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MOS Chair’s Column

May 1, 2012. When starting to write this column, I must admit

that I feel a little bit like cheating, because a substantial part of this

very issue is occupied by an overview of work in which I have been

personally deeply involved. Fortunately, this coincidence was none

of my doing, and the result of independent conversations between

Katya Scheinberg, our great Optima editor, and my co-authors. I do

hope that you will find the topic interesting . . . and this also gives

me a good excuse to keep the rest of this column short.

The Berlin International Symposium is approaching fast and

promises to be a truly exiting event: a record number of talks (over

1700) have already been submitted! Beyond the real dedication of

the local organizing committee, several preparatory tasks are also

carried out in the various committees of the MOS. The first is the se-

lection of the recipients of the various prizes which will be awarded

at the Berlin opening ceremony (don’t miss it!). The work of the ad

hoc committees is definitely progressing, and I know that some very

worthy conclusions have already been reached. I am looking forward

to the public announcement of all MOS awards.

The second ongoing discussion is about the location of the next

ISMP, beyond our Berlin symposium. Several proposals have been re-

ceived and are currently being examined by the committee in charge.

It is really nice to see that there are various possibilities, and also that

colleagues are interested in organizing this important event.

Finally, I could not close this column without mentioning the MOS

election process. The Executive Committee is finalizing the ballot

which will be sent to all members very soon now, in order to elect

a new Chair-elect (who is going to take over from me in due time),

a new treasurer and a completely new MOS Council, in line with

the Society’s tradition. By the time you read these lines, the ballot

may already be with you. Please vote for the officers you like best

and whom you think would be able to care for the interests and

the organization of MOS most effectively. Thank you very much in

advance.
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Note from the Editors

We are pleased to present the latest Optima issue dedicated to a

hot topic in continuous optimization – global complexity bounds

for nonlinear optimization methods. Our main article is by Cartis,

Gould and Toint and it summarizes a comprehensive and impres-

sive body of work that the three authors have accomplished over

the last few years. Their work focuses on nonconvex problems and

methods.

The discussion column is by Yurii Nesterov, whose countless con-

tributions to the complexity theory of convex optimization need no

introduction in the MOS community (and even outside of it). In fact,

Yurii contributed an article to Optima on complexity of first order

methods a few years ago. His column in this issue addresses the

complexity of obtaining small gradient values in convex optimization

and connects gracefully with the nonconvex case.

We hope that you will find the scientific discussion in this issue as

enlightening as we do.

Katya Scheinberg, Editor

Sam Burer, Co-Editor

Volker Kaibel, Co-Editor

Coralia Cartis, Nicholas I. M. Gould and Philippe L. Toint

How Much Patience Do You Have?

A Worst-Case Perspective on Smooth

Nonconvex Optimization

“Though you be swift as the wind, I will beat you in a race”,

said the tortoise to the hare.

Aesop

1 Introduction

Nonlinear optimization – the minimization or maximization of an ob-

jective function of one or more unknowns which may be restricted

by constraints – is a vital component of computational science, engi-

neering and operations research. Application areas such as structural

design, weather forecasting, molecular configuration, efficient utility

dispatch and optimal portfolio prediction abound. Moreover, nonlin-

ear optimization is an intrinsic part of harder application problems

involving integer variables.

When (approximate) first and second derivatives of the objec-

tive are available, and no constraints are present, the best known

optimization methods are based on the steepest descent [14, 28]

and Newton’s methods [14, 28]. In the presence of nonconvexity

of the objective these techniques may fail to converge from poor,
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or sometimes even good, initial guesses of the solution unless they

are carefully safeguarded. State-of-the-art enhancements such as line-

search [28] and trust-region [13] restrict and/or perturb the local

steepest descent or Newton step so as to decrease the objective

and ensure (sufficient) progress towards the optimum on each algo-

rithm iteration. Even when convergent, the potential nonconvexity

of the objective and the use of derivatives in the calculation of iter-

ative improvement only guarantee local optimality, and most com-

monly, a point at which the gradient of the objective is (approxi-

mately) zero.

Efficient implementations of standard Newton-type methods,

with a linesearch or trust-region safeguard, are available in both com-

mercial and free software packages, and are often suitable for solving

nonlinear problems with thousands or even hundreds of thousands

of unknowns; see GALAHAD, IPOPT, KNITRO, LOQO, PENNON

or SNOPT for examples of state of the art software. Often little is

known about special properties of a problem under consideration

(such as convexity), and so the methods and the software need to

be able to cope with a wide spectrum of instances.

Due to this wide range of applicability of generic software, it is es-

sential to provide rigorous guarantees of convergence of the imple-

mented algorithms for large classes of problems under a wide variety

of possible algorithm parameters. Much research has been devoted

to analysing the local and global convergence properties of stan-

dard methods, but what can be said about the rate at which these

processes take place? This is significant as a fast rate implies that

fewer iterates are generated, saving computational effort and time;

the latter is essential for example when the function- and derivative-

evaluations required to generate the iterates are computationally

expensive to obtain, such as in climate modelling and multi-body

simulations.

If a “sufficiently good” initial estimate of a well-behaved solution

is available, then it is well known (from local convergence results)

that Newton-type processes will be fast; they will converge at least

super-linearly. However, for general problems (even convex ones),

it is impossible or computationally expensive to know a priori the

size of this neighbourhood of fast convergence. Frequently, even a

good guess is unavailable, and the starting point is far away from the

desired solution. Also, optimal points are not always well-behaved,

they may be degenerate or lie at infinity, and in such cases, fast con-

vergence may not occur. Therefore, the question of the global rate

of convergence or global efficiency of standard algorithms for general

nonconvex sufficiently-smooth problems naturally arises as a much

more challenging aspect of algorithm analysis. Until recently, this

question has been entirely open for Newton-type methods. Further-

more, due to the wide class of problems being considered, it is more

reasonable to attempt to find bounds on this rate, or more pre-

cisely upper bounds on the number of iterations the algorithm takes

to reach within desired accuracy of a solution. For all algorithms

under consideration here, the latter is equivalent to upper bound-

ing the number of function- and/or gradient-evaluations required for

approximate optimality, and this count is generally of most interest

to users. Hence, we refer to this bound as the worst-case function-

evaluation complexity of an algorithm. This computational model that

counts or bounds the number of calls to the black-box or oracle

generating the objective and/or gradient values is suitably general

and appropriate for nonlinear programming due to the diversity of

“shapes and sizes” that problems may have. Fundamental contribu-

tions and foundational results in this area are presented for instance

in [20, 21, 29, 32], where the NP-hardness, -completeness or oth-

erwise of various optimization problem classes and optimization-

related questions, such as the calculation of a descent direction, is

established.

We begin by mentioning existing complexity results for steepest-

descent methods and show that the upper bounds on their global

efficiency when applied to sufficiently smooth but potentially non-

convex problems are essentially sharp. We then illustrate that, even

when convergent, Newton’s method can be – surprisingly – as slow as

steepest descent. Furthermore, all commonly encountered linesearch

or trust-region variants turn out to be essentially as inefficient as

steepest descent in the worst-case. There is, however, good news:

cubic regularization [11, 18, 27] is better than both steepest-descent

and Newton’s in the worst-case; it is in fact, optimal from the lat-

ter point of view within a wide class of methods and problems. We

also present bounds on the evaluation complexity of nonconvexly

constrained problems, and argue that, for certain carefully devised

methods, these can be of the same order as in the unconstrained

case, a surprising but reassuring result.

