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2nd Order Model: Newton’s like equations

D’Orsogna, Bertozzi et al. model (PRL 2006):
dx,-

=y

E - Ly
dvi 2112
L= (=B l)vi— > VU(xi = x)).
i

m

U(r)

Pair-wise
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JFL

Model assumptions:

@ Self-propulsion and friction terms
determines an asymptotic speed of

Va/B.
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2nd Order Model: Newton’s like equations

D’Orsogna, Bertozzi et al. model (PRL 2006):

dvi 2
m— = (a =Bl — ;VU(LX,- — xj)).
JFL

Model assumptions:

@ Self-propulsion and friction terms
determines an asymptotic speed of U
Jalp.

@ Attraction/Repulsion modeled by an
effective pairwise potential U(x).

Pair-wise

U(r) = —Cue "t 4 Cre R,

One can also use Bessel functions in 2D
and 3D to produce such a potential.
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2nd Order Model: Newton’s like equations

D’Orsogna, Bertozzi et al. model (PRL 2006):

dvi 2
m— = (a =Bl — ;VU(LX,- — xj)).
JFL

Model assumptions: C=Cr/Cx>1,L=1lg/ls <1and
CP <1
@ Self-propulsion and friction terms

determines an asymptotic speed of U
Va/B.

@ Attraction/Repulsion modeled by an
effective pairwise potential U (x).

Pair-wise

U(r) = —Cue "t 4 Cre R,

One can also use Bessel functions in 2D
and 3D to produce such a potential.
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Model with an asymptotic speed

Typical patterns: milling, double milling or flocking:
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Velocity consensus model

Cucker-Smale Model (IEEE Automatic Control 2007):

s _
d

Vi,

N

dV,‘
e ZHU (v —vi),

j=1
with the communication rate, v > 0:

1

aj = a(|x,~ *Xj|) = m
i A
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Velocity consensus model

Cucker-Smale Model (IEEE Automatic Control 2007):

s _
d

Vi,

N

dV,‘
e ZHU (v —vi),

j=1
with the communication rate, v > 0:

1

aj = a(|x,~ *Xj|) = m
i A

Asymptotic flocking: v < 1/2. (Cucker, Smale; Japan J. Math 2007).



Hydrodynamics - Continuum Flocks & Mills
00000000000
Flocks & Mills

Outline

o Hydrodynamics - Continuum Flocks & Mills
@ Flocks & Mills




Hydrodynamics - Continuum Flocks & Mills
O@000000000
Flocks & Mills

Macroscopic equations

Monokinetic Solutions

Assuming that there is a deterministic velocity for each position and time,
S, v, 1) = p(x, 1) 6(v — u(x, 1)) is a distributional solution if and only if,
0 .
0—/; + divy(pu) = 0,

P 5? + P(M-Vx)u =p ((]{ _ 5\M|2)u —p (v\U N p)
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Particular solutions

Let us look for stationary solutions with an asymptotic speed value 8|u(x, 1)|* = a.

Flocking

Travelling wave case, u = const such that 3lu(x, 1)|> = a, then p(x, 1) = p(x — ut),
and the density is determined by

ﬁ(va*ﬁ) = 01
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Particular solutions

Let us look for stationary solutions with an asymptotic speed value 8|u(x, 1)|* = a.

Flocking

Travelling wave case, u = const such that 3lu(x, 1)|> = a, then p(x, 1) = p(x — ut),
and the density is determined by

ﬁ(va*ﬁ) = 01

from which
Uxp=C, p#0,

in the support of p if the support has not empty interior.
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in the support of p if the support has not empty interior.

Complete set of solutions depending on regularity of the potential and stability are
open problems.
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Particular solutions

Let us look for stationary solutions with an asymptotic speed value 8|u(x, 1)|* = a.

Flocking

Travelling wave case, u = const such that 3lu(x, 1)|> = a, then p(x, 1) = p(x — ut),
and the density is determined by

ﬁ(va*ﬁ) = 01

from which
Uxp=C, p#0,

in the support of p if the support has not empty interior.

Complete set of solutions depending on regularity of the potential and stability are
open problems.

