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Abstract

In a dynamical systems paradigm, many optimization algorithms are equivalent to applying

forward Euler method to the system of ordinary differential equations defined by the vector field

of the search directions. Thus the stiffness of such vector fields will play an essential role in the

complexity of these methods. We first exemplify this point with a theoretical result for general

linesearch methods for unconstrained optimization, which we further employ to investigating the

complexity of a primal short-step path-following interior point method for linear programming.

Our analysis involves showing that the Newton vector field associated to the primal logarithmic

barrier is nonstiff in a sufficiently small and shrinking neighbourhood of its minimizer. Thus,

by confining the iterates to these neighbourhoods of the primal central path, our algorithm has

a nonstiff vector field of search directions, and we can give a worst-case bound on its iteration

complexity. Furthermore, due to the generality of our vector field setting, we can perform a

similar (global) iteration complexity analysis when the Newton direction of the interior point

method is computed only approximately, using some direct method for solving linear systems

of equations.

1 Introduction

The Nesterov–Nemirovskii self-concordant barriers theory constructs a class of functions whose

associated Newton vector fields can be used to solve lp problems in polynomial time. We aim to

introduce in what follows a minimal set of conditions that a parametric family of vector fields needs

to satisfy in order to ensure that the complexity of the resulting methods can be estimated for lp.

Our approach opens the possibility that other vector fields (search directions), besides Newton, can
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be employed in interior point methods, and could make lp solvable in polynomial time. We give

some illustrative examples of vector fields that satisfy these minimal conditions. We show that the

Newton vector field of the logarithmic barriers functionals associated to a given lp falls into this

category. Then we show that an approximate Newton direction, where the approximation comes

from inexact arithmetic computations of the step, also satisfies these minimal set of conditions.

The reasoning behind the particular choice of minimal conditions for vector fields springs from

stability considerations for dynamical systems. Indeed, in a dynamical systems paradigm, many

optimization algorithms are equivalent to applying forward Euler method (with variable stepsize)

to the system of ordinary differential equations defined by the vector field of the search directions.

Since forward Euler is not A-stable, the stiffness of such vector fields will play an essential role in

the complexity of these methods. Thus well-conditioned and non-stiff vector fields should be the

focus of our attention. As we shall see, the Newton vector field of the logarithmic barrier is perfectly

well-conditioned in a sufficiently small neighbourhood of its minimizer on the central path.

In confining the polynomial complexity results mostly to algorithms employing the Newton vector

field, an implicit assumption has been created, that it is the Q-quadratic convergence properties

that this vector field has that are in part responsible for this complexity. Our results show this not

to be the case, in the sense that it is enough that the search direction vector field possesses linear

convergence to ensure polynomial complexity of the algorithm.

Notations. Throughout, let ‖ · ‖ denote the Euclidean norm on R
n; the same notation is used for

the operator norm induced by the Euclidean norm. Also, vector components will be denoted by

subscripts, and iteration numbers, by superscripts. Furthermore, I is the n×n identity matrix and

e, the vector of all ones where its dimension can be deduced from the context. Given a vector, say

x, the diagonal matrix having the components of x as entries will be denoted by X.

2 Some useful preliminary results

Let β ∈ (0, 1) and

N := {x ∈ R
n : ‖x − x†‖ < R}, (2.1)

for some R > 0 and x† ∈ R
n. Letting N denote the closure of N , we assume v : N → R

n, x 7→ v(x)

is a vector field such that

i) v(x) = 0 ⇔ x = x†.

The following two results are essential to the material in this paper.

Theorem 2.1 Let v : N → R
n, x 7→ v(x) be a vector field such that property i) above holds, and

also that can be expressed as

v(x) = r(x) + w(x), for all x ∈ N , (2.2)
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where r : N → R
n, x 7→ r(x) is a radial vector field with unique stable attractor x†, i. e.,

r(x) = x† − x, x ∈ N , (2.3)

and w : N → R
n, x 7→ w(x) is a vector field that is β-Lipschitz continuous at x†, i. e.,

‖w(x)‖ ≤ β‖x − x†‖, x ∈ N , (2.4)

where we have employed that w(x†) = 0 which follows from i), (2.2) and (2.3).

We consider the iterative process

xl+1 = xl + v(xl), l ≥ 0, (2.5)

where x0 is an arbitrary starting point in N . Then

‖xl+1 − x†‖ ≤ β‖xl − x†‖, l ≥ 0, (2.6)

which provides

x0 ∈ N =⇒ xl ∈ N , l ≥ 0, (2.7)

and

xl → x†, as l → ∞, Q-linearly with convergence factor β. (2.8)

Furthermore, we have

‖v(xl)‖ ≤ (1 + β)‖xl − x†‖, l ≥ 0. (2.9)

Thus

v(xl) → 0, as l → ∞, R-linearly with convergence factor β. (2.10)

Proof. It follows from (2.2) and (2.3) that

v(x) = x† − x + w(x) and x + v(x) − x† = w(x), x ∈ N , (2.11)

which together with (2.4), implies

‖v(x)‖ ≤ (1 + β)‖x − x†‖, x ∈ N , (2.12)

and

‖x + v(x) − x†‖ ≤ β‖x − x†‖, x ∈ N . (2.13)

Now, (2.13) and (2.5) give (2.6). Also, (2.7) results from (2.6) and β ∈ (0, 1).

Straightforwardly, (2.9) follows from (2.12) and (2.5). Relations (2.6) and (2.9) give (2.10), which

completes the proof. 2

The next corollary gives an example of a class of vector fields that satisfies the conditions of

Theorem 2.1.
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Corollary 2.2 Let v : N → R
n, x 7→ v(x) be a C1 vector field such that property i) above holds,

and also

ii) ‖I + Dv(x)‖ ≤ β, for all x ∈ N .

Then Theorem 2.1 applies.

Proof. For any x ∈ N , property i) provides

v(x) =

∫ 1

0
Dv(x† + t(x − x†))(x − x†) (2.14)

= x† − x +

∫ 1

0
[I + Dv(x† + t(x − x†))(x − x†)], (2.15)

and further, from ii) and N being convex,

‖x + v(x) − x†‖ ≤
∫ 1

0
‖I + Dv(x† + t(x − x†))‖ · ‖x − x†‖, (2.16)

≤ β‖x − x†‖. (2.17)

Thus letting r(x) := x† − x and w(x) := v(x) − r(x), for any x ∈ N , (2.17) provides that w is

β-Lipschitz continuous vector field on N , which further implies that the conditions of Theorem 2.1

are satisfied. 2

Let f : R
n → R be a C3 strictly convex function, and let n : R

n → R
n be the associated Newton

vector field. Then, conforming to [12], at the minimizer x† of f , we have

n(x†) = 0 and Dn(x†) = −I. (2.18)

Thus the conditions of Corollary 2.2 are satisfied by the Newton vector field in a sufficiently

small neighbourhood of x†. Determining the size of this neighbourhood in the specific case of

the Newton vector field of the logarithmic barrier function for linear programming will be the focus

of a significant part of the analysis in this paper.