Note that the evaluation complexity of convex optimization prob-

lems is beyond the scope of this survey. This topic has been much

more thoroughly researched, with a flurry of recent activity in de-

vising and analyzing fast first-order/gradient methods for convex and

structured problems; the optimal gradient method [21] has deter-

mined or inspired many of the latter developments. Furthermore,

the polynomial complexity of interior point methods for convex

constrained programming ( [26] and others) has changed the land-

scape of optimization theory and practice for good.

2 Global Efficiency of Standard Methods

2.1 Sharp Bounds for Steepest Descent Methods

Consider the optimization problem

minimize
x∈ℜn

f(x),

where f : ℜn → ℜ is smooth but potentially nonconvex. On each

iteration, steepest descent methods move along the negative gra-

dient direction so as to decrease the objective f(x); they have

the merit of simplicity and theoretical guarantees of convergence

under weak conditions when globalized with linesearches or trust-

regions [13, 14]. Regarding the evaluation complexity of these meth-

ods, suppose that f is globally bounded below by flow and that its

gradient g is globally Lipschitz continuous. When applied to min-

imize f(x), and given a starting point x0 ∈ ℜn and an accuracy

tolerance ǫ > 0, standard steepest descent methods with linesearch

or trust-region safeguards have been shown to take at most
⌈
κsd

ǫ2

⌉
(1)

function and gradient evaluations to generate an iterate xk satisfying

‖g(xk)‖ ≤ ǫ [21, p. 29], [17, Corollary 4.10]. Here κsd is inde-

pendent of ǫ, but depends on the initial distance to the optimum

f(x0)− flow , on the Lipschitz constant of the gradient and possibly,

on other problem and algorithm parameters. Note that the bound

implies at least a sublinear global rate of convergence for the algo-

rithm [21, p. 36]. Despite being the best-known bound for steep-

est descent methods and even considering the well-known ineffi-

cient practical behaviour of gradient-type methods on ill-conditioned

problems, (1) may still seem unnecessarily pessimistic. We illustrate

however that this bound is essentially sharp as a function of the ac-

curacy ǫ.

Example 1 (Steepest Descent Method). Figure 1a exemplifies a uni-

variate, twice continuously differentiable function with globally Lip-

schitz continuous gradient on which the steepest descent method

with inexact linesearch takes precisely
⌈

1

ǫ2−τ

⌉
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Figure 1. (a) A plot of the univariate function and its gradient on which an inexact steepest descent method attains its worst-case complexity (first 16 intervals

determined by the iterates and η = 10−4) [12]. (b) Contour plots and the path determined by the first 16 iterates for the two-variable function on which Newton’s

method attains its worst-case complexity [12].

function evaluations to ensure |g(xk)| ≤ ǫ, for any ǫ > 0 and ar-

bitrarily small τ > 0. The global infimum of the function is zero,

to which the generated iterates converge. This construction (and

others to follow) rely crucially on the property

|g(xk)|
def
= |gk| ≥

(
1

k+ 1

) 1
2

=⇒ |gk| ≥ ǫ only when k ≥
⌈

1

ǫ2

⌉
.

Fixing some (arbitrarily small) η > 0, we thus define the sequences

gk = −

(
1

k+ 1

) 1
2+η

and Hk = 1 for all k ≥ 0, (2)

as well as the ‘iterates’ according to the steepest descent recur-

rence, namely,

x0 = 0 and xk+1 = xk − θkgk,

where 0 < θ ≤ θk ≤ θ; a Goldstein-Armijo linesearch can be em-

ployed to ensure the latter but other choices are possible. We set

the function value fk+1 at the iterate xk+1 to ensure sufficient de-

crease at this point, namely, we match fk+1 to the value of the local

Taylor quadratic model based at xk which we can construct from

the above values, and so we have

f0 = 1
2ζ(1+ 2η) and fk+1 = fk − θk(1−

1
2θk)

(
1

k+ 1

)1+2η

,

where ζ denotes the Riemann zeta function. (Note that η = 0 im-

plies f0 blows up and hence the requirement that η > 0.) Having

specified the iterates and the ‘function values’ at the iterates, we

then construct the function f in between the iterates by Hermite

interpolation on [xk, xk+1] so that

f(xk) = fk, g(xk) = gk and H(xk) = Hk.

The complete construction of the example function is given in [12,

§2]. Extending this example to the case of problems with finite min-

imizers is possible by changing the above construction once an iter-

ate with a sufficiently small gradient has been generated [4]. Equally

poor-performing examples for trust-region variants of steepest de-

scent can be similarly constructed. �

2.2 Newton’s Method May Be as Slow as Steepest Descent

Perhaps the worst-case results for steepest descent methods seem

unsurprising considering these algorithms’ well-known dependence

on problem scaling. Expectations are higher though as far as New-

ton’s method – the ‘fastest’ (second-order) method of optimization

(asymptotically) – is concerned. In its simplest and standard form,

Newton’s method iteratively sets the new iterate xk+1 to be the

minimizer of the quadratic Taylor model of f(x) at xk, provided this

local model is convex. Despite a lack of global convergence guaran-

tees for nonconvex functions, Newton’s method works surprisingly

often in practice, and when it does, it is usually remarkably effective.

To the best of our knowledge, no global worst-case complexity anal-

ysis is available for this classical method when applied to nonconvex

functions.

Pure Newton steps/iterates are allowed by linesearch or trust-

region algorithms so long as they provide sufficient decrease in the

objective, as measured, for example, by Armijo or Cauchy-like de-

crease conditions. Then worst-case bounds for linesearch or trust-

region algorithms apply, and give an upper bound of O(ǫ−2) evalua-

tions for Newton’s method when embedded within linesearch/trust-

region frameworks under similar assumptions to those for steepest

descent [17, Corollary 4.10], [30, 31]. Unfortunately, as we now in-

dicate by example, Newton’s method may require essentially ǫ−2

function evaluations to generate ‖gk‖ ≤ ǫ when applied to a suf-

ficiently smooth function. Thus the upper bounds O(ǫ−2) on the

evaluation complexity of trust region and linesearch variants are also

sharp, and Newton’s method can be as slow as steepest descent in

the worst case.

Example 2 (Newton’s Method). The bi-dimensional objective whose

contours are plotted in Figure 1b is twice continuously differentiable

with globally Lipschitz continuous gradient and Hessian on the path

of the iterates. The constructed function is separable in its two com-

ponents. The first component is defined exactly as in Example 1 with

θk = 1 since the choice Hk = 1 in (2) implies that the steepest de-

scent step coincides with the Newton one. The second component

converges faster and is included to smooth the objective’s Hessian

and ensure its Lipschitz continuity on the path of the iterates; full

details are given in [12, §3.1]. �
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Note that by giving up the Lipschitz continuity requirement on

the gradient and Hessian, one can construct functions on which the

complexity of Newton’s method can be made arbitrarily poor [12,

§3.2].

3 Improved Complexity for Cubic Regularization

Methods

In a somewhat settled state of affairs (at least for problems with-

out constraints), a new Newton-type approach, based on cubic reg-

ularization, was proposed independently by Nesterov and Polyak

(2006) [27], and Weiser, Deuflhard and Erdmann (2007) [35], and

led to the rediscovery of an older (unpublished) fundamental work

by Griewank (1981) [18]. Crucially, [27] showed that such a tech-

nique requires at most O(ǫ−3/2) function-evaluations to drive the

gradient below ǫ, the first result ever to show that a second-order

scheme is better than steepest-descent in the worst-case, when ap-

plied to general (nonconvex) functions, a remarkable milestone!

