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Abstract

This work focuses on Lipschitz optimization with first- and second-
order models (particularly cubic regularisation models) using an Overlap-
ping Branch and Bound (oBB) framework based on Fowkes et al. [25]. Par-
ticularly, oBB is a Lipschitz derivative based approach that uses an over-
lapping covering of balls rather than rectangular partitions. The main idea
behind oBB is to recursively split an initial ball covering the domain D into
subballs until we find a ball (or balls) of sufficiently small size containing
the global minimiser of f over D. Overlapping ball coverings result in an
increased number of subproblems that need to be solved and hence requires
their parallelization. Cartis et al. [10] develop parallel variants based on both
data- and task-parallel paradigms addressing the problem of balancing the
load between processors as well. Additionally, novel bounding procedures
are implemented. The approach taken in exam, even with parallelization, is
not efficient enough to solve large size problems because of the high number
of subproblems that need solving due to the special covering (with Euclidean
balls) that it is used. With the goal of lessen the computational time of the
algorithm allowing the subproblems to be still tractable, a domain reduction
method has been designed and implemented. Such strategy, which is con-
sidered optional for what concern the convergence of a Branch and Bound
algorithm, has allowed to obtain considerable improvements by a computa-
tional point of view. Nonetheless, several issues of geometric and structural
nature have been addressed. The outline of the paper is as follows. In
Chapter 1 we give an introduction on global optimization, describing the
different methods used to solve a global optimization problem and the most
known applications that fall in this field. We then describe, in Chapter 2,
the Branch and Bound methods giving a general framework with all its main
phases. In Chapter 3 we consider the particular instance, introduced above,
of Branch and Bound strategy for the global optimization of a twice differ-
entiable nonconvex objective function with a Lipschitz continuous Hessian
over a compact, convex set. Improvements of this approach based on bound-
ing procedures and parallelization strategies are then described. A general
description of domain reduction approaches with all its requirements, is pre-
sented in Chapter 4, while improvements obtained with their application and
the related issues are finally presented in Chapter 5.
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Chapter 1

The term optimization

Optimization is a field of applied mathematics that aim to the goal of
finding the extremal value of a function in a domain of definition, subject
to various constraints on the variable values. Typically, the problems are
modelled in terms of finding the best decision which corresponds to the
minimum (or maximum) of a suitable objective function, while it satisfies a
given collection of feasibility constraints. The objective function describes
overall system performance, such as profit, utility, loss, risk, or error, while
the constraints are originated in relationship with physical, technical, eco-
nomic or some other considerations.
When both the minimum cost configuration and the constraints are linear
functions of the decision variables the problem fall in the class of Linear
Programming (LP). The well-known Simplex Algorithm (Dantzig [12]) is
the most celebrated one for solving these kinds of problems; its complexity
in the worst-case is exponential in the number of problem variables, but in
most practical instances it performs extremely efficiently. Unlike, one other
technique for solving LP problems, the Ellipsoid Algorithm, exhibits poly-
nomial complexity.
Sometimes the structure of the problem explicitly requires integer or binary
decision variables. MILP (Mixed-Integer Linear Programming) problems,
are problems where some or all variables are integer-valued and the objec-
tive function and the constraints are linear. In these problems, because of
the integrality constraints on the variables can be expressed as nonlinear
functions, the problem itself is nonlinear, despite the linearity of the func-
tions. The techniques for solving MILPs are very different from those for
solving LPs, indeed, in most cases, at each step of an algorithm that solves
a MILP is required the solution of an entire LP problem. Cutting Plane
and Branch and Bound are the two most common algorithms employed in
solving MILPs and they have an exponential complexity in the size of the
instance in worst-case.
A large number of models naturally belong to the traditional class of the
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1.1. GLOBAL OPTIMIZATION

continuous optimization: in particular, to linear and convex programming.
Even so, there exist also numerous cases in which the necessary structural
(linearity or general convexity) requirements are not satisfied or not verifi-
able. On the basis of these structural requirements it is possible evaluate
the difficulty of an optimization problem: particularly, the true character-
istic discriminant between “easy” and “hard” optimization problems is the
convex/nonconvex issue. A problem is convex if it is a minimization of a
convex function over a convex set. A well-known result says that, given a
convex problem, a locally optimal solution is also globally optimal. However,
nonconvex problems may have many different local optimal, and the choice
of the best one is an hard task. The field that studies extremal locations
of nonconvex functions subject to (possibly) nonconvex constraints is called
Global Optimization.

Many hard optimization problems, such as the traveling salesman problem or
the protein folding problem, are global optimization problems. Even though,
the truth of the unresolved conjecture P 6= NP [26] would imply that there
are no general algorithms that solve a given global optimization problem in
polynomial time; some global optimization problems have been solved by
present methods. In the next section, further details on global optimization
will be given, and different resolution methods will be described.

1.1 Global Optimization

The aim of global optimization, as it has been described above, is to find
the globally best solution of models, in the presence of multiple local optima.
Nonlinear models are located in many applications, e.g., in biotechnology,
data analysis, financial planning, process control, risk management and so
on. These quite complex nonlinear systems, have an associated decision
models that may have multiple locally optimal solutions. In most realistic
cases, because of the number of such local solutions is not known a priori,
and the quality of global and local solutions may differ substantially, these
decision models can be very difficult. Thus, it is not possible directly apply
standard optimization strategies to solve them.

To formulate a problem of global optimization, consider the follow non linear
problem (NLP):

min
x∈D

f(x) (1.1)

where f : D ⊆ Rn → R is smooth and in general non-convex and D is
a compact, convex set. Typically, the set D is a subset of Rn defined by
constraints g(x), where g is a set of m possibly nonlinear functions of x.
Moreover, it is often useful to express the variable bounds as xL ≤ x ≤
xU (xL, xU ∈ Rn). In some cases several variables may be constrained to
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1.1. GLOBAL OPTIMIZATION

only take integer values (xi ∈ Z for all i in an index set Z ⊆ {1, ..., n}) leading
to the class of global optimization Mixed-Integer Nonlinear Programming
problem (MINLP)

min
x
f(x)

g(x) ≤ b
xL ≤ x ≤ xU
xi ∈ Z ∀ i ∈ Z.

Given a global optimization problem, we would like to find

f∗ = min
x∈D⊆Rn

f(x) (1.2)

and
x∗ = arg min

x∈D⊆Rn
f(x). (1.3)

A global minimum or global optimum is any x∗ ∈ D such that

f(x∗) ≤ f(x) ∀x ∈ D. (1.4)

A point x̂ is a local optimum if exists a constant ε > 0 such that

f(x̂) ≤ f(x) ∀x ∈ D ∩ B(x̂, ε) (1.5)

where B (x̂, ε) = {x ∈ Rn : ||x − x̂|| ≤ ε} is a ball in Rn. Obviously, any
global optimum is also a local optimum, but the opposite is generally false.

If are used traditional local search methods to solve a global optimization
problem, then depending on the starting point of the search, it could be
frequently found locally optimal solutions. Hence, a global search method is
needed to find the globally optimal solution. Several of the most important
global optimization strategies are listed below and most software implemen-
tations are based on one or more of these strategies.

Exact methods include:

1. Naive (passive) approaches: include passive or direct sequential global
optimization strategies such as uniform grid and pure random searches.
Such methods are convergent under analytical assumptions but they
are are not practical in higher-dimensional problems (Pintér [55], Zhigli-
avsky and Pintér [73]).

2. Complete (enumerative) search methods: based on an exhaustive enu-
meration of all possible solutions. They are applicable to combinato-
rial optimization problems, and to certain structured continuous global
optimization problem such as concave programming (Horst and Tuy
[31]).
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1.1. GLOBAL OPTIMIZATION

3. Homotopy (parameter continuation) and trajectory strategies: they
have the objective of visiting all stationary points of the objective
function leading to the list of all optima. This approach is applicable to
smooth GO problems and includes differential equation model based,
path-following search strategies and more (Diener [15], Forster [24]).

4. Successive approximation (relaxation) methods: in this approach, the
problem is replaced, through a successive refinement process, by a se-
quence of relaxed sub-problems that are easier to solve (e.g., by cutting
planes and by more general cuts). These algorithms are applicable to
different structured GO such as concave minimization, or differential
convex problems (Horst and Tuy [31]).

5. Branch and Bound algorithms: strategies based upon adaptive par-
tition, sampling, and bounding procedures to solve GO models; in
particular, these operations are applied iteratively to the collection
of active subsets (also called “candidate”) within the feasible set D.
These general methods typically rely on some a priori structural knowl-
edge about the problem such as how rapidly each function can vary
(e.g., the knowledge of a suitable overall Lipschitz constant). This
general methodology is applicable to wide classes of global optimiza-
tion problems, such as concave minimization, reverse convex programs,
DC programming, and Lipschitz optimization (Neumaier [50], Hansen
1992, Ratschek and Rokne [58], Kearfott [33], Horst and Tuy [31],
Pintér [55]).

6. Bayesian search (partition) algorithms: these methods are based on
statistical information, that allow to have a stochastic description
of the function-class modelled. Based upon this model and the ac-
tual search results, the characteristics of problem-instance are adap-
tively estimated and updated during optimization. This general ap-
proach is applicable to general continuous global optimization prob-
lems (Mockus et al. [45]).

7. Adaptive stochastic search algorithms: these procedures are based on
random sampling within the feasible set. Nonetheless the basic form
includes various random search strategies that are convergent with
probability one; enhancements such as adaptive search strategy ad-
justments, sample clustering, deterministic solution refinement options
and statistical stopping rules, can also be added. The methodology is
applicable to both discrete and continuous global optimization prob-
lems under general conditions (Boender and Romeijn [7], Pintér [55],
Zhigliavsky and Pintér [73]).

8. Integral methods: these methods allow to approximate the level sets
of the objective function f to reach the determination of the essential
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1.1. GLOBAL OPTIMIZATION

supremum of f over D (Zheng and Zhuang [72], Hichert et al. [29]).

Heuristic strategies include:

1. “Globalized” extensions of local search methods: the main idea of
these practical strategies are based on a preliminary global search (pas-
sive grid or random search) phase, followed by applying local scope
search (random multistart). Such strategies are applicable to smooth
GO problems. Frequently, enhancements are added to this strategy:
e.g., the clustering of sample points attempts to select only a single
point from each sampled of f from which a local search method can be
started. (Pintér [55], Zhigliavsky and Pintér [73]).

2. Genetic algorithms, evolution strategies: these methods heuristically
simulate biological evolution. Based on a “population” of candidate
solution points, an adaptive search procedure is applied. The poorer
solutions are dropped with a competitive selection, while the remaining
pool of candidates with higher value are then recombined with other
solutions by swapping components with another. Based on diverse
evolutionary “game rules”, a variety of deterministic and stochastic
algorithms can be constructed. These strategies are applicable to both
discrete and continuous GO problems under structural requirements
(Michalewicz [44], Osman and Kelly [54], Glover and Laguna [28], Voss
et al. [70]).

3. Simulated annealing: based on the physical analogy of cooling crystal
structures that try to reach some stable equilibrium (globally or locally
minimal potential energy); this general principle is applicable to both
discrete and continuous global optimization problems under structural
requirements (Osman and Kelly [54], Glover and Laguna [28]).

4. Tabu search: in this meta-heuristic technique, the main idea is to start
from an initial solution and perform a set of moves that lead to a new
solution inside the neighborhood of the current one forbidding of mov-
ing in points already visited in the search space, i.e., in order to avoid
paths already investigated, one can temporarily accept new inferior
solutions. Primarily applied to combinatorial optimization problems,
Tabu search can also be extended to handle continuous global opti-
mization problems through his discrete approximation (Osman and
Kelly [54], Glover and Laguna [28], Voss et al. [70].

5. Approximate convex global underestimation: based on directed sam-
pling in D, this heuristically strategy aims to estimate convexity char-
acteristics of the objective function f . These approaches are applicable
to smooth problems (Dill et al. [16]).
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1.1. GLOBAL OPTIMIZATION

6. Continuation methods: generally these approaches perform in two
phases; first they transform the objective function into a more smooth
function with easily calculated local minimizers, and then use a local
minimization procedure to trace all minimizers back to the original
function. Once again, this methodology is applicable to smooth prob-
lems (Moré and Wu [48]).

7. Sequential improvement of local optima: in order to find better optima
these methods usually build auxiliary functions to assist the searching
procedure. The general heuristic principle includes tunneling, defla-
tion, and filled function approaches. These strategies are applicable
to smooth global optimization problems (Levy and Gomez [36]).

Based on these different strategies, the different algorithms can be classified
according to the goal they should reach:

• An incomplete method uses efficient heuristics for searching but can
terminate in a local minimum;

• An asymptotically complete method reaches a global minimum with
certainty (at least with probability one) if it runs for a period indef-
initely long, but it is not able to know when a global minimizer has
been found;

• A complete method reaches a global minimum with certainty, assum-
ing an indefinitely long run time, and knows after a finite time that
an approximate global minimizer has been found (given a certain tol-
erance);

• A rigorous method reaches a global minimum with certainty and within
given tolerances even in the presence of errors.

Note that global optimization is “hopeless”: without global information no
algorithm will find a certifiable global optimum unless it generates a dense
sample. A rigorous definition of global information might be provided some
examples of global information such as:

• number of local optima;

• global optimum value;

• for global optimization problems over a box, (an upper bound on) the
Lipschitz constant

|f(y)− f(x)| ≤ L||x− y|| ∀x, y;

• concavity of the objective function and convexity of the feasible region;

• an explicit representation of the objective function as the difference
between two convex functions (and convexity of the feasible set).
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1.2. WHY GLOBAL OPTIMIZATION?

1.2 Why global optimization?

Superficially, global optimization is just a stronger version of local opti-
mization where instead of searching for a locally feasible point, the interest is
focused in identifying the globally best point in the feasible region. In many
practical applications, finding the globally best point is desirable but not es-
sential, indeed, for such problems, an incomplete search can be performed.
However, there are a number of problem classes where it is indispensable to
apply a complete search. This is in particular the case for:

• hard feasibility problems, where local strategies do not yield useful
information since they typically fall in local minimizers of the objective
function, not providing feasible points;

• safety verification problems, where one can have a severe underesti-
mation of the true risk treating non global extrema as worst cases;

• many problems in chemistry, where often only the global minimizer
(of the free energy) matches to the situation correspondent in reality;

• semi-infinite programming, where global minimizers of auxiliary prob-
lems is usually involved by the optimal configurations.

To show the relevance of global optimization for both pure and applied
mathematics, below typical applications are presented:

(i) Many problems in graph theory are global optimization problems. For
example, the maximum clique problem requires to find in a given graph the
maximal number of mutually adjacent vertices. An equivalent formulation,
given by a well-known theorem of Motzkin and Strauss [49], is the indefinite
quadratic program

max xTAx
eTx = 1; x ≥ 0;

where A is the adjacency matrix of the graph and e is the all-one vector.
Since the maximum clique problem is NP-hard, all classes of global opti-
mization problems that contain indefinite quadratic programming hold the
same complexity.

(ii) Packing problems. The problem is to place a number of k-dimensional
objects within a number of larger regions of k-space (both object and region
of known shape) in such a way that there is no overlap and a measure of the
wastage is minimized. Many packing problems rise in industry; but there are
also a number of famous packing problems in geometry, of which the most
famous problem of finding the densest packing of equal balls in Euclidean
d-space. The problem can be formulated as follow

11



1.2. WHY GLOBAL OPTIMIZATION?

max r
||Xi −Xj || ≥ 2 ∀i 6= j

X
(k)
i ≥ r ∀i, k

X
(k)
i ≤ 1− r ∀i, k

This problem is equivalent to the maximal dispersion problem:

max D
||Xi −Xj || ≥ D ∀i 6= j

Xi ∈ [0, 1]d ∀i

where, d = 2⇒ circle packing while d = 3⇒ sphere packing.

Figure 1.1: Disk and sphere packing problem.

(iii) Scheduling problems. The problem is to match tasks (or people) and
slots (time intervals, machines, rooms, airplanes, etc.) such that every slot
handles exactly one task. While linear assignment is a simple scheduling
problem that can be formulated as linear program and is solved very effi-
ciently, the related quadratic assignment problem is one of the hardest global
optimization problems, cf. Anstreicher [3].