2.1 On parametrized families of vector fields

Let U ⊆ R
n be an open and convex domain. Let µ > 0 and

N (x(µ)) := {x ∈ R
n : ‖x − x(µ)‖ < ρµ}, (2.19)

where x(µ) ∈ R
n and ρ is a positive constant independent of µ, such that

N (x(µ)) ⊂ U , for each µ > 0. (2.20)

Let (vµ), µ > 0, be a directed and parametrized family of C1 vector fields

vµ : U → R
n, x → vµ(x),

satisfying the following properties, for each µ > 0,
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1) vµ(x) = 0 ⇔ x = x(µ);

2) ‖x + vµ(x) − x(µ)‖ ≤ β‖x − x(µ)‖, for all x ∈ N (x(µ)), where β ∈ (0, 1) is independent of µ.

The directed family (vµ) will be referred to as vector fields with Linearly-Scaled Domains of At-

traction (lsda).

Condition 2) in the definition of lsda vector fields is equivalent to requiring that wµ := vµ − rµ,

where rµ := x(µ) − x is a radial vector field, is β-Lipschitz continuous at x(µ) over N (x(µ)).

Recalling Theorem 2.1, we deduce the following results concerning lsda vector fields.

Theorem 2.3 Let (vµ), µ > 0, be a family of lsda vector fields. Let µ > 0 be fixed, and let

x0 ∈ N (x(µ)), where N (x(µ)) is defined in (2.19). Consider the iterative scheme

xl+1 := xl + vµ(xl), l ≥ 0. (2.21)

Then

xl ∈ N (x(µ)), l ≥ 0. (2.22)

Also, xl → x(µ) and vµ(xl) → 0, as l → ∞, and the convergence is Q- and R-linear, respectively,

with convergence factor β.

Furthermore, given ξ ∈ (0, 1), it takes a finite number of iterations l, indepedent of µ, with

l ≥ l̂ :=

⌈

log ξ

log β

⌉

, (2.23)

to obtain an iterate xl such that

‖xl − x(µ)‖ ≤ ξρµ. (2.24)

Proof. For each µ, the vector field vµ satisfies the conditions of Theorem 2.1 with N := N (x(µ)),

R := ρµ and x† := x(µ). Thus Theorem 2.1 provides xl ∈ N (x(µ)), l ≥ 0, and the convergence

claims concerning (xl) and
(

vµ(xl)
)

stated above.

To give an upper bound on the number of iterations l required to generate xl satisfying (2.24), we

employ (2.6) which becomes in this case

‖xl+1 − x(µ)‖ ≤ β‖xl − x(µ)‖, l ≥ 0. (2.25)

It follows from (2.19) and x0 ∈ N (x(µ))

‖xl − x(µ)‖ ≤ βlρµ, l ≥ 0. (2.26)

Thus (2.24) holds provided

βl ≤ ξ, (2.27)

which is in turn, satisfied when l achieves (2.23). 2

The next corollary presents a subclass of the lsda family of vector fields, by analogy to Corollary

2.2.
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Corollary 2.4 Let (vµ), µ > 0, be a family of vector fields that satisfy all the conditions in the

definition of lsda vector fields apart from condition 2), instead of which they achieve the require-

ment

2′) ‖I + Dvµ(x)‖ ≤ β, for all x ∈ N (x(µ)), where β ∈ (0, 1) is a constant independent of µ.

Then (vµ) is a family of lsda vector fields (with the Lipschitz constant β given in 2′)), and thus

Theorem 2.3 holds for vµ.

When the iterates belong to a linear or affine subspace of R
n, we work fully in that subspace by

taking intersections of that subspace with the neighbourhood N (x(µ)), and evaluating the reduced

Jacobians of vµ. Then the above results are preserved (this will become clearer later in the paper

when we analyse examples of lsda vector fields).

3 A generic Short-Step Primal (ssp) interior point algorithm for

linear programming

Let a Linear Programming (lp) problem be given in the standard form

min
x∈Rn

c⊤x subject to Ax = b, x ≥ 0, (P)

where m ≤ n, b ∈ R
m, c ∈ R

n, and A is a real matrix of dimension m × n. Let FP denote the

primal feasible set, i. e.,

FP := {x ∈ R
n : Ax = b, x ≥ 0}, (3.1)

and SP , the set of solutions of this problem. The dual problem corresponding to the primal problem

(P) is

max
(y,s)∈Rm×Rn

b⊤y subject to A⊤y + s = c, s ≥ 0, (D)

and, similarly to (3.1), we let FD

FD := {(y, s) ∈ R
m × R

n : A⊤y + s = c, s ≥ 0}, (3.2)

denote the dual feasible set, and SD, the dual solution set. Moreover, we let FPD denote the

primal-dual feasible set, i. e., FPD := FP × FD, and SPD, the primal-dual solution set, i. e.,

SPD := SP × SD.

We assume that there exists a primal-dual strictly feasible point w0 = (x0, y0, s0) ∈ FPD that

satisfies

Ax0 = b, A⊤y0 + s0 = c, x0 > 0 and s0 > 0, (3.3)

and that the matrix A has full row rank. We refer to these assumptions as the ipmipmipm conditions,

and are standard assumptions in ipm theory [23]. Let F0
PD denote the set of primal-dual strictly

feasible points, and F0
P , the set of primal strictly feasible points.
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Let us now construct an interior point algorithm to solve (P).

Let (vµ) be a directed and parametrized family of vector fields that satisfies the lsda property 1)

(see page 5), and assume that for µ > 0, their unique equilibrium points x(µ) form a continuous

path P that converges to some x∗ ∈ SP and that has the property that for any µ0 > 0, there exists

a positive constant C such that

‖x(µ) − x(µ+)‖ ≤ C(µ − µ+), for any 0 < µ+ ≤ µ ≤ µ0, (3.4)

‖x(µ) − x∗‖ ≤ Cµ, for any µ0 ≥ µ > 0. (3.5)

Preferably, C should not depend on µ0 (see Section 3.1). The next proposition gives sufficient

conditions for properties (3.4) and (3.5) to hold.

Proposition 3.1 Let P be continuously differentiable with respect to µ, for µ > 0, and x(µ) →
x∗ ∈ SP , as µ → 0. Then conditions (3.4) and (3.5) are achieved if

∃ lim
µ→0

ẋ(µ) := ẋ(0), (3.6)

and we may let C in (3.4) and (3.5) take any value such that

C ≥ max
ν∈[0,µ0]

‖ẋ(ν)‖ := C0. (3.7)

Proof. Since x(µ) ∈ C1((0, µ0]), we have x(µ) ∈ C1([µ+, µ]), for any 0 < µ+ ≤ µ ≤ µ0. Thus x(µ)

has bounded variation on the interval [µ+, µ], and the inequalities hold

‖x(µ) − x(µ+)‖ ≤
∫ µ

µ+

‖ẋ(ν)‖dν ≤ (µ − µ+) max
ν∈[µ+,µ]

‖ẋ(ν)‖. (3.8)

Letting µ+ → 0, and recalling (3.6) and ẋ(µ) ∈ C((0, µ0]), we further deduce

‖x(µ) − xc‖ ≤ µ max
ν∈[0,µ]

‖ẋ(ν)‖ ≤ µ max
ν∈[0,µ0]

‖ẋ(ν)‖ < +∞, (3.9)

and thus, we may set C to satisfy (3.7). 2

The implicit dependence of C0 and of C in (3.7) on µ0 and on the conditioning of the problem data

can be made explicit for particular choices of P (see for example, Section 3.1).

