# Swarming Models with Repulsive-Attractive Effects

#### J. A. Carrillo

Imperial College London

Lecture 4, Ravello 2013

#### Outline



Patterns



2 Hydrodynamics - Continuum Flocks & Mills

- Flocks & Mills
- Fixed Speed Models as Asymptotic Limits



### Outline



Patterns

#### 2

drodynamics - Continuum Flocks & Mills

- Flocks & Mills
- Fixed Speed Models as Asymptotic Limits



Hydrodynamics - Continuum Flocks & Mills 0000000000000 Conclusions

#### Patterns

### 2nd Order Model: Newton's like equations

D'Orsogna, Bertozzi et al. model (PRL 2006):

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ m\frac{dv_i}{dt} = (\alpha - \beta |v_i|^2)v_i - \sum_{i \neq i} \nabla U(|x_i - x_j|). \end{cases}$$



#### Model assumptions:

- Self-propulsion and friction terms determines an asymptotic speed of  $\sqrt{\alpha/\beta}$ .
- Attraction/Repulsion modeled by an effective pairwise potential *U*(*x*).

 $U(r) = -C_A e^{-r/\ell_A} + C_R e^{-r/\ell_R}.$ 

One can also use Bessel functions in 2D and 3D to produce such a potential.

 $C = C_R/C_A > 1, \ \ell = \ell_R/\ell_A < 1$  and  $C\ell^2 < 1$ :



Hydrodynamics - Continuum Flocks & Mills 0000000000000 Conclusions

#### Patterns

#### 2nd Order Model: Newton's like equations

D'Orsogna, Bertozzi et al. model (PRL 2006):

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ m\frac{dv_i}{dt} = (\alpha - \beta |v_i|^2)v_i - \sum_{i \neq i} \nabla U(|x_i - x_j|). \end{cases}$$



#### Model assumptions:

- Self-propulsion and friction terms determines an asymptotic speed of  $\sqrt{\alpha/\beta}$ .
- Attraction/Repulsion modeled by an effective pairwise potential *U*(*x*).

 $U(r) = -C_A e^{-r/\ell_A} + C_R e^{-r/\ell_R}.$ 

One can also use Bessel functions in 2D and 3D to produce such a potential.

 $C = C_R/C_A > 1, \, \ell = \ell_R/\ell_A < 1$  and  $C\ell^2 < 1$ :



Hydrodynamics - Continuum Flocks & Mills 0000000000000 Conclusions

#### Patterns

#### 2nd Order Model: Newton's like equations

D'Orsogna, Bertozzi et al. model (PRL 2006):

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ m\frac{dv_i}{dt} = (\alpha - \beta |v_i|^2)v_i - \sum_{i \neq i} \nabla U(|x_i - x_j|). \end{cases}$$



#### Model assumptions:

- Self-propulsion and friction terms determines an asymptotic speed of  $\sqrt{\alpha/\beta}$ .
- Attraction/Repulsion modeled by an effective pairwise potential U(x).

 $U(r) = -C_A e^{-r/\ell_A} + C_R e^{-r/\ell_R}.$ 

One can also use Bessel functions in 2D and 3D to produce such a potential.

 $C = C_R/C_A > 1, \ \ell = \ell_R/\ell_A < 1$  and  $C\ell^2 < 1$ :



Collective Behavior Models 0000 Patterns Hydrodynamics - Continuum Flocks & Mills 0000000000000 Conclusions

# 2nd Order Model: Newton's like equations

D'Orsogna, Bertozzi et al. model (PRL 2006):

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ m\frac{dv_i}{dt} = (\alpha - \beta |v_i|^2)v_i - \sum_{i \neq i} \nabla U(|x_i - x_i|). \end{cases}$$



#### Model assumptions:

- Self-propulsion and friction terms determines an asymptotic speed of  $\sqrt{\alpha/\beta}$ .
- Attraction/Repulsion modeled by an effective pairwise potential *U*(*x*).

 $U(r) = -C_A e^{-r/\ell_A} + C_R e^{-r/\ell_R}.$ 

One can also use Bessel functions in 2D and 3D to produce such a potential.

$$C = C_R/C_A > 1, \ \ell = \ell_R/\ell_A < 1$$
 and  $C\ell^2 < 1$ :



Collective Behavior Models OOOO Patterns Hydrodynamics - Continuum Flocks & Mills

Conclusions

# Model with an asymptotic speed

Typical patterns: milling, double milling or flocking:



### Velocity consensus model

Cucker-Smale Model (IEEE Automatic Control 2007):

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ \frac{dv_i}{dt} = \sum_{j=1}^N a_{ij} (v_j - v_i), \end{cases}$$

with the communication rate,  $\gamma \ge 0$ :

$$a_{ij} = a(|x_i - x_j|) = \frac{1}{(1 + |x_i - x_j|^2)^{\gamma}}.$$

Asymptotic flocking:  $\gamma < 1/2$ . (Cucker, Smale; Japan J. Math 2007).

