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2nd Order Model: Newton’s like equations

D’Orsogna, Bertozzi et al. model (PRL 2006):
dxi

dt
= vi,

m
dvi

dt
= (α− β |vi|2)vi −

∑
j 6=i

∇U(|xi − xj|).

Model assumptions:

Self-propulsion and friction terms
determines an asymptotic speed of√
α/β.

Attraction/Repulsion modeled by an
effective pairwise potential U(x).

U(r) = −CAe−r/`A + CRe−r/`R .

One can also use Bessel functions in 2D
and 3D to produce such a potential.

C = CR/CA > 1, ` = `R/`A < 1 and
C`2 < 1:
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Model with an asymptotic speed

Typical patterns: milling, double milling or flocking:
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Velocity consensus model

Cucker-Smale Model (IEEE Automatic Control 2007):
dxi

dt
= vi,

dvi

dt
=

N∑
j=1

aij (vj − vi) ,

with the communication rate, γ ≥ 0:

aij = a(|xi − xj|) =
1

(1 + |xi − xj|2)γ
.

Asymptotic flocking: γ < 1/2. (Cucker, Smale; Japan J. Math 2007).
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Stability of flock rings for second order models

2nd order models
The Bertozzi-D’Orsogna model:

ẋj = vj

v̇j = (α− β|vj|2)vj +
1
N

N∑
l=1
l 6=j

∇U(xl − xj) , j = 1, . . . ,N,

with α, β > 0. Particular case U(x) = k(|x|) with

k(r) =
ra

a
− rb

b
, a > b > 0.


ẋj = vj

v̇j =
1
N

N∑
l=1

H(xj − xl)(vl − vj) +
1
N

N∑
l=1
l 6=j

∇U(xl − xj) , j = 1, . . . ,N

with H(x) = g(|x|) given by

g(r) =
1

(1 + r2)γ
, γ > 0.



icreauab

Collective Behavior Models 2nd Order models: Stability of Patterns Mills Conclusions

Stability of flock rings for second order models

2nd order models
The Bertozzi-D’Orsogna model:
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Stability of flock rings for second order models

Asymptotic solutions

Definition

•We call a flock ring, the solution such that {xj}N
j=1 are equally distributed on a circle

with a certain radius, R and {vj}N
j=1 = u0, with |u0| =

√
α/β.

•We call a mill ring, the solution such that {xj}N
j=1 are equally distributed on a circle

with a certain radius, R and {vj}N
j=1 =

√
α/β x⊥j /|xj| with x⊥j the orthogonal vector.

Figure: Flock and mill ring solutions.
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Instabilities for Flocks

Change of Variables

Change of variables to the comoving frame:{
yj = xj(t)− u0t
zj = vj(t)− u0

, j = 1, . . . ,N,

Then the system reads
ẏj = zj

żj = (α− β|zj|2)(zj + u0) +
1
N

N∑
l=1
l 6=j

∇U(yl − yj) , j = 1, . . . ,N.

Write the stationary ring (y0
j , z

0
j ) = (Reiθj , 0) where θj = 2πj

N , for j = 1, . . . ,N.
A general flock spatial profile will be denoted by (x̂j, 0).

Consider the following type of perturbations:

ỹj(t) = x̂j + hj(t), with |hj| � 1.
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Instabilities for Flocks

Analysis of the stability of flock rings (I)

Write the matrix of the linearized system for these perturbations

L =

02N Id2N

M −2βU0

 ,

where M is symmetric and represents the 2N × 2N Jacobian that results from
linearizing the first order model, M = (Gij) with Gij being the 2× 2-blocks defined
as

Gij =

−
∑
j 6=i

Hess U(x̂i − x̂j) for i = j

Hess U(x̂i − x̂j) for i 6= j
,

with Hess U denoting the Hessian matrix of the interaction potential U.

U0 is the diagonal matrix with N blocks of the 2× 2 matrix u0uT
0 along the diagonal.

Assume that u0 = e1 = (1, 0) by rotational symmetry.
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Instabilities for Flocks

Analysis of the stability of flock rings (II)

Symmetries & Linear Instability

Due to translational invariance and rotational invariance of the velocity configuration,
zero is always an eigenvalue of the linearized matrix L.

Moreover, there is always a generalized eigenvector associated to the zero eigenvalue
generated from the eigenvector due to rotational invariance of the velocity
configuration.

Therefore, a flock solution is always linearly unstable.

Instability Result - Spectral Equivalence

The linearized second order system around the flock solution has an eigenvalue with
positive real part if and only if the linearized first order system around the flock
solution has a positive eigenvalue.

