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Preface

The purpose of this research monograph is to survey some recent developments in
the analysis of shock reflection-diffraction, to present our original mathematical
proofs of von Neumann’s conjectures for potential flow, to collect most of the
related results and new techniques in the analysis of partial differential equations
(PDEs) achieved in the last decades, and to discuss a set of fundamental open
problems relevant to the directions of future research in this and related areas.

Shock waves are fundamental in nature, especially in high-speed fluid flows.
Shocks are generated by supersonic or near-sonic aircraft, explosions, solar wind,
and other natural processes. They are governed by the Euler equations for com-
pressible fluids or their variants, generally in the form of nonlinear conservation
laws – nonlinear PDEs of divergence form. The Euler equations describing the
motion of a perfect fluid were first formulated by Euler [112, 113, 114] in 1752
(based in part on the earlier work of Bernoulli [15]), and were among the first
PDEs for describing physical processes to be written down.

When a shock hits an obstacle (steady or flying), shock reflection-diffraction
configurations take shape. One of the most fundamental research directions in
mathematical fluid dynamics is the analysis of shock reflection-diffraction by
wedges, with focus on the wave patterns of the reflection-diffraction configura-
tions formed around the wedge. The complexity of such configurations was
first reported by Ernst Mach [206] in 1878, who observed two patterns of shock
reflection-diffraction configurations that are now named the Regular Reflection
(RR) and the Mach Reflection (MR). The subject remained dormant until the
1940s when von Neumann [267, 268, 269], as well as other mathematical and
experimental scientists, began extensive research on shock reflection-diffraction
phenomena, owing to their fundamental importance in applications. It has since
been found that the phenomena are much more complicated than what Mach
originally observed, and various other patterns of shock reflection-diffraction
configurations may occur. On the other hand, the shock reflection-diffraction
configurations are core configurations in the structure of global entropy solu-
tions of the two-dimensional Riemann problem, while the Riemann solutions
themselves are local building blocks and determine local structures, global at-
tractors, and large-time asymptotic states of general entropy solutions of mul-
tidimensional hyperbolic systems of conservation laws. In this sense, we have
to understand the shock reflection-diffraction configurations, in order to under-
stand fully the global entropy solutions of multidimensional hyperbolic systems
of conservation laws.



xii PREFACE

Diverse patterns of shock reflection-diffraction configurations have attracted
many asymptotic/numerical analysts since the middle of the 20th century. How-
ever, most of the fundamental issues involved, such as the structure and transi-
tion criteria of the different patterns, have not been understood. This is partially
because physical and numerical experiments are hampered by various difficulties
and have not yielded clear transition criteria between the different patterns. In
light of this, a natural approach for understanding fully the shock reflection-
diffraction configurations, especially with regard to the transition criteria, is via
rigorous mathematical analysis. To achieve this, it is essential to establish the
global existence, regularity, and structural stability of shock reflection-diffraction
configurations: That is the main topic of this book.

Mathematical analysis of shock reflection-diffraction configurations involves
dealing with several core difficulties in the analysis of nonlinear PDEs. These
include nonlinear PDEs of mixed hyperbolic-elliptic type, nonlinear degener-
ate elliptic PDEs, nonlinear degenerate hyperbolic PDEs, free boundary prob-
lems for nonlinear degenerate PDEs, and corner singularities (especially when
free boundaries meet the fixed boundaries), among others. These difficulties
also arise in many further fundamental problems in continuum mechanics, dif-
ferential geometry, mathematical physics, materials science, and other areas,
including transonic flow problems, isometric embedding problems, and phase
transition problems. Therefore, any progress in solving these problems requires
new mathematical ideas, approaches, and techniques, all of which will both be
very helpful for solving other problems with similar difficulties and open up new
research directions.