Particular example (Delta Rings): U(x) = % - % witha > b > 2 — d, then there
is a unique explicit radius R, such that the uniform distribution on the sphere of

radius R is a flocking solution.
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Particular solutions

Let us look for stationary solutions with an asymptotic speed value 3u(x, f) |2 = .

Milling

we set u in a rotatory state,

al

a x
u==,/——,
V B I«

where x = (x1,x2), x* = (—x2,x), and look for p = p(|x|) radial, then

«

Uxp=D+
! 3

log|x|, whenever p # 0.




Hydrodynamics - Continuum Flocks & Mills
00080000000
Flocks & Mills

Particular solutions

Let us look for stationary solutions with an asymptotic speed value 3u(x, f) |2 = .

Milling

we set u in a rotatory state,

al

a x
u==,/——,
V B I«

where x = (x1,x2), x* = (—x2,x), and look for p = p(|x|) radial, then

«

Uxp=D+
! 3

log|x|, whenever p # 0.

Complete set of solutions depending on regularity of the potential and stability are
open problems.



Hydrodynamics - Continuum Flocks & Mills
00080000000
Flocks & Mills

Particular solutions

Let us look for stationary solutions with an asymptotic speed value 3u(x, f) |2 = .

Milling

we set u in a rotatory state,

al

a x
u==,/——,
V B I«

where x = (x1,x2), x* = (—x2,x), and look for p = p(|x|) radial, then

«

Uxp=D+
! 3

log|x|, whenever p # 0.

Complete set of solutions depending on regularity of the potential and stability are
open problems.

Particular example (Delta Rings): U(x) = % — % witha > b > 2 — d, then there
isa unigue explicit radius R, such that the uniform distribution on the sphere of
radius Ry, is a mill solution.
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Particular solutions

Superposition of Monokinetic Solutions: Double Mills

FO,v,t) = pi(x, 1) 6(v — ui(x, 1)) + p2(x, 1) (v — uz(x, 1)) is a distributional
solution if and only if
9(p1 + p2)
ot

Zpi {% + (ui - Vou — (o — ;3\Lti|2)ui = — (V.U % p) p.
i—1

—+ divx(plul + pzuz) =0.
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Particular solutions

Superposition of Monokinetic Solutions: Double Mills

FO,v,t) = pi(x, 1) 6(v — ui(x, 1)) + p2(x, 1) (v — uz(x, 1)) is a distributional
solution if and only if
9(p1 + p2)
ot

Zpi {% + (ui - Vou — (o — ;3\Lti|2)ui = — (V.U % p) p.
i—1

—+ divx(plul + pzuz) =0.

v

Particular example (Delta Rings): U(x) = % - % witha > b > 2 — d, then there
is a unique explicit radius f\’ab such that

1 1
p = 50,000 = u(x)) + 303,0(v + u(x))

with

is a double mill solution.
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Mill solutions: Quasi-Morse Potentials

Quasi-Morse Potential: Let V denote the radially symmetric fundamental solution of
the n-dimensional screened Poisson equation

Auszuzﬁg, k>0.

Let C,I, A > 0. The n-dimensional Quasi-Morse potential is defined as

U(r) == A (V(r) —CV (i—;)) .

o0
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Mill solutions: Quasi-Morse Potentials

Quasi-Morse Potential: Let V denote the radially symmetric fundamental solution of
the n-dimensional screened Poisson equation

Auszuzﬁg, k>0.

Let C,I, A > 0. The n-dimensional Quasi-Morse potential is defined as

U(r) := A (v(r) —cv (;)) .

Biologically reasonable: [ < 1, CI"™% > 1.

o
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Mill solutions: Quasi-Morse Potentials 2
Explicit Solvability

Solve (U = p)(r) = s(r) on supp(p) with supp(p) = B(0,Rr) , s(r) = D for flocks,
or supp(p) = B(Rw,Ru),s(r) =D+ < log( ) for mills respectively:

flock A>0 pF = pyJglar) + py
A=0 PE = 11+ By
A<O pp = pylp(ar) + py
mil_| A >0 PM_= Pinhom + 19000 T+ 15 Yo(an) T w3
A=0 —a___ K 2 —1 2 1
M= B G (log(r) — 1) + pyr® + polog(r) + p3
A <O PM = Pinhom t K1 Ig(=ar) + py - Kg(ar) + 1

withA = k2 -

i » @ = |Al, and p has to satisfy p > 0, [ pdx = L.
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Mill solutions: Quasi-Morse Potentials 3

Applying the operators A — k*Id and A — f,é Id to both sides of (U % p)(r) = s(r),
the density p now satisfies
4

A/)+Ap = ml). on supp p.
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Mill solutions: Quasi-Morse Potentials 3

Applying the operators A — k*Id and A — f,é Id to both sides of (U % p)(r) = s(r),
the density p now satisfies

4

on supp p.

