ISSN 0065-9266 (print)

Of the ISSN 1947-6221 (online)
American Mathematical Society

V[EMOIRS

Number 1507

Prandtl-Meyer Reflection

Configurations, Transonic Shocks,

and Free Boundary Problems
Myoungjean Bae

Gui-Qiang G. Chen
Mikhail Feldman

September 2024 e Volume 301 ¢ Number 1507 (first of 7 numbers)

AMERICAN

AM S MATHEMATICAL

SOCIETY




V[EMOIRS

ISSN 0065-9266 (print)

Of the ISSN 1947-6221 (online)
American Mathematical Society

Number 1507

Prandtl-Meyer Reflection

Configurations, Transonic Shocks,

and Free Boundary Problems
Myoungjean Bae

Gui-Qiang G. Chen
Mikhail Feldman

September 2024 ¢ Volume 301 ¢ Number 1507 (first of 7 numbers)

[ ]
oot AMERICAN

AM S MATHEMATICAL

SOCIETY



Library of Congress Cataloging-in-Publication Data

Cataloging-in-Publication Data has been applied for by the AMS.
See http://www.loc.gov/publish/cip/.

DOLI: https://doi.org/10.1090/memo/1507

Memoirs of the American Mathematical Society
This journal is devoted entirely to research in pure and applied mathematics.

Subscription information. Beginning in 2024, Memoirs will be published monthly through
2026. Memoirs is also accessible from www.ams.org/journals. The 2024 subscription begins with
volume 293 and consists of twelve mailings, each containing one or more numbers. Individual
subscription prices for 2024 are as follows. For electronic only: US$1013. For paper delivery:
US$1,163. Add US$22 for delivery within the United States; US$150 for surface delivery outside
the United States. Upon request, subscribers to paper delivery of this journal are also entitled
to receive electronic delivery. For information on institutional pricing, please visit https://www.
ams.org/publications/journals/subscriberinfo. Subscription renewals are subject to late fees.
See www.ams.org/journal-faq for more journal subscription information. Each number may be
ordered separately; please specify number when ordering an individual number.

Back number information. For back issues see www.ams.org/backvols.

Subscriptions and orders should be addressed to the American Mathematical Society, P.O.
Box 845904, Boston, MA 02284-5904 USA. All orders must be accompanied by payment. Other
correspondence should be addressed to 201 Charles Street, Providence, RI 02904-2213 USA.

Copying and reprinting. Individual readers of this publication, and nonprofit libraries
acting for them, are permitted to make fair use of the material, such as to copy select pages for
use in teaching or research. Permission is granted to quote brief passages from this publication in
reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication
is permitted only under license from the American Mathematical Society. Requests for permission
to reuse portions of AMS publication content are handled by the Copyright Clearance Center. For
more information, please visit www.ams.org/publications/pubpermissions.

Send requests for translation rights and licensed reprints to [reprint-permission@ams.org.

Excluded from these provisions is material for which the author holds copyright. In such cases,
requests for permission to reuse or reprint material should be addressed directly to the author(s).
Copyright ownership is indicated on the copyright page, or on the lower right-hand corner of the
first page of each article within proceedings volumes.

Memoirs of the American Mathematical Society (ISSN 0065-9266 (print); 1947-6221 (online))
is published bimonthly (each volume consisting usually of more than one number) by the American
Mathematical Society at 201 Charles Street, Providence, RI 02904-2213 USA. Periodicals postage
paid at Providence, RI. Postmaster: Send address changes to Memoirs, American Mathematical
Society, 201 Charles Street, Providence, RI 02904-2213 USA.

© 2024 by the American Mathematical Society. All rights reserved.

This publication is indexed in Mathematical Reviews®, Zentralblatt MATH, Science Citation
Index®, Science Citation Index™-Ezxpanded, ISI Alerting Services®™, SciSearch®, Research
Alert®, CompuMath Citation Index®, Current Contents®/Physical, Chemical & Earth Sciences.
This publication is archived in Portico and CLOCKSS.

Printed in the United States of America.

The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.
Visit the AMS home page at https://www.ams.org/

10987654321 29 28 27 26 25 24

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.


http://www.loc.gov/publish/cip/
https://doi.org/10.1090/memo/1507
https://www.ams.org/publications/journals/subscriberinfo
https://www.ams.org/publications/journals/subscriberinfo
www.ams.org/journal-faq
www.ams.org/backvols
www.ams.org/publications/pubpermissions
mailto:reprint-permission@ams.org
https://www.ams.org/

Contents

Acknowledgments
Chapter 1. Introduction

Chapter 2. Mathematical Problems and Main Theorems
2.1. Mathematical Problems
2.2.  Structure of Solutions of Problem 2.9
2.3. Main Theorems
2.4. Change of the Parameters and Basic Properties
2.5.  Main Theorems in the (vso, 3)—Parameters
2.6. Further Features of Problem 2.34

Chapter 3. Uniform Estimates of Admissible Solutions
3.1. Directional Monotonicity Properties of Admissible Solutions
3.2.  Uniform Positive Lower Bound of dist(T'shock, 0B1(Ox))
3.3.  Uniform Estimates for the Ellipticity of Eq. (ZI1.19)
3.4. Uniform Weighted C**~Estimates Away From I'S ;.
3.5.  Weighted C?* Estimates Near T'C .

3.6. Compactness of the Set of Admissible Solutions

Chapter 4. TIteration Set
4.1. Mapping the Admissible Solutions to the Functions Defined in Q'***
4.2. Mapping the Functions in Q" to Approximate Admissible Solutions
4.3. Definition of the Iteration Set
4.4. Boundary Value Problem (£3.16)
4.5. Properties of the Iteration Set I

Chapter 5. Existence of Admissible Solutions Up to ﬂf(f}“)
— Proof of Theorem 2.31
5.1. Definition of the Iteration Map
5.2. Fixed Points of Z(+, 8) and Admissible Solutions
5.3. Existence of Admissible Solutions for All (veo, 8) € Rweak

Chapter 6. Optimal Regularity of Admissible Solutions
— Proof of Theorem 2.33

Appendix A. The Shock Polar for Steady Potential Flow
Appendix B. Non-Existence of Self-Similar Strong Shock Solutions

Appendix C. Quasilinear Elliptic Equations in Two Variables
C.1. Ellipticity Principle for Self-Similar Potential Flow

BEl Bl Bl B EkEER EEEEEE EemmEos EpgEEom = E

iii

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



iv CONTENTS

C.2. Uniformly Elliptic Equations Away From the Corners

C.3. Quasilinear Degenerate Elliptic Equations

C.4. Estimates at a Corner for the Oblique Derivative Boundary Value
Problems

C.5. Well-Posedness of a Nonlinear Boundary Value Problem

El EEl EE

Bibliography

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



Abstract

We are concerned with the Prandtl-Meyer reflection configurations of un-
steady global solutions for supersonic flow impinging upon a symmetric solid wedge.
Prandtl (1936) first employed the shock polar analysis to show that there are two
possible steady configurations: the steady weak shock solution and the steady
strong shock solution, when a steady supersonic flow impinges upon the solid wedge
— the half-angle of which is less than a critical angle (i.e., the detachment angle), and
then conjectured that the steady weak shock solution is physically admissible since
it is the one observed experimentally. The fundamental issue of whether one or both
of the steady weak and strong shocks are physically admissible has been vigorously
debated over the past eight decades and has not yet been settled in a definitive
manner. On the other hand, the Prandtl-Meyer reflection configurations are core
configurations in the structure of global entropy solutions of the two-dimensional
Riemann problem, while the Riemann solutions themselves are local building blocks
and determine local structures, global attractors, and large-time asymptotic states
of general entropy solutions of multidimensional hyperbolic systems of conservation
laws. In this sense, we have to understand the reflection configurations in order to
understand fully the global entropy solutions of two-dimensional hyperbolic systems
of conservation laws, including the admissibility issue for the entropy solutions. In
this monograph, we address this longstanding open issue and present our analysis to
establish the stability theorem for the steady weak shock solutions as the long-time
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vi ABSTRACT

asymptotics of the Prandtl-Meyer reflection configurations for unsteady potential
flow for all the physical parameters up to the detachment angle. To achieve these,
we first reformulate the problem as a free boundary problem involving transonic
shocks and then obtain appropriate monotonicity properties and uniform a priori
estimates for admissible solutions, which allow us to employ the Leray-Schauder
degree argument to complete the theory for all the physical parameters up to the
detachment angle.
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CHAPTER 1

Introduction

We are concerned with unsteady global solutions for supersonic flow impinging
upon a solid ramp, which can equivalently be regarded as portraying the symmetric
gas flow impinging upon a solid wedge (by symmetry). When a steady supersonic
flow impinges upon the solid wedge — the half-angle 6,, of which is less than a
critical angle (i.e., the detachment angle 64), Prandtl first employed the shock polar
analysis to show that there are two possible steady configurations: the steady weak
shock reflection with supersonic or subsonic downstream flow (determined by the
wedge angle that is less or larger than the sonic angle 65 < 64) and the steady strong
shock reflection with subsonic downstream flow, both of which satisfy the entropy
conditions, provided that no additional conditions are assigned downstream; see
Courant-Friedrichs [22], von Neumann [41], and Prandtl [42].

A fundamental issue is whether one or both of the steady weak and strong
shocks are physically admissible. This has been debated vigorously over the past
eight decades and has not yet been settled in a definitive manner (c¢f. [221[23/[39]
41][44]). On the basis of experimental and numerical evidence, there are strong
indications to show, as Prandtl conjectured (see [3,[40L[42]), that it is the steady
weak shock solution that is physically admissible as the long-time asymptotics of
the Prandtl-Meyer reflection configurations.

Furthermore, the Prandtl-Meyer reflection configurations are solutions of the
lateral Riemann problem (Problem 2.6 below), and are core configurations in the
structure of global entropy solutions of the two-dimensional Riemann problem for
hyperbolic conservation laws. On the other hand, the Riemann solutions are build-
ing blocks and determine local structures, global attractors, and large-time asymp-
totic states of general entropy solutions of multidimensional hyperbolic systems of
conservation laws (see [4H6l[1T1[32][35H37143][49] and the references cited therein).
Consequently, we have to understand the reflection configurations in order to fully
understand global entropy solutions of the two-dimensional hyperbolic systems of
conservation laws, including the admissibility issue for the entropy solutions.

A natural mathematical approach is to single out steady shock reflections by
the stability analysis — the stable ones are physically admissible. It has been shown
in the steady regime that the steady (supersonic or transonic) weak reflection is
always structurally stable in Chen-Chen-Feldman [8] and Chen-Zhang-Zhu [17]
with respect to the steady perturbation of both the wedge slope and the incoming
steady upstream flow (even L!-stable for the supersonic weak reflection with respect
to the BV —perturbation of both the wedge slope and the incoming steady upstream
flow as shown in Chen-Li [15]), while the strong reflection is also structurally stable
under conditional perturbations (¢f. Chen-Chen-Feldman [8,[9] and Chen-Fang
[19]). The first rigorous unsteady analysis of the steady supersonic weak shock
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2 1. INTRODUCTION

solution as the long-time behavior of an unsteady potential flow was due to Elling-
Liu [27], who dealt with a class of physical parameters determined by an assumption
for angle 0y, less than the sonic angle 65 € (0,64) (see Chapter 3).

The purpose of this monograph is to establish the stability theorem for the
steady (supersonic or transonic) weak shock solutions as the long-time asymptotics
of the global Prandtl-Meyer reflection configurations for unsteady potential flow for
all the admissible physical parameters, even beyond the sonic angle 65, up to the
detachment angle 84 > 6. As a corollary, the assumption in Elling-Liu’s theorem
[27] for the case that 0, € (0, 65) is no longer required. The global Prandtl-Meyer
reflection configurations involve two types of transonic flow boundaries: discontin-
uous and continuous hyperbolic-elliptic phase transition boundaries for the fluid
fields (transonic shocks and sonic arcs). To establish this theorem, we first refor-
mulate the problem as a free boundary problem involving transonic shocks and then
carefully establish the required appropriate monotonicity properties and uniform a
priori estimates for admissible solutions so that the approach developed in Chen-
Feldman [IT] can be employed. This involves several core difficulties in the theory
of the underlying nonlinear PDEs: optimal estimates of solutions of nonlinear de-
generate PDEs and corner singularities (at the corners between the transonic shock
as a free boundary and the sonic arcs, and between the transonic shock and the
wedge when the wedge angle 6, increases across the sonic angle 6s), in addition to
the involved nonlinear PDEs of mixed elliptic-hyperbolic type and free boundary
problems. Some parts of the results have been announced in Bae-Chen-Feldman
[2].

More precisely, in Chapter B we first formulate the physical problem of super-
sonic flow impinging upon the solid wedge as an initial-boundary value problem.
By using the invariance under a self-similar scaling and the physical structure of
the problem (see Fig. [[T]), the initial-boundary value problem is reformulated as
a boundary value problem in an unbounded domain (Problem [Z9) and further as
a free boundary problem (Problem [2:34]) for a pseudo-steady potential flow in a
bounded domain in the self-similar coordinates & = (£1,£2) = ¥ for ¢t > 0. Next,
we introduce the notion of admissible solutions that we seek in this monograph for
all the admissible physical parameters (oo, ug) € Pweak, Where uso represents the
speed of the incoming supersonic flow and wug represents the horizontal speed of
downstream flow behind a steady weak shock which is uniquely determined by
and angle 6,,. For simplicity, the density of incoming supersonic flow is normalized
to be 1 without loss of generality. In §2.3, the existence of admissible solutions for
all (Uoo, ug) € Puyeak 1 stated as one of the main theorems.

In order to prove the existence of admissible solutions for all (teo, %0) € Pweak
by employing the Leray-Schauder degree argument, the first essential step is to in-
troduce a new parameter set Rycax in 24 Given (ueo, ug) € Pyeak, the half-angle
Oy of the symmetric solid wedge is uniquely determined. Define vy, 1= Uno Sin Oy.
As we will discuss later, ug > 0 represents the horizontal speed of the down-
stream flow behind the weak oblique shock Sp. Then we define g € (0,%) as
the angle between the wedge boundary and Sp. Parameters (v, 5) were first in-
troduced in [27]. In Lemma 219 we show that there exists a homeomorphism
T : Pweak = T (Pweak) = Rweak. More importantly, we show that Ryeax is in the
form of

Ruwecak = U {Uoo} X (076((1’%0))

Voo >0

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



1. INTRODUCTION 3
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Tshock : frcgbeﬁii‘(’lary
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sonic
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FIGURE 1.1. Admissible solutions in the (veo,8)—parameters in
the rotated coordinates (&1, £2) by angle 0y, counterclockwise (Top:

0<B< 5évm); Bottom: ﬂévm) <B< ﬂ((ivoo)).

This structure of Ryeax enables us to prove the existence of admissible solutions
for all 8 € (0, (SU‘X’)) for any fixed vy, > 0 via the Leray-Schauder degree theorem.
In particular, for each v, > 0, there exists an admissible solution for § = 0 and, in
g5.3] we prove that the Leray-Schauder fixed point index of this solution is 1. We
also show that, for each vy, > 0, there exists a unique ﬁév"") € (0, 6(1””))7 called
the sonic angle, so that the structure of admissible solutions becomes different as
[ increases across 8 = BS(U“) (see Fig. [[T). Finally, we restate both the definition
and existence of admissible solutions for (veo, ) € Ryeax in 2.0

In Chapter Bl we establish all the a priori estimates that are essential for
solving the free boundary problem introduced in Chapter 2l Furthermore, the a
priori estimates are achieved uniformly on parameters (v, 3). In particular, this
chapter contains the following estimates:

(i) Strict directional monotonicity properties of Yo — ¢;
(ii) Strict directional monotonicity properties of ¢ — @ and ¢ — pe;
(iii) Uniform positive lower bound of the distance between I'shock and I'yedge
away from the wedge vertex;
(iv) Uniform positive lower bound of dist(Tshock, 9B1(0, —v0));
(v) Uniform estimates of the ellipticity of equation N () = 0 in €, given in

([TI) below;

(vi) Uniform weighted C% estimates of admissible solutions in .

In the above, s, Yo, and @ represent the pseudo-velocity potential functions
for the state of incoming supersonic flow, the state behind the oblique shock Sp,
and the state behind the normal shock Syr, respectively. Moreover, 9B1(0, —vso)
is the sonic circle of the incoming supersonic flow:

OB1(0, —vs) := {€ €R? : | Do (€)| = 1}.

For fixed v, >0 and 0 < 8 < ﬂb@“), let ©2 be the bounded region enclosed by
Lhock, IV . and & = 0 in Fig. Il In order to find an admissible solution

sonic?

FO

sonic?
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4 1. INTRODUCTION

in the sense of Definition 2.24] we need to solve the following free boundary problem
for (307 Fshock):

N(p) = div(p(| De[*, ) D) + 2p(|Dg[*, ) =0 in Q,
¢ =0, p(ID¢|*,¢)Do-v=Dps-v  on o,
(11) Y = Qo on Fsonlc’

p=en oI,
Oe,p =0 on 90 N{& = 0},

where p = p(|q|?,2) is smooth with respect to (q,z) € R? x R for |q| < Ry
and |z| < R; for some positive constants Ry and R;. Moreover, v is the inward
unit normal vector to I'gpock. In particular, we seek a solution so that equation
N(g) = 0 is strictly elliptic in 2, but its ellipticity degenerates on 'S . U v

sonic sonic*

As € (0 ,BSU“)) tends to ﬂsvm) I'9 .. shrinks to the wedge vertex Pg, and the

sonic
ellipticity of N(¢) = 0 degenerates at Pg for § = ﬁ(v‘x’ For 8 > B(U‘” , N(p)=0
is strictly elliptic at Pg. For 8 > s (veo) , the boundary condition ¢ = pp on I'9 .
given in (I]) becomes a one-point Dlrlchlet boundary condition. Therefore, it is
crucial to achieve estimate (v) and then employ the result to establish the uniform
a priori estimates of admissible solutions in €2 by estimate (vi).

Once estimates (i)—(ii) are established, we adjust the argument in [1I] to
achieve estimates (iii)—(vi), although there are several technical differences, due
to the structural differences of the solutions constructed in this monograph com-
pared to those in [11I]. We also point out that estimate (iv) is the key for achieving
estimates (v)—(vi). Using the argument in [11], for any fixed vo, > 0, we are able to
establish a uniform estimate of positive lower bound of dist(T'shock, dB1(0, —vw)) for
all the admissible solutions corresponding to 8 € (0, 8.] whenever 3, € (0, év“’)).
Owing to this property, we prove the existence of admissible solutions for all the
admissible physical parameters (v, 8) € Ryeak, €ven beyond the sonic angle ﬁs(v‘x’)

&2

€o
cone(en; €o)

eN

FIGURE 1.2. The cone of monotonicity

Even though the overall argument follows [I1], there are several significant
differences from [11]. One of them is the choice of directions for the monotonicity
properties of Yoo — @, © — o, and @ — par. For fixed (voo, ) € Ryeak, define
ey = (0,—1) and ep := (cosf,sinB). Then ey is the unit tangent vector to
the normal shock Sy, and ep is the unit tangent vector to the oblique shock So.
Moreover, we define the cone of monotonicity as shown in Fig. by

Coneo(eso,esN) ={aes, + azes, : a,az > 0}.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



1. INTRODUCTION 5

In §3.11 we show that any admissible solution ¢ satisfies
(1.2) Oe(poo — ) <0 in © for all e € Cone’(es,,, €5, ),

from which many essential estimates of admissible solutions can be further obtained.
For example, ([2), combined with the Rankine-Hugoniot conditions on Tgpock,
implies that T'ypock is represented as a graph of a function o = fe, (1) with f2, (&) >
0. This property is a key ingredient in the proof of the separation of I'ypock from
the sonic circle 0B1(0, —vs) of the incoming supersonic flow. Notice that this
separation property is crucial for establishing the uniform estimate of the ellipticity
of equation N(¢) = 0 in . In addition, further monotonicity properties of ¢ — po
and ¢ — @ in Coneo(eso,egN) are achieved, which play important roles in the a
priori estimates of admissible solutions near TQ . UTH . .

In Chapter 4l we define the iteration set K consisting of approximate admissi-
ble solutions. Note that the pseudo-subsonic region €2 of each admissible solution
is different. Furthermore, as [ increases across Bs(vm), the shape of  changes
from a rectangular domain to a triangular domain. This is because the sonic arc
'@ .. corresponding to the oblique shock So shrinks to the wedge vertex Pj as
B € (0, S(U“)) tends to B"*), and 1o ..={Ps} for g > ") For this reason,
it is necessary to introduce a diffeomorphism § so that §~*(Q) is the fixed domain
Qiter := (—1,1) x (0,1). Moreover, § should be defined so that § depends continu-
ously on g € [0, ((iv‘”)) and admissible solutions in an appropriately chosen norm.
In 411 we define a map §F for each admissible solution such that

F(Q") = Q, F(Panoek) = {(5,1) : =1 <5 <1},

B9 = {(-1,0) : 0<t <1}, FW) = {(L1) s 0<t <1},

Since the sonic arc T . corresponding to the normal shock Sy is fixed so as to be

the same for all g € [0, é”x)) (see Fig. [[)), the definition of § in this monograph
can be given more explicitly than the one given in [11]; see Definition In §4.2]
the definition of § is extended to a class of approximate admissible solutions. Then
we set up the iteration set K and analyze its properties in §3-45 The iteration
set I is given in the form

K= U {8} x K(B) for fixed vy, > 0 and B, € (0, év‘”)),
BE[0,Bx]

where each K(3) is a subset of C1:@(Qiter) for some « € (0,1).
In Chapter B for fixed vo, > 0, we define an iteration map

Z(-,8) : K(B) = CE* (Qi*) for Q' := (—1,1) x (0,1) C R?,

(x,001)
where C(Qfal)(giter) is a weighted C%“ space. The iteration map Z is defined so
that, if Z(u., 8) = us for u, € K(B8), then (¢, Dshock), given by
@Zu*os(_u];,ﬁ)—i_gpg inQ:S(u*7B)(Qiter)7
Cinock = S(u.,p)({(s,1) : =1 <s < 1}),

solves the free boundary problem (IT]). In the above, (¢} is a smooth interpolation of
¢o and p,r. The precise definition of ¢} is given by (A1.42)). Finally, the existence
of a fixed point of Z(-,5) in K(B) for all g € (0, 8,] is proved by employing the
Leray-Schauder degree argument in §5.31 In this way, we establish the existence of

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



6 1. INTRODUCTION

admissible solutions for all (v, 8) € Ryeax (Theorem 23T]), hence the existence of
admissible solutions for all (tso, ug) € Pweax (Theorem Z3T]).

Theorem 216, or equivalently, Theorem 2.33] which pertains to the optimal
regularity of admissible solutions, is established in Chapter Gl

To make the monograph self-contained, we also include Appendices A—C, which
contain some results required for establishing the main theorems and a proof of the
non-existence of self-similar strong shock solutions.

A closely related problem to the one we have solved here is the shock reflection-
diffraction problem which was addressed in Chen-Feldman [11]. Even though the
two problems are two different lateral Riemann problems and have different issues
and features, the approach developed in Chen-Feldman [1T] for the shock reflection-
diffraction problem has been adopted for solving our Prandtl-Meyer reflection prob-
lem in this monograph. As discussed earlier, one of the main contributions of this
monograph is to identify appropriate monotonicity properties and establish suit-
able uniform a priori estimates for admissible solutions, based on the new and
careful choice of the directions for the monotonicity properties; as a result, the
Chen-Feldman approach in [11] can be employed.

In this monograph, we have solved the Prandtl-Meyer reflection problem up to
the detachment angle in the framework of the potential flow equation, which has
been widely used for discontinuous flows in applications in aerodynamics, especially
when the amount of vorticity is relatively small in the region of interest. When the
flow regions of interest have large amounts of vorticity, the full compressible Euler
equations are usually required. Nevertheless, for the solutions containing a shock
of small strength, the potential flow equation and the full Euler equations match
each other well, right up to the third-order of the shock strength. Furthermore, for
the problem analyzed in this monograph, the Euler equations for potential flow is
actually ezact in two important regions of the solutions near the two sonic arcs in
the subsonic domain ). Even in the other part of domain 2, under the Helmholtz-
Hodge decomposition for the velocity field, the full Euler equations in the self-
similar coordinates can be decomposed as the potential flow type equation, coupled
with the incompressible Euler type equations plus a transport equation for the
entropy function. These can be shown by directly following the arguments in §18.7
in Chen-Feldman [1T]. In this sense, the analysis and related methods/techniques
developed in this monograph could also play an essential role in finding a solution
of the problem in the framework of the full Euler equations. In particular, our
results for the potential flow equation have provided useful insights on what will
happen for the case of the full Euler equations.

Finally, we remark in passing that, for the uniqueness/stability problems, it is
necessary to consider solutions in a restricted class. Recent results [20,21]29,[34]
show the non-uniqueness of solutions with flat shocks in the class of entropy so-
lutions of the Cauchy problem (initial value problem) for the multidimensional
compressible Euler equations (isentropic and full). The Prandtl-Meyer reflection
problem under consideration in this monograph is different — the problem for so-
lutions with non-flat shocks for potential flow on the domain with boundaries, so
these non-uniqueness results do not apply directly. However, these results indicate
that it is natural to study the uniqueness and stability problems in a more restricted
class of solutions. Since the completion of this monograph, some progress on the
uniqueness in the class of self-similar solutions of regular shock reflection-diffraction
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1. INTRODUCTION 7

configurations with convex transonic shocks (which are called admissible solutions)
has been made, as announced recently in [13]. A similar uniqueness result can also
be obtained by combining the approach in [13l[14] with the estimate techniques
developed in this monograph. Technically, restricting the uniqueness to the class of
admissible solutions allows us to reduce the problem to a corresponding uniqueness
problem for solutions of a free boundary problem for a nonlinear elliptic equation,
which is degenerate for the supersonic case.
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CHAPTER 2

Mathematical Problems and Main Theorems

In this chapter, we first formulate the physical problem of a supersonic flow im-
pinging upon the solid wedge into an initial-boundary value problem. Then, based
on the invariance of both the problem and the governing equations under the self-
similar scaling, we reformulate the initial-boundary value problem as a boundary
value problem in an unbounded domain (Problem 29)), and further as a free bound-
ary problem in a bounded domain (Problem [2:34]) for the existence of Prandtl-Meyer
reflection configurations involving two types of transonic flow boundaries: discon-
tinuous and continuous hyperbolic-elliptic phase transition boundaries for the fluid
fields (transonic shocks and sonic arcs). The main theorems of this monograph are

presented in §2.3] and §2.5]

1. Mathematical Problems

The compressible potential flow is governed by the conservation law of mass
and the Bernoulli law:

(2'1'1) 8tp + V- (pvxq)) =0,
1
(2.1.2) 0P + §|vx<1>|2 + h(p) = B,

where p is the density, ¢ is the velocity potential, B is the Bernoulli constant
determined by the incoming flow and/or boundary conditions, and h(p) is given by

h<p>=/1”%dgz/lp@dg

for the sound speed ¢(p) and pressure p(p). For an ideal polytropic gas, the sound
speed ¢(p) and pressure p(p) are given by

(2.1.3) Fp)=ryp"™",  plp) = kp
for constants v > 1 and £ > 0. If (p, ®)(¢,x) solves @LI)-ZI12) with (ZI13),

then (p, ®)(t,x) = (p, ®)(at, ax) with o := —= solves

Nl
Oip+ Vx - (fVxP) = 0,
- 1 - -1 q
O + 5| Vudf? + % — o’B.
Therefore, we choose k = = Wlthout loss of generality so that

y—1 _
(2.1.4) / h' (o — 1, Ap)=p L.
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10 2. MATHEMATICAL PROBLEMS AND MAIN THEOREMS

The case of the isothermal flow can be included as the isothermal limit v — 14 in
(ZI4). Therefore, we define (h,c?)(p) by

(2.1.5) (h,¢*)(p) = {Efn”p’ll;pv_l) Ei Z i 1
By ([ZI12), p can be expressed as

(2.1.6) p(0;®, Vi ®) = h™ (B - 0,® — %\vxcb\?).
Then system (ZILI)-(Z12) can be rewritten as

(2.1.7) ep(04®, Vx®) + Vi - (p(0:®, Vi P)Vx®) = 0,

with p(0;®, Vx®) determined by (2.1.6)).

A steady state solution ®(x) to (L) (ZIL2) yields the steady potential flow
equations

Vi - (V®) = 0,
(2.1.8) 1
LIV 4 h(7) = B.
A symmetric wedge W of half-angle 6, € (0, %) in R? (Fig. ZT)) is defined by

(2.1.9) W= {x = (z1,72) € R? : || < 21 tan by, z; > 0}.

Poo >0, Use > pgil)/z

FIGURE 2.1. Supersonic flow impinging upon a solid wedge

On the wedge boundary OW, ® must satisfy the slip boundary condition 9, ® =
0 on OW, where n,, indicates the outward unit normal vector to OWW. Denote
D :=R?\ W, and consider the boundary value problem for [Z.L8) in D with

(2.1.10) On,®=0  on 9D = OW.

If a supersonic flow with a constant density po > 0 and a velocity u,, =
(Uoo, 0), U > p&,’fl)ﬂ7 moves towards wedge W, and if 6, is less than a critical
angle called the detachment angle, then the well-known shock polar analysis shows
that there are two different steady weak solutions to the boundary value problem
EIR)-EII0): the steady weak shock solution and the steady strong shock solution.

For more precise arguments, we first define a class of weak solutions of the boundary

value problem (ZT.8)—(ZT10).
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2.1. MATHEMATICAL PROBLEMS 11

DEFINITION 2.1. Let T'y, be a C'—curve that lies in D and divides D into two
open subsets D~ and Dt. We say that ® € W1>°(D) is a steady entropy solution
with a shock Ty, of the boundary value problem (ZL8)-(@2I.10) if ® satisfies the
following properties:

(i) B — 1|Vx®|? > h(0+) a.e. in D;
(ii) For each ¢ € C§°(R?),

[ 1789 Vi dx =0,
D

(i) ® € CY(D*) N C?*(D*);
(iv) Entropy condition: for ®* := ®|p+ r_,

anhfi)_ > 8nsh<f>+ >0 on Iy,

or equivalently, p(Vx®~) < p(Vx®*) along the flow direction, where ng,
represents the unit normal vector to I'y, pointing from D~ towards DT.

REMARK 2.2. By performing integration by parts, condition (ii) of Definition
2Ilimplies that any entropy solution with a shock Igpoex of problem (21.8))—2TI0)
in the sense of Definition 1] satisfies the conormal boundary condition:

p(|V®|?)Vx® -1y, =0 on OW.

Furthermore, combining conditions (i) and (iii) of Definition 2.1l with the conormal
boundary condition stated immediately above yields that the entropy solution @
indeed satisfies the boundary condition ZII0) if p(]Vx®|?) > 0 holds on OW.

In particular, Definition 2] via integration by parts, leads to the following
Rankine-Hugoniot jump conditions for the steady potential flow equations ([Z.1.8]):

(2.1.11) [@]r,,, = [p(]Vx®*)V® - ngp]r,, =0,
where [F(x)]r,, = FT(x) — F~(x) for x € .

sh

DEFINITION 2.3 (The steady Prandtl-Meyer reflection solution). The steady
Prandtl-Meyer reflection solution for potential flow is an entropy solution ® with a
shock Ty, of the boundary value problem (ZI.8)-(@2I10) in the sense of Definition
2.1 with the following additional features:

(i) Teh = {x = (z1,72) € RE\ W : |23| = x1tanfy,, 1 > 0} for some
gsh € (awv %)7
(ii) For some constants ug,vo > 0,
B( UooT1 in D ={x€D : x <|vs|cotb},
X) = [
uox1 +vox2 in DT :=D\ D—;
Uoo —UQ .
Vo ’
(iv) Entropy condition: for the unit normal vector ng, to I'y, pointing from
D~ towards DT,

(iii) tanfy, =

Vo - ng, > Vx(i)Jr -ng > 0 on [y,

or equivalently, p(|Vx®7|?) < p(|[V<®*|?).
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12 2. MATHEMATICAL PROBLEMS AND MAIN THEOREMS

LEMMA 2.4. Given any v > 1 and (poo, Uoo) With Use > Coo = pQZ*”/Q > 0,
there exist unique u(P="=) € (0,us,) and Hép*’u‘x’) € (0, %) such that the following
properties hold:

(a) For each 0y € (0,95{’""’“*)), there are exactly two constants usy and Uy
with uPeerto) < Uy < Uy < Uso yielding two steady Prandtl-Meyer re-
flection configurations in the sense that, if (up,v0) = ust(1l,tanby) or
uwi(1,tan ) in Definition 23, then the corresponding function ® is
an entropy solution of the boundary value problem (ZI.8)-@II0) with
shock Tsy, given by Definition Z3I(i) with O, being determined by Defini-
tion [23|(iii);

(b) ust and uyyk depend continuously on (pec,Uso,7y) and By € (0,

— eépoovuoo).

)

gépoo Uoo) )

and Usy = Uwk at Oy
(¢c) For each 0y, € (0, Qépm’u"")), let u( ) denote the value of uyy correspond-

ing to Oy. Then there exists a unique glPe=rteo) ¢ € (0, 0((ip°°’u°°)) such that

(g(poo oc))| ‘

(Pooucc) ~
eI, ban 6= )] = (g (1, tan o= <)) ) 072,

In other words, the flow behind the weak shock corresponding to 95(-’)*’“*)

18 sonic.

_ (Poosuos)
) © = tanfy

L= tan AL ")

Uoo

FIGURE 2.2. Shock polars in the (u,v)-plane

PRrROOF. (a) and (b) can be checked directly from Lemmas [A-T] and [A23]

Deﬁne q(by) = \u(OW)H(l tan Oy,)|. We first observe that |q(6y)]*? =
(n(| )Wfl if and only if |¢(6y)]*> = 'y+1 (14 (y=1)B) =: Ko. To prove
(c) it sufﬁces to show that there exists a unique 6, € (0 ,9,5{) °°’u°°)) satisfying
|2(0.) 12 = Ko.

Condition u2, > p2! implies that |¢(0)|? > Ko. This can also be checked from
the Bernoulli law (i.e., 35|Vx®* + h( p) = B) and the conservation law of mass
(i.e., p(u (O)) §t) = Poollco SO that |u |2 < Ko). Then there exists a unique point
P, = u,(1,tan@,) on the shock polar Y(P=-"=) satisfying |P,|> = Ko (see Lemma
m. It remains to verify that u, = u(e <. that is, P, is the weak shock point

wk
corresponding to 6, € (0, gépom“oo))_
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2.1. MATHEMATICAL PROBLEMS 13

In Lemmas [A1] and [A-3] it is shown that the shock polar curve Y(Pe:tee)  ag
shown in Fig. [Z2] is given as the zero-level curve of g(u) in the first quadrant of the
(u,v)-plane and that T(P=-"=) is convex. Furthermore, g,(u) is a normal vector
to Y(Peortie) gt u € Y(PoorU) towards the u-axis. From this observation, we see
that
(6+)

gu(Py)-P.>0  ifand only if  w, =uy"’,
gu(Ps) - P =0 if and only if 0, = 9(({)‘”’"“’),
gu(Px) - P. <0 if and only if Uy = ufflj).
Now we compute gy(Py) - Pi. A direct computation by using (A7) gives that

gu(u) = 1 (52u°°_u (u uoo—u)u>_pu—poouOo

pr? [use — ul [use — ul [us —ul
where p = p(|ul?), @ = p77 !, and U = (U, 0). Combining ZILII) with |P,|? =
Ko yields
gu(Pe) - Pe = —(p(|Pe]?) = poo) (Ps - 75)°,
where 75 represents a unit tangent vector to shock Sy corresponding to state P.
Since Py - 75 # 0, we obtain from the entropy condition p(P.) — ps > 0 that

gu(Px) - P. < 0. From this, we conclude that u, = uf}fﬁ). Choosing Hs(p‘”’u‘”) =0,,
we complete the proof. O

DEFINITION 2.5. Fix parameters (poo,Uso,7,0w). In Lemma 24 & with
(ug,v0) = ug(1,tanby,) is called a steady Prandtl-Meyer strong reflection solu-
tion, and ® with (ug,v0) = uwk(1,tanf,,) is called a steady Prandtl-Meyer weak
reflection solution in the sense that

|(ttoo, 0) — gt (1, tan )| > [(too; 0) — tie(1,tanby)|  for 0 < B, < 67"
that is, the shock strength of a steady Prandtl-Meyer weak reflection solution is
weaker than the steady strong one.

The goal of this work is to prove the existence of global unsteady Prandtl-Meyer
reflection configurations for unsteady potential flow, determined by Eq. (ZI7),
which converge to the steady Prandtl-Meyer weak reflection solution as ¢ tends to

infinity for all possible physical parameters v > 1, us > Coo, and 8y € (0, 0£lp °°’u°°)).
Therefore, we consider the following initial-boundary value problem for (ZI.7):

PROBLEM 2.6 (Initial-boundary value problem). Given v > 1, fix (poo, Uoo)
with % > coo. For a fixed 6,, € (O,Qép“’u“’)), let W be given by (ZI9). Find a
global weak solution ® € VV]ECOo (Ry x (R?2\ W)) of Eq. I1) with p determined
by 2I10) and

2

(2.1.12) B= 1%” + h(peo)

so that ® satisfies both the initial condition at ¢ = 0:

(2.1.13) (ps ®)|t=0 = (oo, UooT1) for (x1,15) € R\ W,
and the slip boundary condition along the wedge boundary OW:
(2.1.14) Vx® nylow =0  fort >0,

where ny, is the exterior unit normal vector to OW.
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14 2. MATHEMATICAL PROBLEMS AND MAIN THEOREMS

REMARK 2.7. In particular, we seek a solution ® € VVLOO(RJ£ x (R?\ W)) that

loc
converges to the steady Prandtl-Meyer weak reflection solution ® when ¢ tends to

infinity in the following sense: if ® is the steady Prandtl-Meyer weak reflection solu-
tion corresponding to the fixed parameters (Poos Uoos Y, Bw) in the sense of Definition
235 with p = h=!(B — 1|V®|?), then, for any R > 0, ® satisfies

(2.1.15)  lim ([Vx®(t,") = V@21 Bropw) + [0t ) = ll1(Ba0)\w)) =0
for p(t,x) given by (2I1.4).

The definition of a weak solution of Problem is given as follows:

DEFINITION 2.8. A function ® € W, (R, x (R2\W)) is called a weak solution

loc

of Problem if ® satisfies the following properties:
(i) B— 0 — %|Vx<1>|2 > h(0+) a.e. in Ry x (R2\ W);
(i) (0(01®, V), p(00D, V)| Vsc®|) € (LL (R x (R2\ W)™
(iii) For every ¢ € C°(R4 x R?),

/ / (DD, Tx@)UC + (01D, V@)V - V() dxdt
0o Jraw
+/ PoC(0,x) dx =0.
R2\ W

Since the initial data (ZII3]) does not satisfy the boundary condition (ZI14),
a boundary layer is generated along the wedge boundary starting at ¢ = 0, which
is proved to form the Prandtl-Meyer reflection configuration in this monograph.

Notice that the initial-boundary value problem, Problem [2.6] is invariant under
the scaling

(t,x) = (at,ax), (p,®) — (p, %) for a#0,

in the sense that, if (p, ®)(t, x) is a solution, then so is (3, ®)(t,x) = (p, 2)(at, ox).
Based on this observation, we look for self-similar solutions of Problem in the
form

. b4
(21L16) p(t;x) = p(€), D(tx) =14(€)  with &= (61,6) = for 1> 0.
For such ¢, introduce the pseudo-potential function ¢ given by
Lo
p=0¢- §|€| :

If @ solves (217 with 216, then ¢ satisfies the following Fuler equations for the
self-similar solutions:

(2.1.17) div(pDy) +2p =0,
1
(2.1.18) §\Dtp|2 +¢+h(p) =B,

where the divergence div and gradient D are with respect to the self-similar variables
¢ € R2. Solve [ZII8) first for p and then substitute the result into (ZIIT7) to
obtain

(2.1.19) N(p) := div(p(|Dg|?, ©) D) + 2p(|Dg|?, ) = 0
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2.1. MATHEMATICAL PROBLEMS 15

for

(21.20)  p(|Dgl?, ) = {(1 +(v=D(B=3|Dgl* =) if y>1,
exp(B — 3|Vel* — ) if =1

Note that the Bernoulli constant B is given by 2I1.12).

The local sound speed ¢ = ¢(|Dg|?, p) > 0 for the pseudo-steady potential flow
equation ([2I.19)) is given by

(2.1.21) (1Dl @) =1+ (v~ 1)(B ~ 3|Dgl* ~ ¢).

Eq. (2119 is a second-order nonlinear equation of mixed elliptic-hyperbolic type.
It is elliptic if and only if

21.22) 1Dyl <cllDpPe) = |Dgl <\ (14 (- (B - ),

which is in the pseudo-subsonic phase, and ([ZI.19) is hyperbolic if and only if

Dol > cDelsp) = 1Dl > [ (14 (- 1B - ),

which is in the pseudo-supersonic phase. In order to find a function ¢(&) such that
®(t,x) with p(t,x) given by (ZI.I0) is a solution of Problem 2.6l satisfying (2.1.15),
we make the following additional observations:

(i) Symmetric domain: Since the solid wedge W is symmetric with respect to
the axis x5 = 0, it suffices to consider Problem 2.6 in the upper half-plane
{(z1,72) € R? : 3 > 0}. In the self-similar plane, define

(2.1.23) Dy, = {E€R? : &> 0} \{£ : & <& tanby, & > 0}
Then Problem [2.6] is reformulated as a boundary value problem in Dy, .

(ii) Initial condition: For each x € R*\ (W U{0}), [¢| = %] = o0 as t — 0+.
This means that the initial condition [2I.I3]) in Problem becomes an
asymptotic boundary condition in the self-similar variables.

(iii) Time-asymptotic limit: For each x € R2\ W, [£] = |¥| — 0 as t — oo.
To find a global weak solution of Problem satisfying (2I15]), we seek
a self-similar weak solution ¢(&) satisfying

| _
lim ——— Vep = Vac| d€ =0,
£=0+ |Br(0) N D6, | 0004, 5

where @ is the steady Prandtl-Meyer weak reflection solution of problem

EI8)-EII10), and |Br(0) N Dy, | is the area of Br(0) N Dy, .
(iv) Constant density state: If p > 0 is a constant in (ZII7)-@II), then
the corresponding pseudo-potential ¢ is given in the form

(21.24) PlE) = ~ 1€l + (w,0) £+

for some constant state (u,v) and a constant k. In Problem 2.6 the initial
state has a constant density p, > 0 and a constant velocity (ueo,0). Then
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16 2. MATHEMATICAL PROBLEMS AND MAIN THEOREMS

the corresponding pseudo-potential ¢, in the self-similar variables is given
by

for a constant k.. It follows from ([2I.12) that ko, = 0.

Hereafter, we assume without loss of generality that p,, = 1, so that c,, = 1.
This can be achieved by the scaling
Err el (ppus) = (o 5, 2
Poo €3 Cxo
for any v > 1.

Given v > 1, poo = 1, and uy > 1, we now reformulate Problem in the
self-similar variables. Hereafter, we denote (9((ip°°’u°°),95(p°°’u°°)) by (Héu‘x’)ﬁs(u"")),
since po is fixed as 1.

Taking into account the additional observations stated above, we reformulate
Problem as a boundary value problem in the self-similar variables.

PROBLEM 2.9 (Boundary value problem in the self-similar variables €). Given
v2>1, ue > 1, and b, € (O,Qéu°°)), find a weak solution ¢ € Wh>(Dy_) of Eq.
(Z119) in Dy, satisfying the following conditions:

(i) Slip boundary condition on I'yedge:
(2.1.26) Dy -ny, =0 on Dyedge = {€ 1 & = & tan by, & > 0},
where n,, represents the exterior unit normal vector to the wedge bound-
ary chdgc;
(ii) Time-asymptotic limit condition in the self-similar variables:
1 -
lim ———————— [Vep — Vi ®| d€ =0,
R—0+ |Br(0) N Do, | JB,(0)1D0, ¢

where @ is the steady Prandtl-Meyer weak reflection solution correspond-
ing to Oy;
(iii) Asymptotic boundary condition at infinity: For each 0 € (0, 7],

(2.1.28) i o = ¢oollc(ro\B,(0) =0
for each ray Ry := {& = & cot 8,& > 0}; see Fig. 231

Rp = {(&1,&2) : & = &c0t0,85 > 0}

Vo -ny, =0

FIGURE 2.3. Asymptotic boundary condition at infinity
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2.2. STRUCTURE OF SOLUTIONS OF PROBLEM 2.9 17

DEFINITION 2.10. A function ¢ € Wb (D, ) is called a weak solution of Prob-

loc

lem 2X91if ¢ satisfies conditions (i)—(iii) of Problem 2.9 and the following additional
properties:
(i) p(IDg*,¢) >0 a.e. in Dy, ;

(i) (p(|Dpl*, @), p(IDeI?, ) [Dgl) € Lige(De,,);
(iii) For every ¢ € C2°(R?),

(2.1.29) | (6P )De - DC— 20D 1) =0,

w

For p > 0, note that (21.20)) is equivalent to the conormal boundary condition:
(2.1.30) pDp -ny, =0 on D'yedge-

Condition (ii) of Problem 20 indicates that a solution of Problem 2:9] converges
to a steady potential flow with a shock near the wedge vertex. To find such a
solution, we define an entropy solution of Problem [Z.9] with a shock. The definition
is given in a way similar to Definition 211

DEFINITION 2.11. Let I'y, be a C'—curve that lies in Dy, and divides Dy into
two subdomains: ©, and ©+ A weak solution ¢ of Problem 2.9]is an entropy
solution with a shock Ty if ¢ satisfies the following properties:

(i) ¢ € We (D, );

loc
~Tt +
(ii) ¢ Clloc(@ ) NC*(Dg, );
(iii) For ¢T := <P|©;wul“sh and ¢~ = @‘@;wul‘shv
Oy @™ > Onyp™ >0 on I'sp,

where ngp, represents a unit normal vector to I'sy pointing from @;W to-
wards C‘Dg'w;

(iv) ¢ satisfies the Rankine-Hugoniot jump conditions on I'yy:

(2.1.31) [lr., = [p(IDel?, ) Dy - nglr,, =0,
which is similar to the steady case (Z1.).

If ng, = % is oriented so that Oy, o > 0, and if Onay @ > Ony ™
holds on Ty, the shock solution is said to satisfy the entropy condition. By (Z131)),
the entropy condition is equivalent to p(|Dyp~|%,¢7) < p(|D¢™|?,¢T) on Lgy.

2.2. Structure of Solutions of Problem 2.9
Given v > 1, poo = 1, and uy, > 1, fix 0, € (O,Héu‘x’)).
2.2.1. Near the origin. We seck a solution ¢ of Problem so that the

solution at the origin coincides with the steady Prandtl-Meyer weak reflection so-
lution corresponding to parameters (1, oo, Y, Oy ) in the sense of Definition 25 For

Poo given by (ZL23), define
(221) 9o = —L€P + (o, v0) & So=1{& €Dy, : gol&) = Puc(O)}.

Choose the constant vector (ug,vg) as

(2.2.2) (ug,v9) = uifﬁ”)(l,tanﬁw),
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18 2. MATHEMATICAL PROBLEMS AND MAIN THEOREMS

and define
(&) = max{pec(£), po(€)}-
Then ¢ := ¢ satisfies (Z126)-Z127) and ZI3T) with Tsheek = So-
For the nonlinear differential operator N defined by (ZI.19), equation N(¢q) =0
introduces the sonic circle dBe, (ug,vo) with ¢2=pJ ™" for po=p(|Dgo|?, ¢o) in the
following-sense:

e N(ypg) = 0 is elliptic in B, (ug, Vo),
e N(po) = 0 is hyperbolic in R? \ B, (ug,vo)-

REMARK 2.12. Let (") be from Lemma 24Yc). Then the wedge vertex O =
(0,0) satisfies the following:

* OERQ\WfOrO<0W <9§uw),
o O € 0B, (ug, o) at Oy = 68",
e O€ Bco(u07'U0) for 9§u°") < 9w < géuoc)

2.2.2. Away from the origin. To determine a solution ¢ of Problem 23]
we look for a solution ¢ with a piecewise constant density p(|Dyp|?, ), defined by
EI20) in ®g, \ Br(O) for some sufficiently large R > 0, so that such a solution ¢
satisfies the asymptotic boundary condition (iii) of Problem For this purpose,
we introduce a straight shock solution in ®g \ Br(O). In fact, the only straight
shock solution that satisfies (2128 is a normal shock solution. This can be seen
more clearly in 241 We now compute the normal shock solution and discuss its
useful properties.

To compute the normal shock, denoted by S7, and the corresponding pseudo-
potential 1 below Si, it is convenient to rotate the self-similar plane by angle 6,
clockwise. In the rotated self-similar plane, ¢, in (ZI1.20) is written as

&2
Moo (cos by, — sin Oy

(0, —tuoo Sin Oy) l \ s
1

&

(oo cOs Oy, 0)

&

Oy Tyedge

FIGURE 2.4. The normal shock

Poo = _%|£|2 + oo (€08 O, —sin by ) - €.

Then ¢ is in the form
1 .
1= —5I£|2 + oo (€08 By, — sin By) - (&1, €57,

where §§1) is the distance of S from I'yedqge. Denote

(2.2.3) Voo := Uog SIN Oy .
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It follows from (Z.I.20) and (2I.31)) that density p; and distance fél) satisfy

(1) Voo
2.2.4 = Yo
(224 ) = =
1 1)
(225) Mp2) ~ h(1) = 22 + € 0,
where h(p) is defined by (ZI1.3]).
Consider

Fp) i= (h(p) — A1) (p— 1) — = (p— 102, — 2.

2
A direct computation shows that F(1) = —v2 < 0, lim F(p) = oo, F/(1) =
pP—00

—1v% < 0, and F"(p) > 0 whenever p > 1. This implies that there exists a

unique p; € (1,00) such that F(p1) = 0. Then [227) yields that fél) > 0. Ro-
tating the self-similar plane back by angle 6y, counterclockwise, we find that ¢ is
given by

(2.2.6) 1 = —%\€|2 + Uoo €08 By (COS Oy, Sin by, ) - € — uoofél) sin Oy,
and the normal shock S7 by
S1=1€ : poc(§) = p1(§)} ={€ : & =& tanby +§§1) sec Oy }.

LEMMA 2.13. For any given us > 1 and the wedge angle 8, € (O’Qéuoo))’

diSt(Slurwedge) < cp = pg’yfl)/%

PRrROOF. By the mean value theorem, there exists a constant p, € (1, p1) satis-
fying
h(p1) = h(1) = p(pr —1)  for p=p] 2.
Then F(p;) = 0 implies that

1 sv3 + 4 Jv2 (Fv3 + 4p)
M(p1—1)——v (=1 -0v=0 = p—-1= 2 :
1
Since vy, > 0, (Z24) yields that
1 _ <
2 \/16p + v2 + Voo Vi
By the definition of y above, it can directly be checked that
VPl 2</pl = ity >2,
VE<(1</pi ' = e if1<vy<2,
l=¢ if v=
which implies that fél) < c. |
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2.2.3. Global configurations of the solutions of Problem[2.9] Following
Remark 2.12] our desired solution of Problem has two different configurations

depending on the two different intervals of the wedge angle: 6y, € (0, 95“‘”)) and
Oy, € 08, 00",

Case L Fix 0, € (0,60")). Let o and ¢; be defined by 22I) and ZH),

FIGURE 2.5. Admissible solutions for 0 < 8,, < 9£u°°)

respectively. Define Qg := Dyo(O) and Q1 := Dg;(0). Consider two sonic circles
0B, (Qo) and 9B, (Q1).

The left sonic arc: The sonic circle 9B, (Qo) and the straight oblique shock
So :={€ : vo(€) = poo(&)} intersect at two points in Dy, which will be verified
in detail in §241 Let P; be the intersection with the smaller £&;—coordinate. Also,
0B, (Qo) intersects with I'wedge at two points; let P4 be the intersection point with
the smaller {s—coordinate. Denote wy := ZP4Qo Py € (0, 7). We define

Fgonic = {P € aBCo (QO) : 0 < 4P4Q0P < UJO}u
which is a closed subset of dB.,(Qo). We call TY. . the sonic arc corresponding to
$o-

The right sonic arc: By Lemma[2T3] the sonic circle 9B, (Q1) and the normal
shock S1 = {€ : p1(€) = po(€)} intersect at two distinct points; let P be the
intersection point with the larger £&s—coordinate. Also, 9B, (Q1) intersects with
I'yedge at two distinct points; let P3 be the intersection point with the larger £
coordinate. Denote wy := ZP3Q1 P> € (0,7). We define

F;onic = {Pl € aBm (Ql) : 0 S ZPBQIP/ S Wl}a
which is a closed subset of 0B, (Q1), similar to ' ... We call T ..
corresponding to ¢1.

Foreachj=1,---,4,let £¢5 = (ffj,ffj) denote the &-coordinate of point P;.
Let Sp seg be the line segment OP;, and let g C Dy, be the open set enclosed by
S0,segs o and the line segment OP,;. Next, let 51 4z be the portion of S; with

sonic?

the left endpoint P», and let £ C Dy, be the unbounded open set enclosed by

Sl,segv F;onic, and 1_\wedge N {62 > £2PS}
Our goal is to find a curved shock I'gpocx that connects Py with P and a solution
¢ of Problem to satisfy both (ZZI.22)) in the open region 2 (enclosed by I'spock,

the sonic arc
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Il .., PyP3,and IO . ) and

sonic? sonic

2ls) in Q()7
Y= #1 in le
Poo in@gw\Q()UQUQl.

Problem [2.9] is now a free boundary problem given in a bounded region Q with a
free boundary I'shock to be determined simultaneously with .

Case 2. Fix 0 € [Héu‘”), 05”"")). The right sonic arc '}, . is given in the same

sonic

way as Case 1. By Remark [Z12] since the triangular region € in Fig. shrinks

to the origin as 6y, € (0, 05"“’)) increases up to 9§u°°), we look for a curved shock

Ishock that connects origin O with Py for 6y > 9§u°°) and a solution ¢ to satisfy

Py

Fshogk"‘/‘

Q

FIGURE 2.6. Admissible solutions for 6, > plues)

both (ZI22) in the triangular domain  (enclosed by Tshocks I'lonics
segment O P3) and
¥1 in Qla
SD =

Voo In Dy, \QUQ,

and the line

with
(2:2.7) lim (P) = ¢o(0), lim Di(P) = Dipo(0)-
PeQ PeQ

The condition that ¢ = g in Qg for 6, < 05“"") is replaced by ([2Z2.7) so that our
desired solution still satisfies (Z1.27).

2.3. Main Theorems

Fix v > 1 and us > 1. For each 0y, € (0,05““)), let ugp be given by ([Z22]). By
Lemmas [A 1] and [A3] uy decreases with respect to fy,. Define

u") = lim g, u('=) = lim .

O 05102 — ° O —05"2)
For each uoo > 1, define an open interval I(%e) = (ug\qf‘"’) , Uoo ), Where ug\qf‘"’
Lemma[A3l Given v > 1, we introduce a set of parameters

Py uxL,J>1{u°°} X J\teo),

) is from
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Then ‘B consists of three disjoint sets Pyeak, Pdetach, and Petrong:

Pweak = N U>1{uoo} X (U(SUOO)vuoo)7
(231) ;Bdetach = {(Uoo,u'(juoo)) D U > 1}’
Pswrong = U {uoc} x (i) =)y,

Our goal is to prove the existence of a global weak solution of Problem 2.9 sat-

isfying the entropy condition, for each (uwso,up) € Pweak s0 that, if 6, < Hs(u‘”),
the solution has the configuration of Fig. and, if 6y, > 95(u°°), the solution has
the configuration of Fig. We first give a definition of admissible solutions of
Problem for (teo, %) € Puweak-

DEFINITION 2.14 (Admissible solutions). Given v > 1, us > 1, and (o, uo) €
PByeak, define O, as

(2.3.2) tan 0, = Jeotar(t0)

up
where fpolar is determined in Lemma [A3 Let Dy, be the domain defined by
EI23), and let ¢ and @1 be defined by [221)) and (2224, respectively. A weak
solution ¢ € C%Y(Dy, ) of Problem 20 is called an admissible solution of Problem

if ¢ satisfies the following properties:

Case L ug > u{"*), or equivalently, 0y, € (0,0s(u“’)):
(i) There exists a shock curve Igpock with endpoints P, = ( f b f 1) and

Py = f 2 5 2) such that the following properties hold:
(i-1) Curve I'ghock satisfies
(2.3.3) Lahock € Do, \ Bi(uso, 0),
where 0Bj(us,0) is the sonic circle of the state in
Q% =D \ QU U
(i-2) Curve Tgpoex is C? in its relative interior. That is, for any

P € Tghoek \ {P1, P2}, there exist »r > 0, f € C?, and an orthog-
onal coordinate system (S, T) in R? such that

Cshock N BT(P) = {S = f(T)} n BT(P);

(i-3) Curve Sy seg U Lshock U S1 seg is C*, including at points Py and Px;
(i—4) Fshocka Fl FO and

sonic’ © sonic?

Tyedge i= {&2 = &1 tan by, & > 0y N {€ @ &5* < & <€)

do not have common points except for Pi, P, P3, and P,;. Thus,
Tshoek U I‘éonic U F(S)Omc U I'wedge is a closed curve without

self-intersection. Denote by € the bounded domain enclosed by this
closed curve.

(ii) ¢ satisfies the following properties:
(ii'l) pE 0071(99\,‘,) n Clloc (QOW \ SO,seg U Tshock U Sl,seg)§

loc

(ii-2) p € C3(Q)NC2(Q\ (T, UTL 1)) N CHQY);

sonic
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(ii-3)

Poo in QQW\QQUQUQh
(234) Y = @0 in Qo,
©1 in Q,

where Qg shrinks to {O} = {P,} = {P,} when 0, = o{"=);
(ii-4) ¢ satisfies
- Eq. @1I9) in Q with p(|Dp|?, ) defined by 2120,
- the slip boundary condition: J¢,¢ = 0 on I'yedge N 092,
- the Rankine-Hugoniot conditions:

[P ea = [P(ID@]?, ©) D - nh]r 00 =0

for the unit normal vector ngy to I'gock towards the interior of
Q.

(iii) Eq. II9) is strictly elliptic in Q \ (I'% ,  UTL . ); that is,

sonic

‘DQO| <C(|D</)|27§0) 1nﬁ\(r(s)omcUFI )

sonic

(iv) max{po, p1} < ¢ < Poo in L.
(v) Let 7, = (cosby,sinfy), which is tangential to the wedge boundary
I'yedge- Let es, be the unit vector parallel to Sy and oriented so that

eg, - Tw > 0, and let eg, be the unit vector parallel to S; and oriented so
that eg, - T < O:

OP, (v0, Uoso — Ug) .
eg, = = , es, = —(cos By, sinby,).
COP] (g — uso)? + V2 ! ( )

Then

Des, (Poo =) <0, Des (Poo —9) <0 in Q.

Case II. ug < uéu‘”), or equivalently, 0y, € [Ggum), 0((1““’));

(i) There exists a shock curve T'ghoex with endpoints O = (0,0) and P, =
(eF2,€l*) such that the following properties hold:

(i-1) Curve Tgpock satisfies
(235) 1_‘shock C (ng \Bl (uOOa 0))’

where  9Bj(uw,0) is the sonic circle of the state in
Q> =Dy \ QUQ;

(i-2) Curve Tgpoer is C? in its relative interior. That is, for any
P € Tyoek \ {O, P2}, there exist r > 0, f € C?, and an orthogo-
nal coordinate system (S,7) in R? such that

Fshoek N B (P) ={S = f(T)} N B,(P);

(i-3) Curve I'shock U S1 seg 18 C', including at point Ps;
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(1‘4) Fshocka Fl

sonic?

Cyedge = {€2 = &1 tan by, & > 0} N{€ : 0 < & < &7}

do not have common points except for O, P,, and P3. Thus, I'ghocc U
Il e Ul wedge is a closed curve without self-intersection. Denote by

) the bounded domain enclosed by this closed curve.

and

(ii) ¢ satisfies the following properties:
(11-1) p e 01007(]; (gew) N Clloc (330“, \ I1shock U Sl,seg)§

(11'2) wE CB(Q) N 02 (ﬁ\ ({O} U 1_‘slonic)) N Cl(ﬁ)a
(ii-3) Dp(O) = Dpo(O) and
Yoo 1IN Q_gw\ QUQq,

(2.3.6) p=4qpy atO,
p1 in Qy;

(ii-4) ¢ satisfies
- Eq. @II9) in Q with p(|D¢|?, ¢) defined by [2I1.20),
- the slip boundary condition: Og,¢ = 0 on I'yedge N €2,

- the Rankine-Hugoniot conditions:

[@]Fshock = [p(|D<P|27 @)D@ ) nsh]l"shock =0

for the unit normal vector ngy, to I'ghock towards the interior of
Q.

(iii) Eq. @II9) is strictly elliptic in Q\ ({O}UTL .)); that is,

sonic

Dyl < c(IDgl ) inQ\ ({O}UTL ).

sonic

(iv) max{po, p1} < ¢ < oo in Q.

(v) Let 7y = (cosby,sinfy), which is tangential to the wedge boundary
I'wedge- Let es, be the unit vector parallel to Sy and oriented so that
eg, - Tw > 0, and let eg, be the unit vector parallel to S; and oriented so
that eg, - 7w < 0. Then

aesl (<POO - ‘P) S 07 aeso (<POO - w) S O in Q
Our two main theorems are as follows:

THEOREM 2.15. Fizy > 1 and us > 1. For any (tso, uo) € Pweak, there exists
an admissible solution of Problem i the sense of Definition 214l

THEOREM 2.16. Fiz v > 1 and us > 1. Given (too,up) € Puweak, let @ be
an admissible solution with the curved shock Ugnock 0of Problem 2.9 in the sense of
Definition 214l Then the following properties hold:

Case 1. ug > uéu‘”), or equivalently, 0y, € (0,0§u°°)):
(a) The curved shock Tghock is C°° in its relative interior, and

€ C(Q\ (Topic U Tionic)) N CHH(Q).

sonic
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(b) For a constant o > 0 and a set D given by
D= {£ : maX{‘PO(&)y‘Pl(S)} < SDOO(S)} N Qew,
define
DO Dn {£ dlSt{é 1_‘somc} < U} n BCO (Q0)7

(2.3.7) ’
D =Dn {é : dlSt{g? Fsonic} < J} n BCl (Ql)’
where ¢; = py D2 and Qj = Dyp;(0), j=0,1. Then, for any o € (0,1)
and any & € (IO . o ic U F;omc) \ {P1, P,}, there exist 9 depending on
(’ya uoo); and K < 0o dependmg on (uooa s 9w; €0, a); ”90”01’1(90(D§90U'D%));
and d = dist{€p, Tshock} such that
(238) ||SD||2 o QﬂBd/Q(go)ﬂ('Dl UDD /2) S K
(C) For any & € I1501{11(: U Igolmc \ {P17 PQ})
1
(2.3.9) s,le (Drrip — Dy max{ip1, p0}) (&) = ok

£eQ
and r = &€ — Qq| near T
(d) Limits lim D%*p and lim D%y do not exist.

£E— Py £— Poy

£eq £eQ

where 7 = |€ — Q1| near '}

sonic sonic*

(€) So.seg U shock U St seg 15 a C*%—curve for any a € (0,1), including at
points Py and Ps.

Case 1. uy < ul"), or equivalently, 6,, € [05">,6">)):

(a) The curved shock Tghock is C°° in its relative interior, and
peC®(@Q\({0}uUTL,;.)NCH @\ {0} nCh*(Q)

for some & € (0,1) that depends on us, and Oy, and is non-increasing with
respect to Oy.

(b) For a constant o > 0, define DL by @370). Then, for any « € (0,1) and

sonic

any & € TL . \{P:}, there exist g9 depending on (7, us), and K < oo
dependlng on (Uooa’-y, 9Wa €0, CY), ||@||CI*1(Q|"YD;0)7 and d = diSt{€07FShOck}
such that
(2.3.10) ”sﬁ”la,—ﬂﬂBdm(ﬁo)ﬁD;om <K.
1
(2311) slim (DTTSD - Drrwl)(i) = m7

1359
where r = |€ — Q1.
(d) Limit 5111;12 D?¢ does not exist.
£eQ
(€) Tshock U S1seg @8 a CH¥—curve for the same & as in statement (a). Fur-
thermore, curve Tshock U S1seg \ {0} is C** for any o € (0,1), including
at point Ps.
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2.4. Change of the Parameters and Basic Properties

2.4.1. Straight oblique shocks in the self-similar plane. Given a con-
stant vo, > 0, denote

(241) oo = — 38 — vt

LEMMA 2.17. For any given 8 € [0, ), there exists a unique pseudo-potential
function

1
o = —§|§|2 + (uo,v0) - § + ko
satisfying the following properties:

(01) So = {&€ € R? : 0o(&) = po(€)} forms a line of angle B with the
& —axis, as shown in Fig.

So

&

(8)
2

&

w0

Voo

FIGURE 2.7. S is a line of angle § with the & —axis

(03) @o satisfies the Rankine-Hugoniot conditions (ZI131)) on So:
90 = s, PIDvol*,90)Dpo - v = Dpos -va on So

for
_ LDl o)) T
(2'4‘2) p(|D<,0|2, 90) _ (1 + (7 1)1(300 , 3 ‘Dtp| 90)) for v>1,
exp (Boo — 51 D0l* — ) for v =1,
with
1 V2
Boo =_-|D oo 2 co — ;.Ou
5| Deocl” + ¢ 5
o— D( oo ) .
(O3) Entropy condition:
p(IDpol?, po) > 1, 0 < Dpo - vsh < Dpoo * Vsh;

(04) po satisfies the slip boundary condition on the & —axis:
O, 00 =0 on {& = 0}.
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PROOF. By choosing (up,v0) as
(2.4.3) (up,v0) = (—veo tan 3, 0),

po satisfies conditions (O1) and (O4). If line Sp has the &;—intercept at (0,556)),
then pp can be written as

1
(2.4.4) Yo = —§I£\2 — £1000 tan f — Voo

(8)
2

It remains to find the &—intercept &7 of Sp so that po satisfies conditions

(O2)—(0Os). Define
po = p(|Dyol®, o).
Then po satisfies

1 1
(2.4.5) h(po) + §\D¢0|2 + o =h(1) + §|D<poo\2 + Yoo

where h(p) is defined by (2I.4).
In order to determine §§ﬁ ), we follow the idea from [27]. Define the pseudo-Mach
numbers Mo and M., by

al’sll Yo >t

(2.4.6) Mo = for co = py° Moo = 0y, Poo-

co

Since 8.,’?sh (0o — o) =0 on Sp for k = 0,1, and for a unit tangent vector 7y, of
So, it follows from (ZZH]) that

1 1
(2.4.7) hipo) + 5(8V5h¢o)2 =h(1)+ 5(8yshgooo)2 on So.

By @Z8), p(|Dool?, 00)Dpo - Vsh = Do - Vgn can be rewritten as

i My

2.4.8 = —.
( ) Po Mo

We substitute this expression into (ZZ.7) to obtain

2.4.9 = e e
(2.4.9) (1+ 5 M3) M, =(1+ 5 M2) M .
Notice that f(M) := (1 + WT_lMQ)M_NJ:) satisfies
. . 200 =1) 200 o
— — / — 1 —
am f(M)=co, lim f(M)=oo, f(M)= P M= (M7 = 1).

Therefore, if My, = 1, then Mp = 1 is the only solution of [Z49). If M, €

(0,00) \ {1}, then (ZZ9) has a unique nontrivial solution My in (0,00) \ {1} with

Mo # M. Furthermore, a direct computation from (Z49) shows that

d Mo

d M
It follows from (243]) that conditions (O2)—(O3) are satisfied if there exists

féﬂ) so that M., > 1 holds.

(2.4.10)

<0 for all M € (0,00) \ {1}.

Denote ¢o := My and qo := coMe. Note that go = dist(Se, (ue,0)) and
(oo = dist(So, (0, —vs)) for up given by (2Z43]). Then
(2.4.11) (oo — O = Voo s€C 3.
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=1
We substitute the representations of ¢oo = My, and go = Mpco = M@(%O(;) T+l
into [Z4TT) to obtain
=1 2 2
(2.4.12) S (MET = M3™) = voo sec 3,

where Mo < 1 solves (Z49) for Mo > 1. As a function of My > Mg, the left-
hand side of [2Z4T2]) as a function of M, has the derivative that is greater than
'y—-2-1 for Mo, > Mo, and its value at M, = Mo is 0. Therefore, for given constants
Voo > 0 and § € [0, 7), there exists a unique

(2.4.13) My > 1

satisfying equation [2.412). Once My, > 1 is decided, it follows from ([2.4.3) and
(2411) that

(2.4.14) féﬁ) = My sec S — Voo
It can be seen from 0 < Do - Vg, < Do - Vg that the Eo—intercept féﬁ ) given by
[2:4.19) satisfies
§§ﬁ ) > 0.
Case 7 = 1 can be proved similarly. ([l

2.4.2. New parameters (v, ). We define & = (&],&5) by

&Y\ . [ cosOy sinby )\ (€ Uoo COS Oy
(2.4.15) (é) - (_Smaw cos9w> (52) _ ( ‘ ) _

In the new coordinates (£1,£5%), center Q1 of the sonic circle B, (@Q1) becomes the
origin, and I'yeqge lies on the horizontal axis & =0.

Hereafter, for simplicity of notation, we denote & = (&1, &2) as the new coor-
dinates (&, &}) given by ([Z41H). In the new coordinate system, ¢uo, ©o, and @1,

defined by (ZI125), 21, and (Z2Z6]), are expressed respectively as
(2.4.16)

1 1
(&) = —§|€\2 — §2lUoo SIN By + §ugo cos? By,

1 1
95 (§) = =5 I&1° + (&1 + oo c0s b (0 sec by — o 08 61v) + S5, cos™ by,

o0

1 1
(&) = —§|5\2 - Uoofél) sin Oy, + §u2 cos? O,

We define (poo, 90, @ar) in the new coordinates by
1
Prel€) = (E) — T2 cos

(2.4.17) po(€) = G (E) — Ful cos b,

1
ox(E) = () — 0 cos? B
In the new coordinate system, So, S1,I'% ., and '} . are denoted as So, Sar, TS i,
and TY .. respectively.
DEFINITION 2.18 (New parameters (v, 3)). For each (us0, o) € B, we intro-

duce new parameters (voo, 3) € (0,00) x (0, 5) as follows:
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(i) For 6, € (0, 0((]1“*)) given by (23.2)), define v by
Voo = Uso SIN Oy
(ii) Let So be the straight oblique shock corresponding to point ug(1, tan fy,)
on the shock polar (Fig. 22) with the incoming state (uco,0). For such
So, let O, be the angle of Sy from the horizontal ground (i.e., {&2 = 0 in
the coordinates & before (Z4.T5])). Define 8 € (0, §) by
(2.4.18) B = 0g, — O.
Note that the definition of v, stated in (i) coincides with (Z23).