(iv) Molecular conformation problem. This problem consist in finding the
minimum conformation of complex molecules. Protein folding [51] is a sam-
ple of this problem and has the objective of finding the equilibrium con-
figuration of the N atoms in a protein molecule (with a given amino acid
sequence), assuming that the forces between the atoms are known. These
forces are given by the gradient of the 3N -dimensional potential energy func-
tion V (y1, ..., yN ), where yi denotes the coordinate vector of the ith atom,

12



1.3. THE STRUCTURE OF GLOBAL OPTIMIZATION ALGORITHMS

while the equilibrium configuration is given by the global minimization of
V . Because of the presence of short-range repulsive forces, numerous local
minima are present.

(v) Chemical equilibrium problems (Floudas [21], McDonald and Floudas
[42]), and application in robotic (Neumaier [52]).

1.3 The structure of Global Optimization Algo-
rithms

In most global optimization algorithms it is possible to identify two dis-
tinct phases: a global phase that it is delegated to exhaustive exploration
of the search space and a local phase called at each iteration of the global
phase to identify a locally optimal point. Note that, the global phase calls
the local procedure as a “black-box”: therefore, for a fast convergence a
reliable and robust local procedure is needed.
Since local optimization of NLPs is an NP-hard problem in itself, so finding
the global optimum of most nonconvex problems is also NP-hard. Although
the local optimization phase is a blackbox function call, a good knowledge of
the local optimization technique used is important to understand the global
phase, so in next section some information to the theory of local optimization
of NLPs will be given.

1.4 Local Optimization of NLPs

For giving an overview of local optimization, first it is important intro-
duce some basic notions of convex analysis, explaining the necessary and
sufficient conditions for local optimality. After that, an iterative approach
to find a local minimum of a given NLP is described.

1.4.1 Notions of convex analysis

Definition 1. A set S ⊆ Rn is convex if for any two points x, y ∈ S the
segment between them is wholly contained in S, that is, ∀λ ∈ [0, 1]λx+(1−
λ)y ∈ S.

A linear equation aTx = b where a ∈ Rn defines a hyperplane in Rn. The
corresponding linear inequality aTx ≤ b defines a closed half-space. Both
hyperplanes and closed half-spaces are convex sets. Since any intersection of
convex sets is a convex set, the subset of Rn defined by the system of closed
half-spaces Ax ≥ b, x ≥ 0 is convex (where A ∈ Rm×n, b ∈ Rm).

13



1.4. LOCAL OPTIMIZATION OF NLPS

Definition 2. A subset S ⊆ Rn defined by a finite number of closed halfs-
paces is called a polyhedron. A bounded, non-empty polyhedron is a poly-
tope.

Having defined convex sets, it is now possible turn our attention to convex
functions.

Definition 3. A function f : X ⊆ Rn → R is convex over a convex set X if
for all x, y ∈ X and for all λ ∈ [0, 1] we have:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

The main theorem in convex analysis, says that a local minimum of a convex
function over a convex set is also a global minimum.

Theorem 1. Let X ⊆ Rn be a convex set and f : X → R be a convex
function. Given a point x∗ ∈ X, suppose that there is a ball B(x∗, ε) ⊂ X
such that for all x ∈ B(x∗, ε) we have f(x∗) ≤ f(x). Then f(x∗) ≤ f(x) for
all x ∈ X.

1.4.2 Necessary and sufficient conditions for local optimality

In this section we present necessary and sufficient conditions for a feasi-
ble point x∗ to be a locally optimal point. Let us consider the optimization
problem as in Eq. (1.1) where the constraint’s relations R are all equalities,
the variables are unbounded (xL = −∞, xU = ∞) and the index set Z is
empty, i.e., consider the following nonlinear (possibly nonconvex program-
ming) problem with continuous variables defined over Rn:

min
x∈Rn

f(x)

g(x) = 0,
(1.6)

where f : Rn → R and g : Rn → Rm are C1 (i.e., continuously differentiable)
functions.
A constrained critical point of problem (1.6) is a point x∗ ∈ Rn such that
g(x∗) = 0 and the directional derivative of f along g is 0 at x∗.

Given a scalar function f : Rn → R we can define the function vector ∇f
as (∇f)(x) =

(
∂f(x)
∂x1

, ..., ∂f(x)∂xn

)T
, where x = (x1, ..., xn)T . If g is a vector-

valued function g(x) = (g1(x), ..., gm(x)), then ∇g is the set of function
vectors {∇g1, ...,∇gm}. From these notions we can show the following result:

Theorem 2 (Lagrange Multiplier Method). If x∗ is a constrained critical
point of problem (1.6), m ≤ n, and ∇g(x∗) is a linearly independent set of
vectors, then ∇f(x∗) is a linear combination of the set of vectors ∇g(x∗).

14



1.4. LOCAL OPTIMIZATION OF NLPS

By Theorem (2) there exist scalars λ1, ..., λm, such that

∇f(x∗) +
m∑
i=1

λi∇gi(x∗) = 0.

The above condition is equivalent to saying that x∗ is a critical point of the
function f if x∗ is a constrained critical point of f s.t. g(x∗) = 0:

L(x, λ) = f(x) +
m∑
i=1

λigi(x). (1.7)

Function (1.7) is called the Lagrangian of f w.r.t. g, and λ1, ..., λm are called
the Lagrange multipliers.

To explain the necessary conditions for local minimality, first it is necessary
consider the well known theorem of alternatives called Farkas’ Lemma. The
following three results are necessary to introduce the Lemma, which will be
defined later.

Theorem 3 (Weierstrass). Let S ⊆ Rn be a non-empty, compact set and
let f : S → R be continuous on S. Then there exist a global minimum point
of f in S.

Proposition 1. Given a non-empty, closed convex set S ⊆ Rn and a point
x∗ /∈ S, there exists a unique point x′ ∈ S with minimum distance from
x∗. Furthermore, x′ is the minimizing point if and only if ∀x ∈ S we have
(x∗ − x′)T (x− x′) ≤ 0.

Proposition 2. Given a non-empty, closed convex set S ⊆ Rn and a point
x∗ /∈ S, there exists a separating hyperplane hTx = d (with h ≥ 0) such that
hTx ≤ d ∀x ∈ S and hTx∗ > d.

Theorem 4 (Farkas’ Lemma). Let A be an m×n matrix and c be a vector
in Rn. Then (exactly) one of the following systems has a solution:

1. Ax ≤ 0 and cTx > 0 for some x ∈ Rn;

2. µTA = cT and µ ≥ 0 for some µ ∈ Rm.

Proof. Suppose system (2) has a solution, then µTAx = cTx. Supposing
Ax ≤ 0, since µ ≥ 0, we have cTx ≤ 0. Conversely, suppose system (2) has
no solution. Let Im+(A) = {z ∈ Rn : zT = µTA,µ ≥ 0} be a convex set
and c /∈ Im+(A). By Prop. (2), there is a separating hyperplane hTx = d
such that hT z ≤ d ∀z ∈ Im+(A) and hT c > d. Since 0 ∈ Im+(A) and d ≥ 0
we have hT c > 0. Furthermore, d ≥ zTh = µTAh ∀µ ≥ 0. Since µ can be
arbitrarily large, µTAh ≤ d⇒ Ah ≤ 0. Taking x = h we have that x solves
system (1).
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1.4. LOCAL OPTIMIZATION OF NLPS

We can now consider the necessary conditions for local minimality. Consider
the following problem:

min
x∈Rn

f(x)

g(x) ≤ 0,
(1.8)

where f : Rn → R and g : Rn → Rm are C1 functions. A constrained
minimum of problem (1.8) is a minimum x∗ of f(x) such that g(x∗) ≤ 0. It
can be shown that if x∗ is a constrained minimum then there is no non-zero
feasible descent direction at x∗.

Definition 4. Let x ∈ S an assigned point. A vector d ∈ Rn, d 6= 0 is a
feasible direction in x if exists t̄ > 0 such that

x+ td ∈ S ∀t ∈ [0, t̄]

Definition 5. Let x ∈ S an assigned point. A vector d ∈ Rn, d 6= 0 is a
descent direction for f in x if exists t̄ > 0 such that

f(x+ td) < f(x) ∀t ∈ (0, t̄]

Under hypothesis of continuity of gradient we have a characterization of
descent directions

Proposition 3. Assuming the gradient is continue on Rn and let x ∈ Rn.
If

∇f(x)Td < 0 (1.9)

then d is a descend direction for f in x.

Remark 1. If ∇f(x)Td > 0 the direction d is a climb direction, while if
∇f(x)Td = 0 none conclusion ca be do. Furthermore, note that the previous
condition is even necessary if f is a convex function, since in this case ∀i ≥ 0
we have

f(x+ td) ≥ f(x) + t∇f(x)Td.

Theorem 5 (Karush-Kuhn-Tucker Conditions). If x∗ is a constrained min-
imum of problem (1.8), I is the maximal subset of {1, ...,m} such that
gi(x

∗) = 0 ∀i ∈ I, and ∇ḡ is a linearly independent set of vectors (where
ḡ = {gi(x∗) : i ∈ I}), then −∇f(x∗) is a conic combination of the vectors
in ∇ḡ, i.e. there exist scalars λi ∀i ∈ I such that the following conditions
hold:

∇f(x∗) +
∑
i∈I

λi∇gi(x∗) = 0 (1.10)

∀i ∈ I (λi ≥ 0). (1.11)

16



1.4. LOCAL OPTIMIZATION OF NLPS

Proof. Since x∗ is a constrained minimum and ∇ḡ is linearly independent,
there is no nonzero feasible descent direction at x∗ such that (∇ḡ(x∗))Td ≤ 0
and −∇f(x∗)d > 0. By a direct application of Farkas’Lemma, there is a
vector λ ∈ R|I| such that ∇(ḡ(x∗))λ = −∇f(x∗) and λ ≥ 0.

The KKT conditions (1.10) and (1.11) can be reformulated with the follow-
ing:

∇f(x∗) +

m∑
i=1

λi∇gi(x∗) = 0 (1.12)

∀i ≤ m (λigi(x
∗) = 0) (1.13)

∀i ≤ m(λi ≥ 0). (1.14)

By defining λi = 0 ∀i /∈ I this riformulation is easily verifiable. Condi-
tions (1.13) express the fact that if a constraint is not active at x∗ then its
corresponding Lagrange multiplier is 0 and they are called complementary
slackness conditionsand they. Furthermore, we can say that a point x∗ sat-
isfying the KKT conditions is a KKT point, or KKT solution.

Consider now the same general NLP (1.8) with the addition of the equality
constraints:

min
x∈Rn

f(x)

g(x) ≤ 0

h(x) = 0,

(1.15)

where f : Rn → R, g : Rn → Rm and h : Rn → Rp are C1 functions. A
constrained minimum of problem (1.15) is a minimum x∗ of f(x) such that
g(x∗) ≤ 0 and h(x) = 0.
By applying theorems (2) and (5), we can define the Lagrangian of problem
(1.15) by the following:

L(x, λ, µ) = f(x) +
m∑
i=1

λigi(x) +

p∑
i=1

µihi(x), (1.16)

and the corresponding KKT conditions as:

∇xL(x, λ, µ) = 0

λigi(x
∗) = 0 ∀i ≤ m
λi ≥ 0 ∀i ≤ m.

(1.17)

In most practice cases for local optimality are frequently used the sufficient
conditions witch say that if a point x∗ is a KKT point and f is convex in a
neighbourhood of x∗, then x∗ is a local minimum.
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1.5. A BRIEF HISTORY OF GLOBAL OPTIMIZATION

1.5 A brief history of global optimization

In this section we present the evolution that global optimization has had
during the history. In particular, because of the goal of this paper, major
focus is given to Branch and Bound (B&B) strategies.
Generic optimization problems have been important throughout history in
engineering applications and so on. The first significant work in optimization
was achieved by Lagrange in 1797. Nevertheless, before the introduction of
electronic computers, global optimality of solutions was guaranteed only for
the local optimization of convex functions, a rather limited class of prob-
lems. Markowitz and Manne [40] in 1957, and Dantzig et al. [13, 14] in
1958 and 1960, used piecewise linear approximations for the approximate
global minimization of separable nonconvex programs, formulating them
as mixed integer linear programs. The methods that, with the advent of
first electronic computers, were first used in global optimization were de-
terministic techniques, mostly based on the divide-and-conquer principle.
Instead of trying to locate a minimum by solving a set of equations by sym-
bolic/algebraic methods, one would try to build a sequence of approximate
solutions which converges to the original solution by dividing the problem
into smaller subproblems. B&B is one typical algorithm which embodies
the divide-and-conquer principle. Several B&B techniques for discrete opti-
mization, applicable to mixed integer linear programs, were introduced by
Land and Doig [35] in 1960. Because of the nature of the algorithm the B&B
algorithm applies very well to cases where variables are discrete in nature
and thus, naturally decomposable. In fact, the first applications of B&B
to global optimization problems were related to discrete problems such as
the Travelling Salesman Problem in 1963 (see Little et al. [38]). Motzkin
and Strauss [49] showed in 1965 that solving the (discrete) maximum clique
problem is equivalent to finding the global minimum (or maximum) of a spe-
cial nonconvex quadratic program. In 1969, Falk and Soland [20] gave the
first piecewise linear relaxations of nonconvex problems, useful for obtain-
ing bounds in a B&B scheme. In 1972, McCormick [41] introduced the now
frequently used linear relaxations for products and quotients, which made
accessible to the B&B technique, the solution of general factorable global
optimization problems. Moore [46], following an unpublished technical re-
port by Moore and Yang [47] in 1959, showed in 1962 in Part 4 of his Ph.D.
thesis that by repeating the subdivision and by making an interval evalua-
tion, the range, and hence in particular the global minimum of a rational
function over a box can be determined in principle with arbitrary accuracy.
Skelboe [63] improved, in 1974, this basic but excessively slow method by
embedding it into a B&B scheme for continuous variables, giving (what is
now called) the Moore-Skelboe algorithm. Moore’s thesis [46] also showed
that interval methods can be used to prove the non-existence of solutions
of nonlinear systems in a box (which nowadays is used to discard boxes in
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1.5. A BRIEF HISTORY OF GLOBAL OPTIMIZATION

a B&B scheme) and to reduce the region where a solution can possibly lie
(which is now used to avoid excessive splitting). Furthermore, Kahan [32]
discovered in 1968 that interval techniques can also be used to prove the
existence of solutions of nonlinear systems in a box (and hence to verify
feasibility), while Piyavskii [56] in 1972 introduced complete global opti-
mization methods based on Lipschitz constants. Becker and Lago [5] first
used clustering methods in 1970, while Torn [68] suggested in his 1974 thesis
to combine these with local optimization, defining the most efficient class of
stochastic global optimization algorithms. Holland [30] introduced in 1973
genetic algorithms, a popular stochastic heuristics for global optimization.
Since the beginning of the 1990s, an explosion of papers, books, algorithms
and resources about deterministic and stochastic global optimization, it has
been witnessed from the research community. It is significant that one of
the first and most widely used book in global optimization [31] does not
even mention nonconvex NLPs. Between 1995 and 1996 Ryoo and Sahinidis
proposed a Branch and Reduce algorithm [59, 60], the first method that was
able to deal directly with the generic nonconvex NLPs. Shortly afterwards,
Floudas’ team published their first article on the α-BB (Branch and Bound)
method [23]. One considerable limitation of the α-BB algorithm is that
it relies on the functions being twice differentiable in the continuous vari-
ables. After that, a number of Branch and Select algorithms oriented toward
the most generic nonconvex MINLP formulation appeared in the literature,
such as Smith and Pantelides’ symbolic reformulation approach [64, 65, 66],
Pistikopoulos’ Reduced Space B&B approach [17] and Grossmann’s Branch
and Contract algorithm [71] (which they only apply to continuous NLPs),
Barton’s Branch and Cut framework [4] and modern Interval Analysis based
on global optimization methods [69, 53, 74] which can be included into the
Branch and Select strategy.
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Chapter 2

Branch and Bound methods

As it has been introduced in the previous chapter, we are interested in the
application of Branch and Bound (B&B) methods. In this chapter we discuss
these approaches for solving a GO problem. Under suitable assumption,
such approaches allow us to detect in a finite time or, at least, to converge
to a globally optimal solution of the problem. Particularly we will consider
problems with the form

P (D) : min f(x)

gi(x) ≤ 0 i = 1, ..,m

x ∈ D
(2.1)

with f : D ⊂ Rn → R and all functions f, gi, i ∈ I = {1....,m} are assumed
to be at least continuously differentiable on a compact, convex set D. Let
S be the feasible region of P (D) denoted by

S = {x ∈ D : gi(x) ≤ 0, i ∈ I},

the Weierstrass theorem (3) guarantees the existance of a global solution if
S 6= ∅, since it is a compact set. Denoting by f∗ the minimum value (with
f∗ = +∞ if S = ∅) the main idea of a B&B scheme is to fix some optimality
and feasibility limits of witch we may be satisfied, i.e, we look for a δ–feasible
and (ε, δ)–optimal solution of wich we give a definition below.