In radial coordinates, this equation reads

I d 4dp K
- = —— D = Al.
gt g ter= gl =Vl



Hydrodynamics - Continuum Flocks & Mills
00000008000
Flocks & Mills

Mill solutions: Quasi-Morse Potentials 3

Applying the operators A — k*Id and A — f,é Id to both sides of (U % p)(r) = s(r),
the density p now satisfies

4

on supp p.

In radial coordinates, this equation reads

I d 4dp K
=——_D =/A|
a1 g dr:t = 02— cpd’ “ 4]

One can show that
(U p)(r) =D +Xr' 2y (kr/0) + Dor' =21y (k)

+)\31‘17%K%71(kr/€)+/\4r17%K%71(kr), 0<r<R,

By boundedness A3 = A4 = 0 and there is a linear relation between A1, A, and p1, po.
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Mill solutions: Quasi-Morse Potentials 4

A2

Al
A>0 —c’%enflm (0K (kR/€) ’%e"*‘m(l)K (kR)
A=0  —CR:"'Bo(0)Ky(kR/C)  R2£"'Bo(1)Ky (kR)

—CRLrTB_(OKy(kR/0)  AL0T'B_ (1)K, (kR)

[SE

A<O
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Mill solutions: Quasi-Morse Potentials 4

A] )\2
A>0 —c’%enflm (0K (kR/€) %E”’IBJr(I)K (kR)
A=0  —CR:"'Bo(0)Ky(kR/C)  R2£"'Bo(1)Ky (kR)
A<0  —CB0'B (OKs(kR/L)  E20"'B_(1)Ks (kR)

[SE

There exists a flock profile only if the homogeneous equations for g = (g1, p2)’
_ (B(O) 1\ (m)_ (0
Mp = (B(l) 1) (m o

are satisfied.
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Mill solutions: Quasi-Morse Potentials 4

A] )\2
A>0 —c’%enflm (0K (kR/€) ’%z"*lm(l)K% (kR)
A=0  —CR:"'Bo(0)Ky(kR/C)  R2£"'Bo(1)Ky (kR)

A<0  —CELUTB (0K, (kR/O)  RLOTUB (1)K, (kR)

There exists a flock profile only if the homogeneous equations for g = (g1, p2)’

(B 1\ () _ (0
Mp = (B(l) 1) (m o
are satisfied. These two homogeneous equations, together with the total unit mass

constraint for the non-negative density p, determine the three characterizing
parameters (p1, 42, Rr) of the flock profile.



Hydrodynamics - Continuum Flocks & Mills
000000000 e

Flocks & Mills

Mill solutions: Quasi-Morse Potentials 5

Quasi-Morse potential has no minimum.

\ 1
Region Il, A <0:
No ook profies exist. Region Il, A <0: No flock profiles exist.
08 o8
Separatrix:
cP=1,A=0, Region I, A>0: - 08 Separatrix:
as region . A unique flock profile exists. CP=1,A=0,

as region Il

Quasi-Morse potential has no minimum. Region I, A > 0: Flock profiles exist.

onl
o

=] vl v
: I H-stable
I
| catastrophic
—
[
=
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Mill solutions: Quasi-Morse Potentials 6

006 5g 6 o0z o004 006 0 1 2 3
(a)pil/Z,C:O.G (b)p:3/2,C:0.6
2 .

"p =150 p=1.80 "p=1.95

-2 0 2 4 6 8 10

(c) Different p’s with C = 10/9,¢ = 3/4
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Short Relaxation towards Cruising Speed

Scaled Vlasov equation in d = 2,3 dimensions:
. R 1 . 2 a
Of +v-Vif +a(t,x) - Vf + —divi{f*(a = B[} =0, (t,x,v) € Ry x R*

with a®(t,-) = =V, U % p°(¢t,-) — H*f°(t,-).
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Of +v-Vif +a(t,x) - Vf + —divi{f*(a = B[} =0, (t,x,v) € Ry x R*
with a®(t,-) = =V, U % p°(¢t,-) — H*f°(t,-).