Our efforts in the analysis of shock reflection-diffraction configurations for
potential flow started 18 years ago when both of us were at Northwestern Uni-
versity, USA. We soon realized that the first step to achieving our goal should be
to develop new free boundary techniques for multidimensional transonic shocks,
along with other analytical techniques for nonlinear degenerate elliptic PDEs.
After about two years of struggle, we developed such techniques, and these
were published in [49] in 2003 and subsequent papers [42, 50, 51, 53]. With
this groundwork, we first succeeded in developing a rigorous mathematical ap-
proach to establish the global existence and stability of regular shock reflection-
diffraction solutions for large-angle wedges in [52] in 2005, the complete version
of which was published electronically in 2006 and in print form in [54] in 2010.
Since 2005, we have continued our efforts to solve von Neumann’s sonic con-
jecture (i.e., the existence of global regular reflection-diffraction solutions up to
the sonic wedge angle with the supersonic reflection-diffraction configuration,
containing a transonic reflected-diffracted shock), as well as von Neumann’s de-
tachment conjecture (i.e., the necessary and sufficient condition for the existence
of global regular reflection-diffraction solutions, even beyond the sonic angle, up
to the detachment angle with the subsonic reflection-diffraction configuration,
containing a transonic reflected-diffracted shock) (cf. [55, 57]). The results of
these efforts were announced in [56, 58], and their detailed proofs constitute the
main part of this book.
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Some efforts have also been made by several groups of researchers on related
models, including the unsteady small disturbance equation (USD), the pressure
gradient equations, and the nonlinear wave system, as well as for some partial
results for the potential flow equation and the full Euler equations. For the sake
of completeness, we have made remarks and notes about these contributions
throughout the book, and have tried to collect a detailed list of appropriate
references in the bibliography.

Based on these results, along with our recent results on von Neumann’s
conjectures for potential flow, mathematical understanding of shock reflection-
diffraction, especially for the global regular reflection-diffraction configurations,
has reached a new height, and several new mathematical approaches and tech-
niques have been developed. Moreover, new research opportunities and many
new, challenging, and important problems have arisen during this exploration.
Given these developments, we feel that it is the right time to publish this re-
search monograph.

During the process of assembling this work, we have received persistent
encouragement and invaluable suggestions from many leading mathematicians
and scientists, especially John Ball, Luis Caffarelli, Alexander Chorin, Demetrios
Christodoulou, Peter Constantin, Constantine Dafermos, Emmanuele Di-
Benedetto, Xiaxi Ding, Weinan E, Björn Engquist, Lawrence Craig Evans,
Charles Fefferman, Edward Fraenkel, James Glimm, Helge Holden, Jiaxing
Hong, Carlos Kenig, Sergiu Klainerman, Peter D. Lax, Tatsien Li, Fanhua Lin,
Andrew Majda, Cathleen Morawetz, Luis Nirenberg, Benoît Perthame, Richard
Schoen, Henrik Shahgholian, Yakov Sinai, Joel Smoller, John Toland, Neil
Trudinger, and Juan Luis Vázquez. The materials presented herein contain di-
rect and indirect contributions from many leading experts – teachers, colleagues,
collaborators, and students alike, including Myoungjean Bae, Sunčica Canić, Yi
Chao, Jun Chen, Shuxing Chen, Volker Elling, Beixiang Fang, Jingchen Hu,
Feimin Huang, John Hunter, Katarina Jegdić, Siran Li, Tianhong Li, Yachun
Li, Gary Lieberman, Tai-Ping Liu, Barbara Keyfitz, Eun Heui Kim, Jie Kuang,
Stefano Marchesani, Ho Cheung Pang, Matthew Rigby, Matthew Schrecker,
Denis Serre, Wancheng Sheng, Marshall Slemrod, Eitan Tadmor, Dehua Wang,
Tian-Yi Wang, Yaguang Wang, Wei Xiang, Zhouping Xin, Hairong Yuan, Tong
Zhang, Yongqian Zhang, Yuxi Zheng, and Dianwen Zhu, among others. We are
grateful to all of them.