The weak shock configuration in the new self-similar plane is shown in Figs.
2823 for (vee, B) € (0,00) x (0, F).

sonic

(T

FIGURE 2.8. Weak shock solutions in the new self-similar plane
when 6, < HS(U“’)

(0, ivoo)

FIGURE 2.9. Weak shock solutions in the new self-similar plane
when 6% <#b, < 03“”)

We define a parameter set R by

(2.4.19) N i= {(vo0, B) : Voo >0, 0< B < g},
and define a map 7 : B — R by
(2.4.20) T (too, Uo) = (Voo, B) for (veo, 8) given by Definition 218

LEMMA 2.19. For any given v > 1, map T : P — R is a homeomorphism.
PROOF. Fix (U, ug) € B. By Definition 2-I8[(i), the corresponding half-wedge
angle 6 is given by

( fpolar (UO) )

(2.4.21) 0y = arctan
Uo

)

where fpolar i the function introduced in Lemma [A.3]
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By Definition 2I8((ii), a unit tangent vector Tg, of the straight oblique shock
So corresponding to (o, ug) is Ts, = (cosfs,,sinfg,) in the coordinate system
introduced right before transformation (2.4.15)). Substituting this expression of Tg,
into one of the Rankine-Hugoniot conditions:

(tos, 0) - Tsy = (U0, fpolar(t0)) - Tsy,
we have
Uso — UQ
fpolar (UO) -

From ([ZZT8) and (Z421)-(24.22]), we obtain

tan 95’0 — tan ew N uo(uoo - UO) - (.]l.1;>olaur(’u/0))2

(2.4.22) tanfg, =

tan B = = > 0.
1 + tan g, tan Oy 60 fpolar (Uo)
By Definition [ZT8(i) and (ZZ21]), we can express Voo as
Voo = Ueo sin(arctan(M)).

Uo

Therefore, map T : P — R is continuous.
In order to show that T : 8 — R is invertible and its inverse is continuous, for
fixed (voo, B) € R, we find a solution (us, ug) € P of the following equations:

(2.4.23) Uoo SIN Oy = Voo,
(2.4.24) Uog €08 0y = £ cot B,
(2.4.25) ug sec By, = 52 cot 8 — vs tan 3,

so that the definitions of v in (ZZ44) and (Z4I7) coincide. Combining (2:4.23)
with (Z424]), we have
(2.4.26) Uno = \/vgo + (€2 cot? B =: T (veo, B).
Using ([2.4.1]), we can rewrite ([2.4.26)) as
= |D<poo(—§£ﬁ) cot 3,0)].

Then we obtain from (ZZI3) that ue > My > 1.
Once u is given by ([Z426), we combine it with (Z424)-2428) to obtain

Uup as

(féﬁ) cot B — Vs tanﬁ) éﬁ) cot 8
TI(UOOMB)

Note that (—ﬁéﬁ ) cot 3, 0) is the & —intercept of line Sy from Lemmal[ZT7 Therefore,

it can be seen from Fig. 27 that 5(5) cot B+ uo = 5(5) cot B — veo tan 8 > 0. This
implies that ug > 0. Since tan 6, 5(‘” 5> 0 is obtained from (Z423)-24.24),

we conclude that (us,up) given by (m EZ27) is contained in .
Finally, the continuity of 7! follows directly from the definitions of (Ty,T»).

]

(2.4.27) ug = =: T3 (Voo, B).

For any given (veo, 8) € R, the {y—intercept ﬁéﬁ ) > 0 of the oblique shock So
of angle 3 from the & —axis is uniquely defined. Moreover, féﬁ ) varies continuously
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on € (0,%), and hm §( ) exists and is positive. Denote & := 52 |5 o0- Let ppr
denote po correspondlng to 8 =0. Then @, is given by

(2.4.28) on(6) =~ 5 IE” — vacd

REMARK 2.20 (The normal shock: Case = 0). For fixed v > 1 and v, > 0,
the straight shock of angle 8 = 0 from the horizontal ground (i.e., & = 0 in the new
coordinates £ given by (ZZ4.I3)) can be considered by taking limit 8 — 0+ in the
argument above. The state of 8 = 0 is that of a normal shock, which corresponds
to the state of ;> =1 with 6, = 0. Even though the case of # = 0 is not physical
because Us = oo we still put this case under our consideration as it is useful in
applying the Leray-Schauder degree argument to prove the existence of admissible
solutions of Problem for all (teo, u0) € Pweak-

REMARK 2.21. According to Lemmal[A.4] for each v4, > 0, there exists ﬂdv“
(0, %) such that, if the parameter sets Ryeak, Rdetach, and Rsirong are defined by

Ruweak = v U O{Uoo} X (07 ((jUOO))v

(2429) 9'{dctach U {Uoo} X {B(Um)}a
Voo) T
9“‘strong = U {Uoo} ( ( )7 5)7
then
(2.4.30)

T_l( wcak) ‘chaka T_l (%dctach) - mdctachv T_l (mstrong) - mstronga

for Puweaks Paetach, and Psirong defined by (Z3J). In Lemma 222 we will also
show that, for any v, > 0, there exists a unique BS(U“) € (0, ((iU“)) such that
T5(Voo, B) > ul®>=) if and only if 8 < 6(%") for use = T1(Veo, ), where ulte)
denotes the value of u(ek) for Oy, = 68",

For fixed (voo, ) € Rweak, let Mo be defined by ([Z4.6). In the proof of Lemma
217 it is shown that 0 < Mp < 1. This implies that the corresponding straight
oblique shock Sy intersects the sonic circle:

9Bco (u0,0) = {€ : [Dpo(§)| = co}

at two distinct points. For each 8 € [0, %), let £9 := (£,£5) be the intersection
point P; with the smaller &;—coordinate (see Fig. 2I0)). Moreover, let (ﬂﬁ), 0) be

the & -intercept of Sp. If £ > 0, then |Dyo| > co at (£ # ,0), which means that
an admissible solution in the sense of Definition 2.14] for (uoo, ug) = T 1 (vso, B) has
the structure shown in Fig. X8 On the other hand, if £§ < 0, then an admissible
solution for (e, up) = T ! (vs0, B) has the structure shown in Fig. 23l

LEMMA 2.22. Fizy > 1 and ve > 0. The &—coordinate £ of point Py satisfies

deg
dp

<0  forall Be (o,g) and lim & = -
-3
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FIGURE 2.10. Two intersection points of So with the sonic circle 9B, (uvo,0)

Therefore, there exists ﬂs(v‘”) € (0,%) such that

(B)
€0 >0 e Leo®”Ol oy g5 gy,

28
(2.4.31) €0 =0 = Peol@ Ol _1 g g= i),

O
oo Ol 1 for e (), ).

€9 <0 «—= =

In addition, Bg”x) satisfies the inequality:

(2.4.32) Blree) < glv=e),
PRrROOF. For M, and Mo given by (Z4.0), define

(2433) (QOmQO) = (Moo;MOC(’))'

For each 8 € (0, %), let £ = (£7%,£3") be the midpoint of two intersections of So
with 0B, (uo,0). By (24.0]), we have

(2.4.34) £ =& — coy/1 — M3 sin 8.
Since (£ — up, £5*) is perpendicular to So,
O po(8™) = 0= 07,00 (§™) = (—€1", €5 — Voo) * Ten
for a unit tangent vector T, = (cos 3,sin ) to So. Then we have
§" = (0, —vo0) = goc¥sh = (0, —¥s0) — goo(sin B3, — cos )

for the unit normal vector vg, to S pointing towards the £;—axis. This yields that

(2.4.35) £3' = —Voo + oo COS f.
We differentiate (Z411]) and (2:435]) with respect to 8 to obtain
de&y d d -
(2.4.36) & = —(soSin B + 9% (o5 3, oo _ Goo — 90 4., 3,

a8 48 ap 1-due '

and combine the results to obtain

~ dgo
g 1 B

(2.4.37) =— =6y tan .
df 1-382
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If :}% <0, then

_ 90 dg0
1 qo dge 1 2 .
1-gio T+l

A direct computation by using (Z4.6)-(2:49) shows that

dﬂ:(@)%(fy—l 2 MoodMo)

dgoe  \Mx Y+1 441 Mo dM,
(2.4.38) :(qoo )ﬁq_O(v—l 2M.,, dMO)
pPOqo doo \Y+1  (y+1)Mpd My
SV__lq_O
Y+ 1¢
Ifg%>0, it followsf1r0r110<l—g%<1tha»C
o d
I~ due | godao | 2
- g go dgeo ~ 7 +1
4 dgo

2
We apply inequality qod d9ee to derive from (Z4.37) that
1- g ;1@ v+1

de&r 2
2.4.39 —L < —
( ) dg — ~v+1

&Y tan 3 for all 8 € (0, %)

Next, we differentiate % = 1+ 'YT_l(qgo —q?) with respect to 3 and use (2.4.11))
to obtain

deg go dgo\dg
2.4.40 2 _(y 1 00(1___)_00
( ) 15 (v—=1a e daw) 45
2(y—1
> %vo@ sec ftan 3 for all 8 € (0, g)

From this, we have
(2.4.41) lim &'=0, lim co=o00, lim £§ = —ooc.

B=5— B—%— B—5—
Notice that

d g

2.4.42 — >0
( ) a5 >

which can be obtained from differentiating (2412 with respect to 3, where 0 <
Mo <1< My is used. From ([24.10), we obtain
dMo dM(g dMOO _dMo dqoo

(2.4.43) a3 —am. dp —am. g <%

Therefore, we conclude from (2434) and the monotonicity properties of

(€3, c2), Mp) with respect to 3 that 88%9 < 0 for all 8 € (0, %). O
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2.5. Main Theorems in the (v, §)-Parameters

With Lemma 2.9 and Remark 221l we can restate Theorems ZI5H2.T6] by
using parameters (Veo, 3) € Ryeak-
For fixed v > 1 and (v, 3) € R, we recall the definitions of (Yo, Yo, PA)

given by (Z4.1), (244), and (ZZ28)) as follows:
(2.5.1)

1 1 1
Poo = —3l€ — Ve, o = —5 | +uott — vt on =~ 1€ — vl

for &) given by @ZI4).
Let

po = p(|Dvol*,00).  px = p(IDen |, on)
for p(|Dyp|?, ) defined by [ZZZ). Note that & satisfies that & < ey for cn =
p;/Tl. Define
OO = (U0,0), O_/\/ = (0,0)
Since & < e, 0B, (Oy) intersects with Sy = {&2 = &V} at two distinct points.
For each § € [0, §), & = fo(&1), obtained by solving the equation: ¢ (&1,82) —
vo(&1,&2) =0 for &, is given by

(2.5.2) fo(&) =& tan B+ &5

Note that So = {&2 = fo(&1)} intersects with 9B, (Op) at two distinct points.
The & —intercept of Sp is

(2.5.3) Ps = (€57 cot 8,0) =: (¢, 0).
The line passing through Pg and O, = (0, —v) is given by
(2.5.4) Ly = {€: &= ful&1) = tanbo (& — 7))
for " .
- i Z
tan O = 556) with 0 € (2,71').

Then L., represents the horizontal ground in the self-similar plane before the linear
transformation (Z4.TH]) of the self-similar variables (£1,&2). Moreover, tan 64, and
L, depend continuously on (vs, 3).

DEFINITION 2.23. For each vy > 0 and 3 € [0, ), define
O = (0, =), O = (up,0) = (v tan 8,0), O := (0,0),
As =RI\{E R : & < ful&)},
T i = 0Be, (On) N{&1 > 0,0 < & < &)},
es, = (cos B, sin 3).
For ¢oo, v, and ppr given by ([257]), define
Sv={€ : vec(§) = on(€)}, So=A{& : vuc(§) = vo(§)}-

Let @V be the unbounded open region enclosed by S, Fé\gnic, and line

{(€1,0) : & > €%} so that OV is a fixed domain for all 5 € [0, ((ivm)) for fixed
Voo > 0. Denote the two points P, and P3 by:

(2.5.5)

N
sonic?
N

sonic*

e P, — the intersection point of line & = §é\/ and I"

e P; — the intersection point of the & —axis and I'
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&

P, Fsho;lf/ [ I,
(P
So ; A
L Q
< B QO Fg)nic Q Fﬁ)’nic
~ &

\RN\\\& 0
\\N

NS
A\

FIGURE 2.11. Admissible solutions for 8 < BSJ"")
&

Donoae | -~

N/ @ v\ ooV

I \QQ\\\\ \O

FIGURE 2.12. Admissible solutions for Bs(v"") <Bg< Bc(lv"")

For each vy, > 0 and S € [0, s(v‘”)), define
TS e = 0B.o (00) N {&1 < 0,0 < & < fol&)}
Set the two points P, and Py as

o (P} =T2 . N{& = fol&)},
o {P1} =TQ.N{& =0}

Let Q€ be the bounded open region enclosed by Sp, I'C ., and the line segment
PgPy.
By Lemma 2.22] we have
lim |P1 — Pﬂ‘ = lim |P1 — P4‘ =0.
BB — BB —

This implies that, as § tends to Bs(v"") from the left, 9 . and QO shrink to a

sonic

single point Pg = P; = P,;. Therefore, the definitions of re .., P, and Py for
B e [ﬁS(U“), %) are given by

(2.5.6) Pouic = {P1} = {P1} = {Ps}.
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DEFINITION 2.24 (Admissible solutions with parameters (voo, ) € Ryeak). Fix

v > 1 and (Veo, 8) € Rweak, and let (poo, 9o, @ar) be defined by ZEI). For Se
and Sy given in Definition 2.23] define

Soses = So N{=& cot B< &, <MY, Spraen = Sy N {6 > €2}

A function ¢ € C'I%C (Ap) is called an admissible solution corresponding to

(voo, B) if @ satisfies the following properties:
Case I. g € (0, (v‘x’)).

(i) There exists a shock curve T'ghocx With endpoints Py = (£9,£8) and P, =
(&), &) such that

(i-1) Curve I'ghock satisfies
(257) 1—‘shock - Aﬁ \ Bl (000)7

where 0B1(0,—vs) is the sonic circle of the state in
Q= Ag \ QP UQUON;

(i-2) Curve I'ypoe is C? in its relative interior. That is, for any P €
Cshock \ {P1, P2}, there exist a constant 7 > 0, a function f € C?,
and an orthogonal coordinate system (S, T) in R? such that Tgpeci N
B,.(P)={S = (1)} N B.(P);

(i-3) Curve So seg U Lshock U Sarseg is C', including at points P and Px;

(1‘4) Fshocka Fé\(/)'nicvrgnica and chdgc = {52 - Ovuo — Co < 51 < CN} do
not have common points except for Py, Ps, P3, and P;. Thus, I'spock U
V. uro . u I'yedge is a closed curve without self-intersection.

sonic sonic

Denote by € the bounded domain enclosed by this closed curve.

(ii) ¢ satisfies the following properties:
(ii-1) @ € Cie (A5) N Cloe(Ap \ S seg U Tshock U SN seg )

loc

(ii-2) ¢ € C3(Q)NC2Q\ (T2, UTN )N CH);

sonic sonic

(ii-3) For QO defined in Definition .23}

Yoo A\ QOUQUON,
(2.5.8) P=1po inN°,
on  in OV,

where QO shrinks to {Ps} = {P1} = {P,} when g = B,
(ii-4) ¢ satisfies

- Eq. @1I9) in Q with p(|Dyp|?, ) defined by ([2.4.2),

- the slip boundary condition ¢¢, = 0 on I'yedge,
- the Rankine-Hugoniot conditions:
[Sp}rshock = [p(|Dg0|2, QO)DQO ’ nSh}Fshock =0

for the unit normal vector ngy to I'ghock towards the interior of
Q.

(iii) Eq. @II9) is strictly elliptic in Q \ ( sonic Y I‘ﬁ\gmc)
(iv) max{po, pxt < ¢ < oo in Q.
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(v) Let es, be the unit vector parallel to So and oriented so that
es, - e > 0, and let eg,, be the unit vector parallel to Sy and ori-
ented so that eg,, -e; < 0, where e; is the unit vector in the &;—direction,
i.e., e; = (1,0). That is,

(2.5.9) es, = (cos B,sin ), es, = (—1,0).
Then

(2.5.10) s, (Poo —¢) 0, ey, (Yoo — ) <0 in Q.

Case II. 5 € | §v°°),6(gv°°)):
(i) There exists a shock curve T'ypock with endpoints Pg = (— éﬁ ) cot B,0) and
Py = (&), €)) such that
(i-1) Curve I'ghock satisfies
(2.5.11) Fshock € (Ag \ B1(Ox)),

where 0B1(0,—vs) 1is the sonic circle of the state in
Q= Ag\ QU QV;

(i-2) Curve Ignock is C? in its relative interior: for any P € Ishock\{ Ps,P2},
there exist 7 > 0, f € C2, and an orthogonal coordinate system (S, T')
in R? so that Tspock N B (P) = {S = f(T)} N B,(P);

(i-3) Curve Igpock U Sy is C1, including at point Py;

(1'4) I1shock7 Fé\(/)'nica and Fwedge = {62 = 07 _556) cot 6 S 51 S CN}
do not have common points except for Pg, P, and P;. Thus,
Tshoek U V.U I'yedge is a closed curve without self-intersection.

Denote bysfln 1‘(c:he bounded domain enclosed by this closed curve.
(ii) ¢ satisfies the following properties:
(ii-1) ¢ € Cle (A5) N Cloc(Ag \ Tanock U SN seg);
(i-2) ¢ € C3(Q)NC2Q\ ({Ps} UTX,,.)) N C (Q);
(ii-3) De(Ps) = Dpo(Ps) and
Yoo N Ag\QUON,
(2.5.12) p=19po at P,
o in QY
(ii-4) ¢ satisfies
- Eq. @1I9) in Q with p(|Dyp|?, ) defined by (2.4.2),
- the slip boundary condition ¢¢, = 0 on I'yedge,

- the Rankine-Hugoniot conditions:

[Pl ea = [P(ID@]?, ©) D - np]r 00 =0

for the unit normal vector ngy to I'shock towards the interior of

Q.
(iii) Eq. II9) is strictly elliptic in @\ ({Ps} UTN ).
(iv) max{po,pn} < ¢ < poo in .

(v) ¢ satisfies (Z510).
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REMARK 2.25. The inequalities in (Z5.10) for two directions eg, and eg,,
imply that

(2.5.13) Oe(Poo — ) <0 in Q for all e € Cone(eg,,es, ),
where
(2.5.14) Cone(es,, es, ) := {a1es, + azes,, : a1 >0, az > 0}.

LEMMA 2.26 (Entropy condition of admissible solutions). Let ¢ be an admis-
sible solution corresponding to (Voo,8) € Rweak in the sense of Definition 2.24],
and let Dgpoex be the curved shock satisfying condition (i) of Definition 224 Let v
be the unit normal vector to I'spock towards the interior of Q. Then the following
properties hold:

(a) Ouoo > 0w >0 on Lgnock;

(b) Let
OuPoo v
Moy i =———"—— =0pP0, My, :=—""-">—
T Dyl o) " |Dyl? )
for
~—1
(2.5.15) c(lal,2) = p= (laf*,2),

where p(|q|?, 2) is defined by @42). Then
0<M, <1< Moo,u on I'shock -

PROOF. Denote w := oo —¢p. From 2I119), (Z4.2), and [Z4.3]), it can directly
be checked that

2 2 2 2 :
(c* — w0, Jwe g, — 20, Pe,Weyg, + (€7 — 9E, JWepe, =0 in Q

for ¢2 = p?~Y(|Dyp|?, ), where p(|D¢l|?, ¢) is given by ([242). By condition (iii)
of Definition 2:24] the minimum principle applies to w so that w cannot attain its
minimum in €2, unless it is a constant in . By conditions (ii) and (iv) of Definition
2241, we see that w > 01in Q, and w = 0 on Tgpoek. Furthermore, w is not a constant
in Q, because Og, W = —Vso ON I'yedge by ([Z4T)) and the slip boundary condition
O¢,0 = 0 on I'yeqge, stated in (ii-4) of Definition Then it follows from Hopf’s
lemma that d,w > 0 on Igpoek. This implies that

(2.5.16) OpPoo > Opip on Ighock-
If 0,p(P) =0 for some P € Tghock, then it follows from the condition:
p(|Dgp\2,<p)8,,g0(P) = 0y oo (P)

stated in (ii-4) of Definition that 0, p(P) = 0, which is impossible, due to
@ET6). Therefore, we have

(2517) |(9,/90‘ >0 on I'snock-
By conditions (ii-2)—(ii-3) of Definition 224 we have
Dp(Py) = Doy ().
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Then it follows from the definitions of (¢, par) given in ([Z5.J) and conditions
(ii-4) and (iv) of Definition 2:24] that

Dyos — Doy

2.5.18 P
(2.5.18) YPe) = (D~ Do

=(0,-1),
(2.5.19)
(oo = 9)(P2) = |Dgoo — Dipw| = v >0, 0up(P) = dppnr(P) = &5 > 0.
Similarly, at P;, we have
Do(P1) = Dpo(P1),
so that (Z43), (Z435), 2439), and (ZZ44T]) yield that

D‘)Ooo — DSOO
v(P _— sin 8, — cos ),
(2.5.20) N (Poo — @) (1) = ‘D@oo — Dyo| = veo sec 8 > 0,
(2.5.21) Opp(P1) = Oppo(P1) = Oupoc (P1) — vso seC f = &5 > 0.

Then statement (a) follows directly from (Z5.10)-(Z521I) and the continuity of
Oy along T'gpock up to its endpoints P; and Ps.

Note that the calculations given in (ZZ4.8))—(249) are still valid when (po, Mo,
M) are replaced by (p, My, Moo ) on I'shock- Then we see that, on I'sphock,

i Mo v
2.5.22 i Doow
(2.5.22) p ML
-1 _ _ -1
(2.5.23) (1+ VTMg)\MV| = (14 VTM2 V)Mo | 5

This is because (Z48)-@249) are all derived from the Rankine-Hugoniot condi-
tions stated in Definition 2224)(ii-4). By the result obtained in statement (a) and
the Rankine-Hugoniot condition: pd,p = Ou,¢ee 0N Tghock, (B5.22) implies that

Moow 1 on Tshock. Since (M, My, v) satisty (2.5.23) and M, # M, on Tshocks
it follows from the observation right after (Z:4.9) that

O< M, <1< Mooﬂj on Iyhock-
This completes the proof of statement (b). O

n (252)—(254) and Definition [224] the values of f%’g), féﬁ), 0, co, and up
depend continuously on g € (0, §) with

i 0. N 0).
51)18+(§ 762 7CO7UO) ( 00762 » Ty CN s )

As a result, we obtain
lim [Py — (—€2,6) =0= lim |P,—(—
Jim 1P = (<6760 =0 = lim [Py~ (—ex0),

513& lpo —enllcsro)y =0  for any B> 0.

For § =0, we define Py, Py, Ag|g=0, and So seg|g=0 by
Pl:(_ fzﬂgé\[)v P4:(_CN70)5

(2.5.24)
Aﬁ|ﬁ:0 =R xRy, SO,seg|B=0 = {(flafé\[) & < —§f2}-
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Then two points Py and P, depend continuously on 3 € [0, 7), so that Ag and
S0,seg depend continuously on € [0, 7). Using this, we extend Definition 224 up
to 8 =0.

DEFINITION 2.27 (Admissible solutions when 5 = 0). Given v > 1 and v, > 0,
a function ¢ € COY(R x R,) is called an admissible solution corresponding to
(vso, 0) if o satisfies the following properties:

(i) There exists a shock Tgpoex with endpoints P, = (—ff/,ﬁév) and P, =
&V, &)) such that

(i-1) Curve T'gpoex satisfies

(2525) Fshock C (R X RJr) \Bl(OOO)’

where 0B1(O«) is the sonic circle of state Ox = (0, —vo) in
0= R xRy)\QPUQUON;

(i-2) Curve Tghoek is C2 in its relative interior; that is, for any
P € Tshook \ {P1, P2}, there exist r > 0, f € C?, and an orthog-
onal coordinate system (S,T) in R? so that ['shocx N B.(P) = {S =
H(T)} N B,.(P);

(i-3) Curve So seg U lshock U Sarseg is C', including at points P and Ps;

(i-4) Tsnock, T i T ier and Tyedge i= {(£1,0) : —cn < & < car} do not
have common points, and 'gpocx U I’é\gnic U I‘Smic U 'yedge is a closed

curve without self-intersection. Denote by € the bounded domain
enclosed by this closed curve.

(ii) ¢ satisfies the following properties:
(ii-1) o € COMR x Ry)NCH(R x Ry) \ So,seg U Tshock U Snr seg) i
(11-2) 2 € 03(9) N 02 (ﬁ\ (Fg)nic U F'S/\gnic)) n Cl(ﬁ)7
(ii-3)

Yoo in (RxRy)\QOUQUON,
B {(pN in Q° UQV;
(ii-4) ¢ satisfies
- Eq. @I1I9) in Q with p(|Dyp|?, ) defined by 242,
- the slip boundary condition: ¢, = 0 on I'yedge,

- the Rankine-Hugoniot conditions:

[Pl = [P(ID@]?, ©) D - nh]r 00 =0

for the unit normal vector ng, to I'gpocx towards the interior of
Q.

(iif) Eq. II9) is strictly elliptic in @\ (T2 ;,, UTY ).
(iv) on < ¢ < o in Q.
(V) Oe(poo — ) <0in 2 for all e € R x RT.

REMARK 2.28. Condition (v) of Definition 2:27] is a continuous extension of
condition (v) of Definition 2.24]in the sense that
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(i) Cone(es,,eg, ) for 8 > 0 defined by ([2.5.14]) monotonically increases as
B > 0 decreases in the sense that, if 0 < 8; < 2 < 3, then

Cone(eg,,, 65'/\/‘)‘52 C Cone(es,,, eSN)‘ﬁl )

(i) Up<p<zCone(es,,es,)|s = R x RY.

REMARK 2.29. Similarly to Definition 2,10l it can directly be checked that any
admissible solution corresponding to (vso, 8) € Rweak U {(Ve0,0) : Voo > 0} in the
sense of Definition [2.24] or [2.27] satisfies the following properties:

(i) € Wige (Ap);
(il) p(IDel?,¢) > 0 in Ag for p(|Dy|?, ¢) defined by 2.4.2);

)
(i) (p(|Del* @), p(|Del?, ©)|Del) € Li, (Ap);
(iv) For every ¢ € C§°(R?),

/A (p(ID¢|?, ) Dy - D¢ — 2p(|Dp|?, 0)¢) d€ = 0.
B

Specifically, property (iv) here is obtained by condition (ii) of Definitions
and 227 and via integration by parts. Property (iv) indicates that any admissible
solution ¢ is a weak solution of the boundary value problem rewritten from Problem
29 with respect to parameters (voo, 8). In particular, a function ¢ satisfying (i)—(iv)
is a weak solution of the boundary value problem consisting of equation (2.1.19)
in Ag and the slip boundary conditions 8,0 = 0 on dAg, where we note that

OAg C {(&1,82) + &2 =0} U Ly,

LEMMA 2.30. For any given v > 1 and ve > 0, there exists at least one
admissible solution corresponding to (vs,0) in the sense of Definition 221

PROOF. The conditions stated in (ii-4) and (v) of Definition 227 imply that

Fshock = {(51759/) : _6{\/ < 51 < 5{\[}7

that is, So seg U I'shock U SA7,seg is @ normal shock. Therefore, the pseudo-subsonic
region Q2 is enclosed by TO . TN . T\ cdge, and the line segment (—&J, &) x {€)}.

sonic’ * sonic?

It can directly be checked that a function ¢perm € C%'(Ag|s—0) defined by

e in (RxR)\QOUQUON,
Puorm on mQPuUQUQV

is an admissible solution corresponding to (vs, 0) in the sense of Definition 2271 O

For a fixed (Voo, ) € PRweaks let ¢ be an admissible solution corresponding
t0 (Veo, 8) in the sense of Definition Let (uno,up) be given by (ueo,up) =
T V00, 8) € Puweak for map T from Lemma Let 6y, be given by (2421).
For each &' = (£1,&5) € Ag, let & = (&1,&2) be given by

cosfy sinfy) " Ugo €OS O

T _ w W NNT o) W

¢ = (—sin@w cos@w) <(£) + < 0 >) '

This is the inverse transformation of (ZZTIH). Finally, let a function ¢ be given by

(2.5.26) o(&) = (&) + %(uoo cos )2 for & € Ag.
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Then ¢ is an admissible solution corresponding to (e, o) € Pweak in the sense of
Definition 2141 From this perspective, Theorem 2.15]is equivalent to the following
theorem:

THEOREM 2.31 (Existence of admissible solutions). For any given v > 1 and
(Voo, B) € Ryeak, there exists an admissible solution in the sense of Definition 2.241

REMARK 2.32 (Non-existence of self-similar strong shock solutions). Fix v > 1.
For (Voo 8) € Rdetach U Rstrong, let (Ag, Yoo, 0, ar) be defined as in Definition
223 We call ¢ € C%'(Ag) an admissible solution corresponding to (veo,3) €
Rdetach U Rstrong 1f it satisfies conditions (i)—(v) stated in Definition [2.24] for Case
I1. By the convexity of the shock polar for steady potential flow, which is shown in
Appendiz [Al and condition (iv) of Definition 224} it follows from the non-existence
result as proved in Appendiz B (see also [25]) that there exists no admissible solu-
tion corresponding to (veo, ) € Rstrong in the sense of Definition

The existence of admissible solutions corresponding to (veo, B((iv‘”)) is still an
open question.

THEOREM 2.33 (Regularity of admissible solutions). Giveny > 1 and (veo, 8) €
Ruweak, let @ be a corresponding admissible solution with the curved shock Usphock in
the sense of Definition 224 Then the following properties hold:

Case 1. 5 € (0, (v°°)).

(a) Tsnock is C™ in its relative interior, and ¢ € C=(Q\ (T . Somic U Fé\gmc)) N
(@)
(b) Define a set D by
(2.5.27) D =Agn{§ : max{po(§), oa(§)} < vee(§)}-

For a constant o > 0, define DO and DN by

(2.5.28) N
DY =Dn {£ dist{¢&, Fbomc} <o}n BCN(ON)
for ey = pﬁ& 1)/2, = pg D72 , Oo = (up,0), and Op := (0,0). Fix
any point & € (T SOHICUFé\ng)\{Pl, Py}, and denote d := dist{€o, Tshock } -
Then, for any a € (0,1), there exists a constant K < oo depending on
(oo, 7, €0, @, d) and |[@llcrrnpgup)) such that
(2.5.29) el OBy (€)N(DS ,UDY ) = = K
(C) For any & € ( sonic Y Pé\gnlc) \ {P17 P2}7
1
(2530) 51;21’2 (DTTSO - Drr max{goo, SON}) (5) = ﬁv

where r = €| near T .. and r = |€ — (uo,0)| near TS

sonic ’

(d) Limits lim D%*p and lim D?p do not exist;
£E— P £&— Po

£eq £eQ

(€) S0 seg UTshock U SN seg @5 @ C?—curve for any o € (0,1), including at
points Py and Ps.

Case I1. 3 € [Bs (veo) gt v“’))
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(a) Tshock is C* in its relative interior, and ¢ € C°(Q\ ({Ps} UT
CHHQ\ {Ps}) N CH¥(Q) for some a € (0,1);
(b) For a constant o > 0, let DY be defined by @528). Fiz any point

50 € Fsomc \ {P:}, and denote d := dist{&€o,Tshock}. Then, for any
€ (0,1), there exists a constant K < oo depending on (vso,7, €0, @, d)
and llellcrinpay such that
EN)

N

SOI’IIC) )

1611 o 5755 mEymmr, < K

(C) FOT a'ny SO E FbOHlC \ {P2}7

gle (DerO - DM‘PN) (&) = mv

£eq
where r = |€|;
(d) Limit lim D?*p does not eist;
662152
(€) Tshock U SN seg i @ CH%—curve for the same & as in statement (a). Fur-
thermore, curve I'shock U Sprseg \{P3} is C?2 for any a € (0,1), including
at point Ps.
Since Theorems 2.T5HZTE] follow directly from Theorems 2-3T] and 2:33] through
[25.24), the rest of the monograph is devoted to establishing Theorems [2.31] and

233
We will prove Theorem 2.31] by solving the following free boundary problem:

PrROBLEM 2.34 (Free boundary problem). Given v > 1 and (v, 8) € Ryeak,
define ¢g and I'sonic by

(2533) wp = max{gao, 90./\/}, Lsonic := Fsonlc U Fé\gnlc

Find a curved shock I'gheer and a function p € C3(Q)NC%(Q\ (Fgmcuf‘é‘gmc))ﬂCl ()
satisfying the following:

(2.5.34) Eq. @ZI19) inQ,

(2.5.35) Y = Vg, Dy = DSOﬁ on I'onic,
(2536) 85290 =0 on Fwedgeu
(2537) © = Yoo, pDY -V = Do - Vepy on I'shock;

where vy, is the unit normal vector to I'shoek towards the interior of 2, and p is
defined by (Z42). Note that I'? .. is a closed portion of a circle, which becomes

one point for 3 > BY=) " Therefore, the boundary condition (Z5.35) on 'Y

sonic
becomes a one-point boundary condition for 5 > BS(U“).

REMARK 2.35. It can be checked from the definitions of (po,p) given in
([2.57) that, for each g € (0, ), there exists a unique £} such that

Yo for & < &7,
©p(€1,€2) = { o = pn  at & = &7,
1% for & > &F.

Moreover, &5 satisfies that f@(fl) &Y and fPﬁ

on I'Y andcpg—cpNonF

sonic

< &7 < 0. In particular, g = po

sonic*
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2.6. Further Features of Problem 2.34

Fix v > 1. For (veo, ) € Ryeak With 8 < ﬁév‘x’), let P; and P» be the points as
defined in Definition 223l Let Lo be the line segment connecting P; with P,. For
0 < v < 1, there exists a unique line L, that passes through P, and is tangential
to 0B1(0Ox) so that the intersection point of L., with 9B;(O4) has a negative
&1—coordinate; see Fig. 213l Let tanfp and tan 6., be the slopes of Lp and L,
respectively. Then

>1  iff 0o < O,

dist(Lo, On
ist(Lo )){<1 i B > o

Note that tan 6., is independent of 5 € (0, Bs(v‘”)), and O = (0, —vs0).

Sy (6.6

F1GURE 2.13. Top: 0o < 0; Bottom: 6o > 0

PROPOSITION 2.36. For any given v > 1, there exists a constant v, € (0,1) so
that, if 0 < veo < vy, there is (V=) € (0, b(v‘x’)) such that

(261) diSt(L@,Ooo) > 1 for B € (O,B(vw)),
(2.6.2) dist(Lp,Ou) < 1 for B € (B=), glv=)).

PROOF. In this proof, we consider only case v > 1. Case v = 1 can be handled
similarly. The proof is divided into seven steps.

1. Claim: For each v > 1, P, = (f{\[,fé\[) and pyr depend continuously on
Voo > 0 and

. N . o N
(2.6.3) lim &' =0, Jlg}HpN—v(xl)lL%Jrﬁz =1

Voo —0+ v
Substituting po = par into (ZZH]), we have
pﬂy_1 -1 1
(2.6.4) Fi(pnr, vo0) 1= A,;T(pj\/ —-1) - 51)20(;)]\/ —1) =22 =0.
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We differentiate F; with respect to par to obtain

-2 P]\fl -1 1,
(265) 8PNF1 = p]\/ (p/\/ - 1) + ﬁ - 57)00.
2

-1 o1
Using (2.6.4) to obtain that % = 51}20 + p/:;oi L substituting this expres-

sion into (ZZ6.H), and then applying par > 1, we have
y—-2 vl
0, F1 =plr -1 > 0.
o 1 = pA (o )erN_1
Then the implicit function theorem implies that pas is of the C'-dependence on
Voo > 0.
The C'-dependence of P, on vy, follows directly from (2.2.4]) and

&' =k - @)

By the C'-dependence of pyr on v, we have

dpn
d Vs

_ dFl(PN(“OO)a“OO)

0
dvee

= 0o b1

= (ox = Do

Since 0,, F1 > 0 is shown above, then % > 0. This implies that par(veo) is
bounded above by a finite constant for v, > 0 sufficiently small so that it follows
directly from (2.6.4) that

(2.6.6) lim pp =1

Voo —0+

By (Z4.38)) and ([Z6.6)), we find that lim0 . Moo (Py) = 1. We combine this limit
Voo —>

with (ZZ4I4) to obtain
(2.6.7) lim & =1.

Voo —0+
Finally, hH}H f{v = 0 is obtained from &Y = \/ A — (&M)2, and the limit of &y
Voo —>
is given in ([ZX6.7). The claim is verified.

2. For each > 1, there exists a small constant o > 0 so that &V < 1 whenever
0 < V0 <o. Fix y> 1. For 0 < vy, < 0, define a function F : (0, S(v“’)) — R by

(2.6.8) F(pB) :=tanfp — tanf.

Claim: For any given v > 1, there exists a constant v, € (0,0] so that, if
0 < Voo < Vs, there is fv=) € (0, év“’)) such that

F(3)<0 for all B € (0, 3(v=)),
F(3)>0 for all B € (B=), glv=)),
Once the claim is verified, then (ZGT]) directly follows.

3. We first show that, for each vy € (0,0], F'(8) > 0 holds for all 8 €
(0, B8")). Fix v € (0, 0.
We use the equation of line L:

(& — &) tan b — (2 — &) =0

(2.6.9)
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to see

1. N NY. (0. —
diSt(Loo,(O,—”Uoo)): |(tan000, 17 fl ta'neoo +£2) (Oa Uooa]-)| :1,

V1 + tan? 0

and then solve it for tan 0., to obtain

V(oo + 62 = 1) + ()2 — (v + &8

tanf,, =

- (&)
Let (¢oo, go) be given by (2433). By 2434)-2438) in the proof of Lemma
2220 we have shown that £ = —ve + oo cos 8 — sin Bv/A with A= ¢ — ¢3.

Substituting this expression into £ = up — /¢ — (£€9)? and then using (2411

and ([Z5.0]), we have

€9 = —vtan § — (cosﬁ A —qd +q@sin6),

so that

2 — & v —qo cos 4 sin BVA + &Y
&N —€9  cos VA + goosin B+ &N
Since tan 8, is independent of 5, we have

G(B)
(5{\/ + oo sin B + cos fv/A)2’

tanfp =

P/(p) =

where

[oW

A

G(B) =( ) (g0 + €Y sin B — (Vo0 + &) cos B)

=

1
Qoo + m 1
4 (VE = ) (VB + € o5+ (0 + ) sin ).
By ([24.33), (2440), and (Z443), we obtain
do _dep(1—Mp)
g dg
A direct computation yields that
oo + EV sin B — (v + &Y ) cos B = (P — P) -ng, >0

8

>0 for all 8 € (0, g)

for the unit normal vector ng, to So pointing towards Os = (0, —vs) for all
B € (0, ﬂb@*)). Combining the two previous inequalities, we have

G(9) > (VB = () (VE + 6 cos i+ (vee + &) sin ).

Therefore, we can conclude that F’(3) > 0, provided that /A — ddLEC > 0 for

0<p< 5§”°°) can be proved.

A straightforward computation by using (ZZ9), (Z4.30), and 243]) yields
that

dg _ (a' —gp™)tan s
dg 0%+ 4
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Using (Z4.8) and ([Z.Z.33)), we obtain that ¢, = (qﬁ)v_l. Then

qgo
N _(ono)2 g e (1- 6 (@' —qb") tan? ﬂ)
1 —2 :
dg q’(yg (qgo +QO)
(=)
dgoo

It can be checked directly that a5 > 0, by differentiating ([2.4.12) with respect
to 8 and applying (ZZI0). Then we have

>+ g5 dgoo
2.6.10 Tl gt = 70
( ) qOO do tanﬂ dﬂ

mce = Voo t Qoo COS O — SIN A > or B < fBs ™7, implies that
Since £F B —sinBy/A > 0 for 8 < ') implies th

g4 > c2 sin? 6. Substituting ch = p“(f;l = (%)771 into this inequality, we find

> 0.

that ¢! < m2 ik which implies that

<1 for all g € (O,BS(”“)),

where K = dq°° >0for 0 <3< ).
Therefore, F'(3) > 0 for all 8 € (0, (v‘”)).

4. At B =0, 9 = &Y. This directly yields that F(0) = — tanf,, < 0.

5. Fix veo € (0,0]. At 8 = i), €9 = 0. Let €97 denote the & —coordinate
of point P; at § = ﬂ(v“ Then we have
a—>b
F(BLr=)) = Y
(1= ())& =€)
where
a:= (& = &77) (v + &)&Y - &7 () - 1),

(2.6.11)

be= (6 —€07) (v + €92 + ()2 - 1),

Claim: £°" depends continuously on v € (0, 0].
This can be seen as follows: Fix 8 = A{*=). Then

(5-1) Since €€ = 0 at 8 = B, we derive from ZZ34)—(ZZ35) that

coy/1 — M%sin Bl=) = —vg + oo cos B,

We combine this equation with [2ZZ417]) to yield that Me = sin 5§”°°> and
substitute this into (Z4.8]) to obtain
y+1

(2.6.12) 90 = sin? g,
0%
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(5-2) By ([Z47) and the Rankine-Hugoniot jump condition: pogo = ¢oo, We

have
y—1 2
po —1 1 (gx L,
P o)i=Po T o (e 22
2(P0s 4oo) =1 T3 (po> 5 50
The fact that 0,F5(po, ¢o) = p%(c% —¢%) > 0 implies that po is of the

C'-dependence on oo, S0 that go = %’ is of the C'-dependence on ¢s.
(5-3) Tt can be derived directly from [Z4T17]) and [26.12) that

(2.6.13) F5(qo0s Voo) = (Goo — QO)2(1 - ZO ) — 03, =0,

where qo is regarded as a C''—function of g, by (5-2). A direct computa-

tion by using (Z4.11), (Z43]), and (Z6.12) shows that J,_ F2(¢oos Voo) >

4V COS 58(“‘*)
v+l

(5-4) §§9* is the & —intercept of Sp so that §§9* = —Us tan ,BS(U“) —go cse ,BS(U“’).
By the C''~dependence of A{"*) and go on ve, we conclude that 9% is
of the C'-dependence on v.,. The claim is verified.

6. Claim: For a and b defined in (2.6.11)), lir%+(a2 ) =1.
Voo —
It suffices to show that sup,_c (o] 1€97] is bounded, due to (Z6.3). From

> 0. This implies that g is of the C'~dependence on v.

y+1
([2:6.13)), we have two cases: viiLr%H_ ZT(Z =1 and vii_%r % =1
For the case that lim <2 = 1, (Z6I2) implies that sup g is finite. Then
Voo =0+ oo (0,0]

it follows from
Goo = Dpoo(P1) mso = —€7 sin B + veg cos 5*)
that sup, ¢ (o,0] 1€ sin 65(%")\ is finite. We multiply (ZB.I2) by (¢£°7)? to obtain

0*\2 O* .+ 2(voo) 2q
sup (67 )" < sup (&7 sin L)) —7T <0,
Voo €(0,0]) Voo €(0,0] 90
where we have used the fact that ¢, > 1 for each v, > 0.
y+1
ple)

For the case that lim
Voo —0+ qgo

2 —1 -1
1 1 Al 1 1 q2 1
S(=) =— qoo+1__2 +_§—qoo+1+_-
2 \ qo Y—1\¢ a5 27 v-1¢} 2
From this, it follows that sup, ¢, |%| is finite. Then we use (Z.6.12) to see
that sup,__¢(0,0] doo 18 finite. Finally, we repeat the argument for the case that

— = 1, we substitute po = ‘(% into F3(po, geo) =0

to obtain

lim 2© _1 to conclude that sup (ﬁ? *)2 is finite, which implies the claim.
Voo =0+ (oo Voo €(0,0]

7. By the result obtained from Step 6, there exists a constant v, € (0, o] such

that F'(0) < 0 < F( §U°°)) for all v € (0,v.]. Finally, the monotonicity of F'(53),
proved in Step 3, yields Proposition O
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When ([2.6.1)) holds, the existence of a solution of Problem 234 has been proved
in [26]. This implies the global existence of a weak solution of Problem 29 with the
structure of Fig. 5] provided that (26.1]) holds. In this monograph, we establish
the global existence of admissible solutions for all (veo, 8) € Rweak (i.€., the global
existence of weak solutions to Problem for all (teo, 1) € Pweak ), which includes

the case that (Z.6.2) holds, or the case that 8 > L),
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CHAPTER 3

Uniform Estimates of Admissible Solutions

As in [I1], we employ the Leray-Schauder degree to prove Theorem 231l In
order to construct an iteration set (as a subset of a properly defined Banach space)

and an iteration map, we first establish uniform estimates of admissible solutions

corresponding to (v, 3) with respect to 8 € [0, c(iv“’) —e¢] in the sense of Definitions

2.24] and 2.27] for each vy, > 0 and small ¢ > 0. In particular, it is crucial to
establish the uniform estimates of the size of pseudo-subsonic region Q and the
pseudo-potential function ¢ restricted to Q in properly chosen norms. Following
the approach of [11], we establish various uniform estimates of admissible solutions
in the following order:

e Strict directional monotonicity properties of ¢ — ¢,

e Strict directional monotonicity properties of ¢ — @ and ¢ — po,

e Uniform positive lower bound of the distance between I'snock and I'yedge
away from Pg,

e Uniform positive lower bound of dist(I'shock, 9B1(0x0)),
e Uniform estimates of the ellipticity of Eq. (21.19) in Q,

e Uniform weighted C“ estimates of admissible solutions in €.

Fix vy > 1and ve > 0. Foreach 8 € [0, §), let (¢oo, oA, w0) and (Ou, O, Onr)
be defined by Definition We also follow Definition for the notations of
(TN .79 ) and (Py, Py, Ps, Py).

sonic’ * sonic

Note that the definitions of (I'Q .., P1, P,) are different for the respective cases
B e [O,ﬁb(”x)) and g € | (Vo) %), but they depend continuously on 3 € (0, §).
3.1. Directional Monotonicity Properties of Admissible Solutions

In this section, we establish directional monotonicity properties of ¢, — ¢,
@ — @n, and @ — pe for admissible solutions ¢ in the sense of Definition 2.24]

3.1.1. Strict directional monotonicity of ¢, — p. For an admissible so-
lution ¢ in the sense of Definition Z24] for (veo, 8) € Rweak, define

(3.1.1) O =@ — QN in Q.
Then ¢ satisfies the equation:

(3.1.2) (¢ = 08, )bere, — 206, P 0616, + (2 — 0E,)Pere, = 0
in the pseudo-subsonic region Q for ¢? = ¢?(|Dyp|?, ¢, €) given by
(3.1.3) A(lpl?, 2,€) = (Il 2, ),

where p(|p|?, z, &) is defined by ([24.2).

51
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LEMMA 3.1. Fix v > 1 and v > 0. Let ¢ be an admissible solution in the
sense of Definition 224 for (veo, ) € Rweak with B > 0, and let ¢ be given by
@BII). Then, for any given unit vector e € R?, De¢ is not a constant in .

PROOF. By condition (ii) of Definition 2.24] ¢ satisfies

(3.1.4) Dep =0 on T ..
(3.1.5) 0e¢ = Oe(o — i) = € - (u0,0) on I'Q i

for each unit vector e in R?.

Suppose that de¢ is a constant in Q. Then BILA)-EIH) imply that e must
be parallel to e; = (0, 1), because up # 0, by Definition 2223l Then d¢,¢ =0 in Q,
which implies that O¢ ¢, = O¢,e,¢ = 0 in Q. Since Eq. (BI1.2) is strictly elliptic in
Q, it follows that O¢,¢,¢ = 0 in Q. Thus, there exist constants (u,v, k) such that
P(&1,&) = u& +v& + k in Q. Since the length of TV . is nonzero, we obtain
from the boundary condition ¢ = 0 on TV . that D¢ = 0 in Q, so that ¢ = 0
in Q. However, this contradicts the boundary condition (Z5.35) on 'S ., because
b =00 —on =uoél — vooféﬁ) + Vo) on TQ ., by Remark 235 O

LEMMA 3.2. Fiz v > 1 and vee > 0. Let ¢ be an admissible solution in the
sense of Definition 224 for (Voo, B) € Ryeak with B > 0. For vectors es, and eg,,

given by Definition 2.23], ¢ satisfies
(3.1.6) Des,, (Yoo — ) <0 in Q\T9

sonic’?

(3.1.7) s, (P00 — ) <0 in Q\ TN

sonic”’

PrOOF. By Definition [Z24(v), any admissible solution ¢ satisfies that
Oes, (oo — ) <0 and Jeg (Yoo — ¢) < 0 in Q. Therefore, it suffices to prove the
strict inequalities.

For e = eg, or eg,,, we introduce a coordinate system (5,7 so that e = (1, 0)
and el = (0,1) in the (S, T)-coordinates. We note that Eq. (ZIIJ) is invariant
under a coordinate rotation. Also, D?(ps — @) = —D?¢ for ¢ given by B.ILI).
Then ¢, — ¢ satisfies
(3.1.8)

(® = 02) (P — )55 — 20507 (Poc — @)sT + (2 — @7 (Yoo — @) =0 in Q.
Denote v := 9s(poo — ¢). Then v satisfies the following properties:
(i) v < 0 in Q. We differentiate (B8] with respect to S and use the expression:

(2 — 92) (Yoo — P)s5 — 20507 (Poo — @) ST
2 — 2
T

(oo — Q)T = —
to obtain the following equation for v:
(3.1.9) (¢ — 9&)vss — 20sprvsT + (¢ — YT )UrT
— ((v = Ds(¢ss + orr) + (v — Verdsr + 20s(dss — 1))vs
— (2¢07(dss — 1) + 203705 + (v + V)rdrr)vr = 0.

We consider ([B:1.9) as a linear second-order equation for v. Then this equation does
not have the zero-order terms, and its coefficients are continuous in 2. Since Eq.

BLY) is strictly elliptic in Q\ (T9 .. UTY . ) by Definition Z2Z4(iii), the equation

sonic sonic

for v is strictly elliptic in @\ (I'C_. UTV . ), because the coefficients of the principal

sonic sonic
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part of the equation for v are the same as those in Eq. (8.1.8). Moreover, v is not
a constant in Q by Lemma B.1] so v cannot attain its maximum in £ by the strong
maximum principle. Thus, v < 0 holds in .

(i) v < 0 on I'yedge- On T'yedge, the slip boundary condition (2.5.3@) for ¢

implies that O¢, (Yoo — ¥) = —Voo, 80 that Jg ¢, (P — ) = 0. In Eq. BILF), we
replace (S,T) by (£1,&2) to obtain

(3110) (62 - @21)85151 (‘poo - 90) + (62 - @522)85252 (‘pOO - 90) =0 on I'yedge-
Let {e¢,,ee,} form an orthonormal basis for coordinates & = (£1,£2). By setting
a :=e-eg and ag = e-eg,, v is expressed as v = 410¢, (Yoo — ©) + a20¢, (Yoo — @)
so that v, = 19,6, (Poo — ¢) and ve, = 4296, (Poo — ¢) 0N I'wedge:

Substituting these expressions into (B.LI0), we obtain the following boundary
condition for v:

az(c® — ¢f)

(3.1.11) Bev + —— 87
TP - )

Since e - e¢, # 0, i.e., a1 # 0, BII1) is an oblique boundary condition for v

on I'yedge- Thus, Hopf’s lemma applies. Therefore, v cannot attain its maximum
on I'yedge, which implies that v < 0 on I'yeqge-

O0g,v=0 on I'yedge-

(iii) v < 0 on Cgpock- Suppose that U(P) =0 for some P € Dyroek. Let ng, be
the unit normal vector to I'shock towards the interior of €2, and let 74, be the unit
tangent vector to I'shock With Ty, - eg,, < 0. Differentiating the Rankine-Hugoniot
jump condition: [p(|Dy|?,¢)Dy - ng,| Do, — 0 in the direction of Tsh, we have

(3.1.12) D*(po0 — ©)[Ten, h] i= Ten - D* (s — p)h =0 on I'shock,
where h = hyng, + hi7sn with
(3.1.13) ho = —ppn.,, (2 = @2 ), he = (S + ppl ) pr-

We refer to [11l, Lemma 5.1.1] for the verification of (B I12)—BII3]).

It follows from LemmaZ26((a) and the ellipticity of ZII9) in Q\(I'Y , LTV . )
that

(3114) hn <0 on I'gnock-

Since it is assumed that v = Je(p0 — ¢) has a local extremum at P € Tsnock,
we have

(3.1.15) D?*(poe — ©)[Ten, €] = 0 at P.

We express e = bing, + ba7sn. Then we rewrite (B-12) restricted at P and BIT15H)
as a linear system for (Yoo — ©)ryng, (P) and (Yoo — @) ryry (P). By this linear
system and ([B.LJ)), we find that D? (o — ¢)(P) = 0, unless

b1 by

On the other hand, since v is not a constant in £ by Lemma [3.1] then

(3.1.16) det (h“ ht) =0 atP.

D?(poo — @)[eh, €] = Vg, >0 at P
by Hopf’s lemma, so that D*(pe — ¢) (P) = 0 is impossible. Therefore, (B.I16)

must hold, so that e = kh at P for some constant k % 0. This yields that
[0(P)| = |khn(P) D(pos — #)(P)] > 0.
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This contradicts the fact that U(P) = 0. Therefore, we conclude that v < 0 on
I‘shock-
(iv) v < 0 on the sonic arcs. If e = esq, then v = Jeg (Yoo — ) =

(oo —u0) (O —vee) g oy IV . This proves (EL4).

\/u?ngo sonic*

If e = egy, then v = Je; (Yoo — p0) = —(u0, V) - (=1,0) < 0 on ro ..
This proves (B.L7). This computation holds even for the case that I'S . = {Ps},
ie, > BS(U“’) by the condition stated in (ii-3) for Case II. |

Define the following set:
(3.1.17) Cone(es,, es,) = {anes, + azes,, : a1,z > 0},
and let Coneo(eso,esN) be the interior of Cone(es,,, es,,). By Lemma[32 if ¢ is
an admissible solution corresponding to (veo, 3), then ¢ satisfies
(3.1.18) De(poo — ) <0 inQ for all e € Cone’(es,,es, )
REMARK 3.3. By [Z53), Cone’(es,, es,.) can be represented as
Cone’(es,, es,) = {(rcos,rsinf) : r >0, B <6<}

Dlpso —¢)
[D(ps0 — )|
It follows from (B.I.6) that —ng,(P) € {(cosf,sinf) : -5 <0 < B+ T} for all
P €T ghock- Moreover, it follows from ([BI7) that —ng, (P) €{(cos 6§, sin 6): T <6 < 37}
for all P € I'shock- Therefore, we have

(3.1.19)

—ng,(P) € {(cosf,sinb) : g <0< B—l—g} - Coneo(eso,esN) for all P € Tk,

Note that the unit normal vector ng, to I'shock is expressed as ng, =

since 8 € (0,81)) (0, %).

’ 2
PROPOSITION 3.4. Given v > 1 and ve > 0, let ¢ be an admissible solution
in the sense of Definition 2.24] for (vso, 8) € Rweak- Then there exists a function
& = fan(&1) such that

() Tanoek = {€ : & = fa(&1), € < & < €2}, where €7 is the & -
coordinate of point P; for j =1,2;

(ii) fsh satisfies
(3.1.20) 0= fL,(&72) < flu(&) < fL(&) =tan B for & <& <&

PROOF. Note that e¢, € Cone”(es,,, es,,). By BLI8), we have
(3.1.21) O¢, (Poo — ) <0 on Ignock.

This, combined with Definition 224)(i), implies that there exists a unique C'-
function fy, satisfying statement (i) above.

Since poo — ¢ = 0 holds on Tghoek, fsn satisfies that (voo — @) (&1, fsn(€1)) =0
for ff < < ff 2. We differentiate this expression with respect to &; to obtain

f/ (51) _ _351 (P00 — @) (&1, fsh(gl)).
. Oea (e — #) (€1, fan(&1))
By condition (i-3) of Definition 2:24] we have

(3.1.22) faE™) =tanB, (&) =0.
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By conditions (ii-3) and (iv) of Definition 2:24] the unit normal vector ng}, to I'shock
towards the interior of 2 can be expressed as

~ D(p —9)(P) ([ (61), —1)

nsh(P) = = 7 >
[D(poc =) (P)| T+ (fL (&)

By Lemma 3.2 and the definition of (eg,, es,,) given in Definition 2:23] we have

(3.1.23)
ay cos B(—f,(&1) + tan B) — aa f4,(61)

=/1+ (f4u (&) 0 (P) - (a1€5, + azesy)

D(voo —p)(P) - o N : 3
=/1+ (fu(&))? L |(pD)((%)o EG;?(SP)T @esy) g for Ggr<b<gl

for any constants a; > 0 and as > 0 with a; 4+ a2 > 0.
If we choose (a1, a2) = (1,0), then (BI23)) yields

fh(@) <tanB  for & <& <&
Choosing (ay,as) = (0, 1), then we have
@) >0 for & <& <&

Finally, (8.1:20)) is obtained by combining the previous two inequalities with (1.22)).
]

at P = (&1, fan(&))-

Given 7 > 1 and vy > 0, if B, € (O,ﬂs(v‘”)) is fixed, then Proposition 3.4
directly implies that
3.1.24 inf  dist{Tshock, L' > inf ¢ >0.
( ) BE(0,5.] {Fshock: Pvedge} 2 RvAR:

LEMMA 3.5. Fiz v > 1 and v, > 0. Let ¢ be an admissible solution cor-
responding to (Voo, ) € Ryeak n the sense of Definition 224, and let Q be its

pseudo-subsonic region. Then there exists a constant C' > 0 depending only on
(Voo,7y) such that the following properties hold:

(3.1.25) Q C Bc(0),

(3.1.26) max I <C, lellgong < C,

(3.1.27) PN <p<CinQ,  1<p<C onlenoe,
where

(’)'-2i-1)ﬁ fOT"')/ > 15
e"2 = limy 14 (%)ﬁ fory=1.

PROOF. To prove this lemma, we follow the ideas in the proofs for [11 Propo-
sition 9.1.2, Corollary 9.1.3, Lemma 9.1.4].

1. Proof of (BI2H). For an admissible solution ¢, let fg, be as in Proposition
B4 From @IZ0), it follows that 0 < &3 < fun(€1) < €22 on [¢]7,€]2]. Then

QC{€=(&,8)  uo —co <& < cn, 0 < &g < €27}
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For any given vy, > 0, co and uo depend continuously on 8 € [0, 5 ), and Bév"") de-
pends continuously on vy, > 0. Therefore, there exists a constant C7 > 0 depending
only on (vso,7y) such that

sup  (|uol + |col) < Ch.
BeE[0,65>)]

This proves ([B.1.25]).
2. Proof of ([B.1.20). By Definition 224((iv), we have

igfmax{gpo,w\/} < @ < SUp Yoo
Q

By (B123]) and the definition of (¢, vo, par) given in Definition [2.23] there exists
a constant Cy > 0 depending only on (veo,y) such that

—Cy < minmax{po, px} < max pe < Ca.
Q Q

Then condition (iv) of Definition 224l implies that

(3.1.28) max || < Cs.
Q

By conditions (ii)—(iii) of Definition 2224] ([2122]), and (BI.2])), we can choose
a constant C > 0 depending only on (ve,7) such that max|Dep| < C3 holds for
Q

each admissible solution corresponding to (v, 3) € Ryeak- This, combined with

ELZS), yields (BLZ0).

3. Proof of BIZM). A uniform upper bound of p in BI27) is obtained
directly from BI26) and [242).

By condition (iii) of Definition 2:24] any admissible solution ¢ satisfies
2
2
Moreover, by [ZI.18) and Definition [Z24|(iv),

1 —
hp) + 5 > hip) + 5D in Q.

1 1 _
h(p) + =|Dp|> > h(1) + =|Dp)> >0 in Q.
2 ~ 2
(=0)

Then we have
2 —
h(p) + 5 >0 in €,

so that the first inequality in (BI27) is proved.

By Definition 2T and Definition [Z24)(iv), any admissible solution satisfies that
OpPoo > O on Dpocx for the unit normal vector v to Tgpock towards the interior
of Q. Then the Rankine-Hugoniot jump condition stated in Definition 2224Y(ii-4)
implies that p > 1 holds on gk, because poo = 1 is the density of the incoming
state corresponding to ¢,. This verifies the second inequality in (BI27]). O
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3.1.2. Directional monotonicity of ¢ — px and ¢ — pp. Let ¢ be an
admissible solution, and let v be the unit normal vector to I'ghocc towards the
interior of 2. For each point P € I'ghock, define

d(P) 1= 0ppoo(P), w(P):=0u(pc —¢)(P)
so that
Opo(P) = d(P) —w(P).
By Lemma 226 d(P) > 1 and w(P) < d(P) on I'shoek. By the Rankine-Hugoniot
conditions stated in Definition Z24(ii-4), p(|Dy|?, ¢) = % on Tgpock. Then it can

d—w
be derived from [242]) and o, — ¢ = 0 on [ypoex that
d 1
G(w,d) = h(m) + 5 ((d - w)2 - dz) =0 on Fshocka

where h(p) is defined by (ZI1.5]). For a fixed constant d > 0, it is direct to see that
G(0,d) =0, lirg G(w,d) = o0,
w—d—

=1 < <w<d(l—d 7
Gulwrd) = 2 —d—w){_o for 0 < w < d(1— d" ),

(d—w)? >0 forw>d(1—d7%).

Therefore, for each d > 0, there exists a unique wy € (0, d) satisfying that G(wg, d) =
0. Define a function H : (1,00) — R* by

(3.1.29) H(d) = wy.

By continuation, H can be defined up to d = 1 with H(1) = dl_i>1{1+ H(d)=0.Tt
is shown in [I1] Lemma 6.1.3] that
(3.1.30) H e C([1,00)) N C>((1, 00)), H'(d) > 0 for all d € (1, 00).

Therefore, we have

(3.1.31) H(1) =0, H(d) >0 if and only if d > 1.
For each P € I'gpock, We have
(3.1.32) (P — ) (P) = H(Ovpoo (P)).

The function, H, is useful in proving several properties of admissible solutions,
which include the lemma stated below. The lemma is essential to obtain uniform
a priori estimates of admissible solutions near I'9 . UTX . .

LEMMA 3.6. Fiz v > 1 and ve > 0. For vectors (es,,es, ) giwen by Defini-
tion [Z23], any admissible solution ¢ corresponding to (Voo, ) € Ryeak with S > 0
satisfies

(3.1.33) Des, (¢ = ON)s Deg, (P —p0) 20 in €,
(3.1.34) =g, (0 —n), —Og,(p—¢o) 20 in Q.
PROOF. Since ¢, — @ is a linear function that vanishes on Sys,
Oesy (¢ = oN) = Des, (9 = poc) I Q.

Then Z.5.I0) yields that Oey (¢ — pn) = 0in Q. Similarly, [Z5.10) also implies

that e (¢ — p0) > 0 in Q. This proves BL33).
Define

w = g, (p — oN)-

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



58 3. UNIFORM ESTIMATES OF ADMISSIBLE SOLUTIONS

We first differentiate Eq. BI12) for ¢ = ¢ — @ with respect to & to obtain

(3.1.35)  (c® — @2, Jwe e, — 20¢, Pe,We e + (¥ — 07, Weses
+ (62 - ¢§1)52¢5151 - 2(9051 (sz)ﬁzwﬁl + (62 - @22)52“152 =0 in 2.

Since ¢® — ¢, > 0 from condition (iii) of Definition 224l we use Eq. (BI2) to
express g, ¢, as
29051 P, Wy — (02 - ‘sz)wﬁz

2 _ 2 .

“ T ¥

¢§1§1 =

A direct computation by using ([2.4.2]) yields that ng = —(v— 1)(pegwe, + @ewe, ).
Finally, (©¢,¢¢;)e,, i, = 1,2, can be expressed in terms of (¢, , pe,, w, we, , we, ).
Therefore, Eq. (3135]) can be rewritten as

2 2 2 2
(¢ = @, )We e, — 206, Pe,We e, + (7 — P, JWese,
2
+Zaj(@&w@&szvwfl’wﬁz)w&j =0 in Q.
j=1
This equation is strictly elliptic in €2, and w is not a constant whenever § > 0, due
to Lemma Bl Then the maximum principle implies that maxw = max w.

Q
OnT9 . UTN . it follows from the definition of (po, ¢x-) given in Definition

223 and conditions (ii-1) and (ii-3) of Definition that

(3136) w = 852 (LIOO - QON) = 0 on F:g?)nic’
852 (@N - 90./\/’) =0 on Fé\gnic'

Using the slip boundary condition: O¢,¢ = 0 on I'yedge, stated in Definition 2.24)ii-
4), we have

w=20 on I'yedges

since O, pnr = 0 holds on I'yedge-
Suppose that there exists a point P € I'g,ock such that

w(P) = max w, w(P) > 0.
Q

Let v be the unit normal vector to I'ghocc towards the interior of 2, and let 7 be a
tangent vector to Tgnock. Since D?¢o, = D2?ppr = —Ia, we can rewrite [B.112) as

(3137) D2(</7 - @N)[Tv h] =0 on shock,

with h = hyv + h.7 for (h,, h;) given by BII3]).

From the assumption that w(P) = max w, it follows that
Q

a‘rw(ﬁ)):DQ(@_@N)[Taefz}:O at P.
Also, by Hopf’s lemma, w satisfies
(3.1.38) dyw(P) = D*(p — op)[v,ec,] <0 at P.

Then we can use similar arguments as to those for the proof of Lemma[3.2] to obtain

(3.1.39) ec, = kh(P)

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



3.1. DIRECTIONAL MONOTONICITY PROPERTIES OF ADMISSIBLE SOLUTIONS 59

with some constant k # 0. By Remark 220 e, € Cone’(es,,, es,, ), so that (FLIT)
implies that eg, - ¥ < 0 on Igpock- Then, at point P, it follows from BI13) and
B.I39) that

kh,(P) = kh(P)-v(P) = eg, - v(P) < 0.
Then we obtain from FII4) that & > 0.

By the invariance of Eq. (B.I:2)) under a coordinate rotation and condition (ii)
of Definition 224, ¢ = ¢ — @ satisfies

(3.1.40) (02 - ‘P?;)Qﬁuu = 20700 Qur + (C2 - 50-2:-)9257-7' =0 at P.

Here and hereafter, we denote ¢, = 0,0 = Dy -v and ¢, = dr-¢ = Dy - T for any
function ¢.

Using (31.37), (B140), and Definition 224(iii), we have

E 2901/907'2_; + (2~ ¢37)
h,’ 2 — 2

(3'1'41) (¢V‘r‘a ¢uu) = _( )(b-,—r at ]3

Substituting e, = kh(P) into (B.1.38), we obtain
(3.1.42) D%*plv,h] <0  at P.
Using B1.41]), we rewrite (3.1.42)) as

) 4,2 22,2 (2 _ | Dol? R
Ader(P) <0 for A= Pzt (e Do)

at P.
PPv

Then it follows from Definition 2:24(iii) and Lemma that A > 0. Thus, we

conclude that ¢--(P) < 0. This implies that

(¢ = Poo)rr(P) < 0.

Let f := fsn be from Proposition B4l Then, using (¢ — cpoo).,..,.(p) < 0 and
(311I]), we have

(3.1.43) FEl) =

(SD - 9000)7'7'(1 + (f/)2) A
O, (oo — ¥) =0 ik

since e¢, € Coneo(eso,esN) implies that O¢, (¢oc — ) < 0 at Pe Ishock, due to

B.LIY)

Let & = L(&1) be the equation of the tangent line to I'ypock at P. Denote
F(&1) := f(€1) — L(€1). Then there exists a point P, # P on int Dghee such that
F(eby = Max r cry) F (&), due to (B1.43).

Note that P. & {Pi, P2}, due to (BI120) in Proposition B4l If P, = P,
then F'(¢7) < 0 must hold, but this is impossible because f/(£7*) = tanfg >
F1(€Py = L/(¢P). Similarly, if P, = P, then F'(¢/2) > 0 must hold, but this is
also impossible because f'(¢1*) = 0 < F(ePy = L'(&5+). Therefore, we conclude
that f/(¢f) = L'(&) = f’(ff)). This implies that v(P,) = v(P). Denoting
v :=v(P,) = v(P) by v, we use the definition of ¢, given in Definition 23] to
obtain
(3.1.44)

OuPoo(Ps) = Oppoo(P) — (aV“POO(P) - aVSDOO(P*)) = aV‘POO(P) — (P« —P)-v.
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For each point P € T'gpock, we represent P as (€1, fsn(£1)) and rewrite the expression
as

P = (&, fn(&1)) = (&1, F(§1) + L(&1)) = (&1, L(&1)) + (0, F(&1))-
By using this expression, P, — Pis represented as
Po—P = (& —€D)(L.LED) + (F(Tr) = F(Tp)) e,
Since L'(67) = f'(67). (L, L/(€)) v = (1, f'<§1 >> v(P) = 0. This yiclds that
(P — P) v = (F(Tp,) — F(Tp))ee, - v
By substituting this expression into ([B.1.44), 8,9000( P,) is represented as
Ovpoo(Py) = 81/‘»000(16) - (F( ) — F( P))e€2 v(Py).

By (BII8) and the definition of P, (F(Tp,)—F(Tp))ee, - v(P.) < 0, which implies
that

Oy poo(Pi) > aVS%O(p)'
This, combined with [B.I30) and [B.I132]), leads to
(3.1.45) (P = @) (Pe) > Bu(pos — 9)(P) 2 0.
We rewrite w(Py) as
w(Px) = 0, (¢ = Poo) (Pe) + Og, (90 = o) (Pe),
(E—v0)
and further express ¢, (¢ — Yoo ) (Pi) = (V(Py) - €¢,)Ou (¢ — oo ) (Py), where we have

used that 9; (¢ — @oo) = 0 holds on Tyhoex. Note that v(P,) - eg, = v(P) - eg, <0,
by BII8). Then it follows from (BI4H) that

w(P,) = (V(P) - e6,)0u (9 — poo) (Po) + Og, (9oc — o) (Pr)
> (U(P) - eg,) 00 (9 — 9oc) (P) + 05, (000 — ¢ ><P> w(P).