#### Velocity consensus model

Cucker-Smale Model (IEEE Automatic Control 2007):

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ \frac{dv_i}{dt} = \sum_{j=1}^N a_{ij} (v_j - v_i), \end{cases}$$

with the communication rate,  $\gamma \ge 0$ :

$$a_{ij} = a(|x_i - x_j|) = \frac{1}{(1 + |x_i - x_j|^2)^{\gamma}}.$$

Asymptotic flocking:  $\gamma < 1/2$ . (Cucker, Smale; Japan J. Math 2007).

### Outline



Patterns

# Hydrodynamics - Continuum Flocks & Mills Flocks & Mills

• Fixed Speed Models as Asymptotic Limits



# Macroscopic equations

#### **Monokinetic Solutions**

Assuming that there is a deterministic velocity for each position and time,  $f(x, v, t) = \rho(x, t) \,\delta(v - u(x, t))$  is a distributional solution if and only if,

$$\begin{cases} \frac{\partial \rho}{\partial t} + \operatorname{div}_x(\rho u) = 0, \\ \rho \frac{\partial u}{\partial t} + \rho (u \cdot \nabla_x) u = \rho (\alpha - \beta |u|^2) u - \rho (\nabla_x U \star \rho). \end{cases}$$

Flocks & Mills

### Particular solutions

Let us look for stationary solutions with an asymptotic speed value  $\beta |u(x,t)|^2 = \alpha$ .

#### Flocking

Travelling wave case, u = const such that  $\beta |\mathbf{u}(\mathbf{x}, t)|^2 = \alpha$ , then  $\rho(x, t) = \tilde{\rho}(x - ut)$ , and the density is determined by

 $\tilde{\rho}\left(\nabla_{\mathbf{x}}U\star\tilde{\rho}\right)=0,$ 

from which

$$U \star \tilde{\rho} = C, \quad \tilde{\rho} \neq 0,$$

in the support of  $\tilde{\rho}$  if the support has not empty interior.

Complete set of solutions depending on regularity of the potential and stability are open problems.

Flocks & Mills

### Particular solutions

Let us look for stationary solutions with an asymptotic speed value  $\beta |u(x,t)|^2 = \alpha$ .

#### Flocking

Travelling wave case, u = const such that  $\beta |\mathbf{u}(\mathbf{x}, t)|^2 = \alpha$ , then  $\rho(x, t) = \tilde{\rho}(x - ut)$ , and the density is determined by

 $\tilde{\rho}\left(\nabla_{\mathbf{x}}U\star\tilde{\rho}\right)=0,$ 

from which

$$U\star\tilde{\rho}=C,\quad\tilde{\rho}\neq0,$$

in the support of  $\tilde{\rho}$  if the support has not empty interior.

Complete set of solutions depending on regularity of the potential and stability are open problems.

Flocks & Mills

### Particular solutions

Let us look for stationary solutions with an asymptotic speed value  $\beta |u(x,t)|^2 = \alpha$ .

#### Flocking

Travelling wave case, u = const such that  $\beta |\mathbf{u}(\mathbf{x}, t)|^2 = \alpha$ , then  $\rho(x, t) = \tilde{\rho}(x - ut)$ , and the density is determined by

 $\tilde{\rho}\left(\nabla_{\mathbf{x}}U\star\tilde{\rho}\right)=0,$ 

from which

$$U \star \tilde{\rho} = C, \quad \tilde{\rho} \neq 0,$$

in the support of  $\tilde{\rho}$  if the support has not empty interior.

Complete set of solutions depending on regularity of the potential and stability are open problems.

Flocks & Mills

### Particular solutions

Let us look for stationary solutions with an asymptotic speed value  $\beta |u(x,t)|^2 = \alpha$ .

#### Flocking

Travelling wave case, u = const such that  $\beta |\mathbf{u}(\mathbf{x}, t)|^2 = \alpha$ , then  $\rho(x, t) = \tilde{\rho}(x - ut)$ , and the density is determined by

 $\tilde{\rho}\left(\nabla_{\mathbf{x}}U\star\tilde{\rho}\right)=0,$ 

from which

$$U \star \tilde{\rho} = C, \quad \tilde{\rho} \neq 0,$$

in the support of  $\tilde{\rho}$  if the support has not empty interior.

Complete set of solutions depending on regularity of the potential and stability are open problems.

### Particular solutions

Let us look for stationary solutions with an asymptotic speed value  $\beta |u(x,t)|^2 = \alpha$ .

#### Milling

we set **u** in a rotatory state,

$$u = \pm \sqrt{\frac{\alpha}{\beta}} \, \frac{x^{\perp}}{|x|},$$

where  $x = (x_1, x_2), x^{\perp} = (-x_2, x_1)$ , and look for  $\rho = \rho(|x|)$  radial, then

$$U \star \rho = D + \frac{\alpha}{\beta} \log |x|$$
, whenever  $\rho \neq 0$ .

Complete set of solutions depending on regularity of the potential and stability are open problems.