This asymptotic limit enforces that particles move at cruising speed \/a/3. If one
formally does the expansion

fF=rtef e

we get
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Short Relaxation towards Cruising Speed

Scaled Vlasov equation in d = 2,3 dimensions:

O +v-Vf* a7 (1,3) - Vo + 2dvf (a— B =0, (1,x,v) € Ry x B
with a®(t,-) = =V, U % p°(¢t,-) — H*f°(t,-).

This asymptotic limit enforces that particles move at cruising speed \/a/3. If one
formally does the expansion
fF=rtef e
we get
div, {f(a — BP[*)v} =0
Of + diva(fv) + divy(fa(t,x)) + divo{f" (a — BV )v} = 0,
up to first order.
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Short Relaxation towards Cruising Speed

Scaled Vlasov equation in d = 2,3 dimensions:

. R 1 . 2 ’
Of +v-Vif +a(t,x) - Vf + —divi{f*(a = B[} =0, (t,x,v) € Ry x R*
with a®(t,-) = =V, U % p°(¢t,-) — H*f°(t,-).

This asymptotic limit enforces that particles move at cruising speed \/a/3. If one
formally does the expansion

fF=rtef e

we get
div, {f(a — BP[*)v} =0
Af + dive(fo) + divy (fa(t, x)) + div, {f"" (a — B[ v} =0,
up to first order.

To eliminate the higher order term we use the invariants of the flow associated to the
field (o — B|v|*)v - V,, functions of x and v/|v|.
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Vicsek Model as Asymptotic Limit

Fixed Speed Models
Assume that U € Ci(RY), H(x,v) = h(x)v with h € C, (R?) nonnegative,
fme PR x RY), supp(F™) C {(x,v) : x| < Lo, ro < |v] < Ro}.

Then for all § > O the sequence (f). converges towards the measure solution
f(t,x,w) on (x,w) € R? x y/a/BS of the problem

Of + diva(fuw) — dive, {f (1 - l( ® w)) (VoUxp+H *f)} .

with initial data f(0) = (/™).
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Vicsek Model as Asymptotic Limit

Fixed Speed Models
Assume that U € Ci(RY), H(x,v) = h(x)v with h € C, (R?) nonnegative,
fme PR x RY), supp(F™) C {(x,v) : x| < Lo, ro < |v] < Ro}.

Then for all § > 0 the sequence (f). converges towards the measure solution
f(t,x,w) on (x,w) € R? x y/a/BS of the problem

Of + divy(fw) — dive {f (1 —~ l( ® w)) (VUxp+H *f)} =0

with initial data f(0) = (/™).

Remarks:
@ Adding noise we get from A,f to the Laplace-Beltrami operator on the sphere

Auf.
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Fixed Speed Models as Asymptotic Limits

Vicsek Model as Asymptotic Limit

Fixed Speed Models
Assume that U € Ci(RY), H(x,v) = h(x)v with h € C, (R?) nonnegative,
fme PR x RY), supp(F™) C {(x,v) : x| < Lo, ro < |v] < Ro}.

Then for all § > 0 the sequence (f). converges towards the measure solution
f(t,x,w) on (x,w) € R? x y/a/BS of the problem

Of + divy(fw) — dive {f (1 —~ l( ® w)) (VUxp+H *f)} =0

with initial data f(0) = (/™).
Remarks:
@ Adding noise we get from A,f to the Laplace-Beltrami operator on the sphere
Auf.

@ This shows that the fixed speed limit of the Cucker-Smale’s model is the
Vicsek’s model.
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can be classified in terms of the repulsion strength of the potential near zero.
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potentials (Quasi-Morse).
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@ The dimensionality of the support of local minimizers of the interaction energy
can be classified in terms of the repulsion strength of the potential near zero.

@ Flock profiles are among Local minimizers of the interaction energy. Explicit
compactly supported flocks can be found for some biologically relevant
potentials (Quasi-Morse).
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