Collective Behavior Models	2nd Order models: Stability of Patterns		
0000	000000000000000000000000000000000000000	0000	

Swarming Models with Repulsive-Attractive Effects

J. A. Carrillo

Imperial College London

Lecture 5, Ravello 2013

Collective Behavior Models	2nd Order models: Stability of Patterns		
0000	000000000000000000000000000000000000000	0000	

Outline

Collective Behavior Models

Patterns

2 2nd Order models: Stability of Patterns

- Stability of flock rings for second order models
- Instabilities for Flocks
- Instabilities for Ring Flocks
- Asymptotic Stability Result for Flocks

Mills

• Mills: Linear Stability Analysis

Conclusions

Collective Behavior Models	2nd Order models: Stability of Patterns	
0000		
Patterns		

Outline

Collective Behavior ModelsPatterns

2nd Order models: Stability of Patterns

- Stability of flock rings for second order models
- Instabilities for Flocks
- Instabilities for Ring Flocks
- Asymptotic Stability Result for Flocks

B Mills

• Mills: Linear Stability Analysis

Conclusions

Collective Behavior Models	2nd Order models: Stability of Patterns	
0000		
Dattarne		

D'Orsogna, Bertozzi et al. model (PRL 2006):

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ m\frac{dv_i}{dt} = (\alpha - \beta |v_i|^2)v_i - \sum_{i \neq i} \nabla U(|x_i - x_j|). \end{cases}$$

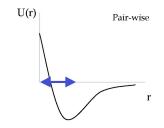
Model assumptions:

- Self-propulsion and friction terms determines an asymptotic speed of $\sqrt{\alpha/\beta}$.
- Attraction/Repulsion modeled by an effective pairwise potential U(x).

 $U(r) = -C_A e^{-r/\ell_A} + C_R e^{-r/\ell_R}.$

One can also use Bessel functions in 2D and 3D to produce such a potential.

 $C = C_R/C_A > 1, \ \ell = \ell_R/\ell_A < 1$ and $C\ell^2 < 1$:



Collective Behavior Models	2nd Order models: Stability of Patterns	
0000		
Patterns		

D'Orsogna, Bertozzi et al. model (PRL 2006):

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ m\frac{dv_i}{dt} = (\alpha - \beta |v_i|^2)v_i - \sum_{i \neq i} \nabla U(|x_i - x_j|). \end{cases}$$

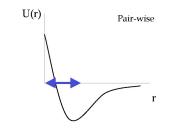
Model assumptions:

- Self-propulsion and friction terms determines an asymptotic speed of $\sqrt{\alpha/\beta}$.
- Attraction/Repulsion modeled by an effective pairwise potential U(x).

 $U(r) = -C_A e^{-r/\ell_A} + C_R e^{-r/\ell_R}.$

One can also use Bessel functions in 2D and 3D to produce such a potential.

 $C = C_R/C_A > 1, \, \ell = \ell_R/\ell_A < 1$ and $C\ell^2 < 1$:



Collective Behavior Models	2nd Order models: Stability of Patterns	
0000		
Patterns		

D'Orsogna, Bertozzi et al. model (PRL 2006):

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ m\frac{dv_i}{dt} = (\alpha - \beta |v_i|^2)v_i - \sum_{i \neq i} \nabla U(|x_i - x_j|). \end{cases}$$

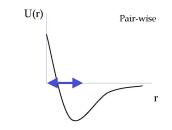
Model assumptions:

- Self-propulsion and friction terms determines an asymptotic speed of $\sqrt{\alpha/\beta}$.
- Attraction/Repulsion modeled by an effective pairwise potential U(x).

 $U(r) = -C_A e^{-r/\ell_A} + C_R e^{-r/\ell_R}.$

One can also use Bessel functions in 2D and 3D to produce such a potential.

 $C = C_R/C_A > 1, \ \ell = \ell_R/\ell_A < 1$ and $C\ell^2 < 1$:



Collective Behavior Models	2nd Order models: Stability of Patterns	
0000		
Patterns		

D'Orsogna, Bertozzi et al. model (PRL 2006):

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ m\frac{dv_i}{dt} = (\alpha - \beta |v_i|^2)v_i - \sum_{i \neq i} \nabla U(|x_i - x_j|). \end{cases}$$

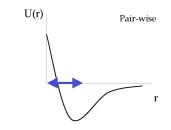
Model assumptions:

- Self-propulsion and friction terms determines an asymptotic speed of $\sqrt{\alpha/\beta}$.
- Attraction/Repulsion modeled by an effective pairwise potential *U*(*x*).

 $U(r) = -C_A e^{-r/\ell_A} + C_R e^{-r/\ell_R}.$

One can also use Bessel functions in 2D and 3D to produce such a potential.

$$C = C_R/C_A > 1, \ \ell = \ell_R/\ell_A < 1$$
 and $C\ell^2 < 1$:



Collective Behavior Models	2nd Order models: Stability of Patterns	
0000		
Patterns		

Model with an asymptotic speed

Typical patterns: milling, double milling or flocking:

Collective Behavior Models	2nd Order models: Stability of Patterns	Mills	
0000	000000000000000000000000000000000000000	0000	
Patterns			
Velocity consen	sus model		

Cucker-Smale Model (IEEE Automatic Control 2007):

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ \frac{dv_i}{dt} = \sum_{j=1}^N a_{ij} (v_j - v_i), \end{cases}$$

with the communication rate, $\gamma \geq 0$:

$$a_{ij} = a(|x_i - x_j|) = \frac{1}{(1 + |x_i - x_j|^2)^{\gamma}}.$$

Asymptotic flocking: $\gamma < 1/2$. (Cucker, Smale; Japan J. Math 2007).

Collective Behavior Models	2nd Order models: Stability of Patterns		
0000	000000000000000000000000000000000000000	0000	
Patterns			
Velocity conser	nsus model		

Cucker-Smale Model (IEEE Automatic Control 2007):

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ \frac{dv_i}{dt} = \sum_{j=1}^N a_{ij} (v_j - v_i), \end{cases}$$

with the communication rate, $\gamma \ge 0$:

$$a_{ij} = a(|x_i - x_j|) = \frac{1}{(1 + |x_i - x_j|^2)^{\gamma}}.$$

Asymptotic flocking: $\gamma < 1/2$. (Cucker, Smale; Japan J. Math 2007).

Collective Behavior Models	2nd Order models: Stability of Patterns	
	• 00 0000000000000000000000000000000000	
Stability of flock rings for second order n	nodels	
Outline		

Collective Behavior Models Patterns

2 2nd Order models: Stability of Patterns

• Stability of flock rings for second order models

- Instabilities for Flocks
- Instabilities for Ring Flocks
- Asymptotic Stability Result for Flocks

Mills

• Mills: Linear Stability Analysis

Conclusions

Collective Behavior Models	2nd Order models: Stability of Patterns	
	000000000000000000000000000000000000000	
Stability of flock rings for second order n	nodels	
2nd order mod	lels	

The Bertozzi-D'Orsogna model:

$$\begin{cases} \dot{x}_j = v_j \\ \dot{v}_j = (\alpha - \beta |v_j|^2) v_j + \frac{1}{N} \sum_{\substack{l=1 \\ l \neq j}}^N \nabla U(x_l - x_j) \quad , \quad j = 1, \dots, N, \end{cases}$$

with $\alpha, \beta > 0$. Particular case U(x) = k(|x|) with

$$k(r) = \frac{r^a}{a} - \frac{r^b}{b}, \qquad a > b > 0.$$

$$\begin{cases} \dot{x}_j = v_j \\ \dot{v}_j = \frac{1}{N} \sum_{l=1}^N H(x_j - x_l)(v_l - v_j) + \frac{1}{N} \sum_{\substack{l=1 \\ l \neq j}}^N \nabla U(x_l - x_j) \quad , \quad j = 1, \dots, N \end{cases}$$

with H(x) = g(|x|) given by

$$g(r) = \frac{1}{(1+r^2)^{\gamma}}, \qquad \gamma > 0.$$

Collective Behavior Models	2nd Order models: Stability of Patterns	
	000000000000000000000000000000000000000	
Stability of flock rings for second order n	nodels	
2nd order mod	lels	

The Bertozzi-D'Orsogna model:

$$\begin{cases} \dot{x}_j = v_j \\ \dot{v}_j = (\alpha - \beta |v_j|^2) v_j + \frac{1}{N} \sum_{\substack{l=1 \\ l \neq j}}^N \nabla U(x_l - x_j) \quad , \quad j = 1, \dots, N, \end{cases}$$

with $\alpha, \beta > 0$. Particular case U(x) = k(|x|) with

$$k(r) = \frac{r^a}{a} - \frac{r^b}{b}, \qquad a > b > 0.$$

$$\begin{cases} \dot{x}_j = v_j \\ \dot{v}_j = \frac{1}{N} \sum_{l=1}^N H(x_j - x_l)(v_l - v_j) + \frac{1}{N} \sum_{\substack{l=1 \\ l \neq j}}^N \nabla U(x_l - x_j) \quad , \quad j = 1, \dots, N \end{cases}$$

with H(x) = g(|x|) given by

$$g(r) = \frac{1}{(1+r^2)^{\gamma}}, \qquad \gamma > 0.$$

Collective Behavior Models	2nd Order models: Stability of Patterns	
	000000000000000000000000000000000000000	
Stability of flock rings for second order n	nodels	
2nd order mod	lels	