### Particular solutions

Let us look for stationary solutions with an asymptotic speed value  $\beta |u(x,t)|^2 = \alpha$ .

#### Milling

we set **u** in a rotatory state,

$$u = \pm \sqrt{\frac{\alpha}{\beta}} \, \frac{x^{\perp}}{|x|},$$

where  $x = (x_1, x_2), x^{\perp} = (-x_2, x_1)$ , and look for  $\rho = \rho(|x|)$  radial, then

$$U \star \rho = D + \frac{\alpha}{\beta} \log |x|$$
, whenever  $\rho \neq 0$ .

Complete set of solutions depending on regularity of the potential and stability are open problems.

### Particular solutions

Let us look for stationary solutions with an asymptotic speed value  $\beta |u(x,t)|^2 = \alpha$ .

#### Milling

we set **u** in a rotatory state,

$$u = \pm \sqrt{\frac{\alpha}{\beta}} \, \frac{x^{\perp}}{|x|},$$

where  $x = (x_1, x_2), x^{\perp} = (-x_2, x_1)$ , and look for  $\rho = \rho(|x|)$  radial, then

$$U \star \rho = D + \frac{\alpha}{\beta} \log |x|$$
, whenever  $\rho \neq 0$ .

Complete set of solutions depending on regularity of the potential and stability are open problems.

Hydrodynamics - Continuum Flocks & Mills

Conclusions

#### Flocks & Mills

### Particular solutions

Superposition of Monokinetic Solutions: Double Mills

 $f(x, v, t) = \rho_1(x, t) \,\delta(v - u_1(x, t)) + \rho_2(x, t) \,\delta(v - u_2(x, t))$  is a distributional solution if and only if

$$\begin{cases} \frac{\partial(\rho_1+\rho_2)}{\partial t} + \operatorname{div}_x(\rho_1 u_1+\rho_2 u_2) = 0,\\ \sum_{i=1}^2 \rho_i \left[ \frac{\partial u_i}{\partial t} + (u_i \cdot \nabla_x) u_i - (\alpha - \beta |u_i|^2) u_i \right] = -(\nabla_x U \star \rho) \rho. \end{cases}$$

**Particular example (Delta Rings):**  $U(x) = \frac{|x|^a}{a} - \frac{|x|^b}{b}$  with  $a > b \ge 2 - d$ , then there is a unique explicit radius  $\hat{R}_{ab}$  such that

$$\rho = \frac{1}{2} \delta_{\hat{R}_{ab}} \delta(v - u(x)) + \frac{1}{2} \delta_{\hat{R}_{ab}} \delta(v + u(x))$$

with

$$u(x) = \sqrt{\frac{\alpha}{\beta}} \, \frac{x^{\perp}}{|x|}$$

is a double mill solution.

Hydrodynamics - Continuum Flocks & Mills

Conclusions

#### Flocks & Mills

### Particular solutions

Superposition of Monokinetic Solutions: Double Mills

 $f(x, v, t) = \rho_1(x, t) \,\delta(v - u_1(x, t)) + \rho_2(x, t) \,\delta(v - u_2(x, t))$  is a distributional solution if and only if

$$\begin{cases} \frac{\partial(\rho_1+\rho_2)}{\partial t} + \operatorname{div}_x(\rho_1 u_1+\rho_2 u_2) = 0,\\ \sum_{i=1}^2 \rho_i \left[ \frac{\partial u_i}{\partial t} + (u_i \cdot \nabla_x) u_i - (\alpha - \beta |u_i|^2) u_i \right] = -(\nabla_x U \star \rho) \rho. \end{cases}$$

Particular example (Delta Rings):  $U(x) = \frac{|x|^a}{a} - \frac{|x|^b}{b}$  with  $a > b \ge 2 - d$ , then there is a unique explicit radius  $\hat{R}_{ab}$  such that

$$\rho = \frac{1}{2} \delta_{\hat{R}_{ab}} \delta(v - u(x)) + \frac{1}{2} \delta_{\hat{R}_{ab}} \delta(v + u(x))$$

with

$$u(x) = \sqrt{\frac{\alpha}{\beta}} \frac{x^{\perp}}{|x|}$$

is a double mill solution.

Flocks & Mills

### Mill solutions: Quasi-Morse Potentials

Quasi-Morse Potential: Let V denote the radially symmetric fundamental solution of the *n*-dimensional *screened Poisson equation* 

 $\Delta u - k^2 u = \delta_0, \qquad k > 0.$ 

Let  $C, l, \lambda > 0$ . The *n*-dimensional Quasi-Morse potential is defined as

 $U(r) := \lambda \left( V(r) - C V \left( \frac{r}{l} \right) \right) \,.$ 

Biologically reasonable: l < 1,  $Cl^{n-2} > 1$ .



