 0.
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()< C+r)alt) +Ce™ + %\/(1(1) <C(l+r)al)+Ce "+ %

foralls € [0,T],all N > 1 and all » > 0. This implies due to changes of variables:
u < —ulogu + l
< g N

Ct

implying that a(r) < CN™¢ .
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Proof

Step 3.- Conclusion:

First Result: given T > 0, there exists C > 0 such that

()< C+r)alt) +Ce™ + %\/(1(1) <C(l+r)al)+Ce "+ %

foralls € [0,T],all N > 1 and all » > 0. This implies due to changes of variables:

1
/<71 —
u < uogu+N

Ct

implying that a(r) < CN™¢ .

Second Result: A better localization implies that given 7 > 0, there exists C > 0

such that ) c
o) < Cl+n)al)+ce "+ L

forallt € [0,7],allN > 1andall r > 0.
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@ Mean-field limit under reasonable conditions leads to rigorous derivation of the
mesoscopic/kinetic models with/without noise.

@ References:

@ C.-D’Orsogna-Panferov (KRM 2008).

© C.-Fornasier-Toscani-Vecil (Birkhduser 2011).

@ C.-Klar-Martin-Tiwari (M3AS 2010).

@ Caiiizo-C.-Rosado (M3AS 2011).

@ Bolley-Caiizo-C. (M3AS 2011 & AML 2011).

@ C.-Choi-Hauray (Lecture Notes Springer, to appear).



	Kinetic Models and measure solutions
	Vlasov-like Models
	Proof

	Mean-Field Limit for 1st Order Model
	Setting of the problem
	Ideas of the Proof

	Stochastic Mean-Field Limit
	Setting of the problem
	Proof

	Conclusions

