
Some Disadvantages of a Mehrotra-Type Primal-Dual

Corrector Interior Point Algorithm for Linear

Programming

Coralia Cartis∗

March, 2008

Abstract

Employing a new primal-dual corrector algorithm, we investigate the impact that

corrector directions may have on the convergence behaviour of predictor-corrector

methods. The Primal-Dual Corrector (pdc) algorithm that we propose computes on

each iteration a corrector direction in addition to the direction of the standard primal-

dual path-following interior point method [9, 22] for Linear Programming (lp), in an

attempt to improve performance. The new iterate is chosen by moving along the sum of

these directions, from the current iterate. This technique is similar to the construction

of Mehrotra’s highly popular predictor-corrector algorithm [14]. We present examples,

however, that show that the pdc algorithm may fail to converge to a solution of the lp

problem, in both exact and finite arithmetic, regardless of the choice of stepsize that

is employed. The cause of this bad behaviour is that the correctors exert too much

influence on the direction in which the iterates move.

∗Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford, OX1 3QD, United

Kingdom, (ccartis@comlab.ox.ac.uk). The author was supported through grant GR/S34472 from the

Engineering and Physical Sciences Research Council of the UK.

1

1 Introduction

In the past fifteen years, Interior Point Methods (ipms) have become highly successful in

solving Linear Programming (lp) problems, especially large-scale ones, while enjoying good

theoretical convergence and complexity properties (see [4, 6, 19, 21, 22] for comprehensive

reviews of the field of ipms for lp). Examples of ipms that are reliable both in theory and

in practice include the Primal-Dual (pd) path-following method of Kojima et al. [9] with

some long-step linesearch procedure [22], and an infeasible formulation of this algorithm [8,

22]. The majority of commercial and public ipm codes implement a variant of the latter,

Mehrotra’s Predictor-Corrector (mpc) algorithm [14], and some of them employ in addition,

Gondzio’s higher-order corrections [5]. For descriptions of the mpc algorithm, see [11, 24]

and Chapter 10 of [22]. Since its first implementations and testing on the standard set of

lp test problems (the Netlib test set), the mpc algorithm proved to be, especially on large-

scale problems, much faster than the infeasible pd algorithm, in terms of both the number

of iterations and the computational time [11, 14]. Its past and present practical successes,

however, have not been enhanced by equally praiseworthy theoretical guarantees of good

performance: no global convergence or polynomial complexity results are known for this

method. It is, in fact, acknowledged among practitioners that there are examples on which

the mpc algorithm fails to converge (see [18], page 407). To our knowledge, no such examples

have been published or analysed in the literature. Moreover, most implementations of the

mpc algorithm do not include any safeguards to monitor convergence of the algorithm or

to help the algorithm move away from troublesome situations since the generally excellent

performance of the mpc algorithm seems to render them unnecessary (see [18], page 407).

Presently, we construct a Mehrotra-type method, the Primal-Dual Corrector (pdc), whose

behaviour we can understand and explain.

The pdc algorithm computes on each iteration, an additional direction, a corrector, to

augment the direction of the pd algorithm. In this paper, we find, however, that employ-

ing these correctors may have an adverse effect on the performance of the algorithm. In

particular, we show that the pdc algorithm may fail to converge to the solution of an lp

example in both exact and finite arithmetic. If certain starting points are chosen for the

algorithm, then we prove that the failure of the algorithm on the example problem occurs in

exact arithmetic regardless of the stepsize procedure that is employed (see Section 3.1). We

describe two numerical calculations that exhibit this failure (see Section 3.2). In the first

numerical example, the barrier parameter is decreased by a fixed fraction on each iteration,

and in the second one, it is chosen automatically by the procedure employed in the mpc

algorithm [14, 15, 22]. Though the example that we present does not apply to the mpc

2

algorithm, it throws doubt nevertheless on its convergence properties in general, due to the

essential similarities between the mpc and pdc algorithms in the way the search directions

and new iterates are constructed on each iteration, which is the cause of failure of the pdc

algorithm on the example (see Section 4.2).

The structure of the paper is as follows. Section 2 describes the construction of the pdc

algorithm. Section 3 presents the above-mentioned example of failure of the pdc to converge:

section 3.1 gives the promised theoretical analysis, and section 3.2, the numerical evidence.

The failure of the pdc algorithm to converge is due to the corrector exerting too much

influence in the construction of the iterates, and determining the inefficient direction in

which the iterates move. A way to reduce the impact of the correctors, which overcomes the

failure encountered by the pdc, is addressed in Section 4.1. Section 4.2 concludes on the

relevance of the failure example to the behaviour of the mpc algorithm.