(Albi, Balagué, C., von Brecht; submitted)
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Instabilities for Flocks

Eigenvalue Analysis
Eigenvalue problem:

λ

(
x
v

)
=

(
0 Id
M −2βU

)(
x
v

)
= L

(
x
v

)
,

Normalization x∗x = 1 of eigenvectors.

Substituting the first equation λx = v into the second equation yields

λ2x + 2βλUx−Mx = 0.

Let |x|2 denote the semi-norm on C2N defined according to

|x|22 :=
N∑

i=1

|〈xi, e1〉|2,

and let EN ∼= CN denote the subspace

EN :=
{

x ∈ C2N : |x|2 = 0
}

= ker(U).
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Instabilities for Flocks

Eigenvalue Analysis

Premultiplying by x∗

λ = −β|x|22 ±
√
β2|x|42 + x∗Mx.

As M is symmetric, we may write its 2N real eigenvalues and corresponding
normalized (x∗x = 1) eigenvectors as

µ2N ≤ µ2N−1 ≤ · · · ≤ µ2 ≤ µ1 Mxi = µixi.

Zero Real Part Eigenvalues

Let λ denote an eigenvalue of L. Then <(λ) = 0 and =(λ) 6= 0 if and only if
λ = ±i

√
−µl for some l with µl < 0 and xl ∈ EN . The eigenspace consists only of

eigenvectors.



icreauab

Collective Behavior Models 2nd Order models: Stability of Patterns Mills Conclusions

Instabilities for Flocks

Eigenvalue Analysis

Premultiplying by x∗

λ = −β|x|22 ±
√
β2|x|42 + x∗Mx.

As M is symmetric, we may write its 2N real eigenvalues and corresponding
normalized (x∗x = 1) eigenvectors as

µ2N ≤ µ2N−1 ≤ · · · ≤ µ2 ≤ µ1 Mxi = µixi.

Zero Real Part Eigenvalues

Let λ denote an eigenvalue of L. Then <(λ) = 0 and =(λ) 6= 0 if and only if
λ = ±i

√
−µl for some l with µl < 0 and xl ∈ EN . The eigenspace consists only of

eigenvectors.



icreauab

Collective Behavior Models 2nd Order models: Stability of Patterns Mills Conclusions

Instabilities for Flocks

Eigenvalue Analysis

Premultiplying by x∗

λ = −β|x|22 ±
√
β2|x|42 + x∗Mx.

As M is symmetric, we may write its 2N real eigenvalues and corresponding
normalized (x∗x = 1) eigenvectors as

µ2N ≤ µ2N−1 ≤ · · · ≤ µ2 ≤ µ1 Mxi = µixi.

Zero Real Part Eigenvalues

Let λ denote an eigenvalue of L. Then <(λ) = 0 and =(λ) 6= 0 if and only if
λ = ±i

√
−µl for some l with µl < 0 and xl ∈ EN . The eigenspace consists only of

eigenvectors.



icreauab

Collective Behavior Models 2nd Order models: Stability of Patterns Mills Conclusions

Instabilities for Flocks

Eigenvalue Analysis

Generalized eigenvector: there exists an eigenvector (x, λx) with x ∈ EN so that the
system of equations(

−λId Id
M −2βU − λId

)(
u
w

)
=

(
x
λx

)
(1)

has a non-trivial solution.

Substituting the first equation w = λu + x into the second equation, then
pre-multiplying by x∗

Mu− 2βUw = 2λx + λ2u

x∗Mu = 2λ+ λ2x∗u.

The symmetry of M and the fact that Mx = λ2x combine to show x∗Mu = λ2x∗u.
Thus λ = 0, leading to a contradiction.
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Instabilities for Flocks

Eigenvalue Analysis

Zero Eigenvalue

Let β > 0. Then λ = 0 is an eigenvalue of L and (x, 0) is a corresponding
eigenvector if and only if Mx = 0. If x ∈ EN then (x, 0) generates a single
generalized eigenvector, whereas if x /∈ EN then (x, 0) generates no generalized
eigenvectors.

Generalized Eigenvector equations: w = x and

Mu = 2βUx,

which by premultiplying by x∗ as before and using the fact that Mx = 0 necessitates
x ∈ EN as β > 0. If indeed x ∈ EN then any u ∈ ker(M) suffices. Without loss of
generality, take u = x itself.

If (x, 0) generates a second generalized eigenvector then the system of equations(
0 Id
M −2βU

)(
u
w

)
=

(
x
x

)
has a non-trivial solution. As then w = x and x ∈ EN this reads Mu = x. Proceeding
as above leads to contradiction.
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Generalized Eigenvector equations: w = x and

Mu = 2βUx,

which by premultiplying by x∗ as before and using the fact that Mx = 0 necessitates
x ∈ EN as β > 0. If indeed x ∈ EN then any u ∈ ker(M) suffices. Without loss of
generality, take u = x itself.