Flocks & Mills

### Mill solutions: Quasi-Morse Potentials

Quasi-Morse Potential: Let V denote the radially symmetric fundamental solution of the *n*-dimensional *screened Poisson equation* 

 $\Delta u - k^2 u = \delta_0, \qquad k > 0.$ 

Let  $C, l, \lambda > 0$ . The *n*-dimensional Quasi-Morse potential is defined as

 $U(r) := \lambda \left( V(r) - C V \left( \frac{r}{l} \right) \right) \,.$ 

Biologically reasonable: l < 1,  $Cl^{n-2} > 1$ .



#### Mill solutions: Quasi-Morse Potentials 2

#### **Explicit Solvability**

Solve  $(U \star \rho)(r) = s(r)$  on supp $(\rho)$  with supp $(\rho) = B(0, R_F)$ , s(r) = D for flocks, or supp $(\rho) = B(R_m, R_M)$ ,  $s(r) = D + \frac{\alpha}{\beta} \log(r)$  for mills respectively:

| flock | A > 0 | $\rho_F = \mu_1 J_0(ar) + \mu_2$                                                                                     |
|-------|-------|----------------------------------------------------------------------------------------------------------------------|
|       | A = 0 | $\rho_F = \mu_1 r^2 + \mu_2$                                                                                         |
|       | A < 0 | $\rho_F = \mu_1 I_0(ar) + \mu_2$                                                                                     |
| mill  | A > 0 | $\rho_M = \rho_{\text{inhom}} + \mu_1 J_0(ar) + \mu_2 Y_0(ar) + \mu_3$                                               |
|       | A = 0 | $\rho_M = \frac{\alpha}{\beta} \frac{k^4}{4\lambda l^2 (1-C)} r^2 (\log(r) - 1) + \mu_1 r^2 + \mu_2 \log(r) + \mu_3$ |
|       | A < 0 | $\rho_M = \rho_{\text{inhom}} + \mu_1 I_0(-ar) + \mu_2 \cdot K_0(ar) + \mu_3$                                        |

with  $A = k^2 \frac{Cl^d - 1}{l^2 - Cl^d}$ ,  $a^2 = |A|$ , and  $\rho$  has to satisfy  $\rho > 0$ ,  $\int \rho \, dx = 1$ .



Flocks & Mills

# Mill solutions: Quasi-Morse Potentials 3

Applying the operators  $\Delta - k^2 \operatorname{Id}$  and  $\Delta - \frac{k^2}{\ell^2} \operatorname{Id}$  to both sides of  $(U \star \rho)(r) = s(r)$ , the density  $\rho$  now satisfies

$$\Delta \rho + A \rho = \frac{k^4}{\ell^2 - C\ell^n} D,$$
 on supp  $\rho$ .

In radial coordinates, this equation reads

$$\frac{1}{r^{d-1}}\frac{d}{dr}r^{d-1}\frac{d\rho}{dr} \pm a^2\rho = \frac{k^4}{\ell^2 - C\ell^d}D, \qquad a = \sqrt{|A|}$$

One can show that

$$\begin{aligned} (U \star \rho)(r) &= D + \lambda_1 r^{1-\frac{d}{2}} I_{\frac{d}{2}-1}(kr/\ell) + \lambda_2 r^{1-\frac{d}{2}} I_{\frac{d}{2}-1}(kr) \\ &+ \lambda_3 r^{1-\frac{d}{2}} K_{\frac{d}{2}-1}(kr/\ell) + \lambda_4 r^{1-\frac{d}{2}} K_{\frac{d}{2}-1}(kr), \qquad 0 \le r \le R, \end{aligned}$$

By boundedness  $\lambda_3 = \lambda_4 = 0$  and there is a linear relation between  $\lambda_1, \lambda_2$  and  $\mu_1, \mu_2$ .

Flocks & Mills

### Mill solutions: Quasi-Morse Potentials 3

Applying the operators  $\Delta - k^2 \operatorname{Id}$  and  $\Delta - \frac{k^2}{\ell^2} \operatorname{Id}$  to both sides of  $(U \star \rho)(r) = s(r)$ , the density  $\rho$  now satisfies

$$\Delta \rho + A \rho = \frac{k^4}{\ell^2 - C\ell^n} D$$
, on supp  $\rho$ .

In radial coordinates, this equation reads

$$\frac{1}{r^{d-1}}\frac{d}{dr}r^{d-1}\frac{d\rho}{dr} \pm a^2\rho = \frac{k^4}{\ell^2 - C\ell^d}D, \qquad a = \sqrt{|A|}$$

One can show that

$$\begin{aligned} (U \star \rho)(r) &= D + \lambda_1 r^{1-\frac{d}{2}} I_{\frac{d}{2}-1}(kr/\ell) + \lambda_2 r^{1-\frac{d}{2}} I_{\frac{d}{2}-1}(kr) \\ &+ \lambda_3 r^{1-\frac{d}{2}} K_{\frac{d}{2}-1}(kr/\ell) + \lambda_4 r^{1-\frac{d}{2}} K_{\frac{d}{2}-1}(kr), \qquad 0 \le r \le R, \end{aligned}$$

By boundedness  $\lambda_3 = \lambda_4 = 0$  and there is a linear relation between  $\lambda_1, \lambda_2$  and  $\mu_1, \mu_2$ .