Definition 6. Given a vector δ ∈ Rm+ , a point x ∈ D is a δ-feasible point
for (2.1) if

gi(x) ≤ δi, i = 1, ...m.

The set of δ-feasible solution is denoted by Sδ.

A point x∗ is called a δ-optimal solution if x∗ ∈ Sδ and it such that

f(x∗) ≤ f(x) ∀x ∈ Sδ.

20



2.1. A GENERAL B&B FRAMEWORK

Note that, based on the nature of constraints we can have δi = 0 (for simple
constraints like convex or even linear), or a strictly positive δi (for nonconvex
constraints).

Definition 7. Given a vector δ ∈ Rm+ and a scalar ε ≥ 0, a point x∗ ∈ D is
a (ε, δ)-optimal solution for (2.1) if it is δ-feasible and

f(x∗) ≤ f(x) + ε.

In particular, if x∗ ∈ S, x∗ is called an ε-optimal solution and f∗ < ∞ is
obviously true.

B&B methods are applied in order to solve (2.1) as we describe in terms of
a general framework in the next section.

2.1 A general B&B Framework

The main idea of B&B methods is heavily based upon the construction
of lower and upper bounds. This can be achieved in many ways, for exam-
ple by the α-BB method, using Lipschitz constants or by exploiting duality.
The direct application of interval arithmetic is also possible. See Locatelli
and Schoen [39] for more information about these techniques.

Independently of what bounding procedures are chosen, a general version of
a B&B framework with its main phases can be achieved as follow.
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2.1. A GENERAL B&B FRAMEWORK

1. Initialization

Data: δ ≥ 0, ε ≥ 0
set C0 = {S}, t = 0
Compute a lower bound lb(S)
if x̂ ∈ Sδ is available then

set ubδ = f(x̂)
set z = x̂

else
set ubδ =∞
leave z undetermined

end
if ubδ ≤ lb(S) + ε then

if ubδ <∞ then
return the (ε, δ)-optimal solution z

else
return S = ∅

end
else

Go to Step 2.
end

2. Node Selection

Select a subset Sk ∈ Ct according to some rule.

3. Branching

Subdivide Sk into r ≥ 2 subsets S1k, ...,Srk such that
⋃r
i=1 Sik = Sk and

set Ct+1 = Ct ∪ {S1k, ...,Srk} \ {Sk}.

4. Domain Reduction

Possibly reduce the subsets S1k, ...,Srk through the application of domain
reduction strategies.

5. Lower Bound Computation

Compute a lower bound lb(Sik), i = 1, ..., r, for all the newly generated
subsets.
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2.1. A GENERAL B&B FRAMEWORK

6. Upper Bound Update

let Tδ be a (possibly empty) set of δ-feasible points detected during the
lower bound computations
if miny∈Tδ f(y) < ubδ then

ubδ = miny∈Tδ f(y)
z ∈ argminy∈Tδ f(y)

end

7. Fathoming

Update Ct+1 by discarding all subsets whose lower bound is larger than
ubδ − ε, i.e.,

Ct+1 = Ct+1 \ {Q ∈ Ct+1 : lb(Q) ≥ ubδ − ε} . (2.2)

If available, apply other fathoming rules in order to (possibly) discard
further subsets from Ct+1.

8. Stopping Rule

if Ct+1 = ∅ then
if ubδ <∞ then

return the (ε, δ)-optimal solution z
else

return S = ∅
end

else
Set t = t+ 1 and go back to Step 2

end

Given any B&B algorithm, his evolution can be represented through a so-
called BB tree, whose nodes correspond to each subset generated during his
execution. Particularly, given a father node Sk the branching operation at
Step 3 generates r child nodes S1k, ...,Srk. At any iteration t, the collection
Ct will contain all the leaves of the BB tree not yet fathomed while the root
node represent the feasible region S. In the following sections the steps of the
B&B approach are discussed and the conditions under which the approach
is able to detect (or at least to converge) to globally optimal solution are
analyzed.
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2.2. INITIALIZATION STEP

2.2 Initialization step

This step is a quite standard one. The initial collection C0 (subset of
S) is initialized with the set S. Because of the difficulty of identifying
feasible point even in the case of a nonempty feasible region some care is
needed: therefore, the upper bound value is not the best-observed value of
the objective function at feasible points but rather at δ-feasible points. As
long as no δ-feasible point is observed, the value of ubδ is set equal to ∞.
The detection of a feasible or δ-feasible point x̂ can be performed either
during the computation of the lower bound lb(S) or through any available
heuristic for the problem.

2.3 Node selection

For the selection of node/subset in Ct we can use different kinds of rules.
One rule is

select Sk ∈ argmin
Q∈Ct

lb(Q),

i.e., a node/subset with the minimum lower bound value among all those
not yet fathomed is chosen. Since the nodes with a small lower bound are
more likely to contain good feasible (or δ-feasible) solutions whose detection
allows a quick decrease of the upper bound ubδ and, thus, a quick fathoming
of nodes/subsets, it can result helpful explore these nodes. An alternative of
this rule that might be called a best-first rule, is the depth-first rule where
the investigation of the BB tree allow to select the left-most leaf among
those still in Ct. Obviously, the two mentioned strategies are not the only
possible ones. Indeed, we can observe that the best- and depth-first rules
are someway complementary, and a hybrid rule is usually a good option. In
the first levels of the BB tree a best-first strategy is employed, while in the
lower levels a depth-firs strategy is employed most of time in order to avoid
the explosion of the memory requirements.

2.4 Lower bound update

Given a subset Sk of the feasible region S, we denote by lb(Sk) some
value satisfying

lb(Sk) ≤ min
x∈Sk

f(x). (2.3)

When dealing with the nonconvex problem (2.1), one might directly work
on its original formulation and in this case the set Sk is defined as

Sk = {x ∈ D : gi(x) ≤ 0, i = 1, ...m, hj(x) ≤ 0, j = 1, ..., t},

where the constraints hj(x) ≤ 0, j = 1, ..., t, are (usually) simple constraints
added to the original ones, defining S along the branches which lead from
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the root node S to the current node Sk. After that, the lower bound lb(Sk)
is computed through the solution of a simpler problem where the function
f, gi, i = 1, ...,m, are substituted by convex underestimators f̂Xk , ĝi

Xk , which
are valid over some region Xk ⊇ Sk, that is,

lb(Sk) = min
x∈D

f̂Xk(x)

ĝi
Xk(x) ≤ 0, i = 1, ...,m,

hj(x) ≤ 0 j = 1, ..., t.

(2.4)

Of course, the substitution with the underestimator is not necessary for
those function that are already convex. Since

Ŝk = {x ∈ D : ĝi
Xk(x) ≤ 0, i = 1, ...,m, hj(x) ≤ 0 j = 1, ..., t} ⊇ Sk,

and
f̂Xk ≤ f(x) ∀x ∈ Sk,

the relation (2.3) holds, therefore, the problem (2.4) is a relaxation of the
problem minx∈Sk f(x). In the case that Ŝk = ∅, the lower bound lb(Sk) is
set equal to ∞, so that the node/subset is certainly fathomed.

If one wants to work directly with the original formulation, it is possible to
use an alternative way where first the problem (2.1) must be reformulated
into some equivalent problem, and then the relaxations of the reformulated
problem are considered.

2.5 Upper bound update

The step of updating the upper bound value should take into account the
difficulties related even to the detection of feasible solution for problem (2.1).
In fact, the computation of the lower bound might deliver some feasible, or
at least, δ-feasible points. Given the newly detected δ-feasible points, if at
least one of these has a function value lower than ubδ, then the best function
value observed among the newly δ-feasible points is used to update the value
ubδ and the point z defined into the Step 5 is update accordingly. Noting
that, unless δ = 0, since δ-feasible points outside S might have the value
of the objective function lower than the optimal value f∗, the value ubδ is
not necessary an upper bound for f∗. Furthermore, we can also make the
following remark.

Remark 2. Since points y ∈ Tδ are usually optimal solution of the relax-
ations solved to compute lb(Sik), we have that f(y) ≥ lb(Sik).

In order to possibly update the upper bound we can note that heuristic
method can also be applied at nodes of the BB tree.
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2.6 Fathoming rule

The standard fathoming rule (2.2) allows to discard a node/subset Sk
if lb(Sk) ≥ ubδ − ε because it is guaranteed that no δ-feasible solution with
function value lower than ubδ−ε can be detected. A graphical representation
is showed in Figure

Figure 2.1: Fathoming via upper bound computation.

2.7 Stopping rule

The rule for stopping is the standard one for B&B methods: particularly,
we stop all the nodes/subsets of the BB tree that have been fathomed. If
ubδ = ∞ at stopping, this means that the feasible region of the problem is
empty (a clear conclusion can be do). When instead ubδ <∞, the algorithm
returns a δ-feasible solution z for which we can guarantee that, if S 6= ∅, z
is even a (ε, δ)-optimal solution. This uncertainly in the returned value is
due to the possible difficulty of detecting feasible points for problems with
nonconvex constraints and is equivalent to the difficulty of finding the exact
global minimum value for a nonconvex problem. One can also keep track,
even if this part is not covered by the pseudo code, of the best feasible
solution observed during the execution of the algorithm but,

• there is no guarantee that a feasible solution will be observed even if
S 6= ∅;

• even if a feasible points are observed, the best objective function value
might be far away from the optimal value.

2.8 Branching

The operation of branching allows us to subdivide a given set Sk into a
finite number r ≥ 2 of subsets S1k, ...,Srk. If the original set Sk is defined
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by some constraints, each of the subsets Sik is obtained by adding one or
more constraints to those defining Sk, in such way that each point in Sk
belongs to at least one subset Sik, i.e., ∪ri=1Sik = Sk. Unlike the B&B
approaches for integer programs where it is usually guaranteed that each
point belongs to exactly one subset, in the field of nonconvex problems a
geometric branching are often employed. Into this kind of branching, the
feasible region of the problem is enclosed within a set X0 ⊃ S with a given
simple geometrical shape, and each subset (corresponding to a node of the
BB tree) is enclosed into a set with the same geometrical shape. In other
words, this operation subdivides a set with a fixed geometrical shape into
subsets with the same shape (Figure 2.2 shows an example). Obviously, the
complexity of computing bounds over regions with a certain shape is related
to the shape itself.

Figure 2.2: Example of nonuniform branching procedure by using boxes.

2.9 Domain reduction

Domain reduction techniques are considered facultative because they
are not necessary to guarantee convergence or finiteness results for B&B
algorithm. Nevertheless, these techniques are very important in practice and
they might have a strong impact on the practical performance. In particular,
these techniques are used for cutting the feasible region without cutting the
global optimum solution and for this scope, they add simple inequalities to
the original problem (also called cutting planes), or strengthen existing ones.
The added inequalities or the strengthened ones can be classified into two
categories

• Feasibility based: when they are satisfied by all feasible points. They
are usually employed for problems with nonconvex feasible regions in
order to get improved convex relaxations of such regions.
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• Optimality based: when they are satisfied by at least one optimal
solution. Moreover, some feasible solutions (and, in same case, also
some optimal ones) could not satisfy such inequalities.

An important role in the field of domain reduction is played by range re-
duction techniques, but more general domain reductions strategies con be
considered.
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Chapter 3

Overlapping Branch and
Bound (oBB)

In this chapter we present a B&B Algorithm for the Global Optimization
of Hessian Lipschitz Continuous Functions. The focus is aimed in solving
the following global optimization problem

min
x∈D

f(x) (3.1)

whereD ⊂ Rn is a compact, convex set and f : C → R is a twice-continuously
differentiable nonconvex function defined on a suitable compact set C ⊂ Rn
containing D. By assuming that f has a Lipschitz continuous Hessian on
C, the algorithm is based on applying cubic regularisation techniques to
the objective function within an overlapping branch and bound algorithm
(oBB) (based on Fowkes et al. [25]), and unlike other B&B algorithms, lower
bounds are obtained via nonconvex underestimators of the function.

3.1 Description of the Algorithm

The developed algorithm, described as an extension of the canonical
B&B algorithm, defines a branching phase which includes a systematic cov-
ering and refinement of D by balls B, while the bounding procedure requires
the computation of both lower and upper bounds on the minimum of f over
each B (see Appendix A for the related notation). To construct a lower
bound for the minimum of f over B, global information in the form of a
Lipschitz constant is often used. The most simple case is when the lower
bound is based on a Lipschitz constant of the objective function f , and thus
has the immediate form

f(x) ≥ f(xB)− Lf (B)‖x− xB‖.

for some point xB in a subregion B. A more accurate lower bound based
on the gradient Lipschitz constant can be derived using Taylor’s theorem to
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first order

f(x) ≥ qB(x) := f(B) + (x− xB)T g(xB)− Lg(B)

2
‖x− xB‖22. (3.2)

for some point xB in a subregion B. It is also possible to use the second
order Taylor’s theorem to obtain a cubic lower bound based on the Hessian
Lipschitz constant (see Fowkes et al. [25])

f(x) ≥ cB(x) := f(xB) + (x− xB)T g(xB)

+
1

2
(x− xB)TH(xB)(x− xB)− LH(B)

6
‖x− xB‖32 (3.3)

for some point xB in a subregion B. To find, instead, an upper bound for
the minimum of f over B, we simply evaluate f at some feasible point in B.
The main idea behind the algorithm is to recursively split an initial ball cov-
ering the domain D into subballs until we find a ball (or balls) of sufficiently
small size containing the global minimiser of f(x) over D. Since we are able
to obtain bounds on the minimum of f(x) over any ball in D, we can use
them to discard balls which cannot contain the global minimiser, i.e. balls
whose lower bound is greater than the smallest upper bound. The complete
B&B algorithm is showed below:

Algorithm 1 : Branch and Bound Algorithm for Hessian Lipschitz
Optimization

0. Initialization:
(a) Set k = 0.
(b) Let B0 be a ball with centre xB ∈ D of sufficiently large radius

to cover D.
(c) Let L0 = B0 be the initial list of balls.
(d) Let U0 = f(B0) be the initial upper bound for minx∈B0 f(x).
(e) Let L0 = f(B0) be the initial lower bound for minx∈B0 f(x).

1. While Uk − Lk > ε, repeat the following procedure:
(a) Remove from Lk balls B ∈ Lk such that f(B) > Uk.
(b) Choose B ∈ Lk such that f(B) = Lk.
(c) Split B into 3n overlapping subballs B1, ...,B3n according to the

splitting rule in Section 3.1.2 and discard any subballs which lie
entirely outside of D. Let Rk denote the list of remaining sub-
balls and let Lk+1 := (Lk \ {B}) ∪Rk.

(d) Set Uk+1 := minB∈Lk+1
f(B).

(e) Set Lk+1 := minB∈Lk+1
f(B).

(f) Set k = k + 1.
2. Return Uk as the estimate of the global minimum of f(x) over D.

Fowkes et al. [25] proved that, under suitable assumptions, Algorithm 1
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converges in a finite number of iterations to within a tolerance ε > 0 of the
global minimum of f(x).

3.1.1 Calculating Upper Bound: Discarding Balls and Fea-
sible Points

Given a ball B, upper bound U(B) is computed by evaluating f(x) at
feasible point in B. Furthermore, Algorithm 1 discards balls B which lie
entirely outside of D (see Figure 3.1). Since D is a convex set this is easy to
check, indeed the convex programming problem

min
x∈Rn
‖x− xB‖2

x ∈ D

provides a feasible minimiser if the minimum is smaller than r2B, therefore,
if the minimum of problem is larger than r2B, we know that the ball B lies
entirely outside of D and can be discarded.

Figure 3.1: Procedure to calculate upper bound and discard balls.

3.1.2 Splitting Rule

Given an initial ball B covering the domain D as in Figure 3.2, the split-
ting rule used in Algorithm 1 proceeds as follows. Each ball B of radius rB is
split into 3n overlapping subballs of half-radius rB/2 centred at the vertices
of a hypercubic tessellation of edge-length rB/

√
n around xB. Formally, each

ball B is split into 3n overlapping subballs where each subball Bi of radius
rB/2, is centred at

xBi = xB + ρni

(
−rB√

2
, 0,

rB√
2

)
for i = 1, ..., 3n, where ρni (s1, s2, s3) is a vector in Rn whose elements are the
i-th permutation of s1, s2, s3 taken n at a time with repetition.
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Figure 3.2: Initial covering of domain D with a ball B.