If (x, 0) generates a second generalized eigenvector then the system of equations(
0 Id
M −2βU

)(
u
w

)
=

(
x
x

)
has a non-trivial solution. As then w = x and x ∈ EN this reads Mu = x. Proceeding
as above leads to contradiction.
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Instabilities for Flocks

Eigenvalue Analysis

Zero Real Part Eigenvalues

Let β > 0. Then

aL(0) = dim(ker(M) ∩ EN) + dim(ker(M)).

and
det(L− λId) = λaM,⊥(0)+aM(0)Πl

j=1(λ
2 − µij )pβ(λ) ,

where i1 < i2 < · · · < il ≤ 2N denote those (possibly non-existent) indices where
µij < 0 has an eigenvector xij ∈ EN . The roots of the polynomial pβ(λ) all have
non-zero real part.

Suppose first that µ1 ≤ 0. Then x∗Mx ≤ 0 for any x, whence all eigenvalues λ of L
have non-positive real part due to

λ = −β|x|22 ±
√
β2|x|42 + x∗Mx.
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Instabilities for Flocks

Eigenvalue Analysis

Conversely, suppose µ1 > 0 and let A denote the set

A :=

{
β ∈ [0,∞) : max

λ∈σ(L)
<(λ) > 0

}
.

Note that 0 ∈ A.

A is relatively open: by continuous dependence of the eigenvalues of L on β.

A is relatively closed: let βl ∈ A and βl → β0 ∈ (0,∞). Up to extraction of
subsequences, it follows that there exists a corresponding sequence λl of eigenvalues
with <(λl) > 0 converging to some λ0 with <(λ0) ≥ 0.

Moreover, by continuous dependence of the coefficients of pβ(λ) on β, the roots of
pβl (λ) converge to roots of pβ0 (λ). Thus pβ0 (λ0) = 0.

As no such root can have zero real part, <(λ0) > 0 and β0 ∈ A.

As A 6= ∅ it follows that A = [0,∞) as desired.
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Instabilities for Flocks

Eigenvalue Analysis

Linear Instability

As an artifact of translation invariance in the first order model, the vector defined by
e2 := (0, 1, . . . , 0, 1)T ∈ R2N always defines an eigenvector of M with eigenvalue
zero. Due to the fact that e2 ∈ EN , our results before imply that (e2, e2) furnishes a
generalized eigenvector with eigenvalue zero.
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Instabilities for Ring Flocks

Eigenvalue Analysis: Ring Flocks

Ring Flock:

m-Mode Fourier Perturbations

A flock ring to the 2nd order model is spectrally stable if and only if the ring solution
to the first order model is spectrally stable with respect to all m-mode perturbations.

Fourier mode Perturbations: Reiθj (1 + hj) for hj = ξ+eimθj + ξ−e−imθj .
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Instabilities for Ring Flocks

Eigenvalue Analysis: Ring Flocks
The analysis in (Kolokonikov, Sun, Uminsky, Bertozzi; Physical Review E 2011) and
(Bertozzi, von Brecht, Sun, Kolokolnikov, Uminsky; Comm. Math. Sci. 2012) shows
that the stability under those perturbations reduces to a study of the decoupled set of
2× 2 eigenvalue problems

λ

(
ξ+
ξ−

)
=

(
I1(m) I2(m)
I2(m) I1(−m)

)
︸ ︷︷ ︸

M

(
ξ+
ξ−

)
1 ≤ m ≤ N.

I1(m) := 4
N/2∑
p=1

G1

(πp
N

)
sin2

(
(m + 1)πp

N

)

I2(m) := 4
N/2∑
p=1

G2

(πp
N

) [
sin2

(πp
N

)
− sin2

(mπp
N

)]
,

and for power-law potentials k(r) = ra/a− rb/b the functions Gi(φ) are given by

G1(φ) :=
1

2N

[
−a(2R| sinφ|)a−2 + b(2R| sinφ|)b−2

]
,

G2(φ) :=
1

2N

[
−(a− 2)(2R| sinφ|)a−2 + (b− 2)(2R| sinφ|)b−2

]
.
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Instabilities for Ring Flocks

Eigenvalue Analysis: Ring Flocks
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Figure: Stability areas for flock ring solutions for N = 1000.
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Instabilities for Ring Flocks

Clustering Instability
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Figure: Bifurcation diagram for cluster formation at Tf = 500, with N = 1000
particles, a = 5, |u0| = 2.5.
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Instabilities for Ring Flocks