The Bertozzi-D'Orsogna model:

$$\begin{cases} \dot{x}_j = v_j \\ \dot{v}_j = (\alpha - \beta |v_j|^2) v_j + \frac{1}{N} \sum_{\substack{l=1 \\ l \neq j}}^N \nabla U(x_l - x_j) \quad , \quad j = 1, \dots, N, \end{cases}$$

with $\alpha, \beta > 0$. Particular case U(x) = k(|x|) with

$$k(r) = \frac{r^a}{a} - \frac{r^b}{b}, \qquad a > b > 0.$$

$$\begin{cases} \dot{x}_j = v_j \\ \dot{v}_j = \frac{1}{N} \sum_{l=1}^N H(x_j - x_l)(v_l - v_j) + \frac{1}{N} \sum_{\substack{l=1 \\ l \neq j}}^N \nabla U(x_l - x_j) \quad , \quad j = 1, \dots, N \end{cases}$$

with H(x) = g(|x|) given by

$$g(r) = \frac{1}{(1+r^2)^{\gamma}}, \qquad \gamma > 0.$$

Collective Behavior Models	2nd Order models: Stability of Patterns	
	000000000000000000000000000000000000000	
Stability of flock rings for second order	models	
Asymptotic so	olutions	

Definition

- We call a *flock ring*, the solution such that $\{x_j\}_{j=1}^N$ are equally distributed on a circle with a certain radius, *R* and $\{v_j\}_{j=1}^N = u_0$, with $|u_0| = \sqrt{\alpha/\beta}$.
- We call a *mill ring*, the solution such that $\{x_j\}_{j=1}^N$ are equally distributed on a circle with a certain radius, *R* and $\{v_j\}_{j=1}^N = \sqrt{\alpha/\beta} x_j^{\perp}/|x_j|$ with x_j^{\perp} the orthogonal vector.

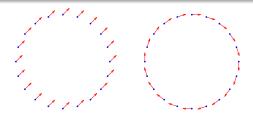


Figure: Flock and mill ring solutions.

Collective Behavior Models	2nd Order models: Stability of Patterns	
	000 0000000000 000000000000000000000000	
Instabilities for Flocks		

Outline

Collective Behavior Models

Patterns

2

2nd Order models: Stability of Patterns

• Stability of flock rings for second order models

Instabilities for Flocks

- Instabilities for Ring Flocks
- Asymptotic Stability Result for Flocks

Mills

• Mills: Linear Stability Analysis

Conclusions

Collective Behavior Models	2nd Order models: Stability of Patterns	
	000 00000000000 0000000000000000000000	
Instabilities for Flocks		
Change of Var	riables	

• Change of variables to the comoving frame:

$$\begin{cases} y_j = x_j(t) - u_0 t \\ z_j = v_j(t) - u_0 \end{cases}, j = 1, \dots, N,$$

Then the system reads

$$\begin{cases} \dot{y}_j = z_j \\ \dot{z}_j = (\alpha - \beta |z_j|^2)(z_j + u_0) + \frac{1}{N} \sum_{\substack{l=1 \\ l \neq j}}^N \nabla U(y_l - y_j) \quad , j = 1, \dots, N. \end{cases}$$

Write the stationary ring $(y_j^0, z_j^0) = (Re^{i\theta_j}, 0)$ where $\theta_j = \frac{2\pi j}{N}$, for j = 1, ..., N. A general flock spatial profile will be denoted by $(\hat{x}_j, 0)$.

• Consider the following type of perturbations:

$$\tilde{y}_j(t) = \hat{x}_j + h_j(t), \quad \text{with} \quad |h_j| \ll 1.$$

Collective Behavior Models	2nd Order models: Stability of Patterns	
	000000000000000000000000000000000000000	
Instabilities for Flocks		
Change of Var	riables	

• Change of variables to the comoving frame:

$$\begin{cases} y_j = x_j(t) - u_0 t \\ z_j = v_j(t) - u_0 \end{cases}, j = 1, \dots, N,$$

Then the system reads

$$\begin{cases} \dot{y}_j = z_j \\ \dot{z}_j = (\alpha - \beta |z_j|^2)(z_j + u_0) + \frac{1}{N} \sum_{\substack{l=1 \\ l \neq j}}^N \nabla U(y_l - y_j) \quad , j = 1, \dots, N. \end{cases}$$

Write the stationary ring $(y_j^0, z_j^0) = (Re^{i\theta_j}, 0)$ where $\theta_j = \frac{2\pi j}{N}$, for j = 1, ..., N. A general flock spatial profile will be denoted by $(\hat{x}_j, 0)$.

• Consider the following type of perturbations:

$$\tilde{y}_j(t) = \hat{x}_j + h_j(t), \quad \text{with} \quad |h_j| \ll 1.$$

Collective Behavior Models	2nd Order models: Stability of Patterns	
	000000000000000000000000000000000000000	
Instabilities for Flocks		
Change of Var	riables	

• Change of variables to the comoving frame:

$$\begin{cases} y_j = x_j(t) - u_0 t \\ z_j = v_j(t) - u_0 \end{cases}, j = 1, \dots, N,$$

Then the system reads

$$\begin{cases} \dot{y}_j = z_j \\ \dot{z}_j = (\alpha - \beta |z_j|^2)(z_j + u_0) + \frac{1}{N} \sum_{\substack{l=1 \\ l \neq j}}^N \nabla U(y_l - y_j) \quad , j = 1, \dots, N. \end{cases}$$

Write the stationary ring $(y_j^0, z_j^0) = (Re^{i\theta_j}, 0)$ where $\theta_j = \frac{2\pi j}{N}$, for j = 1, ..., N. A general flock spatial profile will be denoted by $(\hat{x}_j, 0)$.

• Consider the following type of perturbations:

$$\tilde{y}_j(t) = \hat{x}_j + h_j(t), \text{ with } |h_j| \ll 1.$$

Collective Behavior Models	2nd Order models: Stability of Patterns	
	000000000000000000000000000000000000000	
Instabilities for Flocks		

• Write the matrix of the linearized system for these perturbations

$$L = \begin{pmatrix} 0_{2N} & \mathrm{Id}_{2N} \\ & & \\ \mathbf{M} & -2\beta\mathcal{U}_0 \end{pmatrix},$$

where **M** is symmetric and represents the $2N \times 2N$ Jacobian that results from linearizing the first order model, $M = (G_{ij})$ with G_{ij} being the 2 × 2-blocks defined

$$G_{ij} = \begin{cases} -\sum_{j \neq i} \text{Hess } U(\hat{x}_i - \hat{x}_j) & \text{for } i = j \\ \text{Hess } U(\hat{x}_i - \hat{x}_j) & \text{for } i \neq j \end{cases},$$

with Hess U denoting the Hessian matrix of the interaction potential U.

 U_0 is the diagonal matrix with *N* blocks of the 2 × 2 matrix $u_0u_0^T$ along the diagonal. Assume that $u_0 = e_1 = (1, 0)$ by rotational symmetry.

Collective Behavior Models	2nd Order models: Stability of Patterns	
	000000000000000000000000000000000000000	
Instabilities for Flocks		

• Write the matrix of the linearized system for these perturbations

$$L = \begin{pmatrix} 0_{2N} & \mathrm{Id}_{2N} \\ & & \\ \mathbf{M} & -2\beta\mathcal{U}_0 \end{pmatrix},$$

where **M** is symmetric and represents the $2N \times 2N$ Jacobian that results from linearizing the first order model, $M = (G_{ij})$ with G_{ij} being the 2 × 2-blocks defined as

$$G_{ij} = \begin{cases} -\sum_{j \neq i} \text{Hess } U(\hat{x}_i - \hat{x}_j) & \text{for } i = j \\ \text{Hess } U(\hat{x}_i - \hat{x}_j) & \text{for } i \neq j \end{cases},$$

with Hess U denoting the Hessian matrix of the interaction potential U.

 U_0 is the diagonal matrix with *N* blocks of the 2 × 2 matrix $u_0u_0^T$ along the diagonal. Assume that $u_0 = e_1 = (1, 0)$ by rotational symmetry.

Collective Behavior Models	2nd Order models: Stability of Patterns	
	000 0000000000 000000000000000000000000	
Instabilities for Flocks		

• Write the matrix of the linearized system for these perturbations

$$L = \begin{pmatrix} 0_{2N} & \mathrm{Id}_{2N} \ & & \ \mathbf{M} & -2eta\mathcal{U}_0 \end{pmatrix},$$

where **M** is symmetric and represents the $2N \times 2N$ Jacobian that results from linearizing the first order model, $M = (G_{ij})$ with G_{ij} being the 2 × 2-blocks defined as

$$G_{ij} = \begin{cases} -\sum_{j \neq i} \text{Hess } U(\hat{x}_i - \hat{x}_j) & \text{for } i = j \\ \text{Hess } U(\hat{x}_i - \hat{x}_j) & \text{for } i \neq j \end{cases},$$

with Hess U denoting the Hessian matrix of the interaction potential U.

 U_0 is the diagonal matrix with *N* blocks of the 2 × 2 matrix $u_0 u_0^T$ along the diagonal. Assume that $u_0 = e_1 = (1, 0)$ by rotational symmetry.

Collective Behavior Models	2nd Order models: Stability of Patterns	
	000000000000000000000000000000000000000	
Instabilities for Flocks		

• Write the matrix of the linearized system for these perturbations

$$L = \begin{pmatrix} 0_{2N} & \mathrm{Id}_{2N} \ & & \ \mathbf{M} & -2eta\mathcal{U}_0 \end{pmatrix},$$

where **M** is symmetric and represents the $2N \times 2N$ Jacobian that results from linearizing the first order model, $M = (G_{ij})$ with G_{ij} being the 2 × 2-blocks defined as

$$G_{ij} = \begin{cases} -\sum_{j \neq i} \text{Hess } U(\hat{x}_i - \hat{x}_j) & \text{for } i = j \\ \text{Hess } U(\hat{x}_i - \hat{x}_j) & \text{for } i \neq j \end{cases},$$

with Hess U denoting the Hessian matrix of the interaction potential U.