These cubic techniques can be described by a well-known over-

estimation property. Assume that our objective f(x) is twice con-

tinuously differentiable with globally Lipschitz continuous Hessian H

of Lipschitz constant 2LH . Then the latter property, a second-order

Taylor expansion and the Cauchy-Schwarz inequality imply that at

any given xk,

f(xk + s) ≤ f(xk)+ g(xk)
T s +

1

2
sTH(xk)s +

LH
3
‖s‖3

def
= mk,L(xk + s), for any s ∈ ℜn, (3)

where ‖ · ‖ is the usual Euclidean norm [27, Lemma 1], [11, (1.1)].

Thus if we consider xk to be the current best guess of a (local)

minimizer of f(x), then the right-hand side of (3) provides a local

cubic model mk,L(xk + s), s ∈ ℜn, such that f(xk) = mk,L(xk).

Further, if xk+sk is the global minimizer of the (possibly nonconvex

but bounded below) model mk,L, then due to (3), f can be shown

to decrease by a significant amount at the new point xk + sk from

its value at xk [27, Lemmas 4, 5]. Although theoretically ideal, using

mk,L is impractical and unrealistic as L is unknown in general, may

be expensive to compute exactly and may not even exist for a gen-

eral smooth function. Thus, in the algorithmic framework Adaptive

Regularization with Cubics (ARC) [11, Algorithm 2.1], we propose

to employ instead the local cubic model

mk(xk+s)
def
= f(xk)+g(xk)

T s+
1

2
sTBks+

σk
3
‖s‖3, s ∈ ℜn, (4)

where Bk is an approximation to the Hessian of f at xk; the latter

is also a practical feature, essential when the Hessian is unavailable

or expensive to compute. Even more importantly, σk > 0 is a regu-

larization parameter that ARC adjusts automatically and is no longer

conditioned on the computation or even existence of a (global)

Hessian Lipschitz constant. In particular, σk is increased by say, a

constant multiple factor until approximate function decrease [11,

(2.4)] – rather than the more stringent overestimation property –

is achieved; on such iterations, the current iterate is left unchanged

as no progress has been made. When sufficient objective decrease

has been obtained (relative to the model decrease), we update the

iterate by xk+1 = xk + sk and may even allow σk to decrease in or-

der to prevent the algorithm from taking unnecessarily short steps.

Global convergence of ARC can be shown under very mild assump-

tions on f and approximate model minimization conditions on the

step sk [11, Corollary 2.6]. Adaptive σk updates and cubic models

have also been proposed in [18, 27, 35] but these proposals still rely

on ensuring overestimation at each step and on the existence of

global Hessian Lipschitz constants, while the ARC approach shows

that local constant estimation is sufficient.

Exact Model Minimization. Essential to ARC’s and any cubic regu-

larization method’s fast local and global rates of convergence is that

minimizing mk(s) over s ∈ ℜn, despite being a nonconvex problem

(as Figure 2a illustrates), can be solved efficiently – in polynomial

time – to find the global minimizer s∗, a rare instance in the non-

convex optimization literature! In particular, any global minimizer s∗
of (4) satisfies the system

(Bk + λ∗I)s∗ = −g(xk),

where Bk + λ∗I is positive semidefinite and λ∗ = σk‖s∗‖. (5)

See [18], [27, §5.1], [11, Theorem 3.1] for a proof. The first and

last set of equations in (5) express that the gradient of the model

mk(xk+ s) is zero at s∗, which are first-order necessary optimality

conditions that hold at any local or global minimizer of the model.

The global optimality of s∗ is captured in the eigenvalue condition

λk ≥ max{−λ1,0}, where λ1 is the left-most eigenvalue of Bk, and

which is more stringent than local second-order optimality condi-

tions for the model.

The characterization (5) can be used to compute s∗ as follows

[11, §6.1]. Express s∗ = s(λ) as a function of λ from the first

set of equations in (5) and then replace it in the third condition

‖s(λ)‖ = λ/σk which is now a univariate nonlinear equation in λ.

We can apply Newton’s method for finding the root of the latter

equation in the interval (max{−λ1,0},∞), as represented in Fig-

ure 2b. Applying Newton’s method in this context requires repeated

factorizations of diagonally perturbed Bk matrices, and so this ap-

proach is only suitable when Bk is sparse or not too large.

Approximate Model Minimization. In the large-scale case, we have

proposed [11, §3.2, §6.2] to set sk to be only an approximate global

minimizer of mk(xk + s) that can be computed using Krylov-type

methods, thus requiring only matrix-vector products. In particular,

for each k, successive trial steps sk,j are computed as global min-

imizers of the cubic model mk(xk + s) over increasing subspaces

s ∈ Lj
1 until the inner model minimization termination condition

‖∇smk(xk + sk,j)‖ ≤ κθ min
{

1,‖sk,j‖
}
‖g(xk)‖ (6)

is satisfied for some κθ ∈ (0,1). We then set sk = sk,j where j is

the final inner iteration. Since ∇smk(xk) = g(xk), this termination

criterion is a relative error condition, which is clearly satisfied at any

stationary point of the model mk. Generally, one hopes that the in-

ner minimization will be terminated before this inevitable outcome.

To be specific, one may employ a Lanczos-based approach that gen-

erates the Krylov subspace
{
g(xk), Bkg(xk), B

2
kg(xk) . . .

}
. Then

the Hessian of the reduced cubic model in the subspace is tridiago-

nal, and hence inexpensive to factorize when solving the characteri-

zation (5) in the subspace.

We have shown that ARC with approximate model minimization

inherits the fast local convergence [11, §4.2] and complexity of cu-

bic regularization with exact model minimization2 [27]. We recall

the bound on the worst-case performance of ARC.

Theorem 1. [10, Corollary 5.3] Assume that f is bounded below

by flow , and that its gradient g and Hessian H are globally Lipschitz

continuous on the path of the iterates3. Assume that ARC with exact or

approximate model minimization is applied to minimizing f starting from

some x0 ∈ ℜn , with σk ≥ σmin > 0 and the approximate Hessian Bk
satisfying ‖ [Bk −H(xk)] sk‖ = O(‖sk‖

2).4 Then ARC takes at most

⌈
κarc

ǫ
3
2

⌉
(7)
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Figure 2. (a) A nonconvex local cubic model. (b) Finding the global minimizer of the cubic model using the secular equation ‖s(λ)‖ = λ/σk.

function and gradient evaluations to generate an iterate xk satisfying

‖g(xk)‖ ≤ ǫ, where κarc depends on f(x0) − flow , the Lipschitz con-

stants of g and H and other algorithm parameters.

Sketch of proof. The key ingredients that give the good ARC com-

plexity are that each ARC iteration k that makes progress, also en-

sures:

◦ sufficient function decrease: f(xk)−f(xk+1) ≥ ησmin‖sk‖
3, for an

algorithm parameter η ∈ (0,1);

◦ long steps: ‖sk‖ ≥ C‖g(xk+1)‖
1
2 , for some constant C that de-

pends on the Lipschitz constants of g and H and some algorithm

parameters.