Note that this choice ensures that the subballs entirely cover the original ball
with a constant amount of overlap irrespective of the original ball’s radius;
this means that at any iteration of Algorithm 1 there is always a covering
of closed balls of the convex set D. In Figure 3.3 is showed the splitting
procedure for the case n = 2.

Figure 3.3: An illustration of the splitting rule in two dimensions. The black
circle represents the original ball that covers the domain D. This circle is
split into nine blue circles of half radius centred at the vertices of the square
tessellation.

One can see from Figure 3.3 that there is an intersection between neighbour-
ing balls and thus the minimiser could exist in two of the balls. The rule
proceeds in the same way each time the balls are split into subballs, creating
coverings with exactly the same amount of overlap on many different levels
(see Figure 3.4). In particular, this means that at each level the minimiser
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can only exist in at most two balls.

Figure 3.4: An illustration of the coverings of balls at different levels in two
dimensions. Note how the overlap between neighbouring balls is preserved
across the different levels.

As well as this rule it is possible to use instead a standard rectangular par-
titioning strategy, where a hyper-rectangle is split into a partition with at
most 2n subrectangles. One can then use a strategy where balls are cir-
cumscribed around the hyper-rectangles and apply Algorithm 1 as before.
Nevertheless, while this has the advantage of lowering the number of sub-
regions created at each step of the algorithm (in fact the hyper-rectangle is
split into a partition with at most 2n subrectangles), because of non regu-
larity of the hyper-rectangles this creates a large amount of overlap making
it difficult to discard uninteresting regions.

3.2 Lipschitz lower bounds Improvements

Cartis et al. [10] propose new bounding techniques using refinements
of the bounds (3.2) and (3.3). The new proposals are tested in the oBB
framework which allows efficient global solution of the non-convex lower
bounding subproblems

min
x∈B

lB(x) (3.4)

where lB(x) is either qB(x) in (3.2) or cB(x) in (3.3), over each subdomain
B, by letting B be a Euclidean ball which makes (3.4) tractable. The section
starts by looking at improved estimates for the first order lower bound (3.2)
and then extends some of these ideas to the second order lower bound (3.3).
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3.2.1 First order lower bounds

The approach taken to estimate the gradient Lipschitz constant in Fowkes
et al. [25] is to bound the norm of the Hessian over a suitable domain using
interval arithmetic. Nonetheless, in the literature there are other approaches
which provide suitable estimates for the first order lower bound (3.2). Ev-
tushenko and Posypkin [18, 19] replace the negative Lipschitz constant by
a lower bound on the spectrum of the Hessian, λmin(H(x)), for x in some
interval (see Lemma 1 in Appendix B). They approximate λmin(H(x)) using
Gershgorin’s Theorem, but other approximations have been proposed in the
literature. In particular, we can consider the following possible lower bounds
which all require the following lower and upper bounds on the Hessian.

Definition 8. Let Assumption 2 hold. Let hij(ξ) denote the elements of
the Hessian matrix H(ξ) of f . Furthermore, let H = (hij)1≤i,j≤n, H =

(hij)1≤i,j≤n be such that for all i, j = 1, ..., n

hij ≤ hij(ξ) ≤ hij (3.5)

for all ξ in a convex, compact subdomain B.

Theorem 6 (Floudas, 1999 [22]). Let Assumption 2 hold. Given the el-
ementwise bounds hij , hij and corresponding matrices H,H in (3.5), the

following lower bounds for λBmin(H) in the bound (B.1) hold:

i) Gershgorin’s Theorem (Ger):

λBmin(H) ≥ min
i

hij −∑
j 6=i

max
{
|hij |, |hij |

} (3.6)

ii) E-Matrix Diagonal (Ediag):

λBmin(H) ≥ λmin(HM )− ρ(∆H) (3.7)

where λmin(HM ) denotes the smallest eigenvalue of the midpoint matrix

HM := H+H
2 and ρ(∆H) the spectral radius of the radius matrix ∆H :=

H−H
2 .

iii) E-Matrix Zero (E0):

λBmin(H) ≥ λmin(H̃M )− ρ(∆̃H) (3.8)

where the modified radius matrix ∆̃H is ∆H with zeros on the diagonal
and the modified midpoint matrix H̃M is HM with hii on the diagonal.
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iv) Lower Bounding Hessian (lbH):

λBmin(H) ≥ λmin(L) (3.9)

where the lower bounding Hessian L = (lij) is defined as

lij =

hij +
∑

k 6=i
hik−hik

2 if i = j
hij+hij

2 if i 6= j

v) Hertz’s Method (Hz):

λBmin = min
k
{λmin(Hk)} (3.10)

where the vertex matrices Hk are defined as follows: Let x ∈ Rn, then
there are 2n−1 possible combinations for the signs of the xixj products
(i 6= j). For the k-th such combination, define the vertex matrix Hk =
(hkij) where

hkij =


hii if i = j

hij if xixj ≥ 0, i 6= j

hij if xixj < 0, i 6= j

Proof. See Floudas (1999, Section 12.4) for proofs of the above lower bounds
(3.6)–(3.10).

Returning to the gradient Lipschitz constant we can consider the following
lower bound on the best −Lg(B) in (3.2).

Theorem 7 (Norm of the Hessian (Norm)). Let Assumption 2 hold. Sup-
pose B ⊂ C is a convex, compact subdomain and xB ∈ B. Then, for any
x ∈ B, the first order lower bound (3.2) holds. Furthermore, a lower bound
for the best −Lg(B) in (3.2) is given by

−Lg(B) ≥ −
√∑

ij

max{|hij |, |hij |}2 (3.11)

where the elementwise bounds hij , hij are defined in (3.5).

Proof. Recalling that ‖M‖2 ≤ ‖M‖F for any matrix M where

‖M‖F :=
∑
i

∑
j

Mij ,
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we have from Taylor’s theorem to first order and Cauchy-Schwarz that for
any x, y ∈ B

‖g(x)− g(y)‖2 ≤
∥∥∥∥∫ 1

0
H(y + τ(x− y))(x− y)dτ

∥∥∥∥
2

≤ max
0≤τ≤1

‖H(y + τ(x− y))‖2‖x− y‖2

≤ max
0≤τ≤1

‖H(y + τ(x− y))‖F ‖x− y‖2

= max
0≤τ≤1

∑
ij

[H(y + τ(x− y))]2ij

1/2

‖x− y‖2

≤

∑
ij

max
{
|hij |2, |hij |2

}1/2

‖x− y‖2

=

∑
ij

max
{
|hij |, |hij |

}21/2

‖x− y‖2.

Thus the gradient g is Lipschitz continuous on a compact domain B with l2-

norm Lipschitz constant
√∑

ij max{|hij |, |hij |}2. In particular, this means

that for the best gradient Lipschitz constant Lg(B), we have for all x ∈ B

Lg(B) ≤
√∑

ij

max{|hij |, |hij |}2.

3.2.2 Second order lower bounds

In the previous section we have seen how we can replace the gradient
Lipschitz constant in (3.2) by an estimate of the smallest eigenvalue of the
Hessian. An extension of this approach is also possible for the second order
lower bound (3.3) by replacing the Hessian Lipschitz constant LH with an
estimate of the smallest eigenvalue of the derivative tensor λl

3

min(T (x)); Ap-
pendix C introduces some tensor eigenvalue notation and shows why lower
bounds on the spectrum of the derivative tensor can be used in place of LH
in (3.3).
Some of the approaches seen in Section 3.2.1 to obtain lower bounds on
the smallest eigenvalue in the case of a Hessian matrix can be generalized
to the case of a third order derivative tensor. Even though there are l3-
eigenvalue algorithms that are guaranteed to converge to the smallest eigen-
value, these are only applicable to tensors with non-negative (or equivalently
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non-positive) entries. The tensor generalisations of the matrices required
for the lower bounding strategies presented in (3.7)–(3.10), have, in general,
both positive and negative entries, while the generalisation of Gershgorin’s
Theorem does not require an eigenvalue algorithm and we can therefore
generalise Theorem 6 (3.6) to tensors. Given the following definition we can
give the generalised theorem.

Definition 9. Let Assumption 3 hold. Let tijk(ξ) denote the elements of
the third order derivative tensor T (ξ). Furthermore, let T = (tijk)1≤i,j,k≤n,

T = (tijk)1≤i,j,k≤n be such that for all i, j, k = 1, ..., n

tijk ≤ tijk(ξ) ≤ tijk (3.12)

for all ξ in a convex, compact subdomain B.

Theorem 8 (Gershgorin’s Theorem for the derivative Tensor (Ger T)). Let
Assumption 3 hold. Assuming the elementwise bounds tijk, tijk in (3.12),

λl
3,B
min(T ) in (C.2) can be bounded below by

λl
3,B
min(T ) ≥ min

i

tiii − ∑
k 6=j 6=i

max
{
|tijk|, |tijk|

} . (3.13)

Proof. Let ξ ∈ B be arbitrary. We have from Qi, 2005 [57] that Gershgorin’s
Theorem for tensors applied to the third order derivative tensor T (ξ) gives

λl
3

min(T (ξ)) = min
i

tiii − ∑
k 6=j 6=i

|tijk(ξ)|


≥ min

i

tiii − ∑
k 6=j 6=i

max
{
|tijk|, |tijk|

}
for any ξ ∈ B. As λl

3,B
min(T ) = minξ∈B λ

l3
min(T (ξ)) from (C.3), the result

follows.

Additionally, an extension of the Norm bound (3.11) from Theorem 7 can
be used as a bound on the Hessian Lipschitz constant in (3.3).

Theorem 9 (Norm of the derivative tensor (Norm T)). Let Assumption
3 hold. Suppose B ⊂ C is a convex, compact subdomain and xB ∈ B. Then,
for any x ∈ B, the second order lower bound (3.3) holds. Furthermore, a
lower bound for the best −LH(B) in (3.3) is given by

−LH(B) ≥ −
√∑

ijk

max
{
|tijk|, |tijk|

}2
(3.14)

where the elementwise bounds tijk, tijk are defined as in (3.12).
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Proof. As in the matrix case we have that ‖T‖2 ≤ ‖T‖F for any tensor T
(see Lemma 6.1 in Fowkes et al., 2013 [25], for a proof). We have from
Taylor’s theorem to first order and Cauchy-Schwarz that for any x, y ∈ B

‖H(x)−H(y)‖2 ≤
∥∥∥∥∫ 1

0
T (y + τ(x− y))(x− y)dτ

∥∥∥∥
2

≤ max
0≤τ≤1

‖T (y + τ(x− y))‖F ‖x− y‖2

= max
0≤τ≤1

∑
ijk

max
{
|tijk|, |tijk|

}21/2

‖x− y‖2.

Thus the Hessian H is Lipschitz continuous on a compact domain B with

l2-norm Lipschitz constant
√∑

ijk max
{
|tijk|, |tijk|

}2
. In particular, this

means that for the best Hessian Lipschitz constant LH(B), we have

LH(B) ≤
√∑

ijk

max
{
|tijk|, |tijk|

}2
.

3.3 Parallelization of oBB

Similarly to other B&B algorithms, there is also the curse of dimen-
sionality due to the high number of balls in each oBB covering. At each
iteration, oBB splits a ball into 3n smaller subballs while traditional B&B
splits a box into only two subboxes. However, the two splitting approaches
can be compared if we consider each ball in oBB being split into 3n subballs,
and each box in traditional B&B being split into 2n subboxes.
Due to the curse of dimensionality, many parallel B&B algorithms over
boxes have been proposed in the literature. In particular Gendron and
Crainic, 1994 [27] and Crainic et al., 2006 [11] have classified the main
approaches into two classes. In Type I there is a parallelization of the oper-
ations on subproblems (e.g. bounding) whereas the BB tree is explored in
serial (i.e. by one processor). In Type II parallelism by contrast, the tree
itself is explored in parallel by many processors. Cartis et al. [10] consider
both the types of parallelism of which we give an overview in the following
sections.

3.3.1 Data Parallelism: Bounds in Parallel

The idea behind data parallelism is to share the computation of the
bounds amongst many processor cores through the implementation of a mas-
ter/worker approach. The master processor core runs the entire algorithm
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except for the operations necessary for obtaining bounds on each subdomain,
which are divided amongst itself and the worker processors. Obviously, this
approach is useful only if there are many bounding calculations that can
be performed independently at the same time and if these calculations are
relatively expensive compared to the rest of the algorithm. This parallel
variant (see Algorithm 2 below) follows the same line of thought described
in Section 3.1, thus, it solves (3.4) to obtain a lower bound f(B) on the
objective function f over the subdomain B, that is

f(B) := min
x∈B

lB(x) (3.15)

where lB(x) can be either any of the original lower bounds given in (3.2),
(3.3) or any of the improved ones defined in (B.1), (C.2). The upper bound
f(B) on f over B is simply the objective function f evaluated at a feasible
point xF ∈ B, that is

f(B) := f(xF ). (3.16)

It is important to note that if we run this algorithm on one master processor
core, we recover the serial version of oBB.
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Algorithm 2 : Data Parallel Branch and Bound Algorithm

Master Processor
0. Initialization:

(a) Set k = 0 and tmax to be the maximum runtime.
(b) Let B0 be a ball with centre xB ∈ D of sufficiently large radius

to cover B.
(c) Let L0 = B0 be the initial list of balls.
(d) Let U0 = f(B0) be the initial upper bound for minx∈B0 f(x).
(e) Let L0 = f(B0) be the initial lower bound for minx∈B0 f(x).

1. While Uk − Lk > ε and the runtime < tmax, repeat the following
procedure:
(a) Pruning: Remove from Lk balls B ∈ Lk such that f(B) > Uk.
(b) Branching: Choose B ∈ Lk such that f(B) = Lk.
(c) Splitting: Split B into 3n overlapping subballs B1, ...,B3n

according to the splitting rule in Section 3.1.2 and discard any
subballs which lie entirely outside of D. Let Rk denote the list
of remaining subballs and let Lk+1 := (Lk \ {B}) ∪Rk.

(d) Bounding: Partition Rk into P subsets Rpk for p ∈ {1, ..., P} and
distribute them amongst the P worker processors for bounding.
Wait until all the bounds f(B), f(B) for B ∈ Rk are received
back.

(e) Set Uk+1 := minB∈Lk+1
f(B).

(f) Set Lk+1 := minB∈Lk+1
f(B).

(g) Set k = k + 1.
2. Send termination signal to worker processors.
3. Return Uk as the estimate of the global minimum of f(x) over D.

Worker Processor p
1. Repeat the following procedure until termination signal is received:

(a) Wait for a set of balls Rpk from the master processor.
(b) When the set is received, calculate bounds f(B), f(B) for each

ball B ∈ Rpk and send the bounds back to the master processor.

3.3.2 Task Parallelism: Tree in Parallel

In this kind of parallelism the focus is on exploring the BB tree in par-
allel using several processor cores that generate different sections of the tree
starting from different subregions (see Figure 3.5). Unlike rectangular par-
tition where each subregion forms a distinct partition of the domain and
any subregions split from it are also contained within that partition, using
overlapping balls the parallelisation is more difficult since the balls do not
form natural partitions, thus, several processor cores can end up bound-
ing and splitting the same promising ball, doubling the work. The solution
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proposed by Cartis et al. [10] to this problem is to eliminate the doubling
entirely through efficient communication of centres and radii from the work-
ers to the master. To do this, the master processor keeps a list of all the
balls created so far and any new balls created by the worker processors are
cross-checked against this list to see if they already exist. However, sending
the centre and radius of each ball would be prohibitively expensive. The
cost of communication can be greatly reduced if we instead send an integer
hash (Knuth, 1998 [34], Section 6.4) of each centre and radius. In particu-
lar, we only need to send a hash of one radius and at most 3n balls since
every time a worker processor splits a ball it needs to check whether at
most 3n balls of the same radius exist.1 Another performance improvement
implemented is the use of a priority queue (i.e., an ordered list) to store
the subproblems. In particular, the list of balls is ordered according to the
lower bound f(B), with the smallest lower bound included first in the list.
Since most modern HPC clusters consists of a large number of nodes (i.e.
sets of processors which share the same memory) interconnected by gigabit
ethernet or infiniband switches, it has also implemented a two tier strategy
to balance the load between processor cores, i.e. the number of balls, or
equivalently the number of subproblems, on each processor core. This strat-
egy allows to load balance both within each node where communication via
shared memory will be very efficient and across different nodes where com-
munication via gigabit ethernet or infiniband will be relatively slow. The
complete task parallel B&B algorithm is given below, with the lower and
upper bounds calculated as before in (3.15),(3.16). Details of the hashing
and load balancing are presented later in Sections 3.3.3 and 3.3.4.