A significant portion of this work was done while the authors attended the
Spring 2011 Program “Free Boundary Problems: Theory and Applications” at
the Mathematical Sciences Research Institute in Berkeley, California, USA, and
the 2014 Program “Free Boundary Problems and Related Topics” at the Isaac
Newton Institute for Mathematical Sciences in Cambridge, UK. A part of the
work was also supported by Keble College, University of Oxford, and a UK
EPSRC Science and Innovation Award to the Oxford Centre for Nonlinear PDE
(EP/E035027/1) when Mikhail Feldman visited Oxford in 2010.

The work of Gui-Qiang G. Chen was supported in part by the National
Science Foundation under Grants DMS-0935967 and DMS-0807551, a UK EP-
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SRC Science and Innovation Award to the Oxford Centre for Nonlinear PDE
(EP/E035027/1), a UK EPSRC Award to the EPSRC Centre for Doctoral Train-
ing in PDEs (EP/L015811/1), the National Natural Science Foundation of China
(under joint project Grant 10728101), and the Royal Society–Wolfson Research
Merit Award (UK). The work of Mikhail Feldman was supported in part by
the National Science Foundation under Grants DMS-0800245, DMS-1101260,
and DMS-1401490, the Vilas Award from the University of Wisconsin-Madison,
and the Simons Foundation via the Simons Fellows Program. Kurt Ballstadt de-
serves our special thanks for his effective assistance during the preparation of the
manuscript. We are indebted to Princeton University Press, especially Vickie
Kearn (Executive Editor) and Betsy Blumenthal and Lauren Bucca (Editorial
Assistants), for their professional assistance.

Finally, we remark in passing that further supplementary materials to this
research monograph will be posted at:
http://people.maths.ox.ac.uk/chengq/books/Monograph-CF-17/index.html
https://www.math.wisc.edu/˜feldman/Monograph-CF-17/monograph.html

https://www.math.wisc.edu/%CB%9Cfeldman/Monograph-CF-17/monograph.html
http://people.maths.ox.ac.uk/chengq/books/Monograph-CF-17/index.html


Part I

Shock Reflection-Diffraction,
Nonlinear Conservation Laws of
Mixed Type, and von Neumann’s

Conjectures





Chapter One

Shock Reflection-Diffraction, Nonlinear Partial

Differential Equations of Mixed Type, and Free

Boundary Problems

Shock waves are steep fronts that propagate in compressible fluids when con-
vection dominates diffusion. They are fundamental in nature, especially in
high-speed fluid flows. Examples include transonic shocks around supersonic or
near-sonic flying bodies (such as aircraft), transonic and/or supersonic shocks
formed by supersonic flows impinging onto solid wedges, bow shocks created by
solar wind in space, blast waves caused by explosions, and other shocks gener-
ated by natural processes. Such shocks are governed by the Euler equations for
compressible fluids or their variants, generally in the form of nonlinear conserva-
tion laws – nonlinear partial differential equations (PDEs) of divergence form.
When a shock hits an obstacle (steady or flying), shock reflection-diffraction
phenomena occur. One of the most fundamental research directions in mathe-
matical fluid mechanics is the analysis of shock reflection-diffraction by wedges;
see Ben-Dor [12], Courant-Friedrichs [99], von Neumann [267, 268, 269], and the
references cited therein. When a plane shock hits a two-dimensional wedge head-
on (cf. Fig. 1.1), it experiences a reflection-diffraction process; a fundamental
question arisen is then what types of wave patterns of shock reflection-diffraction
configurations may be formed around the wedge.

An archetypal system of PDEs describing shock waves in fluid mechanics,
widely used in aerodynamics, is that of the Euler equations for potential flow
(cf. [16, 95, 99, 139, 146, 221]). The Euler equations for describing the motion
of a perfect fluid were first formulated by Euler [112, 113, 114] in 1752, based
in part on the earlier work of D. Bernoulli [15], and were among the first PDEs
for describing physical processes to be written down. The n-dimensional Euler
equations for potential flow consist of the conservation law of mass and the
Bernoulli law for the density and velocity potential (ρ,Φ):




∂tρ+ divx(ρ∇xΦ) = 0,

∂tΦ +
1

2
|∇xΦ|2 + h(ρ) = B0,

(1.1)

where x ∈ Rn, B0 is the Bernoulli constant determined by the incoming flow
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x1

x2

Figure 1.1: A plane shock hits a two-dimensional wedge in R2 head-on

and/or boundary conditions,

h′(ρ) =
p′(ρ)

ρ
=
c2(ρ)

ρ
,

and c(ρ) =
√
p′(ρ) is the sonic speed (i.e., the speed of sound).