Putting these two properties together, and recalling that until termi-

nation, we have ‖g(xk)‖ > ǫ for k ≤ j, we deduce

f(x0)− flow ≥

j∑

k=0

[f(xk)− f(xk+1)]

≥ ησminC

j∑

k=0

‖g(xk+1)‖
3/2

≥ (ησminC) ·
j

M + 1
· ǫ3/2,

where we also used the fact that the number of ‘unsuccessful’ itera-

tions is at most a problem-constant multiple M of the ones on which

we make progress. Finally, we obtain

j ≤ (f(x0)− flow) ·
M + 1

ησminC
·

1

ǫ3/2
.

�

The ARC bound (7) is again tight [12, §5] as we discuss next and

illustrate in Figure 3.

Example 3 (Cubic Regularization Methods). The univariate function in

Figure 3 has globally Lipschitz continuous gradient and Hessian, with

global infimum at zero and unique zero of the gradient at infinity. We

apply ARC with exact model minimization to this function starting

at x0 = 0, with σk = 2LH where LH is the Lipschitz constant of the

Hessian. Then the overestimation property (3) holds and so the al-

gorithm makes progress in each iteration. Nevertheless, it still takes

precisely ⌈
1

ǫ
3
2−τ

⌉

function evaluations to ensure |g(xk)| ≤ ǫ, for any ǫ > 0 and ar-

bitrarily small τ > 0. The construction of the function relies again

on requiring a suitable lower bound on the size of the gradient and

using Hermite interpolation on the intervals determined by the it-

erates, just as in Example 1. In particular, for some arbitrarily small

η > 0, we set

gk = −

(
1

k+ 1

) 2
3+η

and Bk = Hk = 0

for the values of the gradient and (approximate and true) Hes-

sian at the iterates, which from (5), are defined recursively by

xk+1 = xk − gk/(Hk + σk). �

Derivative-free variants of ARC based on finite differences have

been proposed and analyzed in [7]. It is shown that the order of the

bound (7) in ǫ for such variants remains unchanged, but the total

evaluation complexity increases by a multiple of n2, where n is the

problem dimension.

The order of the complexity bound (7) as a function of the ac-

curacy ǫ can be further improved if f has special structure such as

convexity or gradient-domination; such improved bounds are given

in [1, 5, 25, 27].

Since ARC/cubic regularization is a second-order method (when

Bk approximates H(xk)), it is possible to estimate not only the com-

plexity of approximate first-order, but also of second-order, critical-

ity; namely, that of generating xk with

g(xk) ≤ ǫ and λ1(H(xk)) ≥ −ǫ.

Note that ARC must use exact model minimization asymptotically

to be able to estimate the latter eigenvalue condition; else only ap-

proximate optimality of the Hessian’s eigenvalues in the subspace of

minimization can be guaranteed. Since we are requiring more, ARC’s

complexity bound for achieving second-order optimality worsens

to O(ǫ−3) evaluations [10, 27], the same as for trust-region meth-

ods [8]. This bound is also sharp for both ARC and trust-region [8].

As the gradient and Hessian may vary at different rates, it is more

appropriate to use different tolerances for approximate first- and

second-optimality [8].

4 Order Optimality of Regularization Methods

The (tight) upper bounds on the evaluation complexity of second-

order methods – such as Newton’s method and trust-region, line-

search and cubic-regularization variants – naturally raise the ques-

tion as to whether other second-order methods might have better

worst-case complexity than cubic regularization over certain classes

of sufficiently smooth functions. To attempt to answer this question,

we define a general, parametrized class of methods that includes
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Figure 3. A plot of the univariate function and its derivatives on which ARC attains its worst-case complexity (first 16 intervals determined by the iterates) [12].

Newton’s method, and that attempts to capture the essential fea-

tures of globalized Newton variants. The methods of interest take a

potentially-perturbed Newton step at each iteration so long as the

perturbation is “not too large” and “sufficient decrease” is obtained.

The size of the perturbation allowed is simultaneously related to

the parameter α defining the class of methods and the rate of the

asymptotic convergence of the method. Formally, we define [4]:

Class of Methods M.α. A method M ∈ M.α applied to minimizing

f(x) generates iterates by xk+1 = xk + (θk)sk whenever progress

can be made, where sk satisfies

◦ [H(xk)+ λkI] sk = −g(xk), where H(xk) + λkI is positive

semidefinite and λk ≥ 0;

◦ ‖sk‖ ≤ κs and λk ≤ κλ‖sk‖
α, for some α ∈ [0,1]. �

The property commonly associated with Newton-type methods is

fast local rates of convergence. Surprisingly, there is a connection

between the methods in M.α and such fast rates. In particular, any

method M∈ M.α applied to sufficiently smooth objectives satisfies

‖sk‖ ≥ C‖g(xk+1)‖
1

1+α for some C > 0,

which can be shown to be a necessary condition for the method

M to converge at least linearly with ‖g(xk+1)‖ ≤ c‖g(xk)‖
1+α [4,

Lemma 2.3]. For α = 1, the above lower bound on the step coin-

cides with the ‘long step’ property of ARC (see the sketch of the

proof of Theorem 1) and is necessary for quadratic convergence as

well as crucial for the good global complexity of the method.

Examples of methods in M.α when applied to sufficiently smooth

functions are:

◦ Newton’s method corresponds to λk = 0 and belongs to each

class M.α for α ∈ [0,1].

◦ (2 + α)−regularization method sets λk = σk‖sk‖
α and belongs

to M.α. In particular, for α = 1, we recover cubic regularization;

note for example, the connection between the first condition in

M.α and the optimality conditions (5) for the cubic model.

◦ Linesearch methods, with any inexact linesearch that ensures

θ ≤ θk ≤ θ belong (at least) to M.0.

◦ Trust-region methods when the multiplier λk of the trust-region

radius is bounded above and the trust-region subproblem is solved

exactly [13, Corollary 7.2.2], belong to M.0. Note that a growing

multiplier would only make the step sk shorter, worsening the

global complexity of the method.

◦ Variants of Goldfeld-Quandt-Trotter’s method [16] that explicitly

update the multiplier λk (as a linear combination of the left-most

eigenvalue of the Hessian and some power of the norm of the

gradient) belong to M.α.

We give a lower bound on the potential inefficiency of each method

in M.α.

Theorem 2. [4, Theorem 3.3] For each method M ∈ M.α, there

exists a univariate function fM that is bounded below with Lipschitz con-

tinuous gradient g and α−Hölder continuous Hessian such that M takes

(at least)

ǫ−
2+α
1+α+τ ∈ [ǫ−

3
2+τ , ǫ−2+τ]

function-evaluations to generate |gk| ≤ ǫ, for any ǫ > 0 and arbitrarily

small τ > 0.

Furthermore, the (2+α)-regularization method is optimal for the class

M.α when applied to sufficiently smooth functions as its complexity upper

bound coincides in order to the above lower bound.

The proof of this theorem follows similar ideas based on Hermite

interpolation as in Examples 1 and 3, with the additional difficulty

that now we must also choose the ‘worst’ possible exponent t in

the value of the gradient gk = −(1/(k+ 1))t .

Extending Theorem 2 to functions with bounded level sets is pos-

sible [4, p.18].

Note that there is a difference between our lower bound above

and that for the optimal gradient in [21]; namely, our results focus

on how inefficient each method can be, which may be different from

finding a worst-case problem on which every method in the class

behaves badly.

4.1 On the Dimension Dependence of Evaluation Complexity Bounds

There remains the question as to the problem dimension depen-

dence of the evaluation complexity bounds that we have presented.