Figure 3.5: Graphical Results of the master/slave Task Parallel implemen-
tation of oBB.

1Note that the hashes are not guaranteed to be unique and there is a chance that the
algorithm will occasionally discard a ball that does not already exist. This extremely rare
event can be corrected by running a local solver at the end of the algorithm.
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Algorithm 3 : Task Parallel Branch and Bound Algorithm

Master Processor
0. Initialization:

(a) Set tmax to be the maximum runtime of the algorithm.
(b) Let B be a ball with centre xB ∈ D of sufficiently large radius

to cover D.
(c) Split B into 3n overlapping subballs according to the splitting

rule in Section 3.1.2 and discard any subballs that lie entirely
outside of B. Partition the remaining subballs into P subsets
and distribute them amongst the p worker processors as sets Lp
for p ∈ {1, ..., P}.

(d) Let R = ∅ be the initial ordered list of hashes of radii.
(e) Let C = ∅ be the initial ordered list of sets of hashes of centres

with the same radius.
1. While Lp 6= ∅ ∀p and the runtime < tmax, repeat the following

procedure:
(a) Asynchronously receive Up and the size |Lp| of the set Lp from all

p ∈ {1, ..., P} worker processors.
(b) Asynchronously send U := minp∈{1,...,P} Up to all P worker

processors.
(c) Hashing: Process lists of hashes received from worker processors,

updating R, the list of radius hashes,2and C, the list of ball-
centre hashes, and inform the workers of any duplicate entries
(see Section 3.3.3).

(d) Perform load balancing across nodes (see Section 3.3.4).
(e) Perform load balancing within nodes (see Section 3.3.4).

2. Send termination signal to worker processors.
3. Return U as the estimate of the global minimum of f(x) over D.

Worker Processor p
1. Initialization

(a) Receive workload Lp from master processor.
(b) Calculate bounds f(B) and f(B) as defined in (3.15) and (3.16),

respectively, for each ball B ∈ Lp and convert Lp into a priority
queue w.r.t. f(B).

(c) Set Up := minB∈Lp f(B).
(d) Asynchronously send Up and |Lp| to master processor.
(e) Asynchronously receive U from master processor.

2. Repeat the following procedure until termination signal is received:
(a) Pruning: Remove from the priority queue Lp balls B such that

f(B) > U − ε.
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(b) Branching: Let B be the first element in the priority queue
Lp.3 Split B into 3n overlapping subballs overlapping subballs
according to the splitting rule in Section 3.1.2 and discard any
subballs that lie entirely outside of D. Let R denote the list of
remaining subballs.

(c) Hashing: Generate an integer hash for each ball in R and an
integer hash for the radius. Send the integer hashes to master
processor to see if any of the balls already exist. (Synchronised
hashing only: Start bounding f(x) for each ball in R until the
master processor sends the results of the check back). Receive
an ordered integer list from the master processor that contains
either 1 or 0 depending on whether each ball exists and update
R accordingly.

(d) Bounding: Calculate bounds f(B), f(B) according to (3.15),
(3.16), for each ball B ∈ R if not already bounded.

(e) Remove the split ball B from the priority queue Lp and add the
list of remaining subballs R to Lp.

(f) Set Up := minB∈Lp f(B).
(g) Load Balancing: Asynchronously send the requested number of

subproblems from the current workload to the required proces-
sor(s) as instructed by the master processor and update Lp ac-
cordingly. If more subproblems are requested than in the current
workload, send as many as possible. Send confirmation to the
master processor once the send has completed.

(h) Load Balancing: Asynchronously receive subproblems from other
processors and update Lp accordingly.

(i) Asynchronously send Up and |Lp| to master processor.
(j) Asynchronously receive U from master processor.

3.3.3 Hashing

In this section we will describe the hashing process used in Algorithm
3 in more detail. In particular, the master processor keeps a list R con-
taining hashes of the radius and a corresponding list C of sets of hashes
of centres of balls with that radius: for example if R = {#r1,#r2} and
C = {{#xB1 ,#xB2}, {#xB3}} then balls B1, B2 have radius r1 and B3 has
radius r3. Every time a ball is split into subballs the worker has only to
send one radius hash and the corresponding centre hashes while the master

2Note that R is always a finite set since the radius is halved each time a ball is split,
hence, there can only be a finite number of radii before numerical underflow occurs.

3Note that since Lp is a priority queue w.r.t. f(B), B has the smallest lower bound
f(B) of all balls in Lp.
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processor can quickly determine the radius of the split balls when receives
this information. The hash of the radius is simply computed by multiplying
for a constant and by converting to a 32-bit integer. For hashing the centre
of each ball, it is used a variant of the hash function from Section 4.1 of
Teschner et al., 2003 [67], that is, for x ∈ Rn, given a collection of large
primes p1, ..., pn and a resolution r, the hash is

#x =
⌊x1
r

⌋
p1 ∨

⌊x2
r

⌋
p2 ∨ · · · ∨

⌊xn
r

⌋
pn

where ∨ denotes a bitwise xor (i.e. an exclusive or on the binary digits).
Similarly to radius, the hash is then converted to a 32-bit integer which
ensures that the communication is as efficient as possible.
Due to performance consideration on the order in which the master processor
deals with the incoming hashes there are two different suitable approaches.
In the first approach, the master processes the hashes one at a time as they
are received and the workers simply wait for confirmation of which balls
already exist before bounding them. This approach is suitable in the cases
where the balls are inexpensive to bound relative to the cost of communicat-
ing the hashes. When, instead, bounding the balls is expensive relative to
the communication cost, the workers tend to spend a significant amount of
time waiting for a response from the master. The second approach therefore
tries to solve these problems by getting the master to process the hashes
from all the workers in one go while the workers start bounding the balls in
the background. We can now describe how the step 1c in Algorithm 3 works
considering either the approaches (one-at-a-time and synchronised).

Algorithm 4 : One-at-a-time Hashing

Master Processor: (Step 1c of Algorithm 3)

1. If a worker processor p wants to check if a set of balls of the same
radius already exists, receive a list containing an integer hash
#ci of the centre of each ball Bi and an integer hash #r of the
radius.

2. Check if #r is in R. If it is not, append #r to R, append the
set of #ci’s to C since they cannot already be present in C.
If #r is in R, check if any of the #ci’s are already present in
the corresponding set in C. Add any #ci’s that are not present
to the corresponding set in C.

3. Set E to be an ordered list that contains either 1 or 0 for each i
depending on whether #ci is present in the corresponding set in
C or not and send E to worker processor p.
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Algorithm 5 : Synchronised Hashing

Master Processor: (Step 1c of Algorithm 3)

1. Receive from all worker processors p, a list containing integer
hashes of the radius #rp and centres {#cpi } of each ball Bpi on
processor p wanting to be checked.

2. For each p, check if #rp is in R. If it is not, append #rp to
R, append the set of #cpi ’s to C since they cannot already be
present in C. If #rp is in R, check if any of the #cpi ’s are
already present in the corresponding set in C. Add any #cpi ’s
that are not present to the corresponding set in C.

3. For each p, set Ep to be an ordered list that contains either 1 or
0 for each i depending on whether #cpi is present in the corre-
sponding set in C or not and send Ep to worker processor p.

3.3.4 Load Balancing

In this section we describe the two load balancing approaches, starting
with load balancing across processors within nodes. As we would see this
first approach forms the basis for load balancing across nodes. In both the
approaches it will be used N throughout the section to denote a node.

Load balancing across processors within a node

At each load balancing step the master processor takes a snapshot of
the load on the node and establishes how many subproblems each processor
within that node should have so as to be balanced. It then assigns the
shortfall from the processor with the largest load to the one with the smallest
and updates the snapshot. The procedure is repeated until all processors in
the node have a load that does not differ by more than 10%, that is, for all
processors p1, p2 ∈ N

|Sp1 − Sp2 |
max{min{Sp1 , Sp2}, 1}

> 0.1 (3.17)

where Sp denotes the load (i.e. the number of subproblems) on processor p.
The scheme is given in more detail below.
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Algorithm 6 : Master Processor: (Step 1e of Algorithm 3)

For each node N , repeat the following procedure: Let Sp be a snapshot
of the load |Lp| on each worker processor p in N , i.e. a local copy of

the load that we will work with. Let I =
⌊∑

p∈N S
p/|N |

⌋
be the ideal

load on each processor in N . We would like all processor loads to be as
close as possible to the ideal load I. Set k = 0. While (3.17) holds and
k < |N |, repeat the following procedure:

1. Let Spmin and Spmax be the smallest and largest loads in the node
N on processors pmin and pmax respectively.

2. Calculate I −Spmin as the load we need to add to Spmin so that it
has ideal load.

3. If any previous send has reached its destination, instruct processor
pmax to asynchronously send I − Spmin subproblems to processor
pmin.

4. Update snapshots: subtract I − Spmin from Spmax and add I−
Spmin to Spmin so that the previously smallest load increases to I
and the previously largest load decreases to Spmax + Spmin − I >
Spmin (unless Spmax = I in which case it is already balanced).

5. Set k = k + 1.

Load balancing across nodes

For load balancing across nodes it is applied a similar scheme (see Al-
gorithm 7). In this case a fraction of the shortfall is assigned from the
processor with the largest load and distributes it as evenly as possible to all
processors on the node with the smallest load and the process repeats until
all the nodes have a load that does not differ by more than 10%, that is, for
all nodes j1, j2 = 1, ..., N

|T j1 − T j2 |
max{min{T j1 , T j2}, 1}

> 0.1 (3.18)

where T j denotes the total load on node Nj for j = 1, ..., N .
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Algorithm 7 : Master Processor: (Step 1d of Algorithm 3)

Let Sp be a snapshot of the load |Lp| on each worker processor p = 1, ..., P ,
i.e. a local copy of the load that we will work with. Let Tj =

∑
p∈Nj S

p

denote the total load on each node Nj for j = 1, ..., N . Set k = 0. While
(3.18) holds and k < P , repeat the following procedure:

1. Let I =
⌊∑N

j=1 T
j/N

⌋
be the ideal node load. We would like all

node loads to be as close as possible to the ideal node load I.
2. Let T jmin and T jmax be the smallest and largest node loads, present

on the nodes Njmin and Njmax respectively. Calculate I − T jmin
as the node load we need to add to node Njmin so that it has ideal
node load.

3. Let Spmin and Spmax be the smallest and largest processor loads
on nodes Njmin and Njmax respectively. Ideally, we would like
to take I−T jmin subproblems from processor pmax and distribute
them evenly across all processors in node Njmin . However, this
may deplete processor pmax so we lower the amount we take by
Spmin and do not take more than [Spmax/3], where [·] denotes
rounding to the nearest integer. This gives the actual amount A
to take from pmax as

A =

{
max{I − T jmin − Spmin , 0} if less than [Spmax/3]

[Spmax/3] otherwise.

4. If A > 0 and any previous send has reached its destination, instruct
processor pmax to asynchronously send [A/|Njmin |] subproblems to
each of the processors on node Njmin .

5. Update snapshots: add [A/|Njmin |] to Sp for all processors p in
node Njmin and subtract A from Spmax so that the previously
smallest node load increases by A and the previously largest node
load decreases by A.

6. Recompute the total node load T j =
∑

p∈Nj S
p on each node Nj

for j = 1, ..., N .
7. Set k = k + 1.

3.4 Numerical Results

In this section we are only going to briefly outline the results reached
by the algorithm by considering the different types of lower bound and
the different implementations of parallelization (to find out more about the
numerical performance, see Cartis et al. [10]). The first and second order
estimation approaches have been tested on test sets of
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1. Random polynomials

2. Random radial basis functions (RBFs)

with the aim of checking which estimation approach gives the best oBB per-
formance in terms of runtime.

For what concern random polynomials, the second order lower bounds sig-
nificantly outperform the first order ones (with the tensor Gershgorin ap-
proach clearly superior). For the random RBFs, instead, the first order
lower bounding Hessian estimation approach outperforms the second order
tensor Gershgorin approach, while the tensor norm approach is the best for
random RBFs. This suggests that there is no single first or second order
bound that is clearly superior considering different objective functions, and
also that, there are instances where first order bounds, which are cheaper
to compute, can be competitive with second order ones.
For test the parallel performance of data parallel and task parallel algo-
rithms, it is computed the speedup SP of the parallel algorithm on P pro-
cessor cores over the serial defined as

SP =
T1
TP

(3.19)

where T1 is the runtime of the serial algorithm while TP is the runtime of
the parallel algorithm on P processors.
For random polynomials and RBFs it has been run a parallel Python-based
MPI implementation of both algorithms 2 and 3. With both the algorithms
the average speedup is increased and the task parallel algorithm performs
significantly better than the data parallel one. Furthermore, for both ran-
dom polynomials and RBFs, because of the subproblems are inexpensive to
solve relative to the cost of communicating the hashes, one-at-a-time hash-
ing significantly outperforms synchronised hashing.
For a more thorough numerical evaluation, both the parallel algorithms have
been run on radial basis function approximations to a selection of 31 prob-
lems from the COCONUT benchmark whose dimension varies from 4 to 6
(see Shcherbina et al. [62], for details of the benchmark). In recent years
radial basis function (RBF) interpolation has become a well established ap-
proximation method for real valued functions. The reason of this choice is
that one can cheaply obtain derivatives of the RBF of any order and, in
particular, this allows to easily obtain the Hessian Lipschitz constant (see
Fowkes et al. [25]). One of the main advantages of using RBFs is that the
user merely needs to supply the objective function and a set of points at
which it should be evaluated to construct the RBF approximation. Instead,
the disadvantage is that the optimum found by the algorithm will only be
close to the optimum of the objective function if it is sampled at sufficiently
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many points. Once again, it is used a parallel Python-based MPI implemen-
tation but this time using the synchronous hashing because of the effort for
bounding the subproblems. Moreover it is used the tensor norm approach
as it performs better for RBF approximations. Once again, the task parallel
algorithm reach better speedup, while the data parallel algorithm performs
rather poorly. This is due to the fact that more work takes place in exploring
the BB tree and not in bounding subproblems which is parallelised in the
data parallel algorithm.

Throughout the following, due to the conclusion described above, we will
consider only the case of oBB with the use of tensor norm approach (i.e.,
second order lower bound) and Task Parallelism (with synchronized hash).
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Chapter 4

Domain reduction strategies

Nevertheless the branching and bounding improvements considered in
the previous chapter, the approach taken in exam is not enough efficient
to solve problems with a large size since it requires a considerable effort to
solve the high number of subproblems. Because of the exponential explosion
of the subproblems, further improvements are needed with the objective of
accelerating the algorithm; for this scope a domain reduction strategy is
implemented.

4.1 General description

By regarding that we are going to solve a constrained global optimiza-
tion problems in minimization form with a general (nonconvex) objective
function and a convex, compact set; we might indicate explicitly the lower
and upper bounds on the variables (from the boundedness of the feasible
region), and so consider a problem of the form

min
x∈D∩R

f(x), (4.1)

where D ⊆ Rn is a closed convex set, f : Rn → R and

R = {x ∈ Rn : lj ≤ xj ≤ uj , j ∈ {1, ..., n, }}

is the box containing D defined by the bounds of the variables. Note that if
these bounds are not explicitly given, they can be derived by minimizing and
maximizing each variable over the original feasible region. If we consider
a general B&B approach based on branching and bounding steps and we
restrict our attention to the computation of the lower bound for the original
problem (analogous way for any subregion), first we need an underestimator
of f over the box R, i.e. a function f̂ such that

f̂(x) ≤ f(x), x ∈ R.
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Once we have an underestimator, a lower bound for (4.1) is computed by
solving the following problem

min
x∈D∩R

f̂(x).