The first equation in (1.1) is a transport-type equation for density ρ for a
given ∇xΦ, while the second equation is the Hamilton-Jacobi equation for the
velocity potential Φ coupling with density ρ through function h(ρ).

For polytropic gases,

p(ρ) = κργ , c2(ρ) = κγργ−1, γ > 1, κ > 0.

Without loss of generality, we may choose κ = 1
γ so that

h(ρ) =
ργ−1 − 1

γ − 1
, c2(ρ) = ργ−1. (1.2)

This can be achieved by noting that (1.1) is invariant under scaling:

(t,x, B0) 7→ (α2t, αx, α−2B0)

with α2 = κγ. In particular, Case γ = 1 can be considered as the limit of
γ → 1+ in (1.2):

h(ρ) = ln ρ, c(ρ) = 1. (1.3)
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Henceforth, we will focus only on Case γ > 1, since Case γ = 1 can be handled
similarly by making appropriate changes in the formulas so that the results of
the main theorems for γ > 1 (below) also hold for γ = 1.

From the Bernoulli law, the second equation in (1.1), we have

ρ(∂tΦ, |∇xΦ|2) = h−1(B0 − (∂tΦ +
1

2
|∇xΦ|2)). (1.4)

Then system (1.1) can be rewritten as the following time-dependent potential
flow equation of second order:

∂tρ(∂tΦ, |∇xΦ|2) +∇x ·
(
ρ(∂tΦ, |∇xΦ|2)∇xΦ

)
= 0 (1.5)

with ρ(∂tΦ, |∇xΦ|2) determined by (1.4). Equation (1.5) is a nonlinear wave
equation of second order. Notice that equation (1.5) is invariant under a sym-
metry group formed of space-time dilations.

For a steady solution Φ = ϕ(x), i.e., ∂tΦ = 0, we obtain the celebrated
steady potential flow equation, especially in aerodynamics (cf. [16, 95, 99]):

∇x ·
(
ρ(|∇xϕ|2)∇xϕ

)
= 0, (1.6)

which is a second-order nonlinear PDE of mixed elliptic-hyperbolic type. This
is a simpler case of the nonlinear PDE of mixed type for self-similar solutions,
as shown in (1.12)–(1.13) later.

When the effects of vortex sheets and the deviation of vorticity become
significant, the full Euler equations are required. The full Euler equations for
compressible fluids in Rn+1

+ = R+ × Rn, t ∈ R+ := (0,∞) and x ∈ Rn, are of
the following form:





∂t ρ+∇x · (ρv) = 0,

∂t(ρv) +∇x · (ρv ⊗ v) +∇xp = 0,

∂t
(
ρ(

1

2
|v|2 + e)

)
+∇x ·

(
ρv(

1

2
|v|2 + e+

p

ρ
)
)

= 0,

(1.7)

where ρ is the density, v ∈ Rn the fluid velocity, p the pressure, and e the internal
energy. Two other important thermodynamic variables are temperature θ and
entropy S. Here, a⊗ b denotes the tensor product of vectors a and b.

Choose (ρ, S) as the independent thermodynamical variables. Then the con-
stitutive relations can be written as (e, p, θ) = (e(ρ, S), p(ρ, S), θ(ρ, S)), governed
by

θdS = de+ pdτ = de− p

ρ2
dρ,

as introduced by Gibbs [129].
For a polytropic gas,

p = (γ − 1)ρe, e = cvθ, γ = 1 +
R

cv
, (1.8)
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or equivalently,

p = p(ρ, S) = κργeS/cv , e = e(ρ, S) =
κ

γ − 1
ργ−1eS/cv , (1.9)

where R > 0 may be taken to be the universal gas constant divided by the
effective molecular weight of the particular gas, cv > 0 is the specific heat at
constant volume, γ > 1 is the adiabatic exponent, and κ > 0 may be chosen as
any constant through scaling.