Clearly, this dependence is not captured by our examples of ineffi-

ciency as the constructed functions have been one or two dimen-

sional. Upper complexity bounds such as (1) or (7) depend on Lip-

schitz constants of the gradient and/or Hessian which in turn may

vary even exponentially with the problem dimension [2]. There is

also the intriguing example of Jarre [19] which shows that on an

n−dimensional smooth modification of Rosenbrock’s function, orig-

inally proposed by Nesterov, any descent (first- or second-order)

method takes an exponential number of iterations/evaluations to

reach a neighbourhood of the unique minimizer (and stationary

point) of the problem.5 It remains to be seen whether this expo-

nential behaviour provably persists when we are simply aiming to

find an approximate stationary point.

5 Evaluation Complexity of Constrained Optimization

For the smooth constrained case, we ask a similar question: what is

the evaluation complexity of generating an approximate first-order

– here, KKT – point?6 We begin by taking a detour.
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5.1 Detour I: Minimizing a Nonsmooth Composite Function

Consider the unconstrained problem

minimize
x∈ℜn

h
(
r(x)

)
, (8)

where r : ℜn → ℜp is smooth but potentially nonconvex and

h : ℜp → ℜ is convex but potentially nonsmooth; we may think

of h as a norm. First-order methods have been devised for this

problem [9, 23, 24] that satisfy the same evaluation complexity

bound O(ǫ−2) as in the unconstrained smooth case, despite the

non-smoothness of h.

The quadratic regularization approach in [9] computes the trial step

sk from the current iterate xk by solving the convex problem that

linearizes the smooth parts of the composite objective but leaves

the non-smooth parts unchanged, namely,

minimize
s∈ℜn

h(r(xk)+A(xk)s)︸ ︷︷ ︸
l(xk, s)

+
σk
2
‖s‖2,

where A(x) denotes the Jacobian of r(x) and σk > 0 is a regular-

ization weight.7 There is an underlying assumption that h is simple

enough to make the above subproblem inexpensive to solve, as in

the case of polyhedral norms. The parameter σk is adjusted in a

similar way as for ARC to ensure sufficient objective decrease.

Assuming that h and A are globally Lipschitz continuous and the

composite function is bounded below, the quadratic regularization

framework can be shown to take at most

⌈
κqr

ǫ2

⌉
(9)

residual evaluations to achieve

Ψ(xk) = l(xk,0)− min
‖s‖≤1

l(xk, s) ≤ ǫ, (10)

where Ψ(xk) is a first-order criticality measure [9, Theorem 2.7].

5.2 A First-Order Algorithm for Equality and Inequality Constrained

Problems

Now consider the smooth nonconvex equality constrained problem

minimize
x∈ℜn

f(x) subject to c(x) = 0. (11)

As illustrated in Figure 4a, the Short-Step Steepest-Descent (ShS-

SD) algorithm relies on two phases, one for feasibility and a sec-

ond for optimality [3]. In Phase 1, ShS-SD attempts to generate a

feasible iterate (if possible), by minimizing ‖c(x)‖. This nonsmooth

objective is of the form (8) with h = ‖ · ‖ and

r(x)
def
= c(x), (12)

and can thus be solved by the quadratic regularization approach for

(8). If an iterate satisfying ‖c(x1)‖ ≤ ǫ is found at the end of Phase

1, then Phase 2 is entered, where we iteratively and approximately

track the trajectory

T = {x ∈ ℜn : c(x) = 0 and f(x) = t}

for decreasing values of t from some initial t1 corresponding to the

initial feasible iterate x1. Namely, for the current target tk, we do

one quadratic regularization iteration from the current iterate xk
aimed at minimizing the merit function

Φ(x, tk)
def
= ‖c(x)‖ + |f(x) − tk|,

which again is of the form (8) with r(x)
def
= r(x, tk) and

r(x, t)
def
=

(
c(x)

f(x) − tk

)
. (13)

If Φ(xk+1, tk) has not decreased sufficiently compared to Φ(xk, tk),
we keep tk unchanged and repeat; otherwise, we update tk to

tk+1 so as to ensure Φ(xk+1, tk+1) = ǫ. The latter implies that

‖c(xk+1)‖ ≤ ǫ and so we remain approximately feasible at the new

iterate. Phase 2 terminates when (10) corresponding to Φ(xk, tk)
holds.

The particular updating rule for tk+1 [3, (2.11)] also provides that

the decrease in tk is at least as much as that in the objective Φ(·, tk),
namely,

tk − tk+1 ≥ Φ(xk, tk)− Φ(xk+1, tk) ≥ κ · ǫ
2 (14)

for some problem constant κ. The second inequality in (14) follows

from the guaranteed function decrease on successful quadratic reg-

ularization iterations prior to termination [9, (2.38)]. Figure 4b illus-

trates the ℓ1−neighbourhoods Φ(x, t) ≤ ǫ in the two-dimensional

plane (||c||, f ) and the inequalities (14) with (xk, tk) = (x, t) and

(xk+1, tk+1) = (x+, t+). The main complexity result follows.

Theorem 3. [3, Theorem 3.6] Assume that c ∈ C1(ℜn) with glob-

ally Lipschitz continuous Jacobian J , and f is bounded below by flow and

above by fup and has Lipschitz continuous gradient g in a small neigh-

bourhood of the feasibility manifold. Then, for some problem constant κsh,

the ShS-SD algorithm takes at most

⌈(
‖c(x0)‖ + fup − flow

) κsh

ǫ2

⌉

problem evaluations8 to find an iterate xk that is either an infeasible crit-

ical point of the feasibility measure ‖c(x)‖ – namely, ‖c(xk)‖ > ǫ and

‖J(xk)
Tz‖ ≤ ǫ for some z – or an approximate KKT point of (11),

namely, ‖c(xk)‖ ≤ ǫ and ‖g(xk)+ J(xk)
Ty‖ ≤ ǫ for some multiplier

y .

Sketch of proof. Clearly, the total evaluation complexity is the

sum of the complexity of each Phase. Phase 1’s complexity follows

directly from (9) and (12). In Phase 2, the target tk remains un-

changed for only a problem-constant number of ‘unsuccessful’ steps,

and then it is decreased by at least ǫ2 due to (14). The targets tk
are bounded below due to f(xk) being bounded and close to the

targets, and so Phase 2 must terminate at the latest when tk has

reached its lower bound.

Crucially, (10) corresponding to Φ(xk, tk) implies that ‖g(xk) +

J(xk)
Ty‖ ≤ ǫ for some y [9, Theorem 3.1]; letting g = 0 gives the

criticality condition for ‖c‖, with the remark that if ‖z‖ < 1, we are

guaranteed to have ‖c(xk)‖ ≤ ǫ [9, (3.11)]. �

Note that no constraint qualification is required to guarantee ter-

mination and complexity of ShS-SD.

This approach also applies to inequality-constrained problems, by

replacing ‖c(x)‖ with ‖min{c(x),0}‖ throughout.

6 Improved Complexity for Constrained Problems

It is natural to ask, as before, if there is an algorithm for constrained

problems that has better worst-case complexity than O(ǫ−2). For

this, cubic regularization-based methods are the obvious candidates

since their complexity in the unconstrained case is the best we

know. The question thus becomes, can we extend cubic regulariza-

tion methods for constrained problems while retaining their good

complexity? We attempt to answer this question for the remainder

of this survey. Again, we begin by taking a detour.
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Figure 4. (a) Illustration of the ShS-SD/ShS-ARC Phase 1 and 2. (b) A successful iteration of ShS-SD’s Phase 2. (c) A successful iteration of ShS-ARC’s Phase 2 in the case

where ǫp = ǫ and ǫd = ǫ
2/3.