2 The Primal-Dual Corrector (pdc) algorithm

Setting the framework Let the lp problem we are solving be given in the standard form

min
x∈Rn

c⊤x subject to Ax = b, x ≥ 0, (P)

where m < n, b ∈ R
m, c ∈ R

n, and A is a real matrix of dimension m×n. The dual problem

corresponding to the primal problem (P) is

max
(y,s)∈Rm×Rn

b⊤y subject to A⊤y + s = c, s ≥ 0. (D)

We assume that there exists a primal-dual strictly feasible point w0 = (x0, y0, s0), that is

Ax0 = b, A⊤y0 + s0 = c, x0 > 0 and s0 > 0, (2.1)

and that the matrix A has full row rank. These assumptions are ubiquitous in IPM theory,

and will be referred to as the ipmipmipm conditions. They imply that the solution set of (P) and

(D) is nonempty [2, 22].

Subject to the ipm conditions, the perturbed system of optimality conditions [22] associated

to (P) and (D)

Fµ(w) :=







Ax− b

A⊤y + s− c

XSe− µe






= 0, x > 0, s > 0, (2.2)

has a unique solution w(µ) = (x(µ), y(µ), s(µ)), for each µ > 0 [22], where in (2.2), XS is

the diagonal matrix with diagonal elements xisi, i = 1, n, and e := (1, 1, . . . , 1) ∈ R
n. As µ

3

tends to zero, the points w(µ), µ > 0, which form the primal-dual central path, converge to

a solution of problems (P) and (D) [23].

Note that (2.2) with µ := 0 and with x ≥ 0, s ≥ 0, is precisely the system of optimality

conditions of (P) and (D), whose solutions coincide with those of (P) and (D).

Description of the algorithm Assume that a point w0 = (x0, y0, s0) satisfying (2.1) is

available as starting point of the algorithm.

The pdc algorithm attempts to follow the primal-dual central path approximately to a solu-

tion of problems (P) and (D), in a similar fashion to long-step primal-dual path-following ipms.

At the current iterate wk = (xk, yk, sk), k ≥ 0, of the pdc algorithm, a parameter µ > 0 is

picked

µ := σkµk, (2.3)

where µk := (xk)⊤sk/n, and σk ∈ (0, 1) is a centring parameter that can be fixed at the

start of the algorithm or computed on each iteration by some automatic procedure. Then

the Newton direction dwk = (dxk, dyk, dsk) is computed from wk for the system Fµ(w) = 0

in (2.2), i.e., dwk is the solution of the linear system

F ′

µ(w
k) dwk = −Fµ(w

k), (2.4)

where F ′
µ(w

k) is the Jacobian of Fµ at wk. The system (2.4) is equivalent to







A 0 0

0 A⊤ I

Sk 0 Xk













dxk

dyk

dsk






= −







Axk − b

A⊤yk + sk − c

XkSke− σkµke






. (2.5)

Next, a corrector direction dwk,c = (dxk,c, dyk,c, dsk,c) is computed by solving the linear

system

F ′

µ(w
k)dwk,c = −Fµ(w

k + dwk). (2.6)

The right-hand side of the system (2.6) represents the error that is introduced in the system

Fµ(w) = 0 of (2.2) by its linearization around wk, and it has the explicit expression

Fµ(w
k + dwk) =







A(xk + dxk)− b

A⊤(yk + dyk) + (sk + dsk)− c

(Xk + dXk)(Sk + dSk)e− σkµke






=







0

0

dXkdSke






, (2.7)

where the last equation depends on (2.5), and where dXk and dSk are the diagonal matrices

with diagonal elements dxk
i , i = 1, n, and dski , i = 1, n, respectively. It follows from (2.6) that

4

the corrector direction attempts to correct this error, in order to position the new iterate

closer to the primal-dual central path.

The resulting search direction dwk,r = (dxk,r, dyk,r, dsk,r) of the pdc algorithm is the sum

dwk,r := dwk + dwk,c, (2.8)

and the new iterate has the form

xk+1 := xk + θkpdx
k,r, yk+1 := yk + θkddy

k,r, and sk+1 := sk + θkdds
k,r, (2.9)

where θkp ∈ (0, 1] and θkd ∈ (0, 1] are possibly different primal and dual stepsizes that provide

the conditions

xk+1 > 0 and sk+1 > 0. (2.10)

The strict inequalities (2.10), and those in (2.1), together with A having full row rank, imply

that the Jacobian F ′
µ(w

k) is nonsingular [22], and thus, the directions dwk and dwk,c are

well-defined, for every k ≥ 0.

In the context of variants of Newton’s method for solving nonlinear systems of equations,

the construction of the search direction (2.8) and of the new iterate (2.9) when θkp = θkd = θk

coincides with the level-1 composite Newton direction and iterate [20], respectively, for the

nonlinear system Fµ(w) = 0, starting at wk, where µ := σkµk.

If dwk,c := 0, for each k ≥ 0, the pdc algorithm coincides with the pd algorithm (p. 8, [22]).