Returning to constructing an algorithm for (P), let us assume that a primal strictly feasible point

x0 ∈ F0
P is available to start this algorithm, i. e.,

Ax0 = b, x0 > 0. (3.10)

Moreover, we require that x0 is close to the primal components of the path P. Thus there exists a

positive constant ρ such that

‖x0 − x(µ0)‖ ≤ ξρµ0, (3.11)
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where ξ ∈ (0, 1) is a constant chosen at the start of the algorithm.

A constant θ ∈ (0, 1) is given that we employ in defining a sequence of parameters µk > 0, k ≥ 0,

as follows

µk+1 := θµk, k ≥ 0. (3.12)

Then, at the current iterate xk, with k ≥ 0, we let xk,0 := xk, µ := µk+1, and form

xk,l+1 := xk,l + vµ(xk,l), l ≥ 0. (3.13)

We compute a fixed number l̂ of such steps, where l̂ is independent of k and µ (see (2.23) for

example), and let xk+1 := xk,l. We assume that the choice of vector fields (vµ(x)) keeps the iterates

xk,l, k ≥ 1, l ≥ 0, feasible with respect to the primal equality constraints, and, possibly together

with the choice of parameter ρ, also ensures that xk,l, k ≥ 0, l ≥ 0, is strictly positive (see Section

3.1). The tangency requirement (3.6) is essential for the latter condition to hold.

The algorithm terminates when µk ≤ ǫ, where ǫ > 0 is a tolerance set by the user at the start of

the algorithm.

The above description of the algorithm can be summarized as follows.

A Short-Step Primal (SSP) IPM:

Let ǫ > 0 be a tolerance parameter, and µ0, a positive parameter, ξ ∈ (0, 1). Also, let l̂ ∈ {1, 2, . . .},
ρ > 0 and θ ∈ (0, 1) be given constants (to be specified below). A point x0 is required that satisfies

(3.10) and (3.11). At the current iterate xk, k ≥ 0, do:

Step 1: If µk ≤ ǫ , stop.

Step 2: Let µk+1 := θµk, xk,0 := xk.

Perform l̂ iterations of the scheme (3.13) with µ := µk+1, starting

at xk,0. This generates an iterate xk,l := xk+1.

Step 3: Let k := k + 1. Go to Step 1. 3

The value of l̂, θ and ρ that ensure the ssp algorithm is well-defined and has low iteration complexity

need to be determined. In particular, the neighbourhood (3.11) — to which the starting point x0

of the algorithm belongs — should scale with µk, such that the iterates would satisfy

‖xk+1 − x(µk+1)‖ ≤ ξρµk+1, k ≥ 0. (3.14)

In what follows, we address these issues. Firstly, we give a useful preliminary lemma.

Lemma 3.2 Consider the path P formed by the points (x(µ)) that satisfy (3.4) and (3.5). Then

for any µ > 0, there exists θ0 ∈ (0, 1), independent of µ, such that for any θ ∈ [θ0, 1], we have

‖x − x(µ)‖ ≤ ξρµ =⇒ ‖x − x(µ+)‖ ≤ ρµ+, (3.15)
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where µ+ := θµ, ξ ∈ (0, 1) and ρ > 0. In particular,

θ0 :=
ξρ + C

ρ + C
, (3.16)

where C is the complexity measure in (3.4) and (3.5).

Proof. The following identities follow from µ+ = θµ and (3.4)

‖x − x(µ+)‖ ≤ ‖x − x(µ)‖ + ‖x(µ) − x(µ+)‖
≤ ξρµ + (µ − µ+)C = {ξρ + (1 − θ)C}µ. (3.17)

Requiring that θ ∈ (0, 1] satisfies

θ ≥ θ0 ∈ (0, 1), (3.18)

where θ0 is defined in (3.16), (3.17) further provides

‖x − x(µ+)‖ ≤ ρθµ = ρµ+, (3.19)

which concludes the proof. 2

Let us now show that condition (3.14) is indeed sufficient for Algorithm ssp to converge and to

allow an estimation of its worst-case iteration complexity.

Theorem 3.3 Let problem (P) satisfy the ipm conditions, and let (vµ) be a directed and parametrized

family of vector fields that satisfies lsda property 1) and also achieves (3.4) and (3.5). Apply Al-

gorithm ssp to problem (P), and choose θ ∈ [θ0, 1), where θ0 is defined in (3.16). Assume that

(3.14) holds. Then µk → 0 and xk → x∗, as k → ∞.

Furthermore, by making the choice θ := θ0, Algorithm ssp takes at most

k̂ :=

⌈

{

log

(

1 + Cρ−1

ξ + Cρ−1

)}−1

log
µ0

ǫ

⌉

(3.20)

outer iterations to generate an iterate xk̂ satisfying µk̂ ≤ ǫ, where C is the complexity measure that

occurs in (3.4) and (3.5).

Proof. Since θ ∈ (0, 1), (3.12) implies µk+1 → 0, as k → ∞. Further, (3.14) implies (xk−x(µk)) →
0, and since x(µk) → x∗ due to (3.5), we deduce xk → x∗, as k → ∞.

Next we obtain an upper bound on the number of outer iterations required to generate an iterate

with µk ≤ ǫ. Letting θ := θ0 in (3.12), we deduce inductively

µk ≤ θk
0µ0, k ≥ 0. (3.21)

Thus µk ≤ ǫ provided k log θ0 ≤ log(ǫ/µ0). The value (3.20) of the bound on k now follows from

(3.16). 2
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The iteration worst-case complexity of generating xk with ‖xk − x∗‖ ≤ ǫ follows from the above

bound for µk ≤ ǫ, from (3.14) and (3.5), and the inequalities

‖xk − x∗‖ ≤ ‖xk − x(µk)‖ + ‖x(µk) − x∗‖ ≤ (ξρ + C)µk. (3.22)

Thus whenever µk ≤ ǫ, we are guaranteed that the current major iterate xk is within ǫ(ξρ + C)

of the optimum solution x∗. This justifies the termination criteria of Algorithm ssp, and indicates

the choice of tolerance (ǫ/(ξρ + C)) that would be required on µk to ensure xk is within ǫ distance

from x∗.

The dependence on n and other problem data in the complexity bound in Theorem 3.3 is implicitly

hidden in the term C/ρ, where ρ depends on the particular choice and properties of the family of

vector fields (vµ) and C represents a complexity measure of v(µ) or/and of our problem (P).

Assuming, in addition to the conditions of Lemma 3.2, that (vµ) is a family of lsda vector fields,

the second inequality in (3.15) further provides, together with Theorem 2.3, that l̂ steps (see (2.23))

of the scheme (2.21) with µ := µ+ generates a point x+ satisfying ‖x+ − x(µ+)‖ ≤ ξρµ+. This is

the main argument that we employ inductively in the next theorem in order to show (3.14), which

further implies, conforming to Theorem 3.3, that Algorithm ssp is convergent and we can estimate

its iteration complexity. The inclusion (3.15), as well as the shrinking of the O(µ+) neighbourhood

by ξ is depicted in the left-hand side plot of Figure 1.

Theorem 3.4 Let problem (P) satisfy the ipm conditions, and let (vµ) be a family of lsda vector

fields that also satisfies (3.4) and (3.5). Apply Algorithm ssp to problem (P), and choose θ ∈ [θ0, 1),

where θ0 is defined in (3.16). Furthermore, let

l̂ :=

⌈

log ξ

log β

⌉

, (3.23)

which is independent of k and µk.

Then

‖xk,l − x(µk+1)‖ ≤ ρµk+1, k ≥ 0, l ≥ 0, (3.24)

and (3.14) holds for each k ≥ 0. Thus Theorem 3.3 holds.