If we look at the efficiency of a B&Bd approach, this strongly depends on
the fathoming rule. Because of a node is fathomed if its lower bound is
larger than the current (global) upper bound, then it becomes important
to compute a lower bound which is as high as possible. But how can we
improve it? Improving f̂ over the current box R is usually difficult, and also
impossible if it is already the convex envelope of f over R. Notwithstanding,
because of the dependency of f̂ on the box R (in general), we can try to
improve f̂ by reducing the box R, instead of trying to improve it by keeping
R fixed. This finally leads us to the main topic of this chapter: domain
reduction (DR) strategies.
DR strategies, also called Bounds tightening, as introduced in Section 2.9,
are considered optional in a general B&B framework in the sense that the
algorithm will, in theory, converge even without them. Note that, event
thought these procedures generally speed up the algorithm, depending on
how computationally expensive they are, in some cases convergence might
be faster without their performance. However, the performance of solution
methods for GO problems like B&B methods, can often be strongly enhanced
through (DR) strategies, thus, in the great majority of cases, this step is
essential to achieve fast convergence. Their importance can be demonstrated
by the fact that most of global solvers embed such techniques (e.g., in the
software BARON [61]). In the next section a particular subclass of DR that
plays an important role is described.

4.2 Range Reduction strategies

Range Reduction (RR) strategies aim at reducing as much as possible
the ranges of the variables in such a way that no feasible solution (feasibility-
based RR) or optimal solution (optimality-based RR) is lost; in particular,
they strengthen existing bounds over the variable of the problem for cut-
ting the feasible region. A RR strategy can be defined as follows. Let
R =

∏n
i=1 [li, ui] be a box containing the feasible region D of the nonconvex

problem and An be the set of all n-dimensional boxes. A RR strategy can
be seen as a function

RRf,D : An → An
satisfying the property

RRf,D(R) ⊆ R ∀R ∈ An
A valid feasibility-based RR is such that

∀R ⊇ D : RRf,D(R) ⊇ D,
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i.e., the result of a reduction is a box which also contains D and, therefore,
does not remove feasible points.
For optimality-based strategies, assuming that a finite upper bound U is
available, a valid optimality based RR satisfies

∀R ⊇ {x ∈ D : f(x) ≤ U} , RRf,D(R) ⊇ {x ∈ D : f(x) ≤ U}

i.e., we reduce R without losing optimal solutions but (possibly) losing fea-
sible ones.

Remark 3. When we consider a feasibility-based reduction, if the domain
is convex, by minimizing and maximizing each variable over D is possible
obtain the largest possible reduction for all the variables. For what concerns
optimality-based reduction, instead, it is simple define the largest possible
reduction but not so easy attain it. In particular, let us consider the three
boxes

• R: the box defined by the original ranges of the variables,

• RDR: the box obtained from a optimality-based reduction,

• RLB: the smallest box enclosing all feasible points.

Given any optimality-based reduction, the following relation holds

RLB ⊆ RDR ⊆ R,

therefore, RLB is a lower limit for the reduction. Caprara et al. [9] present
a subclass of GO problems for which a suitably chosen reduction strategy is
able to guarantee RDR = RLB and prove that the same reduction does not
guarantee the same result when we slightly enlarge the considered subclass.

4.3 A customary RR strategy

Given the problem (4.1), for what concern feasibility based RRs, the best
we can do to reduce the domain of xk is to solve the two problems

min /max {xk : x ∈ D ∩R} (4.2)

while for optimality based RRs the tightest reduction is obtained by solving
the pair of problems

min /max {xk : x ∈ D ∩R, f(x) ≤ U} . (4.3)

By considering problems (4.2), these are convex if D is a convex set. For
what concern instead problems (4.3), these can be as difficult as the orginal
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problem (4.1) when f is nonconvex, even if D is convex; therefore, the
identification of a valid optimality-based RR might be an hard task. If we
consider that any lower/upper bound for the minimization/maximization
problem in (4.2) and (4.3), by assuming that D is a convex set, a valid RR
strategy can be found by replacing f with a convex underestimator f̂ over
D. Therefore, problems (4.3) can be rewritten as

min /max
{
xk : x ∈ D ∩R, f̂(x) ≤ U

}
. (4.4)

Throughout the rest of the book we will call Standard Range Reduction
(SRR) the strategies seen in this section.

Remark 4. The importance of a reduction strategy is not merely due to
the reduction of the search space. Within BB algorithms, lower bounds are
computed by an underestimator (e.g. the convex one f̂). If f̂ depends on
the ranges of the variables, then it gets sharper (i.e., closer to the objec-
tive function f) when the ranges of the variables become tighter. Therefore,
each time we improve the ranges of the variables, we also improve the convex
underestimator which has the effect of improving the lower bounds at the
different nodes of a BB tree. Furthermore, one we obtain a better under-
estimator, we can use it for a further RR, thus, an obvious way to improve
the results of SRR is by iterating it.

4.4 Iterated Standard Range Reduction (ISRR)

This reduction is obtained by iteratively applying SRR until no further
range reductions are possible for variable xk or until this procedure produces
significative reduction.

Algorithm 8 : ISRR for variable xk

Step 0 Set l0k = lk, u
0
k = uk and i = 0

Step 1 Solve the two programs

li+1
k , ui+1

k = min /max
{
xk : f̂i(x) ≤ U, x ∈ D ∩Ri

}
,

where

Ri =
{
x ∈ Rn : lik ≤ xk ≤ uik, lj ≤ xj ≤ uj , j ∈ {1...n} \ {k}

}
,

is the current box, f̂i is the underestimator of f with respect to Ri, and
li+1
k , ui+1

k represent respectively the new lower and upper bounds of xk.

Step 2 If li+1
k = lik and ui+1

k = uik then stop. Otherwise, set i = i+ 1 and
repeat Step 1.
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In particular, the procedure can either terminates after a finite number of
steps or produces an infinite sequence of lower bounds and upper bounds
generating a valid reduction for xk through the values

lISRRk = sup
i
lik = lim

i→∞
lik

and
uISRRk = inf

i
uik = lim

i→∞
uik.

4.5 Iterating domain reduction over all the vari-
ables

Any RR strategy can be ideally applied to all the variables. A common
practice is to fix some order P of the variables for reducing their ranges and
iteratively repeat the procedure until the range of at least one variable is
tightened. The procedure is the following

Algorithm 9 : Multiple range reduction (MRR)

Step 0 Let P = {xj1 , ..., xjn} be a given order of the variables. Set
l0j = lj , u

0
j = uj for j ∈ {0...n} and i = 0.

Step 1 For k = 1, ..., n set[
li+1
ik

, ui+1
ik

]
= range reduction(xik ;

[
li+1
ij

, ui+1
ij

]
,

j = 1, ..., k − 1,
[
liij , u

i
ij

]
, j = k, ..., n).

Step 2 If li+1
j = lij and ui+1

j = uij for j ∈ {0, ..., n} then stop. Otherwise,
set i = i+ 1 and repeat Step 1.

Remark 5. If we remove the optimality constraint in Algorithm 8 and 9 we
obtain respectively Feasibility-based ISRR and Feasibility-based MRR; in
this case in both algorithms the Step 1 is performed just one time because
we have not the convex underestimator f̂ and thus the possibility of having
further reductions through his improvement.

For what concern MRR strategy, given the monotony assumption

Assumption 1. The RR procedure is monotone, i.e. given domains
[
l̃j , ũj

]
and [lj , uj ] that satisfy [

l̃j , ũj

]
⊆ [lj , uj ] , j = 1, ..., n,
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we have that, for any variable xk,

RR(xk;
[
l̃j , ũj

]
, j = 1, ..., n) ⊆ RR(xk; [lj , uj ] , j = 1, ..., n).

we have the following result

Proposition 4. Under Assumption 1, the domains computed by MRR sat-
isfy:

lij → lj and u
i
j → ujasi→∞, j = 1, ..., n,

and the limits lj and uj do not depend on the order P of the variables.

Proof. See Caprara and Locatelli [8](section 7) or Locatelli and Schoen [39]
(page 345) for the proof.

4.6 Underestimating a general nonconvex function:
The α-BB approaches

In the previous chapters we introduced several optimality-based RR
strategies which exploit a convex underestimator in order to have a con-
vex problem. How to compute such convex underestimator?
While there exist several strategies for which is required that the objective
function and the constrains have to be of special forms (e.g. quadratic or
polynomial); the α-BB approaches (see Floudas [22]; Floudas, Androulakis,
and Maranas [23]) allow of underestimating a general nonconvex function
and the requirements are loosen. We only assume that the function f
is twice-continuously differentiable, i.e., f(x) ∈ C2. Given a box R =∏n
i=1 [li, ui], a convex underestimate on R can be defined as

f̂(x) = f(x)− q(x;α) = f(x)−
n∑
i=1

αi(xi − li)(ui − xi) (4.5)

where αi ≥ 0, i = 1, ..., n, are parameters such that q(x) ≥ 0 is satisfied over
R. f̂ is convex if and only if ∇2f̂(x) is positive semi-definite where

∇2f̂(x) = ∇2f(x) + 2diag(α), (4.6)

hence, f̂ is convex if large enough values of αi are chosen. How to choose
αi’s?
One possibility is to consider a uniform choice, i.e., α = αi. In this case f̂
is convex iff

α ≥ max

{
0,−1

2
min
x∈[l,u]

λmin(x)

}
(4.7)
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where λmin(x) is the minimum eigenvalue of ∇2f(x). If, instead, we want an
nonuniform choice, suitable values are computed by exploiting Gerschgorin
theorem. In fact, every eigenvalue of a symmetric matrix A belongs to the
interval

[Aii −
∑
i 6=j
|Aij |, Aii +

∑
i 6=j
|Aij |]

Thus, the eigenvalues of ∇2f̂ belong to2αi +∇2
iif(x)−

∑
j 6=i
|∇2

ijf(x)|, 2αi +∇2
iif(x) +

∑
j 6=i
|∇2

ijf(x)|


If lower and upper bounds H ij , H ij for the hessian are known, then it is
enough to choose

αi ≥
1

2
max{0;−H ii +

∑
i 6=j

max{|H ij |, |H ij |}} (4.8)

for any i = 1, ..., n. Other possible choices are based on the scaled Ger-
schgorin theorem: given a positive vector d, f̂ is convex if for each i ∈
{1, ..., n}

αi ≥
1

2
max{0;−H ii +

∑
i 6=j

max{|H ij |, |H ij |
dj
di
}} (4.9)

where possible choices for d are: (i) di = 1 ∀i = 1, ..., n (4.8) or (ii) di = ui−li
which permit to consider the different scaling of the variables.

Remark 6. The minimization problem which appears in equation (4.7) can
be written as

min
x,λ

λ

∇2f(x)− λI = 0

x ∈ [l, u]

where I is the identity matrix. This problem, in general, can be a difficult
nonconvex optimization problem. A lower bound on the smallest eigenvalue
of ∇2f(x) can be used in its place. A valid lower bound can be easily
computed when an interval Hessian matrix is introduced. For this scope
the lower bounds (3.6)-(3.10) can be used. In addition to these, further
method to compute a lower bound for the smallest eigenvalue can be found
in Adjiman et al. [1].
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Note that the αi values computed through interval arithmetic might result
larger than needed lowering the quality of f̂ . Moreover, the maximum sep-
aration between f and f̂ computed as

max(f(x)− f̂(x)) =
1

4

n∑
i=1

αi

(
ui − li

2

)2

,

suggests that the error in underestimating decreases when the box is split
(decreases to 0 if we reduce the box to a single point). For these reasons a
spline-based variant has been proposed in Meyer and Floudas [43]. The basic
idea of this approach, that follows the concepts treated in Remark ??, is that
of partitioning the original box into many different subboxes over which we
can get sharper underestimators. The underestimators over the different
regions are then joined to form a single function in the whole domain that
satisfies the requirements of convexity, continuity and smoothness. Formally,
given a box R, each interval [li, ui] is split into Ni subintervals [aki , a

k+1
i ], k =

0, ..., Ni − 1 where

a0i = li < a1i < ... < aNi−1i = ui.

For what concern q, this is defined as the sum of a number of terms, equal
to the number of variables xi, that depend of where each variable falls, i.e.,

q(x;α) =
n∑
i=1

qkii (xi, α
ki
i ), xi ∈ [aki−1i , akii ]

where
α = (α1, ..., αn), αi = (α1

i , ..., α
Ni
i ), i = 1, ..., n,

and
qkii (xi;α

ki
i ) = αkii (xi − aki−1i )(akii − xi) + βkii xi + γkii

for each ki = 1, ..., Ni. The values αkii ≥ 0 are chosen in such a way that f̂ is

convex over the box
∏n
i=1

[
aki−1i , akii

]
(e.g., by using (4.8) or (4.9)), while the

other parameters are chosen in such a way that q is continuous and smooth.
For the choice of βkii and γiki we need to impose for each i = 1, ..., n that:

• q(x, α) = 0 at the vertices of R;

• continuity at the extremes of each subintervals;

• continuity of the derivatives at the extremes of each subintervals.

Such conditions result in a liner system with 2Ni variables and 2Ni equations
(where the values αkii are supposed to be already computed)

q1i (li;α
1
i ) = qNii (ui;α

Ni
i ) = 0

qkii (akii ;αkii ) = qki+1
i (akii ;αki+1

i ), ki = 1, ..., Ni − 1

d q
ki
i

d xi
(akii ;αkii ) =

d q
ki+1
i
d xi

(akii ;αki+1
i ), ki = 1, ..., Ni − 1
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The system above can be rewritten as



β1i a
0
i + γ1i = 0

βkii a
ki
i + γkii = βki+1

i akii + γki+1
i ki = 1, ..., Ni − 1

βNii a0i + γNii = 0

−αkii (akii − a
ki−1
i ) + βkii = αki+1

i (aki+1
i − akii ) + βki+1

i ki = 1, ..., Ni − 1.

The following example shows the difference between classical and spline-
based α-BB (we don’t illustrate the numerical results for the parameters).
The complete resolution procedure can be found in Meyer and Floudas [43]
or Locatelli and Schoen [39].

Example 1. Let

f(x) = −2x+ 10x2 − 3x3 − 5x4

with R = [0, 1]. In Figure the graph of f(x) and f̂(x) computed with spline
α-BB are shown and compared with the underestimator of the classic α-BB.

Figure 4.1: Classical α-BB underestimator.
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Figure 4.2: Spline α-BB underestimator.

How can we prove that f̂ is a convex underestimator of f?
For this scope, the following two theorem are needed. The first one states
that q is nonnegative over R (i.e., f̂ underestimates f).

Theorem 10. If α ≥ 0, then

q(x;α) ≥ 0∀x ∈ R

The second one affirms that with a suitable chosen of αkii values, f̂ is convex.

Theorem 11. If the αkii values, i = 1, ..., n, ki = 1, ..., Ni, are large enough,

then f̂ is a convex function.

Proof. See Locatelli and Schoen [39] for both proofs of Theorem 10 and
Theorem 11.

Another variant of the classical α-BB method is the generalized α-BB ap-
proach. Here, we will only give a brief summary; for a complete description
see Akrotirianakis and Floudas [2]. In the classical α-BB approach the func-
tion q is quadratic; the new relaxation function proposed

q(x; γ) =

n∑
i=1

(1− eγi(xi−li))(1− eγi(ui−xi))
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gives a tighter underestimate than the quadratic function that is at least
as good as that one obtained with the classical α-BB. The procedure for
choosing the appropriate value of γ is based on the strict relation between
the parameters γ and α; indeed it is possible shows that for some choice of
γ there exists a choice of α such that f(x)− q(x; γ) and f(x)− q(x;α) have
the same maximum separation distance from f .
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Chapter 5

Applying Domain Reduction
in oBB

After giving the main notions about DR strategies, in this chapter we
are going to describe how apply these approaches in oBB. Since we are
solving subproblems over balls, first we give a solution based on the radius.
Because of the complexity of the problems which are required to solve, a
solution based on RR strategies it has been implemented. Further details
about its implementation are presented in the following section.

5.1 First attempt - A Radius-based Reduction Ap-
proach

Within oBB, a global optimization problem is solved by covering the
initial domain with a ball and then, at each iteration, oBB splits a ball
into 3n smaller sub-balls. Because of this, given a certain ball, the most
intuitive way to reduce the domain is to attempt of reducing the radius.
Given a certain node of the BB tree, i.e., given a certain ball B of center xB
and radius rB, before computing the lower bound one can try to reduce the
radius by solving the following problem

max
x∈D
||x− xB||2

f̂(x) ≤ U
lB ≤ x ≤ uB

(5.1)

where lB and uB are the bounds of the box containing the ball and f̂(x) ≤ U
is the optimality constraint that we can remove if we consider a feasibility-
based DR. Even if this is a reasonable approach for reducing the domain
over a ball, we have the issue that the problem (5.1) is a global optimization
problem and it has the same complexity of the original problem. Indeed,
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even though there is the presence of the convex underestimator f̂ , we have
to maximize a convex function (i.e. nonconvex problem); this requires the
use of a global solver which is computationally too expensive.

