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2nd Order Model: Newton’s like equations

D’Orsogna, Bertozzi et al. model (PRL 2006):
dxi

dt
= vi,

m
dvi

dt
= (α− β |vi|2)vi −

∑
j 6=i

∇U(|xi − xj|).

Model assumptions:

Self-propulsion and friction terms
determines an asymptotic speed of√
α/β.

Attraction/Repulsion modeled by an
effective pairwise potential U(x).

U(r) = −CAe−r/`A + CRe−r/`R .

One can also use Bessel functions in 2D
and 3D to produce such a potential.

C = CR/CA > 1, ` = `R/`A < 1 and
C`2 < 1:
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Model with an asymptotic speed

Typical patterns: milling, double milling or flocking:
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Velocity consensus model

Cucker-Smale Model (IEEE Automatic Control 2007):
dxi

dt
= vi,

dvi

dt
=

N∑
j=1

aij (vj − vi) ,

with the communication rate, γ ≥ 0:

aij = a(|xi − xj|) =
1

(1 + |xi − xj|2)γ
.

Asymptotic flocking: γ < 1/2. (Cucker, Smale; Japan J. Math 2007).
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Macroscopic equations
Monokinetic Solutions

Assuming that there is a deterministic velocity for each position and time,
f (x, v, t) = ρ(x, t) δ(v− u(x, t)) is a distributional solution if and only if,

∂ρ

∂t
+ divx(ρu) = 0,

ρ
∂u
∂t

+ ρ (u·∇x)u = ρ (α− β|u|2)u− ρ (∇xU ? ρ).
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Particular solutions

Let us look for stationary solutions with an asymptotic speed value β|u(x, t)|2 = α.

Flocking

Travelling wave case, u = const such that β|u(x, t)|2 = α, then ρ(x, t) = ρ̃(x− ut),
and the density is determined by

ρ̃ (∇xU ? ρ̃) = 0,

from which
U ? ρ̃ = C, ρ̃ 6= 0,

in the support of ρ̃ if the support has not empty interior.

Complete set of solutions depending on regularity of the potential and stability are
open problems.
Particular example (Delta Rings): U(x) = |x|a

a −
|x|b

b with a > b ≥ 2− d, then there
is a unique explicit radius Rab such that the uniform distribution on the sphere of
radius Rab is a flocking solution.
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Particular solutions

Let us look for stationary solutions with an asymptotic speed value β|u(x, t)|2 = α.

Milling

we set u in a rotatory state,

u = ±
√
α

β

x⊥

|x| ,

where x = (x1, x2), x⊥ = (−x2, x1), and look for ρ = ρ(|x|) radial, then

U ? ρ = D +
α

β
log|x|, whenever ρ 6= 0.
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Particular solutions
Superposition of Monokinetic Solutions: Double Mills

f (x, v, t) = ρ1(x, t) δ(v− u1(x, t)) + ρ2(x, t) δ(v− u2(x, t)) is a distributional
solution if and only if

∂(ρ1 + ρ2)

∂t
+ divx(ρ1u1 + ρ2u2) = 0.

2∑
i=1

ρi

[
∂ui

∂t
+ (ui · ∇x)ui − (α− β|ui|2)ui

]
= −(∇xU ? ρ) ρ.

Particular example (Delta Rings): U(x) = |x|a
a −

|x|b
b with a > b ≥ 2− d, then there

is a unique explicit radius R̂ab such that

ρ =
1
2
δR̂ab

δ(v− u(x)) +
1
2
δR̂ab

δ(v + u(x))

with

u(x) =

√
α

β

x⊥

|x|
is a double mill solution.
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Mill solutions: Quasi-Morse Potentials
Quasi-Morse Potential: Let V denote the radially symmetric fundamental solution of
the n-dimensional screened Poisson equation

∆u− k2u = δ0, k > 0 .

Let C, l, λ > 0. The n-dimensional Quasi-Morse potential is defined as

U(r) := λ
(

V(r)− C V
( r

l

))
.

Biologically reasonable: l < 1, Cln−2 > 1.
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Mill solutions: Quasi-Morse Potentials 2
Explicit Solvability

Solve (U ? ρ)(r) = s(r) on supp(ρ) with supp(ρ) = B(0,RF) , s(r) = D for flocks,
or supp(ρ) = B(Rm,RM) , s(r) = D + α

β
log(r) for mills respectively:

flock A > 0 ρF = µ1 J0(ar) + µ2
A = 0 ρF = µ1r2 + µ2
A < 0 ρF = µ1 I0(ar) + µ2

mill A > 0 ρM = ρinhom + µ1 J0(ar) + µ2 Y0(ar) + µ3

A = 0 ρM = α
β

k4

4λl2(1−C)
r2(log(r) − 1) + µ1r2 + µ2 log(r) + µ3

A < 0 ρM = ρinhom + µ1 I0(−ar) + µ2 · K0(ar) + µ3

with A = k2 Cld−1
l2−Cld , a2 = |A|, and ρ has to satisfy ρ > 0,

∫
ρ dx = 1.
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Mill solutions: Quasi-Morse Potentials 3

Applying the operators ∆− k2 Id and ∆− k2

`2 Id to both sides of (U ? ρ)(r) = s(r),
the density ρ now satisfies

∆ρ+ Aρ =
k4

`2 − C`n D, on supp ρ .

In radial coordinates, this equation reads

1
rd−1

d
dr

rd−1 dρ
dr
± a2ρ =

k4

`2 − C`d D, a =
√
|A|.