 U_0 is the diagonal matrix with *N* blocks of the 2 × 2 matrix $u_0 u_0^T$ along the diagonal. Assume that $u_0 = e_1 = (1, 0)$ by rotational symmetry.

Analysis of the stability of flock rings (II)

Symmetries & Linear Instability

Due to translational invariance and rotational invariance of the velocity configuration, zero is always an eigenvalue of the linearized matrix L.

Moreover, there is always a generalized eigenvector associated to the zero eigenvalue generated from the eigenvector due to rotational invariance of the velocity configuration.

Therefore, a flock solution is always linearly unstable.

Instability Result - Spectral Equivalence

The linearized second order system around the flock solution has an eigenvalue with positive real part if and only if the linearized first order system around the flock solution has a positive eigenvalue.

Analysis of the stability of flock rings (II)

Symmetries & Linear Instability

Due to translational invariance and rotational invariance of the velocity configuration, zero is always an eigenvalue of the linearized matrix *L*.

Moreover, there is always a generalized eigenvector associated to the zero eigenvalue generated from the eigenvector due to rotational invariance of the velocity configuration.

Therefore, a flock solution is always linearly unstable.

Instability Result - Spectral Equivalence

The linearized second order system around the flock solution has an eigenvalue with positive real part **if and only if** the linearized first order system around the flock solution has a positive eigenvalue.

Analysis of the stability of flock rings (II)

Symmetries & Linear Instability

Due to translational invariance and rotational invariance of the velocity configuration, zero is always an eigenvalue of the linearized matrix *L*.

Moreover, there is always a generalized eigenvector associated to the zero eigenvalue generated from the eigenvector due to rotational invariance of the velocity configuration.

Therefore, a flock solution is always linearly unstable.

Instability Result - Spectral Equivalence

The linearized second order system around the flock solution has an eigenvalue with positive real part if and only if the linearized first order system around the flock solution has a positive eigenvalue.

Analysis of the stability of flock rings (II)

Symmetries & Linear Instability

Due to translational invariance and rotational invariance of the velocity configuration, zero is always an eigenvalue of the linearized matrix *L*.

Moreover, there is always a generalized eigenvector associated to the zero eigenvalue generated from the eigenvector due to rotational invariance of the velocity configuration.

Therefore, a flock solution is always linearly unstable.

Instability Result - Spectral Equivalence

The linearized second order system around the flock solution has an eigenvalue with positive real part if and only if the linearized first order system around the flock solution has a positive eigenvalue.

Collective Behavior Models	2nd Order models: Stability of Patterns	
	000 00000000000000000000000000000000000	
Instabilities for Flocks		

Eigenvalue problem:

$$\lambda \begin{pmatrix} \mathbf{x} \\ \mathbf{v} \end{pmatrix} = \begin{pmatrix} 0 & \mathrm{Id} \\ \mathbf{M} & -2\beta U \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{v} \end{pmatrix} = L \begin{pmatrix} \mathbf{x} \\ \mathbf{v} \end{pmatrix},$$

Normalization $\mathbf{x}^* \mathbf{x} = 1$ of eigenvectors.

Substituting the first equation $\lambda \mathbf{x} = \mathbf{v}$ into the second equation yields

 $\lambda^2 \mathbf{x} + 2\beta \lambda U \mathbf{x} - \mathbf{M} \mathbf{x} = \mathbf{0}.$

Let $|\mathbf{x}|_2$ denote the semi-norm on \mathbb{C}^{2N} defined according to

$$|\mathbf{x}|_2^2 := \sum_{i=1}^N |\langle x_i, e_1 \rangle|^2,$$

and let $E^N \cong \mathbb{C}^N$ denote the subspace

$$E^N := \left\{ \mathbf{x} \in \mathbb{C}^{2N} : |\mathbf{x}|_2 = 0 \right\} = \ker(U).$$

Collective Behavior Models	2nd Order models: Stability of Patterns	
	000 00000000000000000000000000000000000	
Instabilities for Flocks		

Eigenvalue problem:

$$\lambda \begin{pmatrix} \mathbf{x} \\ \mathbf{v} \end{pmatrix} = \begin{pmatrix} 0 & \mathrm{Id} \\ \mathbf{M} & -2\beta U \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{v} \end{pmatrix} = L \begin{pmatrix} \mathbf{x} \\ \mathbf{v} \end{pmatrix},$$

Normalization $\mathbf{x}^* \mathbf{x} = 1$ of eigenvectors.

Substituting the first equation $\lambda \mathbf{x} = \mathbf{v}$ into the second equation yields

 $\lambda^2 \mathbf{x} + 2\beta \lambda U \mathbf{x} - \mathbf{M} \mathbf{x} = 0.$

Let $|\mathbf{x}|_2$ denote the semi-norm on \mathbb{C}^{2N} defined according to

$$|\mathbf{x}|_2^2 := \sum_{i=1}^N |\langle x_i, e_1 \rangle|^2,$$

and let $E^N \cong \mathbb{C}^N$ denote the subspace

$$E^N := \left\{ \mathbf{x} \in \mathbb{C}^{2N} : |\mathbf{x}|_2 = 0 \right\} = \ker(U).$$

Collective Behavior Models	2nd Order models: Stability of Patterns	
	000 00000000000000000000000000000000000	
Instabilities for Flocks		

Eigenvalue problem:

$$\lambda \begin{pmatrix} \mathbf{x} \\ \mathbf{v} \end{pmatrix} = \begin{pmatrix} 0 & \mathrm{Id} \\ \mathbf{M} & -2\beta U \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{v} \end{pmatrix} = L \begin{pmatrix} \mathbf{x} \\ \mathbf{v} \end{pmatrix},$$

Normalization $\mathbf{x}^* \mathbf{x} = 1$ of eigenvectors.

Substituting the first equation $\lambda \mathbf{x} = \mathbf{v}$ into the second equation yields

 $\lambda^2 \mathbf{x} + 2\beta \lambda U \mathbf{x} - \mathbf{M} \mathbf{x} = 0.$

Let $|\mathbf{x}|_2$ denote the semi-norm on \mathbb{C}^{2N} defined according to

$$|\mathbf{x}|_2^2 := \sum_{i=1}^N |\langle x_i, e_1 \rangle|^2,$$

and let $E^N \cong \mathbb{C}^N$ denote the subspace

$$E^N := \left\{ \mathbf{x} \in \mathbb{C}^{2N} : |\mathbf{x}|_2 = 0 \right\} = \ker(U).$$

Collective Behavior Models	2nd Order models: Stability of Patterns	
	000 00000000000000000000000000000000000	
Instabilities for Flocks		
Eigenvalue Ar	nalvsis	

Premultiplying by \mathbf{x}^*

$$\lambda = -\beta |\mathbf{x}|_2^2 \pm \sqrt{\beta^2 |\mathbf{x}|_2^4 + \mathbf{x}^* \mathbf{M} \mathbf{x}}.$$

As **M** is symmetric, we may write its 2*N* real eigenvalues and corresponding normalized ($\mathbf{x}^*\mathbf{x} = 1$) eigenvectors as

$$\mu_{2N} \leq \mu_{2N-1} \leq \cdots \leq \mu_2 \leq \mu_1$$
 $\mathbf{M}\mathbf{x}_i = \mu_i \mathbf{x}_i.$

Zero Real Part Eigenvalues

Let λ denote an eigenvalue of L. Then $\Re(\lambda) = 0$ and $\Re(\lambda) \neq 0$ if and only if $\lambda = \pm i\sqrt{-\mu_l}$ for some l with $\mu_l < 0$ and $\mathbf{x}_l \in E^N$. The eigenspace consists only of eigenvectors.

Collective Behavior Models	2nd Order models: Stability of Patterns	
	000 00000000000000000000000000000000000	
Instabilities for Flocks		
Eigenvalue Ar	nalysis	

Premultiplying by \mathbf{x}^*

$$\lambda = -\beta |\mathbf{x}|_2^2 \pm \sqrt{\beta^2 |\mathbf{x}|_2^4 + \mathbf{x}^* \mathbf{M} \mathbf{x}}.$$

As **M** is symmetric, we may write its 2*N* real eigenvalues and corresponding normalized ($\mathbf{x}^*\mathbf{x} = 1$) eigenvectors as

$$\mu_{2N} \leq \mu_{2N-1} \leq \cdots \leq \mu_2 \leq \mu_1$$
 $\mathbf{M}\mathbf{x}_i = \mu_i \mathbf{x}_i.$

Zero Real Part Eigenvalues

Let λ denote an eigenvalue of L. Then $\Re(\lambda) = 0$ and $\Im(\lambda) \neq 0$ if and only if $\lambda = \pm i\sqrt{-\mu_l}$ for some l with $\mu_l < 0$ and $\mathbf{x}_l \in E^N$. The eigenspace consists only of eigenvectors.

Collective Behavior Models	2nd Order models: Stability of Patterns	
	000 00000000000000000000000000000000000	
Instabilities for Flocks		
Eigenvalue Ar	nalysis	

Premultiplying by x*

$$\lambda = -\beta |\mathbf{x}|_2^2 \pm \sqrt{\beta^2 |\mathbf{x}|_2^4 + \mathbf{x}^* \mathbf{M} \mathbf{x}}.$$

As **M** is symmetric, we may write its 2*N* real eigenvalues and corresponding normalized ($\mathbf{x}^*\mathbf{x} = 1$) eigenvectors as

$$\mu_{2N} \leq \mu_{2N-1} \leq \cdots \leq \mu_2 \leq \mu_1$$
 $\mathbf{M}\mathbf{x}_i = \mu_i \mathbf{x}_i.$

Zero Real Part Eigenvalues

Let λ denote an eigenvalue of *L*. Then $\Re(\lambda) = 0$ and $\Im(\lambda) \neq 0$ if and only if $\lambda = \pm i\sqrt{-\mu_l}$ for some *l* with $\mu_l < 0$ and $\mathbf{x}_l \in E^N$. The eigenspace consists only of eigenvectors.