Proof. We will show (3.24) and (3.14) by induction on k. Clearly, (3.24) holds for k = l = 0 due

to (3.11). The inductive argument is the same for any k ≥ 0. Thus let us assume that (3.24) and

(3.14) hold for some k ≥ 0 and l = 0, i. e.,

‖xk − x(µk)‖ ≤ ξρµk. (3.25)

Then, recalling the choice of θ, (3.15) in Lemma 3.2 provides

‖xk − x(µk+1)‖ ≤ ρµk+1, (3.26)
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Figure 1: An iteration of Algorithm ssp. Outer iterations of Algorithm ssp.

or equivalently, xk,0 := xk ∈ N (x(µk+1)). Since Theorem 2.3 applies, the inclusion (2.22) provides

that (3.24) holds for all l ≥ 0.

Furthermore, the same theorem gives, together with (3.26), that

‖xk,l − x(µk+1)‖ ≤ ξρµk+1, for all l ≥ l̂, (3.27)

where l̂ is defined in (2.23) or equivalently, in (3.23). Thus xk+1 := xk,l̂ satisfies (3.14). 2

In the case when (vµ) is a family of lsda vector fields, Figure 1 illustrates the workings of a major

iteration of Algorithm ssp in its left-hand side plot, while the right-hand side graph shows the

shrinking ball neighbourhoods (3.11) and (3.14) as k → ∞.

3.1 A choice for the path P

In this section, we show that the primal central path associated to (P) [6, 23] may be chosen as the

path P above, since it satisfies properties (3.4) and (3.5). Also, there exists a range of values (0, ρ0)

for ρ for this choice of P that ensure that the iterates of Algorithm ssp are positive, provided the

starting point x0 is. As in this section we are only concerned with the existence of the constants C

and ρ0.

For µ > 0, consider the following strictly convex problem

min
x∈Rn

fµ(x) := c⊤x − µ

n
∑

i=1

log xi subject to Ax = b, x > 0, (Pµ)

which has a unique solution x(µ) provided the ipm conditions are satisfied. Letting s(µ)i := µ/x(µ)i,

i ∈ {1, . . . , n}, and y(µ) ∈ R
m be the unique Lagrange multipliers of the equality constraints of

(Pµ), we obtain a pair (y(µ), s(µ)) that is strictly feasible for (D) and thus, the point w(µ) :=
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(x(µ), y(µ), s(µ)) is the unique solution of the following system (of optimality conditions of (Pµ))











Ax(µ) = b

A⊤y(µ) + s(µ) = c

X(µ)s(µ) = µe,

x > 0 and s > 0.

(3.28)

As µ > 0 varies, the points w(µ) define the primal-dual central path [6], contained in F0
PD and

continuously differentiable for µ > 0. As µ tends to zero, the points w(µ), µ > 0, converge to a

well-defined primal-dual strictly complementary solution of (P) and (D), called the analytic centre

of the primal-dual solution set denoted here by wc = (xc, yc, sc) [6, 26]. Thus the conditions of

Proposition 3.1 are satisfied provided (3.6) holds for (x(µ)). To see this, as well as a similar property

for (s(µ)), we recall in what follows, a result from literature. concerning the limiting behaviour of

the derivatives of the central path.

Let Z be an n × (n − m) matrix such that AZ = 0. Then the dual constraints A⊤y + s = c are

equivalent to Z⊤s = Z⊤c. Also, let us recall here that there exists a unique partition (A,I) of

the index set {1, . . . , n}, where one of the sets A and I may be empty, such that the primal-dual

solution set SPD can be expressed as

SPD = {w∗ = (x∗, y∗, s∗) ∈ FPD : x∗
A = 0 and s∗I = 0}, (3.29)

where x∗
A := (x∗

i : i ∈ A) and s∗I := (s∗j : j ∈ I). We call the sets A and I the strict complemen-

tarity index sets.

Lemma 3.5 [[8], Corollary 3.6, Theorem 3.8] Let problems (P) and (D) satisfy the ipm condi-

tions, and w(µ) = (x(µ), y(µ), s(µ)), µ > 0, denote the primal-dual central path. Let ẇ(µ) =

(ẋ(µ), ẏ(µ), ṡ(µ)) denote its derivative with respect to µ > 0. Then we have

lim
µ→0

ẋA(µ) = (Sc
A)−1e > 0 and lim

µ→0
ṡI(µ) = (Xc

I)−1e > 0. (3.30)

Moreover, the limit limµ→0 (ẋI(µ), ṡA(µ)) exists and it is the unique optimal solution of the following

convex quadratic problem

min
(ẋI ,ṡA)

1

2
‖(Xc

I)−1ẋI‖2 +
1

2
‖(Sc

A)−1ṡA‖2 s.t. AI ẋI = −AA(Sc
A)−1e, Z⊤

A ṡA = −Z⊤
I (Xc

I)−1e. (3.31)

We remark that no nondegeneracy assumption on problems (PD) was necessary for the above

Lemma to hold. Furthermore, no self-concordancy property is explicitly required either. The next

corollary follows from Lemma 3.5 and Proposition 3.1.

Corollary 3.6 Let problems (P) and (D) satisfy the ipm conditions, and (w(µ) = (x(µ), y(µ), s(µ))),

µ > 0, denote the primal-dual central path. Given µ0 > 0, there exist a positive constant C such
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that

‖x(µ) − x(µ+)‖ ≤ C(µ − µ+), ‖s(µ) − s(µ+)‖ ≤ C(µ − µ+), for any 0 < µ+ ≤ µ ≤ µ0, (3.32)

‖x(µ) − xc‖ ≤ Cµ and ‖s(µ) − sc‖ ≤ Cµ, µ0 ≥ µ > 0. (3.33)

In particular, C satisfies

C ≥ max
ν∈[0,µ0]

{‖ẋ(ν)‖, ‖ṡ(ν)‖} := Cpd
0 . (3.34)

Proof. The properties concerning (x(µ)) follow straightforwardly from Lemma 3.5 and Propo-

sition 3.1, while for (s(µ)), a similar argument to the one in Proposition 3.1 may be employed

together with Lemma 3.5. 2

The properties of the central path allow us to obtain a range of values for ρ that ensure the iterates

xk,l of Algorithm ssp remain positive once the starting point x0 is chosen as such. It follows from

(3.24) that xk,l > 0, k ≥ 0, l ≥ 0, provided ρ < min{xi(µ
k+1) : i = 1, n}/µk+1, for all k ≥ 0. Let

ρ := sup

{

ρ > 0 :
xi(µ)

µ
≥ ρ, i = 1, n, for all µ ∈ (0, µ0]

}

, (3.35)

for any (fixed) µ0 > 0. [We remark that if we remove the condition that µ ≤ µ0 in (3.35), then ρ

may be zero since when µ → ∞, xi(µ)/µ → 0 for i corresponding to bounded components of x(µ);

see also Theorem 3.3 in [11].] Then, recalling N (x(µ)) defined in (2.19), we have

x ∈ N (x(µ)) =⇒ x > 0, for any 0 < µ ≤ µ0 and 0 < ρ < ρ, (3.36)

and in particular,

xk,l > 0, for any k ≥ 0, l ≥ 0 and ρ ∈ (0, ρ). (3.37)

It follows from (3.33) in Corollary 3.6, as well as from the definition of the central path and of

(xc, sc), that

µ

Cµ + sc
i

≤ xi(µ) ≤ Cµ, and
1

C
≤ si(µ) ≤ Cµ + sc

i , i ∈ A, (3.38a)

1

C
≤ xj(µ) ≤ Cµ + xc

j, and
µ

Cµ + xc
j

≤ sj(µ) ≤ Cµ, j ∈ I, (3.38b)

for all µ ∈ (0, µ0], and any fixed µ0 > 0. Thus

ρ ≥ min

{

1

Cµ0
,

1

Cµ0 + max{sc
i : i ∈ A}

}

=
1

Cµ0 + ‖Sc
A‖

:= ρ0 > 0, for any µ0 > 0. (3.39)

In what follows, we assume

ρ ∈ (0, ρ), (3.40)

and thus, (3.36) and (3.37) hold.