However, this contradicts the assumption that w(P) = max w.
Q

Therefore, we conclude that

Oe. (9 —pa) <0 in Q.
Since ¢, (pa — po) = 0, we also obtain that 9g,(p — o) < 0 in Q. This proves

B1.39). O
2. Uniform Positive Lower Bound of dist(I'shock; 9B1(O0))

In order to obtain a uniform estimate of the ellipticity of Eq. (ZII9) in
the pseudo-subsonic regions of admissible solutions, it is essential to make a uni-
form estimate of positive lower bound of dist(I'shock, 9B1(0Os)) for admissible so-
lutions. Once the estimate of dist(Tspock, 9B1(Ox)) is achieved, the ellipticity of
Eq. (ZII39) at each point & € Q is uniformly controlled by dist(¢,T9 . UTN ).

sonic sonic

PROPOSITION 3.7. Fiz v > 1 and vs > 0. Then there exists a constant
C > 0 depending only on (veo,7) such that any admissible solution corresponding
to (Vso, B) satisfies

(3.2.1) dist(Dsnock, 9B1(0c)) >

Ql~
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To prove Proposition B.7] some preliminary properties are first required, as
shown in Lemmas [B.8H3.13] below.

We rewrite Eq. (21.19) as

(3.2.2) divA(De, ¢) + B(Dy, ) = 0,
with p = (p1,p2) € R? and z € R, where
(3.2.3) A(p,2) = p(lp|*, 2)p,  B(p,2) :=2p(Ipl*, 2)

for p(|p|?, 2), given by

1

2 _1
(3:2.) plipl%2) = (14 (= 12— Spl? =)
We also need the definition of ¢(|p|?, 2):
(3.2.5) c(lp?.2) = p"7 (Ipl%, 2).
For a constant R > 1, define
(3.2.6)
Kn={(p2) €8 <R s pl+ o < R pllpf2) 2 B PP -r.
A(pl%, 2)

For each R > 1, there exists a constant Az > 0 depending only on (vs,, R) such
that

2
Z Op; Ai(P, 2)Kikj > Ag|k|? for any (p,z) € Kr and & = (k1, k2) € R2.
ij=1

LEMMA 3.8 (|11, Lemma 9.2.1]). For R > 2, let Kr be given by B.2.0). Then
there exist functions (A, B)(p, z) in R? x R satisfying the following properties:

1) If |(p,2) — (D, 2)| < € for some (D, 2) € KR, then
(3.2.7) (A, B)(p, 2) = (A, B)(p, 2);
(ii) For any (p,2) € RZ2 xR and k = (k1,k2) € R?,

2
(3.2.8) Z 8p]../ii(p,z)mmj > Nkl%
ij=1
(iii) For each k=1,2,---,
(329)  |Bp.2)|<Co IDh,(AB)p<C B xR
where the positive constants €, A\, and Cy with k = 0,1,2,---, depend only on
(Vo) 7, R)-

For a € (0,1) and m € Z*, we now define the standard Holder norms by

[wllm.0,0 := Z sup | DPu(x)|,
0<|8|<m *€
(3.2.10)

] o= sup |D5u(x) — Dﬂu(y)\
m,a,U ~— E
|ﬂ|:mx7y€U,x7éy |X_y‘a

)

where 8 = (81, f2) with 3; > 0 for j = 1,2, DB = 098198 and |B| = B + SBa.

x1 T2
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LEMMA 3.9. Fizy > 1 and v > 0. For any given constants o € (0,1), k € N,
and r > 0, there exist constants C,Cy > 0 depending only on (v, 7y, @, 1) with Cy,
depending additionally on k such that any admissible solution ¢ corresponding to
(Voo, B) € Rweak satisfies the following estimates:

(i) For any By (P) C Q,

(3.2.11) 1elly.0 By < C
(3.2.12) el 57y < Ck-
(ii) If P € Twedge, and Ba,(P)NQ is the half-ball Bf,(P) = By, (P)N{&; > 0},
then
(3.2.13) H<PH2 @B (PN = &
(3.2.14) el mrmyne < Ck-

Proor. Fix 8 € (0, év“’))7 and let ¢ be an admissible solution corresponding
t0 (oo, B) with the pseudo-subsonic region 2. Using Definition Z24(iii) and Lemma
B3 we can apply Lemmas to estimate the ellipticity of Eq. (ZI1.19).

Suppose that By, (P) C 2 for some constant r € (0,1). By 8127, there exists
a constant ¢ > 0 depending only on (ve,7y) such that any admissible solution ¢
corresponding t0 (Veo, ) € Ryeak in the sense of Definition satisfies

0 < supc(|Depl*,p) <&
Q

One can choose a smooth function B(f) satisfying the following properties:

~ ~ - C
b=1 in By (P), b=0 ondBy(P), |D"< —: in By, (P),
for constants Cy > 0 depending only on k for each k = -. For a constant
8, > 0 to be determined later, we define b(€) := 6,b(¢). Then b satlsﬁes
C. .
(3.2.15) |Db| + ¢|D?b| < 0 i Bu(P)

for some constant C. -
Since diam() < d for some constant d > 0 depending only on (veo,7y) due
to Lemma [3.5] it follows from Lemma [CI[b) that there exists a constant Cy > 0

depending on (vs,7) such that, for any given § € (0,1), if |Db| + & D?b| < % in
By, (P), then either the pseudo-Mach number M = % satisfies that M? <

Cod in By, (P) or M? + b does not attain its maximum in By, (P).
2

Now we fix 4, in the definition of b as 6, = gz=7jz71z- Then B213) leads

to
|Db| + ¢|D?b| < ﬁ
which implies that M = % satisfies
either M? < 1 in By, (P) or max M?+b= max M?<1.
8 Bar(P) 9Ba,(P)
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Therefore, there exists a constant o, € (0,1) depending on (ve,7,r) such that ¢
satisfies

| Dol :
For a C''function ¢ defined in U C R?, denote £(¢,U) as
(3.2.17) E(o,U) :={(p,2) : z=9(§),p=Dp(§),§ €U}

By (3216) and Lemma B3] there exists a constant R, > 2 depending only on
(Voo, 7, 7) s0 that (¢, Bs.(P)) C Kg,. Let (A, B)(p, z) be the extensions given by
Lemma for R=R,.

In order to prove ([B.2I1) by applying Theorem [C.3] we rewrite Eq. (ZILI9) as

2 2
> 0, Ai(Dg, )09+ 0-Ai(Dip, 9)0i0 + 2 (B(Dy, ) — B(0,0)) = —25(0,0).
fj=1 T~ i=1
(=3Aij(D‘P7<P))

(=:ADe)
By Lemma B8, (A4;;, A)(Dey, ¢) satisfy (C2.2)—(C2FH). Then [B:21I1) is obtained
from Lemma [3.5] and Corollary
Also, (B2I3)) is similarly obtained from Lemma and Theorem

Once we have B2I1) and B2I3), estimates B212) and (214 can be

obtained by a bootstrap argument and [30, Theorem 6.2 and Lemma 6.29]. ([l

For an admissible solution ¢ corresponding to (Veo, ) € Ryeak, we define an
extension ¢™* into R% by

ext . 30(6) 1f 6 € Aﬁ,
(3:218) PO = {gpoo(ﬁ) otherwise.

For S seg and Sprseg defined by Definition [224] denote 'S | as

Fcilct = S(’),scg U lshock U SN,scg if B < ﬂ(voo
whee Cshock U SN seg otherwise.

By the Rankine-Hugoniot condition: ¢ = ps, on I'SEE | | the extension function ¢®*
satisfies the following:

(i) ¢ € Cloe (RD) N Cloo (B2 \ Tiba);

(i) ¢°(€) = ¢™"(€) + 5/€|? satisfies [DG™||poopz) = [D@llroe(a,) for
$(€) = (&) + 51€/*.

In the following corollary, we regard each admissible solution ¢ as its extension

@ given by [B.2I]):

COROLLARY 3.10. Let {(p(”“)} be a sequence of admissible solutions correspond-
ing to (Voo, B(k)) € Ryeak 0 the sense of Definition [2.24] with

lim ) = B* for some B* € [0, ((iv*)].
k—o0

Then there exists a subsequence {¢*1)} converging to a function p* € cY 1(AB*)

loc

uniformly in any compact subset of Ag+, where Ag- is defined by Definition 223
for 8* > 0 and by Z524) for 8* = 0. Moreover, ©* is a weak solution of the
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boundary value problem consisting of equation ZI1I9) in Ag and the slip boundary
condition 9, = 0 on JAg~ in the sense of Remark [Z291 For the rest of the
statement, let superscripts (k) and * indicate that each object is related to B*) and
B*, respectively. Then we have the following properties:

(a) For P, 1=1,2,3,4, defined by Definition 223
lim P =Pr forl=1,4.

j—o0
Note that P, and Ps are fized to be the same for all 5 € [0, (v‘”)]

(b) Let f ) be the functions from Proposition B4 Fxtend f( ki) by
plki)

f&’f”(fn—{ o) Jra<e
) &' for & = gl :

where fo (§1) is given by (Z5.2) with 8 = B*3). Then sequence {fng)} is

uniformly bounded in C%(] fﬁ*, fQ]) and converges uniformly on
Pgx P.

[ B 2

177, €12, where Pg denotes the & —intercept of the straight oblique shock

So of angle B with the & —axis. Denoting the limit function by [, we see

that f% € COL([]?", £P2).

(c) For each k;, the sonic arcs Fsoélcj and TN ., defined by Definition 23]

corresponding to (ves, BFi )) € Ryeak, can be represented as

Tinie = (€1, 0xs0(1)) = &7 < & <€),
0, (k; ks p*y ps)
o = {61 96m(E)) : &7 <& <& ),
for smooth functions garso and goj) Note that gnrso @5 fized to be the
same for all B € [0, évx)] and that ggﬁjs)o depends continuously on 3 €
[0, c(iv“’)]. Therefore, ggcbz) converges to gé ., on (ff*,ﬁff) as k; — oo.
If p* > Bbv*) then it follows from ([25.0) that ro
Define
Q= {(&,&) € [51 DI RT D 0< & < fra(6)}

for a function fi; given by

Gosol&) forél’ @<
foa() =S fr(&)  for 551 <& <&
IN so(&1)  for 5{32 <& Sffs-
Denote by QOF the interior ofK/Z: Define I’shoCk = {& = sh(fl) & €

Py Py
(&7, &)} and Thegge == {(61,0) : & € (§7,€1)}. Denote by Ty,
the relatwe interior of I'j qge \ Thock- Then ap satisfies the following
properties:

(C_l) 50* = Poo OT F:hock’
(c-2) ¢* e C®(Q*UTy
(c-3) @®) — »* in C? on any compact subset of Q* UT

sonic 8 @ point set.

wedge )

wedge’
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(c-4) Oe(poo — ™) <0 in Q* for alle € Coneo(esé,esN),
(¢-5)  Eq. @&II9) is strictly elliptic in Q* UT™?

wedge’
*,0
wedge’

where we have followed Definition B23] for (0w, TS .. es,). If B* =0,

» * sonic?

Coneo(esé, eg, ) is understood in the sense of Remark 228

(d) In Ag \Q*, ©* is equal to the constant density states @i, Ynr, and Yoo in

their respective domains as in (Z53) if * € (0, BS(U“)) and as in (Z5I12)
if B* € [,BS(U‘”), éU“)), where @}, is defined by ([244) corresponding to 5*.

() f3.(€1) >0 for all & € (¢]7,¢P).

(c-6) The slip boundary condition O¢,p* =0 holds on T’

Proor. By (B.1.26), the solution structure ([2.5.8) and (2.5.12)) in Cases I and
IT of Definition 224} and ([3.2.I8)), it follows that, for any compact K C R2, there
exists C'(K) < oo such that, for any admissible solution ¢,

0| co.1 (k) < C(K).

It follows that there exists a subsequence {¢©*s)} such that the extensions of these
functions by [B.2.18) converge to a function ¢* € CIOO’C1 (Ag+) uniformly in any com-
pact subset of Ag-. We divide the rest of the proof into four steps.

1. Statement (a) directly follows from Definition Z23] and the continuous de-
pendence of (Op, co) on (veo, 5). Statement (b) directly follows from Proposition

B4l by selecting a further subsequence of {©*)} (without changing notations).

2. Statement (c-1) directly follows from Definition [Z24](ii-4), Corollary BI0(a),
and the uniform convergence of (p(¥i), f:{fJ)) to (¢*, f3,). For a point P € Q, there
are constants 7 > 0 and N € N such that Bs,.(P) C Q) for all k; > N. Then it
follows from Lemma [B9(i) and the Arzela-Ascoli theorem that ¢* € C*°(Bs,.(P)),
which implies that ¢* € C°°(Q*). We can similarly check from Lemma [B9|(ii) that

©* e C°(* uTE ), which proves (c-2).

wedge
For a fixed compact set K C Q" U F:;gdge, there exists a constant Nx € N
so that K is contained in Qi) N Fifggge for any k; > Ng. By Lemma [B.9] and

the compactness of K, {w(ki)}ijNK is sequentially compact in C?(K). Then the
uniform convergence of {gp(ki )} to ¢* in K implies that the subsequence converges
to ¢* in C?(K). This proves (c-3).

For any e € Coneo(esg97 eg,, ), there exists Ne € N such that

e € Cone’(e_,),es,)
S(’)

for any k; > Ne. Then (c-4) follows from Lemma [32] and (c-3).

For a point P € Q*, we choose rp > 0 small so that B,,(P) C Q*. Then
we fix Np € N sufficiently large so that B,.,(P) c Qi) for all k; > Np. Since
or € (0,1) in B2I6) is a given constant independent of the admissible solutions

corresponding to 8 € (0, f(lv“)), we can fix a constant op € (0,1) such that

| Dp(ki) |2
(| Dptka) |2, p(ha))

<l-op in B, (P) for all k; > Np.
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This estimate, combined with statement (c-3), implies that Eq. [2Z.1.19) for ¢ = ¢*
is strictly elliptic in Q*. We can use similar arguments by usmg Lemma to
conclude that Eq. (ZII9) for ¢ = ¢* is strictly elliptic on I" which implies

(c-5). Finally, (c-6) directly follows from (c-3) because every ¢(*) satisfies the slip

chgc ’

boundary condition 9¢,*) = 0 on I"(Nc)dgc

Statement (d) follows directly from statements (a)—(c) and Definition [Z23]
3. Observe that
e f. given by @54), Pi, Py, T .., and So e depend continuously on
Belo )
i P27 P3a SNsega and F

Combining this observation with statements (b), (c¢-3), and (d) implies that, for
any compact set K C R?,

are fixed to be the same for all § € [0, 7).

sonic

(i) KN Agw; converges to K N Ag- in the Hausdorff metric;
(ii) Dp*s) converges to Dy* almost everywhere in K N Ag-.

Then it follows from Definition that

/A (p(ID* 7, ") D™ - D¢ = 2p(|D*|*,*)¢) d€ =0 for all ¢ € CF°(R?).
.

In other words, ¢* is a weak solution of (ZII9) in Ag« in the sense of Remark
229(iv).

4. To prove statement (e), we consider two cases separately: 5 < 6(%" and

B Z Bs(voo).
By Proposition 34l and statement (b), £ increases monotonically on | f) voel,

If p* < ﬁs(v“’)7 then it follows from statement (a) and the monotonicity of £}
that

fe) 2 56 26" >0 foralla e lg” g7,
If B > B it follows from statement ( ) and Definition 223 that f5 (& P )=
0. Suppose that f3 (&) = 0 for some & € (fl N3 P2) . Define
& =sup{ér € (&7 ,&*) ¢ (&) =0},
Since f3,(£12) = €52 > 0, then & € ( PB*, 2). Note that ﬁpﬂ* = ffl* = §f4* for
B* > BS”“’) By the monotonicity of f with respect to &;, we have
(3.2.19) fa (&) =0 for all & € [§,77, &7
Let Q@ be the midpoint of Pg~ and (£f,0). Then @ lies on I'yeqge. Denote d, :=
o e +§1 . Then it follows from ([B.2Z19) that
¢" = oo I By (Q)NAs = Ba. (@) N{& >0}

However, this contradicts the fact that ¢* satisfies property (iv) in Remark 2.29]
because a direct computation by using the definition of ¢, given in Definition 2.23]

Py
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shows that a test function ¢ € C§°(Bq, (Q)) can be chosen so that

/ (P(IDool?, 0o0) Dpos - DC = 2p(| D], 0 )C) d €
Ba, (Q)N{£220}
o [ Cde #0.
wedgeNBay (Q)
Therefore, we conclude that f3 (£1) > 0 holds for any & € (ﬁf 1*, 2) which implies
statement (e). This completes the proof. O
Define
(3.2.20) ry:= min [Pl
BeE0.87">]

For cach 8 € [0,8"*)], we know that |Ps| > co > cy, by @Z3I). For B €

[ 8(”00)7 ((1%0)]7 (ZZ3) implies that |Ps| > veo tan f > v tan ﬁs(v‘x’). Therefore, we
have
r1 > min{cp, voo tan BV=)} > 0.

PROPOSITION 3.11. For every r € (0,%), there exists a constant C, > 0
depending only on (Veo,7,r) such that any admissible solution corresponding to
(Uooa 6) € 9“‘weauk Satisﬁes

(3.2.21) dist(Fsnock \ By (P3), Dwedge) > Cy '

ProOOF. This proposition is proved for two cases separately: (i) Py & Bz (Ps),
and (ii) Py € By (Pg) for Py defined by Definition 223 depending on 3 € [0, 7).
Fix r € (0,3 ).

1. We first consider the case that Py ¢ Bz (Pp).

Define ,
L= {8 € (0.5,) + |P1— P3| = 5}

Then I,. C (0, S(U“)). Since Pg and P, depend continuously on 8 € (0, S(U‘”)), I is
relatively closed in (0, Bs(v*)). Then there exists dg > 0 such that, for any 8 € I,.,
vo given by (ZZ44) satisfies that % > 14 dp. By Lemma [222] there exists

(voo)
a constant o, € (0, ﬁs2 ) satisfying that I, C [0,[35(”*) — 0,]. Then Proposition
B4 implies that
(3.2.22) inf dist(Cshock, wedge) > inf >0
pel pef0,8{">)~a,]

2. Now consider the case that Py € Bz (Pp).
For an admissible solution ¢, define

JS = {P € Tgnoex : |67 — &7 < d}.
Claim: For any r € (0,%), there exists a constant C,. > 0 such that any

)

admissible solution corresponding to (Veo, 8) € Rweak Satisfies

(3.2.23) sup dist(P, [yedge) > C; 1.
pPey?,

This claim is proved by deriving a contradiction. On the contrary, suppose that
the claim is false. Then there exists a sequence {3} C (0, C(lv"")) such that, for
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each k € N, there exists an admissible solution ¢*) corresponding to (Voo B(k)) in
the sense of Definition [2.24] with

(3.2.24) sup dist(P, F‘(nge) <
(k)
PeJz,,

E e

By Corollary BI0, such a sequence {3*)} can be chosen so that it converges to
B* €10, év‘x’)] and the corresponding solution sequence ¥ uniformly converges in
any compact subset of Ag« to a function ¢* € ol (Ap-) satisfying all the properties

loc

described in Corollary 3100 Furthermore, (8:22.24) implies that
max_ dist(P, I'eqge) = 0.
PeJ?),

This contradicts Corollary BI0(e). Thus, the claim is verified.

For each admissible solution ¢, let fg, be given as an extension defined by
Corollary BI0(b). Then

. P .
dlSt(Fshock \ B, (Pﬁ)a Fwedge) > fsh(£1 "+ T) > Sug dlSt(P, 1_\wedge)v
PeJ
r/2
where we have used the assumption that |Py — Pg| < & in the second inequality.
Finally, (B2221)) is directly obtained from this inequality, combined with ([B.2:23).
|

For 0 < v < 1, define B (Os) := B1(Ox) N {& > 0}. Following Definition
223 for each 8 € (O,Bf(lvm)), po > pn > 1 by (2440). Moreover, the entropy
condition yields that | Dy (Ps)| > 1. By combining these properties with condition
(i-1) of Definition 224] any admissible solution corresponding to (veo, 3) € Ryeak
satisfies

(3.2.25) Bi (0s) € Q\T2 . UTgnoa UTY

sonic sonic*

For va > 1, (3:2:28)) still holds, because By (Os,) = (. Therefore, any compact set
K C B (O4) is contained in the pseudo-subsonic region (2.

LEMMA 3.12. Fizy > 1 and va € (0,1). For every compact set K C Bf (Oy),
there exists a constant Cx > 0 depending only on (Veo,7, K) such that any admis-
sible solution ¢ corresponding to (Veo, 8) € Rweak Satisfies

(3.2.26) inf(poo — ) > (o

PROOF. Suppose that this lemma is false. By Definition 2224{(iv), there exist a
compact set K C By (Ow), a sequence {3;} C (0, ((f‘x’)), and a sequence of points
{Q;} C K so that

(oo —)(@Q) =0 as j— oo,
where ¢ is an admissible solution for each B; in the sense of Definition 2241
By passing to a subsequence (without changing index notation), there exist S, €

[0, éU“)] and @, € K so that
Bi = B, Qj =@ as j — oo.

By ([25.8) and BI20), for any compact set L C R3 = {& € R? : & > 0}, each
©U) satisfies that [|¢0) ”CO’I(LOAT.) < (7, for a positive constant C, depending only

on (Veo, 7, L). Therefore, passing to a further subsequence, we conclude that )
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converges uniformly to a function ¢, € C%Y(L N Ag,) in LN Ag, for a continuous
function ¢, defined in Ag, , where Ag, is given by Definition 223l This yields that

(s — ) (@) = 0.
Since K is compact, there exists a small constant € € (0, %) such that K C
Bf ,.(0x). By Lemma 3.9 sequence {©U)} of admissible solutions is uniformly

bounded in C’3(Bf_6/2

quence (still denoted by) {p!)} that converges to a function ¢, € CS(BLE/Q(OOO)).
Then ¢, satisfies Eq. (Z119) in Bf'_€/2(000)7 where the equation is strictly elliptic
by Definition [2:24)iii). Moreover, ¢, satisfies the boundary condition O, (Yoo —¢) =

—VUso < 0 on Bfie/Q(Ooo) N {& = 0}. Note that condition (iv) of Definition

implies that oo, — ¢, > 0 in B;ZE/Q(OOO). By Hopf’s lemma, @, cannot lie on
Bf_am(Ooo) N{¢& = 0}. Thus, @, must lie in Bf_g/z(Ooo). However, by the
strong maximum principle, this is impossible since ¢, — ¢, cannot be a constant

in B;r_{__./z(Ooo)7 owing to Og, (Yoo — ¥b) = —Voo ON Bf_6/2(000) N {& = 0}. This

completes the proof. |

(Ox))- By the Arzeld-Ascoli theorem, there exists a subse-

Let (r,0) be the polar coordinates centered at O:

(3.2.27) r(cos,sinf) = (&1,&2) — Oco.
In R% \ {Os}, define the (z,y)-coordinates by
(3.2.28) (x,y) = (Coo — 1,0) with coo = 1.

Suppose that a C?—function ¢ satisfies Eq. (ZLI9). We define w := ¢, —¢. Then
Eq. (ZI19) can be written as an equation for w in the (x,y)—coordinates:

1

Np(w) = (2x+(7+1)wm+0;)wm+05wxy+(C—+Og)wyy—(1+O;)wz+ngy:0,
(oo}

with O (Dw,w, r) = O;(—=Dw, —w,r,c) for j =1,---,5, where O;(p, 2, 7, ¢) for

j =1,---,5, with p= (p17p2)7 are given by

(3.2.29)
bz =5+ 1 e = T (e ),
Oaz(p, 2,2, ¢) = _2(792%;;)“,
Os(p, z,z,¢) = ﬁ(x(%— ) —(y—=1)(z+ (c—z)p1 + %pz)_%)
O4(p, z,2,¢) = Cix(x_7;1(z+(0—x)p1+%p§+2(7(%(1211%x)2)),

2(p1 + ¢ — z)p2
cle—z)3

LEMMA 3.13. For constants 6, > 0, define
D° 5 := B, 5(0x) \ B1—<(Ou).

Suppose that ves € (0,1) so that D=5 # O for e > 0. Then, for any a € (3,1),
there exist constants A,eq > 0 depending only on (Veo,v,) such that, if ¢ is

05(1:)72,58,0) = -
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an admissible solution corresponding to (Voo, ) € Rweak With Vs € (0,1), then
W = Poy — @ Satisfies
w(z,y) > Az'te in Dg°.
PROOF. The proof is divided into three steps.
1. Define O (Dw, z) := Oy (Dw,w,z) — (y — 1)w and

(3.2.30) Ni(v) := (22 + (v + L)vg + 05 + (3 — Dw)vgs + O3 04y + (1 + 03 vy
— (1401 )vy + O5 vy,
with 61? = B;(Dv,x) and O = O;(Dv,v,a:) for j=2,---,5.
Fix o € (3,1), and define a function
U(z) := Az'te
for a constant A € (0,1) to be determined later. For each ¢y > 0, U satisfies

Ni(U) > (22 + (v + 1)U, + O5 (DU, 2))Ue — (1+ OF (DU, U, 2))U,

—

o
> (1+a)Am°‘(2a—1+71—04_) in Dg°,

where we have applied the fact that w > 0 in by Definition 2:224{iv). Using the
definitions of O; and Oy, we can choose ¢y > 0 sufficiently small depending only
on (Veo, ¥, @) such that

07 (D 20 — 1 20 — 1
[0, (DU, 2)] 0‘4 , |05 (DU, U,z)| < =2 in D
T
Under the choice of gy above,
(3.2.31) N;(U) — N1(w) >0 in Dg°.

2. Claim: There exists a constant A > 0 depending only on (veo,7y, ) such
that U — w cannot attain its nonnegative mazimum on ODg°.

On 9D§° N {z = 0}, condition (iv) of Definition implies that U — w =
—w < 0. By Lemma[B.12] there exists a constant C., depending only on (vee, ", &)
such that

U—w<Agit™ —C.y on 0D5° N {z = g0}

Thus, a constant A € (0,1) can be chosen sufficiently small to satisfy that Aejt® <
1C.,. Then we have

U-w<0 on ID;° N{z = e}

Since ¢ satisfies the slip boundary condition on I'yeqge, w satisfies that we, = —vo
on D" N 'yedge S0 that

O0e, U —w) = A1+ oz)xag% + Voo on 9D N yedge-
2

Therefore, we can reduce A > 0 depending only on (veo, "y, ) so that
O, (U —w) = == on DG N Pyege,

which implies the claim.
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3. Suppose that max(U — w) > 0. Then there exists a point Py € int Dg° such

€0
DO

that
(U = w)(Fy) = max(U - w).
DEO

At Py, we have

(U = w)e(Po) = (U = w)y(Fo) = 0,
(3.2.32) (U —w)gz(Po) <0, (U—w)yy(Po) <0,

Uy(Po) = wy(Fo) =0, —wyy(Po) = (U —w)yy(Fo) <0.
A direct computation by using (B.229)—-B.230) and B:232) gives that
(3.2.33) Ny (U) — Ny (w)

=2z + (v + 1)U, + E(DU, 2) + (v = Dw) (U — w)ze
- %W —w)U, — (1+ O3 (DU, w)) wy,  at R

Note that w(Py) > 0, by Definition Z24(iv). Since |07 (DU, z)| < Co, Aed® for
some constant Cp, > 0 depending only on +, and constant A depends only on
(7, Voo, @), we can choose €y > 0 sufficiently small depending on (7, veo, ) such

that 2z + (v + 1)U, + O7 (DU, z) + (v — 1)w > 0 at Py. Moreover, (U —w)U, > 0
at Py. Therefore, we obtain from [B.2.33)) that

Ni(U) = Ni(w) < = (1+ O3 (DU, w)) wy, at P.
By Definition 224(iv) and [B:229)), there exists a constant C, > 0 depending only

on 7 such that 1 + O3 (DU, w) > 1 — C.e§ at Py. Reducing ¢ further, depending

only on (7, ), to satisfy that 1 — C.e§ > 1, we obtain that Ny(U) — Ny(w) < 0

at Py. This contradicts B231). Therefore, we conclude that there exist constants
(A, &0) depending on (7, vs, @) such that w > Az!Te in Dg°. O
Now we are ready to prove Proposition 3.7

PROOF OF PROPOSITION 3.7l Let ¢ be an admissible solution corresponding
t0 (Voo, B) € Rweak- Define

dw = diSt{B1 (000)7 Fshock}'

We consider two separate cases: Vo > 1 and 0 < vy < 1.

1. We first consider the case that vs, > 1. Then B1(Oy) C R x R™. By
[2442) and Lemma [2.20] there exists a constant dy > 0 depending only on (veo, y)

such that, for any S € (0, ((iv*)%
diSt(Pg,Bl(Ooo)) = |Pﬁooo‘ —1= |D(poo(P5)‘ —-1> MOO,V(Pg) —1>dp.

Denote 7 := 1 min{ry, do} for r1 from 2Z20). By PropositionB.11] there exists
a constant C; > 0 depending only on (v,7) such that any admissible solution
corresponding t0 (Voso, 8) € Ryeak satisfies

dist(Cshock \ Bz (Ps), B1(Ooc)) > dist(Tsnock \ Bz (Ps), Twedge) > Cr* > 0.
By the definition of 7 above, dist(T'shock N Br(P3), B1(O0)) > %0 > (0. Then

d
d, > min{C; !, ZO} >0
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for any admissible solution ¢ corresponding to (veo, 8) € Rweak With voe > 1.

2. Now we consider the second case that 0 < v, < 1. Let P, € TI'ghock be a

point such that
d, = dist(Py, B1(O))-
At point Py, we have

(3.2.34) dyp = Oppoo(Pi) — 1
for the unit normal vector v to I'shock at P, towards the interior of 2. Denote
(3.2.35) Wy = Oy (Poo — ) (Ps).

Claim: There exist two positive constants dy and dy depending only on (Voo, )
such that, if d, > do does not hold, then w, > dy holds.

Fix an admissible solution ¢ corresponding to (veo, 8) € Rweak. For the (x,y)-
coordinates defined by [B.2.28), let 9 > 0 be the constant from Lemma [3.13] with
a= %. In other words, w := ¢, — ¢ satisfies

w(z,y) > Azt in Dy°

for some constant A > 0 chosen depending only on (v,7y). For constants k and
e € (0,£0), to be determined later, define a function V' in Ds_dw by

(3.2.36) V= (v +dy)?+ k(z +dy).

For a constant dy > 0 to be specified later, assume that d, < do. Then a di-
rect computation by using (B2Z28)-3229) and Definition [Z24[iv) shows that V
satisfies

Ni(V) >3k —4dg — Cle +do + k)  inDZ, ,
V=0 on 9D, N{z = —d,},
(3.2.37) V< (e+do)®+k(e+do)  ondD, N{x=e},

—Vsg
Ve, > ]_——6 (2(6 + do) + k) on 87)6_,1w n 1_‘wedgev

for a constant C' > 0 chosen depending only on (7, v ). Choosing
k= 2e, do = ¢,
we obtain from ([3.237), w > 0 in €2, and ([Z4.1)) that
Ni(V) = Ni(w) > 2e = 16Ce*  in D2,
V-—w<o0 on 9DZ,; N{z = —d,},
(3.2.38) V —w <1062 — Aet on 0D, N{z =c¢},
7
6V

_ > _
(V w)§2 Z Vo 1_¢

on 8Did¢ N Tyedge-

Then we can fix a small constant ¢ € (0,e() depending only on (v,7y) such that,
by B2.38), Ni(V) = Ni(w) 20in D2, , V —w<0o0ndD,; N{x=—d,ore},
and (V —w)g, > 0 on 9D a, N I'yedge- Thus, the maximum principle yields that

(3.2.39) V-w<o0 in D, .
Since P, € 0D ; N{z = —d,}, (V — w)(Py) = max(V — w) = 0. Note that Igpock
¥ D<,

]

is tangential to D% ; N{x = —d,} at P, so that (V —w)y(Ps) = 0y (V — w)(Px).
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Then B239) implies that (V — w)g(Py) = 0 (V — w)(Py) < 0. Combining this
with (.2.35)-B-2.36) implies that

wy > Vi (Py) = 2e.
Therefore, the claim is verified by choosing (do,d;) := (e, 2¢).

According to the claim, either d, is bounded below by € or w,, is bounded below

by 2¢. By (B132) and B234), w, = H(d,+1) for H defined by (B1.29)). Then it

follows from (B.I31)) that d, is uniformly bounded below by a positive constant if
and only if w, is uniformly bounded below by a positive constant. Therefore, the
claim implies that there exists a constant § > 0 depending only on (vs,?y) such
that
d, > min{e, 6} >0
for any admissible solution ¢ corresponding to (vso,y) € Rweak With 0 < vy, < 1.
The proof of Proposition [3.7] is now completed. O

3.3. Uniform Estimates for the Ellipticity of Eq. (2.1.19)

Given v > 1 and vy, > 0, let ¢ be an admissible solution corresponding to
(Vooy B) € Ryeak. A direct computation by using B2Z3) shows that Eq. [B22)
(the same as Eq. ([ZI.19)) satisfies

2
| Dol
- C—g)|"é|2 < Y Op,Aj(De, @)k < 2p|k|?
ij=1

(3.3.1) p(1

in Q for any k = (k1,k2) € R?.
Fix a function h € C*°(R;) such that

if s €0, 3
(3.3.2) h(s) = ol s €0,3] and 0<h <2 onRy.
1 ifs>1,
For each 8 € (0, 75), let Op be defined by Definition 223, and denote

co if 8 < L=,
|00Ps| if B> B,

Let Qo € SoN{&; > 0} be the midpoint of the two intersections of circle |£€—Op| =
rg and Sp N {& > 0}, and let

rg := min{co, |Oo P3|} = {

rgMo  for f < ﬂb@""),
rgsinB  for B> L),

for Mo defined by (2.4.8). Note that 73 and 75 depend continuously on 5 € (0, §).
It follows from (Z4.43]) and the definitions of (74, 73) stated above that rg —75 > 0
for all 8 € [0,%). Therefore, there exists a constant do > 0 depending only on
(Voo,7Y) so that rg — g > &y for all g € [0, ((1””)].

We define (gOa 9N, QN) by

75 1= [00Qo| = {

dist(¢, 0B,., (O
go(8) = %(m —7) h( ISt(’ST = is( o))),
B—Ts
dist(§, 9B, (O
Qn = lim Qo
B—0+
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Let Q* = (&5, &)) be the midpoint of @ and P, for point P, given by Definition
Moreover, we fix a function x = x(&) € C°°(R) such that

1 for& <&, 5
x(&1) = o o — 2 <\(&)<0 forall & €R.
0 fOI' gl Z 71, é-l

Finally, we define a function gg : R* — R, by

(3.33) g3(€) = x(€1) (9o (€) + max {1 - 'D% 01 + (1 - x(@)ante).

REMARK 3.14. By Definition 2.24] and Lemmam there exist constants d > 0
and C' > 1 depending only on (vs,7y) such that, if ¢ is an admissible solution
corresponding to (Veo, ) € Ryeak, and if 2 is its pseudo-subsonic region, then gg
satisfies the following properties:

(i) For & € Q satisfying dist(¢, T ..)
O dist(&, Tilnic) < 95(€) < Cdist(¢,T
(ii) For & € Q satisfying dist(&,T ;)
O Mdistg (&, Tonic) < 95(€) < Cdist (€, T9uic),
where distg(€,I'S ;) is given by
(3.3.4) dists(€,T i) i= dist(€, TS ) + (co — [Dpo(P1)]);

(iii) Furthermore, for each & > 0, there exists a constant C. > 1 depending only
on (vso,7,€) such that, if a point & € Q satisfies dist(¢, 19 UTN ) > ¢,
then gg satisfies

<d,

bOI]lC)

<d,

O < gp(6) < Ce.

In (i)-(iii), TV .., T9 .., and @o are defined by Definition 2231

sonic? sonic?

For a constant (: > 0, let us define

(3'3'5) dlSt (57 sonic U Fé\é’nlC) = mln {C’ dlSt(£7 somc) dlSt,B (57 somc)} °

Using properties (i)—(iii) stated in Remark B14] we can find constants C > 1 and

(Uoo))

(e (0,1) depending only on (ve,7) such that each g for 8 € (0, satisfies

C 1dISt (5 I‘lbOHlC U F?L{mc) < g/B (5) < CdlSt (£ I‘lbOHlC U F?L{mc) for all 5 E ﬁ?

where (2 is the pseudo-subsonic region of an admissible solution ¢ corresponding to
(Voo B)-

Let A(p, z) be given by B23)). The following proposition is essential to estab-
lish a priori weighted C%* estimates of admissible solutions:

PROPOSITION 3.15. There exists a constant p > 0 such that, if ¢ is an admis-
sible solution corresponding to (Veo, 8) € Rweak and Q is its pseudo-subsonic region,
then the pseudo-Mach number given by

._ |Do(§)]
(3:3.6) M©) = DR, 9(@)
satisfies
(3.3.7) MA€) <1 pga(e) i,
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and there exists a constant C > 1 such that

2
(3.3.8) O Mdist’(€§,TQ, UTN) K12 < > AL (Dp(€), 0(€))kiri; < Clrf?
i,j=1

forall € € Q and k = (K1, ko) € R%, where constants . and C are chosen depending
only on (Veo,7y). On the left-hand side of ([B.3.8)), distb(~, \) is given by (B3.3).

PRrROOF. Once [B37) is proved, (B3.8) is obtained directly from ([B371), Lemma
B3 @B31), and Remark 314l Therefore, it now suffices to prove (B371).

In this proof, ¢ represents any admissible solution corresponding to (veo, ) €
Ruweak With  and Tgpocx being its pseudo-subsonic region and the curved transonic
shock, respectively. Unless otherwise specified, all the constants appearing in the
proof are chosen depending only on (vs,7y). The proof is divided into four steps.

1. By Lemma 35 there exist constants R > 1 and ¢ > 1 such that
QC Brp2(0), (Dl @)l comy <& Nlgslleagm) < @

for gz given by B33). Since Op € {& = 0}, 652% =0 on {{ = 0}. By Lemmas
we can choose constants Cy > 0, § € (0,2Cp), and p1 € (0,1) so that,

whenever p € (0, 1], either the inequality: M? + pgs < Cod < 1 holds in ©, or the
maximum of M? + [tgg over Q cannot be attained in QU IM'yedge-

Since M2 + pgs = 1 on T . ., the maximum of M? + jgs must be attained on
O\ T'yedge-

2. Let v be the unit normal vector to I'spoci towards the interior of 2, and let
T be a unit tangent vector to I'shock-

Claim: There exist constants a € (0, ) and ¢ € (0,1) such that M?(P) <1—¢
when |p,]? < alpu|? at P € Tghock-
This claim is verified by adjusting the proof of [I1l Lemma 9.6.2]. For a

constant @ € (0, 3) to be specified later, assume that |¢-|? < a|p,|? holds at
P € Tgnock- Since pp, = Oy oo and - = Or s hold along T'gpock, we have

sonic?

IDgool? = 18upec|? = lor|* < alw|* < a(&’%)za
which yields that
[Dpoc|® < (1+ %)|6,,g000|2 at P € Tshock-
We combine this inequality with Lemma and Proposition B-7 to obtain

1+dy
o PP > T
for some constants dy > 0 and C > 1. Therefore, we can fix constants & € (0, %)
and d; > 0 small so that |0,¢s(P)| > 1+ d; when « € [0, a].
Define M, 1= |Ob¢oo(P)| and M, = __levPI____ Then it follows from

N c(|D]?(P),@(P))
2.24.9) that
2(y=1) —1 2("r 1)

(1+ M2)M T = (1 I (Ma)?) [ Moo
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Owing to Moo p = |Opee(P)| > 1+dy, there exists a constant (. € (0, 1) satisfying
that M2 < 1 — (. at P € Tyoek. By the assumption that |p-]|?> < alp,|? at
P € I'shock, we have

M2 S (1 + Q)ME é (1 + Oé)(]. - C*) at P € Fshock'

Therefore, we can further reduce o € (0, @] so that the inequality right above implies
that

M2§1—%*=:1—g at P € Typock.
The claim is verified.

3. Let uq be the constant from Step 1. In this step, we follow the approach of
[11] Steps 2-3 in the proof of Proposition 9.6.3] to find a constant p € (0, p1] so
that M? + pgs cannot attain its maximum on Igpock. Here, we give an outline to
see how such a constant y is chosen. We refer to [11, Proposition 9.6.3] for further
details.

3-1. Suppose that the maximum of M? + ugs over Q is attained at Ppax €
Tshock- Then (M? 4 p1gs)(Pmax) > 1, which implies that

(3.3.9) M?(Ppax) > 1—Cipt

for some constant C, > 0. Moreover, we have

(3.3.10) 07 (M2 + 195) (Prax) = 0,
(3.3.11) 0y (M? + 195) (Parax) < 0.
For simplicity of notation, denote

(3.3.12) k(€)= pgp(€)  for & € R2

By using (Z4.2)) and (Z5.TH), a direct computation yields that, for each unit vector

W,

2+ (v = 1)M?) D*p[w, D] + (v — 1) My
2

(3.3.13) (M?)y = (

where we have defined
D%plai, q2) := (D?¢q1) gz for qi,qz € R%
By 3313), we obtain from (B3I0) that

(v = )M?pr + ks
24+ (y—-1)M?

(3.3.14) D?p[1,Dy] = — =:B;  at Ppax.

3-2. Next, we differentiate the Rankine-Hugoniot condition:

(3.3.15) (pDp — Do) - D(poo — ) =0 on I'gnock

in the tangential direction 7 of T'gpock, and then use Z4AI)—Z42) and (poo —@)r =
0 on I'shock to obtain

(3.3.16) (pD*e 7 = L (D (D7) + 97) D) - (Dipo = D)
— (pDyp — Do) - (D*p 14+ 7) =0 on Dypock-

Using the Rankine-Hugoniot conditions (33.15) and (¢eo — )+ = 0 on Tghock,
we see that D(pe — ) = Ou (Yoo — @)V = (p — 1)pv. Then we obtain

Dy -D(pss —¢) = (p—1)¢s  on Ienock.
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Owing to the condition that (¢o, — )+ = 0 on I'gpock again, we have

(pD(p - D(Poo) T = (p - 1)307' on I'spock-

We substitute the expressions of Dy - D(¢oe —¢) and (pDo — Do) - T given above
into (B3.16) to obtain that, on Tgpeck,

(3.3.17) D?0[T, pD(po0 — ¢) + Do)
p—1 P
= p(l+ =3 02 )D*plT, Do) + Z(- Deier + (p— 1)er.
3-3. Define
|§0V| |90‘r|
M= ——"—— My=—"—"—.
c(|Del?, @) c(|De|?, @)

We substitute the expression of D?¢[r, Dy| given by [B.3.14) into the right-hand
side of ([B3IT) to obtain that, at Pyax,

(3.3.18) D?*0[1, pD (000 — ©) + Dipoo]
= p(L+ (p—=DMP)B1 + p(p = 1)Mi@r + (p — 1)pr = Ba.
A direct computation shows that

(200 = (1 +pMP) — (v = M) o7 — Pp(1+ (0= DM )by

3.19) B, =
(3.3.19) B 2+ (y —1)M?2

Apply a and ¢ from Step 2, and assume that
, ¢
(3.3.20) 0 < g < min {p1, E}
Then it follows from [B3.9) and Step 2 that

(3321) 0< O‘|‘Pu(PmaX)|2 < \(p.,.(PmaX)P,
or equivalently, 0 < aM{(Puax) < M3 (Prax)-

Using (339), B32I), and a € (0, 3), we have

(3.3.22) M2(Poax) > %(1 — CLp).

We rewrite ([3.3.14) and ([B.3.18) as the following linear system for (ppr, prr):

Pvr Bl 901/ (P'r

A = at Ppax for A = .

Cr)=(5)  wrmoa=(f )
By EILZ7) and G321, | det A| = (0 — 1)puior| > 0 at Prax. Thus, (¢urs Gor)

can be written as

Bl — Bg p2B1 — B2
SDVT - 727 QOTT == 2—
(1—=pHew (P* —Dpr

Note that Eq. (2I119) is invariant under a coordinate rotation. We rewrite Eq.
as

(3.3.23) at Ppax.

(3.3.24) (¢ = 02)ur — 2000 Pur + (% — P2)prr = |Dop|* — 2¢?
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in Q\(I'C . Ur'N . ). and use this to express ¢y, in terms of (M,,, My, M, p, 0pr, Prr).

sonic sonic

Then we use [B3:23)) to obtain
M2 2 1 oMMy pA(1— M22)>
3.3.25) oy = - < B
( ) 1-M7  1-M; \(p*-Dg (0= Depr
1 1 M2 2M; Mo )
+ 2 at Ppax.
1— M <(p2 —Der (P =Dew i

Using 3314), B3IN)-B323), and 3325, we can also express (@pr,@py) in
terms of M, My, Ms, p, pr,pu,c, and k+ at Ppax € Dshock-

3-4. Now we choose a constant p € (0, p;] sufficiently small so that a contra-
diction is derived.

By B313), 331I) can be written as
(2 + (’Y - 1)M2)(<)0T<PUT + @V@uu) + (")/ - 1)M2§0u + C2ku <0 at Ppax-

Using ([3:3.12)) and the expressions of (¢ur, ¢uy) in terms of M, My, Ma, p, or, ¢u, ¢,
and k., we can further rewrite the inequality stated above as

(3.3.26) A :=2M3+2(2p+1)ME(M? —1)+p (110095 — 120+95) <0 at Prax

for

o (1= p?)MPMZ + p* MY + M3
(p+Der -

By B39), Lemma B.5] and the definition of gz given in [B3.3]), there exists a
constant C' > 0 such that

220+ YMF(M? —=1) > =Cp at Prax,
(3.3.27) 1| <C  on Tshock,
IDgsllcomsy < C forall B € [0, 57"].
Moreover, by Lemma and (3322]), we have

I =cor(p+1)(1—MP), lo=c

1
(3.3.28) o] € ———— at Poax.
a(l = Cip)
From (3322)-B328), we obtain
1
Aza(l—C*,u)—C’u(l—l—i) at Prax

a(l—Cip)
for some constant C' > 0, provided that p satisfies (8.3.20). Therefore, there exists
a constant po € (0, ui] for p} = min{puy, %} such that, if 0 < p < po, then
*

A > ¢ >0 holds at Pyax, which contradicts ([3.3.26]). Therefore, we conclude that
the maximum of M2 + pgs over € must be attained on 9Q \ (Pywedge U Tshock),
provided that p > 0 is chosen sufficiently small, depending only on (ve, 7).

4. For constant pg given in Step 3, we fix a constant u € (0, pg]. Then Mg—i—ugg
satisfies

sup (M2 + pgs) = sup (M2 +pgg) =1.
Q ro . urdy

sonic sonic

This proves (B:310). O
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sonic

79

REMARK 3.16. By Remark B.I4 and (837 in Proposition 315, there exists a
constant pe > 0 depending only on (v, ) such that, if ¢ is an admissible solution
corresponding to (Vso, 8) € Ryeak;

(3.3.29) M2(€) < 1 — podist’ (6,19, UTA ) in Q.

sonic sonic

3.4. Uniform Weighted C%>*~Estimates Away From I'¢

sonic

According to Proposition B.I5 the ellipticity of Eq. (B22) (or equivalently,
Eq. (ZII9)) depends on dist(&, T, UTN . ). In particular, (33.5) indicates that
the ellipticity of (3:2:2)) depends continuously on 8 € (0, évw)), even across BS(U“)
up to ﬂéU“). For this reason, we can establish uniform weighted C%“—estimates of
admissible solutions.

We first estimate (weighted) C?“-norms of admissible solutions away from
I'9 ... We will obtain the uniform (weighted) C%®—estimates of admissible solutions

near 'Y . in §3.5
3.4.1. C**—estimates away from I'C . UTY Fix v > 1 and v, > 0.

sonic sonic*®

For a set U C R? and a constant ¢ > 0, define
N.(U) := {€ € R? : dist(&,U) < e}
Let C > 0 be the constant from Proposition .7l Then there exists a constant
dp > 0 depending only on (v, y) such that
(3.4.1) [Dpoc|* > 1+dy  on N (Dsnock)-

(i) If v = 1, then it follows directly from Definition that any admissible
solution ¢ satisfies that |Dp| < 1 in . Thus, it follows from B4 that

(3.4.2) |Dgoc|? = [Dp|* > do on N (Tshoa) N2
(ii) If v > 1, then we can rewrite the Bernoulli law ([24.2)) as
1,01 -1
(3.4.3) P+ = (1Dl + 20) = 14 = (IDgso + 200).

Let ¢ be an admissible solution corresponding to (v, 3) € Ryeak- Since |Dip|? <
p" 1 and o — ¢ > 0 hold in Q, we obtain from (B41) and (43) that
+1 ~1 —1 -
’yTpryil Zp’yil'i"yTLDSﬁ‘z > 1+7T(1+d0) on N%(Fshock)mg-
This implies that p7~1—1 > §, for some constant 6y > 0 depending only on (v, 7).
Then
2(p7"t 1) 250
-1 v—1
on ./\/% (Tshock) N Since @oo — @ = 0 on Fgpock, it follows from (F126) in Lemma
that there exist small constants ¢ € (0, 1) and &) > 0 depending only on
(7, Vo0 ) such that
(3.4.4) |Dooo| — | D] > &, on N (Dgnoek) N €.

Let (r,60) be the polar coordinates defined by (3.2.27). Note that |Dyoo| =
—0rpoo- Then BA2) and B4F) imply that there exists a constant d; > 0 depend-
ing only on (v, ) such that

(3.4.5) Or (oo — ©) < —(|Dpoo| — | D) < —dy on N (Tshock) N Q.

|Dpoo|?® — | Dp|?* =

+2(Poe — ) > + 2(¢o0 — ¥)
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Therefore, by the implicit function theorem, there exists a unique function
fo.. sn(0) such that

(3.4.6) Tahock = {’I“ = fowysh(e), 9132 <f< 9131},

where (fo,. sn(fp,),0p,;) represent the (r,0)-coordinates of points P; for j = 1,2,
given by Definition 2.231 By Lemma and (B.43]), there exists a constant C
depending only on (v,7y) such that

(3.4.7) | forsnllcor(op,.o01) < C1-

LEMMA 3.17. Fiz v > 1 and voo > 0. There exists a constant 61 > 0 depending
only on (Veo,7y) such that, if ¢ is an admissible solution corresponding to (ve, 8) €
Rweak, then

(348) 8,,(@00 — QO) > 6 on Dshocks
(349) 8,;3000 > 81/(,0 > 61 on FShOCk

for the unit normal vector v = % to Tshock towards the interior of Q.

PROOF. If ¢ is an admissible solution corresponding to (v, 3), then it follows
from (B43) and poo — ¢ = 0 on Tgpock that

(3.4.10) Ou(Poo — @) = |D(po0 — )| 2 [Dpoc| — [De| > dy on Fshock-

Since J,p = %7 Oupoo > 1, and p(|Dgl?,¢) > 1 on Tghoek, Lemma 3.5

yields that 9,9 > 0, > C~1 for a constant C' > 0 depending only on (v, 7).
The proof is completed by choosing d; as

51 = min{dl, C_l}.
(]

LEMMA 3.18. Fiz v > 1 and v, > 0. Let ¢ be an admissible solution corre-
sponding to (Voo, B) € Rweak- Then, for each d > 0 and k = 2,3,---, there exist
constants s, Cy, > 0 depending only on (Veo, 7, d) such that, if P = (rp,0p) € Tshock

in the (r,0)-coordinates, defined by B2Z2T), satisfies that dist(P,TS , UTN .} > d,
then
(3.4.11) 1D fo.. sn(0p)] < C, |D¥g| < Gk in B(P) N Q.

PRrROOF. The proof is divided into three steps.

1. Let ¢ be an admissible solution corresponding t0 (veo, 3) € Rweak, and let
Q be its pseudo-subsonic region. For a constant d > 0, define

Oy (€€ : dist(£,TC,. UTY )>g}.

sonic sonic

Let (¢, Qq) be defined by (BZIT). Moreover, for a constant R, let Kr be given
by (328). By Lemma and Proposition BT5] there exists a constant My > 0
depending only on (v, 7, d) such that (¢, Q) is contained in Ky, .

Let A(p,z) = (A1, A2)(p,z) and B(p,z) be defined by BZ3), and let
(A, B) (p, 2) be the extensions of (A, B)(p, z) onto R? x R described in Lemma [3.8]
with M = M,.

2. We express the Rankine-Hugoniot jump condition: pDy - v = Dy - v as

(3.4.12) gSh(Dc,o7 0, &) =0 on Ighock

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



3.4. UNIFORM WEIGHTED C?*-ESTIMATES AWAY FROM T2 . 81

for g*"(p, 2, £) defined by
Dy (§) — P

(3.4.13) 6 (p:2.8) = (A(D.2) = Deocl€)) - 15~y — 1

For §; > 0 from Lemma BI7] define a smooth function ¢ € C*°(R) by

t ont> 34
t) = -4y ") >0 R.
¢(t) {5_ for 1 < Bt ¢(t)>0 on

Also, we define an extension of g5 | (p, z,£) onto R? x R x Q0 by

5 i Dy (§) — p
3.4.14 gha(p,2.€) = (A(p. 2) — Dpocl(€)) - :
Fix a point P € Tgpea with dist(P, T2 . UTN .} > 2d for d > 0. Then ¢ satisfies
(3.4.15) divA(Dg, ) + B(Dp, ) =0 in Byja(P)NQ,
h grs‘r?od(D(Pv @75) =0 on Bd/2(P) N Tshock-

For € > 0 from (B4, define
d
R:= min{i,a}.

Note that such a constant R > 0 is given depending only on (vso,?,d), but inde-
pendent of ¢ and P. By [B45), we can write Dpgsl (D, ¢, &) as

nglrsglod(D<p7<p7£) = Dp((A(p,z,£) - D(Poo(g)) ' l’l(p7€)) in BR(P) ﬂﬁ

for
Dy (§) — p

a(p.¢) = |Dpoo(§) — Pl

Since

5 (AP, 2,€) = Dpsc(€)) - Dp((p, €)*) = 0,

a direct computation yields that

2
Dpgiha(Dp, ¢,€) - B(Dp, &) = Z Aj(Dp, . &)y in BR(P)nQ

for n; = &; - n(Dy, £).
By Lemma B8|(ii), there exists a constant Ay > 0 depending only on (veo, v, d)
such that

ngrb:(]ilod(D(p7 9075) : fl(D%f) >Xa>0 in BR(P) na.
This implies that, in Br(P) N,
(3'4'16) ‘nglsx?od (D907 ¥, £)| = ngfr}llod (Dtp, 2 5) : fl(DLp, é) > )‘d > 0.

3. By estimate (B1.20) of Lemma B B47), Lemma B8 and B4I0), the
boundary value problem ([B.Z.T5]) satisfies all the conditions necessary to apply The-

orem [C.8 Therefore, there exist 8 € (0,1) and C' > 0 depending only on (v, v, d)
such that

H(p |1)5)Bd/4(P)ﬁQ <C for all P € I'gnock ﬂﬁd.
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Combining the C1#—estimate of ¢ with (B.4.5]) implies that fo_ « is C1P away
from 6 = 0p,,0p,. Then we apply Theorem to the boundary value problem
BZT3) to obtain the estimate:

H‘PHQ,ﬁ,Bd/S(P)ﬂQ <C for all P € I'qhock ﬂﬁd

for some constant C' > 0 depending only on (vs,7,d). This implies that fo__ sh is
Che for any a € (0,1) away from 6 = 0p,,0p,, so that ¢ is C*“ for any a € (0, 1)
on I'gpock away from anic Fé\gnic by Theorem

Finally, the C*—estimates, k = 2,3, - - -, are obtained by a bootstrap argument

via applications of Theorem and Corollary O

As a result, directly following from Lemmas 3.9 and BI8] we conclude the
following uniform C*-estimates of admissible solutions:

COROLLARY 3.19. Fiz v > 1 and vee > 0. For each d > 0 and k = 2,3, -,
there exists a constant Ci 4 > 0 depending only on (vso,, k,d) such that any ad-
missible solution ¢ corresponding to (Voo, 8) € Rweak Satisfies

< Cg.q-

HSOHI@,QO dist(£,00__UTN
{dist(&

sonic sonic

3.4.2. C*“—estimates near TV . . For fixed v > 1 and vy, > 0, the sonic
arc I‘é\gnic, defined by Definition 2.23] corresponding to the normal shock part of each
admissible solution, is fixed to be the same for all 8 € (0, ). By Definition 2.24](ii)
and Proposition B8] the ellipticity of Eq. B22]) (or equivalently, Eq. 2I.19))
degenerates near TV . . In order to establish a uniform weighted C*®estimate of
admissible solutions up to I’é\gnim the method of parabolic scaling is employed. We
keep following Definition for the notations used hereafter.

Define

)>d}

_ov+&ff

: 5

which is the same for all 8 € [0,F). In Un := (Bscy (On) \ Bep (On)) N{E : & >
2

0}, let (r,0) be the polar coordinates with respect to O = (0,0). Define

(3.4.18) (z,y) = (cp —1,0).

Let ¢ be an admissible solution corresponding to (veo, 8) € Rweak, and let Q be its

pseudo-subsonic region. Define

(3.4.19) OV = (N {& > 0}) \ Bey (On).
Then QY € B, (Ox) and @V C {(z,y) : = > 0}.
In OV, we define a function by
(3.4.20) Vi=p— N in QV.
We rewrite Eq. (2.1.19) and the boundary conditions (Z.5.35)-(2.5.37) in the (z,y)-

coordinates as follows:
(i) Equation for ¢ in QN For each j=1,---,5, define Oﬁ-v(p, z,x) by

(3.4.17)

Ojv(p7 Z,.’L’) = Oj(p7 Z, T, C./\f)

for O;(p, z,x,¢) given by (3:2Z29). Then Eq. (2I1.19) is written as
(3.4.21)

1
(22 — (7 + 1)hy + O )y + O 4y + (awﬁ“)wyy — 1+ 0V, + Oy, =0,
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sonic

with O = ON (D, 4, z) for j =1,--- 5.

(i1) Boundary condition for 1) on Dgpock N OOV : By the definitions of (@oos ON)
given in Definition 2:23] we rewrite the condition that o, — @ = 0 on Tgpeex N oON

as
Y

& =8 - . on Tghook N OOV
For ¢t 1 (p, 2, &) given by (B.414), we define
: z
(3422) M(p, 2351) = g;l;lod(p + D(pN, z+ @N,gl,fé\[ — U—)

with (Dgar, par) evaluated at (€1, &5 — 5= ). Then the boundary condition (2.5.37)
is written as M (D, 1, &1) = 0 on Tghoek. Denote

(b{)\g ‘= Poo — PN
Then | D(¢X —)| = |0u (Yoo —¢)| > 0 on T'yhock. Rewriting the boundary condition
|D(¢X — )| M(Dip, 4, 1) = 0 on Tgpoac NV in the (x, y)-coordinates, we obtain

(3423) B'{v(wza wyv 1/)7 xz, y) =0 on Fshock N 8QN
for B{\/(pgg,py7 z,x,y) defined by

(3.4.24) BY (p2spy: 2,%,y) = |DgA, — pIM (P, 2,61)
with

(3.4.25) &1 = (cn — ) cosy, p= (— cosy —siny) ( ]135 ) .

—siny  cosy Prv
(iii) Other properties of ¢: By (ZI30) and Definition 224(ii)—(iv), ¢ satisfies

P >0 in QN
(3.4.26) =0 onI,,

Py =0 on I'yedge N o0V
For each 8 € [0, §), let D be defined by (2.5.27), and define

AN =D (Baey (On) \ Bey (Ox)) N{€1 > 0},

Note that A%V is the same for all B €[0,%), and MW {6 <8

By using the definitions of (I'Y .., Yoo, @ar) given in Definition 23] the follow-
ing lemma can directly be verified:

LEMMA 3.20. Fiz v > 1 and vs, > 0. There exist positive constants €1, €g,
0o, wo, C, and M depending only on (veo,7y) with €1 > o and M > 2 so that the
following properties hold:

() {on < oo} NAN NN (TN L) € {0 <y < Z 3o}, where No(T') denotes
the e—neighborhood of a set ' in the &—coordinates;
(b) {QDN < 9000} m'/\[El( SOnlC) N {y > yPQ} - {LC > 0}7

(¢) In{(z,y) : x| <e1, 0<y < F =60}, PN = oo — o satisfies
2 N 2 N < m
4. —y < 0 ) < —, — < o <
(3.4.27) ¥ < 0o (@y) < 5 o < —Ov0k < 5

(@) |(D2, ), D%, )éX| < C in {la] < 21 };
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() There exists a unique function faro € C™([—&o,0]) such that
(3.4.28)

{{%\/ < oo} NAN NN, (Tie) N{l2] < 20} = {(x,9) : 2] < 20,0 <y < faro(@)},
Sy mNEl( sonlc) N {‘$| < EO} = {(1‘71/) T E (_60760)7y = fNVO(m)};

(£) fao in (e) satisfies
2wy < f//\/,o <C on (—&o,€o)-
Let €2 be the pseudo-subsonic region of an admissible solution ¢ corresponding
t0 (Voo, B) € Rweak- For € € (0,e1], define a set Qé\f by
(3.4.29) OV = QN NTY )N {z < e}
for some & = &(g,wp) > .
Note that QY € {0 < z < €}.

LEMMA 3.21. Let €g, wg, and M be from Lemma B.20L Then there exist con-

stants € € (0,e0], L > 1, § € (0,%), and w € (0,wp] N (0,1) depending only on

(Voo,7Y) such that, whenever € € (0,&], any admissible solution ¢ =¥+ pxr satisfies
the following properties in Q/EV :

(a) a(z,y) < F2a < La;
(b) wx >0 and |wy(a: y)| < La;
() gy — 22w < Buloe — 9)(@,y) <M and gz < =0y (pos — ) < M;
(d) there exists a unique function fxrs, € C([0,€]) such that
O ={(z,y) : ©€(0,6),0 <y < fvan(@)},
Pshock M 39?[ ={(z,y) 1 2 €(0,¢), y= fN,Sh(z)}7
w< fusn@) <L for 0<z<e
(e) 0 <¥(a,y) < La*.
ProoF. We divide the proof into four steps.

1. By (B38) and ([34.21)), there exists a constant § € (0, 1) depending only on
(Vso,7y) such that

(3.4.30) 2 — (7 + 1)ty + ON (DY (,y), ¥(z,y), z) > 20z in OV

for OV defined by BZIJ). Since ON (Di(x,y), ¥ (x,y), z) < (Etfl)m/)w by B.229)
and (BZ420), we obtain from 430 that
2-20 N
Yp(z,y) < ———————1 in O
S e (e

for

€0 = min{cy — Enr, €0},
where ¢pr is given by (BZAIT). Then & € (0,&0] can be chosen, depending only on
(Vso,7Y), SO that v satisfies

Ve (z,y) < 1+ix in QY.

This proves statement (a).
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By Lemma 3.6, (3:4.18]), and (3:4.25), we have

(3.4.31) g cosy+ W siny >0, ,siny— Yy cosy >0 in QV.
CN — X 9%

85

By property (f) of Lemma [3.20] there exists a constant §; € (0, {;) depending only
on (Uso,7y) such that

(3.4.32) N c{o<y< g — &)

Then ([B431)), combined with statement (a), yields that
2-4

(3.4.33) 0 < t(r,y) < 7 —° in QY.

Owing to (B:£32), the second inequality in (3437 is equivalent to
by,0) < (ex — 2pbu(wy) tany  in OV,
Then it follows directly from (B:433) that
(3.4.34) Y, <Cz  in QY

for a constant C' > 0 chosen depending only on (ve, 7).
N

sonic?

2. In order to obtain a lower bound of ¢, by a linear function of  near I'
a different approach is used.

By Proposition B.11] and (B.4.32)), there exists 07 € (0, ;) depending only on
(Vso,7y) such that
(3.4.35) 0N N Dapouse € {8 Sy < 5 =81},
where 'gpocx denotes the curved pseudo-transonic shock of ¢. Thus, the first in-
equality in BZ31) is equivalent to ¥y, (z,y) > —(cp — )a(z,y) coty on IQN N
Dihock- Then ([B4.33) implies that there exists a constant Cy, > 0 depending only
on (Vso,y) such that

(3436) Qﬂy > —Csqhx on I'ghoek N aQé—\/
By ([34.20), we have
(3.4.37) Py =0 on T . U (Dyedge NI

By BI26) in Lemmal[35] there exists a constant C,, > 0 depending only on (v, )
such that 1 satisfies

(3.4.38) Y, > —Ci  on QV.

3. By adjusting Step 3 in the proof of [11, Lemma 11.2.6], the following lemma
holds:

LEMMA 3.22. Fiz constants v > 1, ¢ > 0, and ro € (0, §]. Given an open set
Uc{(z,y) €eR?: 0 <z <rp},
assume that a function 1 € C3(U) satisfies the equation:
Nt (V) i= (22 = (7 + D)tbe + O1)thas + Oy
+ (% + O03)byy — (1 + O4)thy + Ostpy =0 in U,
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with O; = O;(DY(z,y),¢(z,y), x,¢) for j=1,---,5, where each O;(py, Dy, 2, %, C)
is defined by B229). Moreover, let v satisfy the following inequalities:
2 — dg
20, 0<4, <
= =¥ 1+~
for some constant &g € (0,1). Then there exists a constant € € (0,r9) depending

only on (7, ¢,00) so that Ny (¢) = 0 is rewritten as a linear equation for w := 1,
in the following form:

T m U,

(3.4.39) Ly(w) = (22 — (7 + 1)01) wey + Ozwyy + (% + O3)wy,
+b§w)ww+béw)wy+béw)w:() inUN{x <e},

with

(3.4.40) ¥ <o, bW<0  inUNn{z<el

By Definition 224{(iv) and (B:433)), we can apply LemmaB22to ¢ = ¢ — @pr.
Therefore, we can further reduce constant & € (0,¢0] depending only on (vs,7y) so
that 1, satisfies the elliptic equation:

Ly(y) =0 in Q/a*v
For constants Cy, and Cj, from [B430) and B438), respectively, we choose
M := max{Cy,, %= }. Then w = ¢, satisfies

g

w+ Mz >0 on O,
Ly(w+ Mz) = Ly(Mz) = MB” +b2) <0 im0V
The second inequality stated above is obtained from (BZ40). Note that constant
M is chosen to depend only on (ve,7y). By the maximum principle, we obtain
w(z,y) > —Mzx in QY.

Combining this with (3433)-B434)) yields statement (b) of Lemma 3211
4. By Lemma B.20(c) and Lemma [B.2T|(b), we have

0(Poc — ¢) < 00 < % in QY.

By Lemma B20(c) and Lemma B2T}(a), we obtain

2 2—9
- = 0,0 > 270 in QV

The estimate of Jy(psc — ¢) stated in statement (c) of Lemma B.21] is similarly
obtained.

The existence of a function fu g, : [0, — R satisfying statement (d) directly
follows from @o, — ¢ = 0 on Dyhoek, Lemma B2T)¢), and the implicit function
theorem.

Finally, statement (e) directly follows from statements (a)-(b) and (d) of
Lemma [B2T] and Definition 2:24(iv). O

LEMMA 3.23. Write Eq. BZ21) in QV as

2 2
= AN (DY, v, 2) D + 3 AN(D, v, ) Dyt = 0,

i,j=1 i=1
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sonic

with (D1, Dy) = (Dy, D)) and A%, = AY,. Then there exist ex € (0, £l and Ay > 0
depending only on (veo,?y) such that, for any aa admissible solution ¢ = Y + on

corresponding to (Voo, B) € Ryeak, if (x,y) € Q4EN, then

(3.4.41) A < ZA (DY (. ), (. y), 7)o
x 2

i,j=1

2
) for all k = (K1, k2) € R%
AN

Moreover, BY defined by BA24) satisfies the following properties:
(a) BY(0,0,2,5) = 0 for all (z,y) € R

(b) For each k =2,3,---, there exist constants dp. > 0 and C > 1 depending
only on (Vso, 7, k) such that, whenever |(pg, Dy, 2, )| < pe and [y —yp,| <
5bC7

k N .
‘D(px7py7z7m’y)81 (pw7pya Z5, y)l S Ca
(¢) There exist constants bpe > 0 and C > 1 depending only on (vee,7) such
that, whenever |(pg, Dy, 2, )| < 0pe and |y — yp,| < Obe,

D;BY (pa,py, 2, 2,y) < —C~1 forj=1,2,3,
where (D1, D2, D3) :== (D,,_,D, ,D.).

P Upys
In (b) and (c) above, yp, represents the y—coordinate of point Py, defined by Defi-
nition [2.23]

Proor. ([B44I) can be checked directly from (3.2.29). Properties (a)—(b) of
BY are the results directly following from the definition of ¢x-, (Z13), BEL22),

and (34.27)).
A direct calculation by using the definition of ¢ in Definition 223 [B23)-

B27), B413), BZ22), and BZZ) yields that

N
(0
aZB{\[(Oa Oa 07 sz) = _M
N
N — 1
8PzB{\[(070’anP2) = _p N (gi\/')Q,
5 BN _ g N
b, B (0,0,0,yp,) = _%(p/\/voo + (pv — DEY).