Collective Behavior Models	2nd Order models: Stability of Patterns	
	000 0000000000000000000000000000000000	
Instabilities for Flocks		

Generalized eigenvector: there exists an eigenvector $(\mathbf{x}, \lambda \mathbf{x})$ with $\mathbf{x} \in E^N$ so that the system of equations

$$\begin{pmatrix} -\lambda \mathrm{Id} & \mathrm{Id} \\ \mathbf{M} & -2\beta U - \lambda \mathrm{Id} \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ \mathbf{w} \end{pmatrix} = \begin{pmatrix} \mathbf{x} \\ \lambda \mathbf{x} \end{pmatrix}$$
(1)

has a non-trivial solution.

Substituting the first equation $\mathbf{w} = \lambda \mathbf{u} + \mathbf{x}$ into the second equation, then pre-multiplying by \mathbf{x}^*

$$\mathbf{M}\mathbf{u} - 2\beta U\mathbf{w} = 2\lambda \mathbf{x} + \lambda^2 \mathbf{u}$$
$$\mathbf{x}^* \mathbf{M}\mathbf{u} = 2\lambda + \lambda^2 \mathbf{x}^* \mathbf{u}.$$

The symmetry of **M** and the fact that $\mathbf{M}\mathbf{x} = \lambda^2 \mathbf{x}$ combine to show $\mathbf{x}^* \mathbf{M}\mathbf{u} = \lambda^2 \mathbf{x}^* \mathbf{u}$. Thus $\lambda = 0$, leading to a contradiction.

Collective Behavior Models	2nd Order models: Stability of Patterns	
	000 0000000000000000000000000000000000	
Instabilities for Flocks		

Generalized eigenvector: there exists an eigenvector $(\mathbf{x}, \lambda \mathbf{x})$ with $\mathbf{x} \in E^N$ so that the system of equations

$$\begin{pmatrix} -\lambda \mathrm{Id} & \mathrm{Id} \\ \mathbf{M} & -2\beta U - \lambda \mathrm{Id} \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ \mathbf{w} \end{pmatrix} = \begin{pmatrix} \mathbf{x} \\ \lambda \mathbf{x} \end{pmatrix}$$
(1)

has a non-trivial solution.

Substituting the first equation $\mathbf{w} = \lambda \mathbf{u} + \mathbf{x}$ into the second equation, then pre-multiplying by \mathbf{x}^*

$$\mathbf{M}\mathbf{u} - 2\beta U\mathbf{w} = 2\lambda \mathbf{x} + \lambda^2 \mathbf{u}$$
$$\mathbf{x}^* \mathbf{M}\mathbf{u} = 2\lambda + \lambda^2 \mathbf{x}^* \mathbf{u}.$$

The symmetry of **M** and the fact that $\mathbf{M}\mathbf{x} = \lambda^2 \mathbf{x}$ combine to show $\mathbf{x}^* \mathbf{M}\mathbf{u} = \lambda^2 \mathbf{x}^* \mathbf{u}$. Thus $\lambda = 0$, leading to a contradiction.

Collective Behavior Models	2nd Order models: Stability of Patterns	
	000 0000000000000000000000000000000000	
Instabilities for Flocks		

Generalized eigenvector: there exists an eigenvector $(\mathbf{x}, \lambda \mathbf{x})$ with $\mathbf{x} \in E^N$ so that the system of equations

$$\begin{pmatrix} -\lambda \mathrm{Id} & \mathrm{Id} \\ \mathbf{M} & -2\beta U - \lambda \mathrm{Id} \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ \mathbf{w} \end{pmatrix} = \begin{pmatrix} \mathbf{x} \\ \lambda \mathbf{x} \end{pmatrix}$$
(1)

has a non-trivial solution.

Substituting the first equation $\mathbf{w} = \lambda \mathbf{u} + \mathbf{x}$ into the second equation, then pre-multiplying by \mathbf{x}^*

$$\mathbf{M}\mathbf{u} - 2\beta U\mathbf{w} = 2\lambda \mathbf{x} + \lambda^2 \mathbf{u}$$
$$\mathbf{x}^* \mathbf{M}\mathbf{u} = 2\lambda + \lambda^2 \mathbf{x}^* \mathbf{u}.$$

The symmetry of **M** and the fact that $\mathbf{M}\mathbf{x} = \lambda^2 \mathbf{x}$ combine to show $\mathbf{x}^* \mathbf{M}\mathbf{u} = \lambda^2 \mathbf{x}^* \mathbf{u}$. Thus $\lambda = 0$, leading to a contradiction.

Collective Behav	ior Models		2nd Order models: Stability of Patterns	
			000 0000000000 000000000000000000000000	
Instabilities for H	locks			
	-			

Zero Eigenvalue

Let $\beta > 0$. Then $\lambda = 0$ is an eigenvalue of *L* and $(\mathbf{x}, \mathbf{0})$ is a corresponding eigenvector if and only if $\mathbf{M}\mathbf{x} = \mathbf{0}$. If $\mathbf{x} \in E^N$ then $(\mathbf{x}, \mathbf{0})$ generates a single generalized eigenvector, whereas if $\mathbf{x} \notin E^N$ then $(\mathbf{x}, \mathbf{0})$ generates no generalized eigenvectors.

Generalized Eigenvector equations: $\mathbf{w} = \mathbf{x}$ and

 $\mathbf{M}\mathbf{u}=2\beta U\mathbf{x},$

which by premultiplying by \mathbf{x}^* as before and using the fact that $\mathbf{M}\mathbf{x} = \mathbf{0}$ necessitates $\mathbf{x} \in E^N$ as $\beta > 0$. If indeed $\mathbf{x} \in E^N$ then any $\mathbf{u} \in \ker(\mathbf{M})$ suffices. Without loss of generality, take $\mathbf{u} = \mathbf{x}$ itself.

If $(\mathbf{x}, \mathbf{0})$ generates a second generalized eigenvector then the system of equations

$$\begin{pmatrix} 0 & \mathrm{Id} \\ \mathbf{M} & -2\beta U \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ \mathbf{w} \end{pmatrix} = \begin{pmatrix} \mathbf{x} \\ \mathbf{x} \end{pmatrix}$$

Collective Beh	avior Models		2nd Order models: Stability of Patterns	
			000 0000000000 000000000000000000000000	
Instabilities for	r Flocks			
	1	1		

Zero Eigenvalue

Let $\beta > 0$. Then $\lambda = 0$ is an eigenvalue of *L* and $(\mathbf{x}, \mathbf{0})$ is a corresponding eigenvector if and only if $\mathbf{M}\mathbf{x} = \mathbf{0}$. If $\mathbf{x} \in E^N$ then $(\mathbf{x}, \mathbf{0})$ generates a single generalized eigenvector, whereas if $\mathbf{x} \notin E^N$ then $(\mathbf{x}, \mathbf{0})$ generates no generalized eigenvectors.

Generalized Eigenvector equations: $\mathbf{w} = \mathbf{x}$ and

 $\mathbf{M}\mathbf{u}=2\beta U\mathbf{x},$

which by premultiplying by \mathbf{x}^* as before and using the fact that $\mathbf{M}\mathbf{x} = \mathbf{0}$ necessitates $\mathbf{x} \in E^N$ as $\beta > 0$. If indeed $\mathbf{x} \in E^N$ then any $\mathbf{u} \in \ker(\mathbf{M})$ suffices. Without loss of generality, take $\mathbf{u} = \mathbf{x}$ itself.

If $(\mathbf{x}, \mathbf{0})$ generates a second generalized eigenvector then the system of equations

$$\begin{pmatrix} 0 & \mathrm{Id} \\ \mathbf{M} & -2\beta U \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ \mathbf{w} \end{pmatrix} = \begin{pmatrix} \mathbf{x} \\ \mathbf{x} \end{pmatrix}$$

Collective Beh	avior Models		2nd Order models: Stability of Patterns	
			000 0000000000 000000000000000000000000	
Instabilities for	r Flocks			
 .	1	1		

Zero Eigenvalue

Let $\beta > 0$. Then $\lambda = 0$ is an eigenvalue of *L* and $(\mathbf{x}, \mathbf{0})$ is a corresponding eigenvector if and only if $\mathbf{M}\mathbf{x} = \mathbf{0}$. If $\mathbf{x} \in E^N$ then $(\mathbf{x}, \mathbf{0})$ generates a single generalized eigenvector, whereas if $\mathbf{x} \notin E^N$ then $(\mathbf{x}, \mathbf{0})$ generates no generalized eigenvectors.

Generalized Eigenvector equations: $\mathbf{w} = \mathbf{x}$ and

 $\mathbf{M}\mathbf{u}=2\beta U\mathbf{x},$

which by premultiplying by \mathbf{x}^* as before and using the fact that $\mathbf{M}\mathbf{x} = \mathbf{0}$ necessitates $\mathbf{x} \in E^N$ as $\beta > 0$. If indeed $\mathbf{x} \in E^N$ then any $\mathbf{u} \in \ker(\mathbf{M})$ suffices. Without loss of generality, take $\mathbf{u} = \mathbf{x}$ itself.