We remark that other choices for the path P include weighted paths, which also have the properties

in Corollary 3.6 [8, 18].
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For the remainder of the paper, we present examples of lsda vector fields (vµ(x)) that generate

algorithms that are globally convergent when applied to lp problems, and whose iteration com-

plexity we can bound using Theorem 3.4. We begin by analyzing the Newton vector field of the

logarithmic barrier functions (Pµ), µ > 0.

4 A choice for the family (vµ) of lsda vector fields

Let w(µ) = (x(µ), y(µ), s(µ)), µ > 0, denote the primal-dual central path of (P) (see Section 3.1).

Let (nµ) denote the Newton vector field associated to the logarithmic barrier problem (Pµ), µ > 0,

whose domain of values we restrict to the set F0
P of primal strictly feasible points, as these are the

points of interest to us. At any such point x, the Newton step nµ(x) for (Pµ) is the solution of the

system
{

∇2fµ(x)nµ(x) + ∇fµ(x) = A⊤λ,

Anµ(x) = 0,
(4.1)

or equivalently,
{

µX−2nµ(x) + c − µX−1e = A⊤λ,

Anµ(x) = 0,
(4.2)

where X denotes the diagonal matrix with the components of x as entries and e is the n-dimensional

vector of all 1s. Further, nµ(x) has the explicit expression

nµ(x) = − 1

µ
{I − X2A⊤(AX2A⊤)−1A}X2(c − µX−1e) (4.3)

= − 1

µ
X{I − XA⊤(AX2A⊤)−1AX}(Xc − µe) (4.4)

= − 1

µ
X{I − XA⊤(AX2A⊤)−1AX}S(µ)(x − x(µ)), (4.5)

where to obtain the last identity, we employed c = A⊤y(µ) + s(µ). It follows from (4.5) that

nµ(x(µ)) = 0, µ > 0. (4.6)

Furthermore, since (Pµ) is a strictly convex problem, x(µ) is the unique equilibrium point of nµ

in the set of primal strictly feasible points. Thus property 1 in the definition on page 5 of lsda

vector fields is satisfied by (nµ). Recalling (2.18), we remark that property (4.6) needed no further

mentioning, were problem (Pµ) unconstrained.

We let Algorithm sspn below be Algorithm ssp of the previous section with (nµ) chosen as (vµ).

Algorithm SSPN:

Let ǫ > 0 be a tolerance parameter, and µ0, a positive parameter, ξ ∈ (0, 1). Let l̂N ∈ {1, 2, 3 . . .}
be a given constant to be specified later. Let ρ ∈ (0, ρ0), where ρ0 is defined in (3.39), to be possibly

further restricted. Let θ ∈ [θ0, 1), where θ0 is defined in (3.16). A point x0 is required that satisfies

(3.10) and (3.11), where x(µ0) is a point on the primal central path. At the current iterate xk,
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k ≥ 0, do:

Step 1: If µk ≤ ǫ , stop.

Step 2: Let µk+1 := θµk, xk,0 := xk.

Perform l̂N iterations of Newton’s method applied to (Pµ) with µ := µk+1, starting

at xk,0. This generates an iterate xk,l := xk+1.

Step 3: Let k := k + 1. Go to Step 1. 3

We remark that generic short-step primal path-following ipms for lps — in whose framework

Algorithm sspn broadly fits — usually compute only one Newton step for each value of µ [17, 23].

The second set of equations in (4.1) implies that

A[x + nµ(x)] = b, x ∈ F0
P , µ > 0. (4.7)

Since x0 satisfies (3.10), (4.7) implies that all iterates xk,l, k ≥ 0, l ≥ 0, generated by Algorithm

sspn remain feasible with respect to the primal equality constraints. Furthermore, choosing ρ in

Algorithm sspn to take values in (0, ρ0), where ρ0 is defined in (3.39), implies, conforming to the

argument at the end of Section 3.1, that xk,l > 0, k ≥ 0, l ≥ 0. Thus all iterates of Algorithm sspn

are primal strictly feasible, i. e., xk,l ∈ F0
P , k ≥ 0, l ≥ 0.

For the results of Section 3 to hold for Algorithm sspn, which would make the latter well-defined

and provide a worst-case iteration complexity bound, it remains to show that property 2 in the

definition on page 5 of lsda vector fields is satisfied by (nµ). This may involve further restricting

the range (0, ρ0) that ρ belongs to, as we show next.

4.1 On ensuring lsda property 2 for the Newton vector field of the log barrier

If similarly to the agreement between (4.6) and the first relation in (2.18), the second relation in

(2.18) holds for the Jacobian of nµ at x(µ), then this Jacobian would remain well-conditioned in

a neighbourhood of x(µ), and we would only need to prove it is of size O(µ). Thus let us firstly

compute the Jacobian of nµ(x), x ∈ F0
P .

Differentiating (4.2), we deduce
{

µX−2[Dnµ(x) + I] − 2µX−3Nµ(x) = A⊤Dλ,

ADnµ(x) = 0,
(4.8)

where Nµ(x) is the diagonal matrix with the components of the vector nµ(x) as entries. We obtain

the explicit expression

Dnµ(x) + I = X2A⊤(AX2A⊤)−1A + 2[I − X2A⊤(AX2A⊤)−1A]X−1Nµ(x), (4.9)

which further gives, together with (4.6),

Dnµ(x(µ)) + I = X(µ)2A⊤(AX(µ)2A⊤)−1A. (4.10)
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Thus, due to the presence of the primal equality constraints, the property Dnµ(x(µ)) = −I in

(2.18) continues to hold only for directions in the null space of A, i. e.,

[Dnµ(x(µ)) + I]d = 0, for d such that Ad = 0.

Moreover, considering the expression (4.10), we cannot bound it so as to ensure the requirement 2

in the definition of lsda vector fields. Thus we introduce a change of variables so that we work in

the reduced space of the points x that satisfy the primal equality constraints. We will show that

the reduced Newton vector field of (Pµ) has the lsda properties. Finally, the results in Section 3

will be applied to the corresponding “reduced” iterates and Newton vector field.