6.1 Detour II: Solving Least-Squares Problems

Instead of the nonsmooth variant (8), we now consider the smooth

formulation

minimize
x∈ℜn

1
2‖r(x)‖

2. (15)

Clearly, we can apply ARC to (15). However, using the size of the

gradient A(x)T r(x) as termination condition for ARC (or other

methods) suffers from the disadvantage that an approximate zero of

r(x) is guaranteed only when the Jacobian A(x) is uniformly full-

rank, with a known lower bound on its smallest singular value – this

is a strong assumption. We have proposed [1] to use instead a mea-

sure that distinguishes between the zero and nonzero residual case

automatically/implicitly, and that takes into account both the norm

of the residual and its gradient, namely, to terminate when

‖r(xk)‖ ≤ ǫp or ‖gr (xk)‖ ≤ ǫd, (16)

where ǫp > 0, ǫd > 0 and

gr (x)
def
=





A(x)T r(x)

‖r(x)‖
, whenever r(x) ≠ 0;

0, otherwise.

Under Lipschitz continuity assumptions on the gradient and Hessian

of (15) on the path of the iterates, ARC with exact or approximate

model minimization applied to (15) can be shown to take at most
⌈
κarc,r

ǫ
3
2

⌉

function evaluations to ensure (16), where ǫ
def
= min{ǫp, ǫd} and

κarc,r is a problem-dependent constant [1, Corollary 3.3]. Thus, us-

ing ARC with (16), we can achieve more for (15) in the same-order

number of evaluations – an important result in itself.

6.2 A Cubic Regularization Algorithm for Equality Constrained

Problems

Returning to problem (11), we construct a similar two-phase target-

following algorithm to ShS-SD – namely, ShS-ARC – that uses the

same residual functions (12) and (13) in Phase 1 and 2, respec-

tively, but embedded in the smooth least-squares formulation (15)

so that ARC with (16) can be applied. If we enter Phase 2, we keep

‖r(xk, tk)‖ = ǫp for each k and hence preserve approximate feasi-

bility of the iterates, ‖c(xk)‖ ≤ ǫp , by carefully updating the target

tk. The latter also ensures

tk − tk+1 ≥
1
2‖r(xk, tk)‖ −

1
2‖r(xk+1, tk)‖ ≥ κrǫ

3/2
d ǫ1/2

p ,

where the second inequality follows from the ARC decrease for

(15) and where κr is a problem dependent constant. Figure 4c il-

lustrates this target decrease property. Phase 2 terminates when

‖gr (xk+1)‖ ≤ ǫd for r = r(·, tk), which can be shown to imply

either an approximate critical point of the feasibility measure ‖c‖ or

a relative KKT condition, where the size of the multipliers is taken

into account [1, Lemma 4.2].

In similar conditions to Theorem 3 with an additional Lipschitz

continuity requirement on f , c and their second derivatives, the

evaluation complexity of ShS-ARC can be similarly shown to be at

most


κarc,sh

ǫ
3/2
d ǫ

1/2
p




[1, Theorem 5.4]. This bound is O(ǫ−3/2) when ǫp
def
= ǫ and

ǫd
def
= ǫ2/3, namely, when higher accuracy is required for primal fea-

sibility than for dual first-order criticality, a common requirement in

practice.

6.3 Cubic Regularization for Convex Inequality Constrained Problems

Unfortunately, ShS-ARC does not straightforwardly extend to in-

equality constraints in a manner that preserves good complexity. In

the case of convex constraints such as bounds for which projections

are inexpensive to compute, we can take a different approach that

uses projected ARC-like steps. We consider the problem

minimize
x∈ℜn

f(x) subject to x ∈ F , (17)

where f is smooth and nonconvex and F ⊂ ℜn is a closed convex

set. We follow closely the ARC algorithmic framework described in

§3, except that each cubic model is approximately minimized over

the feasible set (rather than over the whole of ℜn). Namely, from

the current iterate xk ∈ F , the step sk is computed as an approxi-

mate solution of

minimize
s∈ℜn

mk(xk + s) subject to xk + s ∈ F ,

where mk is defined in (4). In particular, in an attempt to avoid

global constrained model minimization requirements, we insist that

the move along sk does not exceed that corresponding to the min-

imum of the model along the line determined by sk.9 Furthermore,
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Figure 5. ARC for problems with convex constraints: illustration of a feasible

descent path for the constrained cubic model minimization [6].

the accuracy of each subproblem solve is dictated by an analogue of

the termination condition (6) [6, (4.13)],

χm(xk + sk) ≤ κθ min {1,‖sk‖}χ
f (xk) (18)

where χf (xk)
def
=

∣∣∣minxk+d∈F ,‖d‖≤1 g(xk)
Td
∣∣∣ is a continuous

first-order criticality measure for (17) [13], and χm(xk) is χf (xk)

with f = mk and g = ∇smk; (18) is satisfied at local constrained

model minimizers. The algorithm terminates when χf (xk) ≤ ǫ.

To ensure the good ARC complexity bound, we use again the

key ingredients in the proof of Theorem 1: the termination condi-

tion (18) can be shown to ensure the long step property [6, Lemma

4.3], and so we are left with securing the sufficient function decrease.

The line minimization condition on sk is not sufficient to achieve

this, though it is one of the two conditions that we need (compare

Notes 1 and 9). The other is that sk is a descent direction from

xk. Figure 5 however illustrates a local cubic model at some xk for

which there is no sk direction from xk that is both descent and

feasible that takes us towards the local model minimizer. Nonethe-

less, we can show that provided ARC can get to a good trial point

x+k = xk+ sk along a feasible descent path (rather than in one step),

the required ARC sufficient decrease property can be achieved even

in such difficult cases [6, Lemma 4.5]. Forming the path may involve

successive line minimizations of the model, and so it may not be too

burdensome computationally. Then, provided each such feasible de-

scent path has a uniformly bounded number of descent segments,

in conditions similar to those of Theorem 1, one concludes that

projected ARC applied to (17) satisfies an O(ǫ−3/2) bound on its

evaluation complexity [6, Theorem 4.7]. (Note that as the subprob-

lem solution does not require additional function evaluations, we

can overlook its cost for the purposes of the evaluation complexity

analysis; but clearly, not for practical purposes.)

Finally, as is common, nonconvex inequality constraints may be

converted into nonconvex equalities and bound constraints by

adding slack variables. Thus a part of our current investigations re-

volves arround an attempt to ‘merge’ the ShS-ARC approach to deal

with equality constraints with projected ARC for the bounds.

7 Conclusions and Extensions

Despite its pessimistic outlook, the worst-case perspective is

nonetheless reassuring as it allows us to know what to expect in

the worst-case from methods we might use. Clearly, the view of

the optimization world we most commonly encounter involves the

typical-case performance of methods, which is usually far better than

the bounds and behaviour discussed here. In particular, at least in

the unconstrained case, the best algorithms we have addressed are

practical and suitable for large scale problems. Preliminary numer-

ical experiments with ARC variants on small scale problems from

CUTEr show superior performance of ARC when compared with

a basic trust-region implementation [11]. Work is on-going on the

development of sophisticated ARC implementations and the neces-

sary comparison with state of the art trust-regions. No significant

conclusions can be drawn on the shape of the typical-case landscape

beforehand.