Flocks & Mills

### Mill solutions: Quasi-Morse Potentials 3

Applying the operators  $\Delta - k^2 \operatorname{Id}$  and  $\Delta - \frac{k^2}{\ell^2} \operatorname{Id}$  to both sides of  $(U \star \rho)(r) = s(r)$ , the density  $\rho$  now satisfies

$$\Delta \rho + A \rho = \frac{k^4}{\ell^2 - C\ell^n} D$$
, on supp  $\rho$ .

In radial coordinates, this equation reads

$$\frac{1}{r^{d-1}}\frac{d}{dr}r^{d-1}\frac{d\rho}{dr} \pm a^2\rho = \frac{k^4}{\ell^2 - C\ell^d}D, \qquad a = \sqrt{|A|}$$

One can show that

$$\begin{aligned} (U \star \rho)(r) &= D + \lambda_1 r^{1-\frac{d}{2}} I_{\frac{d}{2}-1}(kr/\ell) + \lambda_2 r^{1-\frac{d}{2}} I_{\frac{d}{2}-1}(kr) \\ &+ \lambda_3 r^{1-\frac{d}{2}} K_{\frac{d}{2}-1}(kr/\ell) + \lambda_4 r^{1-\frac{d}{2}} K_{\frac{d}{2}-1}(kr), \qquad 0 \le r \le R, \end{aligned}$$

By boundedness  $\lambda_3 = \lambda_4 = 0$  and there is a linear relation between  $\lambda_1, \lambda_2$  and  $\mu_1, \mu_2$ .

Hydrodynamics - Continuum Flocks & Mills

Conclusions

Flocks & Mills

### Mill solutions: Quasi-Morse Potentials 4

$$\begin{array}{c|cccc} & \lambda_1 & \lambda_2 \\ \hline A > 0 & -C \frac{R^{\frac{n}{2}}}{k} \ell^{n-1} B_+(\ell) K_{\frac{n}{2}}(kR/\ell) & \frac{R^{\frac{n}{2}}}{k} \ell^{n-1} B_+(1) K_{\frac{n}{2}}(kR) \\ A = 0 & -C R^{\frac{n}{2}} \ell^{n-1} B_0(\ell) K_{\frac{n}{2}}(kR/\ell) & R^{\frac{n}{2}} \ell^{n-1} B_0(1) K_{\frac{n}{2}}(kR) \\ A < 0 & -C \frac{R^{\frac{n}{2}}}{k} \ell^{n-1} B_-(\ell) K_{\frac{n}{2}}(kR/\ell) & \frac{R^{\frac{n}{2}}}{k} \ell^{n-1} B_-(1) K_{\frac{n}{2}}(kR) \end{array}$$

There exists a flock profile only if the homogeneous equations for  $oldsymbol{\mu}=(\mu_1,\mu_2)^t$ 

$$M oldsymbol{\mu} = egin{pmatrix} ilde{B}(\ell) & 1 \ ilde{B}(1) & 1 \end{pmatrix} egin{pmatrix} \mu_1 \ \mu_2 \end{pmatrix} = egin{pmatrix} 0 \ 0 \end{pmatrix}$$

are satisfied. These two homogeneous equations, together with the total unit mass constraint for the non-negative density  $\rho$ , determine the three characterizing parameters ( $\mu_1, \mu_2, R_F$ ) of the flock profile.

Hydrodynamics - Continuum Flocks & Mills

Conclusions

Flocks & Mills

#### Mill solutions: Quasi-Morse Potentials 4

$$\begin{array}{c|cccc} & \lambda_1 & \lambda_2 \\ \hline A > 0 & -C\frac{R^{\frac{n}{2}}}{k}\ell^{n-1}B_+(\ell)K_{\frac{n}{2}}(kR/\ell) & \frac{R^{\frac{n}{2}}}{k}\ell^{n-1}B_+(1)K_{\frac{n}{2}}(kR) \\ A = 0 & -CR^{\frac{n}{2}}\ell^{n-1}B_0(\ell)K_{\frac{n}{2}}(kR/\ell) & R^{\frac{n}{2}}\ell^{n-1}B_0(1)K_{\frac{n}{2}}(kR) \\ A < 0 & -C\frac{R^{\frac{n}{2}}}{k}\ell^{n-1}B_-(\ell)K_{\frac{n}{2}}(kR/\ell) & \frac{R^{\frac{n}{2}}}{k}\ell^{n-1}B_-(1)K_{\frac{n}{2}}(kR) \end{array}$$

There exists a flock profile only if the homogeneous equations for  $\boldsymbol{\mu} = (\mu_1, \mu_2)^t$ 

$$M\boldsymbol{\mu} = \begin{pmatrix} \tilde{B}(\ell) & 1\\ \tilde{B}(1) & 1 \end{pmatrix} \begin{pmatrix} \mu_1\\ \mu_2 \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$

are satisfied. These two homogeneous equations, together with the total unit mass constraint for the non-negative density  $\rho$ , determine the three characterizing parameters ( $\mu_1, \mu_2, R_F$ ) of the flock profile.