The pdc algorithm applied to problems (P) and (D) can be summarized as follows.

The pdcpdcpdc algorithm:

A point w0 = (x0, y0, s0) is required that satisfies (2.1). Let ǫ > 0 be a tolerance parameter.

At the current iterate wk = (xk, yk, sk), where k ≥ 0, do:

Step 1: If (xk)⊤sk ≤ ǫ , stop.

Step 2: Let µk := (xk)⊤sk

n
and choose σk ∈ (0, 1).

Compute the direction dwk = (dxk, dyk, dsk) from the linear system (2.4).

Compute the corrector direction dwk,c = (dxk,c, dyk,c, dsk,c) from the system (2.6).

Compute the search direction dwk,r = (dxk,r, dyk,r, dsk,r) from (2.8).

Step 3: Choose the stepsizes θkp ∈ (0, 1] and θkd ∈ (0, 1] along dxk,r and (dyk,r, dsk,r),

respectively, such that the new iterate wk+1 = (xk+1, yk+1, sk+1) defined by

(2.9) satisfies (2.10).

Step 4: Let k := k + 1. Go to Step 1. 3

It is easy to check that all the iterates wk, k ≥ 0, are primal-dual strictly feasible. Thus

the only optimality condition that remains to be satisfied (asymptotically) by the iterates is

5

the zero duality gap [2, 18], i.e., (xk)⊤sk = c⊤xk − b⊤yk → 0 as k → ∞, which explains the

termination criterion in Step 1.

The details of how to perform Step 3 of the pdc algorithm are not relevant here; a comprehen-

sive account is given in [3]. Note that ensuring condition (2.10) is the minimal requirement

on the stepsize in any primal-dual IPM, for the latter to be well-defined.

3 An example of failure of the pdc algorithm

Some interesting features of the pdc algorithm are exposed by the lp problem

min
x∈R3

x1 + αx2 subject to x2 + x3 = 2, x = (x1, x2, x3) ≥ 0, (3.1)

which depends on a positive parameter α. Its dual problem is

max
(y,s)∈R×R3

2y subject to s1 = 1, y + s2 = α, y + s3 = 0, s = (s1, s2, s3) ≥ 0. (3.2)

For any α > 0, problems (3.1) and (3.2) have the unique solution w∗ = (x∗, y∗, s∗), where

x∗ = (0, 0, 2), y∗ = 0, and s∗ = (1, α, 0), (3.3)

and the ipm conditions are satisfied.

3.1 Theoretical analysis of the example

Consider the behaviour in exact arithmetic of the pdc algorithm when applied to problems

(3.1) and (3.2). We show that, if the centring parameter σk is set to the same value σ ∈ (0, 1)

on each iteration, then there exist starting points w0 such that the sequence of duality gaps

of the generated iterates does not converge to zero, which implies that the iterates do not

converge to the solution of problems (3.1) and (3.2).

Theorem 3.1 Let the pdc algorithm be applied to problems (3.1) and (3.2), for some α > 0,

and let the centring parameters σk satisfy

σk := σ ∈ (0, 1), k ≥ 0. (3.4)

Let the starting point w0 = (x0, y0, s0) of the algorithm be any primal-dual strictly feasible

point of (3.1) and (3.2) with

x0
2 ≥ ξ and s03 ≤ ν, (3.5)

6

where ξ := 2 − σ/2 and ν := ασ/8. Then the sequence of duality gaps of the iterates

generated by the algorithm is bounded away from zero, and the following bound holds

(xk)⊤sk > ξα, for all k ≥ 0. (3.6)

Thus the pdc algorithm does not converge to the solution (3.3) of problems (3.1) and (3.2).

To prove Theorem 3.1, we first identify conditions on the current iterate wk of the pdc

algorithm such that some of the components of the correctors dxk,c and dsk,c are greater in

absolute value than their dxk and dsk counterparts, yielding a search direction that prevents

the progress of wk, in particular of xk, towards the optimum.

Lemma 3.2 Consider problems (3.1) and (3.2), for some α > 0. Let wk = (xk, yk, sk),

k ≥ 0, be the sequence of iterates generated by the pdc algorithm when applied to these

problems. If

xk
2 ≥ ξk := 2− 1

2
σk and sk3 ≤ νk :=

1

8
ασk, (3.7)

then

dxk,c
2 > −dxk

2 > 0 and − dsk,c2 > dsk2 > 0, (3.8)

which imply

dxk,r
2 = −dxk,r

3 > 0 and dsk,r2 = dsk,r3 < 0. (3.9)

Thus
xk+1
2 > xk

2 and sk+1
3 < sk3. (3.10)

Proof of Lemma 3.2. See Appendix A. 2

The following proof shows that (3.10) may hold for all k. Then, {xk
2} is increasing from

x0
2 > 0 and cannot converge to x∗

2 = 0 in (3.3).