If $(\mathbf{x}, \mathbf{0})$ generates a second generalized eigenvector then the system of equations

$$\begin{pmatrix} 0 & \mathrm{Id} \\ \mathbf{M} & -2\beta U \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ \mathbf{w} \end{pmatrix} = \begin{pmatrix} \mathbf{x} \\ \mathbf{x} \end{pmatrix}$$

Collective Bel	navior Models		2nd Order models: Stability of Patterns	
			000 0000000000 000000000000000000000000	
Instabilities fo	r Flocks			
 .	1	1		

Zero Eigenvalue

Let $\beta > 0$. Then $\lambda = 0$ is an eigenvalue of *L* and $(\mathbf{x}, \mathbf{0})$ is a corresponding eigenvector if and only if $\mathbf{M}\mathbf{x} = \mathbf{0}$. If $\mathbf{x} \in E^N$ then $(\mathbf{x}, \mathbf{0})$ generates a single generalized eigenvector, whereas if $\mathbf{x} \notin E^N$ then $(\mathbf{x}, \mathbf{0})$ generates no generalized eigenvectors.

Generalized Eigenvector equations: $\mathbf{w} = \mathbf{x}$ and

 $\mathbf{M}\mathbf{u}=2\beta U\mathbf{x},$

which by premultiplying by \mathbf{x}^* as before and using the fact that $\mathbf{M}\mathbf{x} = \mathbf{0}$ necessitates $\mathbf{x} \in E^N$ as $\beta > 0$. If indeed $\mathbf{x} \in E^N$ then any $\mathbf{u} \in \ker(\mathbf{M})$ suffices. Without loss of generality, take $\mathbf{u} = \mathbf{x}$ itself.

If $(\mathbf{x}, \mathbf{0})$ generates a second generalized eigenvector then the system of equations

$$\begin{pmatrix} 0 & \mathrm{Id} \\ \mathbf{M} & -2\beta U \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ \mathbf{w} \end{pmatrix} = \begin{pmatrix} \mathbf{x} \\ \mathbf{x} \end{pmatrix}$$

Collective Behavior Models	2nd Order models: Stability of Patterns	
	000 00000000000 00000000000000000000000	
Instabilities for Flocks		

Zero Real Part Eigenvalues

Let $\beta > 0$. Then

$$a_L(0) = \dim(\ker(\mathbf{M}) \cap E^N) + \dim(\ker(\mathbf{M})).$$

and

$$\det(L - \lambda \mathrm{Id}) = \lambda^{a_{\mathbf{M},\perp}(0) + a_{\mathbf{M}}(0)} \prod_{j=1}^{l} (\lambda^2 - \mu_{i_j}) p_{\beta}(\lambda),$$

where $i_1 < i_2 < \cdots < i_l \le 2N$ denote those (possibly non-existent) indices where $\mu_{i_j} < 0$ has an eigenvector $\mathbf{x}_{i_j} \in E^N$. The roots of the polynomial $p_\beta(\lambda)$ all have non-zero real part.

Suppose first that $\mu_1 \leq 0$. Then $\mathbf{x}^* \mathbf{M} \mathbf{x} \leq 0$ for any \mathbf{x} , whence all eigenvalues λ of *L* have non-positive real part due to

$$\lambda = -eta |\mathbf{x}|_2^2 \pm \sqrt{eta^2 |\mathbf{x}|_2^4 + \mathbf{x}^* \mathbf{M} \mathbf{x}}.$$

Collective Behavior Models	2nd Order models: Stability of Patterns	
	000 00000000000 00000000000000000000000	
Instabilities for Flocks		

Zero Real Part Eigenvalues

Let $\beta > 0$. Then

$$a_L(0) = \dim(\ker(\mathbf{M}) \cap E^N) + \dim(\ker(\mathbf{M})).$$

and

$$\det(L - \lambda \mathrm{Id}) = \lambda^{a_{\mathbf{M},\perp}(0) + a_{\mathbf{M}}(0)} \prod_{j=1}^{l} (\lambda^2 - \mu_{i_j}) p_{\beta}(\lambda),$$

where $i_1 < i_2 < \cdots < i_l \le 2N$ denote those (possibly non-existent) indices where $\mu_{i_j} < 0$ has an eigenvector $\mathbf{x}_{i_j} \in E^N$. The roots of the polynomial $p_\beta(\lambda)$ all have non-zero real part.

Suppose first that $\mu_1 \leq 0$. Then $\mathbf{x}^* \mathbf{M} \mathbf{x} \leq 0$ for any \mathbf{x} , whence all eigenvalues λ of L have non-positive real part due to

$$\lambda = -\beta |\mathbf{x}|_2^2 \pm \sqrt{\beta^2 |\mathbf{x}|_2^4 + \mathbf{x}^* \mathbf{M} \mathbf{x}}$$

Collective Behavior Models	2nd Order models: Stability of Patterns	
	000 0000000000 000000000000000000000000	
Instabilities for Flocks		
Eigenvalue A	nalysis	

$$\mathcal{A}:=\left\{eta\in [0,\infty): \max_{\lambda\in\sigma(L)}\Re(\lambda)>0
ight\}.$$

Note that $0 \in \mathcal{A}$.

 \mathcal{A} is relatively open: by continuous dependence of the eigenvalues of L on β .

 \mathcal{A} is relatively closed: let $\beta_l \in \mathcal{A}$ and $\beta_l \to \beta_0 \in (0, \infty)$. Up to extraction of subsequences, it follows that there exists a corresponding sequence λ_l of eigenvalues with $\Re(\lambda_l) > 0$ converging to some λ_0 with $\Re(\lambda_0) \ge 0$.

Moreover, by continuous dependence of the coefficients of $p_{\beta}(\lambda)$ on β , the roots of $p_{\beta_i}(\lambda)$ converge to roots of $p_{\beta_0}(\lambda)$. Thus $p_{\beta_0}(\lambda_0) = 0$.

As no such root can have zero real part, $\Re(\lambda_0) > 0$ and $\beta_0 \in \mathcal{A}$.

Collective Behavior Models	2nd Order models: Stability of Patterns	
	000 0000000000 00000000000000000000000	
Instabilities for Flocks		
Eigenvalue An	nalysis	

$$\mathcal{A}:=\left\{eta\in [0,\infty): \max_{\lambda\in\sigma(L)}\Re(\lambda)>0
ight\}.$$

Note that $0 \in \mathcal{A}$.

\mathcal{A} is relatively open: by continuous dependence of the eigenvalues of L on β .

 \mathcal{A} is relatively closed: let $\beta_l \in \mathcal{A}$ and $\beta_l \to \beta_0 \in (0, \infty)$. Up to extraction of subsequences, it follows that there exists a corresponding sequence λ_l of eigenvalues with $\Re(\lambda_l) > 0$ converging to some λ_0 with $\Re(\lambda_0) \ge 0$.

Moreover, by continuous dependence of the coefficients of $p_{\beta}(\lambda)$ on β , the roots of $p_{\beta_i}(\lambda)$ converge to roots of $p_{\beta_0}(\lambda)$. Thus $p_{\beta_0}(\lambda_0) = 0$.

As no such root can have zero real part, $\Re(\lambda_0) > 0$ and $\beta_0 \in \mathcal{A}$.

Collective Behavior Models	2nd Order models: Stability of Patterns	
	000 0000000000 000000000000000000000000	
Instabilities for Flocks		
Eigenvalue Ar	nalysis	

$$\mathcal{A}:=\left\{eta\in [0,\infty): \max_{\lambda\in\sigma(L)}\Re(\lambda)>0
ight\}.$$

Note that $0 \in \mathcal{A}$.

 \mathcal{A} is relatively open: by continuous dependence of the eigenvalues of L on β .

 \mathcal{A} is relatively closed: let $\beta_l \in \mathcal{A}$ and $\beta_l \to \beta_0 \in (0, \infty)$. Up to extraction of subsequences, it follows that there exists a corresponding sequence λ_l of eigenvalues with $\Re(\lambda_l) > 0$ converging to some λ_0 with $\Re(\lambda_0) \ge 0$.

Moreover, by continuous dependence of the coefficients of $p_{\beta}(\lambda)$ on β , the roots of $p_{\beta_i}(\lambda)$ converge to roots of $p_{\beta_0}(\lambda)$. Thus $p_{\beta_0}(\lambda_0) = 0$.

As no such root can have zero real part, $\Re(\lambda_0) > 0$ and $\beta_0 \in \mathcal{A}$.

Collective Behavior Models	2nd Order models: Stability of Patterns	
	000 00000000000 0000000000000000000000	
Instabilities for Flocks		
Eigenvalue Ar	nalysis	

$$\mathcal{A}:=\left\{eta\in [0,\infty): \max_{\lambda\in\sigma(L)}\Re(\lambda)>0
ight\}.$$

Note that $0 \in \mathcal{A}$.

 \mathcal{A} is relatively open: by continuous dependence of the eigenvalues of L on β .

 \mathcal{A} is relatively closed: let $\beta_l \in \mathcal{A}$ and $\beta_l \to \beta_0 \in (0, \infty)$. Up to extraction of subsequences, it follows that there exists a corresponding sequence λ_l of eigenvalues with $\Re(\lambda_l) > 0$ converging to some λ_0 with $\Re(\lambda_0) \ge 0$.

Moreover, by continuous dependence of the coefficients of $p_{\beta}(\lambda)$ on β , the roots of $p_{\beta_l}(\lambda)$ converge to roots of $p_{\beta_0}(\lambda)$. Thus $p_{\beta_0}(\lambda_0) = 0$.