Hydrodynamics - Continuum Flocks & Mills

Conclusions

Flocks & Mills

#### Mill solutions: Quasi-Morse Potentials 4

$$\begin{array}{c|c} \lambda_{1} & \lambda_{2} \\ \hline A > 0 & -C\frac{R^{\frac{n}{2}}}{k}\ell^{n-1}B_{+}(\ell)K_{\frac{n}{2}}(kR/\ell) & \frac{R^{\frac{n}{2}}}{k}\ell^{n-1}B_{+}(1)K_{\frac{n}{2}}(kR) \\ A = 0 & -CR^{\frac{n}{2}}\ell^{n-1}B_{0}(\ell)K_{\frac{n}{2}}(kR/\ell) & R^{\frac{n}{2}}\ell^{n-1}B_{0}(1)K_{\frac{n}{2}}(kR) \\ A < 0 & -C\frac{R^{\frac{n}{2}}}{k}\ell^{n-1}B_{-}(\ell)K_{\frac{n}{2}}(kR/\ell) & \frac{R^{\frac{n}{2}}}{k}\ell^{n-1}B_{-}(1)K_{\frac{n}{2}}(kR) \end{array}$$

There exists a flock profile only if the homogeneous equations for  $\boldsymbol{\mu} = (\mu_1, \mu_2)^t$ 

$$M\boldsymbol{\mu} = \begin{pmatrix} \tilde{B}(\ell) & 1\\ \tilde{B}(1) & 1 \end{pmatrix} \begin{pmatrix} \mu_1\\ \mu_2 \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$

are satisfied. These two homogeneous equations, together with the total unit mass constraint for the non-negative density  $\rho$ , determine the three characterizing parameters ( $\mu_1, \mu_2, R_F$ ) of the flock profile.

Hydrodynamics - Continuum Flocks & Mills

Conclusions

Flocks & Mills

### Mill solutions: Quasi-Morse Potentials 5



Hydrodynamics - Continuum Flocks & Mills

Conclusions

Flocks & Mills

### Mill solutions: Quasi-Morse Potentials 6

$$V(r) = -e^{-\frac{r^p}{p}}, \qquad p > 0.$$





#### Outline



Patterns

#### 2 Hydrodynamics - Continuum Flocks & Mills

- Flocks & Mills
- Fixed Speed Models as Asymptotic Limits



Fixed Speed Models as Asymptotic Limits

### Short Relaxation towards Cruising Speed

Scaled Vlasov equation in d = 2, 3 dimensions:

$$\partial_t f^{\varepsilon} + v \cdot \nabla_x f^{\varepsilon} + a^{\varepsilon}(t, x) \cdot \nabla_v f^{\varepsilon} + \frac{1}{\varepsilon} \operatorname{div}_v \{ f^{\varepsilon}(\alpha - \beta |\nu|^2) v \} = 0, \quad (t, x, v) \in \mathbb{R}_+ \times \mathbb{R}^{2d}$$
  
with  $a^{\varepsilon}(t, \cdot) = -\nabla_x U \star \rho^{\varepsilon}(t, \cdot) - H \star f^{\varepsilon}(t, \cdot).$ 

This asymptotic limit enforces that particles move at cruising speed  $\sqrt{\alpha/\beta}$ . If one formally does the expansion

$$f^{\varepsilon} = f + \varepsilon f^{(1)} + \varepsilon^2 f^{(2)} + \dots$$

we get

$$\begin{split} \operatorname{div}_{\nu} \{f(\alpha - \beta |\nu|^2)\nu\} &= 0\\ \partial_t f + \operatorname{div}_{\nu}(f\nu) + \operatorname{div}_{\nu}(fa(t,x)) + \operatorname{div}_{\nu}\{f^{(1)}(\alpha - \beta |\nu|^2)\nu\} &= 0\,, \end{split}$$

up to first order.

Fixed Speed Models as Asymptotic Limits

### Short Relaxation towards Cruising Speed

Scaled Vlasov equation in d = 2, 3 dimensions:

$$\partial_{t} f^{\varepsilon} + v \cdot \nabla_{x} f^{\varepsilon} + a^{\varepsilon}(t, x) \cdot \nabla_{v} f^{\varepsilon} + \frac{1}{\varepsilon} \operatorname{div}_{v} \{ f^{\varepsilon}(\alpha - \beta |v|^{2})v \} = 0, \quad (t, x, v) \in \mathbb{R}_{+} \times \mathbb{R}^{2d}$$
  
with  $a^{\varepsilon}(t, \cdot) = -\nabla_{x} U \star \rho^{\varepsilon}(t, \cdot) - H \star f^{\varepsilon}(t, \cdot).$ 

This asymptotic limit enforces that particles move at cruising speed  $\sqrt{\alpha/\beta}$ . If one formally does the expansion

$$f^{\varepsilon} = f + \varepsilon f^{(1)} + \varepsilon^2 f^{(2)} + \dots$$

we get

$$\operatorname{div}_{v} \{ f(\alpha - \beta |v|^{2})v \} = 0$$
  
$$\partial_{t} f + \operatorname{div}_{x}(fv) + \operatorname{div}_{v}(fa(t, x)) + \operatorname{div}_{v}\{f^{(1)}(\alpha - \beta |v|^{2})v \} = 0,$$

up to first order.