Proof of Theorem 3.1. Recalling (3.4), let ξk = ξ := 2 − σ/2 and νk = ν := ασ/8,

k ≥ 0, which also occur in (3.7). Due to condition (3.5), Lemma 3.2 applies with k = 0.

Thus, from (3.10),

x1
2 > x0

2 ≥ ξ and s13 < s03 ≤ ν. (3.11)

Thus Lemma 3.2 applies again, this time for k = 1, and by the same argument as for

k = 0, we deduce the analogue of the relations (3.11), where each index is increased by one.

Inductively, relations (3.11) hold for k ≥ 0. They provide the bound xk
2 ≥ ξ > 0, k ≥ 0,

which implies, together with the feasibility condition sk2 > α, that the complementarity

products xk
2s

k
2 are bounded below by the positive constant ξα for all k ≥ 0. The bound (3.6)

now follows from (2.1) and (2.10) which give (xk)⊤sk > xk
2s

k
2, k ≥ 0. The conclusion now

holds due to the bound (3.6) and standard optimality conditions for LP [2, 22]. 2

7

Remark The failure of the pdc to converge also occurs if {σk} in Theorem 3.1 is non-

decreasing (see Lemma 4.2 in [3]). The practical relevance of this choice is illustrated in

Example 2 of Section 3.2. 3

Note that subject to the conditions of Theorem 3.1, the (long-step) pd algorithm with a

suitable choice of stepsize is guaranteed to converge to the solution of the problems (3.1)

and (3.2) (see [22] for a general result). However, as we have just shown, in the case of

the pdc, no such suitable stepsize technique exists that would make it convergent in the

conditions of Theorem 3.1; then, as indicated by Lemma 3.2, the influence of the correctors

is overpowering the Newton direction in the construction of the iterates, preventing the latter

from reaching optimality.

A short-step variant of the pdc, where the iterates, including the starting point, are con-

strained to be (very) close to the central path, can be shown to be convergent as then, the

influence of the correctors on the resulting direction is negligible [2, 3].

3.2 Numerical calculations

We now illustrate the numerical performance of the pdc algorithm when applied to problems

(3.1) and (3.2), for certain values of the parameters. In Step 3 of the pdc, we use the following

popular choice of stepsize [18]: compute the steps θ
k

p and θ
k

d to the boundaries of the primal

and dual nonnegative bound constraints, that is

θ
k

p := 1/max (0,−dxk,r
i /xk

i , i = 1, n), and θ
k

d := 1/max (0,−dsk,ri /ski , i = 1, n). (3.12)

Then, having chosen τ ∈ (0, 1) at the start of the algorithm, set

θkp := min (1, τθ
k

p) and θkd := min (1, τθ
k

d). (3.13)

Example 1. We set the parameters of the algorithm to the values

σk := 0.1, for k ≥ 0, and τ := 0.995, and ǫ := 10−8, (3.14)

and applied the algorithm to (3.1) and (3.2) with α := 8, starting from w0 = (x0, y0, s0),

x0 := (8, 1.95, 0.05), y0 := −0.1, s0 := (1, 8.1, 0.1), (3.15)

which is a primal-dual strictly feasible point of these problems.

The conditions of Theorem 3.1 are satisfied in this case, implying that the duality gap (xk)⊤sk

of the iterates cannot be decreased to a value lower than ξα = 1.95 · 8 = 15.6 (see (3.6)).

8

k (xk
1
, xk

2
, xk

3
)⊤ (dxk

1
, dxk

2
, dxk

3
)⊤ (dxk,c

1
, dx

k,c
2

, dx
k,c
3

)⊤ θ
k

p xk
1
+ 8xk

2
(xk)⊤sk

8.0000 −7.2067 0

0 1.9500 −3.8122 1.0347 · 102 5.0173 · 10−4 2.3600 · 10 2.3800 · 10
5.0000 · 10−2 3.8122 −1.0347 · 102

7.9964 −7.1966 0

1 1.9997 −5.3443 · 102 7.5908 · 108 3.2935 · 10−13 2.3994 · 10 2.3995 · 10
2.5000 · 10−4 5.3443 · 102 −7.5908 · 108

7.9964 −7.1965 0

2 2.0000 −1.0665 · 105 6.0664 · 1015 2.0605 · 10−22 2.3996 · 10 2.3996 · 10
1.25 · 10−6 1.0665 · 105 −6.0664 · 1015

7.9964 −7.1965 0

3 2.0000 −2.1330 · 107 4.8531 · 1022 1.2878 · 10−31 2.3996 · 10 2.3996 · 10
6.2500 · 10−9 2.1330 · 107 −4.8531 · 1022

7.9964 −7.1965 0

4 2.0000 −4.2660 · 109 3.8825 · 1029 8.0490 · 10−41 2.3996 · 10 2.3996 · 10
3.1250 · 10−11 4.2660 · 109 −3.8825 · 1029

Table 1: The first five primal iterates of the pdc algorithm when applied to (3.1) and (3.2). The

algorithm halts after 6 iterations.