)

Then property (c) is obtained by combining the results stated immediately above
with property (b). O

LEMMA 3.24. Let g > 0 and L > 1 be the constants from Lemma 0 and
Lemma B21], respectively. Then there exist constants € € (0, %] and C >0 depend-
ing only on (Vs,7y) such that any admissible solution ¢ = ppr+1 corresponding to
(Voo, B) € Ryeak salisfies the following equation:

2
S AT (D ) D+ 3 AT (D Db =0 in O
i=1

1,5=1

with coefficients (A(;n()d) A (mod) ) satisfying the following properties:
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(a) (A(mod A(mod)) (A_/\/ A_/\/)

i) R

in {(pz, Py, 2,7) t |(p2,py)| < Lz, |2| < La?, z € (0,¢)},
(b) |(/1(m°d),A(mOd),A;mOd))(pmpy,z,xﬂ < Cz inR? xR x (0,¢),
(©) (A5, A7) oz xrx(0) < €.
(@) Do,y 200 (AT AV o g2 xRx(0) < O

7

PROOF. This lemma can be proved by adjusting the proof of [11l, Corollary
11.2.12].
Choose a function n € C*°(R) such that 0 < n < 1 with n(¢t) =1 for |t| < L

and 7n(t) = 0 for |¢| > 2L. For such a function 7, we define (Al(;md), AEmOd)) by

1 (mod) 7 (mod Py <
(3:442) (AFV AN b1,y 2 2) = (A, A (an(E2), an(B), a%n(55), ).
Then Lemma directly follows from ([B42I]) and Lemma 3211 O

For the uniform weighted C%“-estimates of admissible solutions near T .
we recall the definition of the norm introduced in [10].

DEFINITION 3.25 (Parabolic norms). Fix a constant a € (0,1).
(i) For z = (z,y),z = (%,9) € R2N {x > 0}, define
0™ (2.2) 1= (Jo — & + max{z. Yy — 7).

(ii) Let D be an open set in R?> N {z > 0}. For a function u € C*(D) in the
(z,y)—coordinates, define

ar 1
50 = > sup(2FTE210k0ku(2)]),

0<kti<2 *€P
kAl kal, (s
[u}(par) — Z sup <min {xa+k+2 2 ootk 2} |0z 0yu(z) — 0zayu(z)|)
2,a,D bl #EED,2#E 5(par)(z7§) )
lull 27 = Ilull$o D + .

(iii) Fix an open interval I := (0,a). For a function f € C?(I), define

1 £1155) .fzsup =219k £ (2))),

|02/ () — 0%f(56)|>

[f]épsr} ‘= sup (min{xo‘,i"a} P

z,2€l,x#T

ISP = I FIEes) + 152
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(iv) Given constants ¢ > 0, a € (0,1), and m € Z,, define

lullsrop” = Y- sup(e*+=7|0ka}u(z)]).,
0<kt+i<m *€P
OFQ u(z) — 00t u(z
[u]x)a(%n) Z sup (min {xa+k+%*07ja+k+%70}| z% ((Zr) 2Oy u( )|)7
k= #2E€D 272 Sa ™ (2,2)

A58 =S sup («*=7 188 £ (2)1),
k=0 xel

ar . — ~ — 8m - 6m T
[f]gn)a(? ). . sup (mln {l_a+m a7l_a+m cr} ‘ T f(.T) - x f(l‘)|)7
 niclotd |z — Z[*
all 5 = Tl 6% + Wl SR = 1SR + A5
Note that norm || - ||2p2% in (ii) is norm [| - || o 221 above here.

(v) Denote by C{1i% (D) the set {u € C™(D) : [lullia 55" < oo}.

(o),(par) m,a, D

PROPOSITION 3.26. Let epr > 0 be from Lemma B23 For each a € (0,1),
there exists C' > 0 depending only on (veo,?, ) such that any admissible solution
@ corresponding to (Voo, 8) € Ryeak Satisfies

(3.4.43) lo = oxlfat + 1inan = Fvoll§arfo e,y < C-

PROOF. The proof is divided into six steps.

1. Re-scaling coordinates. Fix € € (0, %¢]. For zg := (x0,%0) € QN\I‘MllC and
€ (0,1], define

. r r
Rzo,r = {(l’,y) : |£L’ - ,’Eo‘ < me |y - y0| < Z V LL'()}, RZO,T = ZO, N Q
Ife< y%,z and zg € Tghock N W, then it follows from Lemma [B.21)(d) that

) 3 5
—x0 <2 < ~%0, ~Yo <Y < ~Yo, }-

(3.4.44) R, 1 C{(z,y): 1 150 1

For r > 0, define the sets:
1
Q= (—r,71)%, ng‘)) ={(S,T)e@Q, : 20+ - (xoS VzoT) € Ry 1 }-

2. Re-scaled function 1(*0). Let ¢ be given by BZA20). For zo € 00N Npock,
define a function ¢(*0)(S, T') by

1 V 2
YEO(S,T) = (w0 + %5, Yo + —ZOT) for (S,T) € Q.
0

By Lemma B2T] and [B:444), we have

W <L G <L, [ < Lag i Q.
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Moreover, Lemma [3:24] implies that 1)(*0) satisfies the equation:

Z A (z0) D1/)(Z°),1/) 20) ,S)D ) (20)

1,7=1
2
+ z:141(,2(1)(D1/)(zo)71/)(zo)7 S)Diw(m) -0 in ng/OZ)’
i=1
where (DlaDQ) = (Ds,DT), Dij = DiDj, and
kF_J_ mo S
A 0)(p1,p2,z S5) =1, 2Az('j D (dzopy, 4z *pa, 23z, w0(1 + Z)%
z 1 izt m S
A'E 0)(plap25278) = 151302 AE 0d)(4$0p1,4Zg/2p27$%z7$0(1 + Z))
For fyrsn given in Lemma B2I(d), we define

(3.4.45) F0)(8) = (fN7511(x0 n %S) - fN,Sh(xo)) for —1< S < 1.

4
VZo
It follows directly from Lemma B2T(d) and ([B.4.45) that F(%0) satisfies
(3.4.46) F(ZO)(O) =0, ||F(ZO)HCI([,1)1]) < Cy/xg
for some constant C' > 0 depending only on (ve,?). Therefore, there exists e, €
(0, 5] depending only on (vs,) such that F)(8) > —5 for S € (—r,7), whenever
re (0, ].) and z20 € Q‘é\: N 1_‘shock~

For zy € Q/E\f N Tghock, define

TG0 = {(S,T) : S € (~1,1),T = F&)(8)} c aQ{*.

Then dist(T%), , Q) n{T = —1}) > 1 ]
By Lemma [3.2T}(a)(b) and (e), we can fix a small constant €, € (0, 5] depend-
ing only on (v, ) so that any admissible solution satisfies

1 . 2 .
|(wza¢va7y_ypg)| S Zmln{&bmébc} m QJQ\Q*

for constants (dpe, Ope) from Lemma 323 Then we apply Lemma B23(c) and the
implicit function theorem to rewrite the boundary condition (BZ23)) as

(3.4.47) Yz = b (Wy, ¥, 2, Yy) on Ishock N 925*
By Lemma B23|(a)—(b), we have

bar(0,0,2,y) =0  in QY |

(3.4.48) ( y) 2.
|D’“bN(py,z,x,y)| < Cy in RxRx QJQ\L fork=1,2,3,---,

where constants C, > 0 depend only on (v, 7, k).
For each zg € I'ghoc N Qé\[ , denote

2 1
(3.4.49) Bj(\[O)(pT,z,S, T) := mb}\/(4x0/ T, T8Z, T, Y).
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for (z,y) = 20 + (%5, @T). It follows directly from ([B.4.48) that there exists a
constant my > 0 depending only on (v, 7y) such that

B3(0,0,8,T) =0  in Q*)

(3450) 195 BY (0r, 20l g S VA forall (pr,2) €R xR,
”D(pTJ)BJ(\iO)(pT’ z, )||1 o < miv/Zo for all (pr,z) € R x R.

By BZ47), ¢(*0) satisfies
(3.4.51) G0 = BE (i) ) 5, T)  on TGO,
3. Uniform estimates of 1(*0) for zy € Tspoek. By (B440) and (FZA50), we can

apply Theorem [C.3] to find constants (e, 4,C) € (0,e.] x (0,1) x (0,00) depending
only on (vs,7) so that, for any zg € QY N Tgpock, we have

(3.4.52) I, s <O

By [B445), for each zp € Q N Tshocks qb = oo — PN satisfies

xo ., 2 T
(3.4.53) N (zo+ ZOS, fasn(zo) + @F@o)(S)) — x2y0) (8, FZ0)(8))=0
for —1 < S < 1. Differentiating (3453 with respect to S, we have
V(0295 — D5y )

By, — Ay Opp(=o)

By combining this expression with Lemma B20(c) and [B452), a direct computa-
tion shows that there exists a small constant ¢ € (0, e,] depending on (veo,y) such
that F(%0) satisfies the estimate:

(3.4.55) ||F(ZO)||1’5’[,3/4,3/4] < Cy/xg for all zg = (l‘o, yo) € I'shock N W

(3.4.54) (Fo)y = —

for some constant C' > 0 depending only on (v, 7).

This result, combined with Lemma B8] yields that Tgpocx is C* up to TV
away from I'9 . .

Next, it follows directly from B455) and a direct computation by using
B44])-([3449) that the boundary condition ([B4.51]) satisfies all the conditions
stated in Theorem [C.6] with (a, ®, W) = (0, \/%_OF(ZO),BJ(\';O)) for all zg € T'ghock N
OOV | where € > 0 is the constant in (BZ55). Therefore, we can further reduce
e € (0,e,] depending on (v, 7y) so that, for each zp € Iypoex N 8Qﬁ/, the re-scaled
function ¢(*0) satisfies the estimate:

(3.4.56) [

sonic

||2 5Q(zo) < O

where C' depends only on (veo, ).
We combine estimate (3Z56) with (3Z54) to see that F(*0) € Cho([-1 1])
for any a € (0,1). Furthermore, we have

sup ||F(z°)|| _111<C,
20€T hoa O VT el

272
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where C' > 0 depends only on (vs,). Then we can repeat the previous argument
by applying Theorem to conclude that, for each a € (0,1), the small constant
e € (0,e,] can be further reduced so that

sup [~ —||F(ZO)|| L <cC
20 €N shockNONY Q( o) JT 2,00[— %, %]

where C' > 0 is a constant depending only on (v, 7, @).

4. Uniform estimates of (*0) for zy & I‘Shock If ng‘)) = @1, we apply Theorem
[C3lto obtain that, for each o € (0,1), [|4(=0) || e is uniformly bounded above

2,a, 1/2
by a constant depending only on (ve, v, ). If 2o € I'yedge N 89?/, then ngo) =
Q1N {T > 0}, and (%) satisfies that ¢(Tz°)(S, 0) =0 for all -1 < S < 1. This is
owing to the slip boundary condition (ZZ4.37)). In this case, we apply Theorem

to obtain a uniform estimate of |[¢(*0) ||2 —oy for all zg € Tyedge N o0V,
Yy /o
5. Estimate for || — 30/\/’H(2p2r5)2_,\,’ . Since the estimates of ||¢(ZU)H2)OC7 =y are

and 8 € [0, ((iv‘”)), the estimate of ||p —
%) ,\/||2paa% N in (3.4.43) is finally obtained by combining the uniform C*—estimate of

given independently of zg € QN \ v

sonic

adnnss1ble solutions given in Corollary and all the estimates of |[1)(*0) H2 ey

Ay g
from Steps 3—4, and by scaling back to the (z,y)—coordinates. For the details, we
refer to [II, Steps 3—4 in the proof of Theorem 3.1] or [11) Lemma 4.6.1].

6. Estimate for || frsn— fN 0||2p;w()0 en) BY Lemma[B320(e) and LemmaB2T}(d),

we have

¢'(/)\£(l', f'/\/'70(l‘)) = 07

((Zsé\g - ¢)($, fN,Sh(x)) = (5000 - 80)(% fN,Sh(x)) =0 for all x € [076./\/]'
This yields that, for all « € [0,ex],
(3.4.57) 5@, favan (@) = SR, faro(@)) = ¥l frsn(@))-
Since |9, ¢Y.| > 0 from Lemma B20(c), we can rewrite (BA51) as

Aw(:c, fvan@) _

Jo 0,0 (@, tinan(@) + (1 = 1) fao(@)) dt

(par)
2,a, QN S

Fnvsn(@) = fao(z) =

Then a direct computation by using Lemma [3.20] and the estimate of ||9)|
C achieved in Step 5 implies that

(par < 07

Hf./\/,sh

where C' > 0 is a constant depending only on (Veo,7, ). This completes the
proof. O
3.5. Weighted C?“—Estimates Near 'S ..

According to Definition 23, I'9

particular, the sonic arc I'9

depends continuously on 8 € [0,7). In

(Uoo)

sonic

sonic Shrinks to a point when 3 increases up to s

and becomes a point Pg for all § > B(UC"’ , although the location of Pjg changes
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continuously on 3 € [Gs (veo) , 5 ). Furthermore, the ellipticity of Eq. ([3.2.2) on re ..
also changes. According to Proposmlonm the ellipticity of (3:22]) degenerates on

re .. for B < B=) . On the other hand, for 3 > 5{"=), Eq. (m (or equivalently
Eq. [ZII9)) is uniformly elliptic up to I'C .. away from TV . . For that reason,

SOnlC
the weighted C?®—estimates of admissible solutions near I'C . are given for the

following four cases separately:
1. B < A" away from B>,
2. B < ,BS ) close to B(v“’),
3. 8> B(UC”) close to (U""),
4. Be (B, ((f}”)) away from B>,

sonic

3.5.1. Case 1: Admissible solutions for § < ﬁév‘x’) away from 3§”°°)
For

(/Uooaﬁ) € mweak N {B 0 < ﬁ < ﬁs(voo)},
let Op and P; be given by Definition 223l For each 8 > 0, let Mo be defined by
@4.9). Define

M Voo
351 _— |P10(9| +coMp | = CO(I; o) for g < Bs( )7
( .0, ) Co = f co(1+Mo) f (voo)
< == or B> s .

InUp := (stz2 (00)\Bex, (00))N{€ : & < uo}, use (r,0) as the polar coordinates
with respect to Op = (uep,0) and define
(3.5.2) (z,y) :=(co —r,m—0).
Also, define a set Q° by
Q% = (2N {& <wuo}) \ Bey, (O0).

Since Q€ C B, (00), 2° C {(z,y) : * > 0}. In the (z, y)-coordinates defined
by B52), po given by Definition 2:23] is written as

1 1 .
(3.5.3) o = —5(00 —z)% + iu% - vooﬁéﬁ) in Up.
For an admissible solution ¢ corresponding to (veo, 3), let ¢ be given by
(3.5.4) Y= —po in Q9.

(i) Equation for v in Q©: Similarly to (3421, we rewrite Eq. (322 for ¢
in the (z,y)-coordinates given by (B5.2)). For each j =1,---,5, let Of(p7 z,x) be
given by

Ojo(pa 2, ‘I) = O](pa Z, T, CO)

for O;(p, z,x,¢) given by (32Z29). Then Eq. (2I1.19) is written as
(3.5.5)

1
(22— (v Lt + OF )b + OFy + (o + 05 )by = (14 OF) Yo + 074, =0,
with OO OO(D’L/) Y, x) for j=1,--- 5.
(ii) Boundary condition for 1 on Tgpeek NONY: Similarly to ([3.222), we define
uoé1 + Z)

oo

(3.5.6) Mg(p, 2,6) = ¢ o(p + Do, = + po, &1, 67 —
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for g | given by (B.4I4), where (Dpo, po) are evaluated at (fl,féﬁ) — m)

Note that (ue, (B)) depend continuously on 3 € (0, ) and that

: (B _ N
ﬂg%l+(u07§2 ) - (0552 )

Voo

Define

(3.5.7) P = oo — PO-
Rewriting the boundary condition: |D(¢S —1)|Mgs (D, 1, &1) = 0 on [gpee NONC
in the (z,y)—coordinates given by [B.5.2]), we have

(358) B?(wxu ¢y7 ’(/}7 x, y) =0 on I‘shock N BQO

for BY (pz, py, 2,2, y) given by

(359) B?(pvaiﬁ Z, l‘vy) = |D¢<(>9<> - (p17p2)|M5(p17p27 Zagl)
with

(3.5.10) & = uo — (co — ) cosy, <p1> _ ( cos y siny> < ]'ZZ > .

Do —siny cosy) \ %
(iii) Other properties of v: By [21.30) and conditions (ii) and (iv) of Definition
2.24] +) satisfies
$>0  inQ,
(3.5.11) Yp=0 on 9 ies
Yy =0 on Tyedge NONC.
For set D defined by (Z5.27]), let an open subset Ag of D be given by
(3.5.12) A§ :=DnN (Bieo (00) \ Bey, (00)) N{& < uo}
2

for ¢, defined by B5.T]).

LEMMA 3.27. Fix v > 1 and vs > 0. There exist positive constants €1, €g, do,
wo, C, and M depending only on (veo,v) with €1 > €9 and M > 2 such that, for

each B € (0, (v“’)] the following properties hold:
(2) {po <o} NAF NN, (TQ4e) C{0<y <5 —B—dok;

(b) {po < Poc} NN, (TQ0ie) N{y > yp,} C {z > 0};
(c¢) In{(z,y) : |=| <£1,0<y<§—6—50}, ¢ given by B50) satisfies

2 931 2 E)ﬁ
0.1 < < _ .
(@) (D2, D%, )62 < C in{lo] < e1};

(e) There exists a unique function foo € C™([—&o,c0]) such that
(3.5.14)

{SDO < QDOO}HAO ﬂNEl( sonlc)ﬁ{|x| < 50}:{($,y) : |CE|<E0,0<y<f(9,0($)},
So mNEl( sonlc) n {“T| < 60} = {($,y) S (_50760)5y = on70($)};

(£) fo.o given in (e) satisfies

2wp < f(/o,o <C on (—€o,€o)-
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ProoF. Note that line So intersects with circle 0B, (Op) at two different
points, due to (ZZ443) for any (veo, ) € Rweak- Point P; is an intersection point
of So ={€ : Yoo = po} with 0B.,(0p). Let P| be the other intersection point
of So and 9B.,(0p), and let Qo be the midpoint of the line segment Py P;. Then
ZQo0pPy = T — . Since |P1Qo| depends continuously on 5 € [0, §), there exists
g1 > 0 depending only on (ve,7) such that [PQe| > 2¢; for all 8 € [0, (v‘x’)] Let
Q% be the midpoint of P1Qe, and let (zqy,»Yq,,) denote the (z,y)-coordinates of
Q»- Then there exists a constant dy > 0 depending only on (voo, ) such that

m
(3515) nyo < 5 - ﬂ - 50.

Moreover, it follows directly from ([B5.7) that

020 = Voo (siny+cosy tan B), 9,09 = —voo(co—)(cos y—siny tan 3) in Ag.

Then statements (a)-(e) can be verified by performing a direct computation and
using the observation obtained above.
Since € = 0 on So, we have

oS (x, fo.o(z)) =0 for |z| < eo,

so that f(’go(x) =— gzio (z, fo o(x)) holds. This expression, combined with .5.13)),
)-

yields statement (f O

Similarly to (84.29), for an admissible solution ¢ corresponding to (veo, 3) €

Ruweak N {8 < ﬁs(v“’)}, let Q be its pseudo-subsonic region. Let €; be the constant
given in Lemma 327 For ¢ € (0,¢1], define

(3.5.16) Q% = QNN (T

Then Q9 = Q9 N {x > 0}.

Adjusting the proof of Lemma B.2T] by using Lemma [B.27] instead of Lemma
320, we have the following lemma:

N{z < e}.

hol’llC)

LEMMA 3.28. Let gy, wo, and M be three constants in Lemma B2D Then
there exist £ € (0,20, L >1, 6 € (0,3), and w € (0,wo] N (0,1) depending only on
(Voo,y) such that any admissible solution ¢ = ) + po corresponding to (Voo, B) €
Ryeak N {B < 6S(v°°)} satisfies the following properties in QF:

(a) Yu(z,y) < 322 < La;

() 2 20 and [ty a.9)| < L

(c) 7 (?H'taﬂﬁ)——ﬂﬂ < 0x(Poo—9) (z,y) < M and % < =0y (Poo—p) < M;
)

14~
(d) There exists a function fog, € C([0,2]) such that
Q0 = {(z,y) : £ €(0,8),0 <y < fom()},
Fshock 059? = (%y) B S (Oaé)a Y= fO,Sh(x)}a

Wﬁfé,sh(I)SL for 0 < x <&

(e) 0 <¥(a,y) < La*.
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LEMMA 3.29. Let ¢ be an admissible solution corresponding to (veo, ) €
Rweak N {L < ﬂb@"")}. Let Fq. B5.3) in Q0 be expressed as

2 2
(3.5.17) > AG(D, v, x)Dijtp + Y AP (Dip, b, 2) Dinp = 0,
ij=1 i=1
with (D1, Da) = (Dy, Dy), Dij = D;D;, and AS, = AS,. Then there exist o €

(0,2] and Ao > 0 depending only on (ve,”) such that, if (z,y) € a9
(3.5. 18)

dep

Kik
k) < ZA (DY(z,y), ¢(z,y), ) _J

1,7=1 I
Moreover, BY defined by [B3.5.9) satisfies the following properties:

(a) BY(0,0,2,y) =0 holds for all (z,y) € R?;

|n\2 for all k € R?.

Ao

(b) For each k =2,3,---, there exist constants dp. > 0 and C > 1 depending
only on (Veo, v, k) such that, whenever |(ps, py, 2, )| < dbe and ly—yp, | <
5bc7

‘D(pmpy,z x y)B?(p£7py’ Z7x,y)| S 07

(¢) There exist constants Spe >0 and C > 1 depending only on (Veo,7y) such
that, whenever |(pz, py, 2, )| < 0pe and |y — yp, | < Obe,

D(pm,py,z)B?(pmpyu 275671/) < _C_l;

(d) There exists a constant € > 0, depending only on (vso,7), so that con-
stants 0pe > 0 and C > 1 in property (c) can be further reduced de-
pending only on (vs,7y) such that, whenever |(pz,py,z,x)] < Opc and

|y_yP1‘ S 6bc7
D(pm,py)B (pxapyuz X y) (17 y) > C ! on Fshockmaﬂgh

where Tspock Tepresents the curved shock of the admissible solution and
(z,y) (

vy, is the unit normal vector to I'spock. The vector field Vsﬁ’y) s ex-
pressed in the (x,y)—coordinates and oriented towards the interior of Q.
In properties (b)—(d), yp, represents the y—coordinate of point Py, defined by Defi-
nition 223
Even though this lemma is similar to Lemma [3.23] the proof is more compli-
cated, because up, co, po, and So depend on 3 € (0, BS(U“)].

Proor. We divide the proof into three steps.

1. As just mentioned above, (uo,co) depend continuously on 3 € (0,%5). In

particular, |up| and co increase with respect to 3. Therefore, there exists a constant
¢ > 1 depending only on (vs,7) such that

luo| <& 1<co<e  forall Bel0,B)].

Then inequality (3.5.18) and properties (a)—(b) can be directly checked from ([2.4.4]),
G229), B414), B548), B:59), and Lemma B.28
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2. A direct computation by using (2.43)-2.44), B24), B.4I13), B50d), and
(BE59) yields that

9.52(0,0,0,yp,) = — O sech

=57 sin(yp, + B).
Po

asz?(Oa 0707yP1) = —Co(po - 1) COS2(yP1 + ﬂ)a

apyB'{\/(0,0’O,ypl) = _((Po — 1) sin(yp, + 8) + M)

cos(yp, + ).

For 8 < B{"=), we have
T
005(5 —B—yp) = Mo(B),

where Mo is defined by (2.4.6]), which is a continuous function of # € [0, T) that
satisfies Mo < 1. Then there exists a constant dp € (0, %) depending only on

(Voo,y) such that yp, + 8 < I — §p for all 5 € [0, (U“)] This implies that there
exists a constant mg > 0 dependmg only on (veo, 'y) such that

Dip, p,,»)BY(0,0,0,yp,) < —mg'  for all § € (0, 5{"=)].
We combine this inequality with property (b) to obtain property (c).
3. By (Z4.0) and (A1]), we have
Dypgioa(Dpo(Pr), po(Pr), P1) - vo = po(1 = Mp)
for the unit normal vector v to the straight oblique shock Sp pointing towards

the & —axis. It is shown in the proof of Lemma [2.22] that

d M
d—ﬂo<0 for allﬁE(O,%).
Therefore, there exists a constant m; > 0 depending only on (vs,7y) such that
vo - Dpgit ((Dpo(P1), po(Py), P1) >mit  for all 8 € (0,5"].
A direct computation by using 35.2), (B50), and BEI0) leads to
(3519) D(Pz »Py)B? (07 0,0,0, yP1) ’ Vs(la;,’y) (07 yP1)
=v0o - Dpgina(Deo(P1), po(Pr), P1) > m; .

Owing to ([35.19) and property (b), there exist small constants o, > 0 and &, > 0
depending only on (vs,7y) such that, whenever

|(pw,py,27x)| < Sbcv |y - yP1| < gbm |Vs(}f’y) (x y)(o yPl)‘ < Sl”

we have
@) 5 1

D(:Dupy Bl (px,py,Z r,y) v = Iy

Dz 4) (P00 = po =)
‘D(x,y)(spoo Yo — ¢)|
choose a small constant ¢’ > 0 depending only on (v, 7) so that, by properties (a)—
(b) of Lemma B.28] |Vs(g’y) - us(ff’y) (0,yp,)] < 6y on Tgpeer N 9909, This completes
the proof of property (d) of Lemma O

Note that I/S(ff ) — on Tyhock N ONC. Therefore, we can
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PropPOSITION 3.30. Let € > 0 be the constant introduced in Lemma [B.28
Fiz 0 € (O,ﬁﬁ”x)). For each a € (0,1), there exist ¢ € (0,&] depending only
on (Voo,7,0), and C > 0 depending only on (voo,7, @) such that any admissible
solution ¢ corresponding to (Voo, f) € Ryeax N {B < B(”“’) — o} satisfies

(3.5.20) le = wollFho + Il fom — fool$ly. < C.

PRrROOF. For each 3 € (0, (v“)] point P; defined by Definition 2:23] satisfies
Py

(3.5.21) sinyp, = 2.
Cco

In the proof of Lemma 222 it is shown that £ is a decreasing function of 3 €
(0, §v°°)] with 551 =0at 8 = Bb@‘”), and co is an increasing function of f.
Therefore, for each o € (0 BS(U“)) there exists a constant d; > 0 depending only on

(7, €00, o) such that yp, > §; for all 5 € (0, (voo) _ o]. By combining this estimate
with Lemmal[3.28|(d), we obtain a constant ls, > 0 depending only on (v, v, o) such

that any admissible solution ¢ corresponding to (veo, 5) € Ryeak N{S < Bﬁ”x) —o}
satisfies

(3522) f(’),sh > lso on [Oa 5]

We choose _
e = min{%, 12},

Then we repeat the proof of Proposition B:26to find a constant e € [0, e,] depending
only on (ve,7y) such that any admissible solution ¢ corresponding to (ve, ) €
Rweak N{F < plvee) o} satisfies estimate ([B.5.20) for a constant C' > 0 depending

only on (veo,7, @).
The main difference from the proof of Proposition B.20] is that the uniform
positive lower bound of fo ¢ for admissible solutions corresponding to (veo, 5) €

Rweak N {8 < plvee) o} depends on o € (0, BS(U“’)) so that the choice of € to satisfy
estimate ([B.5.20) becomes dependent on o as well, due to Theorem [C.11] O

REMARK 3.31. Note that f depends on 3 € [0, §) continuously. Furthermore,
s 0for B < BS(U‘”), and €5 =0 for g > ﬂ(v"o . Since

(3.5.23) lim & =0,

we have
lso =0 at § = Blve)
for constant Iy, from ([B5.22]).

3.5.2. Case 2: Admissible solutions for § < ﬁﬁ”x) close to ﬁﬁ”x). Now
we extend Proposition up to 8 = BS(U"").

PROPOSITION 3.32. Let € > 0 be the constant introduced in Lemma B28. For
each o € (0,1), there exist € € (0,&] and o1 € (0,1) depending only on (Veo,7y), and
C > 0 depending only on (vso,, ) such that any admissible solution o =1 + po
corresponding to (Voo, 8) € Ryeak N {B§U°°) -0 << Bév“’)} satisfies estimate

B520).
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ProoF. We divide the proof into five steps.

1. Owing to Remark [3.31], we cannot apply Theorem [C.11] directly to establish
estimate (B3.5.20) up to 8 = ﬁ§”°°). We first observe that there exists a constant k >
1 depending only on (ve,) such that, for any admissible solution corresponding

£0 (Voo; ) € Rear N B < A1,
(3.5.24) {0 < x < 2¢, 0<y<yp1+%}CQ%C{0<x<2€_, 0<y<wyp +kz}.

Using (35.24) and Lemmas and 328 we can adjust the proof of Proposition
to conclude that, for each a € (0,1), there exist a small constant ¢* > 0
depending on (vs,7) and a constant C' > 0 depending on (v, v, &) such that any
admissible solution ¢ corresponding to (v, 3) € %weakﬂ{ﬂév“) —o*<p< BS(U”)}
satisfies

(35.25) le = wollfane, < C.
vp,

2. Claim: There exist € € (0, g], o’ € (0,0%], and C* > 0 depending only on

(Voo,7y) such that any admissible solution ¢ = ¥ + po corresponding to Ryeak N
{ﬂs(v"") -0 <p< BS(UC”)} satisfies

b, \
1077

In what follows, unless otherwise specified, the universal constant C' represents

a positive constant depending only on (vs,), which may be different at each
occurrence.

(3.5.26) 0 < op(x,y) < C*axt in Q%N {z >

For an admissible solution ¢ corresponding to (veo, 8) € Rweak N {8 < 65(%")},
let ¢ be given by (3.5.4). We regard Eq. ([8.5.17) as a linear equation for 1 in Q2
and represent it as

2

2
(3.5.27) Ly = Z aij(z,y)Dijh + Zai(xa y)Diy =0,
ij=1 i=1
Wlth (aijaai)(:E?y) = (AgaA?)(D¢($7y)a¢($ay)7x) fOI‘ 17] = 15 27 Where Ag and
A9 are from Lemma By [3229) and Lemma there exists a constant
C > 0 depending only on (ve, ) such that a;;,4,j = 1,2, satisfy
(3.5.28)
z <an(r,y) <3z, C7' <an(r,y) <O, |(a12,a21)(2,y)| < Cx in QF,
(3.5.29)
a1(z,y) <0, Jaz(z,y)| < Cx in Q9.
By properties (a)—(b) and (e) of Lemma 328 there exists £1 € (0,&] such that
1) satisfies the estimates:

1 . 2 1. 2 . =
|(¢x,¢yﬂ/%$)| < imln{(sbcﬂsbc}v |y - yP1| < 5 mln{ébmébc} m Qg

for constants (dpc, Sbc) determined in Lemma 329 Then the boundary condition
BE53) can be written as a linear boundary condition:

(3.5.30)  Bap = by(x,y), + bo(x, Y)y + bs(z,y)p =0 on I'ghoek N (?Qg,
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and Lemma implies
(3.5.31)
—-C< bj < 0! for j =1,2, (bl,bg) . I/S(fl;’y) > c! on I'shock N 892

By B524), we have
(3.5.32) Q° c{(z,y) : 0<x <& 0<y<uyp +kz}.

For constants m, it > 1 to be determined, define a function v by

o(z,y) == (z +muyp, )" — m(z +muyp,)*y°.

Suppose that
1 N 1
(3533) yp, < W’ e< 5 mln{sl,a(g, m—‘u}

for e from Lemma[3.29] Then a lengthy computation by using (3.5.28)) and (3.5.32)
shows that constants (m, ) can be fixed sufficiently large depending only on (ve, )
such that

1 .
o(ey) > S +muyp)* i QF,
(3.5.34) Lv<0  inQF,
Bfv <0  on Igpock NONT.

For detailed calculations to obtain ([B.5.34]), we refer to [11], Lemma 16.4.1].
For ¢ := %min{al,sg, mL#}, we define

1
a = Py max
2€% 908, N{a=2¢}

.

Note that, by the strong maximum principle, a is a positive constant. By Lemma
B28(e), a is uniformly bounded above depending only on (veo, ).

Note that v satisfies the boundary conditions F511) on 9QS. \ ({z = 2&} U
Ishoek ). Since |y| < yp, on T'Q . and u > 1, we have

sonic
av>0=1 on 'Y

sonic*
On I'yedge N 89%, vy =0 =1y,
By the maximum principle, we have

Y < av in Qgé,

provided that yp, satisfies the inequality that yp, < (mu)=2.
By B521) and (3523), there exists o' € (0,0*] such that each yp, corre-

(veo) _

sponding to 8 € [fs 0’,55(%")) satisfies the inequality that yp, < (mpu)~2.
This verifies the claim.

3. Let ¢ = ¥ 4+ o be an admissible solution corresponding to (veo, ) €

_ 2
Rueakc N {B") = o/ < B < B"™)}. For 20 = (2o,50) € Q2 N fo > “F+} and
r € (0,1], define the sets:

3/2
~ xr o
R i={(z,y) : |z —z| < —1%k rs ly = ol < 1gp7h

R., = R., ., NOS..
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Here, R, 1 may intersect with I'spock U l'wedge. However, if R, 1 NTshock # 0, then
R.;.1 NTyedge = 0, and vice versa. Note that the dimensions of rectangle R, , are
given such that

(i) the re-scaled function t(*0) defined below satisfies a uniformly elliptic
equation, due to (B5I8) stated in Lemma [3.20t
(ii) R., 1 does not intersect with Iypock and I'wedge simultaneously.
For r > 0, define the sets:

Qr = (_T’T)2’
Q) = {(S,T) € Q, : \1/0;(%5 Vo T) € Reg v}

JE— 2
For zp € Q9 N {z > y%}, define
H(ST) = Lo+ D50+ 1) for (5.7) € Q)
’ zh 10k 10k ’ o
For constant L from Lemma B28 choose a function n € C*°(R) such that
0 <75 <1withn(¢t) =1 for |t| < L and n(t) = 0 for |¢| > 2L. For such a function
71, we define
(3.5.35)

(A, AT D)y py, 2, 2) 1= (AD AD) (P2, en(P2), 2n( =), o).

Then (Aij (mOd),A?’(mOd)),i,j = 1,2, satisfy the following lemma, which is a gen-
eralization of Lemma

LEMMA 3.33. Let e¢g > 0 and L > 1 be the constants from Lemmas B27

3.28, respectively. Then there exist constants ¢ € (0,%] and C > 0 depending

only on (vso,y) such that any admissible solution ¢ := o + ¥ corresponding to
(Voo, B) € Ryeak salisfies the following equation:
(3.5.36)
2 2
2O, (mod 2O, (mod .
ST AG (DY, 2) Dy + > AT (DY, ) Dy =0 in QF,
ij=1 i=1

with coeﬁiczents (AO »(mod) AO (mOd)) satisfying the following properties:

i 350
n {(pw,py,z ac) |(10m y)| < Lx, |z| < La?, x € (0,¢)},

(b) |(A(9 s(mod) A1 ,(mo ),A;mOd))(Pmpyﬂz,xﬂ < Cz inR? xR x (0,¢),
( ) ”( O(rnod) AO (mod))

”0 JR2XR X (0,¢) < C’
<>HQMMWMA”W“A?w@mmww@@sc
Substituting the definition of 1/(*0) into Eq. (3.5.36), we have
(3.5.37) Z A (Dy) =) |5 T) Dy jp=0)

1,j=1

2
+ 3 AP (DY) =) S T)DpE) =0 in Q)
i=1
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with
; 3/2
A(Zo)(p7 2,8) = xo A?’mOd(Ikao p1, IOkZEOpQ,sz To + 10k =39,
A (p,2,8) = 5l AO 104 (10kzg 2 py, 10ka] N To_gy.
i ) 10k 0 1 0p2,$02’ Zo 10k

By BX20)), there exists a constant C' > 0 depending only on (ve, ") such that

(3.5.38) W) <c in QL

N 2
for all z € Q2N {x > 2l
For fo sn from Lemma [3.28] define

3/2

(f(? sh(fEO + xlm ) — fo7sh($0)) for -1 < S<1.

10k
Ty

Similarly to (B:448), a direct computation by using [B539) and Lemma [B28(d)
shows that there exists a constant C' > 0 depending only on (vs,7) so that, for
each zo = (20, fo.sh(%0)) € I'shoek N 89?, F(20) gatisfies

(3.5.39) F0)(8) =

(3.5.40) F)(0) =0, IFE| e 21,1y < Cv/ao.

However, it follows from ¢o, — ¢ = 0 on I'yeck that

3/2

(3.5.41) ¢S (xo + =2— 10k 98, fosm(zo) + m—kF(ZO)(S)) — xS, F0)(§)) =0

for ¢ given by (B.5.7).

Similarly to [B447), by using Lemmas B28H3.29) we can further reduce & €
(0,5] depending only on (ve,7) so that the boundary condition ([3.5.8) can be
rewritten as

(3542) ’(/}x = b@ (wy7 ’(/}7 x, y) on I1Shock N aﬂggéa

where b satisfies the following properties:

bo(0,0,z,y) =0 in Qggs,

(3.5.43) _
|D'bo(py,z,7,9)| < C; inRxRx QY forl=1,2,3,--,

for C; > 0 chosen depending only on (veo,7,!)-
For each zy € T'shock N 69?, we substitute ¢(*0) into ([35.42) to obtain the

following boundary condition on I’éff)ck ={T=F*)(8): -1<S<1}:

(3.5.44) P50 = BGO (98 =) 5 ),

for BEY (97, 4(20)| S, T) given by

74+3/2 3/2

b (10k 3(20) 4 (z0) Lo ke ol
IOk o (10kzghy ", '), 2o + 1Oks’y0+10k )-

Zo)(w(zo) w(zo) S T)
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It can be checked directly from [B.5.43)) that, for each zp € T'shock N 090 B, (z0)
satisfies

B§Y(0,0,5,7)=0  in Q™
0.0 < < may/To for all (pr,z) e R x R,

||D(pT7Z)B((920)(pT, z, )||1 ey < mo/Zo for all (pr,2) € R X R,

(3545) ||6PTB o) (pTa 2, )”

where mo > 0 is a constant depending only on (v, 7).

4. Using 35.18), Lemma B33 3540), and (B545]), we see that Eq. (3.5.37)

and the boundary condition ([B544]) satisfy all the conditions required to apply
Theorem Therefore, by ([.538) and Theorem [C.H there exist ¢ € (0,€],
& € (0,1), C, and o7 € (0,0'] depending only on (vso,y) such that any admissible
solution ¢ = 1) + o corresponding to (Veo, 8) € Rweak N {B(U"") o1 <pB< B§U°°)}
satisfies

2
(3546) W), o <O forall 2 € P 1002 0 o > 7).
5Oy 3/4

To obtain the C'%estimate of F(*0) we follow the approach given in the latter
part of Step 3 in the proof of Proposition [3.260 Namely, we differentiate (3.5.41))
with respect to S to obtain

Vs (0:62 (w5, us) — 10kt *05:=0) (.7)

5.4 FE)y = —
(3.5.47) (7% 0y9Q (w5,ys) — 10kzgdryp(=0) (S, T)

3/2
for (xSa yS) (xO + — 10]{3 S f@ Sh(.’[o) + IO_ICF(ZO)(S))

Then a direct computation by using Lemma B:27(c), (540)-BE541), and the
smoothness of ¢ yields that there exists a constant C' > 0 depending only on

(Vso,7y) such that
3.5.48) —_ | F0) <C  forallzp el 900 U,
(3.5.48) —:TO” 1,6,(~3/4,3/4) < or all zg € L'shock M Nn{z> 5 }.

For higher order derivative estimates of ¢)(*) and F(*0) | we follow the bootstrap
argument given in the latter part of Step 3 in the proof of Proposition by using
B540), 3.5.47), and Theorem [C.6l As a result, we find constants € € (0,€] and
o1 € (0, 0] depending only on (ve, ) such that, for each a € (0, 1), any admissible
solution corresponding to (v, 8) € Ryeak N {BS(U“) —01 <fB< BS(U”) } satisfies

[

| <C

1
V20
2
for all zg € I'ghock N 89? N {x > y%}, where the estimate constant C' depends only
on (Voo 7, @).
Furthermore, by repeating the argument of Step 4 in the proof of Proposition

[3:26] it can be shown that, for each « € (0, 1), there exists a constant C' > 0 depend-
ing only on (v, 7y, @) such that any admissible solution ¢ = 1 + @ corresponding

2,0,Q1%
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(veo) < (veo) s ﬁ
t0 (Voo, 8) € Rweak N {Ss —o01 < B < fBs =’} satisfies

z 1 z 00 y123
[ 0)||27Ol7?z/02> = IF g0, —1/2,1/29) < C forall z0 € Q2 N {x > ?1}

2
Denote U, := Q° N{z > y%} Collecting all the estimates of 1)(*0) established
above, scaling back to the (z,y)-coordinates, and following the argument of Step
3 in the proof of [11], Proposition 16.4.6], we have

3k 41 _4) 9k ol
sup (x2 0ro, W (z
sup ( 050 u(2))

0<k+1<2
k ol k ol s
—+ Z sup (min{xz (atk)+1—4 i-z(a-‘rk)-‘rl 4}|8xayw(pir afayqp('z”) < 07
Wi TiSHe 0" (2, 2)

where k and [ are nonnegative integers, C'is a constant depending only on (v, v, @),
and we have used the notation that z = (z,y) and Z = (&, ¢). This implies that

(3.5.49) ||¢||ép2rﬂom{m>y /5} =C.

5. Combining estimates ([.5.25]) and ([B.5.49) together, we obtain

le = pollFoae < C;

where constant C' > 0 depends only on (v, 7, ).

(2),(par)

In order to estimate [¢ — ¢ol, Qo

we consider two cases: (i) either z =
2
(x,y), 2 = (Z, y)EQ 2 Ol 2, 2eQ9n{z>" 1} and (i) z > yp, > y? > 7
For k+1=2, deﬁne

050y (2) — 030, ()]

atk+i-2 ja+k+§—2}| Ty (par)( )
O z,Z

qr1(z, 2) := min{x

For case (i), qx,1(%, Z) satisfies

3 qalz 2 <4(||w||;’;%o IS o sz, s51)-
k+1=2 VP

.o . ~ o 7
For case (ii), since (5&par)(z, Z) > 5= > %=, we have

> aulz) < 2a+2(||w||;§3<o 1SS o, /51)-
k+1=2

Therefore, we conclude that there exists a constant C' > 0 depending only on
(Voo, 7, @) such that
le = pollfape < C.

In order to estimate ||on,$}1 fo 0||;p;r)0 ) We adjust the argument of Step 6 in the

proof of Proposition [B.26] by using Lemma B27 instead of Lemma [3:20 O
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3.5.3. Case 3: Admissible solutions for § > B(v‘x‘ close to Bivx).

LEMMA 3.34 (Extension of Lemma B.27 for all 8 € (0, éU“))). For the (z,y)-
coordinates given by [B.5.2), define

(3.5.50) =z —xp,.

Then there exist positive constants e1,€9, 0o, wo, C, and M depending only on
(Voo,y) with €1 > o and M > 2 such that Lemma holds for any admissible
solution corresponding to (Voo,8) € Rweak, where x is replaced by & in all the
properties stated in Lemma B.27.

PROOF. By the definition of P; given in Definition 223 zp, = 0 for 8 < ﬁ(v‘x‘
which implies that & = z for g < Bs(v"o . Therefore, Lemma [3.34] coincides with
Lemma [3.27] for 8 < BS(UC”).

For 8 > ﬁs(vx), T < z, since xp, > 0.

For g > ﬁs(v“’)7 we repeat the proof of Lemma 327 except for replacing co by
|PLOo| = coMp csc 3 for Mo defined by ([224.6). Note that ‘Plc—go‘ =MpcscB=1
at 8 = B(UC"J). Since M is decreasing with respect to § by (2:4.43]), we see that
% < 0for 8 € (0,F) as well. Then we conclude that 0 < Mo cscﬂ\ﬁ e <

Mopcscf < 1 for § > BS(U“’) with Mpcscf =1 at 8 = ﬂs(v“’), and |P1Qo| > 0

depends continuously on 8 € (0, ((iv*)]. Therefore, there exists a constant €1 > 0

depending only on (vs,7y) such that
|PiQol| > 2e1 for all 8 € (0, (U‘”)]

Then we can also choose a constant dy > 0, depending only on (v, ), to satisfy
BEI3) for all 5 € (0, év“)). The rest of the proof is the same as for the case
B< g, 0

LEMMA 3.35. Let g1 be the constant introduced in Lemma B34 Fore € (0,e1),
let QF be given by BEI6). For each o € (0, ((iv‘”) — (v“’)) define a half-open
interval 1(c) by

(3.5.51) I(o) := (0, 8L"=) + o).

Then, for any given € € (0,e1), there exists o > 0 depending only on (veo,7,€) such
that, for any admissible solution ¢ corresponding to (Voo, 8) € Rweax N{S € 1(0)},
QO is nonempty.

PROOF. For 8 < BS(U“’) , Q0 is always nonempty, owing to Proposition B.I11

Suppose that g > Bévm). It follows from Definition [2.24Yi-4) of Case II, Propo-
sition BI1] and the definition of the (z,y)-coordinates given by ([B.5.2) that QY
is nonempty if xp, < e. From this perspective, we need to find a small constant

o > 0 so that xp, < ¢ holds for all 3 € I(0).
For each admissible solution ¢, define M (P) := %; that is, M(P)
is the pseudo-Mach number of ¢ at point P. For each 3 € (0, %), let P3 be the

&1—-intercept Ps of the straight oblique shock Sp. By Definition M(ii—?)), we have

| Do (Ps)l
co

M(Pg) = = Mopcscf
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for Mo given by ([2.4.0). According to the proof of Lemma2.22] Mp is a decreasing
function of 3 € (0, %). This implies that

dM(Pﬁ) ™
.5.52 — <L for all —
(3.5.52) i3 <0 or a ﬂ€(0,2),
so that
(3553)  pof M(Ps)=M(Pyow ) <1 lim inf M(Pg)=1.

By B.5.32), xp, can be expressed as
(3554) l‘pﬁ =Co — ‘Dtpo(Pgﬂ = Co (1 - M(Plg))
Moreover, we obtain from (Z440) and 35.52) that

dzp T
3.5.55 2 >0 fi 0,—=).
(3.5.55) i3 > or f€(0,3)
Furthermore, [35.53) yields that
(3.5.56) sup xp, = xPB|5=BS(U°°)+a >0, lim sup zp, =0.

Bel(o) o0+ ger(o)

Therefore, for any given € > 0, we can choose o > 0 depending only on (v, 7, €)
so that xp, < ¢ for all 3 € I(0). O

LeEmMMA 3.36 (Extension of Lemma B.2§ for 8 > Bévm)). Let g, wg, and M
be from Lemma B34l Then there exist constants £ € (0,e9], o2 € (0,1), L > 1,
0 € (0, %), andw € (0,wo]N(0, 1) depending only on (veo,7y) such that any admissible
solution @ = ¥ + po corresponding to (Voo, ) € Rweak N {8 € I(02)} satisfies
properties (a)—(e) of Lemma with the following changes:
(i) The definition of QF in [B.5.10) is replaced by

(3.5.57) Q° =QnN(T9 )N {xp <z <xp, +E},

sonic
(i) QF ={(z,y) : z € (zp,,xp, +£),0<y < f@’sh(x)},
(ii)) Tshoex N1ONE = {(z,y) : € (xp,, xp, +8),y = fom(z)},
(iv) w< f(’gsh(x) <L forzp <z <zp, +¢,
where I(o9) is given by B251]).

PRrROOF. As in Lemma [B28 this lemma is proved by adjusting the proof of

Lemma [3.27]
Let 2 be given by (B550). Since & = z holds for 8 < 5§”°°) so that Lemma

3.30] is the same as Lemma [3.28] it suffices to consider the case that 8 > Bs(v‘”).
By Definition 23] Remark B.I4] and Proposition 315 combined with (334
B35), BLY), and B554), there exist constants ¢’ € (0,1), ¢’ € (0,&0), and

8" € (0, %) depending only on (v, ") so that any admissible solution corresponding
t0 (Vo0,7) € Rwear N {B € I(0”) N [B>), 2)} satisfies

(3.5.58)
20— (7 + 1)ty + OF (DY, 1,2) = & (dlist (€, TQuic) + co (1 - 'DS"S—O(P”‘))
=6 ((x—zp,) +ap,) =0z in Q9,

where we have used P, = Pg for § > ﬂs(v‘”), and (B338)) in Proposition 315
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Since ¢ > 0 holds in Q€ by Definition Z24(iv), we use [B229) to obtain

+ .
O (Duv,2) < Tav, i 9,

Then we can choose & € (0,¢’] and ¢ € (0, %) depending only on (ve,3) so that,
for any admissible solution ¢ = 9 + pe corresponding to (vVeo,7) € Ryeak N {S €

I(o") N[, 2)}, (B55R) implies that
Yo(r,y) < —a

T 1+
in domain Q€ given by ([B:5.57).

By Lemma [3.28 we can adjust § € (0 ¢'] and £ € (0,€’] depending only on
(Vso,7y) so that property (a) of Lemma B30 holds for any admissible solution cor-
responding to (Voo,y) € Rweak N {8 € I(c )}

Next, we choose a constant oo € (0,0’] depending only on (v, ) so that Q
is nonempty for any admissible solution corresponding to (veo,7) € Rweak N {S €
I(02)}. Such a constant oz can be chosen due to Lemma Then property (a)
of Lemma is verified.

The proofs of properties (b)—(e) of Lemma 330 for 8 > B{"=) are the same
as for the case that 8 < ,B(U‘x’ , except that x is replaced by z for the range of
variables for which the lemma holds, and Lemma [3:34] is applied instead of Lemma
More details for proving (b)—(e) of this lemma can be given by adjusting the
proof of Lemma [3.27] a

LEMMA 3.37. For each o € (0 ﬁ(v‘x’) - ﬁs(vx)) there exists a constant po > 0

depending only on (vso,7,0) such that, for any B € | (U‘X’), C(lv‘”) —o], ¢b , defined
by BATI4) satisfies the following properties:

apjgrs‘r?od(D@O(Pl)aSOO(PI)7P1) < —Ho forj:1727
0205moa (Do (P1), po(P1), Pr) < —po.

PRrROOF. Since Pz = P, for g > ﬂs(v“’) due to ([Z50) in Definition 223] we
apply Lemma [A 4] to obtain

OprGamoa(Dpo(P1), o (P1). Pr) < =071 for any § € [3("), 5" — o],
with a constant C' > 1 depending only on (v, 7, o).
A direct computation by using 0¢, 9o (P1) = Og, 00 (Ps) = 0, (Z43)), Definition
223 and (AIR) yields that
s Gonoa (Do (P1), po(Pr), Pr) = —(po + 1) cos 5.
By using (Z4.2), it can be checked directly that

s C(;)Mo
9 grmod (Do (P1), po(Pr), Pr) = — i
(@]

for Mo > 0 given by (24.0).
Since (po,co, Mo) depend continuously on 8 € [0, 5), we conclude that there

exists a constant C' > 1 depending only on (vs, ") such that
(921 0:)gim0a (Do (P1), po(P1), P) < =C™ for all § € [80"=), 5{"].
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COROLLARY 3.38. Let € and o4 be the constants in Lemma B.36l Then Lemma
holds for all (Veo, B) € Ryeax with B € [Bs(vx), B§vx) + o3].

PROOF. It suffices to check property (c) of Lemma 329 for 5 > ﬂ(”“ as the
rest of the properties of Lemma can be verified for § > ﬂs(v“) in the same way
as for the case that 8 < ﬁ§”°°). Since P, = Pg for g > ﬁ§”°°), yp, = 0. From (243)
and BL9)-BEI0), we have

1
(Dpz7Dpy)B?(O70707xP17yP1):U00 Secﬁ(DZH’ gDm)g;};Od(Dapo(Pl),(p(g(Pl)7P1).

Then property (c) of Lemma is obtained for the case that ﬁ(v‘x‘ < g8 <
Bs(v“’) + 09 from Lemma [B.37 and the smoothness of BY . O

We now establish the uniform C%“-estimate of the admissible solution ¢ =
) + po corresponding t0 (Veo, f) € Ryeak for 5 > Bb@*) close to 6§v°°).

PROPOSITION 3.39. Let € and oy be the constants in Lemma B30l Then, for
each a € (0,1), there exist constants € € (0,&] and o3 € (0,02] depending only on
(Voo,7), and a constant C > 0 depending only on (v, 7, ) such that any admissible

solution ¢ = ¢+ o corresponding o (vec, B) € Ruear N{A") < 8 < B + 03}
satisfies
||¢||Cz,a(@) < 07

(3.5.59)
|D¢"p(PL)| = |Dg*¢(Pg)| =0 form=0,1,2.

Moreover, fo,sh from Lemma B.36 satisfies
(3.5.60)
[ fosn — fooll2,aep, . < C

m m

dz m(fOsh f@O)(IPH) dz m(fOsh f@,O)(zPQ):O form:O,l,Q.

PROOF. In this proof, all the constants are chosen depending only on (veo,?),
unless otherwise specified.

1. For a fixed 8 € (s (v“’) (v"") + 03], define
dso(z) =2 — xp,.
If 3> BL"<), then dso(z) < z for all x € QF.

Claim: There exist constants ¢ € (0,5], o3 € (0,02, and m > 1 such that
any admissible solution ¢ = 1 + o corresponding to (Voo, ) € Ryweax wWith B €
[Bs (veo)  glvec) + 03] satisfies

rp, < —,
(3.5.61) " 10

0 < P(z,y) < m(dso(z))’ in QF.

A more general version of the claim stated immediately above can be found
from [11} Lemma 16.5.1].

Note that ¢ > 0 holds in ©, due to Definition 224(iv).
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For a large constant M > 1 to be determined later, define

1
,U(xay) = (.’E - xPl)S - M(x - xP1)3y2'

By Lemma [B:36] there exists a constant k& > 1 such that

1
(3.5.62) {(z,y):zp, <x <& 0<y< E(l‘—.’lfpl)}
cQ c{(z,y):xp, <z <& 0<y<k(x—xp)}

As in the proof of Proposition B.32] we regard v as a solution of the linear
boundary value problem:

LYy=0 inQZ,
By =0  on Tyhoa N NG,
Py =0 on I'yedge N 09?,

where the linear operators £ and BY are given by (8.5.27) and (3.5.30), respectively.
It follows from ([229]) and Lemma that there exist constants £, € (0, £]
and C depending only on (vs,7) so that the linear operator £ satisfies properties
B528)-BE29) in QF for any admissible solution corresponding to (vso,/3) €
mweak with ﬁs(UOO) S ﬁ S ﬁS(UOO) + 02.
From Corollary B38| there also exist constants é2 € (0,£1] and C depending
only on (vs,7) so that the boundary operator BE satisfies (8:5.31) in T'shock N 89?2

for any admissible solution corresponding to (veo,3) € Ryeak With Bb@*) < B <

ﬁ('UDO) +o
s 2-

Similarly to Step 2 in the proof of Proposition [3.32] a lengthy computation
by using B528)-B5.29) and B53T) shows that there exist a sufficiently large
constant M > 1, a sufficiently small constant ¢ € (0, %2}, and a small constant
o3 € (0,09] such that, for any admissible solution ¢ = ¥ 4+ ¢ corresponding to

B € Ryeax with 8 € | s(vm), Bs(vx) + 03], we have

9
zp, < 10’
Lv <0 on 0,
Bf’l} < 0 on Pshock M 69;957
Vy = 0 on 1_‘wedge N 695)57

1
v(z,y) > 5(37 — (Epl)S in Q?E

Detailed calculations for the results stated above can be obtained by following the
arguments in the proof of [11, Lemma 16.5.1].

Note that o3 := 03(ve0,7,€) € (0,02] can be chosen sufficiently small so that
QF) is nonempty for any admissible solution ¢ = ¥+ corresponding to 3 € Ryeak
with 8 € [B{"), B{") 1 o).

For € € (0, 22] fixed above, define m,, for (3.5.61) as

max  (z,y).

My 1= —
VT e 809 N{z=2¢}
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By (B1.20) stated in Lemma [B.5] there exists a constant m > 0 depending only on
(7, Vo0 ) such that

my <m

for any admissible solution ¢ = ¥ 4+ o corresponding to 8 € Ryeax With 5 €

[ s(voo)’ s(”"o) + 03]. Moreover, we have

P(z,y) < mou(x,y) on 9NS N {x = 2¢}.

Then the maximum principle implies that

The claim is verified.

2. Take ¢ > 0 and o3 > 0 from Step 1. Let ¢ = 9 + ¢ be an admissible
solution corresponding to (vVso, 8) € Ryeax With 8 € [Bs (veo) | glvee) 4 o3]. For each
re (0,1) and zo = (0,10) € QO \ {P1}, we define Q, and ng‘)) by

Qr = (-, 7‘)2, Qg’ZO) ={(5T)€Qr : 2+ 1((),1{1 )(\/_S T) e Q gt

and a re-scaled function 1(*0) by

dSO dSO zZ0
o+ o0 oog oy o@Dy gy e ),

(20) —
YRS T) 10k 10k

(dso (370))5

where k > 1 is the constant from [B.5.62)).

We repeat the arguments used in Steps 3—4 in the proof of Proposition
with some adjustments to obtain that, for each a € (0, 1), there exists a constant
¢ > 0 depending only on (vee, 7, @) such that any admissible solution corresponding

t0 (Voo ) € Ryeak With 8 € | (v‘x’), s(v‘”) + 03] satisfies

(3.5.63) ||| <e¢ for all zy € QO \ {P,}.

c2e (@)

Following the argument of Step 2 in the proof of [11l Proposition 16.5.3] and
using estimate ([3.5.63)), we obtain

(3.5.64) Z sup ((z — xp, )5y s |8’;8‘7l41/1(z)|)
0<k+i<2 2€

+ Z sup (max{z, T} — xpl)k+l+a_5
kti=2 2,200 z#%

x (max{z, x})

so |OFOLY(2) — DEOLY(Z)
5P (2, 2)
<cCce

for 5P (z,2) given by Definition B.:25 where we have used the notation that
z=(x,y) and Z = (Z,7).
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We further follow the proof of [11l Proposition 16.5.3] to obtain that, for all
x,Z € (xp,, &),

k
(x — xpl)kH*E’x? > 23RS for <k+1<2,

(3.5.65) (max{z,z} — $P1)k+l+a_5 (max{z, 55})“7“

> (max{x,ic})%(kﬂ“)JrF5 for k +1=2.

This is because k + 1+ a —5 < 0 holds for k,l € ZT with 0 < k+1 < 2 and
€ (0,1). Since 2(k+a)+1—5 < 0 holds for k,l € ZT with 0 < k+1 < 2 and
€ (0,1), it follows from (B.5.65) that

(x— :Epl)kH_s:c% > gakti=5 for0<k+1<2,
(3.5.66) (max{z, 7} — zp, )" (max{z, 5}) 3
> g3 (kta)+i=5 for k+1=2.

Assuming that € < 1 without loss of generality, we also have
(3.5.67) 6P (2 2) <|z—2*  for z,2€QP.
Using [3.5.64) and [B.5.60)-(@B.5.67), we obtain
¢l 2.0 ) < ©

for some constant C' > 0 depending only on (v, ¥, @), because the choice of € given
in Step 1 depends only on (veo, 7).
Furthermore, it follows directly from [B.5.64]) that

|D(2x,y)d)(z7y)‘ < OQ:(.I—IPI)Z in Q?a
which implies that
|Dgy(P1)| = 0.

Note that ¢(P;) = |Dgtp(Py)| = 0, due to Definition [2Z24(ii-3) for Case 2. Therefore,
BE5R9) is proved.

Finally, (35.60) can be proved by adjusting Step 6 in the proof of Proposition
and using (B559). O

3.5.4. Case 4: Admissible solutions for g > ,BS(”‘”) away from Bs(v‘”).
We first introduce a weighted Holder space.

For a bounded connected open set U C R?, let T' be a closed portion of U.
For x,y € U, define

0x = dist(x, ), Ox,y = min{dx, by }.
For k € R, a € (0,1), and m € Z™, define the standard Holder norms by

[wllmow == > sup [DPu(x)],
0<|8]<m <€V

b

DBy (x) — DBu
e = 3 sup (274l Z D7uly)]
— X.yEUXEY |x —y|
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and the weighted Holder norms by

||uHm oU — Z sup ((Silax(\l@\-l-k,o)‘Dﬁ’u(x)l)7
0<|Bl<m™
[u](k)IU — sup (6max{m+a+k ,0} |DEU(X) - Dﬁu(y)‘)
i e A x -yl
),I k),T k),T
[ullmev = [ullmoy + (maw, el = lull 5l + [lehl,

where D? := 8511 352? for B = (B4, 52) with 8; € Z and |B| = 1 + B2. Denote by
mao m k),T
Crsn(U) the set: {u € C™(U) : [lull{nr, < oo}

Let o3 be from Proposition 3390 Then, by Proposition B.15] there exists § €
(0,1) depending only on (v, ) such that any admissible solution ¢ corresponding

t0 (Voo, B) € Rweak With ﬂ(v“ F<B< ﬂé%") satisfies

| Dol =
_ WL 1.5 wman{a<o
(1D, ) <0y

for ¢(|p|?, 2) defined by B.25). By ([B.5.68) and Lemma B35 there exists M, > 2
depending only on (vs,7y) such that (Dp(€),0(§)) € Kar, for Ky, defined by
BZ4). In particular, there exist A, > 0 and R, > 0 depending only on (vs, ) such

that any admissible solution ¢ corresponding to (veo, 8) € Ryweak With Bs(v“’) +% <
B < Bc(iv“’) satisfies

(3.5.68)

2
> Op, Ai(Dp(8), 0 (€))rirj 2 Al
i,j=1

for any € € QN Br, (Ps) and any k = (k1, k) € R2.

According to Definition 223 Pg = P; for § > ﬂs(vm). In this chapter, we use
Pg, instead of P;, to emphasize that Pg is the {;—intercept of the straight oblique
shock So». In order to achieve the a priori estimates of admissible solutions for
B> BS(U“’) away from ﬂs(v‘”), the convexity of the shock polar curves is heavily used,
particularly in establishing the functional independence property of the boundary
conditions for admissible solutions near Pg.

(voo)
LEMMA 3.40. For each small 5 € (0, =4— Ba = 15— ), there exist positive constants r and
M depending only on (vs,7y,5) such that any admissible solution ¢ corresponding

to (voou B) S 9{weauk N {ﬁs(vx) S ﬁ S ﬁ((ivx) - 5’} satisﬁes
; 1
81’119;}110d(D90(£)ﬂ 50(6)7 6) < _M fOT‘ all é € Fshock N BT(PB)7

where g3t | is given by (BAI).

PROOF. In this proof, all the constants are chosen depending only on (veo,7),

unless otherwise specified. The proof is divided into six steps.
1. For £ € R\ B1(Ox), denote ul) = |Dyoo(€)], and denote féi%m as
fpolar defined by Lemma [A3 corresponding to (poo, tso) = (1, |Dpoo(€)]). Denote

(G 1\ ué ),ugﬁ)) as (g, uq, us) corresponding to (peo, uso) = (1, u(g)).
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(voo)

Fix 7 € (0, 5‘1100 ). Let ¢ be an admissible solution corresponding to (veo, 8) €
Ryeak N {Bs(vm) < g < Bc(lv"") — o}, and let Dypoex be its curved pseudo-transonic

shock. By Proposition 3.7 féi%m is well defined for each & € T'ypoac. For & € R2,
denote

Dy (§)
(3.5.69) o(f) = ~PS)
[Dpos ()]
and let e (€) be the unit vector obtained from rotating e(€) by 5 counterclockwise.
More generally, for each e € R?\ {0}, let et denote the vector obtained from
rotating e by 7 counterclockwise.
The Rankine-Hugoniot condition (Z5.37) implies that Dp(€) can be expressed

as

(3.5.70) Dp(&) = ue(€) + fy5), (e (€)  for cach & € Tuoa,
with u = u(De, £) given by

(3.5.71) u(Dp, &) := Dp(§) - e(§).

By Proposition 315 we have

(3.5.72) u(Deg, &) < ul® for each £ € I'shock-

2. By ([25I2) and Lemma [A4] there exists a constant My > 1 depending
only on (ve,7, ) such that any admissible solution ¢ corresponding to (v, 3) €

9{weak N {BS(UOC) S B S B((ivx) - 5’} satisfies

(3.5.73) 6plgrsr}110d(D<P(P/3)v <P(P/3)7P5) = aplgSh(DQOO(P,B)a SDOO(Pﬁ)7P5) < _M()_l'

&2

&

FIGURE 3.1. The graph of curve ¢(#)(u) =0
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Let (t1,t2)-coordinates be given so that (1,0),, t2) = ¢(
el (Ps). For £ € R?\ B;(O), we define a function g(¢)(u) by

(35.74) 4©) () = g(u)
for g(u) given by (A7) with us = (|Dpso(€)],0) (see Fig. B]). If we denote
u. = e(Fp) - Deo(Pp),

ﬁ) and (0, 1)(t1,t2) =

then
P
Dpo(Ps) = (us, [ (), ) (Dpo(Ps)) = 0.

Since Do (Pgs) - e¢, = 0, it can be checked directly from the definitions of g* and
g given in (BZI3) and (A7), respectively, that

P, S
(3.5.75) aa™ (Dgo(Ps) -1 = 85,6 (Deo(Ps). oo (Ps). Ps).
Moreover, from ([B5.73]), we obtain

(3.5.76) 94 (Dpo(Ps)) - e1 < —Mg .
Note that gI(IPB)(Dgo@(Pg)) is a normal vector of curve (u, Igopg)r( ) at u = u,.
Let L,,, be the tangent line of curve (u, XEOP{;i( )) at u = u,. Then s ")(Dgo@(Pg))
is perpendicular to L, . Let n, be the unit normal vector to L,, withn,-e (Pﬁ)
0. Thenn,-n < O0forn = %, owing to the convexity of curve (u fpohr( u)).
It follows from (AZQ) that s B)(Dgﬁo(P[g)) . ‘g(Pﬁ)(Dwo(Pg)” < 0 (see

Fig. BJ). This implies that
ga (s i) (G fa ), =1)

polar polar

(Ps) (Pg) ’
g™ (1, frotar(w))] ¢1+ (L ) (w))?

olar

and
Pg) Pg) Pg)
(35.77) sen (987 (o, S )) ) = sn (- 8070 )
for u((J ) <u< ugoﬁ ) where we have continued to work in the (t1,t9)—coordinates

with basis {e(Ps),e*(Pg)}.

By the convexity of curve (u, (Ps)

polar(u))7 we have

f(Pﬁ)( ) <0 forﬁépﬁ)<u<ugﬁ).

olar

Then, from (Bm%(m% we obtain
g™, Fygia(w) -ex < =Myt for Oegp,ypo(Py) < ute”.

polar

Note that (P, Doo(Ps),e(Pg)) and the shock polar curve (u f( ’3)( )) de-

polar

pend smoothly on S € | b(vm) ﬁév“’)} (for further details, see Lemma [A3 or [11]
Claim 16.6.7]). Therefore, there exists a small constant £; > 0 depending only on
(7, Vo0, T) SO that

1
(3.5.78) ¢ (u, ég‘;)r(u)) ce1 < ~oN, for Oe(pyypo(Ps) —e1 <u < ulF)

where 3 € [0s v*),ﬁ voo) —7a].
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3. For u(Dy, &) given by [B.LTI]), we define
(3.5.79) a3(u(Dp. €) 1= u(Dy, £)e(Ps) + froios (u( Dy, £))e* (Ps).

provided that ﬁ(()Pﬁ) <u(Dyp,§) < u$P?) holds.
By the definitions of ¢*" and ¢¥#) given in (BZ1I3) and B5.74), respectively,
we have

(3.5.80) Oy 9™ (@3 (1), @oc (P3), Pp) = gu (as(u(Dp, €))) - ex.
Since ¢ — Yoo = 0 holds on Typec, we have
(3.5.81) 9,6 (Dp(€), p(£),8)
< 3p, 0" (ap(w), Poo(Ps), Ps)
+ |0p, Gioa (DP(€), 9o (€),€) = Dy, Ghnoa(as(w), Poo(Ps), Pp))l,
where u = u(Dyp, &) for € € Tshock-

4. Claim: There exist a small constant r1 > 0 and a constant C > 0 so that, if

r € (0,71] and ¢ is an admissible solution corresponding to B € | S(Um), f(lvm) -],
then
(3.5.82) De(e)P(&) = Oe(pyypo(Ps) =1 0n Tsnock N By, (Pp)

for constant e1 > 0 from BELTS).
Similarly to (B.IIT), define a cone generated by vectors u, v € R? by

cone(u,v) :={aju+ asv : ay,as > 0}.

For each 8 € [Bs(v‘”), ((iv‘”))7 it is clear that

(3.5.83) e(Pg) € cone(eg,,, —e2)
for eg, = (cos3,sin B) and ey = (0,1). We also find from (241]) that
coMe cot 8 Voo
es, - e(P3) = ————— >0, —e3-e(Pg)=7=—"—=>0
O IDsc(Pa)] 7T Deeo(Ps)

for Mo defined by (2.4.6). Moreover, egs,, - €(P3) and —e3 - €(Pg) depend continu-
ously on 5. Thus, there exists a constant «¢ > 0 such that

min {esy, - e(P3), —e2-e(Ps)} > Ko.
BB, BL>)]

Therefore, we can fix a small constant r; > 0 so that

(3.5.84) min min{eg, -e(£), —ez-e(§)} > fo for all g € [BS(”“’),B((;}“)].
€€B,, (Pp) 2

By (B5.83) and Lemmas B.BH3.6| there exists a constant Cy > 0 such that any
admissible solution ¢ corresponding to (veo, 8) € Ryear N {A") < B < ﬂ((i”“) -}
satisfies

(3.5.85) De(e)P(€) = Do) (¢ — p0) (&) + De(e)po (§)
> 89(1:’[*)('00(135) _Cﬁlé_PB‘ for £ € Dshock-

We choose a constant 71 > 0 depending only on (ve,,7) to satisfy Cyry < S+ so
that (35.82) follows directly from (B5.88). The claim is verified.
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5. Claim: There exists a small constant ro € (0,71] depending only on (7, Voo, T)

so that, if v is an admissible solution corresponding to B € [ 5”""), c(1U°°) -

(3.5.86) |D(€) — as(u(Di, &) < Cl€ = Ps|  for all € € Do 0 By, (Py).

al, then

Define
o = min (u((,fﬂ) — ugpﬁ)).
pe(pl’=) p{r>)]
Such a constant s is positive, depending only on (v, y). Choose a small constant
7o € (0,71] so that |u§£) - ugpﬁ)\ < B2 for all § € B, (Pg). Then we obtain from

B512) and (B582) that
(8.5.87)  Oo(pyypo(Ps) — 21 < u(Dip,§) <ul” = B2 on Tueacn By, (By).