4.2 A change of variables

Since A has full row rank, the dimension of its null space N (A) is n−m, and there exists zi ∈ N (A),

i = 1, n − m, orthogonal vectors such that

N (A) := {x ∈ R
n : Ax = 0} = {Zu : u ∈ R

n−m}, (4.11)

where the n× (n−m) matrix Z has columns zi, i = 1, n − m, and rows Zj ∈ R
n−m, j = 1, n. Thus

we have

AZ = 0, Z⊤Z = I, ‖Z‖ = 1, (4.12)

where the last two properties follow from the columns of Z being orthogonal to each other. There-

fore, we can represent any vector x satisfying Ax = b as

x = Zu + x(µ), for some (unique) u ∈ R
n−m, (4.13)

where µ > 0. Thus problem (P) is equivalent to

min
u∈Rn−m

(Z⊤c)⊤u subject to Zu ≥ −x(µ). (4.14)

Its dual is

max
s∈Rn

(−x(µ))⊤s subject to Z⊤s = Z⊤c, s ≥ 0. (4.15)

Problem (Pµ) is equivalent to

min
u∈Rn−m

f r
µ(u) := c⊤Zu − µ

n
∑

i=1

log (Z⊤
i u + xi(µ)) subject to Zu > −x(µ). (Pµ,u)

If the ipm conditions are satisfied by (P) and (D), then they also hold for the above reduced

problems. For µ > 0, the solution of (Pµ,u) is u(µ) = 0. We will now “reduce” all the quantities of

interest (the Newton step, its Jacobian, etc.), to the lower dimensional space of the vectors u.
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The Newton step for the (unconstrained) problem (Pµ,u) is

nr
µ(u) = −[Z⊤∇2fµ(Zu + x(µ))Z]−1Z⊤∇fµ(Zu + x(µ)) (4.16)

= − 1

µ
[Z⊤(diag(Zu + x(µ)))−2Z]−1Z⊤(c − µ(diag(Zu + x(µ)))−1e) (4.17)

= − 1

µ
(Z⊤X−2Z)−1Z⊤(c − µX−1e), where x = Zu + x(µ), (4.18)

= − 1

µ
(Z⊤X−2Z)−1Z⊤(s(µ) − µX−1e), where x = Zu + x(µ), (4.19)

and where to obtain the last identity, we employed c = A⊤y(µ) + s(µ). The following relation

connects the Newton step nµ to its reduced variant nr
µ, and it can be easily verified,

nµ(x) = Znr
µ(u), where x = Zu + x(µ). (4.20)

Given a strictly feasible point x0 of (P), there exists a unique u0 such that x0 = Zu0+x(µ). Letting

xl+1 := xl + nµ(xl), and ul+1 := ul + nr
µ(ul), l ≥ 0, (4.21)

then it follows from (4.20) that

xl = Zul + x(µ), l ≥ 0. (4.22)

Thus, provided the starting points x0 and u0 are related by (4.22), the Newton iterates are the

same in the u and x-spaces, expect for a translation.

From (4.20), we also deduce

nr
µ(u) = 0 ⇐⇒ nµ(x) = 0 ⇐⇒ x = x(µ) ⇐⇒ u = u(µ) = 0, (4.23)

where to obtain the second equivalence, we recalled the argument in Section 4.1. It follows from

(4.23) that property 1 in the definition on page 5 of a family of lsda vector fields is satisfied

by (nr
µ). Now we proceed to the computation of the reduced Jacobian of nr

µ, in order to then show

that property 2 of lsda vector fields is also achieved by (nr
µ).

To calculate Dnr
µ(u), we differentiate (4.16) with respect to u and obtain

D[Z⊤∇2fµ(Zu+x(µ))Z]nr
µ(u)+Z⊤∇2fµ(Zu+x(µ))ZDnr

µ(u) = −Z⊤∇2fµ(Zu+x(µ))Z, (4.24)

and it is easy to see that

Dnr
µ(u(µ)) = −I,

where u(µ) = 0.

Now we want to compute D[Z⊤∇2fµ(Zu + x(µ))Z]nr
µ(u). We have

Z⊤∇2fµ(Zu + x(µ))Znr
µ(u) =

[

n
∑

i=1

ZiZ
⊤
i

(Z⊤
i u + xi(µ))2

]

nr
µ(u) =

n
∑

i=1

Zi(Z
⊤
i nr

µ(u))

(Z⊤
i u + xi(µ))2

, (4.25)
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which we differentiate with respect to u, while considering nr
µ(u) to be independent of u. We deduce

D[Z⊤∇2fµ(Zu + x(µ))Z]nr
µ(u) = −2Z⊤diag

(

Z⊤
i nr

µ(u)

(Z⊤
i u + xi(µ))3

: i = 1, n

)

Z, (4.26)

which further provides together with (4.24),

Dnr
µ(u) + I = 2

(

Z⊤(diag(Zu + x(µ)))−2Z
)−1

Z⊤diag

(

Z⊤
i nr

µ(u)

(Z⊤
i u + xi(µ))3

: i = 1, n

)

Z, (4.27)

= 2
(

Z⊤X−2Z
)−1

Z⊤Nµ(x)X−3Z, with x = Zu + x(µ), nµ(x) = Znr
µ(u). (4.28)

The upper bound on ‖Dnr
µ(u) + I‖ that we will deduce in order to show property 2 of lsda vector

fields is satisfied by (nr
µ) will depend on some condition numbers of problems (P) and (4.14) that

we describe next.

4.2.1 Some relevant condition numbers of our problems

Conforming to [20], let

χ(Z⊤) := sup{‖(Z⊤DZ)−1Z⊤D‖ : D n × n positive definite diagonal matrix} < ∞, (4.29)

and

χ(A) := sup{‖A⊤(ADA⊤)−1AD‖ : D n × n positive definite diagonal matrix} < ∞, (4.30)

where it is required that the matrices A and Z⊤ are full row rank, condition that is satisfied in

our case.

The two measures (4.29) and (4.30) are related as follows. We remark that the null space of A

coincides with the range space of Z, and the range space of A⊤ with the null space of Z⊤, i. e.,

N (A) = R(Z) and R(A⊤) = N (Z⊤). (4.31)

Similarly, when we scale A by a positive definite diagonal matrix D1/2, we have

N (AD1/2) = R(D−1/2Z) and R(D1/2A⊤) = N (Z⊤D−1/2). (4.32)

Thus the orthogonal projection matrices into N (AD1/2) and R(D−1/2Z)

PN (AD1/2) := I − D1/2A⊤(ADA⊤)−1AD1/2, (4.33)

PR(D−1/2Z) := D−1/2Z(Z⊤D−1Z)Z⊤D−1/2. (4.34)

represent the same linear operator (the projection operator). Moreover, we can show these matrices

coincide by proving that their image coincides on all the vectors in R
n, because A and Z have full
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row and column rank, respectively. Thus, further multiplying (4.33) and (4.34) on the right by

Z⊤D1/2, and on the left by D−1/2, we obtain the identity

(Z⊤D−1Z)−1Z⊤D−1 = Z⊤[I − DA⊤(ADA⊤)−1A], (4.35)

where we also employed Z⊤Z = I. Thus taking norms in (4.35), we obtain

‖(Z⊤D−1Z)−1Z⊤D−1‖ ≤ ‖Z⊤‖ · [1 + ‖DA⊤(ADA⊤)−1A‖], (4.36)

≤ ‖Z⊤‖ · [1 + χ(A)], (4.37)

where the second inequality follows since transposition of matrices preserves their two-norm. Fur-

ther, we employ the bound

‖Z⊤‖ ≤ √
n max{‖Zi‖ : i = 1, n} ≤ √

n, (4.38)

and pass to the supremum over positive definite diagonal matrices on the left-hand side of (4.36),

to deduce

χ(Z⊤) ≤ √
n(1 + χ(A)). (4.39)