The data in Table 1 shows that the pair (xk
2, x

k
3) approach the point (2, 0) rapidly, and x4 is

within ǫ distance to the nonoptimal boundaries determined by the constraints x2 = 2 and

x3 = 0. The values in the third and fourth column of Table 1 indicate that the lengths

of dxk and dxk,c increase very rapidly with k, due to the length of their second and third

components. Moreover, dxk,c
2 and dxk,c

3 are much longer in absolute value than, and have

opposite signs to, dxk
2 and dxk

3, conforming to (3.8) and (3.9). The direction dxk ‘points

towards’ the optimum x∗ = (0, 0, 2), while the second and third components of the corrector

‘point away’ from it. Thus these primal components of the resulting direction dwk,r point

away from the optimum.

In the dual space, after four iterations, the dual iterates and the dual objective function are

within ǫ = 10−8 of their optimal values (see (3.3)). The rapid increase in the lengths of both

dsk and dsk,c is similar in magnitude to the length of the primal directions. The primal-dual

feasibility equations are satisfied to machine precision throughout.

Since xk
2 ր 2 and sk2 ց α = 8, as k increases, the matrix of the systems (2.4) and (2.6) con-

verges to a singular matrix. The increasing ill-conditioning ultimately stops the algorithm.

For a more detailed analysis of the numerical results, see [3]. 3

A numerical calculation with a popular choice of σk is given next.

Example 2. For k ≥ 0, we compute the centring parameters σk > 0 in the pdc algorithm

9

by the procedure employed in the mpc algorithm [15, 22]. Thus we let

σk :=

(

(xk + θ
k

pdx
k,a)⊤(sk + θ

k

dds
k,a)

(xk)⊤sk

)i

, (3.16)

where dwk,a = (dxk,a, dyk,a, dsk,a) is defined by (2.5) with σk := 0. The stepsizes θ
k

p and

θ
k

d are the maximum steps from xk and sk, along dxk,a and dsk,a, to the primal and dual

constraint boundaries, respectively, and are defined by (3.12) with dwk,r := dwk,a. The index

i ∈ {1, 2, 3, 4} is a constant that we fix at the start of the pdc algorithm. See Chapter 10

of [22] for more explanations about this choice of σk. The pdc algorithm with this choice of

σk is still distinct from the mpc, due to the different corrector directions the two algorithms

employ (for precise details, see the first paragraph of Section 4.2).

Let α := 8 in (3.1) and (3.2), and let the starting point w0 = (x0, y0, s0) of the pdc algorithm

with the stepsize procedure (3.13) be

x0 := (8, 1.99, 0.01), y0 := −0.1, s0 := (1, 8.1, 0.1). (3.17)

Let ǫ := 10−8, τ := 0.995 and σk be computed from (3.16) with i = 3 for k ≥ 0. The iterates

generated by the algorithm are very similar to the ones in Table 1. For example, the (x4
2, x

4
3)

components are within 10−11 distance to the point (2, 0), and the dual iterates (y4, s4) are

within ǫ distance to the optimum. The numerical values of σk, k = 0, 6, are all of order

10−1 and are strictly increasing. This case is also covered by our theoretical results (see our

remark following the proof of Theorem 3.1); in particular, Lemma 4.2 in [3] implies that the

pdc does not converge to the solution of (3.1) and (3.2).

The behaviour of the algorithm is similar for any i ∈ {1, 2, 4} in (3.16). 3

Our numerical experience with the pdc algorithm is not restricted to the example problems

(3.1) and (3.2); the algorithm terminates at Step 1 on most lp instances tested.

4 Conclusions

4.1 Overcoming the failure: the Primal-Dual Second-Order

Corrector (pdsoc) algorithm

The pdc algorithm presented here computes on each iteration an additional direction, a

corrector, to augment the direction of the standard primal-dual path-following interior-point

method for lp problems, in an attempt to improve performance. We found, however, that

10

the pdc may fail to converge to the solution of problems (3.1) and (3.2) in both exact and

finite arithmetic, regardless of the choice of stepsize that is employed. The cause of the bad

performance of the algorithm on these problems is that the corrector direction had too much

influence on the resulting search direction. Therefore in the pdsoc algorithm [2, 7, 17, 23, 25],

the contribution from the corrector is the quadratic function of the steplength θk = θkp = θkd

wk+1 := wk + θkdwk + (θk)2dwk,c, (4.1)

where wk = (xk, yk, sk) is the current iterate of the pdsoc algorithm applied to problems

(P) and (D), and the directions dwk and dwk,c are computed as before, for k ≥ 0.