For the constrained case, and at variance with practical methods,

it seems that it is best from a complexity point of view to stay close

to the manifold of approximate feasible points, which then allows

the best known evaluation bound to be obtained, namely, one that is

of the same order as in the unconstrained case. Note that none of

the complexity bounds that we have been able to calculate for stan-

dard methods for constrained problems (and that we have left out

of the current discussion) are as good or apply to as large a class as

the target-following bounds. Perhaps unsurprisingly, another crucial

aspect of the constrained case complexity results is the care that

is required in choosing an appropriate optimality measures/stopping

criteria for the subproblem solution and algorithm termination to

ensure the desired solution is obtained with good complexity.

There is exciting further activity on the complexity of derivative

free methods for smooth and non-smooth problems [15, 34] that

we have not covered here; and we hope for more in this and other

areas where evaluation complexity results and algorithms with a bet-

ter complexity are waiting to be developed.
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Notes
1. Whilst preserving the good ARC properties, this condition can be weak-

ened to requiring that sk is a stationary point of the model at least in some

subspace – which is satisfied for example if 1 = arg minθ∈ℜmk(xk + θsk) –

and that it is a descent direction [11, §3.2], [6, §4.2.2].

2. If σk is maintained at a sufficiently large value and Bk is the true Hes-

sian which is assumed to be Lipschitz continuous, then ARC with exact

model minimization is similar to the cubic regularization technique proposed

in [27].

3. The path of the iterates is assumed to also include the ‘unsuccessful’ trial

steps.

4. This condition can be achieved if Bk is computed by finite differences

of gradients [7]. We are not aware of a quasi-Newton formula that achieves

this property, which is a slightly stronger requirement than the Dennis-Moré

condition.

5. The exponential behaviour of the methods in Jarre’s example seemingly is

not due to exponential dependence on problem dimension of the gradient’s

or Hessian’s Lipschitz constants. Thus there is an apparent contradiction be-

tween our bounds which are polynomial in the accuracy and Jarre’s [2]. We

have found numerically that trust-region or ARC methods applied to this

example terminate at points that have small enough gradients but that are

far from the solution, thus resolving the contradiction.

6. Note that computing second-order critical points of constrained non-

convex problems is (at least) NP-hard [32].

7. The quadratic regularization term can be replaced by a trust-region con-

straint on the step [9].

8. The order of this bound is the same as for steepest-descent methods for

unconstrained problems; see (1).

9. This condition can be expressed as ∇smk(xk + sk)
T sk ≤ 0; it is satisfied

at local model minimizers or if 1 ∈ arg minxk+θsk∈F ,θ>0mk(xk + θsk). See

Note 1.

coralia.cartis@ed.ac.uk
mailto:coralia.cartis@ed.ac.uk
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Discussion Column

Yurii Nesterov

How to Make the Gradients Small

In many situations, the points with small gradients perfectly fit our

final goals. Consider for example, the dual approach for solving the

problem f∗ = min
x∈Q

{f(x) : Ax = b} with convex Q and strongly

convex objective. Then the dual problem is

max
y

{
φ(y) =min

x∈Q

[
f(x) + 〈y,b −Ax〉

]}
= f∗.

Let x(y) ∈ Q be the unique solution of the internal problem. Then

φ′(y) = b −Ax(y). Therefore

f
(
x(y)

)
−φ(y) = −

〈
y,φ′(y)

〉
≤ ‖y‖ ·

∥∥φ′(y)
∥∥.

Thus, the value ‖φ′(y)‖ serves as the measure of feasibility and

optimality of the primal solution.

In Convex Optimization, the traditional theoretical target is the

fast convergence of the objective to f∗ . The rate of convergence for

the gradients is addressed very rarely. Let us present here the main

available results. All supporting inequalities can be found in [1], [2],

and [3].

1. For a problem of unconstrained smooth convex minimization,

each iteration of the Gradient Method decreases the objective as fol-

lows:

f(xk)− f(xk+1) ≥
1

2L

∥∥f ′(xk)
∥∥2
, (1)

where L is the Lipschitz constant of the gradient. On the other hand,

we have f(xk)−f∗ ≤
2LR2

k+4 , where R = ‖x0−x∗‖. Summing up (1)
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for k =m+ 1, . . . ,N, with N = 2m, we get

2LR2

m+ 4
≥ f(xm)− f

∗ ≥ f(xN+1)− f
∗ +

1

2L

N∑

k=m+1

∥∥f ′(xk)
∥∥2

(2)

≥
m

2L
· min

0≤k≤N

∥∥f ′(xk)
∥∥2
,

Thus, we can find a point x̄ with ‖f ′(x̄)‖ ≤ ǫ in 4LR
ǫ iterations.

2. For the same problem, the Fast Gradient Methods (FGM) con-

verge as f(xk)− f∗ ≤
4LR2

(k+2)2 . Let us introduce in these schemes an

additional gradient step ensuring the decrease (1) between the best

point of the previous iteration and the starting point of the next

one. Then we can apply the above reasoning and obtain a chain of

inequalities (2) with the new left-hand side 4LR2

(m+2)2 . Thus, we obtain

‖f ′(x̄)‖ ≤ ǫ in O
(
(LRǫ )

2/3
)

iterations of FGM.

3. A better complexity bound can be obtained by the regulariza-

tion technique. Consider the function fδ(x) = f(x)+
δ
2‖x−x0‖2.

It is strongly convex with parameter δ. Therefore, FGM can find x̄

with ‖f ′δ(x̄)‖ ≤
ǫ
2 in O(

√
L
δ ln

LR
ǫ ) iterations. For δ = ǫ

2R , we get

‖f ′(x̄)‖ ≤ ǫ
2 + δ‖x̄ − x0‖ ≤ ǫ. Thus, we need O

(
(LRǫ )

1/2 ln
LR
ǫ

)

iterations. Up to a logarithmic factor, this is an optimal complexity

bound. There are no known direct methods, i.e., methods not using

some form of regularization, with this efficiency estimate.

4. Let us look now at the efficiency estimates for the second-

order schemes. Assume that the Hessian f ′′(x) is Lipschitz con-

tinuous with constant M . Then, the cubic regularization of the

Newton Method [2] decreases the functional gap with the rate

f(xk) − f
∗ ≤ 27MR3

2(k+1)2 . It can be accelerated by the technique of

estimate functions [3] up to the rate f(xk)− f∗ ≤
14MR3

k(k+1)(k+2) . Let

us apply it to the regularized function Fδ(x) = f(x) +
δ
3‖x − x

0‖3.

We introduce in this method a regular restart after m iterations.

Since Fδ is uniformly convex of degree three,

δ

3
‖xm −x

∗
δ ‖

3 ≤ Fδ(xm)− Fδ(x
∗
δ )

≤
14M

m(m+ 1)(m+ 2)
‖x0 −x

∗
δ ‖

3.

Thus, if m = O((Mδ )
1/3), then the value ‖xm − x

∗
δ ‖

3 can be made

at most half of ‖x0 − x
∗
δ ‖

3. Let us repeat these series of m steps.

Denote the last point of the k-th series by yk with y0 = x0. After

each series we compute a point uk by taking one Cubic Newton

Step from the point yk. This point is taken as a starting point for the

next series. In this case,

(
1

2

)k M
3
R3 ≥ Fδ(yk)− Fδ(x

∗
δ ) ≥

1

12M1/2

∥∥F ′δ(uk)
∥∥3/2

.