As no such root can have zero real part, $\Re(\lambda_0) > 0$ and $\beta_0 \in \mathcal{A}$.

Collective Behavior Models	2nd Order models: Stability of Patterns	
	000 0000000000 000000000000000000000000	
Instabilities for Flocks		
Eigenvalue Ar	nalysis	

$$\mathcal{A}:=\left\{eta\in [0,\infty): \max_{\lambda\in\sigma(L)}\Re(\lambda)>0
ight\}.$$

Note that $0 \in \mathcal{A}$.

 \mathcal{A} is relatively open: by continuous dependence of the eigenvalues of L on β .

 \mathcal{A} is relatively closed: let $\beta_l \in \mathcal{A}$ and $\beta_l \to \beta_0 \in (0, \infty)$. Up to extraction of subsequences, it follows that there exists a corresponding sequence λ_l of eigenvalues with $\Re(\lambda_l) > 0$ converging to some λ_0 with $\Re(\lambda_0) \ge 0$.

Moreover, by continuous dependence of the coefficients of $p_{\beta}(\lambda)$ on β , the roots of $p_{\beta_l}(\lambda)$ converge to roots of $p_{\beta_0}(\lambda)$. Thus $p_{\beta_0}(\lambda_0) = 0$.

As no such root can have zero real part, $\Re(\lambda_0) > 0$ and $\beta_0 \in \mathcal{A}$.

Collective Behavior Models	2nd Order models: Stability of Patterns	
	000 0000000000 000000000000000000000000	
Instabilities for Flocks		
Eigenvalue Ar	nalysis	

$$\mathcal{A}:=\left\{eta\in [0,\infty): \max_{\lambda\in\sigma(L)}\Re(\lambda)>0
ight\}.$$

Note that $0 \in \mathcal{A}$.

 \mathcal{A} is relatively open: by continuous dependence of the eigenvalues of L on β .

 \mathcal{A} is relatively closed: let $\beta_l \in \mathcal{A}$ and $\beta_l \to \beta_0 \in (0, \infty)$. Up to extraction of subsequences, it follows that there exists a corresponding sequence λ_l of eigenvalues with $\Re(\lambda_l) > 0$ converging to some λ_0 with $\Re(\lambda_0) \ge 0$.

Moreover, by continuous dependence of the coefficients of $p_{\beta}(\lambda)$ on β , the roots of $p_{\beta_l}(\lambda)$ converge to roots of $p_{\beta_0}(\lambda)$. Thus $p_{\beta_0}(\lambda_0) = 0$.

As no such root can have zero real part, $\Re(\lambda_0) > 0$ and $\beta_0 \in \mathcal{A}$.

Collective Behavior Models	2nd Order models: Stability of Patterns	
	000 000000000 0000000000000000000000000	
Instabilities for Flocks		

Linear Instability

As an artifact of translation invariance in the first order model, the vector defined by $\mathbf{e}_2 := (0, 1, \dots, 0, 1)^T \in \mathbb{R}^{2N}$ always defines an eigenvector of \mathbf{M} with eigenvalue zero. Due to the fact that $\mathbf{e}_2 \in E^N$, our results before imply that $(\mathbf{e}_2, \mathbf{e}_2)$ furnishes a generalized eigenvector with eigenvalue zero.

Collective Behavior Models	2nd Order models: Stability of Patterns	
	0000000000000 000000000 00000	
Instabilities for Ring Flocks		

Outline

Collective Behavior Models

Patterns

2 2nd Order models: Stability of Patterns

- Stability of flock rings for second order models
- Instabilities for Flocks

• Instabilities for Ring Flocks

• Asymptotic Stability Result for Flocks

3 Mills

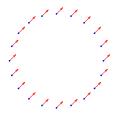
• Mills: Linear Stability Analysis

Conclusions

ollective Behavior Models	2nd Order models: Stability of Patterns	
	000000000000 000000000 00000	
a statut of the statut of		

Eigenvalue Analysis: Ring Flocks

Ring Flock:



m-Mode Fourier Perturbations

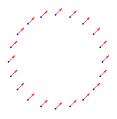
A flock ring to the 2nd order model is spectrally stable if and only if the ring solution to the first order model is spectrally stable with respect to all *m*-mode perturbations.

Fourier mode Perturbations: $Re^{i\theta_j}(1+h_j)$ for $h_j = \xi_+ e^{im\theta_j} + \xi_- e^{-im\theta_j}$

ollective Behavior Models	2nd Order models: Stability of Patterns	
	000000000000000000000000000000000000000	

Eigenvalue Analysis: Ring Flocks

Ring Flock:



m-Mode Fourier Perturbations

A flock ring to the 2nd order model is spectrally stable if and only if the ring solution to the first order model is spectrally stable with respect to all *m*-mode perturbations.

Fourier mode Perturbations: $Re^{i\theta_j}(1+h_j)$ for $h_j = \xi_+ e^{im\theta_j} + \xi_- e^{-im\theta_j}$.

Collective Behavior Models	2nd Order models: Stability of Patterns		
0000	000000000000000000000000000000000000000	0000	

Eigenvalue Analysis: Ring Flocks

The analysis in (Kolokonikov, Sun, Uminsky, Bertozzi; Physical Review E 2011) and (Bertozzi, von Brecht, Sun, Kolokolnikov, Uminsky; Comm. Math. Sci. 2012) shows that the stability under those perturbations reduces to a study of the decoupled set of 2×2 eigenvalue problems

$$\lambda \begin{pmatrix} \xi_+\\ \overline{\xi}_- \end{pmatrix} = \underbrace{\begin{pmatrix} I_1(m) & I_2(m)\\ I_2(m) & I_1(-m) \end{pmatrix}}_{M} \begin{pmatrix} \xi_+\\ \overline{\xi}_- \end{pmatrix} \qquad 1 \le m \le N.$$
$$I_1(m) := 4 \sum_{p=1}^{N/2} G_1 \left(\frac{\pi p}{N}\right) \sin^2 \left(\frac{(m+1)\pi p}{N}\right)$$
$$I_2(m) := 4 \sum_{p=1}^{N/2} G_2 \left(\frac{\pi p}{N}\right) \left[\sin^2 \left(\frac{\pi p}{N}\right) - \sin^2 \left(\frac{m\pi p}{N}\right)\right],$$

and for power-law potentials $k(r) = r^a/a - r^b/b$ the functions $G_i(\phi)$ are given by

$$G_1(\phi) := \frac{1}{2N} \left[-a(2R|\sin\phi|)^{a-2} + b(2R|\sin\phi|)^{b-2} \right],$$

$$G_2(\phi) := \frac{1}{2N} \left[-(a-2)(2R|\sin\phi|)^{a-2} + (b-2)(2R|\sin\phi|)^{b-2} \right].$$

Collective Behavior Models	2nd Order models: Stability of Patterns	
	0000000000000 00000000 00000	

Eigenvalue Analysis: Ring Flocks

The analysis in (Kolokonikov, Sun, Uminsky, Bertozzi; Physical Review E 2011) and (Bertozzi, von Brecht, Sun, Kolokolnikov, Uminsky; Comm. Math. Sci. 2012) shows that the stability under those perturbations reduces to a study of the decoupled set of 2×2 eigenvalue problems

$$\lambda \begin{pmatrix} \xi_+\\ \overline{\xi}_- \end{pmatrix} = \underbrace{\begin{pmatrix} I_1(m) & I_2(m)\\ I_2(m) & I_1(-m) \end{pmatrix}}_{M} \begin{pmatrix} \xi_+\\ \overline{\xi}_- \end{pmatrix} \qquad 1 \le m \le N.$$
$$I_1(m) := 4 \sum_{p=1}^{N/2} G_1 \left(\frac{\pi p}{N}\right) \sin^2 \left(\frac{(m+1)\pi p}{N}\right)$$
$$I_2(m) := 4 \sum_{p=1}^{N/2} G_2 \left(\frac{\pi p}{N}\right) \left[\sin^2 \left(\frac{\pi p}{N}\right) - \sin^2 \left(\frac{m\pi p}{N}\right)\right],$$

and for power-law potentials $k(r) = r^a/a - r^b/b$ the functions $G_i(\phi)$ are given by

$$G_1(\phi) := \frac{1}{2N} \left[-a(2R|\sin\phi|)^{a-2} + b(2R|\sin\phi|)^{b-2} \right],$$

$$G_2(\phi) := \frac{1}{2N} \left[-(a-2)(2R|\sin\phi|)^{a-2} + (b-2)(2R|\sin\phi|)^{b-2} \right].$$

Collective Behavior Models	2nd Order models: Stability of Patterns		
0000	000000000000000000000000000000000000000	0000	

Eigenvalue Analysis: Ring Flocks

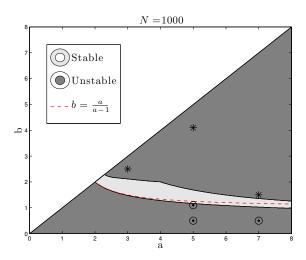


Figure: Stability areas for flock ring solutions for N = 1000.

Collective Behavior Models	2nd Order models: Stability of Patterns	
	0000000000000 000000000 00000	
Instabilities for Ding Flocks		

Clustering Instability

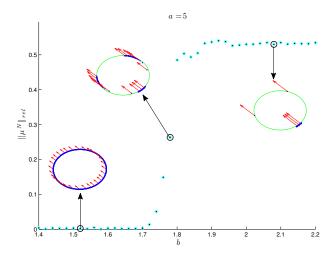


Figure: Bifurcation diagram for cluster formation at $T_f = 500$, with N = 1000 particles, a = 5, $|u_0| = 2.5$.