The quadratic features of the linesearch (4.1) are supported by the interpretation that the

new iterate wk+1 is chosen along the second-order Taylor approximation around wk of a local

nonlinear path that starts at wk and ends at the point w(σkµk) of the primal-dual central

path of the problems (see Section 5.1 of [2]).

Convergence and complexity properties of the pdsoc algorithm are given in [2, 25]. It can

be shown (see Appendix C of [2]) that these results ensure that, subject to the conditions

of Theorem 3.1, the pdsoc algorithm with suitable (long-step) linesearch converges in exact

arithmetic to the solution of problems (3.1) and (3.2).

4.2 The relevance of the example to the mpc algorithm

Relating the construction of the pdc to that of the mpc algorithm, we find that, when

applied to problems (P) and (D), the search direction generated in the mpc algorithm is also

the sum of dwk and a corrector direction. The mpc corrector, however, attempts to adjust

the error generated in the system of optimality conditions of problems (P) and (D) (i.e., the

system Fµ(w) = 0 in (2.2) with µ := 0) by its Newton direction, dwk,a, from wk. Thus the

mpc corrector direction is defined by the system (2.6) with σk := 0 and dwk := dwk,a. We

remark that the centring parameters in the mpc algorithm are computed as in (3.16).

As we already mentioned in the introductory section, the example of failure of the pdc

algorithm to converge that we presented in Section 3 does not apply to the mpc algorithm.

Our implementation of the mpc algorithm with the stepsize procedure (3.13) was successful

in solving problems (3.1) and (3.2), for various starting points, including those defined in

(3.15) or in (3.17). In the latter case, the mpc algorithm similarly generates long correctors

that move the primal iterate away from the optimum on early iterations. It “recovers”,

however, and converges rapidly to the solution. The example throws doubt nevertheless,

on the convergence properties of the mpc algorithm in general, due to the above-mentioned

11

similarities between the two algorithms, particularly in the way the search directions and new

iterates are formed by adding similar corrector directions to the standard Newton direction

of primal-dual interior point methods, without any scaling of the correctors, which is the

cause of failure of the pdc algorithm on the example. Based on our experience with the pdc

and the similarities between the two algorithms, it seems highly unlikely that the occurrence

of long corrector directions in the performance of the mpc algorithm would always have a

beneficial or harmless effect. A theoretical understanding of the numerical behaviour of the

mpc algorithm constitutes potential future work.

Besides its essential and strong connection to the mpc algorithm, we find the pdc algorithm

to be interesting in itself, since the examples we presented emphasize the disadvantages of

this particular way of constructing corrector directions and new iterates.

References

[1] T. J. Carpenter, I. J. Lustig, J. M. Mulvey, and D. F. Shanno. Higher-order predictor-

corrector interior point methods with application to quadratic objectives. SIAM J.

Optim., 3(4):696–725, 1993.

[2] C. Cartis. On interior point methods for linear programming, 2004. PhD thesis, De-

partment of Applied Mathematics and Theoretical Physics, University of Cambridge.

[3] C. Cartis. Some disadvantages of a Mehrotra-type primal-dual corrector inte-

rior point algorithm for linear programming. Technical Report 04/27, Numeri-

cal Analysis Group, Oxford University Computing Laboratory, 2005. Available at

http://www.optimization-online.org/DB HTML/2005/02/1062.html.

[4] R. M. Freund and S. Mizuno. Interior point methods: current status and future direc-

tions. In High performance optimization, volume 33 of Appl. Optim., pages 441–466.

Kluwer Acad. Publ., Dordrecht, 2000.

[5] J. Gondzio. Multiple centrality corrections in a primal-dual method for linear program-

ming. Comput. Optim. Appl., 6(2):137–156, 1996.

[6] C. C. Gonzaga. Path-following methods for linear programming. SIAM Rev., 34(2),

1992.

[7] P.-F. Hung and Y. Ye. An asymptotical O(
√
n)-iteration path-following linear pro-

gramming algorithm that uses wide neighbourhoods. SIAM J. Optim., 6(3):570–586,

1996.

12

[8] M. Kojima, N. Megiddo, and S. Mizuno. A primal-dual infeasible-interior-point algo-

rithm for linear programming. Math. Programming, 61(3, Ser. A):263–280, 1993.

[9] M. Kojima, S. Mizuno, and A. Yoshise. A primal-dual interior point algorithm for

linear programming. In Progress in mathematical programming (Pacific Grove, CA,

1987), pages 29–47. Springer, New York, 1989.

[10] I. J. Lustig, R. E. Marsten, and D. F. Shanno. Computational experience with a primal-

dual interior point method for linear programming. Linear Algebra Appl., 152:191–222,

1991.

[11] I. J. Lustig, R. E. Marsten, and D. F. Shanno. On implementing Mehrotra’s predictor-

corrector interior-point method for linear programming. SIAM J. Optim., 2(3):435–449,

1992.