One can show that

(U ? ρ)(r) = D + λ1r1− d
2 I d

2−1(kr/`) + λ2r1− d
2 I d

2−1(kr)

+ λ3r1− d
2 K d

2−1(kr/`) + λ4r1− d
2 K d

2−1(kr), 0 ≤ r ≤ R,

By boundedness λ3 = λ4 = 0 and there is a linear relation between λ1, λ2 and µ1, µ2.
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Mill solutions: Quasi-Morse Potentials 4

λ1 λ2

A > 0 −C R
n
2

k `
n−1B+(`)K n

2
(kR/`) R

n
2

k `
n−1B+(1)K n

2
(kR)

A = 0 −CR
n
2 `n−1B0(`)K n

2
(kR/`) R

n
2 `n−1B0(1)K n

2
(kR)

A < 0 −C R
n
2

k `
n−1B−(`)K n

2
(kR/`) R

n
2

k `
n−1B−(1)K n

2
(kR)

There exists a flock profile only if the homogeneous equations for µ = (µ1, µ2)
t

Mµ =

(
B̃(`) 1
B̃(1) 1

)(
µ1

µ2

)
=

(
0
0

)
are satisfied. These two homogeneous equations, together with the total unit mass
constraint for the non-negative density ρ, determine the three characterizing
parameters (µ1, µ2,RF) of the flock profile.
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Mill solutions: Quasi-Morse Potentials 5
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Mill solutions: Quasi-Morse Potentials 6
V(r) = −e−

rp
p , p > 0.
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Fixed Speed Models as Asymptotic Limits

Short Relaxation towards Cruising Speed
Scaled Vlasov equation in d = 2, 3 dimensions:

∂tf ε + v ·∇xf ε + aε(t, x) ·∇vf ε +
1
ε

divv{f ε(α−β|v|2)v} = 0, (t, x, v) ∈ R+×R2d

with aε(t, ·) = −∇xU ? ρε(t, ·)− H ? f ε(t, ·).

This asymptotic limit enforces that particles move at cruising speed
√
α/β. If one

formally does the expansion

f ε = f + εf (1) + ε2f (2) + ...

we get
divv{f (α− β|v|2)v} = 0

∂tf + divx(fv) + divv(fa(t, x)) + divv{f (1)(α− β|v|2)v} = 0 ,

up to first order.

To eliminate the higher order term we use the invariants of the flow associated to the
field (α− β|v|2)v · ∇v, functions of x and v/|v|.
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Vicsek Model as Asymptotic Limit

Fixed Speed Models

Assume that U ∈ C2
b(Rd), H(x, v) = h(x)v with h ∈ C1

b(Rd) nonnegative,
f in ∈ P1(Rd × Rd), supp(f in) ⊂ {(x, v) : |x| ≤ L0, r0 ≤ |v| ≤ R0}.

Then for all δ > 0, the sequence (f ε)ε converges towards the measure solution
f (t, x, ω) on (x, ω) ∈ Rd ×

√
α/βS of the problem

∂tf + divx(fω)− divω

{
f
(

I − 1
r2 (ω ⊗ ω)

)
(∇xU ? ρ+ H ? f )

}
= 0

with initial data f (0) =
〈
f in〉.

Remarks:

Adding noise we get from ∆vf to the Laplace-Beltrami operator on the sphere
∆ωf .

This shows that the fixed speed limit of the Cucker-Smale’s model is the
Vicsek’s model.



icreauab

Collective Behavior Models Hydrodynamics - Continuum Flocks & Mills Conclusions

Fixed Speed Models as Asymptotic Limits

Vicsek Model as Asymptotic Limit

Fixed Speed Models

Assume that U ∈ C2
b(Rd), H(x, v) = h(x)v with h ∈ C1

b(Rd) nonnegative,
f in ∈ P1(Rd × Rd), supp(f in) ⊂ {(x, v) : |x| ≤ L0, r0 ≤ |v| ≤ R0}.

Then for all δ > 0, the sequence (f ε)ε converges towards the measure solution
f (t, x, ω) on (x, ω) ∈ Rd ×

√
α/βS of the problem

∂tf + divx(fω)− divω

{
f
(

I − 1
r2 (ω ⊗ ω)

)
(∇xU ? ρ+ H ? f )

}
= 0

with initial data f (0) =
〈
f in〉.

Remarks:

Adding noise we get from ∆vf to the Laplace-Beltrami operator on the sphere
∆ωf .

This shows that the fixed speed limit of the Cucker-Smale’s model is the
Vicsek’s model.



icreauab

Collective Behavior Models Hydrodynamics - Continuum Flocks & Mills Conclusions

Fixed Speed Models as Asymptotic Limits

Vicsek Model as Asymptotic Limit

Fixed Speed Models

Assume that U ∈ C2
b(Rd), H(x, v) = h(x)v with h ∈ C1

b(Rd) nonnegative,
f in ∈ P1(Rd × Rd), supp(f in) ⊂ {(x, v) : |x| ≤ L0, r0 ≤ |v| ≤ R0}.

Then for all δ > 0, the sequence (f ε)ε converges towards the measure solution
f (t, x, ω) on (x, ω) ∈ Rd ×

√
α/βS of the problem

∂tf + divx(fω)− divω

{
f
(

I − 1
r2 (ω ⊗ ω)

)
(∇xU ? ρ+ H ? f )

}
= 0

with initial data f (0) =
〈
f in〉.

Remarks:

Adding noise we get from ∆vf to the Laplace-Beltrami operator on the sphere
∆ωf .

This shows that the fixed speed limit of the Cucker-Smale’s model is the
Vicsek’s model.



icreauab

Collective Behavior Models Hydrodynamics - Continuum Flocks & Mills Conclusions

Conclusions

The dimensionality of the support of local minimizers of the interaction energy
can be classified in terms of the repulsion strength of the potential near zero.

Flock profiles are among Local minimizers of the interaction energy. Explicit
compactly supported flocks can be found for some biologically relevant
potentials (Quasi-Morse).
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