By Lemma B8 B5.70), and (579), we have
(3.5.88)  |De(€) — as(u(De,&)| < C(1€ — Psl + (£ — 14 ) (u(Dp. £))])

on I'shock N sz (Pﬁ)
By the continuous dependence of (ag@,uﬁfﬂ) and the smooth dependence of
7 (u) on & € R?\ B1(O) for u € (ﬁ((f),ugf,)) due to Lemma [A.3] and by

polar

(B587) and the continuous dependence of Pz on § € [BS(UW), ((iU“)], there exist
C > 0 and ry € (0,72] depending only on (v,,~,d) such that

(35.89) (S5 — £18) )(w(Dp,€))| < Cl€ — Ps|  on Typoek N By, (Ps).

polar polar

Then (586 follows directly from (B5.88)—-B589).
6. By B5.78), B5.380), and B.5.87), we have

) 1 S
(3.5.90) 8p1gbh(q5(D<p,£), Yoo(Pg3), Ps) < —2—% for &€ € T'shock N By, (Pp)

for any admissible solution ¢ corresponding to (veo, ) € Rweak N {BS(U”) <p<
By~ — o}

By Lemma B.8, (8.4.14)), and [B.5.86]), there exists a constant Cpolar > 0 such
that
(3.5.91)

|8plgfr}110d(D<p(€)a 5000(5)75) - 6plgfrlllod(qﬁ(u)v Lpoo(Pﬁ)vpﬁ)” < Cpolar|€ - PB’

for € € Tshock N BTz (Pﬁ)
Choosing
1

4]\/[O C'polar }7
we conclude from (F.5.81)) and (3.5.90)-(3.5.91]) that

1

aplgSh(DW(é)a @(5)7 5) < _M on I'gpock N Br(Pﬁ)

r = min{ry,

for any admissible solution ¢ corresponding to (veo, ) € Rweak N {55”*) <p<
ﬁévx) — &}. This completes the proof. O
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To simplify notations, let es denote e(Pg) for each § € | b(v‘x’), (gv‘”)), and
let eJ- be the unit vector obtained from rotating eg by 7 counterclockwise. By

(BM) B43), and B569), we have
ae[e(%om - ‘P)(f) >dy + (eﬁ - 9(5)) : D(“Poo - 90)(5) for all £ € /\/;(Pshock) nQ,

where constants d; and ¢ are from ([B.4.5]). Therefore, we can apply Lemma
to choose a constant s, > 0 depending only on (v,7y) such that any admissible

solution ¢ corresponding to (veo, 3) € Rweak N {Bb@*) <pB< B((iv*)} satisfies

% in Bo,-(Pg) N K.

(3.5.92) ey (Poo — ) 2
DEFINITION 3.41. Introduce the (S, T)—coordinates so that

(i) Pz becomes the origin in the (S, T)—coordinates,
(i) e = (1,0)(s,r) and ey = (0,1)(s,7)-
In fact, the (S, T)—coordinates are the same as the (¢1,%2)—coordinates in Fig. Bl
In the (S,T)-coordinates given by Definition BTl So, T'shocks I'wedge, and €2
near Pg can be represented as
So N By (Ps) = {5 = aso (B)T : T > 0} N By (Pp),
LCshock N Bs« (Pg) ={S = fe(T) : T > 0} N By~ (P3),
Dwedge N Bs+(Pg) = {S = aw(B)T : T > 0} N By« (Pg3),
QN By-(Pg) = {(8.T) ¢ tes, (B)T < fe(T) < S < aw(B)T, T > 0} N By« (Ps),

where ay () depends continuously on 3 € (0, %), and as,, (3) = tanfz with 05 :=

tan~' ayw(B) — B > 0 for each 8 € (0,%). Note that there is a constant C' > 0
depending only on (ve,7) such that C~! < ay(B8) < C for all 8 € [&(vac),ﬂc(lvx))'
The representation of I'ghock N By« (Pg) as a graph of S = fe(T') is obtained by the

implicit function theorem, combined with (35.92)).

PROPOSITION 3.42. Let positive constants o3 and r be from Proposition [3.39

d’”oo )

)9 o /)

there exist constants s € (0,r), a € (0,1), and C > 0 depending only on (Veo, 7,

0s,04) such that any admissible solution ¢ corresponding to (Voo, ) € Ryeak N
{ﬁs(v‘x’) +o,<pB< ,8((1”‘”) — 04} satisfies the estimates:

(
and Lemma BAQ], respectively. For small constants os € (0, 2] and o4 € (0, A

1 P, 1 0
lollS o ol + Il @ <

|Dg" (¢ — po)(Ps)| =0 form =0, 1.

PROOF. In this proof, all the estimate constants are chosen depending only on
(voo)
(Voos Y, 0s, 04), unless otherwise specified. For fixed o5 € (0, 3] and oq € (0, By

=),
let ¢ be an admissible solution for 3 € [6(%") + oy, (v ) — 04]-
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1. Denote ¢ := o — ¢, and rewrite Eq. 2I1.19) and the derivative boundary
conditions (B412) and ([Z530) in terms of ¢ as follows:

2
> Aij(D$,6,6)Dij6 =0  in Be(Ps)NQ,
(3.5.93) L=t

%\
<

gh(
§v(D

) on I‘shocku

€
€)

%|
<

on chdgca

where

Aij(p,2,€) = (P, 2,€)0i5 — (Dipoo — Pi)(Fjpoc — ;) fori,j=1,2,
R 1
&P 2,8 = 1= (v = 1) (51D9s = PI* + 900 — 2),

7" (P, 2,8) = g™ (Dpoo(€) — P 0o () — 2,£),
GV (P, 2,€) = p2 + ({2 + V),

(3.5.94)

where ¢*I' is given by (B4I3) and s* € (0,7] is from (F.592).

Next, we apply a partial hodograph transform to ¢ in Bg«(Pg) N Q in the
direction of eg. For each (S,T) € By« (Ps) N, define y = (y1,y2) = (6(S,T),T).
By [35.92), there exists a unique function v(y) such that

(3.5.95) v(y,y2) =S if and only if  ¢(S,y2) =11

fory € D2 :={y = (6(S,T),T) : (S,T) € B« (Pg) NQ}. By taking derivatives of
v(@(S,y2),y2) = S, it can be checked directly that

1 Or ¢

v = — v = —

3.5.96 .
( ) Y1 asqs’ Y2 asqs

By Lemma B3] 35.92), and B.5.95)-3.5.96]), there exists a constant K > 1

depending only on (v, v ) such that

(3.5.97) < 0,0 < lv| + |Dv| < 2K in D

1 8
K dy’

Using the definition of v, (35.93) can be written in terms of v:

2
Z i(Dv,v,y)0y,y,v =0 in Df*,

(3.5.98) g (Dv,v,y) =0 on T —{y=(0,T): (S,T)€Bs(Ps) NTshock }»
(h)

wedge =

{y ( (S T) ) : (Sa T) € B~ (Pﬁ) ml_\wedge}y

gn (Dv,v,y) =0 on T
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where (a;;, 6", g7V)(p, 2,y) are directly computed by using ([B.5.94) and the defini-
tion of v. More precisely, (a;;, g%, ¢V)(p, 2,y) are given by

ain(p,z,y) = E(An —2p2Aio +p2A22)
1
a12(pvzay) = a2l(paZ,Y) = P(Alz —P2A22)
1

1
a22(p7 2, y) = _A227
P1

(glth7glvlv)(p7 ZaY) = _(gsh,gw)7
with
~sh Aw ash ~w 1
(A1, A1z, Ago, 5™, %) = (A11, A1z, Az, . § )((p_l _i_l) Y1, (2,92)).

From the definition of a,;, we find that, for (p, z,y) satisfying p; # 0,

2
Z (P, 2,Y) Rikj = Z Azjmn]

i,j=1

for (m1,m2) = (K1, p1K2 — P2k1), so that
2

2
Z aij(DU7U7Y)K”L"{j = v Z At](Dd_)ad_)7S7 T)77177J7
Jj=1

3
i,j=1 Y1

1

where y = (¢(5,7),T) and (11,72) = (K1, 0y, K2 — vy,k1). This implies that there
is a constant C' > 0 such that
2
1
6|n\2 < Z ai;(Dv,v,y)kik; < Cl|?>  forally € DL and k € R2
ij=1
Define a set
U:={(p,zy) e RZxR x D}
We fix a cut-off function ¢ € C>°(R) satisfying that {(t) = 0 on (—00, 135 ) and

¢(t) =1 on (4%, 00). Furthermore, we define

( mod sh,mod w,mod

agh » 9h )(pa 27}’) = C(pl)(aijvgihagﬁv)(pa Z7Y) for Z?] = 17 2.
Then (B598)) can be rewritten as

2
Z mod( Dy, 0, )0y, v =0 in Df*,

(3.5.99)
gflh mOd(Dv, v,y)=0 on ng))ckv
gy mOd(Dv, v,y)=0 on '™

wedge*

Furthermore, for any [ = 0,1,2,---, there exists a constant C; > 0 depending
only on (v, vso,!) such that

(3.5.100) Dip oy (@ gy ™y ™D <G on U,
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2. In this step, we apply Proposition [C.12] to obtain
(3.5.101)

g% (Dv(y), v(y),y) — g (Dv(0),v(0),0)] < Cly|**  fory € DL N B+ (0)

for some a7 € (0,1), C > 0, and I* > 0.
I s flat so that it is C2 up to its endpoints, and T'\"

wedge
tinuous up to its endpoints. Then we regard I‘S‘C)dgc and I’éﬁlek as I'! and I'?, re-

spectively, in Proposition [C12 Then (g™, ¢i*™° 0) in @5.99) become (b,
b3, h) in Proposition [CI2 Tt follows directly from (F5.100) that (35.99) satisfies
conditions (C.4.5)-(C4.8)

Also, (B597) implies that v satisfies condition (C.ZJ) stated in Proposition
IC.12)
A direct computation by using the definition of v in (B.5.95]) yields that
1 1
[ Dpgil (Du(y), v(y), ¥)| = |5 (vy,, —vy,)| =
Uy1 |Uy1 ‘
Thus, (3592) implies that
di

|[Dpgiy (Do(y) o(y),y)l = o forally € DY,

is Lipschitz con-

= |ps] for allyG’D—f*.

This shows that b(!) = g satisfies condition (ii) of Proposition By B413),
(A18), Lemma B35 Remark B.T14] and Proposition BI5] there exists a constant
A1 > 0 depending only on (ve, 7, 05) such that any admissible solution ¢ for 5 €

[ (voo) 4 US,B((;)OC)) satisfies
nglsx?od(D(P(g)v @(5), 5) : VS(&) 2 /\1 for all é € Tshock N B~ (PB)’

where vy is the unit normal vector to I'gyocx towards the interior of . Then a

direct computation by using (592) and (B594)-BE93) shows that
3p, g™ (Do(y), v(y), y)
di

— D3I Drgita(DH(E), #(6).€) - 1a() 2 M (5

This implies that b(2) = gflh satisfies condition (iii) of Proposition [C12l In order to
apply Proposition [C12] we also need to show that (b)) = (gI¥, gih) satisfies
condition (iv). A direct computation by using Lemma B40, (35.92)), and (B5.94)-
(B5.95) yields that

(ngih (Du(y), v(y),y
det

Ny o
= 8?1 (D ) ’

) ’ on FE(‘.E())Ck .

(3.5.102)

1 ,di\3
=35
for constant M from Lemma[B40l We have shown that condition (iv) of Proposition
holds.
Then we apply Proposition to conclude that there exist constants oy €
(0,1),C > 0, and I* > 0 depending only on (v, 7, 05, 04) such that [5.TI0T]) holds.

3. We know from ([B5.98)) that v satisfies

G (Dv(y), v(y),y) — 6 (Dv(0),0(0),0)[ =0 on T .

h
fory € th())ck
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This, combined with [3.5.101]), implies that condition (C.412) stated in Proposition
[C13is satisfied with o = ay. It follows from (.5.100) that condition (C.4.9) holds.
Also, (35.102) implies that v satisfies condition (C.410) with yo = 0. Moreover,

condition (C.417) holds for the line segment Fgﬁlck. Therefore, we obtain from
Proposition [C.13] that

3.5.103 Du(y) — Dv(0)| < Cly|** fory € r®
h

shock

ﬂ Bl*(ﬂ)
for a constant C' > 0 depending only on (veo, 7,05, 04). -
Since ¢(0) = 0 in the (S, T)—coordinates, then |y| < |4(S,T) — #(0)| + |T| for
each y = (¢(S,T),T) € D.. We apply Lemma 5 to obtain
(3.5.104) ¥ < CI(S,T)| = Clg — Pyl
for a constant C' > 0 depending only on (v, V).
By B.595), [§— Pl = |(S, T)| < |v(y) —v(0)|+|y2| for each (S,T) € Bs-(P)N
Q. Then we apply [B.5.97) to obtain
(3.5.105) €~ Pyl = [(5,7)] < (2K + D)y

for constant K from ([B.5.97).
We write B5I0T)) and B5TI03]) back in the £&-coordinates and apply (B5104)—
BEI03) to obtain
|06, (§) — we, (Pp)| < Cl€ = Pp|™  in QN By, (Pg),

(3.5.106)
|Dp(§) — Dp(Pg)| < Cl€ — Pl on Tshoek N By, (Pp),

where C > 0 and s; € (0, s*] depend only on (veo,?, 05, 04q)-
For the rest of proof, each estimate constant is chosen depending only on
(Voo, Y, 05, 04), unless otherwise specified. For & € €2, define

f(€) == 7w - (DG(&) — D(Pp))
for the unit tangent vector 7 = (1,0) to I'yedge- Then (B5I06) implies that
(3.5.107) [7(&) = 1(Ps)| < Cl& — Pg|*t for & € Lynoer N By, (Ps).

Denote ¢3%(p) := 7y - (p — Do(P3)) and regard ¢5"(D¢) = f as a boundary
condition for ¢ on I'shock. Since I'yedge is flat in the £&—coordinates, we can apply
Proposition [C12] by setting (I'',T'2) := (Dghock, Dwedge) and (b)), 6(2)) := (gsh, gv)
for T7,b0), j = 1,2, from Proposition In particular, condition (C.4.8]) holds
with 8 = a1, owing to (B5107). Then we obtain constants a € (0, a;],C > 0, and
s2 € (0, s1] such that

92" (D(€)) — 92" (Dp(Ps))| < Clé — Ps|*  for & € QN By, (Fp).

Combining this with (35.106) and noting that both boundary conditions g, and
g are linear with constant coefficients and are linearly independent of each other,
we finally have

(85108)  |Dp(€) ~ Dp(Bs)| < C°l& — Pol*  for & € QN B,, (By)-

4. For each € € Tgpock, define d(§) := |€ — Pg|.

Claim: There exist constants wg > 0 and s3 € (0, s2] such that, for all & €
Fshock N Bs;; (Pﬁ);

dist(&, Dyedge) > wo d(€).
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If this claim holds, then Q,, = QN B,,(P3) satisfies condition (ii) of Proposition
[CT4 so that Proposition follows from (B.5.108) and Proposition [C.14] where
we use ([B.5.10]) to satisfy condition (C.4.13)) stated in Proposition

Now we show the claim. For a fixed point P € gk, let P’ be the point on

So so that PP’ L I'yedge- Then
(3.5.109)  dist(P, Tyedge) = d(P)sin 8 — |P' — P| > d(P)sin 3 — |P' — P|.

Denote P = (¢F,6F) and P’ = (¢F,¢F) in the & coordinates. Then we see
that P/ — P = (0,68 — €F). Since P’ € Sp and P € Tgpoek; (oo — 90)(P') =
(poo — @)(P) = 0 so that

Vo83 = €571 = (900 = $O)(P') = (900 — 90) (P)] = I(0 = #)(P)]
Since (po — ¢)(Ps) = 0 by 2.5.12), the equation above gives

1
w0 = @)(P) = (vo — ¥)(Ps)]-
Then we apply (BEI08) to obtain
(o — )(P)| < Cd(P) for P € QN By, (P3)

P~ P| =

P = Pl=—|
Voo
for some constant C' > 0. Combining this estimate with ([B.5.109), we can choose
constants wy > 0 and s3 € (0, s3] so that the claim holds.

Then Proposition [C.14] combined with ([B.5.6]) and the results from Steps 34,
leads to Proposition O

3.6. Compactness of the Set of Admissible Solutions

Fix 7> 1, vo > 0, and 3 € (0, c(iv“’)). According to all the a priori estimates

obtained in Lemma [BI8 Corollary 3.19] and Propositions B.26] .30, B39 and
B42] there exists @ € (0,1) depending only on (ve, 7, 3) such that the set:

el - e : ¢ is an admissible solution corresponding
Pllona@ TR shoddll€hT = 4o (10, B) € Ryear {0 < B < B}

is bounded. For each admissible solution, its pseudo-subsonic region €2 is a bounded
domain enclosed by re v Iihock, and I'yedge. These four curves intersect

sonic’ * sonic?

only at P; for j = 1,2,3,4. According to Definition 2.23] N . O, Py, and Pj

sonic?
are fixed so as to be the same for all admissible solutions. Moreover, I'S ., Oo, Py,
and Py depend continuously on 3 € [0, c(iv“’)]. From this observation, the following

lemma is obtained:

LEMMA 3.43. Fizy > 1, ve > 0, and 3 € (0, ((iv‘”)). For each B € [0, 5], let

Ag be defined by Definition 2231 Let {pW} be a sequence of admissible solutions

corresponding to (Voo, 8) € Rweak N{0 < B < B}, and let lim;_, o B; = Boo for some

Boso € [0, B]. For each j, let Q) and I‘iﬂ)ock be the pseudo-subsonic region and the

curved pseudo-transonic shock of o), respectively. Then there exists a subsequence
{oUR)} € {pW} such that the following properties hold:

(a) {@Ur)} converges uniformly on any compact subset of Ag to a function

() ¢ Cloo’cl (Ag..), and ©(>) is an admissible solution corresponding to

(Voo, Boo);
(b) QUK — Q<) in the Hausdorff metric;
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(c) If €Ur) € QUK | and €UF) converges to £€(°°) € Q) then
(p(jk)(é:(jk)) N 90(00)(5(00)), D@(jk)(é:(jk)) — D) (;;~(<><>))7

where, in the case of €U%) € rx)

shock?

DU (0R)) = lim  DgUR(g),
£eQUr) g—¢Uk)

and Do) (&) for & € Fgﬁ?ck is defined similarly.

PRrOOF. By Corollary BI0, there exists a subsequence {p*)} converging uni-
formly on any compact subset of A_ to a function ¢(*) € C’IOO’C1 (Ag_.) that is a weak
solution of the boundary value problem consisting of equation [2I1.19]) in Ag_ with
boundary condition 9,¢(>) = 0 on OAg__, especially on I‘gvfc%ge.
satisfies the further properties given in Corollary BI0(a)—(e). In particular, by
properties (c) and (e) of Corollary B.10
(3.6.1)

I‘gﬁz)ck does not intersect the relative interiors of T’

Moreover, ()

O,(00) N, (c0)

sonic ’ * sonic

]_'\(00)

and wedge-

The rest of the proof is divided into four steps.

1. The convergence: QUx) — Q%) in the Hausdorff metric follows from Corol-
lary BI0(a)—(b) and the continuity of the parameters of state (2) in 6y,. This implies
assertion (b).

2. Next, we prove that p(°) € C1(Q(>)) and assertion (c) hold. Below we use
notation:

(3.6.2) 10 . —{Ps}, P =P =Ps it 8> pi).

According to all the a priori estimates obtained in Lemma [3.18] Corollary [3.19]
Propositions B.26] B30 332, B39 and B:42] there exists @ € (0,1) depending only

on (veo,7, ) such that the set
(3.6.3)
@ is an admissible solution
[éllcra@) + [Tshockllcra : corresponding to is bounded,

(’Uooy/B) S mweak N {O < ﬁ < B}

and, for each small § > 0, the set
(3.6.4)

@ is an admissible solution
uryM

||<P||c4(§\/\/5(r0 ) : :
sonic " sonic corresponding to is bounded.
i shoac \ Ns({F1, o}l - (Voos B) € Ryeax N {0 < B < B}

For each admissible solution, its pseudo-subsonic region €2 is a bounded domain

enclosed by anic, Fé\gnic, Ishock, and I'yeqge. These four curves intersect only at

P; for j =1,2,3,4. According to Definition 223 Fé\gnic, Oy, Pa, and Pj are fixed
s0 as to be the same for all admissible solutions. Moreover, I'Q . = Op, Py, and Py
depend continuously on 3 € [0, é”x)].

Also, using the uniform C1® estimate of the shock functions fs(fl) from Propo-
sition 34 on interval [¢17) €1*] summarized in (B6.3), and Corollary BI0 (b), we
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(0)
obtain that f U) converges to f(oo) in Cl([ﬁfl , £2]), after rescaling functions

(o0)
fs(ﬁ’“) to be defined on [gf vog ] It follows that
o a P
(3.6.5) F) e ot ([511 €l
(o00)
(3.6.6) teleh el and (£59) () = (F59) (1),
P(jk) P
when t, € [§1 , &) and t — t.

Let points £U%) and £€(>) be as in (c). Then £(>) € Q(>) by assertion (b).
Consider first the case: £(°°) € Q(°°). Then, using assertion (b) verified above,

we conclude that there exists R > 0 such that Br(£(>°)) € Q) and Br(¢U+))
QUr) for all sufficiently large k. Then, defining WUx) (€) = ©Ur) (& — €Ur)), we have

GOy
I o @) < C-

Using that £Ux) — £(°°) and 4,0(7’“)7—> ©°° uniformly on compact subsets of Ag__,
we see that WUK) — ¥ in C1%(Bg/»(0)). Then ¥U(0) — () (0) and
DU (0) — DT(>)(0). Thus, we conclude that

() € CY(Brp(€09))), (U, Dpl))(£0R) — (p(>), Dp(>))(£0>9)).
Next, consider the case: £(°°) (e Then, by Proposition [B.11], there exists

wedge”

R > 0 such that Bag(€0) N o) ¢ TV | (an)d dist(€00), 1Y% ) < & for all

k > N, where N is sufficiently large. Since I‘chgc is a straight line, there exists

C > 0 such that ¢U*) can be extended from QUx) N Br(€Ur)) to Br(£€U+)) so that
(Jr)

the extended function ¢y satisfies
(3.6.7)
k)
”‘Pext Hcl &(Br(€Ur))) = CH‘P Hcl,a (QUK)NBR(£UK))) < C for all k& > N,

where €' > 0 is a constant independent of k. Selecting a further subsequence (if
(k)

needed without change of notation), we conclude that ¢}’ converges in Ch% to

0% on any compact subsets of Br(£(9). Also 'H‘JOES)HCL&(W) < C, by
. Note that, from the uniform convergence ©*) — »(>) on compact subsets
2 2

of Ag__, it follows that ga(oo) = () on Q) N BR(£(>)). Then we can argue as in

ext
the previous case to obtain
(3.6.8)
pl%) € C1(Brya(bo) N QD) (9, DUW) (W) 5 (01, D)) (£9)).
Cases £(°) ¢ TN . and £() ¢ FS)ISI? ) are treated similarly. In the latter case,

we use the fact that each FSOIEiJC’“) is an arc whose center and radius(= cgk ))

depend
continuously on 3. Furthermore, a constant C > 0 is fixed so that cg’“) > % for all

k. Then we may assume without loss of generality that R < —— 100 008 -

Case £(>) ¢ Fiho)ck is considered similarly by employing the bound in (3.6.3)
for each Fi{l’g)ck

3. It remains to consider the case that £€(°) is one of the corner points P,,, m =
1,2,3,4, of 9Q(°) (see Definition 2.23).
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As in the previous case, we need to extend each (%) from QUx) N Bp(&U))
to Br(£U+)) so that the extended functions ga(j’“) satisfy (3.6 with a uniform

ext
constant C. Then the rest of the argument follows the previous case to obtain

EES).

The extension satisfying ([B:6.7)) with uniform constant C for the corner points
is obtained by using the following features of domain €2 for admissible solutions:
at each corner point P,,, for m = 1,--- 4, with the notation convention (B.6.2]),
two C1% curves (with uniform C® bounds over all admissible solutions by ([3.6.3))
meet at an angle 6, € (0, 7) which depends only on the parameters of the uniform
states po and ppr, where we have used that Tgpocx is tangential to So (resp. Sy)
at Py (resp. P2). Thus, angles 6, = 6,,(8) depend continuously on S.

From this, if £ = P,(noo) for m = 1,2, and B # ﬂs(vm), we see that, if
Boo > Bs(v"") (resp. foo < ﬁs(vx))7 then B3;, > Bs(v"") (resp. B, < Bs(v‘”)) for all
k > N with sufficiently large N, so the structures of QU*) with & > N and of
Q) are the same in the sense that both of them are as in either Fig. 2.11 or
Fig. 2.12. From the features of domain 2 for admissible solutions discussed in
the previous paragraph and from (B.6.5]), the limiting domain Q) has the same
structure as domain 2 of admissible solution, i.e., there exists R > 0 such that
o N B4R(P7(n°°)) is the curve consisting of two C® curve segments meeting at
P at angle 0,,(f) € (0,m) (i.e., the same angle as for admissible solution
corresponding to 8,). Then, in an appropriate orthonormal coordinate system
(S,T) in R? with origin at anoo), reducing R if necessary, curve 9Q(>) ﬂB4R(P7(n°°))
is a graph of the Lipschitz function:

(36.9) 920 N Byp(PE)) = {(S,T) : § = fulT), T € (11, T4},

where Tl(oo) <0< Tz(oo),foo(O) = 0, and Lip[foo] = M < oo. The coordinate
system (S,T) can be chosen e.g. as follows: the S-axis is along the bisector of the

interior for Q(°°) angle at Pr(noo). Moreover, by ([3.6.3)) and ([B.6.6)), it follows that,
for all k > N (possibly increasing N if needed),

(3.6.10)  9QUY) N Byp(PYH) = {(S,T) : S = f;,(T), T € (T, TV},

where Tl(]k) < 0 < TQ(Jk), S(Jk) S BR/loo(Py(noo)), P,r(r{k) S BR/loo(Pr(noo)), and
Lip[f;,] < 2M. Then we can extend functions ¢U*) from QU») N Br(£U+) to
Br(€Ur)) so that ([B:6.7) holds with C' depending only on M and R. For such an
extension, we can use the extension operator introduced in [I1] Definition 13.9.3],
and then [11, Lemma 13.9.6] to show the C*“ estimates for the extension operator
with the constant depending on M and R in the present case; the corresponding
C1 estimates are obtained similarly (and simpler).

Suppose that £(>) = P,(noo) for m = 1,---,4, and B = BS(U“’). By passing
to a further subsequence (without changing notation), we can assume that either
B, < 3§”°°) for all k € Nor 3;, > ﬁév"") for all k € N. In the later case, we argue

as above. It remains to consider the case: §;, < BS(U“’) for all k € N, i.e., when the
solutions of the structure as on Fig. [2.I1] converge to a solution of the structure
as on Fig. For £(°) = P with m = 2,3, the argument is the same as
before. Then consider the case: m = 1,4, which means &) = Ps_ by (3.6.2)

since B = BL"*). Choose R > 0 and a coordinate system (S,T) in which (36.9)

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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holds. Then, for k > N, curve 9QUx) N B R(P(“)) consists of three smooth parts:
I’g:(igcﬂB (P(J")), I‘boéff)7 and I’gf]’;)ckﬂBQR(P(“)) which meet at points P(j’“) and
P4(j ¥) respectively, and Fsorflc — {Ps_} as k — oo in the Hausdorff metric. Then
it follows from the features of domain 2 for admissible solutions discussed above
that, for any sufficiently large k, curve 9QUx) N By R(ng)) is a Lipschitz graph in
the (S, T)-coordinates so that (Z.6.10) holds. Then the case for £(>) = P,,, with

m = 1,4, can be handled similarly to the case for £(°) = P,, with m = 2, 3.

Therefore, we conclude that ¢(°) € C'1(Q()) and assertion (c) of Lemma 343
hold.

4. It remains to prove assertion (a). We first prove that (> satisfies
Definition 224 (i) (Cases I and II).

By estimate (B2Z)) of Proposition B for each I’shock, sending to the limit as
k — oo by using Corollary B.I0[(b), we conclude that (i-1) holds for I‘gﬁiik. From
Corollary BI0(b) combined with the estimates of the shock functions fgi),sh in
Lemma [BI8] sending to the limit as k — oo, we conclude that Féi?ck is C*° in its
relative interior, so that (i-2) holds for Fiﬁ?ck. Property (i-3) for the limiting solution

©(*) is obtained from property (i-3) applied to each ©U*), by sending k — oo and

using (B.6.5)-36.6) and the continuous dependence of ¢» on 5. Finally, (3.6.1)
implies (i-4). This concludes that ¢(°) satisfies (i) of Definition (Cases I and
ID).

Next, we show that (> satisfies Definition 2224 (ii) (Cases I and IT). In Steps
2-4 above, it is shown that ¢(>) € C1(Q()).

We now prove that gp(oo) € 03(Q)\ (T yTN

)). For a constant § > 0,

let K C Q) \ N5(TE Somc =)y N ..) be compact. Then, for a sufficiently large N,
K C QU N\ N (T S)éfck) UTN ) for all k > N. Since ¢U*) — () uniformly on

K and (3:6.4) holds for each ¢\*), we obtain
e les iy < C1(6),

where the estimate constant Cy(4) depends on 6, but is independent of K € Q()\
N3(@EV TN ) This implies that ga(oo € C3QEN\N (T2 U ). Since

sonic sonic sonic sonic

§ > 0 is arbitrary, we obtain that (> € C3(Q0) \ (122 TN 1)) Also, by
Corollary BI0(d), ¢(>) satisfies (Z5.8) in Case I and (ZZ4) in Case IT of Definition

Then, in order to complete the proof of (ii-1)—(ii-3), it remains to show that

in Cases I and II of Definition [2.24}
e () is O across 'Y .. in Case I of Definition

e conditions at Pg_ in (ii-3) of Definition (Case IT) hold for (>,

Indeed, the first two statements imply (ii-1) in Cases I and II, while the last state-
ment yields (ii-3) in Case 2.

Estimate (3:443)) in Proposition holds for each ¢U*) which implies that
Dmnp(“) = D™ppn on mec for m = 0,1. In the limit: k& — oo, using Lemma
B43l(c) (proved above), we obtain that Dm<p(°°) = D™pp on T . for m = 0, 1.
That is, p(°) is C! across TV .

sonic*

e () is O across TV .
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If B < Bivx then 8;, < B(v‘x‘ for all £ > N with sufficiently large N.
Estimate ([35.20) in Propositions B30 and B32 holds for each ¢U*), which implies
that D™ @Ux) = pm gk) on I’S)rfi]f for m = 0,1. In the limit: k¥ — oo, using the

continuous dependence of parameters of the uniform state ¢» on , the continuous
dependence of 'Y . on A in the Hausdorff metric and Lemma [3.43{c) (proved

above), we obtain that Dmgo(oo) =D"yp ( ) on T2 for m = 0,1,if B < B(v‘x‘
That is, (> is C' across T O,(c0)

sonic

If B > ﬂs ves) , we may have both cases §;, < B(U"") and §;, > ﬂ(““) Then we
use estimate m in Propositions B30 and [332] and the results in Proposition

to obtain Dmgp(J’C)(Pl(“)) =Dm 8’“))(P J’“)) for m = 0,1, where we use the
notation convention (3.6.2). In the limit: & — oo, using the continuous dependence

bOI]lC

of parameters of the uniform state ¢ on 3, the continuous dependence of Fsomc in

the Hausdorff metric (again, using notations (8:6.2))), and Lemma B3 (¢) (proved
above), we obtain that P — P{®) = P and D™ (P, ) = D™ (Ps)
for m = 0,1. That is, conditions at P in Definition 2.24{ii-3) (Case II) hold for
(%),

Now (ii-1)—(ii-3) in Cases I-1II are proved.

Property (ii-4) follows from the fact that ¢(>) is a weak solution of the
boundary-value problem consisting of equation ([Z.1.19) in Ag__ with boundary con-

dition 8,¢(>) = 0 on OAp, .., especially on 1) in the sense of Remark 229

wedge’

and from the regularity of (> in (ii-1)—(ii-3).

This completes the proof that ¢(>) satisfies Definition (ii) (Cases I-II).

Properties (iii)—(v) of Definition (Cases I-1I) for (> directly follow from
the corresponding properties for ¢U%) Corollary B0 (b)-(c), and the continuous
dependence of the parameters of p» on 3.

This completes the proof of Lemma [B43|(a), so does the proof of Lemma B.43]

O
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CHAPTER 4

Iteration Set

In order to prove the existence of admissible solutions in the sense of Definition
224 for all (veo, 8) € Rweak by employing the Leray-Schauder degree for a fixed
point, we first introduce the iteration set.

4.1. Mapping the Admissible Solutions to the Functions Defined in Q'

Fixy>1 and Voo > 0. We continue to follow Definition 2.23] for the notations:
Oso, OO0, Op, T r9 .., and P; for j = 1,2,3,4, etc.. Denote Q" = (—1,1) x
(0,1).

DEFINITION 4.1. Let (¢oo,@n; o) be defined by (2.57).

(i) Definition of ¢o. For each 8 € [O,Bc(lvx)], define éop by

(veo)

I for B < Bs =/,

Co = dlSt( sonic» Oo) = © B B(vw)
|OpPg| for B> Bs .

SOHIC7 sonic’

Note that ¢o < co if § > Bﬁ”x).
(ii) Eaxtended sonic arcs. Since ¢o depends continuously on 8 € [0, F), a con-
stant dp > 0 can be chosen depending only on (vs,,7) such that

SY ={E€R? : (v — ) (€) = ~dn}
and 0B.,,(Oy) intersect at two distinct points, and

55 = {6 €R® : (9o — 90)(€) = ~0}
and 0B;, (Op) intersect at two distinct points for each 8 € [0, g’“)]. Let 190

be the smaller arc lying on 0B, (Op) with endpoints Py and Pj, where P is the
intersection point of S(‘;‘) and 0B;, (Op) closer to P;. Similarly, let Fg\gnfg be the

smaller arc lying on dB.,,(Oxr) between SJ{? and & = 0 with endpoints Pj and Ps,
where Py is the intersection point of Sﬁ? and 0B, (Ox) closer to Ps.

(iii) Definition of Q®. Define Q7 as the bounded region enclosed by aniocv
V% 6% 6% and Tyedge-

sonic?

For each § € [0, B((iv‘”)], we first define a map G : Q® — R? such that

(x 4+ uo — co,y) for & near 'Y

(4.1.1) G1(¢) = anc
(en — ,y) for & near TV

SOnlC7

for the (z,y)-coordinates defined by (5.2) near T2 and by (34.18) near V%

sonic sonic*

We take several steps to construct G;. The definition of G is given in ([@LI1.28).
First, we define a map F; : @Q° — R? such that F;(€) - (1,0) = z + up — co for

129
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& near I‘S)ff’c and F1(€) - (1,0) = cpr — z for € near I‘ﬁgnélg Then we define a map
Fy: Fi(Q%) — R? so that (Fy o F1)(&) - (1,0) = F1(€), and (Fr o F1)(€) - (0,1) =y
for € near 19:% N Finally, G1 is defined by G; = Fy o F; as in (LI1.28)).

sonic sonic”

For ¢ > 0, define two sets DC and DY by
= (Q"N{& <uo}) \ Beo-<(00),
DN (Q° N {&1 > 0})\ Bey—(On).

Since ¢o, So, and Op depend continuously on 8 € [0,7), there exist constants

k>4 and 41 € (0, §) depending only on (vs,7) such that, for each § € [0, (v‘”)],
we have

(4.1.2)

4 T
é ECOaB<y+B<§_51},
(4.1.3) A -
N
D CNC{O<$<ECN, O<y<§—61}.

Define cut-off functions (o, (v, X0, and xn as follows:

(i) Co,Cy € C4(R) satisfy

D(%:)Ao C{ap, <z <zp +

1 forr>ép(l— 2

(4.1.4) Co(r) = = ol =), 0< )< onR:
0 forr<céo(l—32), co
1 forr>cp(l1—2

(4.1.5) nv(r) = 2wl = %), 0 < y(r) < 2k on R;
0 forr <en(l—2), N

(ii) Let q 9 be the distance between Op = (up,0) and Sgg, and denote
(4.1.6) ug’ =up — qg’ sin 3.

Since up = —vy tan 8 < 0, u?g < 0. Then xo, xn € C*(R) satisfy

1 for & <wuly — %o, 2k
4.1.7 = —— < <0 onR;
( ) xo(&) {0 P o Xo(§1)

0 for & < 4%, 2k
4.1.8 = 0 <y <~— onR
( ) xw (&) {1 for & > 2_%&’ = XN(fl) = v

Choose constant k > 4 sufficiently large, depending only on (v, 7), such that

3(3(9

(419) 3CO n {61 < uo} C {61 < U‘O — T s DM C {61 > —

3CN
k

Next, define a variable r by

(4.1.10) - { (& —uo)? + & for & < ul,

VE + & for & > 0.

Since u% < 0, 7 is well defined by @EILI0).
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For the cut-off functions ((o, v, X0, X)) given by ([AIA)-EISE) under the
choice of k to satisfy ([@ILJ), we define a function h; : Q — R as

(4.1.11)  h1(&1,&2) = ((uo —)¢o(r) + (1 = Co(r))é1) xo
+ (1= x0) (1(1 = xw) + (rén () + (1 = (v (r)én)xw) -

In @ITI), xo and xa are evaluated at &;.
Define a map F : Q° — R? by

(4.1.12) Fi(&1,&) = (hi(&, &), &).

LEMMA 4.2. There exist constants C > 0 and g, > 0 depending only on (veo,7y)

such that, for each B € [0, C(lv‘”)], Fy defined by [EII2) satisfies the following
properties:

(@) [1E1llaigey + 1Tl amgey < € and det(DFy) 2 6p, in Q°;
(b) Denoting Fy(€) := (s,t), then
(4.1.13) F1(Twedge) = {(5,0) : s € (uo — ¢o,cn)};
(¢) For ¢oo = 9o + 31€I7,
Ot Poo (Fl_l(s,t)) = —Vso for all (s,t) € W;
(d) For each j=1,---,4, denote P; = (ffj,ffj) in the €—coordinates. Then
Fi(P) = (uo —¢0,&"),  Fi(P2) = (en,&2),
Fy(Ps) = (ew, 0), F1(Py) = (up — éo,0);
(e) For hy defined by (AI1IT),
() = {uo —co+zx if dist(E,F%%‘)c) < o,
CN — T if dist(&§, T 10) < 9
for the (x,y)—coordinates defined by BAIR) and BED).
PROOF. By the definition of Fy in ([AI.I2]), we have
(4.1.14) det(DFy) = ¢, hy.

Choose constant k large to satisfy that xxx» =0 and (vx\r = Coxp = 0. Then,

from definition (IIIT) of h; and (EI4)-EIY),

(4.1.15) e, b1 (§) = 23;%'7

where J
ay = (“OT_&@ +(1—Co)+ UOT_&(T — (uo — 51))Cb)><o,
@ = (o +(1- o0 + 2 - )G )l - xo),

az = (1= xn)(1 = xo0)-
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Then [@I13]) implies that

(4.1.16)
O > ("8 o 41— o) xort (v +a -t xw+(1-xw)) (1-x0)
> cos(g —01)
for ¢; from (@I3).
Moreover, it follows from ([T that
(4.1.17) sup O0¢, hi(§) < C

£eQ”?
for a constant C' > 0 depending only on (7, Vo).

For a constant a, if Qg N {2 = a} is nonempty, then ([@ITI06) implies that
the one-dimensional map (§1,a) € Qg N{& = a} — hi(&1,a) is invertible. Then
it follows directly from the definition of Fy given in (I12]) that Fj is invertible.
Also, we can directly check that Fy and F; ' are C* from (@III), which yields (a).
Finally, (b), (d), and (e) follow from (AITII)-@I112).

By (Z41) and @II2), ¢oo (F; '(s,t)) = —voot, which gives

Do (Fy ' (5,t)) = —vae  for all (s,t) € F1(Q).
This proves (c). O

By the definition of hy in (1T, we have

Fl(Qﬁ) C [UO —éo,CN’] X [0,00).

LEMMA 4.3. Fiz v > 1, v > 0, and 3 € (0, ((iv*)). Then there exists a

constant mo > 0 depending only on (veo,?, 3) such that any admissible solution
corresponding to (Voo, ) € Ryeak N {0 < 8 < B} satisfies

(4.1.18) Oi(poe — @) (Fy H(s,1)) < —mo <0 in F1(Q).
Therefore, there exists a unique function gsn : [uo — éo,cn] = Ry such that
F1(Tshock) = {(8,8sn(8)) : uo —éo < s < carte
PRrOOF. For each 3 € [0, Bc(lv‘”)], we represent Ffl as
F7 (s, t) = (ha(s,t),t)  in F1(QP).
This expression yields that

(4.1.19) 0e(poe = ) (Fy () = D(poe — @)l g1y - (Biha(s,1), 1),

It follows from (Fy o Fy*)(s,t) = (ha(hi(s,)),t) = (s,1) that dha(s,t) = — 525",
1
This implies that
~ 1
(afhl(sa t)’ 1) = _a—h(8§2h17 _851]7‘1)7
£1701

where D¢, ¢,)h1 is evaluated at € = Fy '(s,t).

Next, we compute v := ﬁ(_aﬁzhlv O¢, ha).

Case 1. If xo # 0 so that xn = X\ = 0, we use (o(r)xp(&1) = 0 to obtain
(4120) 851h1v = k1aq + koao,
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where

ay = (siny,cosy), az=(0,1), k1 = (Co +r(1—cosy)(p)xo, k2 =1-Coxo
for the (x,y)—coordinates defined by ([B.5.2).
Case 2. If xo = 0 so that xo = xpp = 0, we use (x(r)x)y(§1) = 0 to obtain

(4.1.21) 8§1h1v =1I11b1 + lo2bo,

where

by = (—siny,cosy), by =(0,1), 1 = (v +7(1 —cosy)y)xw, lo=1—Cuxw
for the (x,y)—coordinates defined by (B.4IT).

Claim: There exists a constant m > 0 depending only on (UW,W,B)_such that any
admissible solution ¢ corresponding to (Voo, 8) € Ryeak N {0 < 8 < B} satisfies

sup (D(poo — ) - v)(P) < —1h,
PeQ

Fix an admissible solution ¢ for 8 € [0, 8]. Let the unit vectors aq, as, by, and
by be from (ET20)-(EIL2ZI). Then aq,as € Coneo(ego,eSN) for all y € [0,5 —
B — 6] for 6, > 0 from @IJ), and by, by € Cone’(eg,,, es,,) for all y € [0, 5 — 01l
Moreover, k; and [;, j = 1,2, are nonnegative and satisfy that k; + k2 > 1 and
Iy + 1y > 1 for all P € Q. Then (B.ILI8) yields

sup (9g,h1 D(poe — ) - 0)(P) < =y <0
PeQ
for a constant m, > 0. Furthermore, Lemma B3] implies that there exists a

constant m; > 0 depending only on (vs, 7, ) such that any admissible solution ¢
corresponding to (veo, 8) € Rweak N {0 < B < [} satisfies

(4.1.22) sup (0e,hi D(po — @) - ) (P) < —my.
PeQ

Combining (£122]) with (II10)-@IIT), we conclude that there exists a constant

mo > 0 depending only on (vs, 7, 8) such that any admissible solution ¢ for 3 €

[0, 5] satisfies
(4123) Ol — P)FT (5,8) = (D(g — ) - 0)(F} M(s,8)) < —mg < 0

for all (s,t) € F1(Q). O

Next, we define > a map F (W) — R? so that map G := F» o F satisfies
property ([@LI) in QF.
For each § € [0, ((iv"")], we define F; : F1(QF) — R? by

(4.1.24) Fy(s,t) := (s, ha(s, 1)),

and define a function hsy : Fy(Q#) — [0, 00) by

(4.1.25)  ha(s,t) := Yo sin~}( )+ (1= Xo)(tH(1 — Xn) + XN sin’l(é))

up — S
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for the cut-off functions Yo, xar € C*(R) satisfying the following conditions:

. 1 for s < up — éo(1— 5¢),
Xo(s) = . 1
0 for s > up —co(1 - %),

B 0 for s < car(1— 4),
X (s) = .
1 for s > cn(1 - 55),
- - 4k . . 4k o
Co CN
where k > 4 is the constant chosen to satisfy (£1.9) and all the properties used in
the proof of Lemma
Then hy satisfies

4.1.26 ha(s,t) =y for (s,t) near Iy 9% N0y,
(

LEMMA 4.4. There exist constants C > 0 and k1 > 0 depending only on (voo,)
such that, for each B € [0, ((jv‘”)], Fy defined by [@I124) satisfies the following
properties:

(@) [|1Follcscm ey + 175 s (mor oy < C, and det(DFy) = d;ho > £y in
Fi(QP);
(b) For Fy(s,t) := (5,1), (Fa 0 Fy)(Dyedge) = {(5,0) : 3 € (uo — éo,cn)}-

PRrROOF. A direct computation by using (£1.24]) shows that

det(DF2) = Oiha(s 1) = 2T+ (1= o) (1~ ) + ).

For s < up — éo(1 — 5%), we can write

(up — 8)2 —t2 = rcosy,
by (@I14) and [@ITII), where r and y are given by ([LII0) and B52) for & =

Ffl(s,t). Similarly, for s > car(1 — ﬁ), we can write as v/s2 — t2 = r cosy, where
r and y are given by @ILI0) and FZIS8) for & = F; *(s,t). Then there exists a

constant x1 > 0 depending only on (vs,y) such that

(4127) det(DFg) = 8th2 Z K1 in Fl(QB)

For a constant a, if F1(Qg) N {s = a} is nonempty, then @I27) implies that the
one-dimensional map (a,t) € F1(Qg) N{s = a} — ha(a,t) is invertible. Then map
F, given by ({1.24)) is also invertible.

The C*-estimates of I, and F, ! and property (b) are obtained directly from

@IT13) and (EI25). O

By (EI20) and the invertibility of Fb, there exists a function hy : |[up —
¢o,cn] — Ry such that

Ey NS ) = (s, ha(s, 1) for all (s',t') € (Fy o F})(QP).
__ For Fy and F; given by (.1I2) and {H.1.2d) respectively, define a map Gy :
Q% = [uo — ¢o,cn] x Ry by
(4.1.28) Gy i=Fyo I,
and denote G1(&) = (s',t'). Map G, satisfies property (ZI1I).
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For each g € [0, ﬂ((i%“)], define
(4129) Sg = Uuo — éo.
Note that sg varies continuously on (v,vs) and § € [0, §). Define a linear function

Lg(s") by
2

(4.1.30) Lg(s') := v 55 (s —s5) — 1.

Then Lg maps [sg, cy] onto [—1,1]. We define a map gf QP — [-1,1] x Ry by
(4.1.31) GP(&) = (Lg(s), ') for (s, 1) = G1(£).

LEMMA 4.5. There exist constants C > 0 and k > 0 depending only on (veo,7)
such that, for any 8 € [0, év"")], gf defined by [@EI3T) satisfies the following
properties:

(a) ||gﬂ‘|c4(@ + ||(g1ﬁ)_1||04(g5 Qr)) = <G
(b) |det(Dg/3)| >k in QF;
(c) G ( wedge) = {(5,0) : s € (=1, 1)}
(d) For ¢oo i= ¢oc + 3I€1% O1doo ((G7) 7 (5,8)) < =k < 0 for all (s,1) €
Ggr(@Q?).
In addition, for any 3 € (0, ((iv‘”)), there exists mo > 0 depending only on (vso, 7, @)

such that any admissible solution ¢ corresponding to (Voo, ) € RweaN{0 < 8 < B}
satisfies

(4.1.32) A (Poo — ) (G H(s5,t)) < —ma <0 in GY(Q).
PROOF. Fix 8 € (0,8"). It follows from (@ILII), L2A), EL2R), and

Lemmas .2 and 4] that there exist constants C, k2 > 0 depending only on (v, )

such that, for any S € [0, ((iv‘”)], map G defined by ([EI28)) satisfies the following
properties:

(@) lIG1llosigey + 1GT Hlos@@ey < C:
(') |det(DG1)| > ko in QF;
() G1(Tywedge) = {(s/,0) : 8" € (uo — ¢o,cnr)}-
These properties, combined with (@ I131]), yield (a)—(c) for some k < Ks.
By @EILIZ) and EI24)- EI2R), we find that, at £ = G (s, 1),

. . D o)
00 (e~ PG (,0) = Dellpos — ) - (041, Doy = Den2(Poe 2 0)
t

for v given by (EI20)-@I2I). Then @I32) follows by combining [IIA) and
(#123) with Lemmald)(a) and [@I31]). Assertion (d) can be verified similarly. O

By using ([2:43)) and the definitions of (¢, Y0, @ar) given in [(Z5I), it can be
checked that So = {£ : (e — 0)(§) = 0} and Sy = {§ : (¥oo — ¢n)(§) = 0}
intersect at a unique point:

(5)
(4133) PI = (5{76.4\[) for 6{ =~ tan§2 ’
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where fgﬁ) is the &o—intercept of Sp. Then S‘s and Sj‘i? intersect at (&1, &5 + %)
It follows from [2414) and EZA) that d52 > 0 for 8 € (0,%) so that
(4.1.34) e <o.

Since point P; lies on Sp, and its £&;—coordinate is greater than the &s—coordinate
of P, we have

(4.1.35) &>l
By Z43), (£13), and @I20)—I21]), there exists a constant mg > 0 de-

pending only on (ve,y) such that, for each § € [0, (v‘”)]

b

O ((po0 — p0) 0 (G) (s, 1)) < —ms,
O (o0 — par) 0 (G1) " 1(s,)) < —ms

for all (s,t") € gf (Qf’) By the implicit function theorem, there exists a unique
function fz € C%!([—1,1]) such that

(4.1.37) GP Q%) ={(s,t) : -1 <s<1,0<t < f3(s)}, I fsllcorra) <C

for a constant C' depending only on (v, 7).

(4.1.36)

PROPOSITION 4.6. Fiz v > 1 and v > 0. For each admissible solution ¢
corresponding to (Voo, 5) € Ryeak, there exists a unique function
gsn: [—1,1] = Ry
satisfying the following properties:

(@) Gr () ={(s,t') : =1 <s<1,0<t <gan(s)},
Gy (Dsnock) = {(5, gen(s)) : —1 < s <1}.

(b) For any constant ¢ € (0,15, there ezists a constant Cz > 0 depending
only on (veo, ) such that

lgsullcs((—1421-)) < Ce.
(c) Let el > 0 be the minimum of ey from Lemmas and B.34. For each
e € (0,e}], denote
2
(4.1.38) o .
CN — Sp
FN

sonic’? sonic’?

Let QO be the bounded region enclosed by T'9 So, Sy, and

Iyedge- Then

QcQpcq’
for QP given by Definition BEI\(iii). For DN and D® defined by @EIZ),
there exist unique functions gar and go so that

G@QINDY)={(s,t) s 1-é<s<1, 0<t' <gun(s)},
(4.1.39)
GHQENDE) = {(s,t') : —1<s<—1+&, 0<t <go(s)}

for € defined by [EI38). Moreover, there exists a constant C > 0 depend-
ing only on (vs,7) such that

(4.1.40) lonllos-esa +llgollos—1,-14e57) < C.
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For any o € (0,1), there exists Cpar > 0 depending only on (veo, 7, )
such that, for any admissible solution corresponding to (Veo, ) € Ryeak,

||g/\/' gsh||2par()1 er1) = < Char,

where the norm, || - ||2p§:r()1 e 1) i defined by Definition B251(iii) with the
replacement of x by 1 — |s| for the weight of the norm.

(d) For each B € (0, ((iv‘”)), there exist a € (0,1) and Cz > 0 depending
only on (Veo,7, B) such that, for any admissible solution corresponding to

Belo,8],
(4.1.41) fgall§ o P < Ca (g —80)(-1) =0, (g — 80)'(~1) = 0.

Property (1A1) is equivalent to

1+ r
”gsh - g(’)Hé a?) {pil)Jrs ) = C/

for a constant Cé > 0 depending only on (vso,,3), where the norm,

I ||(1+a) §pi§+5 +), s defined by Definition B2B(iv) with the replacement

of x by 1 —|s].
(e) For each B € (0, ((iv*)), there exists a constant k > 1 depending only on
(Voo, 7, B) such that, for any admissible solution ¢ for B € [0, 5],

min{gs(—1) + —}; 1, }} < gsn(s) < min{fsz(s) — %,gsh(—l) + IAC(S +1)}

forall -1 < s < 1.

Proor. By ([I32) and the implicit function theorem, property (a) is ob-
tained. For an admissible solution ¢, we differentiate the equation: (p. — @) o
(GP)~1(s, gen(s)) = 0 with respect to s to obtain

0 (oo — ) 0 (G7) )
v (00 =) 0 (G7)7)
where the right-hand side is evaluated at (s, gsn(s)). Then property (b) is obtained
from Lemma B8 Corollary B.19 and Lemma Similarly, properties (¢) and
(d) are obtained from (2.5.8)), (2.5.12]), and Propositions 332 B39 and

By Lemma B34 and (I11), there exist constants £ € (0,&5] and m > 1

depending only on (vs,) such that, for each 5 € [0, évx)]

1
— < go(s) <m for all -1 < s < —14¢;.
m

gsh( )

, go satisfies

For each B_G (0, ((iv‘”)), by (EI4I), we can choose é5 € (0,41] depending only
on (vs,7,3) such that, for any admissible solution corresponding to (v, 3) €
SRwcak N {0 S ﬂ S B}a
1
o S gin(s) < 2m for -1 <s < —-1+é,.
By combining this estimate with Proposition B.I1] property (e) is obtained as a
result. (]
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REMARK 4.7. By Propositions B30 and B:32] for each o € (0,1), there exist
constants é3 > 0 and C, > 0 depending only on (ve,7,a) such that, for any

admissible solution corresponding to (ve, 8) with 0 < 8 < Bs(v*)7

[gsh — 90||é?2,r()71,71+és) < Ca,

where the norm, || - ||ép;“()71 142, 18 defined by Definition B25(iii) with the re-
placement of x by 1 — |s| for the weight of the norm.

By Proposition 339 for each « € (0, 1), there exist constants £, > 0 and C/, > 0
depending only on (ve, 7, @) such that, for any admissible solution corresponding
t0 (voo, B) for ") < B < AL + o,

m

s — gollc2o((—1,— 1464 < Cas @(Esh —go)(-1)=0 form=0,1,2.

By [@I34) @I35), & given by @IL33) satisfies that £ < &1 < 0 for any
80,6

DEFINITION 4.8. Fix 3 € [O,Bé””)]. For ¢! given by [@I133), fix a smooth
function xj such that

I_¢P1
1 for 61 < é—] _ ﬁ7 10C * *
1 10 -5 < (x5) <0, Ixgllesw <C

A e ¢

for some constant C' > 0 depending only on (v,7). For such a smooth cut-off
function, define

(4.1.42) v5(€) == po(§)xp(&1) +on (€)1 = x5(861))-

For later use, we list the following useful properties of ¢} for 8 € [0, ((iv“’)]:

(i) Define
(4.1.43) pp = max{po, px}.
By (Z35.0) and the definition of & given in (I133)), we have
po(&1,€2) if & < ¢&f,
pp(€1, &) =  polér, &) = pn(61, &) if & =¢f,
en (&1, 62) if & > ¢f,
so that
(4.1.44) s <¢s inR%.

(ii) Let DY and éo be given by @I2) and Definition BT} respectively. Then
there exists a sufficiently large constant k > 1 depending only on (vso, )

such that, for any 3 € [0, év“)], 7 satisfies

vo inDY ,
(4.1.45) 0p=pp= 3
pn i {EE€R?: & >0}
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(iii) The set, {£ : ffl <& < fo, (Yoo — ¢55)(€) = 0}, is contained in QP
and

(4.1.46) sup (oo — ¢) — inf(peo — j5) > §>0
Q° QP

for some constant § depending only on (v, 7).

LEMMA 4.9. There exists a constant m > 0 depending only on (veo,?y) such
that each ¢ for 8 € [0, ((1””)] satisfies

O (0o — 05)(G)) M, ) < —m  for all (s,t') € G/ (QF).

PROOF. We have seen in the proof of Lemma that
* — 1 *
O (oo — 5)((G)) (s, t)) = 22— Delpoo — 05) - v
athg

for v given by (I20)-(EL2ZI), where D¢ (oo — ) is evaluated at (G (s, t).
By using (Z50) and [@I42), a direct computation yields that
De(poc =) = Voo sec B(sin B, — cos B)xj+ (0, —vse) (1=X5) + (ex —p0) (x5)(1,0).

From (@13)) and @I20)-I2I)), there exists a constant m. > 0 depending only
on (Veo,y) such that

(4.1.47)
De(oo — p0) - < =y, De(Poo — pa) -0 < —my for all (s,t') € gf(Q

)
By @.I17)-(E1S) and the definition of X3, we see that xo(xj)" = xnv(x3) =0
on R. This, combined with (L.I20)-@IL2I), yields that (px—vo)(x3) (1,0)-v = 0.
Then (@I47) implies that

(4.1.48) De(poo —¢h) v < —m.  forall (s,¢') € G (QF).
The proof is completed by [EI148) and Lemma 4] O

™
~—

Each admissible solution ¢ corresponding to (veo,8) € PRyeak has a unique
function gg, : (—1,1) — R, satisfying all the properties stated in Proposition
For such a function gey, define a map Ga g, : G (Q%) — R? by

, gSh—(S)) =: (s,1).

By Proposition L8le), G2 ., is well defined and invertible with
G g, (5:1) = (s, tgsn(s))-
More importantly, we have
G0, 0 G (2) = (=1,1) x (0,1) =: Q"%
Therefore, a function u given by
(4.1.50) u(s,t) == (p—¢p) o (G)) P oGyh (s,t)  for (s,t) € Q"

is well defined. To establish a uniform estimate of u given by (LI.50]) for admissible
solutions corresponding to (veo,3) € Ryeak, We introduce a new weighted C%*—
norm in Q'ter,

(4.1.49) Gog t (5,8)) (s

s@sh *
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DEFINITION 4.10. Fix constants o > 0, a € (0,1), and m € Z,..
(i) For s = (s,1),8 = (5,1) € Q'*", define

wlp

05" (s,8) := ((5 — ) + (max{1 — [s[, 1 = [5]})*(t = )*) *.
For an open set U C Q" define

al 56 = S sup ((1—[s))* 7 10kdku(s)]),

0<k+i<m 5€Y
kAl kAol (a
[u]gg)a(s[}lbs) Z sup (mln{(l . ‘S‘)a—i-k—o, (1 _ | a—‘,—k: a'} ‘a 8 (( )b : 85 8tu(s)\)’
oo S#SEU 5o " (s, 8)
(o), (subs) (o’) (subs) (¢),(subs)
lullman = lully, + (U

ii) Holder norms with parabolic scaling. For s = (s,t),8 = (§,t) € Q" define
(i) g

5P (s,8) = ((s — 5)% + max{1 — [s|, 1 - [3]}(t — ©)?) %.
For an open set U C Q" define
o ar L_ 5
all 50 = 3 sup ((1—|s)* 50 (0kdku(s)]),
0<kti<mSEV
o),(par . L_5 ~ L_5
T = Y2 sup (minf(1—[s)o A, (1 - [s]) R e}
ki msgéseU

|3k3l (s) — 9504u (5)\>
(5(par)(s S) ’

l[u H(U) J(par) |(U) ,(par) + [u ](U) (IIDJar)

= [Jul

For a constant r € (0, 1), denote
QY = Q*"Nn{-1<s<—-1+r},
(4.1.51) oV :=Qitrn{1—r<s<1},
Qmt .= giter N {|s| < 1 —r}.

REMARK 4.11 (Compact embedding properties of the norms in Definition 0.

For m € Z., a € [0,1), 0 > 0, and an open bounded set U in R?, let C73" | (U) be
(P21) of the set of all smooth functions whose

the completlon under the norm, ||- ||m U

Il ||m o Iz,ar) —norms are finite. Moreover, let Cg’)a(bubb)(U ) be the completion under
the norm || - ||$7)C;E?}1bs) of the set of all smooth functions whose || - || subs) —norms

are finite. Then the following compact embedding properties hold:

(i) Let » € (0,1), a,& € [0,1) with @ < &, and m € {1, 2} Then
C'("ffa) (Sub)(QO) is compactly embedded into C(1+a) (sub) (2 ©); see [11]
Corollary 17.2.7].

(ii) Let m; and mo be nonnegative integers, oy, € [0,1), and my + a3 >
ma+ao, and let o1 > 09 > 0. Then C’ml’ lpar)(U) is compactly embedded

into C(”;zso‘(zpar)( ); see [11), Lemma 4. 6 3]
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For simplicity, let €y denote &§ from Proposition Define

(4.1.52) gy:= min &,
Bef0,85"]

for &y given by ([@I39).

PROPOSITION 4.12. For each f3 € (0, év‘”)), there exist constants M > 0 and
a € (0 ,3] depending only on (veo,v,B) such that, for any admissible solution ¢

corresponding to (Voo, 8) € Ryeak N {0 < B < B}, u: Q" — R defined by @ELH0)
satisfies

2), 1+ (1+ b
(4.1.53) ||u||02,@(ggg/4)+||u||;7(>l<gi; +lu \|gazopar>+|| Hlaoéosu 9 < M.

PrROOF. We divide the proof into six steps.

1. Estimate of u away from s = —1: A direct computation by using Corollary

BI9 Proposition B226] Lemma L2 Proposition L6, (£IL45), and (£IL50) shows

that, for any « € (0, 1), there exists a constant M; > 0 depending only on (ve, v, @)
such that

2),(par
(11.54) oz, ) + Iul52 G < s

for any admissible solution ¢ corresponding to (ve, 8) € Ryeak-

2. To obtain the a priori estimates of u near s = —1, the following two
embedding inequalities from [11] are applied in the next two steps:

LEMMA 4.13 (Lemma 17.2.10 in [IT]). For a nonnegative integer m, o € (0, 1),
and o > 0, let both norms || - Hi,f)a(?}lbb) and || - HS’)&S?JM) be defined in Definition

EI0. Forr € (0,1], there exists a constant C > 0 independent of (r,«) such that

(0),(par) < H || ),(subs)

[l .00 Q0

LEMMA 4.14 (Lemma 17.2.11 in [11]). For a nonnegative integer m, o € (0, 3],
o >0, and r € (0,1), there exists a constant C > 0 independent of (r, ) such that

1+a),(sub: (2
[l (59 < Olfull 55587

The estimates of u near s = —1 for the admissible solution are given for two

cases separately: (i) 8 € [0, (v"o)) and (ii) 8 € [ﬁs(v“’),,@].

3. Estimate of u near s = —1 for g € [0, (v°°)) For each 8 € [0, (v°°)L by
(#11), @I31), and Definition EI5 we have

(4.1.55) (s, t) = (¢ — po)(z,y) for (s,t) € Q" N{-1<s< —1+¢4}
with

: )
(gsh o Lg)(z +uo — co)

(s,1) = (Lg(z +uo = co),
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for the (x,y)—coordinates defined by ([B.5.2). Differentiating ({.1.53]), we have

_C/\/—Sg
= =5

CN — 8812
Uss = (Tﬁ) Yz + 2t9/sh4ﬁ¢ry + gty + (tggh)zdij

Usg + tglbhwyv Ut = 9sh¢y7

(4.1.56)

CN — S
Tﬁgsh7/}:cy + tg;hgshd)yya

Ust = géh% +
Ut = E§h1/’yy~
A direct computation by using (LI50) and Propositions B30 and B:32] shows that,

for g € [0, (Um)) and a € (0,1), there exists a constant C' > 0 depending only on
(Voo, 7Y, @) such that

(4.1.57) |58 < .
€0

Furthermore, (LI.57), combined with Lemma [£I4] implies that there exists a con-
stant M4 > 0 depending only on (v,7y) such that

(1+%),(subs)

(4.1.58) 3 05" < M,

for any admissible solution corresponding to (veo, 3) € Ryeak N {0 < B < B(v"o 1.
Combining the two estimates (L.T57)—(158) together, we have

1 ar 1 subs
(4.1.59) lullyy o™ + llull'} 6™ < Mo

2’%’956 1,§,Q§6
for a constant My > 0 depending only on (vee, ).

4. Estimate of u near s = —1 for 8 € [6S(v°°), ﬁs(v‘”) + o03): Denote ¢ := ¢ — po.
By Proposition B:39] any admissible solution corresponding to (veo, ) € Rweak N
{/BS(UOO) <pB<pl=) 4 o3} satisfies

(4.1.60) ¥(Ps) = [Dy(Pg)| = 0.

Regarding ¢ as a function of (z,y) in D?O for &g > 0 from Proposition [3.36]
one can directly check by using ([@.I.60) that ¢ satisfies the following estimate: For
x=(z,y), X = (&,9) E’DO,

11—« —
(M161) S e = S sup (- ap, 0 k0w
0<k+1<2*X€PS,
2
—|—Z sup (min{\x—xpﬁ|,|5c—xpﬁ\}
k=0 x,iE’DgO JXAEX

| |0h0 M) — ko )y
|x — x|
11—« P,
< sl aanpe

for some constant k1 > 0 depending only on (vee, 7y, ).
Since ggn(—1) =0 for 8 > ") Proposition [L8(e) implies that
1—|s|

<gen(s) <k(l—ls])  forse[-1,—1+¢h].
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Then, following the calculations in the proof of [11], Lemma 17.2.5], we obtain from
@I56) and Remark 7] that

(1+ b (—1-a)
lulaiog ™ < rall¥l'ya g

for some constant kg > 0 depending only on (veo, 7, @).
By Corollary B9 and Proposition B39, for each a € (0,1), there exists a
constant C' > 0 depending only on (vs,?y, ) such that any admissible solution

corresponding to (voo, ) € Rweak N {ﬂb@"") < B <pl=) 4 o3} satisfies
—1—a),{P,
(4.1.62) ||¢||§,a,sm;3{o "< o

for g > 0 from Proposition [3.361 Therefore, there exists a constant Mz > 0
depending only on (ve, v, @) such that u given by (£.1.50) associated with ¢ satisfies

(14« r (14a), subs
(4.1.63) ull$ 0P < [lull S e < Ms.
O

5. Estimate of u mear s = —1 for B € [65(%") + %, B]: By Propositions
and 6 there exists & € (0,1) depending on (veo,7, 3) so that ¥ = ¢ — pe still
satisfies estimate (EIEZ) for all 8 € [3") + %, 5] and a € (0,a]. Then there
exists My > 0 depending only on (ve,7, 3) such that any admissible solution ¢

corresponding to (veo, 8) € %Weakﬂ{ﬂs(v“’) + 28 < B < B} satisfies estimate (LL.63)
with a = & and M3 = My.

6. Finally, (153)) is proved by choosing & = min{4, %} and M = 4 max{M,
M27 M-?)a M4} |:|
4.2. Mapping the Functions in Q'**" to Approximate Admissible

Solutions

Fix v > 1 and vs > 0. For each 5 € [0, (v‘x’] let Q° be defined by
Definition AILiii). For each s* € (—1,1), define

(12.1) Q7 (s%) = Q" N (G ({s = 5°}).
For each 8 € [0, §), let ¢} be defined by (£I.42). Then

inf (poo —9h) <0< sup (Yoo — ©5)-
ity 5) Qﬁ(_n( 5)

In particular, the nonstrict inequality on the right above becomes strict when 8 <
B§U°°) and becomes an equality when § > Bévm).

DEFINITION 4.15. Fix o € (0,1), 8 € (0, é”"")), and f € (0,0]. Let u €
C1e(Qiter) be a function satisfying that, for any s € (—1,1),

4.2.2 inf — %) <u(s,1) < su o — ©F).
(4.2.2) At (poo = 95) < uls,1) Qﬁ(};)(so ¢5)

We define functions g( uh) & (wh) and o(h) as follows:
(i) By Lemmal43] for each s € (—1, 1), there exists a unique ¢’ > 0 such that

(Poo = ©f) @ (G7) M (5,7) = u(s, 1),
Define a function g(u’ﬁ) :(=1,1) = R* by
(4.2.3) o (s) = 7.
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(ii) For g(h from (i), define G2 ) by (@I1.49). For g1 given by (£I1.31),
define a map F(, 5) : Q" — Qﬁ by

S = @) 0 G, o
(iii) For F(u) from (if), define the sets:
Canock (U, 8) = Fup) (=1,1) x {1}),  Q(u, B) := Fup) ().
Moreover, define a function p(*#) in Q(u, 8) by
(4.2.4) (&) = (uoF, )€ +95(8)  forall € € Qu,f).

For a € (0,1) and 3 € (0, (v‘x’ ), define

(4.2.5)
. _ _ (u, B) satisty [£22) for each s € (—1,1)
B._ U Lapiter . .

Qﬁa.—{( ,B)eCH(Qiter) x [0, 5] and (u, Du)(+1,-) = (0,0) }

The next lemma follows from Definition For the details of proof, we refer
to [11l, Lemmas 12.2.7 and 17.2.13].

LEMMA 4.16. Fiz o € (0,1) and § € (O,Bc(f)”)). For each (u,f) € Qig, the
following properties hold:
(a) g™ € Ch([-1,1).
(b) For domain Ag defined by Definition 2.23]

Q(’U/,ﬁ) U IWshock(uy 6) - Q'B C Aﬁ

Denote P1 = S(uﬁ)(_l; 1), P2 = %(u,ﬁ)(:l? 1), P3 = S(u’ﬂ)(l,O), and P4 =
Su,p)(—1,0). Then Tgwok(u,B) is a Ch —curve up to its endpoints Py
and Py, and is tangential to So at Py and to Sy at Py. For fop and
fao defined in Lemmas and B.271,

o) 03P (~1) = fo.olzs), gl P (1) = faro(0),
426) g cnr — q N
w, N — 5B u CN — 88
TP = T o gwn). e (1) = = 0 (0),

where sg is defined by EI129) and zg is given by

D R
T \an, BB

In the above, Pg is the § —intercept of So, and xp, represents the x—
coordinate of Pz in the (x,y)—coordinates defined by BL2). Note that
dsk giﬁ’ﬁ)( +1), k=0, 1, are uniquely determined, depending only on (veo, 8),
but independent of u E &2, Boundary 0Q(u, ) consists of Twedge =
s (=11 x {0}), Tifie = Srum ({113 (0, 1)), T e = Feupy ({1} %
(0,1)), and Tsnock (u, B) = F(u,p)((—1,1) x {1}) which do not intersect at
the points of their relative interiors.
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(¢) Let 69 > 0 be from Definition Bl Let the (x,y)—coordinates be defined

by B52) near T2 .., and by BAIS) near TN ... For a constant ¢ > 0,
define the two sets Q° and QN by

QF = N, (P92 N {xp, <z < xp, +€}NQu,B),

QN = ML, (T2 N {0 < = < e} N Q(u, B)
for g > 0 to be fized, where N,.(T') denotes an open r—neighborhood of T.
Then there exists a constant g > 0 depending only on (Veo,?y) such that
the following holds: for Lg defined by (130D, define the two functions

fO sh and sth by

fosm(x) = Qéh o Lg(x +uo — co), fasn(z) = giﬁ’ﬁ)

Then

oLg(en — ).