### Short Relaxation towards Cruising Speed

Scaled Vlasov equation in d = 2, 3 dimensions:

$$\partial_{t} f^{\varepsilon} + v \cdot \nabla_{x} f^{\varepsilon} + a^{\varepsilon}(t, x) \cdot \nabla_{v} f^{\varepsilon} + \frac{1}{\varepsilon} \operatorname{div}_{v} \{ f^{\varepsilon}(\alpha - \beta |v|^{2})v \} = 0, \quad (t, x, v) \in \mathbb{R}_{+} \times \mathbb{R}^{2d}$$
  
with  $a^{\varepsilon}(t, \cdot) = -\nabla_{x} U \star \rho^{\varepsilon}(t, \cdot) - H \star f^{\varepsilon}(t, \cdot).$ 

This asymptotic limit enforces that particles move at cruising speed  $\sqrt{\alpha/\beta}$ . If one formally does the expansion

$$f^{\varepsilon} = f + \varepsilon f^{(1)} + \varepsilon^2 f^{(2)} + \dots$$

we get

up to first

$$\operatorname{div}_{v}\{f(\alpha - \beta |v|^{2})v\} = 0$$
  
$$\partial_{t}f + \operatorname{div}_{x}(fv) + \operatorname{div}_{v}(fa(t, x)) + \operatorname{div}_{v}\{f^{(1)}(\alpha - \beta |v|^{2})v\} = 0,$$
  
order.

### Short Relaxation towards Cruising Speed

Scaled Vlasov equation in d = 2, 3 dimensions:

$$\partial_{t} f^{\varepsilon} + v \cdot \nabla_{x} f^{\varepsilon} + a^{\varepsilon}(t, x) \cdot \nabla_{v} f^{\varepsilon} + \frac{1}{\varepsilon} \operatorname{div}_{v} \{ f^{\varepsilon}(\alpha - \beta |v|^{2})v \} = 0, \quad (t, x, v) \in \mathbb{R}_{+} \times \mathbb{R}^{2d}$$
  
with  $a^{\varepsilon}(t, \cdot) = -\nabla_{x} U \star \rho^{\varepsilon}(t, \cdot) - H \star f^{\varepsilon}(t, \cdot).$ 

This asymptotic limit enforces that particles move at cruising speed  $\sqrt{\alpha/\beta}$ . If one formally does the expansion

$$f^{\varepsilon} = f + \varepsilon f^{(1)} + \varepsilon^2 f^{(2)} + \dots$$

we get

$$\begin{split} \operatorname{div}_{\nu} \{f(\alpha - \beta |\nu|^2)\nu\} &= 0\\ \partial_t f + \operatorname{div}_{\nu}(f\nu) + \operatorname{div}_{\nu}(fa(t,x)) + \operatorname{div}_{\nu}\{f^{(1)}(\alpha - \beta |\nu|^2)\nu\} &= 0\,, \end{split}$$

up to first order.

# Vicsek Model as Asymptotic Limit

#### Fixed Speed Models

Assume that  $U \in C_b^2(\mathbb{R}^d)$ , H(x, v) = h(x)v with  $h \in C_b^1(\mathbb{R}^d)$  nonnegative,  $f^{\text{in}} \in \mathcal{P}_1(\mathbb{R}^d \times \mathbb{R}^d)$ ,  $\operatorname{supp}(f^{\text{in}}) \subset \{(x, v) : |x| \le L_0, r_0 \le |v| \le R_0\}$ .

Then for all  $\delta > 0$ , the sequence  $(f^{\varepsilon})_{\varepsilon}$  converges towards the measure solution  $f(t, x, \omega)$  on  $(x, \omega) \in \mathbb{R}^d \times \sqrt{\alpha/\beta}\mathbb{S}$  of the problem

$$\partial_t f + \operatorname{div}_x(f\omega) - \operatorname{div}_\omega \left\{ f\left(I - \frac{1}{r^2}(\omega \otimes \omega)\right) \left(\nabla_x U \star \rho + H \star f\right) \right\} = 0$$

with initial data  $f(0) = \langle f^{\text{in}} \rangle$ .

Remarks:

- Adding noise we get from  $\Delta_{v} f$  to the Laplace-Beltrami operator on the sphere  $\Delta_{\omega} f$ .
- This shows that the fixed speed limit of the Cucker-Smale's model is the Vicsek's model.