Collective Behavior Models	2nd Order models: Stability of Patterns	
	000000000000000000000000000000000000000	
Instabilities for Ring Flocks		

Fattening Instability

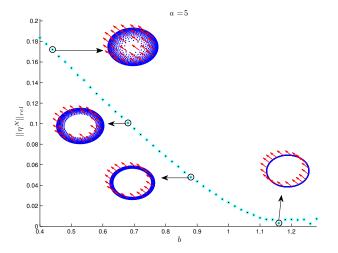


Figure: Bifurcation diagram for fattening instability at $T_f = 500$ with N=1000 particles, a = 5, $|u_0| = 2.5$.

Collective Behavior Models	2nd Order models: Stability of Patterns	
	0000000000000 000000000 00000	
The second se		

Particle Simulations: Perturbation of flocks

Collective Behavior Models	2nd Order models: Stability of Patterns	
	0000000000000 0000000 00000	
The second se		

Flock Rings: Cucker-Smale

$$\begin{cases} \dot{x}_j = v_j \\ \dot{v}_j = \frac{1}{N} \sum_{l=1}^N H(x_j - x_l)(v_l - v_j) + \frac{1}{N} \sum_{\substack{l=1 \\ l \neq j}}^N \nabla U(x_l - x_j) \quad , \quad j = 1, \dots, N \end{cases}$$

with
$$H(x) = g(|x|)$$
 given by

$$g(r) = \frac{1}{(1+r^2)^{\gamma}}, \qquad \gamma > 0.$$

Spectral Equivalence

The linearized second order system around the flock ring solution has an eigenvalue with positive real part if and only if the linearized first order system around the ring solution has a positive eigenvalue. Moreover, the flock ring solution is unstable for *m*-mode perturbations for the second order model if and only if the ring solution is unstable for *m*-mode perturbations for the first order model.

Collective Behavior Models	2nd Order models: Stability of Patterns	
	0000000000000 00000000 00000	
The second se		

Flock Rings: Cucker-Smale

$$\begin{cases} \dot{x}_j = v_j \\ \dot{v}_j = \frac{1}{N} \sum_{l=1}^N H(x_j - x_l)(v_l - v_j) + \frac{1}{N} \sum_{\substack{l=1 \\ l \neq j}}^N \nabla U(x_l - x_j) \quad , \quad j = 1, \dots, N \end{cases}$$

with
$$H(x) = g(|x|)$$
 given by

$$g(r) = \frac{1}{(1+r^2)^{\gamma}}, \qquad \gamma > 0.$$

Spectral Equivalence

The linearized second order system around the flock ring solution has an eigenvalue with positive real part if and only if the linearized first order system around the ring solution has a positive eigenvalue. Moreover, the flock ring solution is unstable for *m*-mode perturbations for the second order model if and only if the ring solution is unstable for *m*-mode perturbations for the first order model.

Collective Behavior Models	2nd Order models: Stability of Patterns	
	0000000000000 00000000 00000	
The second se		

Flock Rings: Cucker-Smale

$$\begin{cases} \dot{x}_j = v_j \\ \dot{v}_j = \frac{1}{N} \sum_{l=1}^N H(x_j - x_l)(v_l - v_j) + \frac{1}{N} \sum_{\substack{l=1 \\ l \neq j}}^N \nabla U(x_l - x_j) \quad , \quad j = 1, \dots, N \end{cases}$$

with
$$H(x) = g(|x|)$$
 given by

$$g(r) = \frac{1}{(1+r^2)^{\gamma}}, \qquad \gamma > 0.$$

Spectral Equivalence

The linearized second order system around the flock ring solution has an eigenvalue with positive real part if and only if the linearized first order system around the ring solution has a positive eigenvalue. Moreover, the flock ring solution is unstable for *m*-mode perturbations for the second order model if and only if the ring solution is unstable for *m*-mode perturbations for the first order model.

Collective Behavior Models	2nd Order models: Stability of Patterns	
	000000000000000000000000000000000000000	
Asymptotic Stability Result for Flocks		
Outline		

Collective Behavior Mode

Patterns

2

2nd Order models: Stability of Patterns

- Stability of flock rings for second order models
- Instabilities for Flocks
- Instabilities for Ring Flocks
- Asymptotic Stability Result for Flocks

3) Mills

• Mills: Linear Stability Analysis

Conclusions

vior Models	2nd Order models: Stability of Patterns	
	000000000000000000000000000000000000000	

Stability: New change of variables

• Original coordinates: flock transversal profile

- New coordinates: relative to $m(t) = \frac{1}{N} \sum_{i} v_i(t)$.
- → all flocks are stationary, 4N + 2-dimensional dynamics $z \stackrel{t}{\mapsto} \mathcal{F}(z)$
- Reduce dynamics to mean-velocity consistent states, by choosing a invariant base *B*: $\mathcal{F}_B^B := \mathcal{F}|_{\text{span } B} \to \text{span } B.$

 $\Rightarrow \text{ Study the linearisation } z \approx z_F + F_B^B(z - z_f) \\ \begin{pmatrix} 0_{2N \times 2N} & -1_{N-1}^T \otimes I_2 & 0_{2N \times 2} \\ [G(\hat{x})] & -I_{N-1} \otimes 2\beta(m \otimes m^T) & 0_{2N-2 \times 2} \\ 0_{2 \times 2N} & 0_{2 \times 2N-2} & -2\beta(m \otimes m^T) \end{pmatrix}$

 $\dot{x_1} = \dots$ \vdots $\dot{x_N} = \dots$ $\dot{v_1} = \dots$ \vdots

$$\dot{v_N} = \dots$$

flock solution: $z_F = (\hat{x} + v_0 t, v_0)^T, |v_0| = \sqrt{\alpha/\beta}.$

ctive Behavior Models	2nd Order models: Stability of Patterns		
00	000000000000000000000000000000000000000	0000	

Stability: New change of variables

- Original coordinates: flock transversal profile
- New coordinates: relative to mean velocity $m(t) = \frac{1}{N} \sum_{i} v_i(t)$.
- → all flocks are stationary, 4N + 2-dimensional dynamics $z \stackrel{t}{\mapsto} \mathcal{F}(z)$
- Reduce dynamics to mean-velocity consistent states, by choosing a invariant base B:
 𝓕^B_B := 𝓕|_{span B} → span B.

 $\rightarrow \text{ Study the linearisation } z \approx z_F + F_B^B(z - z_f) \\ \begin{pmatrix} 0_{2N \times 2N} & -1_{N-1}^T \otimes I_2 & 0_{2N \times 2} \\ \\ [G(\hat{x})] & -I_{N-1} \otimes 2\beta(m \otimes m^T) & 0_{2N-2 \times 2} \\ \\ 0_{2 \times 2N} & 0_{2 \times 2N-2} & -2\beta(m \otimes m^T) \end{pmatrix}$

 $\dot{x_1} - m = \dots$ \vdots $\dot{x_N} - m = \dots$ $\dot{v_1} - \dot{m} = \dots$ \vdots $\dot{v_N} - \dot{m} = \dots$ $\dot{m} = \dots$

flock solution: $z_F = (\hat{x}, 0, m), |m| = \sqrt{\alpha/\beta}.$

lective Behavior Models	2nd Order models: Stability of Patterns		
	000000000000000000000000000000000000000	0000	

Stability: New change of variables

- Original coordinates: flock transversal profile
- New coordinates: relative to mean velocity $m(t) = \frac{1}{N} \sum_{i} v_i(t).$
- → all flocks are stationary, 4N + 2-dimensional dynamics $z \stackrel{t}{\mapsto} \mathcal{F}(z)$
 - Reduce dynamics to mean-velocity consistent states, by choosing a invariant base *B*: $\mathcal{F}_B^B := \mathcal{F}|_{\operatorname{span} B} \to \operatorname{span} B.$

 $\rightarrow \text{ Study the linearisation } z \approx z_F + F_B^B(z - z_f) \\ \begin{pmatrix} 0_{2N \times 2N} & -1_{N-1}^T \otimes I_2 & 0_{2N \times 2} \\ \\ G(\hat{x})] & -I_{N-1} \otimes 2\beta(m \otimes m^T) & 0_{2N-2 \times 2} \\ \\ 0_{2 \times 2N} & 0_{2 \times 2N-2} & -2\beta(m \otimes m^T) \end{pmatrix}$

 $\dot{x_1} - m = \dots$ \vdots $\dot{x_N} - m = \dots$ $\dot{v_1} - \dot{m} = \dots$ \vdots $\dot{v_N} - \dot{m} = \dots$ $\dot{m} = \dots$

flock solution: $z_F = (\hat{x}, 0, m), |m| = \sqrt{\alpha/\beta}.$

ollective Behavior Models	2nd Order models: Stability of Patterns		
0000	000000000000000000000000000000000000000	0000	

Stability: New change of variables

- Original coordinates: flock transversal profile
- New coordinates: relative to $m(t) = \frac{1}{N} \sum_{i} v_i(t)$.
- → all flocks are stationary, 4N + 2-dimensional dynamics $z \stackrel{t}{\mapsto} \mathcal{F}(z)$
 - Reduce dynamics to mean-velocity consistent states, by choosing a invariant base *B*: $\mathcal{F}_B^B := \mathcal{F}|_{\text{span } B} \to \text{span } B.$

$$\Rightarrow \text{ Study the linearisation } z \approx z_F + F_B^B(z - z_f) \\ \begin{pmatrix} 0_{2N \times 2N} & -1_{N-1}^T \otimes I_2 & 0_{2N \times 2} \\ & & & \\ [G(\hat{x})] & -I_{N-1} \otimes 2\beta(m \otimes m^T) & 0_{2N-2 \times 2} \\ & & & & \\ 0_{2 \times 2N} & 0_{2 \times 2N-2} & -2\beta(m \otimes m^T) \end{pmatrix}$$