Q0 = {(x,y) : x € (xp,xp, +¢),0<y< fom)}
Cenock (1, 3) N 9QC = {(z, fo.mn(x)) : = € (zp,xp, +€)},
Cyedge N 0NC = {(,0) : z € (zp,,zp, +6)},

Do = Doonic 1097 = {(zp,,y) : 0 <y < fom(0)},

and

0F ={(z.y) - v € (0,¢), 0 <y < fvan(®)},
Lehoc (1, 8) N 0QY = {(x, fwan(w)) : = € (0,€)},
Fwedge N aQN = {(37,0) . x e (O,E)}7
Monie = Tlonie 109 = {(0.9) 0 <y < firan(0)}.
(d) Suppose that (u,B), (@, 3) € &° satisfy that H(u,ﬂ)HCLa(W) < M for

some constant M > 0. Then there exists a constant C > 0, depending
only on (Veo,7, B, M, &), satisfying the following estimates:

oS llere o1 + 1B u,8) | 1.0 @0y < C

o™ = a5V llona (-1 < C(lu = il .o gary + 18 = BI),

I3 cw.8) = By llcra gy < Cllu = ill ga.a ey + 18 = B1),

10 0 Fupy — 0P 085 3l e (g < C (Il — il 1. gy + 18— BI).
— 08 0 B — (6™ = 03) 08 3l 1.0 @y
< O(llu = il .o grery + 18 = BI)-

(2

(€) »®F) := oA —max{po, e} = 0 holds on TO , UTY,

sonic sonic*

(f) Fore >0, let g, be defined by @LID2). Let eg > 0 be the constant from
(c). Assume that, for constants a € (0,1), o € (1,2], and M > 0,

(4.2.7) [ i, + Il 1$7)- () < M.

2,.0,Qitr N {[s|<1— 2.0, Qi N {[s|>1-ep} =
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Then there exist C' > 0 depending only on (Voo, 75 By, 0) and Cy > 0
depending only on (Veo,, 3) such that
(4.2.8) oS, et e+ e -

€ £
[—14+15,1-13]

(U) (par

+ a5 — anllS) (‘ia‘z L SOM,
and F(o,5) in {1 —|s| <o} x (0,00) defined by
/ (G260 Oglﬁ)_l(s,t’) for s € (—1,—-1+¢}),
S0, (s, 1) = RN /
(Gon 0G7)  (5:) for s € (1 —¢g,1)

satisfies

I50.6) | s @rngsi>1-<p1) < Cos
/ _ (0),(par)

IIS(u,/a)IIQ)%QMW{‘MQ{_%} + ¥ s — Fo.pl <C

2,a,QiterN{|s|>1—e(} —
(g) Let fgz be from [@AI3M). For constants M > 0 and ds, > 0, assume that
(u, B) € &2 satisfies ([E2T), ggﬁ’ﬁ)(—l) < bsn, and

s+1 (u.8)
M 768h} < 9sn (S)

min {g” (~1) +

<rnln{g(uﬁ 1)+ M(s+1), fa(s ——}
for all =1 < s < 1. Then, for any

1
e € (0, 1 min{sg, cy}),
there exists a constant C. > 0 depending only on (voo,’y,a75,5sh,5,M)
such that

1 -1 (-1) ar)
1805 I momsn@@uam) + I8as) = o s < Ce,

* «1|(0),(par)
lp = @5‘|2,a,sz(u,ﬁ)\(@u@) + llp — S%HZ)%Q% < Ce-

(h) Let (u,B) and (i, 5) be as in (d). For any open set K € Q" so that
K C (=1+49,1-0)x(0,1) for some § > 0, there exists a constant Cs > 0
depending only on (Voo,, B, a, 0,8) such that

IS w8 = Feaplloze @ < Cs(ll(w—a)( Dllcze-141-a) + 18— Bl),

16 0 8y — £ 05 3l iy < Collht = llgm ey + 18— A1),

[0 0 Bup) = P 0 Fa ) Hcm@ < Cs(llu = @l ge.a iy + 16 = Bl),
where (@5 s given by (P8 = p(h) ¢} for each (u, B) € Giﬁ

REMARK 4.17. By (@LI) and {Z0), for any (u, ) € &2, we have

N
8 o —1,€
g7 (1) =sin "' (1) > 0

(veo)

Fix § € (0,5"<)), and suppose that (u,) € &7 and 3 € [0, (veo) _ 0]. Then
it follows from B522), (@I11), and (LZ0) that there exists a constant ls, > 0
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depending only on (v, 7, d) such that
giﬁﬁ)(_l) Z lso~

Therefore, there exists b € (0,1) depending only on (ves,,0,d, M) such that, for
any (u,3) € &2 with 3 € [O,BS(U”) — 4], géﬁ’ﬁ) satisfies

(4.2.9) b< giﬁ’ﬁ)(s) <b! for all s € [-1,1].

Then there exist ' > 0 depending on (Voo, ¥, @, 0, 0) and Cy > 0 depending only
on (Vso,7,d) such that

”%(0 5)”03 QPND... D= < Cy for DEO :N (FO 50) UN (PN 50)

sonic sonic

(4.2.10) B o
I8l @Dy o) + 1) g(0/3)||2aﬂu/3)m> < OM.

Furthermore, ¢ = ¢(*#) defined by ([@Z4) corresponding to (u, 3) satisfies

* « (), (par) A
(4.2.11) o =5l o0 @Dy 19~ hllsa atsno., < OM.

4.3. Definition of the Iteration Set
DEFINITION 4.18. For gg > 0 from Lemma[LT6l(c), let £, be given by (II1.52).

(i) Define u(®or™) ¢ O3 (Qiter) by [@I50) with 8 = 0 and ¢ = . Note that

©5 = pn in Q" by [@EIZ2) because o = @ when 3 = 0, which yields
that

u(norm) =0 in Qiter'
(ii) For a € (0,1) and o’ € (0, 1], we introduce the norm:

lull$2

1+ (1+ 1+ bs
o, Qiter = ||u||C2,a(Qn;c + || ||( o ),(par) —+ || ||2 @),(par) + H ||1 a),(subs)
ep/4

2,a, Q a, QO a, QO 5
where i;ét/4, Qé‘g, and Qg% are defined in (ZI.5]]). Denote by Céf‘a,) (Qiter)
the set of all C?(Qi*")—functions whose || - ||(*’a ) .o —norms are finite. Note

2 «, Qlter
that CQ*O;, (Qiter) s compactly embedded into C>%, (Q'*") whenever

O§a<a<1and0§ <o <1.

(*,&")

For fixed v > 1,9 > 0, and 3, € (0, [(1'000)), we define the iteration set
K c clLe(Qiter) x [0, 8.] for some appropriate a € (0,1). For each 8 € [0, 5.],
Kg = {u € CH*(Qiter) : (u,B) € K}. In the definition to come, the iteration set
K is given such that
e Ko contains u("orm);

e If 3 is sufficiently close to 0, then u € Kg is also close to u(™™) in an
appropriate norm;

e If 3 is away from 0, then any ¢(*#) given by [@Z4) for u € Kp satisfies
the strict directional monotonicity properties ([B.1.6)—(B.17);

e [Cs varies continuously on 3 € [0, 8.].
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For v > 1 and v > 0, fix B, € (0, ((iv"")). For & € (0, %] from Proposition d.12]
with B replaced by B, define

N | Qi

(4.3.1) Oy 1=

Let €9 > 0 be from Lemma [LT6 For constants o € (0, ], a1 € (0,1), 41, 2,
93, € € (0,%), and N1 > 1 to be specified later, we now define the iteration set

K£ccxe Q) x [0, B.].

(*,001)

DEFINITION 4.19. For fixed 3, € (0, ((i”*)), the iteration set K C CZ;”‘QI) (Qiter) x
[0, B.] is the set of all (u, 3) satisfying the following properties:

(i) Fix a1 = §. Then (u, 3) satisfies

[u — w@orm|{el) < (8)

Q,Q,Qitcr
for 241 € CY1(R) given by
51 if B < 1{]_11,

linear if B € (Jf,—ll, %),

with Ng = max{10M, 1} for constant M from Proposition 12|

(i) For set &2+ defined by ([@ZH), (u,3) is contained in ®5-. Moreover, let
Osh = géﬁ’5)7 Tshock = Dshock (1, B), 2 = Q(u, B), and ¢ = ¢(*#) be defined
by Definition

(iil) Tyhoek and ggn satisfy

diSt(Fshocka BI(OOO)) > N{17

(4.3.2) min{gen(—=1) + N3 1(s + 1), N3 '} < gan(s)
< min{ga(~1) + Ns(s + 1), fa(s) — N3 '}

for all =1 < s <1 with N =2C for C from Proposition B7] and N3 = 2k
for k from Proposition [L.6(e) with ge,(—1) > 0, where fp is defined by

@I37).
(iv) Let the (z,y) coordinates be defined by ([BZI8) near TV . and by ([B5.2)
near I'C . . For pg = max{po, o}, denote 1 := ¢ — g. For r > 0, let

sonic*
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DO and DV be defined by @LZ). Let ¢ and 1 satisfy the following:

(4.3.3) Y > () in Q\ (DG UDY),
10 10
(4.3.4) Des, (Poo — ) < —Ha(B) in Q\ D%,
10
(4.3.5) —&A%m—@<0ﬂ%W)m5\D%,
2 —
(4.3.6) 0 )| < 750w in B0 (DX DY o),
(4.3.7) 0.0 (,y)| < K3(B)z in QN (D \ DE ,/10)
(4.3.8) |09 (@, y)| < Naz in @0 (DS \ DS 10) U (DX D?{{/IO))’
(4.3.9) |(02%, 0y)| < Ny in QN (Dgz U Dgg),
(4.3.10) lp = ewllcor @ + e = vollgos@ < N,
(4.3.11) Ou (Yoo — ) > 1, Opo > 1 on Dpock,

for the unit normal vector v to I'ghocx towards the interior of €2. In the
above conditions, functions Ko, K3 € C(R) are defined by

(4.3.12) JHo(B) = 62 min{ 3 — lev Nz}

e o< B 4 g
K3(B8) = < linear if ﬁ(v‘x‘ R <B< ﬁ(v‘x’ + o9,
Ny if gL +02 <8,
for constants eg, o9, 10, ft1, N4, and N5 chosen as follows:
(iv-1) eg is from Lemma
(iv-2) o2 > 0 is from LemmaB36, and o = 3 for § > 0 from Lemmas
and

(iv-3) p = & for 6; > 0 from Corollary BIT
(iv-4) Choice of Ny: By BBE58)-([B550), for each o € (0, 87) — gLy,

4.3.13 inf Tp, =T Voo =1z, > 0.
( ) B bl Prlg=pirct e =i 0o

By Propositions B30, B.32] and [3.39], there exists C; > 0 depending
only on (vso,7) such that any admissible solution ¢ = ¥ + ¢z for
B € (0, 8" + o] satisfies that |9y, 3, )t(z,y)| < Cyz in 2N De.
Let @ € (0,1) be from Proposition By Proposition and
#313), any admissible solution ¢ = @ + g for § > Bév“’) +
satisfies
5 a-1_ . = o

|0z, Oy)h(z,y)| < Coz™ < Cg(:tpﬁ|ﬁzﬁs(uoc>+%3) r in QNDg
for a constant Co > 0 depending only on (vs,7,B«). Then there
exists a constant C} > 0 depending only on (vs, 7, B+, 0) such that
any admissible solution ¢ =1 + @g for 8 € (0, B.] satisfies

(02, 0y) (2, y)| < Cfz in QNDEY.
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By combining this inequality with Proposition B.26, there exists a
constant C* > 0 depending only on (vso, v, 8x) such that any admis-
sible solution ¢ for 3 € [0, 8] satisfies
(92, 0y)0(2,y)| < C*z in QN (D UDY).
We choose Ny := 10C™*.
(iv-5) By Lemma and the continuous dependence of up and cp on
B € [0, %), there exists a constant C' > 0 depending only on (veo,?)

such that any admissible solution ¢ for 8 € [0, év"")) satisfies

le = enllcor@m + lle — ollcon @ < C.

For such C' > 0, we choose N5 := 10C.
(v) Let c(]|D¢l|?, ¢) be defined by

Y1
(4.3.14) (|Dgl?, @) = p7= (|Dgl?, ¢)
for p(|p|?, 2) given by ([2.Z2). Then ¢ satisfies
D 2
(4.3.15) Do (e < 1= jdist’ (€, 19 UTN i)

A(|Dp(&), ¢ (£))

for £ € Q\ (Dé\g/loul)g/w). In @31I3), it = &* for e > 0 from Remark
0. 10l

(vi) p(|Dp|?, ¢) given by ([2.42) satisfies
Qo =
— < p(|Dp?,p) <2C i Q\ (Dé\({/m U Dg/lo)a

2
for a, = ('yil)ﬁ and C from BI1.27) in Lemma 3.5 For such constants,
denote “
Pmin ‘= 7*, Pmax — 2C.

(vii) The boundary value problem

Ny (0) = Ar1oe,e, + 2A120¢,¢, + Anadeye, =0 in Q,

M DAaAa =0 Onrsocv
(43.16) 1 w.8) (D9, 6, §) 2 K y
¢ = max{ﬁp/\/v QOO} — PN on 1_‘sonic U 1—‘lsonic’
QAS& =0 on chdgc
has a unique solution ¢ € C2() N C'(Q), where Nw,p) and M, gy are
determined by (u, 8) in §4l Moreover, this solution satisfies that a(s,t),
defined by
(4317) ﬁ(sa t) = (QZ) + PN — 902) o %(u,ﬁ)(sa t) in Qitcr,
satisfies
(4.3.18) & — ul| 20D e < 65

o .
275,9“‘/81‘

REMARK 4.20. By ([@I4H), the boundary condition ¢ = max{pn, vo} — @r
on 9 . UTN . given in [@3I0) is equivalent to

sonic sonic
(@]

(2) o Yo — PN on Psoni(ﬁ

0 on IV

sonic*
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REMARK 4.21. For a fixed B, € (0, ((ivx)), let the iteration set K be de-
fined by Definition 19 For each (u,8) € K, let go = géﬁﬁ Q = Qu,p),
Tshock = Dshock (1, 8), and ¢ = p(*#) be defined by Definition A Then there
exist constants Mgom > 0 depending only on (vse,7), C > 0 depending only on
(Voos 7, @), and Cg, > 0 depending only on (ve,?, Bx, @) such that the following
properties hold:

(i) Let go and gpr be from (EI39). For Ny from Definition EINi), gsh

satisfies
1—a),{£1
lganlls o 2T < O,
(4.3.19) & g

m(gsh_g(?)(_l) = @(gsh—zw)(l) =0 for k=0, 1.
(i) Tshock is a C1%—curve up to iEs endpoints. FurtAhermore, Tshock N D?o and
Tshock N Dé\g are graphs y = fo sn(x) and y = farsn(x) for
(4.320)  fosn(@)=(gsnoLz")(ss+2),  fnen(@) = (genoLz")(en — ),

with sth and fo,sh satisfying that

1 fnan = FnollS a2 ) fo = foollsta i) < com(B)

for faro and fo o from Lemmas B:20(e) and B27(e), respectively.
(iii) Q C By, (0).
(iv) ¥ = ¢ — pj satisfies
D=0 onT9 . UTN = fork=0,1,

[llcr.e @y < CHA(B).

By Lemma B27(e) and @3I9), we can adjust g9 depending on (vso, )
to satisfy

1
0< 59’0(—1) <gl(s) <4gn(—1)  forall s € [—1,—1+&).

Then, for each g < B(U"")

|ue (s, 1)
Oy
|0y (2, y)| = o (3)
(1+a),(subs) (1 - |s|)1+a
< ||u e —
> ” Hlyl%Q?O gsh(_l)

< Cgzte for (z,y) € QN DY,

where # = min{g? (—1),e0} (note that gs,(—1) > 0 for each (u,3) €
Kn{s < ﬁs(”x)}). For each o € (0 , B ), there exists a constant N (o)
depending only on (veo, 7, Bx, o) such that, if (u, 3) € KN{B < Bvee) — o},
then
1 r *
[l ™ < N3 (o).
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(v) For each r € (0,¢), there exists a constant Cg, » > 0 depending only on
(Voos Y, B, 7y @) such that
||$0||C2,a(Q\(DEJUD.;\f)) < Cﬁ*ﬂ“'
DEFINITION 4.22. Define the following sets:

(i) Denote K as

(4.3.21) K== {(u,8) € C>* (Q"") : (u, ) satisfy Definition EI(i)(vi)};

(x,a1)
(ii) K and Ke* are the closures of K and K in C(zfal)(Qiter) x [0, Bl
respectively;
(iii) For each C € {IC, Kt K, Kt} and each 3 € [0, 8.], denote

Cg:={u: (u,B) €C}.
Note that Csz C C(Q’a (Qiter).

*,a1)

REMARK 4.23. Each (u, 8) € Kt satisfies property (ii) of Definition LT9] as
well as properties (i) and (iii)—(vi) of Definition 19 and all the properties stated
in Remark [£.2T] with nonstrict inequalities in the estimates.

4.4. Boundary Value Problem ({316

In order to complete Definition .19] it remains to define the nonlinear differ-
ential operators N, gy and M, gy in (@3.16)) for each (u, ) € K.

For each (u, 8) € Ko, let gon = 057, § = Fup), @ = Qu, B), and Tapoac =
Dshock (4, B), and let ¢ = ©(®P) be defined by @24).

4.4.1. Definition of N, g) in E3I6). For ¢, defined by ([Z.5.1)), denote
¢i=¢—pN.
For a C%function ¢ in €, we define N(u,g)(é) by

2
(4.4.1) N () =Y Aij(D¢,€)e.c,0

ij=1

so that the following properties hold:

e Equation /\f(u[g)(é) = 0 is strictly elliptic in Q\ (I'2 ., U I‘é\gnic);
o If ¢ is a solution of {3T6), then equation N, gy(¢) = 0 coincides with
B.1.2).

The coefficient functions A;;(p,&),4,j = 1,2, of the nonlinear operator J\/'(uﬁ)
are defined in the following six steps:

1. For a constant r > 0, let D€ and DV be defined by @L2), and let D, =
DC UDN. Let g > 0 be from Lemma EI6 For a constant e.q € (0,52) to be

)
chosen later, we define AEP(E) for § € Q\ D, /10 by

(4.4.2) A (&) = AP (D (£), 6(£), £),
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where
AN (P, 2,8) = & — (p1 + O¢, o),

(4.4.3)  AY™(p,2,€) = A" (p, 2,€) = — (p1 + D¢, o0 (€)) (p2 + Dey o0 (€)),
ABS™(p, 2,€) = & — (p2 + Oe, on(€))

for ¢ = ¢*(|p + Don[?, 2 + ) given by E3TH).
2. For po > 0 from Definition EI9(iv-1), fix a function ¢; € C3(R) such that

(4.4.4) () s if|s|<—2_@,
o 18) == 2—EQYsen(s
( 1103’;‘5() 1f| |>1+’y,
(4.4.5) 0<(i(s) <10, Ci(—s)=—C(s) for all s € R,
20 1
(4.4.6) D0+ _ gy < for all 5 > 0.
Ho
Define cg, ug, r, and ¢g by
(Co, uo) in DO s
(4.4.7) (cp,ug) = 2eea
(enr, 0) in Dé\écq,
(4.4.8) r=1/(& —up)? + &,
(4.4.9) bp = — PN
for o} given by [E.I1.42).

Denote ¢ := ¢ — ¢35 = ¢ — ¢j. Suppose that  is a solution of E3I16). We
denote

(4.4.10) Vi=¢—dp.

Let the (z,y)—coordinates be defined by (B418)) and B5.2) in Dé\écq and Dgcq,
respectively. For p € R?, denote

p :==p— Dy 95

Note that p’ = p in Dé\éeq and p’ = p — D, ) (0o — @n) in Dgeeq. Let N4 be the
constant from Definition EI9(iv-4). In Do, = Dé\ée U Dgaeq, define O;-n"d(p,x,y)
by

(4.4.11)

O (py, p2,2,y) = 0;(z%/* ¢y ( 3/4) (v+ 1)N4217C1((7+pﬁ)a U(x,y), , cp)

for j = 1,---,5, where each O;(p,z,z,¢) is given by BZ29). With 0;“0‘1 =
O;n"d(qu, ¢y, x,y) for j =1,--- .5, define a nonlinear differential operator ./\/'(I; Olﬁa)r
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by
(4.4.12)

-/V.(IZOl;r(Qﬁ) (2£E B (7 + 1)£EC1(¢ ) + Omod),l/}zm + OmOdQ/Any + <c]' mod)wyy
— (14 0F°Y)ih, + Oy,

= all(D(w,y)va €z, y)J)m + 2a12 (D(w,y)QZ)a €L, y)qzjacy + agz (D(w,y)QZ)a €z, y)qzjyy
+ a’l(D(z,y) (ﬁa z, y)?&m + G’Q(D(m,y)év z, y)/l;y

3. For a C%function ¢ = ¢ + ¢p, the expression of 05./\/’&01;;@) in the &
coordinates is given in the form:

(4.4.13)

2
caNiogy (0) = D AT (Deb, )0, 0+ Y AP (Db, )06 in QN Dae,,,
i,j=1 i=1
where we have used that Dgg/} = ngg holds in N Da, . In the expression above,

cp is multiplied to /\/(1[;‘)15)r because the expression of Cﬁ./\/’(i 5 Without cutoffs in the

&—coordinates coincides with the left-hand side of Eq. (IB]:ZI)
In QN 'Dgseq, a direct computation shows that

AgZ) _ ((CO _ :E)OmOd Omod) siny + ((CO _ l‘)(i + Omod) (1 + Omod)) cos v,
Ag2) _ ((CO _ :E)Oénod Omod) cosy — ((CO _ :E) (i + Omod) (1 + Omod)) siny.

From this, combined with 82229) and ({ZTI), we see that A§2) = Ag) =0in
Qrmgch. Similarly, it can be checked that AgQ) = AéQ) =0in QﬁDé\écq. Therefore,
we have

AP =P =0  mQNDy.
For £ € QN Dé\écq7 define A{\j[ as

(4.4.14) AN(p,€) == A2 (p,€).
For £ € QN D?Eeq, define A as
(4.4.15) A9 (p,€) == A (p.€).

By using Definition [£.19] the next two lemmas can dlrectly be derived. We first

discuss the properties of coefficients (a;;,a;) near T . .

LEMMA 4.24 (Coefficients (a;j;, a;)(p, z,y) in Qﬂ’DQSCq). There exist constants
A1 € (0,1),60q € (0,%), and Neq > 1 depending only on (veo,?, Bx) such that,
for any (u,B) € K=t N {0 < B < Bévw)}, coefficients (a;j,a;)(p,x,y) defined by

EZ12) satisfy the following properties:
(a) For any (x,y) € Q ﬂDé\éeq and p, k = (K1, k2) € R?,

2

K _
Mg < ag(pay) QZiJ < AR
i,j=1
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(b) aij,a; € CH(R? x (QQDN \TN ) for j =1,2, and

sonic ) )

||(a11aa127a2)||co,1(R2meDé\/’ ) < NCQa
||(0’22’a1)HL°°(R2><Qm’DN y T D py)(a2270’1)||L°°(]R2><QnDN ) < Neg;

sup 214D, (a2, a2)(p, z,y)| < Neg,
(p,a;,y)eRQXQﬂDé‘g

Suﬂg H(a”,az)(p, v')||03/4 QQDN ) < Ncq fori,j=1,2.
pcE

(c) For each k =1,2, Dk(aij,a;) € CH*(R? x (2N DN \Fsomc)) and

Su]lg HD (awva’t)(pa a')”cl D‘(]R2><(QQDN \WN (TN ) < ]Veq’ri5
pe Sonic

for each r € (0, %),
(d) There exists a constant C > 0 depending only on (Voos Y, Bx) such that

0y () (p.2.9)| < G2 for all p € B and (z,y) € 20 DY
(e) For every (p,z,y) € R? x QN Dé\gq,

((1,11,@22,(1:2)((])1, _p2)5$7y) = (a117a22aa?)((plap2)axay)7
jaii (P, 2,y) = aii(0,0,9)| < Negz®*  fori=1,2,
‘a/12(p7x7y)| S Neq.’lf,

1
ai(p,z,y) < —5

(f) For any p € R?, the values of (ai;,a;)(p,-,-) are given on TN . = {z =
0}nan DN ,) by fizing p and taking a limit in (z, y) from QN D, C
{z > 0}. More explicitly, for any p € R? and (0,y) € T .,

a;;(p,0,y) =0 for all (i,7) # (2,2),
a2 (P, 0,y) =cy',  ai(p,0,y) =—1, ax(p,0,y) =0.

(8) & =19+ ¢p satisfies
O;'nOd((bwa ¢y7 €, y) = Oj(wa:u ¢y7 ’(/}7 x,Y, CB) in QN Dé\ch fO'I" J = 17 Tty S.
In addition, if 1 satisfies

€eq

=

0

2 - .
[thz] < T mQﬁDé\?lO
for e € (0, %] from Definition EIX(iv), then, in QN Dg\: ,
NEZS () = (20— (7+1)wx+01)¢m+0wmy+( +03)¢yy (1404) s +O05¢y

for O; = O (Vg Yy, ¥, x,y,cnr). Therefore, equation ./\/(I;Og‘)r(cﬁ) =0 coin-
cides with Eq. BL12) in QN Dé\:q.
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Let o3 be from Proposition B39 Coefficients Al 4,7 = 1,2, are used only for
(u,3) e K=t {B : B0, 0, BL") + 03]} to define N, g).

In the next lemma, we discuss the properties of coefficients (a;;, a;) near TS .
for 8 < B{"=) + o5. While TN i is fixed to be the same for all 8 € [0,%), I9 .
changes as 3 varies. As § € [0, (v“’)) tends to B>, I'9 .. shrinks to a point set
{P,} for P; given in Definition [Z23] and it remains to be the point set {P;} for

8> ﬁs(vx For that reason, the properties of (a;;,a;) near I'S . are different from
Lemma [4.24]
LeMMA 4.25 (Coefficients (a;j,a;)(p,z,y) in QN Dé?c_eq). For each (u,p) €

Ke<tn{g : B e [O,BS(U”) + o3]}, let (a;5,a;) be defined by [@AI2). Then there
exists a constant ecq € (0, %) depending only on (vss, 7, Bx) satisfying the following
properties:

(a) There exist constants A1 € (0,1) and Neq > 1 depending only on (Veo, Y, Bx)

such that, for each (u,B) € K=t with 8 € [0, (Vo) 4 o3, coefficients
(@ij,a;) satisfy all the assertions of Lemma E24] ezcept for assertions (d)
and (g) of Lemma 24 by replacing (Dé\efqué\gnic) with (DO ro ..

(b) Assertion (d) of Lemma 24l now takes the following form:
(b-1) There exists a constant C > 0 depending only on (Voo Y, Bes @) such
that, for each (u, B) € K<t with 3 € [0, (v°°))
|Dy(a117a12)(paxa y)| < él‘l/2 fOT (pv'ray) € R? x (Q n D?)a

where r = min{g% (—1),ceq};

(b-2) Let o1 > 0 be from Proposition 332l For any § € (0,%), there
exists a constant Cs > 0 depending on (Veo,?y, Bx,0) such that, for
each (u,3) € K<t N {pB € (0, (vee) _ o1},

Dy (a1, a12)(p, z,y)| < Csz'/®  for (p,x,y) € R* x (AN DT ).

(c) Assertion (g) of Lemma 24l now takes the following form: suppose that
1 satisfies

(4.4.16) e < C'z,  |1hy| < C'2¥?  in QN DL

Eeq

for some constant C' > 0; then there exists a small constant e) € (0, 6%)
depending on (voo,7,C’) such that, whenever e from Definition EI9(iv)
with e < e ¢ =1 + ¢g satisfies

O?Od(¢x,¢y,$7y) = Oj(zbm,djy,@/},x,y,c[a) in N ng fOTj = 15 T a5'
(c-1) For Pg given by ([2.5.3), suppose that

€ .
TPy <150 b an Df/lo £ 0.
If ¢ satisfies
2- 5 : 0
‘wm|_ T+~ X ZnQﬁDs/lO’
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then, in Q1N ng,
NPZ)I;;(QS) = (21’ (7+1)wm+01)¢zz+02wmy+( +O3)wyy (1+O4)¢m+05wy

for O; = O;j(Yu, Yy, ¥, x,y,cp). Therefore, zf/\/&ogl)r(qﬁ) =0 holds in
aQn ng, then ¢ satisfies Eq. B12) in QN ’ng

(c-2) For B € (5s(v°°)75s(v°°) + 03], suppose that

l‘Pg Z ]._0’
which is equivalent to the case that QN DE/lO = (0. Then equation

Niog)r(qb) =0 coincides with Eq. 31.2) in QN ’ng.

(d) For all (u, B) €Kt with 8 > B(U“ , (@ij,a:)(p, -, ) and D]’;(aij,ai)(p, ),
k=1,2, are in CH*(QN ng). In particular, for each § € (0, %), there
exists a constant Cs > 0 depending only on (Veo,?,Bx,0) such that, if
(u, B) € Kt with B € [ﬂs(v‘”) + 9, ﬂs(U”) + %), then

Sup H(a”?al)(p7 7')”01 a(Qﬂ’DO ) S 057
peR

sup || D (aij, a:)(p,- Mere@rpey <Cs fork=1,2.
pER? eq
4. In this step, we define N, g) near I'Q . for (u, 8) € Kot with 8 > Bévm) +
%
LEMMA 4.26. For each (u, ) € Ko<, et gsh = ggﬁ P g= Fwp), ¢ = P,
and Q = Q(u, B) be defined by Definition 15, and let
(4.4.17) ¢ =P —pp

for par given by @5I). For any given o € (0,1), there erists a constant Cy > 0
depending only on (Veo,?, Bx,0) such that, for each (u,B) € K, there exists a
unction v[(,u”ﬁ) € C*(Q) satisfying the following two properties:

f ying g two prop

(a) 057 = $lln gy < 02 and 05" | pa < Co

(b) 5P depends continuously on (u,B) € Kt in the sense that, if
{(ur, Br)} C Kt converges to (u, ) in CH(Qiter) x [0,3,] for some
(u, B) € Kext, then

vgukﬁk) 0 Flun.pr) = vguyﬁ) o Fup) in CLa(Qiter)_

PROOF. For G defined by @L31), denote
w(s, ') = o (Gr) (s, t)

for (s,t') € GP(Q) = {(s,t)) : =1 <5< 1,0<t < g( ’B)( )}. For each small
constant € > 0, define a function w.(s,t") by

t/—l- €

~ S 2 M.

w5(87t/) ::w(]_—’—i’ 1+€2)
My
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for constants My > 1 and My > 1 to be determined later. Then w, is well defined
in the set:

A= {(s,t') sl < 1+

e e S g
- - < (1 s - .
M,"  2M, <t<(l+9)s h<1—|—6/M1) 2M2}

Using (i) and (iii) of Definition 19, and Remark F2T[(i), we choose constants
My, My, M3 > 1 depending only on (ve,?, 8«) such that the 17, “neighborhood
NMLS(gf(Q)) of GZ(Q) is contained in A..
Define
wels, ) 1= (e X )(5,t)  in GY(Q)

2M3

with xs(&) = 6%)((%), where x(-) is a standard mollifier: y € C§°(R?) is a nonneg-
ative function with supp(x) C B1(0) and [, x(§) d§€ = 1. Then we define

VO (g) i=w. 0GP (€) in Q.
For each o € (0,1), there exists a small constant ,(0) > 0 depending on (veo, 7,
Bx,0) such that o§P) = V;(*u(’f)) satisfies properties (a)—(b). O
Let ¢ € C*°(R) be a cut-off function satisfying that

1 fort<1
t) = ’ 0<¢<1 onR.
<) {O for t > 2, =5 = "

For a constant o > 0, denote

(4.4.18) o) = g(%).

Let o € (0,1) be a constant to be specified later. For each (u, 3) € K<, let
Uc(fif’ﬁ ) be the function given by Lemma For each 7,5 = 1,2, we define
(4.4.19)  AT™(p, &) = o (Ip — Dol (DAY (B, 0(€). €)

+ (1= o (Ip = DS (E)) AT (Du P (6), 6(8). €)
for AZ9tn(p, z,&) defined by ([£4.3).

LEMMA 4.27. There exist two small constants €2 > 0 and 5%1) > 0 depending
only on (vVeo,) such that, whenever € and 8, from Definition ELT9l satisfy

e < 5(2)7 61 < 651)7

there exist C' > 0 depending only on (Veo,v,Bx) and X € (0,1) depending only on
(Voo,7Y) s0 that, for each (u,B) € Ke<tN{p > BS(U“’) + %}, the associated coefficients
Ag’subs defined by [ELI) with oer = /01 satisfy the following properties:

(a) For all (p,€&) e R? x QN DS satisfying that |p — D$(€)| < @,

AP (p, &) = AP (p, 6(€),€),
so that

AT (D@(E), €) = AP(De(€), 6(€),8) i
(b) For all (p,&) € R? x nDg ,

A5 (0, £) = AGT(Do(E), €)] < OV
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(c) For each p € R2, DEAZ"™(p .} are in Ch(QnDe ) fork =0,1,2,

_ pitij
with
2

O,sub
> | DEAg™ s(p,)ncm(m_%) <
k=0 °

(d) Forall€ € QN D?q and p, k = (K1, ko) € R?,

>\|K/|2 < Z AOSubS /‘Eiﬂj <)\ 1|K/|2
,5=1

5. Let Xeq € C°°(R) be a function satisfying that

g < B 4 g,
ch(/B) - { i S(Uac) :3 ch(/B) < 0 on R
0 if ﬁ 2 ﬁs + X
For such a cut-off function x.q, we define
(4.4.20)
A (p ) - { X PAG@O +0 Xea () A5 ™ (0, €) = AT (p, &) for & <0,
’ AN (p,€) for & > 0

for Aé\j/ and A§] given by [@AT4) and (LAI5), respectively.
6. Finally, we combine [@ZA2) with [@IZL20) to complete the definition of

Nu,p)(¢) in @ZT).
DEFINITION 4.28. We define the following:

(i) For a parameter 7 € (0, 3], introduce a family of functions (z(s,¢;7) so
that

e (5(+,7) € C*(R?) for each T € (0, 1];
e 0,(2(s,t;7) =0 for each 7 € (0, 4] and (s,t) € R%;
1 for |s| < 1—7,
0 for [s| > 1— Z;
o (o(—s,t;7) =((s,t;7) for all s € R and 7 € (0, 3];
o — 10 <9,((s,t;7) <0 forall s >0and 7€ (0,3];
e [[&2(-, 5 7)|lcagrey is a continuous function of T € (0, 3].
(if) For S, € (0, (v‘” ), define a set Q3 C R3 x [0,%) as

2
Q3. = Usen,p.1Q" x {8}
for @ defined by Definition EI\ii).
For ¢ > 0 and j € [0, ], let € be given by ([LL38). For (§,5) € Qz_,
define a function CQ(E’B) :Qp, — Rby
(4.4.21) 677(€) = Ca(G7 (€):¢).
The C'-dependence of (sg,cg,up) on B € [0, %) yields the following lemma:

e For each 7 € (0, 2] Go(s, ty7) = {

LEMMA 4.29. Let 9 > 0 be from Lemma [£I6(c). For each € € (0, %), 2(6’[3)
satisfies the following properties:
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(a) Cz(s’ﬁ) : Qg — R is C* with respect to & € QP for B € [0,B.], and is
continuous with respect to B € [0, B.];

(b) There exists a constant C. > 0 depending only on (vso,?,€) such that

165 g gy < Cs

e 1 in Q(u, 8) \ D,
(€) & = {0 in Q(u, 8) N De .

Finally, we define coefficients A;;(p, &) for the nonlinear differential operator
Niu,p) given by (AT as follows:

(44.22) Ay(p.&) = G ©OAP O + (1- 7€) AT (p.€). Q=12
Hereafter, we continue to adjust eeq > 0 depending only on (veo, 7).

LEMMA 4.30. For each (u,B) € Kext, let coefficients A;j(p,€),i,j = 1,2, of

Nwpy in EZLT) be given by BA22). Then there exist constants ecq € (0,5),

Xo € (0,1), Neg > 1, and C > 0 with A\g depending only on (Voo,7); (NeqsEeq)
depending on (Voo,7, Bx), and C > 0 depending only on (Voo,?, Bx, ) such that the
following properties hold:

(a) For all £ € Q with Q = Q(u, ) and all p,k = (k1,K2) € R?,

2
Ao dist(€, TS e UTN IR < D7 Aij(p, ©)riry < Mgkl

i,j=1
(b) A12(p, &) = A12(p, &) holds in R? x Q, and each A;; satisfies

”Aij ||L°°(R2><Q) < Neqv

(c) For € =(&,6) € @\ D.,,, Ayj(p,&) = AL (€) and

1A <G

loa@p.y <
(d) For each p € R?,
[Aii (P, )l esa@ + |1 DpAij (P, )l L) < Neg;

(e) Foreachk =0,1,2, DEA;; € CV*(R*x (Q\I’gmcul’é\gmc)). Furthermore,
for each s € (0,%), DgAij satisfies

||DII§A2] Hcl o R2><(Q\./\/' (Fsczmmur,s,\(/)’nm))) S 08_5,
() For eachi,j=1,2, Aij(p,€) = A (p,€) holds for all (p,€) € R? x (2N
D );
€eq/27?

(g) If B < A=) + %, then Aij(p.&) = AQ(p,&) holds for all (p,€) € R? x

[@]
Decq/Z’
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(h) If B € [B) + 8, 8.] for 6 € (0,%), then Ay;(p,€) = A (p,€) holds for

all (p, &) € R? x (Qﬂng/Q), and

2
Ao (dist(&, T ) +0)[6]7 < > Aij(p, &)rir; < Ay |k
ij=1
for all kK = (K1, ko) € R?,
k _ )

sgﬂgz ”DpAij(p,‘,‘)Hcl,a(Wiq/z) é C fO?”]{?—O,l,Q,

(i) For each (u,B) € K¢, let ¢ = ¢“P) be defined by @EZLIT). Suppose
that ¢ from Definition EI9 satisfies that 0 < e < =*. Then equation
Nu,py (@) = 0 coincides with (BI2) in Q\('DSlOUDgw). In addition, if
Tp, > 15 or B> ﬂs(v“’) + % holds, then equation N, g)(¢) =0 coincides
with BIL2) in Q\ Dgw'

4.4.2. Definition of M, g)(p,2,§) in @E3IE). The definition is given in the
following five steps:

1. For px and ¢*" given by [2.5.0) and (B.413)), respectively, define
(4.4.23)
Mo(p, 2,€) := g™ (P + Do (€), 2 + par(£),€)  for p,§ €R? and z € R.

The nonlinear function Mg(p, z, €) is well defined on the set:
(P, 2, &) € Ban;(0) x (—4N5,4N5) x Bam,,, (0)

Anm, = . 9,01 -1 ) (£.p_ 122 _ Ponin
Mo . Pmax > pj\/ + (F)/ )(S P 2 Z) > 2
P — (0, —veo)| > &
for constants (1, N5, Pmin, Pmax) from properties (iv) and (vi) of Definition [19]
and Mgom from Remark 2Tl Since these constants are chosen depending only on

(Voo,7), for each k = 1,2, -, there exists a constant C; > 0 depending only on
(Voo, 7, k) to satisfy
(4.4.24) ||M0||C’€(A—MO) < Ck.
2. Similarly to (34.22), we define a function M, (p, z,&;1) by
(4.4.25) Mu(p,2,61) = Mo(p. 2, 6,6 — 5.

M is well defined in the set:
(p,Z,E) S B3N5(O) X (—3N573N5) X B3Mdom(0)

— 2 'y_—l
Amii=9 0 200t > okt + (v = D) (& +paléa — ) - Bl _2) > faw
|p - (Oa _Uoo)| > %
For each £ = 1,2,---, there exists a constant Cy > 0 depending only on
(Voo, 7, k) such that
(4.4.26) IMillox ) < Ch-

In particular, M; is homogeneous in the sense of

(4427) Ml(oaoagl) :07 Ml(D(SO(Q_QON)aSDO_@N,gl) =0
for all & € R.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



162 4. ITERATION SET

3. For (po, pn) given by (257]), denote
(4.4.28) DO = PO — PN

For a constant o > 0, let function ¢, be given by ([#ZI8). For a constant op,. > 0
to be determined later, we define

(4.4.29)
M(p. 2,€) =5, (|(P, 2))JM1(p, 2,&1)

+ (1= (P, 2)]) (%bc(l(p,Z) — (D¢o, ¢0(§)))Mi(p, z,&1)

+ (15 I(p, 2) = (Do, 60(€)) 1) Mo(p, 2, €))
for (p, 2,§) € Anm = Apm, N AM, -
For each (u,3) € Kt let go, = ggﬁ’ﬁ), S = Swp), Q= Qu,B), lshock =
Tsnock (4, B), and ¢ = ¢(*#) be defined by Definition Denote ¢ := ¢ — pu.
For a constant o > 0, we define

5(¢7 Fshock) = {(pazvs) € Rz x R x Rz P p= Dd)(é)a Rz = d)(é)a 5 € Fshock}

and

gﬂ(¢,rshock) = {(p,Z,ﬁ) € R2 x R x R2 :

dist(£,I‘sh0Ck) <o, }
Ip— Do(§)| <o,]z— () <o

LEMMA 4.31. There exists a constant dn. > 0 depending only on (Veo,v) such
that, whenever one € (0,0bc], there exists a constant Cy,, > 0 depending only on
(Voo, ¥, Obe) SO that

[Mllcaazg) < Coe-

Furthermore, for each (u, ) € Ko<t the following properties hold:
(@) Eope (9, Pshock) C A
(b) The map: B+ M is in C([0, Bs]; C*(Anm));
(¢) On Dspock, M(D, ¢,&) = Mo(Dg, ¢, &) and
OpM(D, &) = OpMo(D, $,8);
(d) ¢ satisfies
(4.4.30) M(Do,¢,€) =0 on Tsnock
if and only if ¢ satisfies (BAI12);
(e) M is homogeneous in the sense that
(4.4.31) M(0,0,€) =0, M(D(vo —¢n),p0 —¢n,§) =0
for all € € Bayy,,,. (0).

LEMMA 4.32. For constant Gy, from Lemma E3T], there exist constants oy €
(0,0be), Ebe > 0, and e > 0 depending only on (vs,7y) such that, if € from
Definition A9 satisfies that 0 < € < &y, then, for each (u, ) € K<t, M(p, z, &)
satisfies that, for all & € Tshock,

(4.4.32) Sne < DpM(D(E), (), €) - van(€) < 5,

where Vg, is the unit normal vector to Ushock towards the interior of Q.
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ProoOF. By Lemma 31)(c), it suffices to estimate DpMo(D¢,9,&) - ven to
prove ([£Z432). Following Definition 23] let £t and &2 be the &-coordinates of
points P; and Ps, respectively. By Definition LT9(i), Du(=£1,1) = 0, which implies
that D¢ = D¢ — Doy at €51 and €72, for ¢5 given by ([@Z4J). By (II145), we
have

po(l-M3)  forj=1,
N .

pn(1-(55)?) forj=2,

for Mo given by ([24.6). For each 3 € [0,75), Mo < 1 < po. Furthermore, it is

shown in (Z440)—-2443) that ddLg > 0 and dé\/éo < 0 for all g € (0,%). Then

there exists a constant 5](3? € (0,1) depending only on (v,,7) such that

DPMO(D¢(£Pj)7 ¢(£Pj)7 SPJ) * Ush (£Pj) =

. . . . . 1 .
58:) < inf  DpyMo(Dp(&57), p(€77), &%) - v (877) < e for j =1,2.
Be0,5">] Ope
By (@Z274), there exists a constant &, € (0,&0) depending only on (veo,7y) such

that, for each (u, 8) € Kext,

s 2
% S DpMO(D¢7 ¢7 5) : Vsh(&) S W fOI‘ au £ S I‘shock N Ds_bc-
bc

By Definition [LI9(v)—(vi), if € from Definition .19 satisfies that 0 < & < &,
then there exists a constant 51()22 > 0 depending only on (v, ) such that

2
DpMO(D¢7 ¢,§) -van(§) = p(l - 62(|D|ZQZ(§0£()£|2),| (,0(5))) > 58:)

for all & € Tshock \ Ds,,. /4. Then (#4372 is obtained from the previous two inequal-
ities.

A direct computation by using (EZL2H)) yields that, for all &€ = (£,&) €
BMdom (O)a

D.Mi(Déo(€). 60(8).61) = —poMo — (po — 1) 5P

Voo

_ —1
D.M;(0,0,6) = —p g - PX 2

Voo
Then there exists a constant 61()?;) > 0 depending only on (v,7y) such that
Inax {Dle(D¢O(£)7 ¢O(€)7 gl)a Dle(Oa 07 51)} S _51(3?;)
Be[0,65">]
for all & € T'ghock. By ([E4.26), there exists a constant oy, € (0,01 depending on
(Vso,7y) such that

(3)

)
(4.4.34) D M (p,2,&) < — ‘5

for all & € By, (0) and for all (p,z) satisfying that either |(p,z)| < ope or

|(p, 2) — (Do, p0(£))| < one. By @3II), EZZ3), and Definition EI9(vi), there

exists a constant 5,()? > 0 depending on (vso,7y) such that

DZMO(D¢(£)7 ¢(£)7 5) ==

1 4
2 Dy -van(§) < _51(92 on Tsnock \ (’Dgw U D?/lo)-
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By Definition EIX(i), p(| D, @) = po on TS, and p(|Dp|?, @) = par on T ..
Using Definition [19(i), we can further reduce &, > 0 depending only on (vee, 7y, Bx)
so that p(|De|?, ¢) > 15 min{po, par} > 0 on Tgpock N (Dé—{c UDE ). Therefore, if

e € (0,&nc), then we obtain

(4435) DzMO(D¢(€)a ¢(€)a é) ==

p,y,Q Dy - Vsh(g) < _61(;2) on I'shock

for a constant 5,()52 > 0 depending on (veo, 7).

Then (£433)) is obtained by combining inequalities (£.4.34)—(£.4.35). O

Hereafter, let opc > 0 in ([I429) be fixed as in Lemma 3321 This completes

the definition of M in ([@Z29).
4. For ¢p given by [EZLI), denote ¢ := ¢ — ¢ = ¢ — ¢}
Let the (z,y)-coordinates be defined by FZI8) and [B52) near TV . and
respectively. For &€ = ((car — ) cosy, (cxr — ) siny) near T,

ro o nies and for M

given by ([@429), we use (3A29) to define MV by
(4.4.36)

MN(qhQQa Z7x7y)

= M(—qicosy — 12 smyy —qy siny + w, z,(car — x) cosy, (exr — x) siny).
N — X CN — X
For £ = (uo — (co — x) cos(m — ¥), (co — x)sin(m — y)) near I'C . . we first
denote
MO(q,2,6) := M(q + Déo, 2 + ¢o.8),
and then define M© by
(4.4.37)
Mo(qh(Jz,Z,%y)
= MO(—qy cos(r—y) + EITY g ginr—y) - BT

cCo— T Co— X
up — (co — ) cos(m — y), (co — x) sin(m — y)).
LEMMA 4.33. Let constant o2 > 0 be from Lemma B36l. Following Definition
2.23], let (xp,,yp,;) be the (x,y)-coordinates of P; for j = 1,2. Let &, be from
Lemma E32. Then there exist epe € (0,8bc), Gbe > 0, and C > 0 depending only
on (Veo,7y) such that, for any B € [O,BS(U"") + 2] and all (q, z) satisfying that
the following properties hold:
(a) If0 <z —xp, <eépe, then
Dy M®(q z,2,y) <—C7' fori=1,2,  D.M°(qzm,y) <-CY
(b) If 0 < x — xp, < €be, then
inMN(qa 2, T, y) < _071 fOT‘ i= ]-7 23 DZMN(QL q2,2,T, y) < _Cil'
Proor. By [B:425) and [B5.I0), there exists a constant 6}, depending only

on (veo,y) such that, for each 5 € [O,B§U°°) + 2], if [(q, 2)| < &7, then M on the
right-hand side of ([£Z430) and ([{Z37) is the same as M; given by (@Z425H). A
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direct computation shows that there exists a constant C >0 depending only on
(Voo,y) such that, for each 8 € [0, Bs(v‘x’) + %],
in/\;lo(oa 0; mPlayP1) < _é_la DZMO(Ov 07 TP, yPl) < _é_l
inMN(OvovxPzasz) < _é_lv DzMN(O)O7xP2’yP2) < _CN’_l

for ¢ = 1,2. Then, by Lemma [£37] there exist constants 61 € (0,67,.] and C > 0
depending only on (vs,7y) such that properties (a) and (b) hold. O

5. The next step is to extend the definition of M in (LZ29) to all (p,z) €
R? x R.

For each (u, 3) € Ko and a constant o > 0, let v € C4(Q) (from Lemma
[£:26]) be given. For a constant o > 0 to be fixed later, we define a linear operator:

(4.4.39) £ (p, 2,€) = (DU("”B)(é) (P (), €)
+ DpM(Du(P (&), 057 (€),€) - p
+ D M(DulP) (€), 05 (€), €)=
Let ope > 0 be from Lemma By Lemma F26|(a), if 0% < ope, then E ush)

is well defined for all (p,z,&) € R?2 x R x Q. For a constant o € (0,01.) to be
determined later, depending only on (v, 7, B«), we define M, g)(p, 2,§) by

(4.4.40)
Mup) (P, 2,€) == e M(p, 2,€) + (1 — o) LD (p — DufP) (€), 2 — v{"P) (€), €)
for ¢, = ¢, (|(p, 2) — (Dv((yu”g)(é), o§wP) (£))]), where ¢, is defined by ([LZ4IT).

The following lemma is obtained by adjusting the proofs of [11l Lemmas 12.5.7
and 17.3.23] via use of Definition .19, Lemmas A.3THZ33] and (mgl)f(mm):

LEMMA 4.34. Let constants &,c and 5bc be from Lemmas [ and [E33], respec-
tively. Then there exist positive constants 51 , N 5bc, C, Cg*, and e € (0,enc)
with (55 ), Nl(1 ,0be, C) depending on (Voo, ), Em depending on (oo, 7, By), and Cg,
depending on (Voo, 7, Bx, &) such that, if parameters (g,01, N1) from Definition EI9]
satisfy that € € (0,&nc), 61 € (0,5%1)], and N1 > Nl(l), then, for each (u, ) € Ko<,
Mup) R2 x R x Q — R given by @EZA0) with o = /3, satisfies the following
properties:

(a) M p): R2xRx Q=R isin C® and, for all (p,z) € R x R,
[(Mu,5)(0,0,-), D oy M) (Py 2 Dllosmy < Cp. for k=1,2,3;
(b) For [p — Dé(€)| + |= — 6(€)| < ¥3*,
Mup)(p; 2, €) = M(p, 2,€)

for M defined by (E429);
(c) For all (p,z,&) € R? x R x Q,

1Dy M(u,3)(P: 2, ) = Dip oy M(D$(£), 6(£),€)| < C\/by;
(d) For all (p,z,&) € R? x R x Tgpock,

1
6bc < DpM(u,B) (PJG{) Vsh < a DzM(u,ﬁ)(pwzvf) < _5bc7
c
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where Vg, is the unit normal vector to Ugpock towards the interior of €;

(e) Representing as L5 (p—Dv 2 (€), 2= (22 (€),€) = BMY) | (p,2,€),

define
B (p,2,€) = bW (€)py + b5 (€)ps + bS (€)= + AW (€),
Then

IO B s oy < Cs. fori=0,1,2,

and, for all (p,z,€) € RZ xR x Q,
M (P26 = B (po2,€)] < CV6i (I — Do (€)] + 12 = o2 €))),
|D(p,z)M(u,6) (p, Z,é) D(p z)B\;—ﬁ)Féhock )‘ < C\/5—1,

(f) Mu,p) is homogeneous in the sense that

{M(u,ﬁ)(ovoag) =0,

Mu,p)(Doo(§), do(€),€) =0

for all & € Tgpock when B € |0, J‘i,—ll], and for all & € Igpock N De,, when
B € (R, B4

(g) Let the (x,y)-coordinates be defined by BAIS) and B52) near RN
and T respectively. For € € Ignocc N DN , define

sonic’ €be’

(4.4.41)
M(Nu76) (Q17 q2,%,T, y)

9 siny g2 co8y .
= My, p)(—q1 cosy— —q siny + , 2, (ear—x) cosy, (car—x) siny).
N — CN — T
For € € T'ghoek N ng , define

M(U,ﬂ) (p’ 275) = M(U,B) (p + D¢07 z + ¢Ou£)7

and
(4.4.42)
Ma’,@)(qh q2, 2,7, y)
sin(m — . cos(m —
= ME, (a1 cos(m — ) + ZIT=Y) 0 i — gy - 2T W)
cCo— T cCo— X

up — (co — x) cos(m — y), (co — x) sin(w — y)).

Then /\;l(f\qi 8) and /\;la 8) satisfy the following properties, provided that
Tshoek N bec 1§ nonempty:

AN 10 .

(g—l) ”M(uﬁ)”03(R2xRszhocmDé\gc)—’—”M(Uﬁ)HCS(szRszhocng}c) < Cﬁw
(g-2) For all |(q,2)| < %=,
M(Nuyﬁ)(quaxay) = MN(CLZE%?J) mn 1—‘shock mDé\t/:ca

Maﬁﬁ)(q,zaxay) :Mo(q,zaxay) n ]-—‘shockml)g)C
for MY and MO defined by EZ30) and @EA3T), respectively;
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(g-3) For each (q,z) € R? xR and i = 1,2,
inM(Nuﬁ)(Q7 zZ, T, y) < _6b07 DZM(Nuﬁ)(Q7 Z, T, y) < =0 1M Dshock N DgMa

in/\%aﬂ)(q,z,x,y) < —dbe, DZM%/B)(q,z,x,y) < —dbe in Tghock N DE/\/l
provided that Tshock N D?M is nonempty;
(h) M) (D¢, $,8) = 0 on Dsnoe if and only if ¢ = ¢ + o satisfies the
Rankine-Hugoniot jump condition BZI2) on Tspock = {@ = @oo}-
By (@222) and [@LZA0), the definition of the nonlinear boundary value problem
({310)) is completed.

4.4.3. Well-posedness of the boundary value problem [@3.T6]).

LEMMA 4.35. Fiz v > 1, voo > 0, and B € (0, ((iv‘”)). Let eg > 0 be fmm
Lemma EI0(c) with 8 replaced by B.. Let constant oo > 0 be from Lemma
Moreover, let & € (0, 3] be from Proposition 4 with 3 replaced by B, and let

a € (0,9] be from Definition LI Then there ezist constants ™) € (0, &), (5§
(0,1), Nl(w) > 1, and o € (0,a] depending only on (veo,”, Bx) such that, whenever
parameters (g,91, N1) from Definition satisfy that e € (0,e™)], 6, € (0,5%‘”)},
and Ny > Nl(w), the following properties hold:

Casel. If p < BS(U“) + 09, then the boundary value problem [E310)) associated
with (u, B) € Kt N {8 < BS(U“) + 09} has a unique solution

peC?()NC' @\ T2 . UTN NNC’Q)  for Q= Q(u,p).

sonic sonic

Moreover, there exists a constant C > 0 depending only on (vso, 7, Bs, ) such that
solution ¢ satisfies

(4443) ||QAS||L°°(Q) < Ca |¢§(£) ( )| < CdlSt(€ 1_‘somc U F's/\c{nlc) in

for ¢% = max{yo, pn} — @n. Furthermore, for each d € (0,e¢), there exists a
constant Cy > 0 depending only on (Veo, 7, Bx, d, c) such that

(4.4.44) 16ll2,0: 204 < Ca-

Case 2. For each § € (0,%), if ﬂs(v“’) + 6 < B < By, then the boundary value
problem [{3I6) associated with (u, B) € Kt has a unique solution

deC’()NC @\ (T2, UTN NNC’Q)  for Q= Q(u,B),

sonic sonic

and the solution satisfies [LAA3)-([EZLA4) for constants C > 0 depending only on
(Voos Y5 Bx, 8) and Cq > 0 depending only on (veo,?, Bx, 0, d, &).

PRrROOF. Fix (u,3) € K<t N {B < piv=) 4 o3}. Using G defined by @L31),
we rewrite the boundary value problem (316) associated with fixed (u,f) in
domain R = gf (Q(u, B)). Then we follow the argument of Step 1 in the proof of

[11], Proposition 17.4.2], by using Lemmas [£.2] 5] B24H226] and 4.34] to choose

constants e(") € (0, e0], (5§W) € (0,1), and Nl(w) > 1 such that, whenever parameters
(¢,61, N1) from Definition BT satisfy that e € (0,(")], §; € (0,(5§W)], and Ny >
Nl(w), the newly written boundary value problem in R satisfies all the conditions
of Proposition Then the existence and uniqueness of solution (;AS of problem

@3T8) satistying (4.43) (@444 directly follows from Proposition [C.1H]
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In the case of 5§”°° +6 < B < B, for § € (0, %), we follow the argument of Step
2 in the proof of [11] Proposition 17.4.2] by using Lemmaand Proposition [C.16]
to prove that the boundary value problem ([{3.T6]) associated with (u, ) € ICe"t

has a unique solution ¢ that satisfies (LZ.43)—(@Z4d). O

For each (u,3) € K, the corresponding pseudo-subsonic region Q = Q(u, )
depends continuously on (u, 8). For later discussions, it is useful to rewrite (£3.16))
as a boundary value problem for
(4.4.45) i(s,t) = (b + on — ©5) 0 Fru) (5,1) in Q"
for map § = §(u,p) defined by Definition AI5(ii), where @} is given by ET12).

Substitute expression ¢ = @ o (§up5) " — (pa — @) into (E3.16) and then
rewrite ({310) in terms of @ to obtain

(4 4.46)

2
Z AP (Da, s, oiga+ Y AP (Da,s, 0o = f0) i QT = (—1,1) x (0,1),
i,7=1 =1

0 ondmQ"™ :=(-1,1) x {1},
0 on ds0Q" :={—1,1} x (0,1),
=0  on 8yQ :=(-1,1) x {0},

My, (DG, G,

5) =

By (D, ) i= b (s)0ra + b5 (5)0

where (81,82) = (03, 0,5)
Since - — %% =0 when B =0, we have

(4.4.47) fh) =90 if 8=0,

(4.4.48) M,0)(0,0,5) =0 on Oy, Q€T

where ([LZA]) follows from Lemma A34(f).
From Lemmas [4.16] 430 and [£34H4.33] the following lemma is obtained:
LEMMA 4.36. For each (u,8) € Kext, let Ag;’ﬁ), Az(»u”g), fh), Mu,p) %Ex)ﬁ),

and bg“(fl g be as those in @AZI6)). Then the following properties hold:

(a) ALY, A € C(R? x Qiter), fuP) € C(QMT), My p) € C(R? X R x
0n Q) and B(2 ) € C(R? x R x 0, Qr);

(b) Suppose that a sequence {(uk, Bi)}3>, C K=t converges to (u, 8) € Kt
n C’2 @ (Qitr) x [0, Bi] as k — co. Then the following properties hold:

(*,001)
- (Aﬁ;"“ﬁ”,AE“W“) — (AZ(;L”B),AEH”B)) uniformly on compact subsets
Of R2 % Qiter;
— flunBe) 5 £B) yniformly on compact subsets of Qe;
= My, p) = M (u,p) uniformly on compact subsets of R? xR x O, Qiter:

%(W)

(uk,Bk)

From Lemmas .16 and E.35H4.30], we obtain the following corollary:

9387)[3) uniformly on compact subsets of R? x Oy Q.

COROLLARY 4.37. Let constants €™, (5§W), and Nl(W be from Lemma [
Let parameters €,81, and Ny from Deﬁmtwn 0 satisfy that € € (0,e™)], §; €
0,6), and Ny > N,
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(a) For each (u, ) € K¢, ¢ solves the boundary value problem @E3I0) if

and only if 4 given by [EAAR) solves the boundary value problem ([{LAAG]).
Thus, [@ZAA6) has a unique solution

= 02(Qiter) ) Cl(giter \ asogiter) N C(Qiter)_

Furthermore, there exists a constant C > 1 depending on (vso,7, Bx, @)
such that

la(s,t)] < C(1—1s|) in Qiter,
For each d € (0, %), there exists C; depending on (voo,fy,ﬁ*,cf, a) such
that
[l 0z giter (115 >dp < Ca»
where constant o € (0,a) is from Lemma 35

(b) For each (uy, Bi) € K<, let iy, be the solution of the boundary value prob-
lem ([EZA0) associated with (uy,Bk). Suppose that sequence {(ug,Bk)}
converges to (u, 3) € Kt in C1(Qiter) x [0, B.]. Then there exists a unique
solution 4 € C?(Qitr) N C(Qiter \ 9, Qiter) N C(Qiter) to the boundary
value problem ([@IZAAG) associated with (u, ). Moreover, iy, converges to
4 in the following senses:

— uniformly in Qiter,
— in CY'(K) for any compact subset K C Qiter \ d,, Qi and any
o €[0,a7),
— in C**'(K) for any compact subset K C Q" and any o’ € [0, a}).
(c) If (u,B) € K, then (u,B) satisfies property (vii) of Definition EIQ with
nonstrict inequality in [{E3I]]).

REMARK 4.38. For a constant M > 0, define a set KF, by

) (*,01) <M
KE — , e CQ,Oc iter % 0, AR ||u||27a)giter =~ ) ]
{(u #) (o) (@77) (0,84 (u, B) satisfy Definition [LT9|(ii)—(vi)

Let @ be the closure of K¥ in C** 1)(Qiter) x [0, 8+]. Then Lemma and

(500

Corollary FL37 still hold when K¢t is replaced by K%, for some constant M > 0.

4.5. Properties of the Iteration Set K

4.5.1. Admissible solutions. As stated in Definition £19] parameter «
for the iteration set K will be chosen in (0, §], where & € (0, 1) is the constant in
Proposition 4.12]

LEMMA 4.39. Given v > 1 and vy > 0, fix By € (0, éU“)]. Take a sequence
{Bi}321 C (0, B.] such that B; converges to 0 as j — oo. For each j € N, let o)
be an admissible solution corresponding to (veo, B;). Let u9) be defined by [EILH0)
corresponding to (¢;, B;). Then there exists a subsequence of {u\9)} converging in
C(Q,a (Qiter) to ymorm) = .

*,001)
PROOF. By Proposition @I2land (@3.1)), sequence {u)} is uniformly bounded

in C(fo;(Qiter). Since C(Qflo; (Qiter) is compactly embedded into C(Qfm) (Q'ter), there
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exists a subsequence (still denoted as) {u(j)} such that the subsequence converges
in C>* (QM*r) to a function u(>) € C>*  (Qiter),

(*,01) (*,001)
By (@447), Lemma [A36] Corollary 437 and Remark 38 we see that u =

u(*) is the solution of the nonlinear boundary value problem:
2 2
> A (Dus dyu+ YA (Du,s )ou =0 in Q"
i,j=1 i=1
(4.5.1) M (u,0)(Du,u,s) =0 on Oy, Q1T
u=0 on Oy, Q1"

ﬂ((:z)o) (DU, 5) = bgw)(s)alu + béw) (5)62u =0 on 6W Qitcr'

Owing to (£448), v = 0 is the solution of the boundary value problem ([@351]). Then
u(®) = 0 in Q" by the uniqueness of solutions. In other words, u(°) = y®orm) in
Qiter. O

COROLLARY 4.40. Let constants €™ J(W), and N(W) be from Lemma [
and let parameters (¢,0,) in Definition BI9 be fized from (0,™)] x (0, 5§W . For
each admissible solution ¢ corresponding to (Voo, ) € Ryeax N {0 < B < Bi}
in the sense of Definition 224, let a function u = u¥?) be given by [EIL5D).
Let Ny be the pammeter in Definition EI9l For each 61 € (0,0 W)} there exists a
constant Nl(a) € [Nl( o0) depending only on (Veo, 7, By, 01) such that, if Ny > N( ),
then (u¥#),B) € K for each admissible solution ¢ corresponding to (voo,ﬁ)
9ﬁiweak N {O < [3 < B*}

PRrROOF. For a fixed admissible solution ¢ corresponding to (veo, ) € Ryeax N
{0 < B < B}, let u = ul#P) be given by @IL50). For simplicity of notation, denote
u as u®?) in this proof.

By the choice of constants N; (i = 2,3,4,5), p; (j = 0,1), fi, 01, ¢, and C in
Definition 19] (u, 3) satisfy properties (ii)—(vi) of Definition

By the choice of constant Ny in Definition ET9|(i), u satisfies

llu — (morm) ||2*0719),mr < Ny

for any admissible solution ¢ corresponding to (Veo,8) € Rweak N {0 < B < Bi}.
Lemma implies that, for any given constant §; € (0, 6§W)], a constant N; (2) ¢
[N(W) ) can be chosen depending only on (ves,?, Bx,d1) such that, Whenever
B €0, (a)] u satisfies
(norm)H(*val)A ﬁ

Q’Q’Qlter 2
Therefore, if N7 > Nl(a), then any (u, ) given by (EI50) for an admissible solu-
tion ¢ corresponding to (veo, 8) € Ryweak N {0 < B < .} satisfies property (i) of
Definition ET91 This implies that (u,3) € K®*. Therefore, Lemmas [£.24] F27]
E30, and B34 apply to the nonlinear differential operators (N, gy, M(y,5)). Then,
by Propositions 330, [3:32, and B39, and Corollary E.37, we conclude that u is
the unique solution of the boundary value problem (£4.46]) associated with (u, 3).
That is, 4 = u in Q*", for 4 is given by ([E3.IT7). Thus, (u, ) satisfies property
(vii) of Definition LTIl

| —u

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



4.5. PROPERTIES OF THE ITERATION SET K 171

Therefore, we conclude that (u(##), 3) € K for any admissible solution ¢ cor-
responding to (veo, 8) € Ryweak N {0 < B < B, } in the sense of Definition O

4.5.2. Openness of K. Let ¢, 61, d2, 3, and N; be the parameters from
Definition In this chapter, we further adjust parameters (e, d1), then choose
03 > 0 small, depending only on (e,d1) such that Definition determines a
relatively open subset of C** (moot )(Qiter) x [0, B

LEMMA 4.41. For each ,8* (0, (v‘x’)) the function set K¢ given by Definition
is relatively open in C(* al)(Qlter) [0, 8.].

PrROOF. For each j = 1,2, 3, function J%;(83) of 8 in Definition L.19]is continu-
ous for 3 € [0, B.]. Since o defined in ([Z4.J)) depends continuously on § € [0, 3),
and ¢ = max{po, px} and ¢} defined in [@I42) also depend continuously on

B € [0,%). Moreover, sz and Lg defined in (EI129) and @I30), respectively,
depend continuously on 3 € [0, ). Furthermore, for each 3 € [0, 5],

sup (Yoo — ¢5) — Inf (oo —5) >0 for all s* € [sg, cnr],
e A 5) 55 ]
where Q7 (s*) is defined in ({Z1)).
By Lemma [£.16] and the observations stated above, the set determined by con-
ditions (i)—(vi) of Definition T9lis relatively open in C(* ) (Qiter) x [0, B,], because

C’ - Oél)(Qlter) is compactly embedded in C(Qiter); for further details, we refer to
the proofs of [11I, Lemmas 12.8.1 and 17.5.1]. O

LEMMA 4.42. Let E(W),égw),le), and o € (0,a) be from Lemma E35. Let
g0 > 0 be from Lemma BI6(c). Then there exists ) € (0,e™)] depending only on
(Voo, Y, Bx) such that, whenever parameters (e,61, N1) in Definition are from
(0,e(P)] x (O,ng)] X [Nl(w),oo), there is 63 > 0 depending only on (veo,7, Bx, 01,
02, N1) for da from Definition INiv) so that, if parameter 63 in Definition [ZT9(vii)
satisfies that 83 € (0, 03], then the following properties hold: For each (uf, %) € K,
a constant 6* > 0 can be chosen depending only on (voo,'y,ﬁ*,uﬁ,ﬁﬁ) such that
solution ¢ of the boundary value problem EZI0) associated with (u,8) satisfies

(4.5.2) o—(ph—pn)>0  inQ
for Q = Q(u, B), provided that (u, 3) € Kt satisfies
(453) ”uﬁ - U”cl(ﬁ) + ‘/Bu - /8| < éﬁ-
PROOF. We consider two cases separately: (i) 8% € [%,B*] and (i) ¥ €
1
0, 541-
1. Suppose that 3* € [?\‘f;, B.]. By @33) in Definition ETX(iv), u satisfies
516 — g
ﬁ 192 1 iter 1— >
> — N7 in Qiter 0 { |s|710}
for £ = —25__ If §5 > 0 satisfies
CN SBu
o1
454 03 < —=0
( ) 3 = 2N12 2,
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then it follows from E3IR) that @ := (¢! + op — ©ge) © F(us pr) satisfies

5 - .
(4.5.5) @t > ﬁ(sg in Qffer N {1 — |s| > f—o}
2e
— st )
([@E3.16)) associated with (uf, 8*).

Note that @* is the solution of ([@Z46)) determined by (u¥, 5*). Then, by Corol-
lary EE37) there exists a constant 6* > 0 small, depending on (vso,7, Bx, 03, uf, 5%),
such that, if (u, ) € Ko< satisfies (@5.3)), then [@5.5) implies that @ given by

[{317) satisfies

01 —_— g
4.5.6 U > ——=0 i werN {1 —|s| > —1}.
( ) u>4N122 in Q { \s\_lo

For a constant 7 > 0, denote D, := DN UD? for DN and DC defined by [E12).
By Proposition BI6(c), §,' ) (D:/10) = Q" N {1l — s < {5}. Thus, @5.6) implies

for € = o provided that (ﬁﬁ is the solution of the boundary value problem

(4.5.7) 6= (p5—pn) =0F 5 >0  inQ\ Do
Define

(4.5.8) bi=¢—(ph—pn)  InQND.p.