[12] S. Mehrotra. Higher order methods and their performance. Technical Report 90–16R1,

Dept. of IE/MS, Northwestern University, 1990.

[13] S. Mehrotra. Generalized predictor-corrector methods and their performance. Technical

Report 91–17, Dept. of IE/MS, Northwestern University, 1991.

[14] S. Mehrotra. On finding a vertex solution using interior point methods. Linear Algebra

Appl., 152:233–253, 1991.

[15] S. Mehrotra. On the implementation of a primal-dual interior point method. SIAM J.

Optim., 2(4):575–601, 1992.

[16] S. Mehrotra. Asymptotic convergence in a generalized predictor-corrector method.

Math. Programming, 74(1, Ser. A):11–28, 1996.

[17] R. D. C. Monteiro, I. Adler, and M. G. C. Resende. A polynomial-time primal-dual

affine scaling algorithm for linear and convex quadratic programming and its power

series extension. Math. Oper. Res., 15(2):191–214, 1990.

[18] J. Nocedal and S. J. Wright. Numerical optimization. Springer-Verlag, New York, 1999.

[19] F. A. Potra and S. J. Wright. Interior-point methods. J. Comput. Appl. Math., 124(1-

2):281–302, 2000.

[20] R. Tapia, Y. Zhang, M. Saltzman, and A. Weiser. The Mehrotra predictor-corrector

interior-point method as a perturbed composite Newton method. SIAM J. Optim.,

6(1):47–56, 1996.

13

[21] M. H. Wright. The interior-point revolution in constrained optimization. In High per-

formance algorithms and software in nonlinear optimization (Ischia, 1997), volume 24

of Appl. Optim., pages 359–381. Kluwer Acad. Publ., Dordrecht, 1998.

[22] S. J. Wright. Primal-dual Interior-Point Methods. Society for Industrial and Applied

Mathematics (SIAM), Philadelphia, 1997.

[23] Y. Ye. Interior Point Algorithms:Theory and Analysis. John Wiley and Sons, New

York, 1997.

[24] Y. Zhang. User’s guide to LIPSOL: linear-programming interior point solvers V0.4.

Optim. Methods Softw., 11/12(1-4):385–396, 1999.

[25] Y. Zhang and D. T. Zhang. On polynomiality of the Mehrotra-type predictor-corrector

interior-point algorithms. Math. Programming, 68(3, Ser. A):303–318, 1995.

A Appendix

Here, we give a proof of Lemma 3.2. Firstly, let us perform some calculations that will be

used later, in the proof.

Assume that we apply the pdc algorithm to problems (3.1) and (3.2) (in exact arithmetic).

Then, the strict feasibility of the iterates implies that every iterate wk = (xk, yk, sk) satisfies

the equations

xk
2 + xk

3 = 2, sk1 = 1, yk + sk2 = α, yk + sk3 = 0, sk2 = sk3 + α, (A.2)

and the inequalities

0 < xk
1, 0 < xk

2 < 2, 0 < xk
3 < 2, sk2 > α, sk3 > 0, k ≥ 0. (A.3)

The direction dwk = (dxk, dyk, dsk) defined by (2.5) has the following explicit expression

dxk
1 = −xk

1 + σkµk, dxk
2 =

2σkµk(1− xk
2)− αxk

2x
k
3

2sk2 − αxk
2

, dxk
2 = −dxk

3, (A.4a)

dsk1 = 0, dsk2 =
σkµk(2sk2 − α)− 2sk2s

k
3

2sk2 − αxk
2

, dsk3 = dsk2, dyk = −dsk2. (A.4b)

The expression of the corrector direction dwk,c = (dxk,c, dyk,c, dsk,c) follows from the systems

(2.6) and (2.7) and it is

dxk,c
1 = 0, dxk,c

2 =
−2dsk2

2sk2 − αxk
2

dxk
2, dxk,c

3 = −dxk,c
2 , (A.5a)

dsk,c1 = 0, dsk,c2 =
αdxk

2

2sk2 − αxk
2

dsk2, dsk,c3 = dsk,c2 , dyk,c = −dsk,c2 . (A.5b)

14

From (A.4) and (A.5), we deduce that the resulting search direction dwk,r = dwk+dwk,c has

the components

dxk,r
1 = −xk

1 + σkµk, dxk,r
2 = −dxk,r

3 = dxk
2

(

1− 2dsk2
2sk2 − αxk

2

)

, (A.6a)

dsk,r1 = 0, dsk,r2 = dsk,r3 = dsk2

(

1 +
αdxk

2

2sk2 − αxk
2

)

. (A.6b)