 $\dot{x_1} - m = \dots$ \vdots $\dot{x_N} - m = \dots$ $\dot{v_1} - \dot{m} = \dots$ \vdots $\dot{v_N} - \dot{m} = \dots$ $\dot{m} = \dots$

flock solution:
$$z_F = (\hat{x}, 0, m), |m| = \sqrt{\alpha/\beta}.$$

ollective Behavior Models	2nd Order models: Stability of Patterns		
000	000000000000000000000000000000000000000	0000	

Stability: New change of variables

- Original coordinates: flock transversal profile
- New coordinates: relative to $m(t) = \frac{1}{N} \sum_{i} v_i(t)$.
- → all flocks are stationary, 4N + 2-dimensional dynamics $z \stackrel{t}{\mapsto} \mathcal{F}(z)$
 - Reduce dynamics to mean-velocity consistent states, by choosing a invariant base *B*: $\mathcal{F}_B^B := \mathcal{F}|_{\operatorname{span} B} \to \operatorname{span} B.$

 $\rightarrow \text{ Study the linearisation } z \approx z_F + F_B^B(z - z_f)$ $\begin{pmatrix} 0_{2N \times 2N} & -1_{N-1}^T \otimes I_2 & 0_{2N \times 2} \\ \\ G(\hat{x})] & -I_{N-1} \otimes 2\beta(m \otimes m^T) & 0_{2N-2 \times 2} \\ \\ 0_{2 \times 2N} & 0_{2 \times 2N-2} & -2\beta(m \otimes m^T) \end{pmatrix}.$

 $\dot{x_1} - m = \dots$ \vdots $\dot{x_N} - m = \dots$ $\dot{v_1} - \dot{m} = \dots$ \vdots $\dot{v_N} - \dot{m} = \dots$ $\dot{m} = \dots$

flock solution:
$$z_F = (\hat{x}, 0, m), |m| = \sqrt{\alpha/\beta}.$$

Collective Behavior Models	2nd Order models: Stability of Patterns	
	000000000000000000000000000000000000000	
Asymptotic Stability Result for Flocks		
Result		

$$\frac{dx_i}{dt} = -\sum_{i\neq j} \nabla U(x_i - x_j) \,,$$

is linearly stable except for translational and rotational invariance at a stationary profile \hat{x} .

Then the transformed second-order system behaves well:

- F_B^B has no generalised eigenvector for eigenvalue zero.
- dim $(eig(F_B^B, 0)) = 4$ with 4 eigenvectors that all represent linearised flow within the set of stationary flock solutions.

2 \rightsquigarrow translation in space, 1 \rightsquigarrow rotation in space, 1 \rightsquigarrow rotation in mean velocity

Collective Behavior Models	2nd Order models: Stability of Patterns	
	000000000000000000000000000000000000000	
Asymptotic Stability Result for Flocks		
Result		

$$\frac{dx_i}{dt} = -\sum_{i\neq j} \nabla U(x_i - x_j),$$

is linearly stable except for translational and rotational invariance at a stationary profile \hat{x} .

Then the transformed second-order system behaves well:

- F_B^B has no generalised eigenvector for eigenvalue zero.
- dim $(eig(F_B^B, 0)) = 4$ with 4 eigenvectors that all represent linearised flow within the set of stationary flock solutions.

2 \rightsquigarrow translation in space, 1 \rightsquigarrow rotation in space, 1 \rightsquigarrow rotation in mean velocity

Collective Behavior Models	2nd Order models: Stability of Patterns	
	000000000000000000000000000000000000000	
Asymptotic Stability Result for Flocks		
Result		

$$\frac{dx_i}{dt} = -\sum_{i\neq j} \nabla U(x_i - x_j) \,,$$

is linearly stable except for translational and rotational invariance at a stationary profile \hat{x} .

Then the transformed second-order system behaves well:

- F_B^B has no generalised eigenvector for eigenvalue zero.
- dim $(eig(F_B^B, 0)) = 4$ with 4 eigenvectors that all represent linearised flow within the set of stationary flock solutions.

 $2 \rightsquigarrow$ translation in space, $1 \rightsquigarrow$ rotation in space, $1 \rightsquigarrow$ rotation in mean velocity

Collective Behavior Models	2nd Order models: Stability of Patterns	
	000000000000000000000000000000000000000	
Asymptotic Stability Result for Flocks		
Result		

$$\frac{dx_i}{dt} = -\sum_{i\neq j} \nabla U(x_i - x_j) \,,$$

is linearly stable except for translational and rotational invariance at a stationary profile \hat{x} .

Then the transformed second-order system behaves well:

- F_B^B has no generalised eigenvector for eigenvalue zero.
- dim $(eig(F_B^B, 0)) = 4$ with 4 eigenvectors that all represent linearised flow within the set of stationary flock solutions.

 $2 \rightsquigarrow$ translation in space, $1 \rightsquigarrow$ rotation in space, $1 \rightsquigarrow$ rotation in mean velocity

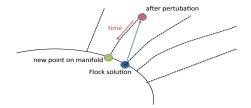
Collective Behavior Models	2nd Order models: Stability of Patterns	
	000000000000000000000000000000000000000	
Asymptotic Stability Result for Flocks		
Stability Theo	rem	

This is sufficient to establish that the family of flock solutions

$$Z_F = \left\{ \left(x^*, 0, m\right), \, x^* = T_x R[\phi] \hat{x}, |m| = \sqrt{lpha/eta}
ight\}$$

is a normally hyperbolic invariant manifold with a purely stable tangent-bundle splitting and exponentially decaying local stability (T_x translation, $R[\phi]$ rotation).

(C., Huang, Martin; preprint)



Collective Behavior Models	2nd Order models: Stability of Patterns	Mills	
		0000	
Mills: Linear Stability Analysis			
0.11			

Outline

Collective Behavior Models

Patterns

2nd Order models: Stability of Patterns

- Stability of flock rings for second order models
- Instabilities for Flocks
- Instabilities for Ring Flocks
- Asymptotic Stability Result for Flocks

3 Mills

• Mills: Linear Stability Analysis

4 Conclusions

Collective Behavior Models	2nd Order models: Stability of Patterns	Mills	
		0000	
Mills: Linear Stability Analysis			
What about m	ills?		

Let us consider the transformation

$$\begin{cases} y_j(t) = O(t)x_j(t) \\ z_j(t) = O(t)v_j(t) \end{cases}, \quad j = 1, \dots, N \end{cases}$$

where O(t) is the rotation matrix defined as

$$O(t) = e^{St}, \quad S = \begin{pmatrix} 0 & \omega \\ -\omega & 0 \end{pmatrix}, \text{ and } \dot{O}(t) = Se^{St}.$$

Fourier mode Perturbations:

$$\begin{pmatrix} \xi'_+\\ \xi'_-\\ \eta'_+\\ \eta'_- \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 0\\ 0 & 0 & 1\\ -\omega i\alpha + \omega^2 + I_1(m) & -\omega i\alpha + I_2(m) & -\alpha - 2\omega i & \alpha\\ \omega i\alpha + I_2(m) & \omega i\alpha + \omega^2 + I_1(-m) & \alpha & -\alpha + 2\omega i \end{pmatrix} \begin{pmatrix} \xi_+\\ \xi_-\\ \eta_+\\ \eta_- \end{pmatrix}$$

Collective Behavior Models	2nd Order models: Stability of Patterns	Mills	
		0000	
Mills: Linear Stability Analysis			
What about m	ills?		

Let us consider the transformation

$$\begin{cases} y_j(t) = O(t)x_j(t) \\ z_j(t) = O(t)v_j(t) \end{cases}, \quad j = 1, \dots, N \end{cases}$$

where O(t) is the rotation matrix defined as

$$O(t) = e^{St}, \quad S = \begin{pmatrix} 0 & \omega \\ -\omega & 0 \end{pmatrix}, \text{ and } \dot{O}(t) = Se^{St}.$$

Fourier mode Perturbations:

$$\begin{pmatrix} \xi'_+ \\ \xi'_- \\ \eta'_+ \\ \eta'_- \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -\omega i \alpha + \omega^2 + I_1(m) & -\omega i \alpha + I_2(m) & -\alpha - 2\omega i & \alpha \\ \omega i \alpha + I_2(m) & \omega i \alpha + \omega^2 + I_1(-m) & \alpha & -\alpha + 2\omega i \end{pmatrix} \begin{pmatrix} \xi_+ \\ \xi_- \\ \eta_+ \\ \eta_- \end{pmatrix}$$

Collective Behavior Models	2nd Order models: Stability of Patterns	Mills	
		0000	
Mills: Linear Stability Analysis			

What about mills?



Figure: Stability region for N = 1000 and different values of $|u_0|$.

Collective Behavior Models	2nd Order models: Stability of Patterns	Mills		
		0000		
Mills: Linear Stability Analysis				
What about mills?				

Collective Behavior Models	2nd Order models: Stability of Patterns	Conclusions

Conclusions

- The stability and instability of flocks for the second order model is implied from the analysis of the first order model.
- References:
 - Albi-Balagué-C.-VonBrecht (preprint arxiv 2013).
 - C.-Huang-Martin (preprint arxiv 2013).

Collective Behavior Models	2nd Order models: Stability of Patterns	Conclusions

Conclusions

- The stability and instability of flocks for the second order model is implied from the analysis of the first order model.
- References:
 - Albi-Balagué-C.-VonBrecht (preprint arxiv 2013).
 - C.-Huang-Martin (preprint arxiv 2013).