By ({1.45), we have

R b — —pn) InQNDY,,
(4.5.9) g ¢ oo /2
in QN D?;Q,

-

provided that the condition:
9¢
(4.5.10) e< @

k
holds for k > 1 from (EI1.45).
By @EI), 9o — ¢ is a linear function depending only on ;. Since ¢ is a
solution of the boundary value problem (£3.10) associated with (u, 3), ¥ satisfies
2

Laup (@)=Y Aij(D$,€)0ee, 0 =0  inQND,,

ij=1
1& =0 on 'Y

sonic»

9,0 =0 on I'yeage N ODY)y,
where (A;;(D,€))? ;_, is given by @Z22). By LemmaE30(g)-(h), L(us) (1) =0
is strictly elliptic in D?/Q. By Lemma [HB34(f), the boundary condition
./\/l(u,ﬁ)(DqAS, b, &) =0 on Fgpock N 6@22 is equivalent to

M(u,ﬁ)(Déa éa 5) - M(u,ﬁ)(D(QOO - ‘PN), PO — PN, €) =0 on Fshock N 81)32

By Lemmal[£.34{(d), the boundary condition stated immediately above can be rewrit-
ten as A A

B-Vi—puyp=0 on Cgpock N 6@32,
where 3 and p satisfy

5bc < /3 * Ush < 61;;17 M > 6bc on I1shock N 81)?/2
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for constant dp. > 0 from Lemma [£.34(d) and the unit normal vector vg, to I'shock
towards the interior of ).

By @357, the strong maximum principle, and Hopf’s lemma, we obtain that
1& > 01in D?/Q, which implies that

(4.5.11) >0 mgmwwe1<s<—1+§L

provided that condition (Z5I0) holds.

By using (£59), Lemma [£30(a), and properties (d) and (f) of Lemma [34] it
can be similarly checked that

(4.5.12) >0 mQMWH1—§<s<H.

From @5.6) and E5I1)-#EI2), we obtain that @ > 0 in Q*", provided that
8% > 0 is chosen sufficiently small and ¢ satisfies (E5.10). This proves [@5.2) for
B' € 3, Bs].

2. Suppose that 8¢ € [0, %} Choose 6% € (0, %) so that ({53) implies that
B €0, I‘i,—ll) By Lemma E34(d), the maximum principle applies to solution ¢ of the
boundary value problem ({316l associated with (u, 5) € Kext satisfying (£.5.3]) so
that

(4.5.13) $>0 inQ.

For (po,@n) given by [Z51]), denote ¢g := po —@ar. Since ¢g is a linear function
of £, ¢ — ¢ satisfies

Ny (@ — d5) = Nwg) () =0 inQ

for the second-order differential operator ([Z1)). From properties (d) and (f) of

Lemma E34] it follows that M(u’ﬁ)(Dcﬁ,é,ﬁ) — Mup)(Dogs, ¢p,§) = 0 for all
& € I'shock- This condition can be written as

b'Dﬁ(dA)_(b,B)_FbO(d;_(bﬁ) =0 on FShOCk?

where b and by satisfy that b - vy, > 0 and by < 0 on I'gpoex for the unit normal
vector Vgp to gnock towards the interior of 2. Then the comparison principle implies
that (;AS > ¢g in Q. Furthermore, (Z) =0 > ¢ on I‘é\gnic. By the strong maximum
principle, we conclude that

(4.5.14) b>ds i

Then (£5.2) is obtained from (AL5TI3)-E514), because max{0,ds} > ¢ — on
holds in €. O

LEMMA 4.43 (Estimate of ¢ away from I' ). Let g > 0 be from Lemma

sonic

EI0(c). Let e, 6 N™ and ot € (0,a] be from Lemma B35 Let e and
3 be from Lemma E42. For a constant r > 0, let DS be defined by @ILZ). Then
there exist eP2) € (0,e(P)] depending only on (ves, 7, Bx) and C > 0 depending only
on (Voo, 7, Bs, @) such that, whenever parameters (g,91, N1) in Definition EI9 are
from (0,e1)] x (0, 5§W)] X [Nl(w), o), and 63 € (0,d3], then the following properties

hold: For each (uf,B*) € K, a constant 6* > 0 can be chosen depending only
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on (Voo, 7, Be, ut, BY) so that, if (u,B) € K satisfies [E5.3), solution b of the
boundary value problem [@3T6) associated with (u,B) satisfies the estimate:

211(2),(par)
(4.5.15) 191507 0000 <€

for Q = Q(u, B), where norm || - ||223K (pS?D@ is defined by Definition 325
10

PROOF. The proof is divided into two steps.

1. Claim: There exists a constant C > 0 depending only on (veo,?, Bx) such
that, for each (u,8) € K, ¢ satisfies

(4.5.16) g{ﬁ(x, y) < Ca? in QN D?g

in the (x,y)—coordinates defined by [B.4IS).
For the (z,y)—coordinates defined by ([B.4I8]), denote

A,
v(z,y) = 2%
for a constant A > 2 —+1 to be determined, where 4 is from Definition E.I9(iv-1).
_ o
For the elliptic cut-off (i defined by @.4.4)), (1(%=) = 27 . By Lemma [£.24] and

#Z22), equation /\/'(ug)(qg) = 0 is rewritten in the (z,y)—coordinates as

Nup @) =0 manD,

for the nonlinear differential operator N pOIar given by [@4I2), where e.q € (0, %)
is from Lemma B2

By (%) = 2 ﬁ and ([@ZIY), we have
OinOd

NP (v ):Ax( -5+

with Oed = O (v,, 0, z,y) for j = 1,4. It follows from LTI that
|Om°d‘

+ Omod) ln Q ﬂ D.ﬁ/'\fq/27

+loped| < cva

for C >0 depending only on (voo,v) Therefore, there exists £ € (0,5 min{eo, €eq, Enc})
depending only on (vs,7y) such that
NP () < Az — (1 - —)+cf)
Ax olar : N
<—7(1—E) N(I;B ((]5) lHQﬁDg.
Note that 0 < po < 1 by Definition @I9(iv-1) and Lemma 328
On Tgpoa (1, 8) N DY, properties (f)—(g) of Lemma A3 imply that
Mup)(Dv,v,§) = My ) (Dv,v,€) = M(u,5)(0,0,€)
A I
< _6bc(Ax + 53’2) <0= M(u,ﬁ)(D¢7 ¢7£)

for constant op. > 0 from Lemma[Z.34{(g). On chdgcﬂ@, O, v = Oyv = 0 = On, (;AS
OnIV  v=0= ¢

sonic’
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By (EZ4.43) and Remark E2(ii), there exists a constant C' > 0 depending only
on (Vso,7, Bx) such that ¢ satisfies
(4.5.17) d(x,y) < Cx on QN Dé\g.

2c 2-48

Choose A = max{=, e

} so that v satisfies

b <w on QN {x = ¢}

By Lemmas and €34l and the comparison principle, we have
(4.5.18) p<v inQnDY.

In order to extend this result onto QN Dﬁ({ , we adjust the choice of A as

20 20 90
A:maX{TC; 10, (3&-0}3
E 1+~ &2

so that, from (£5.17),
- A A
(4.5.19) bz, y) < Cep < 552 < wv(z,y) in QN (DY \DY).

Combining (£5.I8) with [@519), we obtain [@5.10) with C = A for A given above
before [@519).

2. By Definition T9(iii) and Remark 2T](ii), there exists a constant [ > 0
depending only on (7, v ) such that
(4.5.20) Fasn(z) >1 on [0, &o].

By Remark [L211(ii), f/\f «h satisfies the estimate:
(4.5.21) 1w snlls oS <l favolles o.c0p) + CNo.

By @LT6), E520)-E521), Lemmas and E33HA34 the boundary value
problem ([A3.10) associated with (u, 8) € K&t satisfying (£5.3]) meets all the con-
dltlons of Theorem [C.TTl Therefore, we conclude from Theorem [C11] that, for each

€ (0,1), there exists a constant C,s > 0 depending only on (voo,’y,ﬁ*, «’) such
that gi; satisfies

(2 ar
(4.5.22) 16152 s < Cn-
Finally, ({518) is obtained by combining estimate (£5.22]) with Lemma L35

O

As pointed out earlier, TS . defined in Definition 223 depends continuously on
B € 10,%). Therefore, the pseudo-subsonic region Q(u, 3) associated with (u, 3) €
K<t depends continuously on (u,3). In particular, Q(u, ) N Dg changes from
a rectangular domain to a triangular domain as (8 increases from [ < B(UC”) to
g > Bs(v‘”). Furthermore, the ellipticity of equation N, g (QAS) 0 near I'9 ..
changes as 3 varies. For that reason, the a priori estimate of a solution ng of the
boundary value problem (@316 is given for the three cases separately:

(i) B < B);
(ii) g > ﬂbv*) close to B(UC"’

(iii) B > ﬁs away from Ss

'Uoc)-
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LEMMA 4.44 (Estimates of g near I Let ) be from Lemma B3l There
exist €9 € (O,E(I’ar)] and 5§ ) depending only on (veo,?,Bsx) such that, whenever
parameters (e,0d1,0s3, N1) in Definition are chosen as in Lemma E43], and
(e,61) further satisfy

SOHIC)

0<e<e®, 0<6 <o,

then, for each (uf,B%) € K, there is a constant 6* depending on (Voo,, B, 02, 63,
uf, BY) so that, if (u, 3) € K™ satisfies [E5.3), then the following properties hold:

(i) If B € 0, S(U“)), for each o € (0,1), there exist constants &, € (0,0
and Cy > 0 depending only on (Veo,?, Bx, ') such that solution =
C?(Q) N CL(Q) of the boundary value problem [E3I0) associated with
(u, B) satisfies

n 2 ar
16 — (o — el ;,“;mo < Cu;

(voo)

(ii) There exists a constant be (0,8« — Bs =’) depending only on (Veo,?y, Bx)
such that, if B € [Bs (vo) glvoe) 4 8], then, for each o/ € (0,1), there exist
constants é, € (0,eg] dependmg on (Voo,7, Bx) and Cqr > 0 depending
only on (Veo,, Bx, @) so that ¢ satisfies

||§£ - (QOO - QON)HC?,Q’(QQD?IJ) S Ca/,
Dm(qg—@O'F@N)(PB):O form =0,1,2,
where Pg is defined in Definition 223}

(iii) There exist constants & € (0, %) depending only on (voo,’y B«) and C >0
depending only on (veo, v, Bx) S0 that, if B € [Bs (vec) —1—5, Bal, then ¢ satisfies

(4.5.23) 16— (o — ex)llsaarms <O,
(4.5.24) D™(¢p— o +onN)(P3)=0  form=0,1.

PRrOOF. We divide the proof into two steps.

1. Assertion (i): Owing to Remark B3T]l we need to consider two cases sepa-
rately: (i) 8 < 65(%") away from BS =) and (ii) 8 < ,B(U“ close to B(U”)

By Lemma [L2(e), (@I26), (I3, Proposition 46l and Definition AT9(iii),
there exist £ € (0,®*)] and &, € (0, B(lo )) so that, for any (u, 8) € K¢, it holds

that, if o € (0,51], then we can fix /i > 1 depending only on (veo,y,0) and k>1
depending only on (v,7y) such that

(a) if0<pB < ﬁév"") — 5, then

(4.5.25) O c{0<z<2,0<y<2iml;

(b) if B — o < B < 5<”°° then
(4.5.26)
{0<x<2é,0<y<ypl+%}c9m@§;c{o<x<25,o<y<yﬂ+21%x}.
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For a fixed o € (0,61], suppose that 0 < g < ﬁi”x) — Z. Let ¥ be given by
(#E58). By Lemma [£42] we have

(4.5.27) b >0  inQNDY,,

provided that (u,3) € Kot satisfies (4.5.2) for 6* > 0 from Lemma 4.42.
Owing to (EI745), if condition (Z5.I0) holds, then we can repeat Step 1 in the
proof of Lemma [£.43] to obtain

(4.5.28) Uz, y) < Ca? in N Dg for &g := min{ey, %9}

for C > 0 depending only on (veo,?, fx), where the (z,y)—coordinates are given
by B5.2), and ép and k are given by Definition 1] and ([@I45), respectively.
Repeating Step 2 in the proof of Lemma 43 with ([E5.27)-(@5.28) and f@,sh given
by (£3.20), and using (£5.25)), we can show that, for each o’ € (0, 1), there exists
a constant Cs > 0 depending only on (ve, 7, B, @) such that

n 2),(par (2 ar
16~ (0 — )0 trmpe = 9152 e < Car

('UDO)

Next, suppose that (s

two estimates: (i) in QN {z < y3, } and (i) in QN {z > 2 -} near T ..
In QN {z <y, }, we repeat the argument of Step 2 in the proof of Lemma (.43
to obtain

—o0 < B< B (v=<) 1p this case, we need to combine

6 — (soo—mnmfgfggo = Il e, < Car

P1 ypl
for each o/ € (0, 1) where C\, > 0 is given, depending only on (v, 7, By, ).
In QN {z > yP } near T'Y ., we adjust the argument in Step 2 in the proof
of Proposition B:32] to show that there exist sufficiently small constants & € (0, 01]
and e* € (0,20] N (0,®)] depending only on (vee, 7y, Bx) so that 1 satisfies

Oz, y) < Cxt inQNDE N{z> ypl}

for C > 0 depending only on (veo,?y,B«). For fo,sh defined by (4.3.20) and 2y =
2

(w0,0) € 2NDE N{x > y%}, we define F(*0)(S) by (3.5.39) given in the proof of
Proposition 3.32. By Remark 4.21(i)—(ii), F*0) satisfies

1F0)| 2(—1,17) < CNoy/To

for C' > 0 depending only on (vs,7, ). Then we apply Theorem C.6 and adjust
the later part of Step 4 in the proof of Proposition 3.32 to conclude that

n 2 T 2),(par
16— (po — e IShompe. = 1152 rpe, < Car

for each o/ € (0,1), where Cy > 0 is given, depending only on (vs,?, Bx,a’),
provided that o € (0,5].

The proof of assertion (i) is completed.

2. Assertions (ii) and (iii): Assertion (ii) can be proved in a way similar to
Proposition B39 Estimate [@5.23) in assertion (iii) directly follows from Proposi-
tion )

For 8 > s + %, (EZ43) implies that

(4.5.29) (¢~ ¢0)(Ps) =0
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for po = o — ¢ By Lemma [£34(f) and (£5.29), b satisfies
1
| My (tD9+ (1= D60, 6+ (1= 1)60.€) dt- Do~ ) =0 at €= P
0

By (E4.23), @A), (@A), and Lemma L34

|8P1M(u,5) (p’ Z7PB) - aplgSh(DWO(Pﬂ)v @O(Pﬁ)’ Pﬂ)| < C1\/(571

for some C > 0 depending only on (vs,?,B«). This inequality, combined with
Lemma [337] implies that, if §; > 0 is chosen small, depending only on (veo, 7, Bx),
then the boundary conditions: M, g)(D¢,#,§) = 0 on I'yoek and ¢g, = 0 on
I'yedge are functionally independent at Pg so that
D(¢ — ¢o)(Pp) = 0.
In proving assertions (i)—(iii), all the required properties of N, gy and M, g
are provided by Lemmas .25 .27 £.30] and O

COROLLARY 4.45. In Definition 19|, choose parameters (a,e,01,93, N1) as
follows:

(i) For a, af, and & from Proposition [12] Lemma 35 and Lemma 44]
respectively, choose
o= %min{éz,a*{, alt;
(ii) Choose (g,01,N1) to satisfy
(,81,N1) € (0,°] x (0,8™] x [N, 00)
for Nla) € [le),oo) from Corollary LA0
(iii) For (61, N1) € (0,68] x [N, 00), denote & := 2N2 82, where d3 > 0 is a
parameter to be determined later. Choose 03 to satzsfy
53 € (0, 83].

Under the choices of parameters (a, €, 01,93, N1) above, there exists a constant C >
0 depending only on (Veo,7, Bx) such that, for each (u,B) € K, denoting the
unique solution of the boundary value problem (E3I6) associated with (u,B) by

b e C2(Qu, B)) N CHQ(u, B)) and deﬁm’ng @: Qiter R by @3ID), then

(4.5.30) ||u||2 sa,giter < C.

PROOF. By the choice of parameters a € (0, ) and (g, 01,83, N1), estimate
@E30) follows from Lemmas AA3HA A4 by repeating the argument in the proof of
Proposition 4.12] O

PROPOSITION 4.46. Under the choices of parameters (a,e,01,03, N1) as in
Corollary 443, the iteration set K defined in Definition 19| is relatively open
in G35, (Qr) x [0, B.].

*041

PrROOF. We have shown in Lemma 41l that K is relatively open in
- al)(Qlter) [0, B.]. Therefore, it remains to check that property (vii) of Defini-

tion [4.19] defines a relatively open subset of C(* o )(Qiter) x [0, 8] under the choice
of 63 given by (iii) in the statement of Corollary 4
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Suppose that this is not true. Then there exist (uﬁ,ﬂﬁ) € K and a sequence
{(tn, Bn)}2, C K such that

Tim u, — IS8 e 1B = B = 0, it — un||$255) guer > 05 for all n €N,

where each 1, for n € N is given by [@318) for (u, 5) = (un, Bn)-
Let @ be given by [@3.17) with (u, 3) = (uf, 8%), and denote

Gy =l — w5 e
= m .
By 313), it holds that 6% > 0. Therefore, we can choose nf € N sufficiently large

such that |lu, — uan*;;lz) giter T [Bn — B¥| < &% for all n > nf. Then we have

5t

[ Aﬁ”é*,;%)gim > 94* for all n > n.

By Corollary 45l {i,} is bounded in C(zfg(Qiter). It is noted in Defini-
tion [.I§ that C(Q;QS(Q“”) is compactly embedded into C(Z;am)(Qiter). There-

fore, {@,} has a subsequence {y,,} that converges in 0(2 ;aal)(Qite‘") to a function
a* e C2  (Q') so that

(*,001)
(4.5.31) [ — a5 e > 9%

,Ot/Q,Qitcr
Define

O =0T N P i Tt (@) = Q0 B,

By Lemma 36, ¢* solves the nonlinear boundary value problem (E316) associ-
ated with (uf, 3%). Then the uniqueness of solutions of [#3.16) stated in Lemma
435 implies that @* = wu* which is in contradiction to [E531). Therefore, we
conclude that property (vii) of Definition FET9] defines a relatively open subset of
0(2’0‘ (Q'°r) x [0, 8,] under the choice of 3 given by (iii) in the statement of

*,Q1)

Corollary O

REMARK 4.47. In Proposition 46 the choice of («,¢,d1, N1) depends only
on (Voo,, B«), and the choice of §3 depends only on (veo,?, B«, 01, d2, N1), where
parameter do is to be determined later.
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CHAPTER 5

Existence of Admissible Solutions Up to ﬁé%‘“)
— Proof of Theorem 2.31

Fix v > 1, voo > 0, and B, € (0, év“’)). For the iteration set K defined in
Definition A.19] define

K(B) = {u e C5, (") : (u,8) €K} for each 5 € [0, 5.].

(*,001
In this chapter, we define an iteration map Z : K — C(2 *’O‘al) (Qiter) with the following
properties:
(i) For each 8 € [0, B,], there exists u € () such that Z(u, §) = u;

(ii) If Z(u,B) = u, then ¢ given by [@I50) yields an admissible solution
corresponding to (veo, 3).

5.1. Definition of the Iteration Map
Let parameters (a, ¢, 01,93, N1) in Definition .19 be fixed as in Proposition
4.40)
In order to define an iteration map satisfying (i)—(ii) stated above, and to
employ the Leray-Schauder degree argument for proving the existence of a fixed

point of Z(-, 8) in K(B) for all 5 € (0, ((jv‘”)), we require the compactness of Z.
For each (u, B) € K, let (géﬁ’ﬁ),Fshock(u, B), Qu, B), *P)) be defined by Def-
inition @15 and denote them as (gsh, [shock, 2, ). For such a function gy, we
define (gf, Ga,4.,) by @I31) and [@I49), respectively. Let ¢ € C2(Q)NC(Q) be
the unique solution of the boundary value problem (£3T6]) associated with (u, 3).
Then function @ : Qi*r — R is given by ([@3.17), and function ¢ = $(*P) is given
by
(5.1.1) PP = o +ioF .y
for ¢} given by (LI1.42).
Next, we define functions w, we,, and w by
w(s, ') = (p = @p) o (G7) " (s, 1),
(5.1.2) Woo (8, 1) 1= (Poo — @) 0 (G7) " (s, 1),
(s, t) = (¢ — @p) o (G7) " (s, ).
LEMMA 5.1. For each 8 € |0, ((jv‘”)], there exists a unique function gg :
[—1,1] = Ry such that
(2) wool5,85(5)) = 0 for all 5 € [~1,1];
(b) {(s,05(s)) : s € (=1,1)} € GP(QP) for QF defined in Definition EINiii);

181
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182 5. EXISTENCE OF ADMISSIBLE SOLUTIONS UP TO Bévx)

(¢) llgglles=1.1) < C for C >0 depending only on (v, vs)-
PROOF. By property (iii) stated right after Definition L8] the set:
{(s,t") : weo(s,t') =0}

is contained in gf (QP). Then the existence and uniqueness of gg satisfying state-
ments (a)—(b) follow from Lemmal4.9] combined with the implicit function theorem.
Statement (c) is obtained from Lemma .9 and the smoothness of p — ¢}, owing

to (L) 0

For each (u, 8) € K, g : [-1,1] — Ry is in C%}([~1,1]) and satisfies gg, > 0
on (—1,1). Define

Ry, ={(s,t)eR®: -1<s<1,0<t <gamls)},
Egsh = {(579511(5)) -l <s< 1}.

Note that w and @ are defined in Ry, and ws is defined in Ry := (—1,1) x Ry.
In order to define an iteration map Z, the first step is to introduce an extension
of 1 onto Ry )., for some € (0, 3].

(5.1.3)

LeEMMA 5.2 (Regularized distance). Let Ro := (—1,1) x Ry. For each g €
C%1([-1,1]) satisfying

(5.1.4) g>0 on (—1,1),
define

Ry:={(s,t) €R® : ~1<s<1,0<t' <g(s)},

5.1.5
( ) Xy :={(s,9(5)) : -1 <s<1}.
Then there exists a function §; € C°°(Ry \ Ry), the regularized distance, such that

(i) For all x = (s,t') € R \ Xy,
1
gdist(x, Y,) < d4(x) < gdist(x,Eg).
(ii) For allx = (s,t') € R \ Xy,
ID™54(x)| < C(m)(dist(x,Z)) ™ form=1,2,3,-,

where C(m) depends only on m.

(iii) There exists Cyx > 0 depending only on Lip[g] such that
§y(x) > Cu(t' — g(s))  for allx € Ry \ Ry.
(iv) Suppose that g; € C%1([-1,1]) and g € C*Y([-1,1]) satisfy (G.14) and
lgillcor(-11)) <L forallieN

for some constant L > 0. If {gi(s)}ien converges to g(s) uniformly
n [—1,1], then {64,(x)}icn converges to d4(x) in C™(K) for any m =
0,1,2,---, and any compact set K C K\R_q
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(v) For C from (iii), define
(5.1.6) 0y(x) = C—ég(x).

Then there exists k € (0, %] depending only on Lip[g] such that, for each
X = (S,t/) S R(l_,_ﬁ)g \ Ry,

(5, = A65(x)) € {s} x [£ g(s) — (¢ — g(s))] € Ry for all X € [1,2].

(vi) There exist constants Cyx > 0 and k € (0, %] depending only on (7, Voo, Bx)
such that, for each (u,B) € Kt the regularized distance 551:];6) can be
given so that properties (1)—(iii) and (v) stated above are satisfied.

(vii) If {(u;, B;)}}—1 C Kt converges to (u, B) in C2 (Qter) x [0, B,], then

(*,061)
55Zf’ﬁj) converges to 65" in C™(K) for any m = 0,1,2,---, and any

compact subset K C Roo \ RE;:;B).

PRrROOF. Statements (i)—(iv) of this lemma follow directly from [11I] Lemma
13.9.1]. Statement (v) can be verified by using statement (iii). We refer to [11],
Lemma 13.9.4] for a proof of statement (v). Finally, statements (i)—(v), combined
with (d) and (g)—(h) of Lemma T8 and (i) of Remark [L.2T], lead to statements (vi)
and (vii). O

By [11, Lemma 13.9.2], there exists a function ¥ € C$°(R) satisfying that

supp¥ C [1,2],
(5.1.7) o0 o0
/ U(y) dA =1, / ATP(A)dA=0 form=1,2.

For a function g € C%'([—1,1]) satisfying (5.I4), let R, and §; be given by (5.LF)
and (BL6]), respectively. Let x € (0, %] be fixed, depending on Lipg], to satisfy
Lemma 5.2(v). For a function v € C°(R,) N C%(R, UY,), we define its extension
Eg(v) onto R(144)g by

v(x) for x = (s,t') € Ry,

5.1.8 Eg)(x) =1 R,
(5.1.8) ) {foov(s,t’—/\5;(x))‘1’()\)d)‘ for x € Rii+r)g \ Ry-

DEFINITION 5.3 (Extension map). For each (u,3) € K, let g denote géﬁ’ﬁ),

and let d;, be the regularized distance given in Lemma For constant C, > 0
from Lemma B2(vi), let &} be given by (BL0). Let x € (0, 3] be from Lemma
B2(vi). Then, for each v € C°(R,) N C%(R, UY,), define its extension &,(v) onto

R(141)g by BLE) for ¥ given by (E.I1.7).

PROPOSITION 5.4 (Properties of the extension operator £). For each (u,f) €
Kext, the extension operator &, given by Definition 53 maps C*(R, U X,) into
CQ(R(HR)g) with the following properties: Fiz o € (0,1). Then

(a) Fixz by,by with —1 < by < by < 1.
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(a-1) There exists C > 0 depending only on (Vao,7, Bx, ) such that

||59(U)||2,04,R(1+N)gﬂ{b1<s<b1} S C||v||2,a,Rgﬂ{b1<S<b1}'
More precisely,

||8g(v)||m,0,R(1+K)gﬂ{b1<S<bz} < CHU”m,O,Rgﬁ{bl<s<b2} for m=0,1,2,

[DQgg(U)]a,R(HK)gm{bl <s<bs} < C[Dzv}a,Rgm{bl <s<bg}-

(a-2) & ¢ CQ’O‘(Rg N{b <s<by}) — C’Q’O‘(R(Hﬁ)g N{by < s <by}) is
linear and continuous.

(a—3) Suppose that {(u;,5;)} C K=t converges to (u, 5) in C’Q*aal)(Qiter) X
[0, Bs] for some & € (0,1). If {v;} satisfies

v; € 2 (R (uj.85) ﬁ{bl <s < bg}), |

Isn

y <M

for all j € N and some constant M > 0, and converges uniformly to v
on compact subsets ofR () for some ve C%® (Rg(u,g) N{by <s<ba}),
sh

then 5@ 8,)(vj) converges to S(u a(v) in C2 (R1gs)gN{b1 <s<b2})
for all o € (0, «), where 59(“],[3])(11]) is well defined on
sh

R(1+%)g$,5) n {bl <s < bg}
for large j.
(b) Fiz o >0 and ¢ € (0, 1].
(b-1) There exists Cpar > 0 depending only on (Veo,?, Bx, &, 0) such that

,(par) (0),(par)
[|Eg(v )||2 R sy, {—1<s<—14e} = Crarllvllq RgN{—1<s<—14e}’

r) r)
||8 ( )”2 o Ig(iJrN)gﬂ{l e<s<1} < CP“”UHQ @ Igdﬂ{l e<s<1}"
(b-2) The map
gt OLS pan (B N{=1 < s < —1+¢})
Cz N par)(R(lJr’{)g n {—1 <s< -1+ E})

is linear and continuous. The same is true when we replace {—1 <
s<—-l4elby{l—e<s<l1}.

(b-3) If {(uj, B;)} C K=t converges to (u,3) in C’(Q*aa (Qiter) x [0, B4] for
some & € (0,1), and if

{0} € O (R ™) N {=1 < s < —1+2}),

v ECLS pan (Bes? N {1 <5 < —1+¢}),

),(par)
and vj converges uniformly to v on compact subsets of Rg(u,ﬁ), then
sh
& ol 8, (vj) converges to € ol s (v) in C(U,) (pdr)(R(H%)gﬂ{—l <s<

—1+€}) foralld' € (0,a) and allo’ € (0,0). The same is true when
we replace {—1 < s < —14¢e} by{l—e<s<1}.
(c) Consider the case that s € (—1,1).
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(c-1) There exists Csup > 0 depending only on (Veo, Y, Bx, ) such that
&gy, pe b < Cannllolly, pom 5 2a?

2,0,R(140)gN{—1<s<—3%} — 2,0,RgN{—1<s<—11}"
Furthermore, if (v, Dv) = (0,0) on R, N {s = —1}, then
(&g(v), DEy(v)) = (0,0) on Rajiwyy N{s=—1}.

(¢-2) & : C°_ ) {S,fl}(R N{-1<s<-1i})
—>C( 1— a){s——l}( (1+k)g ﬂ{ 1<3<_ })
1s linear and continuous.
(c-3) If {(uj, B;)} C K=t converges to (u, ) in C(z*aa (Qiter) x [0, B.] for
some & € (0,1), and if

1
{vi} c C( 1-a), {s——1}(Rgi:j=5j> N{-1<s< _5})7

vGCza

1
1-a), {57—1}(392;:&) N{-1<s< _5}),

and vj converges uniformly to v on compact subsets of Rg(u,ﬁ), then
sh

& o 8, (vj) converges to € e p(v) in

9sh

al 1
0(2 1—an se—1} (Bt {1 <s < —5})

for all o € (0, ).
Proor. We divide the proof into three steps.

1. By Remark B2T] Lip[gsn] is uniformly bounded by a constant C' > 0 de-
pending only on (ves, 7, B«) for all (u, B) € K. Then statements (a-1)(a-2) follow
from [11, Lemma 13.9.6(i)—(ii)]. By Lemma ZI6(d), if {(u;, 3;)} C K&t converges

to (u, ) in C’2 & (Qiter) x [0, B,] for some @ € (0,1), then g(u”ﬁj) converges to

(*,01)
géf ) in C1([~1,1]). Thus, we apply [11, Lemma 13.9.6 (iii)] to obtain statement
(a-3).

2. Statements (b-1)—(b-2) can be proved by following Steps 2—-3 in the proof
of [11], Theorem 13.9.5]. Since Lip[gsn] is uniformly bounded by a constant C' > 0
depending only on (va,7, Bx) for all (u,3) € K, the estimate constant Cp,, in
(b-1) can be given uniformly, depending only on (v,7, Bx, @, 0), for all (u, ) €
Kext, Moreover, statement (b-3) can be proved by following Step 4 in the proof
of [1I,, Theorem 13.9.5] and using the uniform convergence of g( 183) to g(u A o
[—1,1] when {(uj, 8;)} C K=t converges to (u, 3) in C’Q*aal)(Qlter) [0, B.] for some
x € (0,1).

3. Finally, we follow the proof of [11, Theorem 13.9.8] to obtain statements
(c-1)—(c-3). Similarly to Steps 1-2, the uniform boundedness of Lip[gsn] for all
(u, B) € Kt implies that the estimate constant Cyy, depends only on (veo, ¥, By, @)

for all (u, 8) € Kext. To prove (c-3), we use the uniform convergence of giﬁj’ﬁj) to
géﬁ %) on [~1,1] when {(uj, B;)} C K<t converges to (u, 3) in CQ*O‘al)(Qiter) x [0, Bx]
for some & € (0,1). O
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LEMMA 5.5. Let parameters (a,e,01,0s,N1) in Definition LI9 be fized as in

Proposition 4460 Then there exists a constant §§imp) > 0 depending only on
(Voos Y Bx, 02) (where parameter da in Definition B9l is determined later) such

that, if 03 further satisfies 0 < 63 < 6§imp), for each (u,) € K, there erists a
unique function gsn : [—1,1] = Ry such that

(5.1.9) (Woo — &g (W)) (5, Bsn(s)) =0 for all s € [-1,1].

Furthermore, there exists a constant C' > 0 depending only on (veo, 7, Bx) such that
gsn satisfies

10 6 — 025 ) + lon — asll s 05 < €
L@ —0p)(-1)=0  fork=0,1,

(5.1.11) [8sh — Bsnll1,2,(~1,1) < Cd3,

(5.1.12) (Bsh — Gsn) (£1) = (§sn — Gsn) (1) = 0,

where gg is from Lemma 5.1.

PrOOF. We divide the proof into three steps.
1. By Definition ET5l(i), w given by (B12) satisfies
(5.1.13) Woo —w =0 on Xg, .
By ([(@3I1) in Definition ELT9(iv), Lemma[Bla), and (BI2), there exists a constant
C’ > 0 depending on (v, y) such that
(5.1.14) |D(woo —w)| > C'puy >0 on X, .
Therefore, we have

D — —gl,1
(e-w) ol
|D(woe — w) 1+ (gly)?
Since Lip[gsn] is uniformly bounded by a constant C' > 0 depending only on
(Voos Y, Bs) for all (u,) € K, there exists a constant fi > 0 depending only on

(Voo, 7, Bs) to satisfy

D —
(5.1.15) O (e — ) = P W= =0 S
1+ (g%,)°

For each (u,) € K, the corresponding function gy, = ggﬁ’ﬁ ) satisfies that
gsh(—1) > 0. Therefore, Definition FET9(iii) implies that

1
(5.1.16) F(l +5) < gsn(s) < gsn(—1) + N3(1 + s) for -1 <s<—-144¢
3

for &y = £, where N3 > 1 is the constant from Definition @I%(iii). The lower bound
of gsn(s) in (EII6) is obtained from Definition ET9(iii), and gsn(—1) > 0 which
follows from (m

Let x € (0, 3] be fixed as in Definition 531 In other words, let & be from
Lemma [5.2(vi). By Definition .19(i), Remark H21] (5I1.15)), and Proposition [5.4]

there exists a small constant o € (0,1 min{1, x}] depending only on (ve, 7, Bx)
such that, for each (u, 3) € K, gen satlsﬁes

0 < gsn(s) — 0 < gsn(s) +0 < (14 K)gsn(s) for -1+ %0 <s<1,
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and the corresponding function w given by (5.1.2) satisfies
(5.1.17)

at’(woo - ngh (w))(57 t,)

!

~+

IN

for —-1<s<—-14+é and1—o0c < <1+o,

gsn(s)
for —1 + %O <s<land |t —gam(s)| <o

IA

VR NR

O (Woo — &gy, (w)) (5,1

2. By (GI13) and the linearity of the extension operator &y, , we have
(Woo = Eq.p, (0)) (5, (1 + 0)gsn(s)) = A1 + As,
where
Ar = (woo = Eg.,, (w)) (8, (14 0)8sn(8)) — (oo — &gy, (w))(s, Gsn(9)),
Az = &g, (w —)(s, (1+ 0)gsn(s))-
By (EI16)-(EII7), we have

(5.1.18) A< -2 1 —s))  for —1 <5< —1+8.
N,

By [(@311), (B12), and properties (b-1) and (c-1) of Proposition [1.4], there exists
a constant C' > 0 depending only on (ve, 7, 8x) such that

(5.1.19) |Ag| < Cé3(1—|s|) for -1 <s <1,
where 3 > 0 is the constant in ([I3.18)). From (G.II8)-(EII9), we obtain

(a0 = Eq ()5, (140)gun(5)) < (1= |s]) (O - 2"7"3) for —1 < 5 < —1 +£.

Therefore, a constant 5§imp) € (0,03] can be chosen depending only on (vs, 7, 3«)

such thai, whenever d3 € (0,5§imp)], the inequality above implies that, for any

(u, B) € K,

(5.1.20) (Woo — Eggp (W) (5, (1 + 0)gsn(s)) <0 for —1 < s < =1+ é&.

Under the same choice of 3, we also have

(5.1.21) (Woo — &g, (W) (5, (1 — 0)gsn(s)) >0 for —1 < s < =1+ ¢&.
Adjusting the argument above, we can further reduce 5§imp) > 0 depending

only on (vso,7, B«) so that, whenever d3 € (0, 5§imp)],

(51.22)  (woo — Equ ())(5, G (5) + @) < 0 < (oo — Eq., (1)) (5, gon(5) — )

for—l—f—%gsgl.

3. Finally, by (@318), (5117), and Proposition 5.4, we can reduce 5§imp) > 0
depending only on (v, 7, B«) so that, whenever d5 € (0, 5§1mp)], W satisfies

(5.1.23)
O (o — g (@))(s5,1') <~

!
for —1<s<—-1+4+égand 1 —o<

<l+o,

=

gsh(s)
Oy (Woo — Eg. (1)) (5,1) < =L for —1 + %0 <s<1land |t — gon(s)| <o

Then (EI9) follows from the implicit function theorem. By (BII0) and (GEI20)-
(BEI22), there exists a constant C' > 0 depending only on (v, 7, B«) such that

| =

|8sh — Bshllco((—1,1)) < Co.
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By Lemmas and £43] and definition (B.1.2]), for any € € (0,1), we have

(2),(par)
|| ||2 20,Rg y N{s>—1+¢} < CS)

where constant C. > 0 depends only on (v, 7, 8x) and €. Furthermore, by Lemmas

and .44 we obtain

[l ;‘;)h{;{— ey O (=1,t) = Di(=1,') =0 for 0 <t < gan(—1)

for a constant C' > 0 depending only on (v, 7, Bx). Combining these two estimates

of w with (BI9), (1.23)), and Proposition 54, we obtain (GII0).
Next, we use (LILI)-(EI12), Lemma [A5] Definition EI5(ii), Lemma FET6(d),

and estimate ([£3.I8)) given in Definition L I9(vii) to obtain

o = wlly /2,620y = 1@ =) 0§50 © (G .00 0) < OO
for a constant C' > 0 depending only on (veo,7,s). Using this estimate and

(EI1T), we obtain (BIII). Finally, (112) follows directly from (EII0) and the
fact that %(gsh —gg)(£l)=0for k=0,1. O

Let parameters («, ¢, 1,3, N7) in Definition be chosen as in Lemma [5.5]
For each (u,) € K, let g : [-1,1] — Ry be given by (E19). From EILII)-
(EIT12), further reducing 5, we obtain that gg, satisfies estimate [@3:2]) in Def-
inition [LI9Yiii) with N3 replaced by 2N3. We define a function @ : Qiter — R
by
(5.1.24) @ = &g,y () 0 (Gag,,) ™!

for Gy 4., defined by @I1.49). By Corollary B45] Proposition 5.4} and Lemma [5.5]
there exists a constant C' > 0 depending only on (ve, 7, 8+) such that @ satisfies

*,1
(5.1.25) lall5'3e) guer < C-

Now we define the iteration map Z : K — C(* o) (Qiter)_

DEFINITION 5.6. Let parameters («, €, d1,d5, N1) in Definition 219 be fixed as
in Proposition B8 Then we adjust d5 € (0, 83""] for 05" from Lemma [5.5so that
Lemma [5.5] holds for all (u, ) € K. For each (u,8) € K, let @ be given by (5.1.24).
Then define an iteration map Z : K — 0(2’;?;1) (Qiter) by

Z(u, B) = a.

LEMMA 5.7. The iteration map T defined in Definition 5.0l satisfies the following
properties:

(a) For any 8 € [0, B |, define

K(B):={ue C’ - Oél)(Qiter) : (u,B) € K}.
For each (u, B) € K, define
I(ﬁ)( ) =1,

where 4 is given by E3IT). Then u € K(B) satisfies T(u, ) = u if and
only ifIfB) (u) = u.
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(b) For & = %, there exists a constant C > 0 depending only on (vso, 7, Bx)
such that, for each (u,B) € K,

1Z(u, B)IS52 5. ger < C-

ProoF. For a fixed 3 € [0, 8., suppose that Z(u,3) = u for some u € K(B);
that is, @ = u for @ given by (51.24)). Then, by Definition ELTH and (E124), we see
that, for all s € [—1, 1],

Woo (5, Gsn(5)) = u(s, 1) = g, (D) (5, Bsn(5)) = Woo (s, Ban(s))-

This, combined with Lemma [£9] and (5.1.2)), implies that gsn = @sn on [—1,1].
Then it follows from (G.L24) that @ = &, () o (Ga,q,,) "' = @, which implies that

u=1u= IEB) (u) in Q'ter,

Next, suppose that I{ﬁ) (u) = u for some u € K(8). Then gg, = gsn, on [—1,1].
This, combined with (5.1.24), implies that @ = Z(u, ) = &, (0) o (Ga,g..) "+ = 1.
Therefore, we obtain that @ = u in Q"

Finally, statement (b) directly follows from (G.1.25). O

5.2. Fixed Points of Z(-, ) and Admissible Solutions

For the iteration map Z defined in Definition 5.6, we show that, if u € K(3) is
a fixed point of Z(-, 8) for some S € (0, 8], then ¢ defined by (£Z4) in Definition
is an admissible solution corresponding to (veo, ) € PRweak in the sense of
Definition

PROPOSITION 5.8. Let parameters (a,¢€,d1,93, N1) in Definition be fized
as in Definition 6. Then parameters (,01) can be further reduced depending
only on (Veo,7,Bx) so that, for each p € (0,B.], u € K(B) is a fized point of
I(-,B) + K(B) = C5,,(Q"") if and only if ¢, defined by @EZF) in Definition
[LI5, yields an admissible solution corresponding to (Vao, 8) € Ryeak in the sense
of Definition by extending ¢ into Ag via (ZES) if 8 < ﬁi”x), and via (Z5T12)
if B> B,

ProOOF. By Corollary 40} it suffices to prove that, if u € K(8) is a fixed
point of Z(-, 8) : K(8) — C(Z*aa )(Qit"r), then ¢, defined by [#24) in Definition
415 yields an admissible solution corresponding to (vso, 3) € Ryeak in the sense

of Definition We divide the proof into six steps.

1. For (u,3) € K, let (2, Tshock; ) = ((u, B), Tanock (1, B), ) be defined
by Definition I8, and denote ¢ := ¢ — oxr. Let ¢ € C2(Q)N C’l( ) be the unique
solution of the boundary value problem (£3.10) determined by (u, 3).

Suppose that

Z(u,B) =u for some u € K(B).
By Lemma 5.7, we have

(5.2.1) p=¢ Q.

Let ¢ be extended onto Ag by [2.5.8)) for 5 < ﬂév“’), and by (2512) for g > Bévm).
Moreover, let TO .. TN . es,, sy, oo, Y0, and @xr be defined by Definition

223
2. Verification of properties (i-2)—(i-4) and (ii-1)—(ii-3) of Definition [2.241

sonic?
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Properties (i-2)—(i-3) follows from Remark 4.21](i). By using Lemma F.I6(b), it
can directly be checked that property (i-4) holds.

By Definition BI9(i) (or Corollary £45]) and the extension of ¢ onto Ag de-
scribed in Step 1, ¢ satisfies properties (ii-1) and (ii-3).

We define

Aij(€) = Ay(D$, &), ij=1,2,

for A;j(Do,€) given by @Z2Z). By Definition EIJ(i) (or Corollary EAT), co-
efficients A;;(§),¢,j = 1,2, of equation /\f(u[g)(é)) = 0 in @3I6) are in CL(Q\
(TO . UTN . )). Furthermore, LemmaE30(a) implies that N(u,g)(qg) = 0 is strictly

sonic sonic
elliptic in 2. Then the standard interior Schauder estimates for linear elliptic equa-

tions imply that ¢ € C3<(Q). This, combined with Definition EI9(i) (or Corollary
[445), implies that ¢ satisfies property (ii-2).

3. Verification of property (iv) of Definition 224

For A;;(€) defined in Step 2, we define a linear operator L, g by

L) (v Z A;jOge;v

1,j=1

Since o — @ is a linear function of &, and ¢ — Yoo = & — (Yoo — PA7), we have

(5.2.2) L) (@ = ¢o0) =Lupy(@) =0  inQ.

By Lemma [£30(a), the equation stated above is strictly elliptic in 2 so that the
maximum principle applies to ¢ — ¢ in Q. From (B.II3) and (BZT]), we obtain
that ¢ — oo = 0 on Dghoek- By Definition £J[ii), it follows directly from the
boundary condition ¢ = max{gpo,go/\/} —n on TO . UTN . given in ([E310)
that ¢ — Yo = 90 — Yoo < 000 TG e, and ¢ — Yoo = PN — oo < 0 on T .
Furthermore, the boundary condition for é& = 0 on I'yedge given in (£3.10]) implies
that

(5.2.3) Oe, (Yoo — @) = =V < 0 on I'yedge-
Therefore, by the maximum principle and Hopf’s lemma, we obtain
(5.2.4) ¢ < oo in Q.

When S < N2 , we have shown in Step 2 in the proof of Lemma [4.42] that

(5.2.5) max{po,on} < @ in Q.

When 5 > ?\‘;;, [#33) in Definition I9(iv) implies that max{¢o,onx} < ¢
holds in Q \ (Dgw u Dglo) Note that parameter ¢ in Definition [L.19] has been
chosen so that ¢ < Cl—f for CTO from (AI.45) in Definition .8 Therefore, ¢} =
max{po,px} in QN (D€ UDY) for ¢ given by @EIL4Z). Then we obtain from
EE2) in Lemma [L743] that max{po, pr} < ¢ holds in QN (’D?/m u Dé\;m).

Therefore, we conclude that inequality (B.2.5]) holds for any 8 € (0, 8.]. Com-
bining this inequality with (524), we conclude that ¢ satisfies property (iv) of
Definition

4. Verification of property (v) of Definition 2241 In order to show that ¢
satisfies property (v) of Definition 2224 it suffices to verify the following claim:
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Claim. There exist small constants eg, > 0 and dg, > 0 depending only on
(7, Voo, Bx) S0 that, if parameters (g,61) in Definition LI satisfy € € (0,eg,) and
01 € (0, 9], then ¢ satisfies

(5.2.6) s, (Poo —¢) 0, ey, (oo — ) <0 in Q.

Similarly to the previous step, we consider two cases: 8 € [J‘f[—lf, B«] and B €
(0, ]‘\5,—1%,), separately.
4-1. Suppose that g € [1‘\5[—112,5*]. Define
W= — ¢ in Q.

Let (X,Y) be the rectangular coordinates such that (eSO,eé-o) = (ex,ey).
By 22), W satisfies that L, ) (W) = 0 in Q. Since the (X,Y)-coordinates
are obtained from rotating the (&1,&)—plane by /S counter-clockwise, equation
L3 (W) = 0 can be rewritten in the (X,Y)-coordinates as follows:

(5.2.7) 1411WXX + 21412WXY + AQQWYY =0 in €,
with A;; € C*(@Q)n o (@Q\ (T, UTY . )),i,5 = 1,2.
Define

w:=Wx = Oeg, (Poc — ).
By ([@334) in Definition [£T19(iv), w satisfies
(5.2.8) w<0  inQ\DY,
Next, we prove that w < 0 in Q N DY

/10"
Differentiating (5.2.7) with respect to X, we have

Apwx x+2A15wxy +Agpwyy +0x Ayjwx +20x Arpwy +0x AgaWyy =0 in €.

Using the strict ellipticity of operator L, g) following from Lemma E.30(a), we
obtain that /122 > 0 in © such that Wyy can be expressed as

_Anwx + 2/112’(03/

Ago
Substituting this expression into the equation immediately above, we obtain a
strictly elliptic equation for w in the following form:

Wyy = in Q.

(5.2.9) Apjwxx + 24 10wxy + Agswyy + Ajwyx + Aswy = 0 i Q.
Since Aij € C*(Q)NCH(Q\ (Fs)nic U I’é\gnic))7@',j = 1,2, we see that A, € co@)
(anic U F's/\cfnic))ai = 17 2.

By a direct computation, applying Lemma [.44] and the definitions of
(€50, Yoo, Po) given in Definition 223 we have
(5.2.10) W= Oeg, (Yoo — p0) =0 onT9 ..
On I'yedge, w satisfies the homogeneous oblique boundary condition:
(5.2.11) by - Vw =0 with by, - ny > 0 on I'yedge

for the inward unit normal vector ny to I'yeqge. This can be verified as follows:
Differentiating the boundary condition (B.23) along I'yedge C {&2 = 0}, we find
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that We, e, = 0 on I'yedge- Equation (5.2.2)), combined with We, ¢, = 0 on I'yedge,
leads to

A11W£1£1 + A22W£2£2 =0 on Fwedge~

Note that A;1 > 0 and Ags > 0 hold on I'yedge by Lemma F30(a). Then a direct
computation by using the definition of eg, shows that

A e A2 0 0 with A2
cosB S T sing e sin 8

This implies the strict obliqueness of the boundary condition for w on I'yedge-

In order to obtain a boundary condition for w on Igpock, we apply [11l Lemma
13.4.5]. For this purpose, we need to check that all the conditions to apply [11],
Lemma 13.4.5] are satisfied.

Let Mo and ¢p be given by (Z4.6]), and let Spo and Op be given by Definition
223 Then cp — dist(So,Op) > 0 if and only if Mo < 1. By Lemma 213 Mo < 1
for f = 0. Then (ZZ43)) given in the proof of Lemma 222 implies that Mo < 1 for
B € (0, 8,]. Therefore, there exists a constant g > 0 depending only on (ve,7)
such that

>0 on I'yedge-

(5.2.12) co — dist(So, 00) > po for all g € (0, B4].
By Lemma [£34(h) and (EZT]), ¢ satisfies the Rankine-Hugoniot condition
m on I'shock-

Let v be the unit normal vector to I'shock towards the interior of 2, and let T
be obtained from rotating v by 7 counter-clockwise (7 is a unit tangent vector to
Ishock). By Definition E19(i) (or by Corollary .45]), we have
(5.2.13)

le = eollor@mpe) + I~ exlleormme) + 1V = (=ev)ll oo smpe) < O

for a constant C' > 0 depending only on (veo,7, 8s+), where point Pj is defined in
Definition 2223 Note that point Py lies on T'Q .. At P, T = es, = ex and
V = —ey.

By the definition of A;; given in ([@4.22)), Corollary £45] and (5.21]), we have
(5.2.14) Aij = AL (D(po — on), (o — en)(P1), P1)  at Py
for A%f)tn,aj = 1,2, defined by ({43]). By 2&1]), this yields that, at P,

An = C?Q - (85190(’))2a Az = A = _85190(985290(9 =0, Ao = C?ﬁ - (8§2<)0(9)2'

Then we have
(5.2.15)
2

Z Ajjvivi = ¢ — (Oupo)? = g — (dist(So, 00))? = co(1 — M3) > \o  at Py
ij=1
for some constant A\g > 0. By (.2.12)), constant Ao > 0 in (23] can be fixed,
depending only on (vs, ). By (EZI3) and (B215)), there exists a small constant
ag) > 0 depending only on (vee, 7, fx) such that
: A
(5.2.16) > Ay > 70 in Tahock N Dgl).
i,j=1 v
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By Lemma [£30](a), there exists a constant A\; > 0 depending only on (v, Ve, Sx)
such that

2
(5.2.17) Z Aijyiyj >\ (Fshock N DA@/IO) \D (1)/2
ij=1
for ¢o defined in Definition [4.11
Since ¢ satisfies the Rankine-Hugoniot condition [Z35.31) on Tghock, it follows

from (BZI3) and (EZTI6)-EZIT) that ¢ satisfies all the conditions required to
apply [11l Lemma 13.4.5]. Then, by [11, Lemma 13.4.5], we obtain a boundary

condition for w in the form:

(5.2.18) by, - Vw =0 onfmmkﬂpg%

for some small constant 5§ > 0 depending on (¥, v, B« ), where bgy, satisfies

bg, v >0 on I'shock N Dgz).
fp
In conclusion, w satisfies the strictly elliptic equation (IB]:QI) in QN DY for

£ > 0 to be specified later, the boundary condition w = 0 on T'? . and the oblique
boundary conditions (IBZ:IID on I'yedge and ([B2ZI8) on Tgpoek N Da(z). Therefore,
fp

if parameter € > 0 in Definition [£.19 satisfies
(5.2.19) 0<e<el,
then it follows from the maximum principle, Hopf’s lemma, and (52Z8) that
w<0  inQNDY,.
fp
Finally, we combine this result with (52.8]) to conclude that
. 1)
Oesy (920 =) <O in Qfor f € [155. 4],
i

provided that e satisfies condition (Z.2.19)).

4-2. Suppose that 8 € (0 ’W) Note that w satisfies (L2Z9)—(EZTT). By the
definitions of (es,, Yoo, A7) given in Definition 223 and Corollary 48] w satisfies

W= ey, (Poo — PN) = —VoosIN B <0 on TN ..

By [243) and Z51), vo — on = veo(&r tan  — &7 + &), Note that € =
5(5 )| p=0. Then, by (Z414) and the continuous differentiability of M., with respect

to B € [0, (v“)] there exists a constant C' > 0 depending only on (v, v ) such that

(5.2.20) leo = exllcra@ < CB  forall B € (0,55,
By Definition £19(i) and (5.2.20), we see that, for any 8 € (0, NQ)
(52.21)  lo = eollorem < e —enlcrag + lvo — exlloreg < Co

for some constant C' > 0 depending only on (v, Vs, S«) so that
[Aijla.e + [Varimea + [TlaTiea < C1
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for C' > 0 depending only on (7, Ve, Bx). By (B2ZI0) and the estimate immediately
above, there exists a small constant dg, > 0 depending only on (v, "y, Bx) so that,
if

(5.2.22) 61 € (0, g,

then

2 A
Z Ajjvivy > 70 on I'nock
ij=1
for Ao > 0 from (E2I5). Then [1I, Lemma 13.4.5] implies that w satisfies a
boundary condition in the form:

(5223) bsh -Vw =0 on Fshock7

with bgy satisfying bg, - v > 0 on Igpock-
Since w satisfies the strictly elliptic equation (B.29) in Q, w < 0 on I'Y ;. U

sonic
TN .., and the strictly oblique boundary conditions (FZIT]) on T'yeqge and (5.2.23)

on I'yphock, it follows from the maximum principle and Hopf’s lemma that
w <0 in Q,

provided that parameter 41 > 0 in Definition .19 satisfies (5.2.22]).
4-3. By repeating the argument in Steps 4-1 and 4-2 with w = Oe (o0 — ¢)
replaced by w = e . (¢oo — ), we can also show that

s\ (oo =) <0 in

provided that constants (sg), dtp) from (B.2.19) and (5.2.22) are adjusted, depending

only on (Veo, 7, B« )-
For the rest of the proof, parameters (g, 07) in Definition T satisfy

0 < 61 < O¢p, 0<e< min{ag),ag)}.

5. Verification of property (ii-4) of Definition Since Eq. (2I19) is
equivalent to (B.I2), it suffices to check that equation N, g)(¢) = 0 coincides with
Eq. 312).

5-1. Equation N, gy(¢) = 0 away from ro ..u Fé\({nic. In order to show that
@ satisfies property (ii-4), it suffices to show that equation N, gy(¢) = 0 from
([E3I0) coincides with Eq. (3.1.2) in Q. By LemmaB30/(i), equation N, gy(¢) =0
coincides with Eq. BL2) in @\ (DS, U Dé\;w) for parameter ¢ > 0 in Definition
[£.19 fixed as in Definition

5-2. Equation Ny g)(¢) = 0 near N . In QY = QN DY, let the (z,y)-
coordinates be defined by BZI8). Define ¢ := ¢ — o = ¢ — o in QY. By
Lemma [24(g), if it can be shown that

(5.2.24) e 9)] < 32

for pio € (0,1) from Definition ET(iv-1), then equation N, g)(¢) = 0 coincides

with Eq. BI2) in leo'
Define

Fo
5

T inQﬂDg[

2
v(z,y) = Az — Py(z,y)  for A= : 5.
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Then v satisfies

5.2.25 v=0 on IV . ={z=0}, vy =0 on Iyedee N ONY,
Y £ 5

sonic

because O¢, ¢ = Og, a0 = 0 on I'yedge-
By (EZ1)) and properties (a), (f), and (g-3) of Lemma 34l the boundary
condition on Tgpoc in E3TI6]) can be written as

bitpe +bathy + bty =0 on Tgpoax N DY
for (bg, b1, b2) satisfying that
-5t < bj <-4 on I'shock N ’Dé\[

for a constant § € (0,1) depending only on (veo, v, B+). Then |1, | < C(|1by|+]1)]) on
Tshock N Dé\/ for C' > 0 depending only on (v, 7, 3+ ). By combining this inequality
with estimate (5.I5]) given in Lemma [£43] we have

|ww| < Ca®/? on I'gpock N ,D?/’

(3)

for C' > 0 depending only on (veo,?,B3«). Then we can fix a small constant £

depending only on (v,7, 8s) so that, if

3)
(5.2.26) 0<e<e),
we have
(5.2.27) v>0  on Lgoe NODV.

By ([@34) in Definition ET9(iv), we obtain

4M0€

By Lemma [4.43] 5§§) can be further reduced, depending only on (v, 7, Bs), SO
that, if (2226]) holds, then

Cl(;103/4) a3/ C1((7 + 113N4:c) (v + 113N4x 1n QEE?

for ¢; given by (@Z4). This implies that

O?Od(¢z;¢y7$’y) = Oj(,(/)wawyawamvy7cf\[) in Qi\gfs) for au] = 17 e 557

for O1"°d and O; defined by @AII) and B2Z.29), respectively.

By (EZ£22) and (EZ])), equation N, 5)(¢) = 0 in ng becomes /\f&ofg)r(w) =
0 in the (z,y)-coordinates given by [B.ZI]) for /\/52?; defined by 4I12). We
differentiate /\/'(Z Ol;; () = 0 with respect to x in Q??Q and then rewrite the resulting

equation as an equation for v(x,y) in the following form:
(5.2.29)
A11Vgz + Q12Vzy + A22Vyy + A1V + QU = —A((v +1)A - 1) + E(z,y) in ng
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where
aij = ij(D(g )Y, T, Y) for a;j(D 4., z,y) given by @AI2),

a=1-(+1) (GA- )+ GA- ) —v +4)).

B Ay, v o v
a0 =G+ D2 (G0 - [ G- as).
E(.’L‘, y) = ’@[Jzzazél + wa:yaa:OAQ + wyya’vOAS - "/}szAAL - ¢zazo4 + ¢zy05 + wyamOASa

Oj(x7y) = Oj(wa:(x7y)7wy(x7y)7¢(xay)7x7y7cj\/) fOI‘j = 17' o 75-

By Lemma £24(a), Eq. (5.2.29) is strictly elli_ptic in Qé\f? Estimate (A5.15])
given in Lemma 43 implies that a;;,a1,a0 € C(Q\ {x = 0}). Since ¢ < 0 by
EZ9), apv > 0 in Qé\%. By B2Z29) and (@ETH), there exists a constant C' > 0
depending on (vse, 7, B«) such that |[E(z,y)| < Cz in Qé\;Q. Therefore, we can fix a

small constant sgj) depending only on (v, 7, Bs) so that, if

(5.2.30) 0<e<ed

fp
then —A((7 +1)A - 1) + E(z,y) <0in Qé\;Q. Thus, for such e, we have
(5231) A11Vzz + A12Vzy + A22Vyy + @10z + @V < 0 in ng\;Q

By properties (5:2:25)), (5227)-((228), and (5.231)), we can apply the maxi-

mum principle and Hopf’s lemma to conclude that, if
(5.2.32) 0 <e < minfe), ()1,
then v > 0 in Qﬁfz, which is equivalent to stating that

92 _ Ko

1/)m($ay)§ 1+:"’; in Q?;Q
Next, we show that ¢, > —%x in Qé\f?' Since 3eSN (Poo — A7) = 0, we
obtain from (520 that
(5.2.33) Des V= es, (0 — po0) 20 in Q.
By B.4.20)), O, ¢ is represented as
siny .
(5.2.34) Des ¥ =y cosy + P x¢y in Qé\}/\//z'

(5)

fp

(Voo, Y, B«) such that QJE\{S) C {(z,y) : x € (O,sg)),o <y < § —og} for some
fp

By Remark [L21](i)—(ii), we can fix a small constant e’ > 0 depending only on

constant oo > 0 that is chosen depending only on (vee,7). Then it follows from

estimate (LL.IH]) given in Lemma and (B233)-(EZ34) that there exists a
constant C' > 0 depending only on (v,7, 8«) such that

Yy > —tan(g — 00)thy > —Cx?/? in Qi\(fg,).
fp
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Therefore, sgg) can be further reduced, depending only on (ve,?y, B«), so that the
inequality above implies
2 o
> — T in OV,
1/}58 = 1+ ~ (2)

We finally conclude that ¢ satisfies (.2Z24]), provided that parameter e in
Definition A.19] satisfies
(5.2.35) 0<e< mm{sfp ,5fp ,5fp)}

Therefore, equation N, g)(¢) = 0 coincides with Eq. B.I1.2) in leo’ provided
that condition (BZ35]) holds.

5-3. Equation N, g)(¢) = 0 near TG ... In QF := QN D2, let the (z,y)-
coordinates be defined by [B.5.2).

By BEL54)-(B.550), there exists a small constant 5( )'> 0 depending only on

e®
(Vso,7) so that, if zp, < 45, then 8 < Bbv*) + = mlD{U3, (5} for § > 0 from Lemma
M.Z4(ii) and o3 from Proposition [3.39
Assume that parameter ¢ in Definition .19 satisfies

6
(5.2.36) 0<e<el,
and suppose that zp, < 5. By (@420) and [E4.22), if we can show that
2 ko .
(5.2.37) [V (2, y)| < 7 +f—; x in QN D?/Q,

then it follows from Lemma E25|(c-1) that equation N, g)(¢) = 0 coincides with
Eq. BI12) in Q?/w' To prove (5.2.37), we can mostly repeat the argument in Step
5-2 by using Lemma [£.44(i)(ii) and the positivity of ey (¥ — ¢oo) in 2 given in
(£.2.6), instead of Lemma .43 and the positivity of Oeg . (¢ —¢oo) in 2. Then there

exists a small constant eg ) >0 depending only on (v,7) such that, if & satisfies

condition (5.2.30), then equation N, g)(¢) = 0 coincides with Eq. (3.1.2) in 95/10
If parameter ¢ in Definition B.T9] satisfies condition (5.2.36), and if zp, > 15,
then it follows from Lemma E30(i) that equation N, g)(¢) = 0 coincides with Eq.

BI2) in QE/IO

For the rest of the proof, parameters (¢, ;) in Definition 19 satisfy
(5.2.38) 0<d <dp, 0<e<min{ed) :j=1,-- 6},
where dg, is from (5.2.22).

6. It remains to check that properties (i-1) and (iii) of Definition 2:24] hold.

Verification of property (iil) of Definition In Step 5, we have shown that
Eq. (BI2) coincides with equation NV, g)(¢) = 0in Q. Therefore, it directly follows
from Lemma [A30(a) and Lemmas AA3HA A that Eq. (B12) is strictly elliptic in
O\ (T .. Ufé\gmc) This proves that property (iii) of Definition 224 holds, because

Eq. (ZI19) is equivalent to (312) in Q.

Verification of property (i-1) of Definition [Z241 The strict ellipticity of Eq.
BI2) in 0\ (19, UTY,,) implies

0,0 (E) V(&) . e
TR o@.6) = FMTA@F @8 <1 O Tovoo | (o Ui
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for a unit normal vector v to I'spock. We have shown in Step 4-1 that ¢ satisfies

the Rankine-Hugoniot condition (Z5.37) on Iyhoex. Define M = %ﬂ&)&)

and My 1= |0, 900 (&)]. We substitute Mo = M into the left-hand side of (2.4.9)
in the proof of Lemma 217 Then, by repeating the argument right after [2.4.9]) in
the proof of Lemma 217, we obtain that My, > 1 on I'gyock, Which yields that

(5239) ‘DQPOO(E)l >1 on Fshock-

By the definition of s given in [Z5.1]), (5:239) implies that € ¢ B;(O) for all
€ € Tyhoek- Furthermore, {Py, P} ¢ B1(Os), because P; and P, lie on Sp and
Sn, respectively.

Now it remains to show that ffl <& < ff"‘ for all € = (&1,&2) € Tshock. Since
we have shown that ¢ satisfies properties (i-2), (i-4), and (ii)—(v) of Definition
in the previous steps, we can repeat the proof of Lemma to show that ¢
satisfies the directional monotonicity properties (B.L6)—(@L1). Then, by repeating
the proof of Proposition 3.4l we obtain a function fy, satisfying

Lanoce = {€ = (€1.62) + &2 = fan(&1), & <& <&°}

Therefore, property (i-1) holds.
With these, we complete the proof. O

5.3. Existence of Admissible Solutions for All (v, ) € Ryeak

In order to prove the existence of admissible solutions for all (veo, 5) € Ryeak,
we employ the Leray-Schauder fixed point index and its generalized homotopy in-
variance property.

5.3.1. Leray-Schauder degree theorem.

DEFINITION 5.9 (Compact map). Let X and Y be two Banach spaces. For an
open subset G in X, amap f: G — Y is called compact if
(i) f is continuous;
(i) f(U) is precompact in Y for any bounded subset U of G.
DEFINITION 5.10. Let G be an open bounded set in a Banach space X. Denote
by V(G,X) the set of all maps f : G — X satisfying the following:
(i) f is compact in the sense of Definition (.0t
(ii) f has no fixed points on the boundary 9G.
DEFINITION 5.11. Two maps f,g € V(G,X) are called compactly homotopic
on OG if there exists a map H with the following properties:
(i) H: G x [0,1] — X is compact in the sense of Definition (.0t
(ii) H(x,7) # x for all (x,7) € 9G x [0, 1];
(iii) H(x,0) = f(x) and H(x,1) = g(x) in G.
We write 0G : f = g if f and g are compactly homotopic on dG, and call H a

compact homotopy.

THEOREM 5.12 (Leray-Schauder degree theorem). Let G be an open bounded set
in a Banach space X. Then, to each map £ € V(G,X), a unique integer Ind(f, G)
can be assigned with the following properties:
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(i) If f(x) =xo for all x € G and some fired xo € G, then Ind(f, G) = 1;
(ii) If Ind(f, @) # 0, then there exists x € G such that f(x) = x;
(iti) Ind(f,G) = 3°7_, Ind(f, G;), whenever f € V(G, X) N (N}, V (G}, X)),
where G;NGj =0 fori#j and G =Uj_,Gj;
(iv) If 0G : £ = g, then Ind(f, G) = Ind(g, G).
Such a number Ind(f, G) is called the fixed point index of £ over G.

A generalized homotopy invariance of the fixed point index is given in the
following theorem:

THEOREM 5.13 ([47], §13.6, A4*). Let X be a Banach space, and let ta > t;.
Let U C X X [t1,ta], and let Uy = {x : (x,t) € U}. Then

Ind(h(-,t),U;) = const. for all t € [t1,t2],

provided that U is bounded and open in X x [t1,ts], and map h : U — X is compact
in the sense of Definition [5.9] with h(x,t) # x on 9U.

5.3.2. Proof of Theorem [2.3T]l In this subsection, we complete the proof of
Theorem 2311

Parameters (a,e,01,03, N1) in Definition Let parameters (a,¢, d1,
03, N1) in Definition be fixed as in Definition We further reduce (e, d;)
depending only on (ve,?y,B«) so that Proposition (.8 implies that, for each g €
(0, B4], u € K(B) is a fixed point of Z(-, 8) : K(B) — C’(Q;:lal)(Qitcr) if and only if ¢,
defined by (@24 in Definition 4.17] yields an admissible solution corresponding to
(Voo, B8) € Ryeak in the sense of Definition

In the proof of Theorem 2.31] we adjust N7 and choose ;3 so that Z(-, 5) has
a fixed point in KC(B) for each 8 € (0,8.]. Then the existence of an admissible
solution for each (voo, ) € Ryeak N {S < Bi} follows from Proposition B8 This

proves Theorem 23T] since 8, is arbitrarily chosen in (0, ((f‘x’)).

Further adjustment of 63 in Definition Note that, if parameter Ny
in Definition is adjusted such that the new choice of Ny is greater than the
previous one, all the properties stated previously hold. Then we choose N; greater
than the previous choice in the proof of Theorem 2311 Also, once parameters
(N1, d2) are fixed, d5 can be adjusted to satisfy the conditions of 03 in Lemmas
4.42H4.431 As long as the new choice of §3 is less than the previous choice, all
the properties stated previously hold. Since N; is adjusted to be greater than the
previous one, the new choice of d3 is less than the previous one. Since the previous
choice of (a,e,d1,02, N1) was independent of d3, we can reduce 3 as described
above.

ProoF oF THEOREM [2.311 The proof is divided into three steps.

1. Claim 1: The iteration map T : K — C’?fal)(Qimr) defined by Definition
is continuous. Moreover, T : KK — C(Qfal) is compact in the sense of Definition
0.9l

1-1. Continuity of T : K — C(Qfal). Suppose that {(u;,3;)}52; C K con-

verges to (u,3) in C2* (Qitr) x [0,3,]. For each j € N, define (Qj,ggl)) =

(*,001)
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(Quy, Bj), ggﬁ”ﬁ’ ) for Q(u;, B;) and g( 3:83) given by Definition 151 By Lemma
the nonlinear boundary value problem ([3I6) associated with (u;, ;) has a

unique solution ¢() € C2(Q;) N CY (€ \ (97, UTY )N CO(RQ;), where T is

sonic sonic sonic
19 .. corresponding to (vso, B;). For such ¢7), define
(5.3.1) W) = 6V + on — @5,) 0 (G17) 7

for Qf I and ¢}, defined by I30) and (£142), respectively.
Let 4; be given by ([{3I7) associated with (uj,ﬁj,cﬁ(j)). Then Definition
[A15(ii) implies that

(5.3.2) w9 =q;0G,

27gsh
for G, | o defined by (£1.49).

For each W) let g(j ) be given from EI0) with @
)€

Osh, gi), W, G, and ggn, similarly associated with (u, 8
By Lemma [.16|(d), we have

(5.3.3) o S ga in CH([=1,1)).

= w1, We also define ,
K.