The upper bound ρ0 defined in (3.39) occurs naturally in Algorithm sspn. It depends, however,

on another condition number of our problem, ‖sc
A‖, or equivalently, ‖sc‖. In the remainder of

this subsection, we relate it to the condition number χ(A), in the case when (P) has a unique

nondegenerate solution. Let us recall that since (yc, sc) is a dual solution, it satisfies

A⊤
Ayc + sc

A = cA and A⊤
I yc = cI . (4.40)

Moreover, when (P) has a unique nondegenerate solution, the matrix AI must be nonsingular, and

we obtain the expression

sc
A = cA − (A−1

I AA)⊤cI . (4.41)

Now Lemma 3 in [20] implies ‖(AI)−1A‖ ≤ χ(A), and since ‖A−1
I AA‖ ≤ ‖A−1

I A‖, we deduce the

following bound

‖A−1
I AA‖ ≤ χ(A), (4.42)

which provides, together with (4.41),

‖sc
A‖ ≤ ‖cA‖ + χ(A)‖cI‖, (4.43)

or equivalently,

‖sc
A‖ ≤ [1 + χ(A)] · ‖c‖. (4.44)

It follows from (3.39)

ρ0 :=
1

Cµ0 + ‖Sc
A‖

≥ 1

Cµ0 + [1 + χ(A)] · ‖c‖ := ρ1, (4.45)

and we may further restrict the range of admisible values for ρ in Algorithm sspn to (0, ρ1) when

(P) has a unique nondegenerate solution (see Corollary 4.2).

Now we return to computing bounds on the Jacobian of the reduced Newton direction.
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4.2.2 Ensuring lsda property 2 for the reduced Newton vector field of the log barrier

The next lemma gives the promised bound on the Jacobian of the reduced Newton vector field,

implying that (nr(u))µ satisfies the lsda properties.

Theorem 4.1 Let problem (P) satisfy the ipm conditions. Let µ and µ0 be positive arbitrary

parameters, such that 0 < µ ≤ µ0, and x satisfies

Ax = b and x ∈ N (x(µ)), (4.46)

where N (x(µ)) is defined in (2.19), and ρ ∈ (0, ρ0), where ρ0 is given in (3.39). Then

‖Dnr
µ(u) + I‖ ≤ 2

√
n(1 + χ(A))

ρ

ρ0
, (4.47)

where u is related uniquely to x by the relation Zu = x − x(µ).

In particular, letting

N r
µ(0) := {u ∈ R

n−m : ‖u‖ < ρµ}, (4.48)

where ρ is chosen such that

0 < ρ < ρ0[2
√

n(1 + χ(A))]−1, (4.49)

then the reduced Newton vector fields (nr
µ(u)) satisfy the lsda properties in the neighbourhoods N r

µ(0).

Proof. Relation (4.28) may be written equivalently

Dnr
µ(u)+ I = 2[(Z⊤X−2Z)−1Z⊤X−2]Nµ(x)X−1Z, with x = Zu+ x(µ), nµ(x) = Znr

µ(u). (4.50)

We have already established at the end of Section 3.1 that the condition (3.39) on ρ implies that

x satisfying (2.19) is positive. Thus it follows from (4.29)

‖Dnr
µ(u) + I‖ ≤ 2χ(Z⊤)‖Z‖ · ‖X−1nµ(x)‖ ≤ 2χ(Z⊤)‖X−1nµ(x)‖, (4.51)

where in the last inequality we employed ‖Z‖ = 1. To evaluate the length of X−1nµ(x), we return

to the expression (4.5), and deduce

X−1nµ(x) = − 1

µ
{I − XA⊤(AX2A⊤)−1AX}S(µ)(x − x(µ)).

Recalling (4.33), I − XA⊤(AX2A⊤)−1AX is the matrix of the orthogonal projection into the null

space of AX, and thus, ‖I − XA⊤(AX2A⊤)−1AX‖ ≤ 1. It follows from (2.19) and (4.46) that

‖X−1n(x)‖ ≤ ρ‖S(µ)‖. (4.52)

The inequalities (3.38) and (3.39) finally provide

‖X−1n(x)‖ ≤ ρ[Cµ0 + ‖Sc
A‖] =

ρ

ρ0
, (4.53)
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which, together with (4.39) and (4.51), implies (4.47).

To show the second part of the theorem, recall that (4.23) implies the first condition in the definition

of lsda vector fields is satisfied by (nr
µ).

To prove condition 2, let u ∈ N r
µ(0). Then x := Zu + x(µ) satisfies x ∈ N (x(µ)), since ‖Z‖ ≤ 1.

Furthermore, the choice (4.49) of ρ implies ρ < ρ0 since χ(A) > 0. Thus the conditions of the first

part of the theorem are satisfied, providing the bound (4.47) holds. This, together with (4.49),

imply ‖Dnr
µ(u) + I‖ < 1 and bounded away from 1. We conclude the second lsda requirement

(see page 5) is achieved by (nr
µ). 2

Employing (4.45), the expression of the bound in (4.47) can be uniformly described in terms of

only one condition number — χ(A) — by expressing the results in terms of ρ1 rather than ρ0, as

the following corollary states.

Corollary 4.2 In the conditions of Theorem 4.1, assume additionally that (P) has a unique non-

degenerate solution and that ρ in (2.19) satisfies 0 < ρ ≤ ρ1, where ρ1 ∈ (0, ρ0] is defined in (4.45).

Then we have

‖Dnr(u) + I‖ ≤ 2
√

n(1 + χ(A))
ρ

ρ1
, (4.54)

where u is related uniquely to x by the relation Zu = x − x(µ).

In particular, choosing ρ > 0 in (4.48) such that

ρ <
ρ1

2
√

n(1 + χ(A))
, (4.55)

and letting

β := 2
√

n(1 + χ(A))
ρ

ρ1
, (4.56)

then the reduced Newton vector fields (nr
µ(u)) satisfy the lsda conditions in the neighbourhoods

N r
µ(0), with the above constants.

Proof. The proof follows from (4.45) and Theorem 4.1. 2

In the conditions of the second part of Theorem 4.1 or of Corollary 4.2, since (nr
µ) is a family of

lsda vector fields in the neighbourhoods (4.48), Theorem 2.3 applies (directly) to (nr
µ) and the

u-iterates in (4.21). In the next theorem, we employ this result to deduce a variant of Theorem 2.3

for the x iterates and the (full) Newton vector field (nµ). This will provide us with a suitable value

for the number of inner iterations l̂N required by Algorithm sspn.

4.3 Determining the inner iterations l̂N required by Algorithm sspn

Theorem 4.3 Let problem (P) have a unique nondegenerate solution and satisfy the ipm condi-

tions. Let µ and µ0 be positive arbitrary parameters, such that 0 < µ ≤ µ0, and let x0 satisfy

(4.46), where 0 < ρ < ρ2 with

ρ2 := ρ1[2n(1 + χ(A))]−1, (4.57)
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where ρ1 is defined in (3.39). Consider the sequence (xl), l ≥ 0, generated according to the first

recurrence in (4.21).

Then xl → x(µ) and (nµ(xl)) → 0 R-linearly, as l → ∞, and the convergence factor is

β̃ := 2n(1 + χ(A))ρ/ρ1. (4.58)

Furthermore, given ξ ∈ (0, 1), there exists l̂N , indepedent of µ, where

l̂N :=

⌈

log
(

ξ · n−1/2
)

log β̃

⌉

, (4.59)

such that

‖xl − x(µ)‖ ≤ ξρµ, l ≥ l̂N . (4.60)

In particular, letting ξ := 1/2 and ρ := ρ2/(2
√

n), then β̃ = 1/(2
√

n) and l̂N = 1.