Proof of Lemma 3.2. Throughout the proof, we drop the iteration superscript k. Firstly,

note that (3.10) immediately follows from (2.9), (3.9) and θp,d > 0. We remark that ξ ∈
(1.5, 2) and ν > 0, since σ ∈ (0, 1) and α > 0. Thus from (3.7), (A.2) and (A.3), we have

x2 = 2− x3 ∈ [ξ, 2) and s3 = s2 − α ∈ (0, ν]. (A.7)

Since x2 < 2 and s2 > α, the denominator 2s2 − αx2 of expressions (A.6a) and (A.6b) is

positive. Therefore it is sufficient to establish the relations

2ds2
2s2 − αx2

> 1 and
αdx2

2s2 − αx2

< −1. (A.8)

Indeed, they imply ds2 > 0 and dx2 < 0. Further, (A.5a) and (A.5b) give |dxc
2| > |dx2| and

|dsc2| > |ds2| with the sign changes of expression (3.8). The inequalities in (3.9) follow from

(2.8) and (3.8), while the equalities are the expressions (A.6).

The mean value µ of the complementarity products can be written

µ =
1

3
(x1s1 + x2s2 + x3s3) =

1

3
(x1 + αx2 + 2s3), (A.9)

where (A.2) gives the second equality. We substitute (A.9) and the expression (A.4b) for

ds2 into the first part of (A.8). Then, using the feasibility relation s2 − s3 = α, we obtain

the following equivalent expression for the first inequality in (A.8), in terms of x2, s3 and x1

8(3−σ)s23+4α[9−σ− (3+σ)x2]s3+α2[3x2
2−2(6+σ)x2+12]−2σ(α+2s3)x1 < 0. (A.10)

It follows from x1 > 0, s3 > 0, σ > 0 and α > 0, that it is sufficient to show

8(3− σ)s23 + 4α[9− σ − (3 + σ)x2]s3 + α2[3x2
2 − 2(6 + σ)x2 + 12] < 0, (A.11)

for x2 ∈ [ξ, 2) and s3 ∈ (0, ν]. The left-hand side of (A.11) is a convex function in s3, and

therefore its supremum occurs at one of the end points of the interval (0, ν]. It remains to

verify that (A.11) holds for s3 = 0 and for s3 = ν = ασ/8. At s3 = 0, condition (A.11)

becomes

3x2
2 − 2(6 + σ)x2 + 12 < 0. (A.12)

15

In order to check that (A.12) is achieved for any x2 ∈ [ξ, 2), it is enough to verify that it

holds at x2 = ξ, since the the left-hand side of (A.12) is a decreasing function of x2. In the

case x2 = ξ = 2 − σ/2, the left-hand side of (A.12) has the value −4σ + 1.75σ2, which is

negative as required due to σ ∈ (0, 1). For s3 = ασ/8, condition (A.11) becomes

24x2
2 − 4(σ2 + 7σ + 24)x2 − σ3 − σ2 + 36σ + 96 < 0, (A.13)

whose left-hand side is also decreasing in x2. At x2 = ξ, the above condition becomes

σ3 + 11σ2 − 20σ < 0, which holds for any σ ∈ (0, 1). Thus the first inequality in (A.8) is

achieved.

Similarly, substituting (A.9) and the expression of dx2 from (A.4a) into the second inequality

in (A.8), and employing the feasibility relations x3 = 2− x2 and s2 = α+ s3, we deduce the

following form of this inequality

6s23 + 2α[6 + σ − (3 + σ)x2]s3 + α2[(3− σ)x2
2 − (9− σ)x2 + 6]− ασ(x2 − 1)x1 < 0. (A.14)

Since x1 > 0, α > 0, σ ∈ (0, 1), x2 ≥ ξ > 1, it is sufficient to establish

6s23 + 2α[6 + σ − (3 + σ)x2]s3 + α2[(3− σ)x2
2 − (9− σ)x2 + 6] < 0, (A.15)

for x2 ∈ [ξ, 2) and s3 ∈ (0, ν]. As before, the left-hand side of (A.15) is convex in s3. It is

thus enough to show that (A.15) holds at s3 = 0 and s3 = ν = ασ/8. At s3 = 0, condition

(A.15) becomes

3(x2
2 − 3x2 + 2) + σx2(1− x2) < 0, (A.16)

which holds for any x2 ∈ (1, 2) and σ ∈ (0, 1). For s3 = ασ/8, condition (A.15) becomes

32(3− σ)x2
2 − 8(σ2 − σ + 36)x2 + 11σ2 + 48σ + 192 < 0. (A.17)

The left-hand side of (A.17) is convex in x2. Substituting x2 = 2 in expression (A.17) yields

−5σ2 − 64σ < 0. At x2 = ξ = 2 − σ/2, the left-hand side of (A.17) is −4σ3 + 79σ2 − 112σ

which is negative for any σ ∈ (0, 1). This proves that the second inequality in (A.8) also

holds. 2

16