Fix a compact set K C G2(Q) = {(s,t) : =1 < s < 1,0 < t' < gen(s)}. Then
there exists a constant ox € (0,1) depending only on K such that K C {s >
—14 ok}. Thus, by Lemma ET6l(g), there exists a constant C'x > 1 depending
only on (veo,7, B+) and K such that, for any (u?, 5¥) € K,

(5.3.4) Crl <gh(s)<Cx  forall (s,t') € K.
By 149) and (E33)—-(E34), we have
(5.3.5) Gy = Gag,  In Ch(K).

»Osh

This implies that there exists a compact set Qx C Q" such that G, o) (K)C Ok
o4

for all j, and Go 4, (K) C Q. By Corollary L37(b), @; converges to @ in C?(Qk).
Therefore, it follows from (53.2)) and (53.5) that

(5.3.6) w7 =@ in CP(K).

Since K is an arbitrary compact subset of Qf (), we conclude that w; converges
to @ in C1* for any compact subset of G2 (€2).

By (E31), (E3.6), and Lemmas and E43HA 4] we can apply Proposi-
tion £4l(a-3) to obtain the convergence of sequence {Sg(j)(w(j))} to &g, (W) in
sh

CQ’Q(R(H_ 2gen N 101 < 5 < ba}) for any b; and by with —1 < by < by < 1,
where « € (0, 1] is from Definition Note that, for any o € (0,1),

{(5,69(s)) : -1+ <s<1-0}C Rutsgn

holds for all j sufficiently large depending on o. Therefore, by using the C%-
estimate of §g, given in Lemma and (BII7), it can be directly checked that
{@gfl)} converges to gsn in C?([—1 + 0,1 — o]) for any o € (0,1). Then we obtain

from (BII0) that

(5.3.7) 68 =g I CT%((-1,1)).
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By (51.24), (531), and properties (a-3), (b-3), and (c-3) of Proposition 5.4, we
conclude that @, := Z(u;, ;) converges to & = Z(u,f) in C’(Q*aa )(Qimr). This
implies that Z : K — Cz’o‘ o) is continuous.

1-2. Compactness of T : K — C’ . Let U be a subset of IC C C’ x Oél)(Qiter) X

[0, B]. Then U is bounded in 0(2*0; )(Qltcr) [0, Bs]. Since C(Q*ZS(Q““) is compactly

embedded into C’(z*aa (Qi*er), Lemma [5.7I(b) implies that Z(U) is pre-compact in

- al) (Q'*°r). From this property, combined with the continuity of Z proved in the
previous step, we conclude that 7 : K — C(Q*O:JK (Qiter) is compact in the sense of
Definition 5.9l This verifies Claim 1.

2. Claim 2: In Definition 19, N1 can be increased and d > 0 can be fized
such that, for any B € (0, Bi], no fized point of Z(-, 6) lies on boundary OK(B) of
K(B), where OK(B) is considered relative to space C(* al)(Qiter). Furthermore, the
choices of (N1,02) depend only on (Vso, 7, Bx)-

2-1. Let Z(u,) = u for some (u,) € K, and let ¢ = @A) be given by

EZ). We extend ¢ onto Ag by (ZEJ) if 3 < B(U"") and by @512 if 8 > B

By Proposition B.8 ¢ is an admissible solution corresponding to (veo, ) € Ryweak
in the sense of Definition [2.24]
In order to verify Claim 2, we need to show the following:

- u satisfies the strict inequality given in condition (i) of Definition IO
- ¢ satisfies all the strict inequalities given in conditions (iii)—(vi) given in
Definition 4.19]

2-2. The strict inequalities in condition (i) of Deﬁnition 419 Note that Ny
satisfies that Ny > N @) for N, ®) from Corollary @40l Therefore, u satisfies the
strict inequality given in condltlon (i) of Definition ZII-]

2-3. The strict inequalities in conditions (iii) and (v)—(vi) of Definition ELI9
In conditions (iii) and (v)—(vi) of Definition 19] constants (Na,(, fi,a., C) are
fixed so that any admissible solution satisfies the strict inequalities in conditions
(iii) and (v)—(vi) of Definition 19 by Propositions B7 and 6] Remark B.I6, and
Lemma 35

2-4. The strict inequalities in condition (iv) of Definition 191 Suppose that
0<p< %. Then #5(53) defined by (£3I2) satisfies that #3(8) < 0 for any

1

d2 > 0. Moreover, ¢ satisfies (I33) in the whole domain by Definition 224(iv),
the strong maximum principle, and Hopf’s lemma. The strict inequalities in (£3.4])—
[{335) are satisfied by Lemma

Next, suppose that 3 > . Then it follows directly from (Z.5.1]) that px —po

is a nontrivial linear functlon By Definition 224(iv), ¢ = ¢ — max{po,pn} >0
in Q. Since p = po on T2 . or on TV . and po — @ is a nonzero function,
the strong maximum principle and Hopf’s lemma apply to ¢, so that ¢ — pp > 0
and @ — pa > 0 in  hold, which yields that

(5.3.8) ¥ = ¢ —max{po,px} >0  inQ\ (D, UDY,)

for fixed ¢ > 0 in Deﬁnition K19 By (533), Lemmas B2 and B43] and the
continuous dependence of (TS ., po) on 3, there exists a constant ¢ > 0 depending
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only on (7, e, fx) such that
Y= —max{pp,px} >0 in Q\ (DSlOUng).
By Lemma 32 we also have
s, (oo — @) <0 InQ\DGy, 0, (o0 — ) <0 in 2\ DYy,
By Corollary 319, and Propositions B.26] B.30] B.321 B39 and .42 the set of

admissible solutions corresponding to (veo, 3) € Rweak N {8 < Bi} is uniformly
bounded in C1%. Therefore, there exists a constant & > 0 depending only on
(7, Voo, B+ ) such that

Oesy (Poo — ) <=6 M Q\Dyy, =0 (0 — ) <=6 in O\ DY,

Since §; > 0 is fixed, depending on (v, 7y, Bx), we can choose N; sufficiently
large and d5 > 0 sufficiently small, depending only on (veo,y, B«, 01, N1), such that

Ha(B) < 6]1\/_—622 < min{o, 5} for all g € [0, B.].
i
With the choices of (N1, d2), ¢ satisfies (£3.3)-(£3.5) in Definition AI9(iv).

In inequalities (£3.6)—311)), parameters o, K3(8), N4, N5, and u; are fixed
so that any admissible solution corresponding to (veo, ) € Ryeak N {8 < Bi}
satisfies all the strict inequalities.

2-5. With the choices of (N7, d2) determined in Step 2-4, we conclude that any
fixed point of Z(-,3) for 8 € (0, Bs] lies in (B). In the next step, we also show
that no fixed point of Z(+,0) lies on 9K(0).

3. Let parameters (a,&,01,d3, N1) in Definition be fixed as described at
the beginning of §5.3.21 Let N; be further adjusted, and let o be fixed as in Step 2
so that Claim 2 holds. Finally, let §5 be further adjusted to satisfy the conditions
in Lemmas and as described at the beginning of §5.3.21 In particular,
let 3 be adjusted to satisfy ([@5A) given in the proof of Lemma With these
choices of parameters (o, £, d1, 2, I3, N1 ), the definition for the iteration set IC given
in Definition is now complete.

3-1. Claim 3: The iteration map Z(-,0) has a unique fized point 0 with
Ind(Z(-,0),K(0)) = 1.

At 8 = 0, it follows from Z5I) that po — pa = 0, so that the boundary
condition on T2 . UTY . of the boundary value problem (E3.I0) associated with
any u € K(0) becomes homogeneous. Then it follows from Lemmas E34(f) and
that, for any u € K(0), the associated boundary value problem ([@3.16) has a

unique solution ¢ = 0 in Q(u, 0). From this, we have
Z(u,0) =0 for all u € K(0).
It can directly be checked from Definition ELT9] that the fixed point u = 0 of Z(-,0)

lies in K(0). Also, we have shown in Step 1 that Z : K — C(Qfal) is compact

in the sense of Definition Therefore, the fixed point index Ind(Z(-, 3), K(5))
satisfying properties (i)—(iv) stated in Theorem is well defined. Then Theorem
[E12)(1) implies that

(5.3.9) Ind(Z(-,0), K(0)) = 1.
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3-2. Combining Claim 2 in Step 2 with Claim 3 in Step 3-1, we see that no
fixed point of Z(-, B) lies on the boundary 9KC(8) of K(B8) for all g € [0, 5,]. Then,
using (B39) and properties (a) and (d) of Theorem B.I3, we have

(5.3.10) Ind(Z(-, 8),K(8)) = Ind(Z(-,0),K£(0)) for all 8 € [0, B4

By Theorem [B12)(ii), (5310) implies that Z(-, 8) has a fixed point in /C(3) for all
B € [0,B«]. Then Proposition implies that, for each (voo, ) € Rweak N {0 <
B < B}, an admissible solution corresponding to (v, ) exists. Since v > 0

is arbitrary, and S, is also arbitrary in (O,ﬁ((iv‘”)), we finally conclude that there

exists an admissible solution for any (veo, ) € Ryeak- This completes the proof of
Theorem 23711 a
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CHAPTER 6

Optimal Regularity of Admissible Solutions
— Proof of Theorem 2.33

This chapter is devoted to the complete proof of Theorem 2331

Let ¢ be an admissible solution corresponding to (veo, 3) € Ryeak in the sense
of Definition 22241 We now prove statements (a)f(e) of Theorem 233 respectively.

1. Proof of statement (a) of Theorem It follows from Lemmas [3.9] and
BI8 that Tgpock is C in its relative interior, and o€ C®(Q\ Fsomc U Fé\gmc) By
Definition 223 Fsomc is a closed portion of a circle when 8 < A{"*) and becomes

a point Pz when § > ﬂ(vm). Near Fé\gmc, we combine Proposition B.26] with the

smoothness of ¢ away from I'S . U Fé\gmc to obtain ¢ € C11(Q2\ Fsomc)
Near I'9

Sonic, We consider two cases separately: (i) 8 < B(U"") and (i) g > B(Um).
If8 < 6(%" it follows from Propositions B.30land B.32that ¢ is C*! up to T'Y . . If

sonic*
B> PBs (veo) , then Propositions B39 and B:42 imply that ¢ is C1* up to 'S . = {Ps}
for some « € (0,1). This completes the proof of statement (a).

2. Proof of statements (b)—(c) of Theorem 233l Let the (x, y)—coordinates be
defined by BZI8) and B52) near TV . and I'? . respectively. Define

Y = o — max{pn, po}

for 9o and @ given by ZEI). Note that 1) = ¢ —@p near TN . and ¢ = ¢ — o

near Psomc

By (3229), B421), (B-420), LemmaB.21] and Proposition B:226, we can apply

the following theorem to i near I'Z{ . :

THEOREM 6.1 (Theorem 3.1 in [1]). For constants r, R > 0, define Q;tR b
;FR = {(x y) (O,T), ‘y| < R}

For positive constants a,b, M, N, and k € (0,%), suppose that 1 € C( ;’:R) n
C’Q(Q:R) satisfies

(22 — athy + O1)Pra + Oty + (b+ O3)thay — (14 Oa)ty + Ostpy =0 in Q 5,
Y>>0  inQfg,
=0 onaQ:Rﬂ{x:O},

K
—M“Tﬁi/fxﬁ &€ ZnQrRa
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This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



206 6. OPTIMAL REGULARITY OF ADMISSIBLE SOLUTIONS

where terms O;(x,y), i =1,--- .5, are continuously differentiable and
(6.1)
5
01(z,y)| | |DO:(z,y)| Ok (z, y)| O+
72 + 72 +kz_2<T + ‘DOk(LE,’y)D <N m QT,R
Then

Y € 0% r/2R/2) for any a € (0,1),
with
1 R
V22 (0,y) = 2 Yy (0,y) = 1y, (0,y) =0 for all ly| < 9

For 8 € [0, S(v“)), it can be directly checked from the results in §3.5.0] that
Theorem [6.1] applies to ¢ near I'C . . Then the admissible solution ¢ satisfies
statements (b)—(c) of Theorem 233

3. Proof of statement (d) in Theorem 2331 By Lemma B.21N(d), Tshock N ’Dév
is represented as the graph of y = furen(z) for 0 < z < &, where DY is defined by

Let {y(l)} be a sequence satisfying 0 < yfﬁ) < fN,Sh(O) for each m € N, and
lim 3y = firen(0). By (Z5.30), 2532), and Theorem 233(c), we can choose a
m—0o0

sequence {xg)} such that {(xS,P, Y )} cQ aVe €(0,1), and

1 1
|¢xz Ty ,y,(,p) m| < a for each m € N.

By Lemma B.21}d), 0 < g < fasn(0) < fu, bh(x%)) for each m € N. Therefore,
we have

. 1
; 1) 1)y — ] ; (1) (1) -

By properties (a) and (c) of Lemma B.23] and Proposition B:226 there exists
e € (0, £] such that, on FshockﬂDév , the boundary condition (34.23]) can be rewritten
as

(63) % + blwy + b0¢ =0 on I'gpock N ,Dé\/
for (bo,b1) = (bo, b1) (Y, by, 0, T, farsn(z)). Let w > 0 be from Lemma B2T(d).
Then

{(z, f/\/,sh(ﬂi) - %x) 0<z<e}C O

Denote F(z) := 1, (x, farsn(z) — 152). By (63), we have
.F(.’[) = Q;Z}z(l'vf./\/,sh( - —{E/ wzy X sth( )
—(b1by + bot)) (, farsn(x))

1
A t
— %x/o Yy (T, farsn(T) — 1—%}:0) dt for0 <z <e.

—ax) dt

From the last equality and Proposition B26] we obtain that F(0) = 0, F €
C([0,¢]) N C*((0,¢)), and lim, o4 (”;) = 0. Then, by the mean value theorem,
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6. OPTIMAL REGULARITY OF ADMISSIBLE SOLUTIONS 207

there exists a sequence {xs,zl)} C (0,¢) such that

(6.4) lim =0, F(@x®)=0
m—0o0
For each m € N, define y = fy sh(z (2)) 5 22 so that {(x%),yg))} C Q. By
the definition of F and (IBZI) we have
(6.5)
i (2) @Y = 7 (e (2)y _ (2) 2(2) ,(2)

w
= — hm (fN sh( (2)) - E)d)wy(xsz)ayr(r%))

Since ligl (2, y?) = (0, firsn(0)), we combine ([BH) with Proposition to

obtain

(6.6) lim Ve (2P 42y = 0.

In (62) and ([66]), we have shown that there are two sequences, {(:c,(qi),y,(ﬁ))} and

{(xS?, Yon )} in Q such that the limits of both sequences are (0, farn(0)). On the
other hand,

Hm 4 (2y), ) # Hm b (2, y).

m—o0

For 8 € (0 6S(U°°)) we can repeat the argument above by using Lemma [3:28](d)
and Propos1tlons 30l and B:32] to show that there are two sequences, {(3:5,1) , zjf,%))}

and {(xm ,yg))}, in  such that the limits of both sequences are (0, fo,sh( )), but
it can similarly be shown that

5 1
mlgn ¢mx( 5n) y%)): m 7£0_ hm ¢m’x( g)’y'gs))’

where fo,sh is from Lemma [328 This proves statement (d) of Theorem [233]

3. Proof of statement (e) of Theorem 2331 By Lemma [320(e), Sy is repre-
sented as the graph of y = far,0(x) near point P, in the (z,y)—coordinates given by
(3Z41I8). We extend the definition of far s, into (—&,&) by

(6.7) fnsn(@) = faro(z) for x € (—£,0].
By Proposition B3.26] f A sh satisfies
(6.8) (fash — far0)(0) = (fasn — Faro)'(0) = 0,

so that curve I'shock U Sp7 seg 18 C%!, including at point Ps.
Define

Qsé\g = Poo T PN
Since ¢ (x, faro(2)) = 0 and (oo — @) (@, fin(x)) = 0, 1) satisfies

(6.9) N (z, fvo(@) — N (x, frvsn(@)) = U(x, fan(z)) for 0 < x < &.
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A direct computation yields that
(6.10)
& ol (x, faro(@))

d 22

2
= [%0(@)8y 0N (x, fao(2) + Y an(fy o (@) 02 0k (x, fv.o(2)).
k=0

d? ¢ (2, favsn(2))

d x2

= A//\//’,sh(x)ayqs (z, fN sh +Zak fN on( ))kai_kagq%\é(x,f/\/’,sh(l‘)),

k=0

We differentiate (6.9) with respect to x twice and use (GI0) to obtain the
following expression:

(6.11) (fxvsn = faro)' (@) =

Aq(z) + As(z) + As(x)
3y¢{,\£($, fN,sh(x))

where
Av(@) = an ((Fiv o (@) 02705 6A (2 fuvo(a))
k=0
~(fir (@) 02 0N (2, v on(@)) )
A2($) = <ay¢'</>\£(xv fN,O(‘T)) - 8@;@5&(% f./\/',sh(x))) f./,\//’70(x)a
Ay(w) = (th( Yy (@, fvon())

Zak Fiv @) 02 0k, frran(2))).

By (68), we have
(6.12) A1(0) = A2(0) = 0.

We differentiate the boundary condition (F423]) in the tangential direction along
Tihock, and apply Lemma [3:23|(a)—(c) and Proposition B:226 to obtain that there
exists a constant C' > 0 such that

[ (@, favon(2))]
< C(W(% fN,sh(x))| + |D(:Jc,y)w(xa fN,sh(x))| + |D(x,y)wy(x7 fN7bh(x))|)
on Ipock N D?[ . From this estimate and Proposition [3.26] we see that
xl_lf(r)l_i_ ¢za:($= f/\/',sh(x)) =0,
which implies that

(6.13) w1_1>r(1)1+ Asz(z) =0.

By Lemma [3:20](c), y¢N (z, fN sh(z)) # 0 on Ighock ﬂ’Dé\/. Then we conclude from
([EIT) (613 that
(fash — far0)"(0) = 0.
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This implies that the extension of fAN7sh given by ([6.7) is in C?([—£,¢]). Further-
more, we conclude from (.11 and Proposition[326] that the extension of f A sh given
by @61) is in C**((—¢,&)) for any a € (0,1). This implies that Tspock U SAseg 1S
C?® for any a € (0,1), including at point Py = (O,f/\ﬂsh(O)). For g € (0, évm)),
it can similarly be checked that m is C%“ for any « € (0,1), including

at point P, = (0, fash(O)) for fo,sh from Lemma 328 Therefore, statement (e) of
Theorem [2.33] is proved.
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APPENDIX A

The Shock Polar for Steady Potential Flow

According to [22], for any given uniform supersonic state, a shock polar curve
for the two-dimensional steady full Euler system exists and is convex. In this
appendix, we show the same for the potential flow. The convexity of the shock polar
curve leads to Lemma [A.4] which is the key ingredient for proving the existence
of admissible solutions in the sense of Definition T4l for (ueo, ) € Pweak With
ug < ué” °°7u°°), and the non-existence of admissible solutions for (us, o) € Pstrong-
The existence of convex shock polar curves for potential flow is proved by combining
the results from [241[33].

The two-dimensional steady potential flow for an ideal polytropic gas is gov-
erned by the equations:

(pu)él?l + (p’U);m =0,

Ugy — Vg = 0,

L(u? +v?) +i(p) = By (Bernoulli’s law)
for a constant By > 0, where i(p) is given by

Pt
i(p) = 1 for v>1,
Inp for y=1.

LEMMA A.l. Fiz v > 1 and the incoming constant state (poo,Uso) =
(Poos (Uoo, 0)) with us > pélf”” > 0. Denote My := %75 > 1 as the Mach
p

number of the incoming supersonic flow. For each 3 € [0,cos™!(5—)), there exists

a unique u = (up,vo) € (Ry)?\ {ux} such that

(A.1) poU N = Pl - N,

(A.2) (Uo —u) -t =0,

(43) S n)? +i(po) = 3 (s - m)* +ilpnc)

forn = (cos B, —sin ) and t = (sin 3, cos 8), where po is given by
1

(A4) po =i (i(pe) + S0 — [uf?).

In other words, u becomes the downstream velocity behind a straight oblique shock

So of angle 5 — B from the horizontal axis. Moreover, the collection of such u =

(uo,vo) for B € [0,cos™ (57=)) forms a concave curve on the (u,v)-plane.

PRrROOF. The existence of the curve for (up,ve) is verified by following the
proof of [33] Proposition 2.1], and the convexity of this curve can be checked by
adjusting the proof of [24] Theorem 1]. We prove the lemma for the case that

211
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212 A. THE SHOCK POLAR FOR STEADY POTENTIAL FLOW

~v > 1. The case that v = 1 can be treated in the same way. The proof is divided
into two steps.

1. FEuxistence of shock polar. Fix constants v > 1, py, > 0, and uy with
Uso > p(w D2 et So be a straight oblique shock with angle 5 — 8 from the
horizontal ground, and let po and u = (up,ve) be the density and the velocity
behind shock So. By (A2), the angle between vector u — us and the horizontal
axis in Fig. [Alis 8. By the expression of {n,t}, we have

qo0

T

Uno

F1GURE A.1. The shock polar for potential flow

Uy * N = Uy COS B, Uy - t = Uno Sin 5,
(A.5)

u-n=upcosf — vosin 3, u-t=wupsinf + ve cos .

Denote My, p, = W For each 3 € [0, %), My, is fixed and My, > 0 holds.

It has been shown in the proof of Lemma [2.17 that there exists a unique M,, with
M,, # M ,, as a solution of the equation:

y—1

(-1)
for g(M) = (M? + %)M_zvlll , unless My, ,, = 1. Substitute u-n = M,p,’
into (A23)) and solve the resultant equation for po to obtain
pZ;l _ (uoo : 1’1)2 + 2Z(poo) + %
= > ,

By the entropy condition, shock S¢ is admissible only if po, < po, which is equiv-

alent to saying that 0 < M,, < 1 < My . Since Mo, = Mo cosf for My, =

W’ we restrict our consideration only to the case that 8 € [0,cos™!(5)).

Then (A2) and (AF) yield that

(uo) _ ( cos f3 smﬁ) npo;l
vo - Sin ﬂ COS /6 Uoo Sln ﬁ )
Therefore, curve (up,ve)(8) is given for § € [O,cos_l(MLm)) in the (u,v)-plane;

see Fig. [A 1l
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Since limg_, - (o )Mn =1=limg_, - (o )Moo,n, the shock polar curve
is extended up to 3 = cos™!( oo) by (uo,v0) = (uoo, 0).

This curve (u,v) = (uop,v0)(B) for B € [0,cos™!(57—)] is called a shock polar
for potential flow. b

2. Convexity of shock polar. Let u = (u,v) denote each point on the shock

polar curve. By (AJ)—(A2)), each point u on the shock polar satisfies the equation:
Uy — U
(A.7) g(0) = (p(lul)u - pooue) - ——— =0

[uoe — u]

for us = (U0, 0), where p(|ul?) is given by (A4) so that Dyp = —%p for ¢(Juf?) =
0"~ 1(Jul?). Combining this with (A7) gives that

u-n.o pu-n PP
A8 ‘n= (1—— ) b= —(u - b .
(A8) gu-m=p (C) Ju (u )( = +|uoo_u>
By the entropy condition, we have
(A.9) gu-n>0.
Define
e Yu
q = )
Gu-1n

and express q as q =n + g“ nt.

Claim: g x g§ <0 for all 3 € (0, cos_l(Mlm)).

Denote A := — 2. Then da — (14 ﬁ)t — An, which implies that

ap =
dq_ 5 dA
(A.10) X g5 = —(1+4 +dﬁ)

By (A1), (A3F), and (A-]), we can rewrite A as A = “f?\?f( Mo 4 uwiosﬁ) for
M, = %2 Differentiate (A.G) with respect to 3 to obtain

dMn _ g/(Moo’n) Uoso SIH/B ) 1
a8 = gy oo 70 e e

131 o d M,
From p2 M, = pod Moon = Poolico cos 3 and a5 > 0, we see that < 0 so

that dA > 0 holds for all g € (O,cos_l(MLm)). Combining this with (m, we
have

dq 1
_<_ —)).
qxdﬁ 1 for 5 € (0, cos (MOO))

The claim is verified.

The inequality above gives the useful property:

dq
d aXxX g3 1
(A.11) a4 (q) Lo — <o
Jal al al
at each point on the shock polar curve.
Fix a point ug = (ug, vo) on the shock polar {u = (u,v) : g(u) = 0}, and define

ny = po—=7. We introduce a new coordinate system (s,t) so that the following

properties hold in the new (s, t)-coordinates:
(1) Ug = (0,0), ng = (07 1);
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214 A. THE SHOCK POLAR FOR STEADY POTENTIAL FLOW

(ii) If 75 is the unit vector perpendicular to ng and oriented to satisfy ue. -9 >
0, then 79 = (1,0).

Define a function G(s,t) by
G(sW W) = g(u),

where (s, ¢(W) is the (s, t)-coordinates of u on the shock polar. Since the value of
gunforn= ‘32:3‘ is invariant under the rotation, G¢(0,0) = —(gy-n)(ug) < 0. By
the implicit function theorem, there exists a function fy, : (—€0,£0) — R for some
small constant €g > 0 so that the shock polar curve is represented by t = fyu,(s)

near ug in the (s,t)—coordinates. Such a function f,, satisfies the relation:

1 O
UO—():&Xi<g) L1 <o,
T U2  Ja 45 \a lumu = Taluo)l2
Therefore, we conclude that the shock polar for potential flow is concave. ]

REMARK A.2. Fix v > 1 and (peo, Uoo) With tee > pg_l)/z > 0. Let Y (Poostico)
be the shock polar curve lying in the first quadrant in the (u,v)-plane for the

steady potential flow with the incoming supersonic state (poo,Uso). Owing to the

concavity of the shock polar, there exists a unique Hép cortiee) o (0, Z) such that the

12
following properties hold:

(i) 0o <Oy < Hép“”u‘”), then line © = tan6, intersects with Y (Poostice) gt
two distinct points;

(ii) Line 7 = tan 9&”“’““’) and Y (Pe:t) have a unique intersection point so
that © = tan Gépx’u‘”) is tangential to Y (Pe-4) at the intersection point;

(iii) If Gép“’““’) < 0y < Z,thenline £ = tan 6, never intersects with Y (Poe-toc),

(y=1)/2

LEMMA A3. Fiz v > 1. For each (poo,Uoo) With Us > pod > 0, there
exist a unique constant ﬁép‘”’u‘”) =: Gy € (0,us) and a unique smooth function
Toolar € CO([fig, Uso]) N C%°((g, uno)) such that
(A.12) Y (poeree) — {(u, frotar(u)) = u € [tio, ucc]}.

Furthermore, the following properties hold:

(a) Let g pe from Lemma 24(c). Then there exist unique uq,us €
(tip, o) such that

(A13) Footar(ts) _ glomoioe), footar(ua) _ o)
Us Ud
Moreover, uq < us holds, and (uqg,us) vary continuously on (Poo,Uso)-

(b) Denote by fpolar(*; Poo, Uoco) the shock polar function fpolar(-) for the in-
coming flow (Poo, Uso). Then fpolar as a function of (U, poo, Uss) s C™ on
the domain:

{(’U,, pooauoo) D Poo >0, g > P((;oyfl)/Q’ AS (ﬂ(poc’uoo)auoo)}-

PROOF. The proof is divided into four steps.
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A. THE SHOCK POLAR FOR STEADY POTENTIAL FLOW 215

1. For each g € [O,COS*I(MLOO)], let (po,uo,vo) be from Lemma [AT] and let

qo =\ uh + v3. Since (po, uo,ve) is uniquely determined for S € [0, cos_l(M%m)]7
qo is considered as a function of 3. Substituting (A5) into (AJ)-(A22), we obtain

(U, v0) = too(l — (1 — pﬁ) cos? 3, (1- pﬁ)cosﬁsinﬁ),
PO po

so that
1— (222

(A.14) cos® B = ﬁz)? =: h(qo).

PO
It follows from ([(A4]) and (A14) that

2

W (q0) = ————-——1(qo)
( - ﬁ) PoCol

for I(go) satisfying I(us) = 0 and I'(go) = (v + 1)go(ph — p%). Inequality
PO > pPso holds, owing to the entropy condition for the admissible shock so that
I'(qo) > 0 and I(go) < I(ues) = 0 for 0 < go < ueo, which implies that h'(¢p) < 0
for 0 < qo < Uso. Then ([ATE) yields that

dqo 2 cos Bsin 3 1

A15 =— >0 for all 8 € (0,cos™ ! —).
(8.15) a8 = Wigo) pe e 377)

2. Let g(u),n, and t be given by (A7)). Then (A-8]) implies
dvg(u) = —(gu -m)sin B + (gu - t) cos f < 0

for any interior point u = (u,v) in Y(Pe-%) By the implicit function theorem,
there exists a unique function foolar : [lo, U] — [0,00) so that (AI2) holds,
where 49 = go(8)|s=0 for qo defined through (A.14)). The smoothness of map
(U, Poos Uoo) > fpolar(U, Poos Uso) follows from the implicit function theorem and
the smooth dependence of g(u) on (peo, oo )-

3. The existence and uniqueness of uq € ({g, us) result directly from the
concavity of the shock polar curve Y(P>-%=) Since point (g, 0) on the shock polar
Y (Poostice) corresponds to a normal shock, (tp, 0) is subsonic; that is, p?{l - q% >0

_ -1

holds at 3 = 0. At = cos™'(372), pb - —4b < 0, because (p07q0)|ﬁ=cos*1(ﬁ) —
(Pocs oo ). From ([AI5) and Bernoulli’s law that $¢2 + poo(po) = By, we have

-1

7))

dp
Therefore, there exists a unique us € (g, Uso) such that f"c’lz—(u) = tan Gép""’u"")
holds. Furthermore, Lemma 4(c) and the concavity of Y (P>-%0) imply that uq <
Us.

4. By Bernoulli’s law and the concavity of Y(Pe:te) ([AT3) is equivalent to

1
<0 forall B¢ (o,cosfl(M—)).

Ay 1)1, pt
US + f}folar(usapooauoo) = M(—Ug ),

1\l

fpolar(ud; pOO7UOO) - udfl_{)o]ar(uda pOO; Uoo) = 0

(A.16)

for each (poc, Uoo) With Use > péZ*”/Z > 0.
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216 A. THE SHOCK POLAR FOR STEADY POTENTIAL FLOW

For each £ € N, let a sequence {(poﬁ),ugé))} satisty u® > (p<(>lf,))(7_1)/2 > 0.
Also, suppose that {(poO ulk )} converges to (p’,, u’,) with u¥, > (p2,)~1/2 > 0.
Let (ugk),ug )) and (uj,u)) be the values of (uq,us) corresponding to (pgz), (k))
and (pZ,,u’,), respectively. Note that

(y—=1)/2

(k) (k) , (k) (k) (k) , (k) L Poo >0, Use > poo
U 9 oo7uoo bl US bl ooauoo G ’U,, 007uoo . ~
(ug "5 p ); (ug™s p ) {( p ) e (@) )

for each k € N and that g varies continuously on (puo, tso) S0 that {(ud , )}
k 3)

)}

= (ud,uﬁ) Then assertion (b)

bounded in (R*)2. Therefore, there exist a convergent subsequence {(ud

and states (ug,ug) such that lim;_, . (u ék ), (ks ))

(proved in Step 2) and (A16) yield
* * 2(,-}/ — 1) 1 * (p* )771
(u§)2 + fgolar(ugvpoovuoo) = ﬁ <§(uoo)2 + ﬁ )

fpolar(ugvpzovuoo) - ugifyl)olar(u(ﬁi’ pz;ovu;o) =0.

This implies that (ug, uf) = (uf,u?), since it has been shown in Step 3 that (ug, us)
satisfying (A.13) for (pZ,, u’,) uniquely exists. Therefore, we conclude that (ug,us)
varies continuously on (peo, Uso)- O

In Lemma 2.T9] the one-to-one correspondence between parameter sets P and
R is established. For each (us,uo) € B, there exists a unique 6, € (0, 5) such that
Voo 18 given by (Z423)), where (vso, 5) € R corresponds to (uso, ug). The convexity
of the shock polar obtained in Lemma yields the following property:

LEMMA A4, Fizy > 1 and ve > 0. For each 8 € (0, %), let poo, 0, po, and

Pg be defined by 24T), (244), (Z43), (Z53), respectively. Denote G(p, z,§) =
a*M(p, 2, &) for ¢*M(p,2,€) defined by BAID). Then there exists B((f‘x’) € (0,%)

depending only on (Voo,7y) such that G(p, z, &) satisfies

<0 for B € (0, ((iv‘”)),
(A17) Gy (Dpo. 9ocr Ps) § =0 for =B,

>0 Jor B € (B4 (voo)  5)

PRrROOF. The following facts are useful to compute Gy, (Do, Yoo, Ps):

(i) The unit normal vector np to So towards the downstream is npo =

Ex=hes = (sinf, = cos ) so that

(PoDpo — Do) - (1,0) = (po — 1) (uo — &) cos? B,
where Do and Dy, are evaluated at &€ = (£;,&) € R2.
(ii) It is shown from a direct computation that, if G(p, z, &) = 0, then

1 (C2 Dsooo—p_< .Dsooo—pl) )_pp—Dsooo

A18) Gp(p,z,€) =
( ) Gp( ) P12 | Do — | Dpos — Do — P

for p = p(p, 2).

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



A. THE SHOCK POLAR FOR STEADY POTENTIAL FLOW 217

It follows from (i)—(ii) that
(A.19)

. P, 2
Psy2) SinB  (po —1)(uo — & ") cos® B
G (Do, s Pa) = (b = (o — &)%) 25 — L
Po Vo + 05
for co = pgq)/z- Denote go := Dypo(Ps) - no. Then up — ffﬁ = qpcscf,
where P is denoted as Pg = ( f 7,0). Also, & in the proof of Lemma [2:22] can
be written as £J* = qo cos 8. Substituting these two expressions into (A9) and

using the relations that up = —vy, tan 8 and leo=Ydo _ 1 ghtained from @247,

Voo S€EC B
243), and (ZZ29]), we have
. (&5)? cos 8
Gp, (Do, Poos P3) = po(l — M) sin 3 — p'Z*Q csc i — tan 8’

where Mo is defined by ([Z46) with ¢ = co. Then it can be directly checked that
dGp, (Dyo,px,Ps)

I3 >0forall 0 < g < 3.
It follows from ﬁlir(l)l{_(po,f?) = (pnr, &) that limg o1 Gy, (Dpo, Poos Ps) =
—

—0Q.

Relations (Z4T11) and ([Z437) yield 5" = go cos 3, which gives that

. COS
Gpl(DSDOﬂDoorP,B) = p(g((l - M(%) Slnﬁ o M(% COSﬁ2 CSCﬁ) B tang'

It is shown in the proof of Lemma [2.22] that limg, z — co = oo and %2 < 0 for all
0 < 8 < 5. This implies that limg_, = G, (Dyo, P, Ps) = 0o. Therefore, there

exists a unique ﬁé“f"’) € (0, 2) satisfying (A7) O
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APPENDIX B

Non-Existence of Self-Similar Strong Shock
Solutions

For the completeness of this monograph, we include the proof of the non-
existence of admissible solutions corresponding to (veo,3) € Rstrong in the sense
of Definition 2.24] or equivalently, the non-existence of admissible solutions corre-
sponding to (tes, %) € Pstrong in the sense of Definition EI4l The non-existence
of self-similar strong shock solutions was first studied in Elling [25]. In this appen-
dix, we combine the convexity of the shock polar shown in Lemma [A ] for steady
potential flow with the result from [25] to show the non-existence of admissible
solutions corresponding to (Voo, 5) € Rstrong-

ProPOSITION (Non-existence of admissible solutions with a strong shock). For
each y > 1, there is no admissible solution corresponding to (Vso, 8) € Rstrong N the
sense of Definition 224t equivalently, there is no admissible solution corresponding
to (u007 UO) S mstrong~

PROOF. The proof is divided into six steps.

1. On the contrary, suppose that there is an admissible solution ¢ for some
UOO,B) € Rstrong in the sense of Definition 224l Then ¢ := ¢ — 9o € 3\

LUTN )N CH(Q) satisfies

1) (=i as — 206 9abae + (¢ — 98, )ae =0 inQ,

2) V=9 —po, 8(DY,¥,€)=0  on Isnock,

3) =[DY[=0 on Ty,  Y=¢n—vo  onli,

4) Oe, ) =0 on I'yedge
for ¢ = c2(|Dy|?, ¢) and TS ;. = {Ps} by [2.5.6), where

0(q, 2,§) == G(Dpo (&) + a,p0(&) + 2,§),

(
(re
(B.
(B.
(B.
(B.

G(a,2,€) = (p(d, 2)d — Dpoo(§)) - %’
(B.5) 1, 2_2)7 T for :
p(q,z) = (1 (Z 1(2 2laf* =) T
exp (%= — 1|q|? — 2) for v=1,

02(‘(1'27 Z) = p7_1(|q|2, Z)7
for q € R?,z € R, and € € Q.
2. Claim: ¥ attains its minimum at Pg.

Since (B.3)), combined with Remark 35 implies that 1) is not a constant in €,
then the minimum of 1 over € is attained on 92 by the strong maximum principle.
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220 B. NON-EXISTENCE OF SELF-SIMILAR STRONG SHOCK SOLUTIONS

Also, ¢ cannot attain its minimum over O on I'yedge by Hopf’s lemma. The proof
of Proposition [34] applies to ¢ such that Tgpecx lies strictly below S, and ¢ > 0
on Ignock. Therefore, we conclude that ming ¢ = ¢ (Pg) = 0.

3. Divide equation (B) by c?(|Dy|?, ¢) to rewrite (B.I)) as

2
Ly = (1 — % + 011(5))¢51§1

+2012(&) e e, + (1 + 022(8)) theye, = 0 in Q

for & = (£1,&2) € Q, where each O;; = O;;(Dy, p) satisfies that limg_, p, [O;;(€)| =

0 for ¢,7 = 1,2. Define k := \/1—|D¢01(P5)|2/c§9 and & = k(& —€,7). Let (r,6) be

the polar coordinates of (51,52) centered at Pg. Then Q C {r > 0,0 <6 < B} for
tan = %
Next, define

(B.6) U(r,0) := er cos(wpb)

for constants e,wg > 0 to be determined later. As in [25], choose € > 0 small and
wo € (0,1) close to 1. A direct computation by using the definition of (r, ) shows
that

(B.7) L = Z(1 - ) (cos(wod) + OF*(1,0))  inQ,
with lim, o [OP (r, 6)] = 0.
A direct computation by using (AI8) and Lemma [A4] leads to
9q(0,0, Pg) - (cos B,sin B) < 0 < gq(0,0, Pg) - (1,0).
Therefore, there exists 0y € (=5, —5 + ) such that

0,0, P, .
% = (cos fp, sinby).
q\Y, Y,
Then it can directly be checked that
(B.8) 94(0,0, P3) - DeU(r,0) = e(k cos 0y cos((1 — wo)0) + (’)ngIar)(H)),

where |OF™)(9)] < C¥|1 — wy| for all @ € [0, 5] with a constant C* > 0 chosen
independently of € and 7.

4. Claim: There exist w, € (0,1) and Re > 0 such that, whenever wy € [w., 1)
in (BE) and R < Ry, the minimum of 1 — U over QN Br(Pg) cannot be attained
on Dshock N Br(Pg). Furthermore, w, and Ry can be chosen independently of €.

Suppose that (¢ — U)(P,) = _min (¢ — ¥) for P, € Ighoek N Br(Pp) for

QQBR(Pﬁ)
some R > 0. Since ) — ¥ =0 at P, ¢ — ¥ <0 at P,. Let v, be the unit normal
vector to I'ghock at P, oriented towards the interior of €2, and let 74, be a unit
tangent vector to I'gpock at Pi. Then ¢ — U satisfies

(Bg) 87'sh (w - \Ij)(P*) =0, a’/sh(dj - \I,)(P*) > 0.
Let P3P, be the projection of P3P, onto Se. Since (¢ — v0)(PL) = 0, it follows

from 241 and Z43)-244) that

e[, — Ps| > W(P.) — U(Ps) > (P.) = (poe — 0) (€)1

€:P£ Z ’UOOSQCﬁlp* _Pi‘v
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which yields

€
B.10 P,—P|<——|P,— P3|
(5.10) P.= Pl < ——|P.— Py

From (B.9), we have
(B11)  Du(P.) = DU(P) + (DU(P.) = D¥(P.)) + [ D( — B)(P.)[va
Since |D(¢oo — ) - Vsu| > 0 on Tghock, there exist constants &,§ > 0 such
that |D(ps — )| = & on the open é-neighborhood Nz(Tspock) Of shock- Since
Y = Qoo — 9o on Ishock, g(Dﬂ}ad}aS) = g(Dd)a@oo - @Oag) on I'shock. Define
94(a, &) == 9(q, (Poo — v0)(&),&). Choose constants gy, Ry > 0 small so that
(i) g¢(a,€) is well defined in U,y g, = {(q,&) : |q| < 200, |6 — P3| < 2R };
(ii) There is a constant Cy > 0 such that

”gﬁ”Cl(Uao,Rl) < Cy,

(B.12) Dyos(§) —d

0q81(a, &) >Cpt for (q,€),(d, &) € Uy g, -

Dpuc(€) —a] =0
Such a constant Cy can be chosen independently of (e, wp).

Owing to |Dy(Pg)| = 0, there exists R; > 0 small, depending on oy, such that
(D(&),€) € Uy, ., for all € € QN By, (Ps).

If P, € QN Bpg,/2(P3) and o zecﬁ < %, then (BIQ) implies that P, €
Bsg, 14(Pg). Choose €1 € (0, W] so that, whenever € € (0,¢1], (DU(P]),P]) €
Us, R, Note that ; can be chosen, depending only on o¢. Then

0= gu(DWP*), P*) - gﬁ(ou P>|I<)

= (0:(DY(P.), P.) — gz (DY(P.), PY)) + (8:(Dv(Ps), PY) — 9:(0, PY))

=:J1 + Js.
By (BI0Q) and (BI2), J; is estimated as
Cqe
B.13 Ji| £ —2—|P, — P3|
(B.13) < =i - py

Ja is estimated more carefully by using (B.8) and (BI0)-(BI2) as follows:
Jo = (DU(P!) + (DU(P,) — DU(P.))

1
1D — W) (P ) / Dags(tDU(P,), PL) di
1
> (DU(P!) + (DU(P.) - DU(EL)) - / Dags (LDV(P.), PL) dL.
Let C* be from Step 3. By (B.8) and (B12),
1
DU(E!) - [ Ougs(tDU(P). PY) dt
0

> e(k cos B cos((1 — wo)B) — CH*1 — wo| — C|P, — Pg|*)
for some C' > 0 depending on Cg and [[¢[|c1.a (- By (B.6), (B.10), and (B.12),

1
(DU(P,) — DU(P))) - /O Dqas (tDY(P,), PL)dt > C%|P, — Py
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for some C' > 0 depending on Cy. Therefore, Js is estimated as
Jz > (k cos by cos((1 — wp)B) — C*|1 — wy| — Ch(|P — Pg|))
for a non-increasing continuous function A(r) that tends to 0 as r tends to 0, where
C* and C are chosen, independent of P, and wy. Combine this estimate with (B13)
to obtain
(B.14)
e (kcos g cos((1 — wp)B) — C*|1 — wo| — C(h(|P, — Pg|) + | P, — Pg|)) < 0.
Choose w, € (0,1) close to 1 and Ry € (0, R;] small, so that
e(k cos by cos((1 — ws)fB) — C*1 — w,| — C(h(Ry) + Ry)) > %kj cos f.

Under such choices of (w,, Ra), we arrive at a contradiction whenever wy € [wy, 1)
and Py, € Tghock N Br,(Ps). Thus, ¢ — ¥ cannot attain its minimum on Iypecx N
Bpr(Pg) whenever wy € [ws,1) and R < Rs.

5. Claim: Let w, and Ry be from Step 4. There exist € > 0, wg € [ws, 1),
and R € (0, R] such that, for ¥ defined by (BX6), ¢ — ¥ attains its minimum over
QR(Pﬁ) =QnN BR(Pg) at Pg.

By (BI), there exists a small constant R € (0, R2] so that £ is uniformly
elliptic in Qg, (P3) and

€

L =¥) =~

By the strong maximum principle and Hopf’s lemma, the minimum of ¢ — ¥ over

Qr(P3) must be attained on 0Qg, (Ps) \ I'wedge- It is shown in Step 4 that ¢ — ¥
cannot attain its minimum on I'ghock N Br, (P3).

Denote m := infﬂmaBR3(Pﬁ) 1. The claim in Step 2 implies that m > 0. Choose
¢ > 0 small, depending only on Rs, so that ¢» — ¥ > 0 on QN IBg,(Ps). For such
a choice of ¢, since (¢p — ¥)(P3) = 0, we conclude that

Qg}gﬁ)(w - ) = (¢ = ¥)(Pg) = 0.

(1 —wg) cos(woﬁ) in Qg,(Ps).

6. In Steps 4-5, it is shown that we can choose (&, wp) in (B.8) so that, if R > 0
is sufficiently small, the minimum of ¢ — ¥ over Qr(Pg) must be attained at Pg,
provided that there is an admissible solution ¢ corresponding to some (v, 3) €
Rsirong and that 1 is given by ¥ = ¢ — ¢o.

By the definition of ¥ with wy € (0,1) and (B.3), and by the C'-regularity of
@ up to Pg, there exists a small constant § > 0 so that 9,(¢ — V) < —§ in Q5(Pp).
However, this contradicts the fact that

(1= W)(Py) = min (=)

Therefore, we conclude that there exists no admissible solution corresponding to
(Voo, B) € RAstrong in the sense of Definition 2.24] O
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APPENDIX C

Quasilinear Elliptic Equations in Two Variables

For the completeness of this work, this appendix includes several properties of
quasilinear elliptic equations, which are used to prove Theorem 2311 We refer the
reader to [11]] for the proofs of these properties as stated below.

C.1. Ellipticity Principle for Self-Similar Potential Flow

The following lemma is an extension of the ellipticity principle of Elling-Liu
[26]:

LEMMA C.1 (Theorem 5.2.1, [I1]). Fiz v > 1 and vee > 0. In a bounded
domain Q C R2, let ¢ € C3(Q) satisfy the equation:

(C.1.1) div (p(|D¢[*, 0)Dg) +2p(|Dgl*, ) =0
for p(|Dy|?, ) given by Z4AZ). Denote the pseudo-Mach number as M := %

for c(|Dgl|?, @) = p%;l)(‘DL,OP, ©). Let ¢ satisfy that p >0 and M <1 in Q. Then
the following properties hold:

(a) Fither M =0 holds in Q or M does not attain its mazimum in §);

(b) Suppose that diam(Q) < d for some constant d > 0. Then there exists
a constant Cy > 0 depending only on (veo,?y,d) such that, for any given
§>0,¢>1, andb € C2(Q) with |Db|+¢|D?b| < & in Q, if (| Dy, ) < &
holds in Q, then either M? < Co8 holds in Q or M? + b does not attain
its mazimum in €.

LEMMA C.2 (Theorem 5.3.1, [I1]). In a bounded domain Q C R? with a rela-
tively open flat segment T' C 98, let p € C3(QUT) satisfy (CLI) in Q and

O =0 onT

for the unit normal vector v to I' towards the interior of Q. Assume that p > 0
and M <1 in QUTL. Then the following properties hold:

(a) Either M =0 holds in QUT or M does not attain its mazimum in QUT;

(b) Let diam(2) < d for some constant d > 0. Then there exists a constant
Coy > 0 depending only on (veo,7,d) such that, for any given § > 0,
¢>1, and b € C*(Q) with |Db| + &|D?| < & in Q and b =0 on T, if
c(|Dy|?,¢) < ¢ holds in QUT, then either M? < Cod holds in QUT or
M? + b does not attain its mazimum in QUT.
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C.2. Uniformly Elliptic Equations Away From the Corners
Consider a quasilinear elliptic equation of the form:
(C.2.1) N(u) = f(x) in 0,
with
2
N(u) = Z A;j(Du,u,x)D;ju + A(Du, u,x),
i,j=1
where
(C.2.2) Aij(p,z,x) = Aji(p, 2,x), A(0,0,x)=0

for all (p,2,x) ER?2x R x Qand i,j = 1,2.
Suppose that there exist A > 0 and « € (0, 1) such that

2
(C23)  AuP < Y Ay(Du(x),u(x), )iy < Al
ij=1

for all x € Q and p = (p1, p2) € R?,
(C24) (A APz Ylg g A1 for all (p,2) € RZ xR,
(C.2.5) 1D(p.) (Aij’A)HO,R%(Rxﬁ <A
For r > 0, let B, denote a ball of radius r in R2.

THEOREM C.3 (Theorem 4.2.1, [11]). For Q = Ba, if u € C*%(By) is a solution
of (C2.J) with
[ullo,s; + [ fllo,a,B: < M,
then there exists a constant C' > 0 depending only on (A, M, «) such that

lull2,0,, < C(llullo,5, + 1 fllo,a.5.)-
Applying Theorem [C3] to v(z) = Lu(rz), we have the following corollary:
COROLLARY C.4. Ifu € C?%(By,) is a solution of (C2I) for r € (0,1] with

|01B2r + Hf||070¢7327' S M7
then there exists a constant C > 0 depending only on (A, M, «) such that

[Ju

C
lell2.a,8, <~z (Iullo,Bsr + 721 fllo.c. 32, )-

THEOREM C.5 (Theorem 4.2.3, [11]). For A € (0,1), let ® € C*(R) satisfy
[®]l1r <A, ®(0) = 0.
For R > 0, denote
Qg := Br(0) N {zg > eP(x1)}, g :=Bgr(0)N{zy =c®(z1)}.
In addition to assumptions (C2.2)-(C25) with Q = Qa,., let W(pa, z,x) satisfy
W(0,0,x) =0 on Ty,
|0p, W (p2, 2,x)| < € for all (p2,2,x) € R x R x Iy,
1D,y W (P2, 2, ) ||l1,15, < A1 for all (p2,z) € R x R.
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Then there exist constants €,8 € (0,1) and C > 0 depending only on A such that,
for u € C?(Qa,) N CYP(Qy, UTy,) satisfying (C2ZI) with f =0 in Qo and
(C.2.6) Up, = W (Ugy, U, X) on Ty,
the following estimate holds:

C
[ull1,8,00,/5 < 7,1—+3||U 10,0,.-

THEOREM C.6 (Theorem 4.2.8, [11]). In addition to the assumptions of Theo-
rem [CH], for a € (0,1), assume that
[®fl1,08 < A7
1D s, )W (P2, 2, ) l1,0,T2, < A1 for all (p2,2) € R xR,
||D(2p2’Z)W||1,O,]R><R><F2T <Al

Then there exist € € (0,1) and C' > 0 depending only on (X, , ||ullo,q,,) Such that,
for u € C%%(Qy, UTy,.) satisfying (C20) with f =0 in Q. and (C2.8) on Ty,

C
lull2,0020,/5 < 5 0.0z,
THEOREM C.7 (Theorem 4.2.10, [11]). For A € (0,1) and a € (0,1), let ® €

C?(R) satisfy

[®|2,0, < AT, ®(0) = ®'(0) =0,

and denote
Qr = Bgr(0)N{xs > ®(x1)}, T'r:=00rN{xs = ®(x1)} for R € (0,2).
Let u € C?%(Qr UTR) satisfy (C21) in Qr and
w-Du+byou=nh on I'g.
Assume that w = (w1,w2)(x) and by = by(x) satisfy the following conditions:
w-v>\ onDg, [(w,b0)l1,0rr <A

where v represents the unit normal vector to I'g towards the interior of Qgr. If u
satisfies

[ullo.cr + [fllo.ccr + IAll1ars < M,
then there exists a constant C > 0 depending only on (\, «) such that

C
lellztns < mrms (Nl + B2 fllon o + Rl ).

In addition, there exist 8 € (0,1) and C>0 depending only on A such that

C
lulls.2ns < zrps (lulo.cn + B2floasn + Blbllosrs)-
Note that B is independent of «.

THEOREM C.8 (Theorem 4.3.2, [11]). Let R > 0, A € (0,1), v € (0,1), and
K > 0. Let ® € CY(R) satisfy

[@[logr < AT, ®(0) = 0.
Let Qr and T be as in Theorem [C for R > 0. Define
d(x) := dist(x,T'r) for x € Qp.
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Assume that u € C3(Qg) N CH(QR) is a solution of (C2I) with f =0 in Qp and
the boundary condition:

B(Du,u,x) =0 on I'p.
Assume that A;;(p,z,x),4,7 = 1,2, and A(p, z,x) satisfy (C23)—-(C2ZH) and the
additional property:
d(x)?|Dx(Aij, A)(p, 2,x)| < A1 for allx € Qg and |p| + |2| < 2K,
and that B(p, z,X) satisfies
(C.2.7)

|DpB(Du(x),u(x),x)| > X\ for all x € Qp, <AL

IBlls,{1p|+121<2 K xeTm)
Assume that u satisfies

lul + |Du| < K on Qr UTR.
Then there exist both B € (0,1] depending only on (X, K,~) and C > 0 depending
only on (R, \, K,~) such that

(=1-p8),T
|LB»QR/2 <C, Hu||27ﬁ7QR/2 e <C.

I
THEOREM C.9 (Theorem 4.3.4, [11]). Let the assumptions of Theorem be
satisfied with v = 0. In addition, for a,o € (0,1), assume that
[@[lcro@ <A™, ®(0) =0,
(A Dllera(gipl+ 1<, xcmy)
+ 1Bl (ol 1z <or, xeamy S AT forj=1,2.
Then
||u||27070R/4 <C,
where C' depends only on (A, K, «, 0, R).
CorOLLARY C.10 (Corollary 4.3.5, [11]). Let the assumptions of Theorem
be satisfied with v = 0. In addition, for « € (0,1) and k € N, assume that
||(I)||kr,a,R < )\_17 (I)(O) = 07
1CAz, Allora(gip|+121 <2k, xeTmh
HBllos vl s<ax xemmy <A forj=1,2
Then
[ullk+1,0.08/, < C,
where C depends only on (A, K, k,a, R).

C.3. Quasilinear Degenerate Elliptic Equations
Consider a domain U C R? of the form:
U={x=(x1,22) : 21 > 0,22 € (0, f(x1))},
where f € C*(Ry) and f > 0 on R, . For a constant r > 0, denote
U-=Un{z; <r}
L,r,=0UNn{(21,0) : 0<z1 <7},
L, =0UN{(z1, f(z2)) : 0 <z <7}
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Consider a boundary value problem of the form:
(C.3.1)
2 2
Z Aij(Duyu, X) 0 0 u + Z A;(Du,u,x)0,,u =0 in U,,
i,j=1 i=1
B(Du,u,x) =0 on 'y,
Oz, =0 only .,
u=0 on I'y = 0U N {z; = 0}.

THEOREM C.11 (Theorem 4.7.4, [I11]). Given constants r > 0, M > 1, and
I,A €(0,1), assume that the following conditions are satisfied:

(i) Conditions for I'y,.: f is in C*A([0,7]) for some B € (0,1) and satisfies

(1ﬁ{0}<M f>1 onRy.

(ii) Conditions for (A;;, 4;): For any (p,z,x) € R2x R x U, and k =
(K)l, I€2) € Rz,

MNkl? < Z A (p, z,x) L+] <\ kA

1,j=1 1

In addition, (Ajj, A;) satisfy the following estimates:
[(A11, A12)ll0,1. k2 xrx0, < M,

|02, A11(P, 2,%x)| < Mxl/z inR?> xR x Uy,
[[(A22, Ay, A2) xBxU, T [[D(p,z)(A22, A1, A2) |0 r2xrxv, < M,
sup ‘(IlawlaIi/zaa’:z)(AZ%A17A2)(pvzax)| S M.

(p,2)ERZXR,x€U,
(iii) Conditions for B: For any (p,z,x) € R x R x 'y,
(C.3.2) dp, B(p,2,x) < =M.

In addition, B satisfies the following estimates:

XRxTy - < ]\47 B(O,O7X) =0 on Ff’r.

Let u € C(U,) N C’2(U \ To) be a solution of the boundary value problem (C.3.1])
satisfying that

lu(x)] < Ma? in U,.
Then, for any a € (0,1), there exist constants ro € (0,1] and C > 0 depending only
on (M, \,«) such that, for € := min{3, ro, 1%},

2),(par
]| 225 < C.

C.4. Estimates at a Corner for the Oblique Derivative Boundary Value
Problems

ProprosITION C.12 (Proposition 4.3.7, [11]). Let R >0, 8 € (0,1), v € [0,1),
A>0, and K,M > 1. Let Q C R? be a domain with x¢ € 09 andBQﬂBR( ):
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'Y UT?2, where T*, k = 1,2, are two Lipschitz curves intersecting only at xo and
contained within xo + {x = (z1,22) € R? : 13 > 7|x1|} for some 7 > 0. Denote

Qr =QnN BR(XO).

Assume that T? is C*° up to the endpoints for some o € (0,1) with ||ﬁ||cl,a <M
in the sense that there exist ¢? > 0 and f? € C%7([0,c®)]) such that, in an
appropriate basis in R?,

QrC{x:2o>fP(21),0<z <P}, TZ={2=rfP(z1):0<z <P}
Let u € CY(Qg) N C?(QrUT2) N C3(Qr) satisfy
(Ca) I —

Assume that u is a solution of

2

(C4.2) Z a;;(Du,u,x)D;ju + a(Du,u,x) =0 in Qg,
ij=1

(C.4.3) b (Du, u,x) = h(x) on TH

(C.4.4) b(2)(Du, u,x) =0 on T2,

where (a;;,a,b*)) are defined in V = {(p,z,x) € RZ xR x Q : |p| + |z| < 2K}.
Assume that (a;j,a) € C(V)NCHV \ {x =x0}), bV € C2(V), b? € C*(V), and
h € C(T1) with

(C45) @i @)lloor + 1D (@5, Do, < M.
(C.4.6) |Dx(aij, a)(p, z,x)| < M|x —x0| " for all (p,z,x) €V,
(C4T) ||b(1)||c2(V) + ||b(2)||01(7) <M,
1
(C.4.8) |h(x) — h(x0)| < Wb( — xo/? for all x € T,

In addition to the conditions stated above, assume that the following properties hold:

(i) For any x € Qp and k = (K1, k2) € R?,

2
MNkl? < Z aij(Du(x), u(x), x)rik; < A Kl%
ij=1
(ii) For any x € Tt |Dpb™M (Du(x), u(x),x)| > A;
>

(iii) For any x € T2, Db (Du(x), u(x),x) - v
normal vector to I'?;

A, where v is the inner unit

(iv) b and b3 are independent for u on T? in the sense that, for any x € T2,

O L o o) | S

Then there exist o € (0,] and C depending only on (A, K, M), and R’ € (0, R]

depending only on (\,v, K, M,«) so that, for any x € Qp,
|6 (Du(x), u(x),x) — bV (Du(xq), u(x0), x0)| < Clx — x0|°.
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ProprosITION C.13 (Proposition 4.3.9, [11]). In addition to the assumptions
of Proposition [C12, assume that
(049) \b(k)(p7z,x)—b(k)(f),é,fc” < M|(p7Z,X)— (1552’5(” fOT‘k: 1527

for all (p,z,%x), (p,%,%X) € V. Moreover, denoting h*)(p) = b (p,u(x¢),Xo),
k = 1,2, and noting that functions h'®) are defined in By (Du(xo)), assume that
hF) € CY* (B (Du(xo))) with ||h®* < M for some a € (0,1),
and

) -
HCLD‘(BK/Q(DU«(XD)))

det (Dph(l)(DU(Xo))>’ >\

(C.4.10) Dph® (Du(xq))

Let W C Qp satisfy
(C.4.11) x9 € W, 0 #W NOoB,(xg) C WNB,(x¢) forallr e (0,R).

For each k =1,2, let
(C.4.12)
™) (Du(x), u(x),x) — 8% (Du(xo), u(xo), x0)| < M|x — x0|*  for allx € W.

Then there exists a constant C > 0 depending only on (K, M, R, «) such that, for
allx e W,
|Du(x) — Du(xg)| < Clx — x¢|.

ProposITION C.14 (Proposition 4.3.11, [11]). Let R,A > 0, a € (0,1], v €
[0,1), and M > 1.

(a) Let Qg be as in Proposition [CI12l Assume that Tt and T2 satisfy that, for
each k =1,2,

(i) Tk € C* with [|T*||con < M,
(i) Bas (X)NOQR = Bae NI for allx € I‘kﬂB¥ (x0), for d(x) := |x—xp|.
M M

Let w € CYQgr) N C3(Qr) be a solution of (CA2)(CAA) with h = 0, where
(aij,a)(p,2,%x) satisfy all the conditions stated in Proposition [CI2l In addition,
assume that, for each k =1,2,

||b(k)||c2(7) <M,

| Dpb™®) (Du(x), u(x),x)| > X for allx € Qp.
Moreover, assume that u satisfies
(C.4.13) |Du(x) — Du(xg)| < M|x — x¢|® for all Qg.

Then there exist 8 € (0, ] depending only on (A, K, M,«) and C > 0 depending on
(MK, M, R, «) such that u € Cl’ﬂ(QR/Q) with

||U‘|cl,ﬁ(m) <C.

(b) In addition to the previous assumptions, if |[T*||c1.. < M, k = 1,2, for
some o € (0,1), if (a;j,a) satisfy

m —0),{x
l(aij.a)(0,0,), Dy . (i a)(p. 2, )T 50 < M
for any (p, 2) satisfying |p| + |2| < 2K and for m = 1,2, and if each b*) satisfies
6* |z <M fork=1,2,
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for some & € (0,1), then there exists a constant C > 0 depending only on (A, K, M,
R, a,0,8) such that u satisfies

(=1— a){Xo}<C

[[ull5.. 0. QR

C.5. Well-Posedness of a Nonlinear Boundary Value Problem

For a constant h > 0 and a function fuq : [0,h] — Ry, denote a bounded
domain ) C R? as

(C.5.1) Q= {x = (z1,22) € R?* : 21 € (0,h), z3 € (0, foa(z1))},

where fi,q satisfies that, for constants tg > 0, t; > 0, t2 > 0, ¢, > 0, a € (0,1), and
M >0,

foa € CH([0,R]),  foa(0) =to, foa(h) = tn,
(C.5.2) foa(z1) > min{tiz1 +to, t2},

1—a),{0,h
1 foalls o™ < M.

We denote the boundary vertices and segments as follows:
P, =(0,tg), P»=(h,ty), P3=1(h,0), Py=(0,0),
(C.5.3) I =00n{x; =0}, T,=00n{x;=h},
Ty =000 {z2 = foa(z1)}, Tp=00n{zy =0}

and I', T'}, Iy, and T'}, are the relative interiors of the segments defined above.
Let ¢o(x) be a piecewise smooth function defined in R? such that

o ¢o € C({x1 < 2} NC®{a1 > 2}) with [|go
L] (bOEOin {1131 > Z}7
e ¢y is linear in {z; > %}7
® 0,00 =0 on I'y,.
Consider a nonlinear boundary value problem:

Cc3( Q\{ <$1<2h} < C¢0a

2 2
Z A;j(Du,x)D;;u + ZAi(Du, x)Diu=0 in Q,
ij=1 i=1
(C.5.4) u = ¢ on M UTY,
B(Du,u,x) =0 on Iy,
Oz, u =10 on I'y.
Assume that (C5.4) satisfies that, for constants A € (0,1), M < oo, a € (0,1),
B e [%, 1), 0 € (0,1), and € € (0, 1’6) the following properties hold:
(i) For any x € , and p,k = (K1, k2) € R,
2
Mdist(x, Ty UT,)|k|? < Z Aij(p,x)kik; < A Hk|2
ij=1
(ii) For any x € Q\ {§ <21 <h — 5} and p,k = (k1,k2) € R?,

2
)\|KZ|2§ Aij(p’ )Hi"{j < —1"‘_’|2.

52 (min{wy h— 2y, 632 F T
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(iil) (Asj, Ai)(p,x) are independent of p on QN {e < xq < h — e} with
[Asjll Lo (@nfe<ar<n—ey) + 1 (Aij; Ad)ll oo @rpezazizey) < M-
(iv) For any p € R?,
[(Aij, A)(Ps )l s (o ae<ar <himaep)
+ [I(DpAij, DpAi) (P )l Lo (\ (2e<an <h—2e}) < M.
(v) (A5, A;) € CL(R? x (Q\ T UTY,)) and

hy M h
| (Aij, Al oo, o (R2x (AN {s<ar <h—s})) = M( ) for all s € (0, Z)

(vi) For each (p,x) € R? x Q\ {4 <2 < 3}, define
P=p—Ddo(x),  (aij,a:)(p,x) = (Aij, Ai)(p,%).
For each (p, (z1,0)) € R?2 x (T, \ {e < 21 < h —¢€}),
(a11,a22,a1)((P1, —P2), (21,0)) = (a11, azz, a1)((P1, P2), (#1,0)),

and, for all (p,x) € R? x (Q\{e <z1 <h-—¢}),i=1,2,

laii (P, (21, 22)) — asi (Do (0, z2), (0,22))] < M|z, |? when 7 < ¢,

|laii (P, (21, 22)) — asu(Doo(h, z2), (0,22))| < M|z — h|? when z1 > h —e.
In O\ {e <x1 < h—c¢}, ¢ satisfies

2 2
Z Aij(Du,x)Djj¢o + ZAi(Du,x)Dmo =0,

ij=1 i=1

so that the equation for u in (C5.4) is written as an equation for @& = u — ¢ in the

form:
2 2

Z A4 (D’l)7 X)Dijﬁ + Z ai(Dﬂ, X)Dlﬁ =0.
ij=1 i=1
(vii) For any p € R? and x € T U T, (A12, A21)(p,x) = 0.
(vili) For any p € R? and x € Q\ {§ < a1 < h— 5}, 4i(p,x) < -\

(ix) For any (p,z,x) € R? x R x Ty, D, B(p, 2,x) - vM(x) > X, where v() is
the inner unit normal vector to I'y towards the interior of Q;
(x) For any (p,2) € R? x R,

H(B(D¢03¢07 ')”03 m) + HDECp,z)(pﬂzv ))”C’S(ﬁ) < M for k= 172333
HDPB(pa Z, )HCO(Q) <A 1

D.B(p,z,x) < =X for all x € Ty,

D,, B(p,z,x) < —\ forall Ty \ {e < a1 < h—¢e}.

(xi) There exist v € C3(T) and a nonhomogeneous linear operator:
L(p.2,%) = bM(x) - p+ 5 ()2 + g1 (x).
defined for x € I'y and (p, z) € R? x R, satisfying

||U||03(Q + (b b bo 791)H03(1‘_t) <M
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such that, for all (p, z,x) € R? x R x Iy,
|B(p7 Z,X) - L(p7 Z,X)| < U(‘p - DU(X)| + |Z - U(X)D?
|DpB(p, 2,%) = b (x)| + D B(p, 2,x) — b (x)| < o
From [11], Propositions 4.7.2 and 4.8.7], the following two propositions are obtained:
ProrosiTION C.15. For fized constants A > 0, M < oo, a € (0,1), B € [%, 1),
and € € (0, %), there exist constants ay € (0, %), o € (0,1), and 69 > 0 with ay
depending only on A, and (o, do) depending only on (A, M, Cy,,a, B,€) such that the
following statement holds: let domain Q be defined by (C51), and let the nonlinear

boundary value problem (CEA) satisfy all the conditions stated above with h, ty,
t1, ta, tg >0, e € (0, L), and § € [0,80). Then the boundary value problem (C.5.4)

* 10
has a unique solution u € C(Q) N CHQ\ (TYUT,)) N C%(Q). Moreover, u satisfies
(C.5.5) lull oy < C, |u(x) — ¢o(x)] < Cmin{z1,h — 21} inQ

with a constant C > 0 depending only on (A, M,Cy,,e). Furthermore, u is in
C(Q)NC%221(Q\T\UT,) and satisfies

(C.5.6) < C,

||u||C2’“l(Qﬁ{s<zl<hfs}) -
for each s € (0, 1—}6) with a constant Cs > 0 depending only on (A, M, Cy,,, B,¢,s).

PROPOSITION C.16. For fized constants A > 0, 6 > 0, M < oo, a € (0,1),
B e [%,1), and € € (0,1—’6), there exist constants ay € (0,%), o € (0,1) with ay
depending only on (X,0), and ¢ > 0 depending only on (X, 8, M,Cy,,a, B,€) such
that the following statement holds: let domain Q be of the structure of (C5.])-
(CE3) with h >0, t, >0, t; >0, ts >0, and to = 0, that is,

P1:P4:(050)7 F_IZ{(O,O)},

and let the nonlinear boundary value problem (CE4) satisfy conditions (iii), (v),
and (ix)—(xi) above, and the following modified conditions:

(i*) For any x € Q and p, k = (k1, ka) € R?,

2
min{\ dist(x, ') 4 6, A dist(x, T',) }|x|? < Z Aij(p,x)Rik; < A HK|?,
ij=1
1(Asj, A3) (Do, ), DAy, A) (0§ o) coey <M form =1,2
ijy i 0, ") Pp (Aijy Ai)\Ps )1 0,00 {z; <26} = ) e
(ii*) Condition (ii) holds for any x € QN {dist(x,I;) < $} and p,k € R2.
(iv*) For any p € R?,
1(Aij, A) (P, )l o5 @rgarsizey) T 1(PpAijs DpAi) (P, )L~ @nfei >h—2e}) < M.
(vi*) For each (p,(21,0)) € R? x (T, N{z1 > h —€}),
(a1, a22,a1)((p1, —p2), (x1,0)) = (a11, azz, a1)((P1, p2), (z1,0)),
and, for all (p,x) € R?2 x (AN {x1 > h —¢€}),
|aii(p, (21, 72)) — aii(Do(h, x2), (0, 22))| < M|zy — h)”, i=1,2.
(vii*) Condition (vii) holds for all p € R? and x € T';.
(vili*) Condition (viii) holds for all p € R? and x € QN {x1 > h — £}.
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Then the boundary value problem (C54) has a unique solution
ueCQ)NCHQ\(T,UT,))NC*Q).

Moreover, solution u is in C(Q)NC%(Q\ (T;UT,.)) and satisfies (C.5.5) (C.5.6)

for C >0 in (CHI) depending only on (X, 8, M, Cy,,€), and Cs > 0 depending on

(A, 0, M,Cy,,e,s). Furthermore, u satisfies

(ml=a){h} I8,

lelly, 0, g, <2y

for constant C>0 depending only on (5, \, M, a, €).
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