# Vicsek Model as Asymptotic Limit

#### Fixed Speed Models

Assume that  $U \in C_b^2(\mathbb{R}^d)$ , H(x, v) = h(x)v with  $h \in C_b^1(\mathbb{R}^d)$  nonnegative,  $f^{\text{in}} \in \mathcal{P}_1(\mathbb{R}^d \times \mathbb{R}^d)$ ,  $\operatorname{supp}(f^{\text{in}}) \subset \{(x, v) : |x| \le L_0, r_0 \le |v| \le R_0\}$ .

Then for all  $\delta > 0$ , the sequence  $(f^{\varepsilon})_{\varepsilon}$  converges towards the measure solution  $f(t, x, \omega)$  on  $(x, \omega) \in \mathbb{R}^d \times \sqrt{\alpha/\beta}\mathbb{S}$  of the problem

$$\partial_t f + \operatorname{div}_x(f\omega) - \operatorname{div}_\omega \left\{ f\left(I - \frac{1}{r^2}(\omega \otimes \omega)\right) \left(\nabla_x U \star \rho + H \star f\right) \right\} = 0$$

with initial data  $f(0) = \langle f^{in} \rangle$ .

#### Remarks:

- Adding noise we get from  $\Delta_{v} f$  to the Laplace-Beltrami operator on the sphere  $\Delta_{\omega} f$ .
- This shows that the fixed speed limit of the Cucker-Smale's model is the Vicsek's model.

# Vicsek Model as Asymptotic Limit

#### Fixed Speed Models

Assume that  $U \in C_b^2(\mathbb{R}^d)$ , H(x, v) = h(x)v with  $h \in C_b^1(\mathbb{R}^d)$  nonnegative,  $f^{\text{in}} \in \mathcal{P}_1(\mathbb{R}^d \times \mathbb{R}^d)$ ,  $\operatorname{supp}(f^{\text{in}}) \subset \{(x, v) : |x| \le L_0, r_0 \le |v| \le R_0\}$ .

Then for all  $\delta > 0$ , the sequence  $(f^{\varepsilon})_{\varepsilon}$  converges towards the measure solution  $f(t, x, \omega)$  on  $(x, \omega) \in \mathbb{R}^d \times \sqrt{\alpha/\beta}\mathbb{S}$  of the problem

$$\partial_t f + \operatorname{div}_x(f\omega) - \operatorname{div}_\omega \left\{ f\left(I - \frac{1}{r^2}(\omega \otimes \omega)\right) \left(\nabla_x U \star \rho + H \star f\right) \right\} = 0$$

with initial data  $f(0) = \langle f^{in} \rangle$ .

#### Remarks:

- Adding noise we get from  $\Delta_v f$  to the Laplace-Beltrami operator on the sphere  $\Delta_{\omega} f$ .
- This shows that the fixed speed limit of the Cucker-Smale's model is the Vicsek's model.

- The dimensionality of the support of local minimizers of the interaction energy can be classified in terms of the repulsion strength of the potential near zero.
- Flock profiles are among Local minimizers of the interaction energy. Explicit compactly supported flocks can be found for some biologically relevant potentials (Quasi-Morse).
- References:
  - Balagué-C.-Laurent-Raoul (Physica D 2013 & ARMA 2013).
  - 2 C.-D'Orsogna-Panferov (KRM 2008).
  - Sc.-Klar-Martin-Tiwari (M3AS 2010).
  - C.-Panferov-Martin (Physica D 2013).
  - Oc.-Huang-Martin (preprint arxiv 2013).
  - **6** Bostan-C. (M3AS 2013).

- The dimensionality of the support of local minimizers of the interaction energy can be classified in terms of the repulsion strength of the potential near zero.
- Flock profiles are among Local minimizers of the interaction energy. Explicit compactly supported flocks can be found for some biologically relevant potentials (Quasi-Morse).
- References:
  - Balagué-C.-Laurent-Raoul (Physica D 2013 & ARMA 2013).
  - C.-D'Orsogna-Panferov (KRM 2008).
  - Oc.-Klar-Martin-Tiwari (M3AS 2010).
  - C.-Panferov-Martin (Physica D 2013).
  - Oc.-Huang-Martin (preprint arxiv 2013).
  - **6** Bostan-C. (M3AS 2013).

- The dimensionality of the support of local minimizers of the interaction energy can be classified in terms of the repulsion strength of the potential near zero.
- Flock profiles are among Local minimizers of the interaction energy. Explicit compactly supported flocks can be found for some biologically relevant potentials (Quasi-Morse).
- References:
  - Balagué-C.-Laurent-Raoul (Physica D 2013 & ARMA 2013).
  - C.-D'Orsogna-Panferov (KRM 2008).
  - C.-Klar-Martin-Tiwari (M3AS 2010).
  - C.-Panferov-Martin (Physica D 2013).
  - Sc.-Huang-Martin (preprint arxiv 2013).
  - **6** Bostan-C. (M3AS 2013).