5.2 RR in oBB

Due to the issue encountered in the radius-based reduction, a MRR
strategy has been taken in consideration. As we described in Chapter 4, for
what concern RR strategies, we haven’t the issue related to the complexity
of the problems that are required to solve. Despite this, further issues of
geometric and structural nature are encountered; a more detailed description
is addressed in the next session. The procedure of RR implemented in oBB
is the following

Algorithm 10 : Multiple range reduction

Step 0 Let P = {x1, ..., xn} be the natural of the variables and
kindRR = {optimality, feasibility}. Set l0Bj = lBj , u

0
Bj = uBj for

j ∈ {0...n} and i = 0.

Step 1 If kindRR is optimality

Compute f̂ = Spline α-BB(f,D ∩RBi)

Step 2 For k = 1, ..., n

If kindRR is optimality, solve the two problems

li+1
Bk , u

i+1
Bk = min /max

{
xk : f̂i(x) ≤ U, x ∈ D ∩RBi

}
,

Else If kindRR is feasibility, solve the two problems

li+1
Bk , u

i+1
Bk = min /max {xk : x ∈ D ∩RBi} ,

where

RBi =
{
x ∈ Rn : liBk ≤ xk ≤ u

i
Bk , lBj ≤ xj ≤ uBj , j ∈ {1...n} \ {k}

}
,

is the current box (which at the beginning contain the ball B),
f̂i is the underestimator of f with respect to RBi , and li+1

Bk , u
i+1
Bk

represent respectively the new lower and upper bounds of xk.

Step 3 If ||li+1
B − liB||2 ≤ tol and ||ui+1

B − uiB||2 ≤ tol and kindRR is
optimality then set i = i+ 1 and repeat Step 1. Otherwise, stop.
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where both feasibility- and optimality-based RR have been implemented.
For what concern the tolerance tol for the stopping rule, since the construc-
tion of f̂ is rather expensive and we are not aware about the number of
iteration performed by the reduction, this has been setted to 0, 1 in such a
way that it is not possible produce an infinite sequence of lower and upper
bounds.

Remark 7. Note that the stop criterion is considered only in the case of
optimality-based RR, as well as the convex underestimator.

5.3 Adapting RR in oBB

Even though RR strategies are easily applicable and the replacement of
f with his convex underestimator allows to have a pair of convex problems,
adapt a box-based RR strategy inside oBB, which unlike exploits and man-
ages balls, results in a set of issues that are needed to be handled. These
problems are both of geometric structure and related to the custom im-
plementation of oBB. First of all, there is the natural imprecision due to
the fact that we start a reduction from the box containing the ball, hence,
we consider a bigger region. Note that in classical oBB we have the same
inconvenient for computing the lower bound since estimates the Lipschitz
constant over the ball requires the bounds of the Hessian which are obtained
through the bounds of the box circumscribed to the ball. In addition, an-
other problem is related to the branching phase. In oBB, except for the first
level, whenever we split nodes at the same level of the BB tree, we obtain
subballs which can be in common between adjacent balls (see Figure 3.3
and 3.4). Considering a general example in Figure 5.1, oBB splits the two
dashed balls B1 and B2 in subballs.

Figure 5.1: Subballs in common between two adjacent balls B1 and B2.
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As we discussed in Section 3.3.2 and 3.3.3, an hash list is exploit for avoiding
that several processor cores can end up bounding and splitting the same ball
(the blue ones in Figure 5.1), doubling the work; in particular, by assuming
that B1 has been split, the adjacent ball B2 can check the hash and avoid
solving identical subproblems. With the introduction of a RR strategy, by
considering a possible reduction of B1 and B2 in Figure 5.2, one can think
to directly split the reduced balls. However, in this case we do not have
anymore balls in common (i.e., we lose the functionality of the hash) and
notwithstanding we obtain smaller subballs, the number of subproblems
rapidly increases leading to a slower convergence of the algorithms.

Figure 5.2: Example of RR strategy performed over the dashed balls.

The solution considered for this problem is to continue dividing the original
ball maintaining a reference to the reduced box and look at the intersection
when we explore the subballs. Nonetheless, when we consider the intersec-
tion, we need to consider another problem which is described in the next
section.

5.4 Problem with the intersections

When we consider a certain subball and we look at the intersection, one
can think to start the reduction of the subball directly from the region of
intersection (see Figure 5.3).
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Figure 5.3: Region blue of intersection between the box R1 obtained by the
reduction of B1 and the box R3 containing the subball B3

This solution, that might seem the most appropriate, is possible at the first
step of splitting (because there aren’t overlapping balls) but, in the other
steps, leads to a loss of regions within the domain that should be instead
considered. Indeed, by assuming, for example, that B3 has been created
starting from B1, if we take care only about the intersection between R1

and R3, we lose the intersection between R2 and R3 (see Figure 5.4).

Figure 5.4: Graphical representation of the intersection problem.

Our solution is to check the intersection between the subball and the reduced
domain of the ball from which the subball has been created and, eventually,
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take the part of subball entirely contained in the original domain D (because
is useless consider the part outside which will never contain the global min-
imum) for his reduction and the following computation of the lower bound.
Formally, given the example in Figure 5.4 and by assuming, without loss
of generality, that we start the splitting from B1, we have the following
situation

• if R3 ∩R1 6= ∅: consider R3 ∩R and apply the RR strategy, where R
is the box of the original problem;

• otherwise: discard the subball (i.e., do not insert in the hash list) in
such a way that B2 can create B3 (from the splitting step) and check
R2 ∩R3. In this case, if R2 ∩R3 6= ∅, consider R3 ∩R and apply the
RR strategy; else, discard the subball.

In this way, even if, we do not fully exploit the power of the reduction, we are
completely sure of not discarding regions that might contain the global op-
timum. A possible improvement to eliminate this inaccuracy would require
that each subball is always created starting from a single ball (i.e., absence
of overlapping balls); this would imply of starting the subdivision from the
reduced domain, leading to the issue of the high number of subproblems
previously described in Section 5.3.

5.5 Comparing oBB with and without RR: a sim-
ple example

In this section we are going to compare the results between classical
oBB and the modified version with the RR strategy embedded inside. In
particular, since we are focused to study the effects produced by RR, results
in terms of lower bound values are considered. For this scope we have
considered the following global optimization problem (sum of sines):

min
x∈Rn

n∑
i=1

sinxi

−1 ≤ xi ≤ 1 ∀i = 1, ..., n
n∑
i=1

−xi ≤ 1

(5.2)

with n = 2. Table 5.1 shows the value of the minimum lower bound pro-
duced at each step of the algorithm with one worker processor by compar-
ing the results produced by classical oBB, oBB with the execution of only
optimality-based RR at each level of the BB tree and oBB with the execution
of only feasibility-based RR at each level of the BB tree.
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Table 5.1: Lower bounds values produced at each step by the
original oBB, oBB with optimality-based RR and oBB with
feasibility-based RR.

Standard Feas-based Opt-based

-5.703901 -13.166259 -13.166259
-5.373720 -5.387231 -1.982494
-5.154266 -4.793479 -1.956202
-4.051223 -4.779087 -1.580084
-3.529755 -4.481481 -1.207985
-3.344375 -2.128153 -1.142538
-3.131878 -2.126185 -1.056478
-1.765673 -2.037619 -1.009295
-1.645759 -1.700354 -0.995364
-1.560090 -1.696013 -1.001399
-1.538259 -1.575959 -0.994645
-1.289582 -1.490197 -0.984564
-1.282386 -1.441866 -0.976171
-1.206977 -1.441866 -0.970613
-1.188957 -1.441866 -0.969826
-1.150753 -1.234429 -0.979499
-1.149942 -1.211917 -0.969734
-1.149753 -1.169771 -0.969110
-1.112929 -1.152521
-1.083164 -1.144208
-1.066012 -1.144208
-1.063118 -1.132707
-1.050250 -1.116680
-1.044158 -1.096609
-1.028152 -1.096609
-1.020112 -1956929
-1.019877 -1.054581
-1.011050 -1.052581
-1.010585 -1.046665
-1.005868 -1.046254
-1.004900 -1.030097
-0.996350 -1.022300
-0.994666 -1.012808
-0.991242 -1.011342
-0.986383 -1.010802
-0.984564 -1.006223
-0.984211 -1.005176

Table 5.1: continue in the next page
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Table 5.1: continue from the previous page

Standard Feas-based Opt-based

-0.983979 -1.004577
-0.983699 -0.997694
-0.981938 -0.996620
-0.981455 -0.994922
-0.980861 -0.990960
-0.978586 -0.986682
-0.977946 -0.984589
-0.977598 -0.984008
-0.973857 -0.983726
-0.973295 -0.981982
-0.971113 -0.981487
-0.970988 -0.981196
-0.970868 -0.981137
-0.970643 -0.981068
-0.970492 -0.979334
-0.970262 -0.978516
-0.969623 -0.977988
-0.969307 -0.977869
-0.968723 -0.977763
-0.968388 -0.977705
-0.968017 -0.973917
-0.967630 -0.973348

-0.972401
-0.971116
-0.970992
-0.970871
-0.970651
-0.970496
-0.970266
-0.969820
-0.969629
-0.969312
-0.968800
-0.968780
-0.968778
-0.968657
-0.968397
-0.968024
-0.967689
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One can see from Table 5.1 as in most cases the value of the lower bound
obtained with the application of the feasibility-based RR is worse, i.e., the
lower bound is lower. Indeed, since the value of global upper bound should
be the same amongst the three version of the algorithm, the Optimality Gap
γ = U − L, in most cases is higher. The same conclusion can be reached
if we consider that the number of steps performed by oBB with feasibility-
based RR is greater, hence, the convergence of this version is slower since it
takes longer time to satisfy the stopping rule. Such unexpected behavior is
due, most likely, to the poor compatibility between boxes and balls; in fact,
as shown in Figure 5.5 very often it happens that the ball around the box
obtained by the reduction is not completely inside the original box causing
an error in the computation of the lower bound.

Figure 5.5: Example of reduction which produces a ball partially outside
the original box. Due to the poor affinity between boxes and balls, every
time is performed a reduction in the direction of an edge, the ball around
the resulting domain might fall outside the original box. This behavior has
the effect of computing a lower bound that can be lower or at most equal to
that one computed by considering a ball completely inside the original ball.

Such issue, that can be difficult to manage, can be partially solved if we
consider a smaller ball. In particular, if the ball around the reduced box is
not completely inside the original box, we consider the inside ball as shown
in Figure 5.6. As just said this solution partially solves the problem but
some inaccuracy remains, indeed:

• even if completely inside the original box, the ball might fall outside
the original ball (possible optimality gap higher);
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• the ball does not completely cover the reduced box near the corners
(possible optimality gap lower).

Particularly, as we will see in Section 5.6, if the latter case happens very
often at the first levels of the BB tree, the algorithm may converge too
early, producing an inaccurate solution; i.e., since the lower bounds are
higher, fewer steps are required to satisfy the stopping rule and arrest the
algorithm.

Figure 5.6: Some examples of possible reductions which produce a ball par-
tially outside of the original box. In this case an inside ball it is considered.

In relation to the results of Table 5.1, Table 5.2 shows the modified results
by considering the proposed solution. Such solution allows to have better
lower bounds (in terms of optimality gap) for both RRs at each step; in
particular optimality-based RR greatly improves the lower bound in the
first few iterations. As a consequence, even feasibility-based RR reaches the
termination in a less number of steps respect to canonical oBB. Furthermore,
through the checking of the intersection, both the RR strategies permit
of discarding more balls than Standard Obb as represented in Figure 5.7.
Notwithstanding, both the form of reduction produce more accurate lower
bounds and decrease the number of subballs, another important factor to
consider when we use the reduction strategies is the computational time.
As RR procedures are of varying complexity, those ones that consume most
of the time are not performed at all nodes but only at the root node or
up to a limited depth. Faster but weaker RR procedures can instead be
performed at all nodes. As already described in the previous chapter, the
optimality-based RR procedure identifies the smallest range of each variables
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Figure 5.7: Graphical Results of oBB (up), oBB with feasibility-based RR
(bottom left) and oBB with optimality-based RR (bottom right).

ensuring that the algorithm will not have to explore regions which do not
contain any feasible point. Unfortunately, as shown in Table 5.2, this is a
computationally expensive procedure and because of the associated cost, we
have decided to apply this type of reduction only at the first two levels of
depth. The feasibility-based RR procedure which is computationally cheaper
than the optimality-based one, is performed instead through the other levels
of the BB tree. Further results obtained by using this version of reduction
are shown and described in the next section. Another possible solution
implemented in COUENNE (see Belotti et al. [6]), is to use optimality-
based RR in all nodes of the BB tree up to a certain depth, specified by
a parameter Labt (that is typically 2 in COUENNE), and with probability
2Labt−λ for nodes at depth λ > Labt.
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Table 5.2: Lower bounds values produced at each step by the
original oBB, oBB with optimality-based RR and oBB with
feasibility-based RR by considering the proposed solution of
taking the inside ball.

Standard Feas-based Opt-based

-5.703901 -5.154266 -5.154266
-5.373720 -2.307532 -1.812918
-5.154266 -2.225189 -1.412717
-4.051223 -1.879738 -1.297691
-3.529755 -1.672939 -1.117798
-3.344375 -1.463470 -1.105788
-3.131878 -1.289582 -1.056478
-1.765673 -1.282386 -1.009295
-1.645759 -1.117678 -0.995364
-1.560090 -1.104916 -0.994645
-1.538259 -1.096220 -0.993536
-1.289582 -1.065587 -0.976609
-1.282386 -1.056659 -0.969734
-1.206977 -1.027580 -0.968399
-1.188957 -1.024063
-1.150753 -1.011896
-1.149942 -1.004231
-1.149753 -0.992040
-1.112929 -0.991674
-1.083164 -0.991242
-1.066012 -0.988165
-1.063118 -0.986655
-1.050250 -0.985979
-1.044158 -0.981807
-1.028152 -0.978586
-1.020112 -0.976954
-1.019877 -0.975705
-1.011050 -0.975067
-1.010585 -0.974460
-1.005868 -0.974215
-1.004900 -0.972383
-0.996350 -0.971975
-0.994666 -0.969325
-0.991242 -0.968871
-0.986383 -0.968467
-0.984564

Table 5.2: continue in the next page
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Table 5.2: continue from the previous page

Standard Feas-based Opt-based

-0.984211
-0.983979
-0.983699
-0.981938
-0.981455
-0.980861
-0.978586
-0.977946
-0.977598
-0.973857
-0.973295
-0.971113
-0.970988
-0.970868
-0.970643
-0.970492
-0.970262
-0.969623
-0.969307
-0.968723
-0.968388
-0.968017
-0.967630

T: 4.958s T: 6.321s T:313.20s

5.6 Numerical Results: COCONUT Test Set

For a more thorough numerical evaluation, the algorithm has been run
on a set of problems from the COCONUT benchmark, considering the im-
plementation of reduction defined at the end of the previous section (i.e.,
optimality-based RR for the first two levels and then feasibility-based RR).
Throughout the rest of the book we will call Hybrid Range Reduction (HRR)
this kind of reduction strategy. The hardware used is part of the HPC Ar-
cus Phase B cluster consisting of Dual Haswell CPU nodes which have 16
cores per node and a minimum of 64Gb of memory. Table 5.3 summarizes
the execution time and the solution f(x∗) obtained by oBB and oBB with
HRR. Looking at the performance of both version, we can see how, in most
cases, the application of HRR significantly decreases the execution times of
the algorithm with an average speedup of around 4.6 times.
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Table 5.3: Execution time and solution obtained running oBB and oBB with
HRR on a RBF approximations to selected problems from the COCONUT
test set. All problems have been run to the absolute tolerance they achieved
in 12 hours on the serial code.
The authors would like to acknowledge the use of the University of
Oxford Advanced Research Computing (ARC) facility in carrying
out this work. http://dx.doi.org/10.5281/zenodo.22558

Obb Obb + HRR

Problem Ubound Time (s) Ubound Time (s)

biggs5 -11515.618661 1459.76 -11418.464208 689.405
biggsc4 -24.596506 896.015 -24.596506 620.255
brownden -67152761.858340 734.884 -67152761.978252 627.494
bt3 3.203325 1258.63 3.203325 1299.56
ex2 1 1 -11.132269 1140.94 -11.130924 354.288
ex2 1 2 -212.877397 1274.66 -209.754114 19.877
ex2 1 4 -10.999721 2176.11 -10.999476 221.792
ex6 2 10 -2.980167 1416.44 -2.973069 685.187
ex6 2 13 -0.233242 1913.04 -0.233242 1440.99
expfita -895.265254 1328.92 -797.105479 194.370
expfitb -116545.892857 1302.06 -88490.406105 941.737
expfitc -875848.280936 1472.44 -889715.667899 399.954
hatflda 0.143638 577.426 0.143638 631.485
hatfldb -0.227838 431.168 0.066854 198.100
hatfldc -218.544212 1016.46 -209.575434 727.375
hatfldh -24.596506 884.501 -24.596506 611.684
hong -6.101767 816.924 -5.688681 554.082
hs038 -68735.300540 812.261 -67922.998061 779.403
hs041 1.927569 242.809 1.927569 146.930
hs045 1.492050 1092.37 1.543665 150.938
hs048 1.014754 1485.45 1.014754 1519.08
hs049 -163.228099 1685.48 -160.821383 121.108
hs051 0.466116 971.230 0.466116 951.465
hs052 12.564294 1395.83 12.564294 1362.17
hs053 0.309577 1241.49 0.309577 1160.78
hs054 -0.377621 1494.17 -0.377621 534.418
hs055 6.340291 447.384 6.340291 444.066
hs086 2.365612 1415.35 2.365612 1825.67
hs268 -5311.648213 1637.23 -4394.230416 991.523
kowosb -24664.590507 960.860 -24664.590507 766.109
lsnnodoc 113.273339 321.960 113.273339 239.332

74

http://dx.doi.org/10.5281/zenodo.22558


5.6. NUMERICAL RESULTS: COCONUT TEST SET

For what concern those few cases for which the computational time is not
improved (e.g., bt3, hatflda or hs086), this is due to the fact that, sometimes,
HRR might slightly reduces or not cut at all the feasible set; in this case we
lose the compromise between the benefits led and the effort of its applica-
tion increasing the computational time. Notwithstanding the improvements
achieved with HRR, in several cases (highlighted in red in Table 5.3), the
solution obtained is not as accurate as the one identified by classical oBB.
This is very disappointing but not unexpected as bounding subproblems can
arise the issues due to imprecision on the computation of lower bounds (see
Figure 5.6 and its relative explanation).