Fattening Instability
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Figure: Bifurcation diagram for fattening instability at Tf = 500 with N=1000
particles, a = 5, |u0| = 2.5.
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Instabilities for Ring Flocks

Particle Simulations: Perturbation of flocks
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Instabilities for Ring Flocks

Flock Rings: Cucker-Smale


ẋj = vj

v̇j =
1
N

N∑
l=1

H(xj − xl)(vl − vj) +
1
N

N∑
l=1
l 6=j

∇U(xl − xj) , j = 1, . . . ,N

with H(x) = g(|x|) given by

g(r) =
1

(1 + r2)γ
, γ > 0.

Spectral Equivalence

The linearized second order system around the flock ring solution has an eigenvalue
with positive real part if and only if the linearized first order system around the ring
solution has a positive eigenvalue. Moreover, the flock ring solution is unstable for
m-mode perturbations for the second order model if and only if the ring solution is
unstable for m-mode perturbations for the first order model.
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Asymptotic Stability Result for Flocks

Stability: New change of variables

Original coordinates: flock transversal profile

New coordinates: relative to m(t) = 1
N

∑
i vi(t).

→ all flocks are stationary, 4N + 2-dimensional
dynamics z t7→ F(z)

Reduce dynamics to mean-velocity consistent
states, by choosing a invariant base B:
FB

B := F|span B → span B.

→ Study the linearisation z ≈ zF + FB
B(z− zf )

02N×2N
I2N−2

−1T
N−1 ⊗ I2

02N×2

[G(x̂)] −IN−1 ⊗ 2β(m ⊗ mT) 02N−2×2

02×2N 02×2N−2 −2β(m ⊗ mT)

 .

ẋ1 = . . .

...

ẋN = . . .

v̇1 = . . .

...

v̇N = . . .

flock solution:
zF = (x̂ + v0t, v0)

T , |v0| =
√
α/β.
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ṁ = . . .

flock solution:
zF = (x̂, 0,m) , |m| =

√
α/β.



icreauab

Collective Behavior Models 2nd Order models: Stability of Patterns Mills Conclusions

Asymptotic Stability Result for Flocks

Result

Suppose the first-order aggregation system

dxi

dt
= −

∑
i 6=j

∇U(xi − xj) ,

is linearly stable except for translational and rotational invariance at a stationary
profile x̂.
Then the transformed second-order system behaves well:

FB
B has no generalised eigenvector for eigenvalue zero.

dim(eig(FB
B , 0)) = 4 with 4 eigenvectors that all represent linearised flow

within the set of stationary flock solutions.
2 translation in space, 1 rotation in space, 1 rotation in mean velocity

All non-zero eigenvalues of FB
B have negative real-part.
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2 translation in space, 1 rotation in space, 1 rotation in mean velocity

All non-zero eigenvalues of FB
B have negative real-part.
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Asymptotic Stability Result for Flocks

Stability Theorem
This is sufficient to establish that the family of flock solutions

ZF =
{

(x∗, 0,m) , x∗ = TxR[φ]x̂, |m| =
√
α/β

}
is a normally hyperbolic invariant manifold with a purely stable tangent-bundle
splitting and exponentially decaying local stability (Tx translation, R[φ] rotation).

(C., Huang, Martin; preprint)

Flock	  solu)on	  

a,er	  pertuba)on	  

new	  point	  on	  manifold	  

)me	  	  
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Mills: Linear Stability Analysis
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Mills: Linear Stability Analysis

What about mills?

Let us consider the transformation{
yj(t) = O(t)xj(t)
zj(t) = O(t)vj(t)

, j = 1, . . . ,N

where O(t) is the rotation matrix defined as

O(t) = eSt, S =

(
0 ω
−ω 0

)
, and Ȯ(t) = SeSt.

Fourier mode Perturbations:
ξ′+
ξ′−
η′+
η′−

 =


0 0 1 0
0 0 0 1

−ωiα+ ω2 + I1(m) −ωiα+ I2(m) −α− 2ωi α
ωiα+ I2(m) ωiα+ ω2 + I1(−m) α −α+ 2ωi



ξ+
ξ−
η+
η−

 .
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Mills: Linear Stability Analysis

What about mills?
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Figure: Stability region for N = 1000 and different values of |u0|.
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Mills: Linear Stability Analysis

What about mills?
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Conclusions

The stability and instability of flocks for the second order model is implied
from the analysis of the first order model.

References:

1 Albi-Balagué-C.-VonBrecht (preprint arxiv 2013).
2 C.-Huang-Martin (preprint arxiv 2013).
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