Proof. We define the following neighbourhoods in the u-space

Ñ r
µ(0) := {u ∈ ℜn−m : ‖u‖ < ρ̃µ}, (4.61)

where ρ̃ :=
√

nρ. Thus it follows from (4.57) that ρ̃ satisfies

ρ̃ <
ρ1

2
√

n(1 + χ(A))
, (4.62)

which is condition (4.55). Then Corollary 4.2 applies and gives that (nr
µ) is a lsda family of vector

fields in the neighbourhoods Ñ r
µ(0).

Furthermore, for x0, there exists a unique u0 such that x0 = Zu0 + x(µ). Thus ‖u0‖ ≤ ‖Z⊤‖ ·
‖x0 − x(µ)‖ ≤ √

n‖x0 − x(µ)‖. Since x0 is assumed to satisfy (4.46), it follows that ‖u0‖ <
√

nρµ := ρ̃µ, and u0 ∈ N r
µ(0). Starting from this u0, we define recurrsively the sequence (ul) by

ul+1 := ul +nr(u
l), l ≥ 0, which is the second relation in (4.21). It follows from the first paragraph

of this proof that the conditions of Theorem 2.3 hold for this sequence (ul) and the lsda vector

fields (nr
µ). It follows that

ul → u(µ) = 0 and nr
µ(ul) → 0, Q- and R-linearly, respectively, as l → ∞, (4.63)

and the convergence factor is β̃ defined in (4.58).

Recalling (4.21) and (4.22), we deduce

‖xl − x(µ)‖ ≤ ‖ul‖ ≤ √
n‖xl − x(µ)‖, (4.64)

and the first inequality, together with (4.63), implies xl → x(µ) R-linearly, with convergence factor

β̃. Similarly, (4.20), (4.63) and ‖Z‖ ≤ 1 imply nµ(xl) → 0 R-linearly, with convergence factor β̃.

Now, concerning the complexity of shrinking the neighbourhoods of x(µ), recall that u0 ∈ Ñ r
µ(0)

implies ‖u0‖ ≤ ρ̃µ =
√

nρµ. Let

ξ̃ := ξ/
√

n ∈ (0, 1). (4.65)
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Then the second part of Theorem 2.3 provides that

‖ul‖ ≤ ξ̃ρ̃µ = ξρµ, l ≥ l̂, (4.66)

where l̂ :=
⌈

log ξ̃/ log β̃
⌉

. It follows from (4.65) and the first inequality in (4.64) that l̂ = l̂N , where

the latter is given in (4.59), and (4.60) holds for l ≥ l̂N . 2

To summarize, we have now specified the choice of constants in Algorithm sspn: the size ρ must

belong to (0, ρ2), where ρ2 is defined in (4.57) and it satisfies ρ2 < ρ1 ≤ ρ0; the number of inner

iterations l̂N to be performed on each major iteration is given in (4.59). We remark that to satisfy

the condition on ρ, it is sufficient to let ρ := β0ρ2 for some β0 ∈ (0, 1). Then, β̃ = β0, where β̃ is

defined by (4.58). In particular, by changing ρ, β̃ can be adjusted to take any value in (0, 1). This

in turn, will determine l̂N (also by the choice of ξ). We remark however, that a small l̂N leads to

a large number of outer iterations k (recall the value of θ0 in (3.16) and its dependence on ρ).

Please note that the assumption that (P) has a unique nondegenerate solution can be removed if

we use Theorem 4.1, instead of Corollary 4.2. Then, however, the complexity results will depend

not only on χ(A), but also on the condition number ‖sc‖.

4.4 The worst-case outer iteration complexity of Algorithm sspn

Now we return to analysing the overall convergence and iteration complexity of Algorithm sspn,

when applied to (P). Theorem 4.3 implies that every outer iteration of the algorithm will perform

l̂N inner iterations where l̂N is prescribed by (4.59). In the next theorem, we investigate the number

of outer iterations required to obtain an approximate solution of (P). It is, in fact, a straightforward

employment of the general Theorem 3.3, in the particular context of the family of Newton vector

fields (nµ) of the parametrized and constrained logarithmic barrier.

Theorem 4.4 Let (P) satisfy the ipm conditions and assume that it has a unique nondegenerate

solution xc. Let Algorithm sspn be applied to (P), where we perform l̂N inner Newton iterations

for each µk, with l̂N prescribed by (4.59), and where ρ ∈ (0, ρ2), with ρ2 defined in (4.57). Then

‖xk − x(µk)‖ ≤ ξρµk, k ≥ 0, (4.67)

and µk → 0, xk → xc = 0, as k → ∞.

Furthermore, by making the choice θ := θ0, Algorithm sspn takes at most k̂N outer iterations,

where

k̂N :=

⌈

6n(1 + χ(A))C max{Cµ0, (1 + χ(A))‖c‖}
β̃(1 − ξ)

log
µ0

ǫ

⌉

, (4.68)

to generate an iterate xk̂N satisfying µk̂N ≤ ǫ, where C is the complexity measure introduced in

Lemma 3.6 and where we can view β̃ as an arbitrary constant in (0, 1), but connected to ρ via

ρ = β̃ρ2 and may dependent on n (see below). Since ξ is a user-chosen parameter, it follows that

k̂N = O
(

n(1 + χ(A))Cβ̃−1 max{Cµ0, (1 + χ(A))‖c‖} log
µ0

ǫ

)

. (4.69)
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Proof. The conditions of Theorem 3.3 are satisfied. This theorem provides (4.67), and the con-

vergence properties of (µk) and (xk). Furthermore, relation (3.20) gives a value for k̂N , where

now ρ = β̃ρ2 and C occurs in Lemma 3.6. It is possible to simplify the expression of the inverse

logarithm in (3.20) by returning to the expression (3.12) and (3.16) and writing µk = θk
0µ0 as

µk =

(

1 − (1 − ξ)ρ

C + ρ

)k

µ0 ≤ e−(1−ξ)ρ(C+ρ)−1kµ0.

Thus an alternative value for k̂N is
⌈

(C/ρ + 1) log(µ0/ǫ)/(1 − ξ)
⌉

. Then replacing ρ = β̃ρ2, ρ2 from

(4.57), and ρ1 from (4.45), in this latter expression for k̂N , we deduce (4.68). 2

In the conditions of theorems 4.3 and 4.4, if β̃ is a constant in (0, 1), independent of n, then these

theorems provide

l̂N = O(log n) and k̂N = O
(

n(1 + χ(A))C max{Cµ0, (1 + χ(A))‖c‖} log
µ0

ǫ

)

. (4.70)

If β̃ depends on n, for example, β̃ := O(np), with p > 0, then the same theorems give the estimates

l̂N = O(1) and k̂N = O
(

n1+p(1 + χ(A))C max{Cµ0, (1 + χ(A))‖c‖} log
µ0

ǫ

)

. (4.71)

5 Conclusions

A minimal set of conditions was introduced that a vector field needs to satisfy in order for the

resulting discrete dynamical system to have a provable worst-case iteration complexity for LP. We

then showed that the Newton vector field of the logarithmic barrier, as well as an approximation

of this field due to inexact arithmetic, satisfy these conditions.
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