Remark 8. Note that, in most of the example for which the upper bound
is different, the distance of the obtained RBF solution with classical oBB
to the best known solution for the original problem is greater than 1 (See
Table A.5 in Cartis et al. [10] for more details).

For avoiding the problem pointed out in Table 5.3 several ideas have been
taken in consideration. The following two that we are going to describe are
based on the fact that by limiting the issue at the first levels of the BB tree,
where the subregions are larger, a minor error in the computation of the
lower bound should be committed. The first considers a smaller absolute
tolerance for the stopping rule; particularly, let ε be the fixed absolute tol-
erance in classical oBB, we set ε = ε − 20%ε for our variant. In this way,
even if the algorithm computes higher lower bounds, it is less likely that
balls are discarded quickly. Unfortunately, the main disadvantage of this
idea is that, even the balls which do not contain the optimal solution are
explored in depth increasing drastically the execution times. The latter idea
directly exploits the geometrical issue encountered. Indeed, such problem
can be solved if we revert to the original ball, instead of using a ball inside
the reduced box. Table 5.4 shows the results of oBB with the application
of this enhancement up to a fixed level of the BB tree. In particular, it is
possible to note how increasing the number of levels lessens the probability
of computing an inaccurate lower bound and, thus, increases the probability
of reaching a better upper bound; indeed, one can see how the number of
match with original oBB is higher by setting the depth to 3. As expected,
with the increment of the number of levels, also the computational time
increases; in fact, by reverting to the original ball, it is ignored the effect
brought by the reduction. In particular, by taking in exam only the problems
of Table 5.4, oBB+HRR is on average 3.2 times faster than oBB+HRR(3),
while oBB+HRR(2) preserves on average the same speedup of oBB+HRR.
Obviously, such idea can be extended for the entire depth of the BB tree;
this would allow to reach the same results of classical oBB for all the test
set obtaining, however, a marked deterioration of the times.
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In conclusion, we can clearly see from the numerical results of Table 5.3
that a RR approach leads to an efficient parallel algorithm on average which
exhibits good speedup. Due to a difficult adjustment between boxes and
balls, several issues remain, especially the inaccuracy on the computation
of lower bounds that does not allow to always reach the same solution of
classical oBB. This is due to the fact that by taking an inside ball (when
that one circumscribed the reduced box is not completely inside the orginal
box) the regions in proximity of the corners of the reduced box are not con-
sidered for the computation of the lower bound. Nonetheless, it is possible
remove this problem (by reverting to the original ball) obtaining, however,
an increase of the execution time. Overall, we have shown that it is possible
to design an efficient parallel overlapping branch and bound algorithm with
a range reduction strategy even though after overcoming some underlying
difficulties.

Table 5.4: Execution time and solution obtained running oBB and oBB with
HRR on a RBF approximations to selected problems from the COCONUT
test set. The numbers in brackets represent the number of levels of the BB
tree for which it is used the idea of reverting to the original ball. All problems
have been run to the absolute tolerance they achieved in 12 hours on the se-
rial code. The authors would like to acknowledge the use of the Uni-
versity of Oxford Advanced Research Computing (ARC) facility in
carrying out this work. http://dx.doi.org/10.5281/zenodo.22558

Obb Obb + HRR (2) Obb + HRR (3)

Problem Ubound Time (s) Ubound Time (s) Ubound Time (s)

biggs5 -11515.618661 1459.76 -11418.464208 638.476 -11515.618661 2005.19
ex2 1 1 -11.132269 1140.94 -11.132269 347.092 -11.132269 1405.11
ex2 1 2 -212.877397 1274.66 -209.754114 19.128 -209.754114 17.900
ex2 1 4 -10.999721 2176.11 -10.999476 297.188 -10.999476 2066.84
ex6 2 10 -2.980167 1416.44 -2.973069 728.966 -2.980167 1692.50
expfita -895.265254 1328.92 -797.105479 191.534 -798.864509 984.859
expfitb -116545.892857 1302.06 -88490.406105 803.518 -89141.528976 1962.66
hatfldb -0.227838 431.168 0.066854 195.098 0.066854 253.085
hatfldc -218.544212 1016.46 -209.575434 664.425 -218.544212 1214.14
hong -6.101767 816.924 -5.688681 528.919 -5.688681 548.489
hs038 -68735.300540 812.261 -67922.998061 746.850 -68735.300540 977.355
hs045 1.492050 1092.37 1.492050 213.248 1.492050 1198.49
hs049 -163.228099 1685.48 -160.821383 131.547 -163.228108 370.123
hs268 -5311.648213 1637.23 -4394.230416 1006.85 -5311.649095 1834.73
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Conclusions

We have presented improvements of a branch and bound algorithm pre-
sented in Fowkes et al. [25] for the minimisation of a twice differentiable
nonconvex objective function with a Lipschitz continuous Hessian over a
compact, convex set. Cartis et al. [10] have shown that it is possible to
improve the bounding strategies by exploiting a variety of both existing and
novel bounds and the branching procedure through the use of parallelism.
Their results prove that no single bound is optimal, albeit in general the
second order lower bound exhibits the best performance. For what concern
instead the branching phase two standard paradigms, namely data paral-
lelism and task parallelism, have been studied. The first, which parallelize
the bounding operations within the algorithm, performed poorly, while the
latter, which parallelize the branch and bound tree, exhibited excellent av-
erage speedup on a large number of test problems.

Our work, has shown that it is possible to obtain further improvements
on the computational times through the application of a domain reduction
strategy. Such strategy, used for cutting the feasible region without cutting
the global optimum solution, allow to have sharper underestimator which
has the consequence of improving the lower bounds. Because of the non-
convex problem that need to be solved in a reduction based on the radius
of the ball, a boxes-based hybrid range reduction strategy has been imple-
mented. Several issues, related to the poor compatibility between boxes
and balls have been addressed. The most important regards the fact that
wrong lower bounds can be computed if the reduced box is positioned in
such a way that its circumscribed ball gets out the original box. The idea
followed for this scope, is to take a ball inside the reduced box, even though,
it partially solves the problem because by taking an inside ball the regions
close to the corners of the box are not covered and, thus, not considered for
the computation of the lower bound. Such imprecision may lead the algo-
rithm to converge too early, producing an inaccurate solution. A possible
fix could be that one of reverting to the original ball instead of taking an
inside ball, but in this case the improvements on the execution times are
lost. Numerical results have shown an appreciable improvement in terms of
computational time, however, the original method seem to be still superior
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in terms of quality of the solution obtained.

Since the approach is limited to low dimensional problems and problems
where Hessian Lipschitz constant is available or can be approximated, a
critical challenge remains: scaling up the problem dimension in such a way
that problems of higher practical interest can be solved. A good remedy
perhaps lies in considering different criteria for covering domain avoiding
overlapping but still allowing to use nonconvex lower bounds. However,
further improvements can be considered such as use a cheaper way to com-
pute the convex underestimator for the range reduction strategy, consider
different domain reduction strategies or try to make tractable the global
optimization problem within the radius-based reduction.
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Appendix A

Notation

Given a twice continuously differentiable function f : C → R, where C ⊂
Rn is a sufficiently large open set containing the convex, compact domain
D; let g(x) := ∇xf(x) and H(X) := ∇xxf(x) be the gradient and Hessian
of f(x), and ‖·‖ denote the l2-norm. By considering that Ck is the space of
k-continuously differentiable functions; since C is compact and f ∈ C2(C),
there are constants Lf > 0 and Lg > 0 for which

‖g(x)‖ ≤ Lf and ‖H(x)‖ ≤ Lg (A.1)

for all x ∈ C. It follows that Lf and Lg are respectively the l2-norm Lipschitz
constant and the gradient Lipschitz constant for f(x), and thus

|f(x)− f(y)| ≤ Lf‖x− y‖ and ‖g(x)− g(y)‖ ≤ Lg‖x− y‖ (A.2)

for all x, y ∈ C. In addition, since we have assumed that f has a Lipschitz
continuous Hessian, we can define a Hessian Lipschitz constant LH > 0 for
f over C such that

‖H(x)−H(y)‖ ≤ LH‖x− y‖

for all x, y ∈ C , where the ‖·‖ on the left hand side denotes the induced
matrix norm. Note that, within C, these are all global Lipschitz constants.
Furthermore, by denoting by B ⊂ C the n-dimensional closed ball of radius
rB > 0 centred at some xB ∈ B, i.e.

B = {x ∈ Rn : ‖x− xB‖ ≤ rB},

we can define a local Gradient Lg(B) and Hessian Lipschitz constant LH(B)
for f(x) over the ball B whose, unlike the global Lipschitz constants, we
need to be able to calculate a numerical approximation for the proposed
algorithm.
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Appendix B

First order lower bound

Given the following assumption about problem (3.1):

Assumption 2. The objective function f : C → R is twice continuously
differentiable, where C ⊂ Rn is a sufficiently large open set containing the
convex, compact domain D.

the following result shows why lower bounds on λmin(H(x)) can be used in
place of the gradient Lipschitz constant −Lg in (3.2).

Lemma 1 (Evtushenko and Posypkin, 2013 [19]). Let AF 2 hold. Suppose
B ⊂ C is a convex, compact subdomain and xB ∈ B. Then, for any x ∈ B
we have

f(x) ≥ f(xB) + (x− xB)T g(xB) +
λBmin(H)

2
‖x− xB‖22 (B.1)

where
λBmin(H) := min

ξ∈B
λmin(H(ξ)). (B.2)

Proof. For all x, xB ∈ B and some ξ(x) ∈ B the first order Taylor expansion
with the Lagrange form for the remainder gives

f(x) = f(xB) + (x− xB)T g(xB) +
1

2
(x− xB)TH(ξ)(x− xB)

= f(xB) + (x− xB)T g(xB) +
1

2

(x− xB)TH(ξ)(x− xB)

(x− xB)T (x− xB)
(x− xB)T (x− xB)

≥ f(xB) + (x− xB)T g(xB) +
λmin(H(ξ))

2
‖x− xB‖22

≥ f(xB) + (x− xB)T g(xB) +
λBmin(H)

2
‖x− xB‖22

where the last two inequalities follow from the fact that the Rayleigh quo-
tient reaches its minimum at the smallest eigenvalue and from (B.2), respec-
tively.
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Appendix C

Second order lower bound

Let T ∈ Rn×n×n denote a third order tensor (i.e. 3-dimensional array)
and let tijk be the (i, j, k)-th component (i.e. element in the array) of the
tensor T . A tensor T is called symmetric if tσ(i)σ(j)σ(k) = tijk for any per-
mutation σ of the indices (i, j, k). This is the natural generalisation of a
symmetric matrix to tensors. For a vector x ∈ Rn, the multiplication of a
tensor T three times on the right by x is denoted by

Tx3 :=
n∑
i=1

n∑
j=1

n∑
k=1

tijkxixjxk.

Let ‖T‖F denote the Frobenius norm for the tensor T defined as

‖T‖2F =
n∑
i=1

n∑
j=1

n∑
k=1

t2ijk2.

We have from Lim, 2005 [37] that the multilinear Rayleigh quotient for the
l3-norm is given by

Tx3

‖x‖33
,

where ‖·‖3 is the l3-norm for vectors. Furthermore, the l3-eigenvalues (or
H-eigenvalues) of T are defined as the stationary points of the multilinear
Rayleigh quotient, that is, the smallest l3-eigenvalue of T , λl

3

min(T ) is given
by

λl
3

min(T ) = min
x 6=0

Tx3

‖x‖33
. (C.1)

By assuming the following about problem (3.1):

Assumption 3. The objective function f : C → R is thrice continuously
differentiable, where C ⊂ Rn is a sufficiently large open set containing the
convex, compact domain D.
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and by denoting
T (x) := ∇xxxf(x)

as the third order derivative tensor of f(x) (which is symmetric by con-
struction), we can show why lower bounds on the spectrum of the derivative
tensor can be used in place of the Hessian Lipschitz constant LH in (3.3).

Lemma 2. Let AF 3 hold. Suppose B ⊂ C is a convex, compact subdomain
and xB ∈ B. Then, for any x ∈ B we have

f(x) ≥ f(xB) + (x− xB)T g(xB) +
1

2
(x− xB)TH(xB)(x− xB)

+


λl

3,B
min(T )

6 ‖x− xB‖32 if λl
3,B
min(T ) ≤ 0

λl
3,B
min(T )

6 n−1/2‖x− xB‖32 if λl
3,B
min(T ) > 0

(C.2)

where
λl

3,B
min(T ) = min

ξ∈B
λl

3

min(T (ξ)). (C.3)

Proof. The proof requires relations between the l2 and l3 vector norms. It
is a standard result that for any p > r > 0

‖x‖p ≤ ‖x‖p ≤ n(1/r−1/p)‖x‖p
for any x ∈ Rn. This means that

‖x‖3 ≥ n−1/6‖x‖2,
‖x‖3 ≤ ‖x‖p

(C.4)

for any x ∈ Rn.
For x = xB the claim in the theorem is trivial, so w.l.o.g. assume x 6= xB.
Then for all x, xB ∈ B and some ξ(x) ∈ B, the second order Taylor expansion
with the Lagrange form for the remainder gives

f(x) = f(xB) + (x− xB)T g(xB) +
1

2
(x− xB)TH(xB)(x− xB) +

1

6
T (ξ)(x− xB)3

= f(xB) + (x− xB)T g(xB) +
1

2
(x− xB)TH(xB)(x− xB) +

1

6

T (ξ)(x− xB)3

‖x− xB‖33
‖x− xB‖33

≥ f(xB) + (x− xB)T g(xB) +
1

2
(x− xB)TH(xB)(x− xB) +

λl
3

min(T (ξ))

6
‖x− xB‖33

≥ f(xB) + (x− xB)T g(xB) +
1

2
(x− xB)TH(xB)(x− xB) +

λl
3,B
min(T )

6
‖x− xB‖33

≥ f(xB) + (x− xB)T g(xB) +
1

2
(x− xB)TH(xB)(x− xB)

+


λl

3,B
min(T )

6 ‖x− xB‖32 if λl
3,B
min(T ) ≤ 0

λl
3,B
min(T )

6 n−1/2‖x− xB‖32 if λl
3,B
min(T ) > 0

using (C.1), (C.3) and (C.4) respectively.
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