Therefore, in order to get ‖F ′δ(x̄)‖ ≤
ǫ
2 , we need K = O(ln MR2

ǫ )

series. After the last one, we have ‖f ′(uK)‖ ≤
ǫ
2 + δR

2. Thus, we

need δ = ǫ
2R2 . Hence, we perform at most O

(
(MR

2

ǫ )1/3 ln
MR2

ǫ

)
it-

erations in order to obtain the norm of the gradient smaller than

ǫ. For such a goal, this is the best dependence in ǫ achieved so far

in Convex Optimization. The lower complexity bounds for these

settings are not known.

5. Let us discuss now the complexity bounds of the gradient norm

minimization in nonconvex case. The main article in this issue by

Cartis, Gould and Toint, provides us with very interesting arguments,

which show that the lower complexity bound for our problem is

O( f0−f∗

ǫ3/2 ). Moreover, this bound is achieved by the Cubic Newton

Method (see [2]). Let us show that a minor change in the initial con-

ditions dramatically changes our conclusions. Consider the following

situation.

Problem class. Nonconvex functions with Lipschitz continuous

Hessian. There exists at least one point x∗ such that f ′(x∗) = 0

and ‖x∗‖∞ ≤ R.

Goal. Find a point x̄ such that ‖f ′(x̄)‖∞ < ǫ and ‖x̄‖∞ ≤ R.

Theorem. The lower complexity bound for our problem class is
(
MR2

4ǫ

)n/2
. It is implemented by the Uniform Grid Method.

Idea of the proof. Let us fix an integer p ≥ 1. We apply the fol-

lowing, so-called, resisting oracle: at each test point x generated

by the method, it answers that f ′(x) = ǫ1n, (where 1n is the n-

dimensional vector of 1s) and f ′′(x) = 0. Assume that the number

of questions N of our method is smaller than pn. Then there ex-

ists a box B
def
= {x ∈ Rn : x̄ ≤ x ≤ x̄ + R

p1n} where there were

no questions. We define f ′(x) ≡ ǫ1n for x 6∈ B. Inside the box,

for each coordinate f ′i (x) we smoothly connect the level ǫ at the

points x̄(i) and x̄(i) + 1
p with the zero level attained in the center

of the interval. A simple computation shows that for declaring that

our goal is not reached it is enough to choose ǫ = 2
M
2

(
R

2p

)2
. This

contradiction shows that N ≥ pn.

Note that each component of the constructed vector field is a

function of one variable. Therefore this field has a potential.

It is interesting to compare our results with the bound O( f0−f∗

ǫ3/2 )

for n = 1. For this case, we have the bound
(
MR2

4ǫ

)1/2
. The differ-

ence seems to be very big. However, the apparent contradiction is

resolved by the fact that in our example f0 − f∗ = O(ǫ).

Yurii Nesterov, Center for Operations Research and Econometrics (CORE),

Catholic University of Louvain, 34 voie du Roman Pays, 1348, Louvain-la-

Neuve, Belgium. nesterov@core.ucl.ac.be
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Announcements

MIP 2012

You are cordially invited to participate in the upcoming workshop

in Mixed Integer Programming (MIP 2012). The 2012 Mixed Inte-

ger Programming workshop will be the ninth in a series of annual
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workshops held in North America designed to bring the integer pro-

gramming community together to discuss very recent developments

in the field. The workshop is especially focused on providing oppor-

tunities for junior researchers to present their most recent work.

The workshop series consists of a single track of invited talks.

Confirmed Speakers

Shabbir Ahmed (Georgia Tech), Gennadiy Averkov (Otto-von-

Guericke-Universität Magdeburg), Sam Burer (The University of

Iowa), Philipp Christophel (SAS), Jesús A. De Loera (University

of California, Davis), Alberto Del Pia (ETH Zurich), Friedrich

Eisenbrand (EPFL), Ricardo Fukasawa (University of Waterloo), Vi-

neet Goyal (Columbia University), Marcos Goycoolea (Universidad

Adolfo Ibañez), Yongpei Guan (University of Florida), Volker Kaibel

(Otto-von-Guericke-Universität Magdeburg), Kiavash Kianfar (Texas

A&M University), Mustafa Kilinc (University of Pittsburgh), Fatma

Kilinc-Karzan (Carnegie Mellon University), David Morton (The Uni-

versity of Texas at Austin), Ted Ralphs (Lehigh University), Edward

Rothberg (Gurobi Optimization), Siqian Shen (University of Michi-

gan), Renata Sotirov (Tilburg University), Dan Steffy (ZIB and Oak-

land University), Alejandro Toriello (University of Southern Califor-

nia), Christian Wagner (ETH Zurich),

The workshop is designed to provide ample time for discussion and

interaction between the participants, as one of its aims is to facili-

tate research collaboration. Thanks to the generous support by our

sponsors, registration is free.

MIP 2012 Organizing Committee

mip2012@math.ucdavis.edu

Further information: http://www.math.ucdavis.edu/mip2012/

ICCOPT 2013

The Fourth International Conference on Continuous Optimization,

will take place in Lisbon, Portugal, from July 27 to August 1, 2013.

ICCOPT is a recognized forum of discussion and exchange of ideas

for researchers and practitioners in continuous optimization, and

one of the flagship conferences of the Mathematical Optimization

Society.

ICCOPT 2013 is organized by the Department of Mathematics

of FCT, Universidade Nova de Lisboa, in its Campus de Caparica,

located near a long beach, 15 minutes away by car (and 30 by public

transportation) from the center of Lisbon, on the opposite side of

the river Tagus.

The three previous versions of ICCOPT were organized respec-

tively in 2004 at Rensselaer Polytechnic Institute (Troy, NY, USA),

in 2007 at McMaster University (Hamilton, Ontario, Canada), and in

2010 at University of Chile (FCFM, Santiago, Chile).

ICCOPT 2013 includes a Conference and a Summer School. The

Conference (July 29 to August 1) comprehends a series of invited

lectures, organized and contributed sessions, and poster sessions.

The Summer School (July 27–28) is directed to PhD students and

young researchers in the field of continuous optimization.

The meeting is chaired by Luis Nunes Vicente (Organizing Com-

mittee) and Katya Scheinberg (Program Committee) and locally co-

ordinated by Paula Amaral (Local Organizing Committee).

Further information: http://eventos.fct.unl.pt/iccopt2013

Application for Membership

I wish to enroll as a member of the Society. My subscription is for my personal use

and not for the benefit of any library or institution.

I will pay my membership dues on receipt of your invoice.

I wish to pay by credit card (Master/Euro or Visa).

Credit card no. Expiration date

Family name

Mailing address

Telephone no. Telefax no.

E-mail

Signature

Mail to:

Mathematical Optimization Society

3600 Market St, 6th Floor

Philadelphia, PA 19104-2688

USA

Cheques or money orders should be made

payable to The Mathematical Optimization

Society, Inc. Dues for 2012, including sub-

scription to the journal Mathematical Pro-

gramming, are US $ 90. Retired are $ 45.

Student applications: Dues are $ 22.50.

Have a faculty member verify your student

status and send application with dues to

above address.

Faculty verifying status

Institution
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