The full Euler equations in the general form presented here were originally
derived by Euler [112, 113, 114] for mass, Cauchy [29, 30] for linear and angular
momentum, and Kirchhoff [165] for energy.

The nonlinear equations (1.5) and (1.7) fit into the general form of hyperbolic
conservation laws:

∂tA(∂tu,∇xu,u) +∇x ·B(∂tu,∇xu,u) = 0, (1.10)

or
∂tu +∇x · f(u) = 0, u ∈ Rm, x ∈ Rn, (1.11)

where A : Rm × Rn×m × Rm 7→ Rm, B : Rm × Rn×m × Rm 7→ (Rm)n, and
f : Rm 7→ (Rm)n are nonlinear mappings. Besides (1.5) and (1.7), most of
the nonlinear PDEs arising from physical or engineering science can also be
formulated in accordance with form (1.10) or (1.11), or their variants. Moreover,
the second-order form (1.10) of hyperbolic conservation laws can be reformulated
as a first-order system (1.11). The hyperbolicity of system (1.11) requires that,
for all ξ ∈ Sn−1, matrix [ξ · ∇uf(u)]m×m have m real eigenvalues λj(u, ξ), j =
1, 2, · · · ,m, and be diagonalizable. See Lax [171], Glimm-Majda [139], and
Majda [210].

The complexity of shock reflection-diffraction configurations was first re-
ported in 1878 by Ernst Mach [206], who observed two patterns of shock re-
flection-diffraction configurations that are now named the Regular Reflection
(RR: two-shock configuration; see Fig. 1.2) and the Simple Mach Reflection
(SMR: three-shock and one-vortex-sheet configuration; see Fig. 1.3); see also
[12, 167, 228]. The problem remained dormant until the 1940s when von Neu-
mann [267, 268, 269], as well as other mathematical/experimental scientists, be-
gan extensive research on shock reflection-diffraction phenomena, owing to their
fundamental importance in various applications (see von Neumann [267, 268]
and Ben-Dor [12]; see also [11, 132, 152, 160, 166, 205, 248, 249] and the refer-
ences cited therein).

It has since been found that there are more complexity and variety of shock
reflection-diffraction configurations than what Mach originally observed: The
Mach reflection can be further divided into more specific sub-patterns, and many
other patterns of shock reflection-diffraction configurations may occur, for ex-
ample, the Double Mach Reflection (see Fig. 1.4), the von Neumann Reflection,
and the Guderley Reflection; see also [12, 99, 139, 143, 159, 243, 257, 258, 259,
263, 267, 268] and the references cited therein.
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Figure 1.2: Regular Reflection for large-angle wedges. From Van Dyke [263, pp.
142].

The fundamental scientific issues arising from all of this are

(i) The structure of shock reflection-diffraction configurations;

(ii) The transition criteria between the different patterns of shock reflection-
diffraction configurations;

(iii) The dependence of the patterns upon the physical parameters such as the
wedge angle θw, the incident-shock Mach number MI (a measure of the
strength of the shock), and the adiabatic exponent γ ≥ 1.

Careful asymptotic analysis has been made for various reflection-diffraction
configurations in Lighthill [199, 200], Keller-Blank [162], Hunter-Keller [158],
and Morawetz [221], as well as in [128, 148, 155, 255, 267, 268] and the refer-
ences cited therein; see also Glimm-Majda [139]. Large or small scale numerical
simulations have also been made; e.g., [12, 139], [104, 105, 149, 170, 232, 240],
and [133, 134, 135, 160, 273] (see also the references cited therein).

On the other hand, most of the fundamental issues for shock reflection-
diffraction phenomena have not been understood, especially the global structure
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Figure 1.3: Simple Mach Reflection when the wedge angle becomes small. From
Van Dyke [263, pp. 143].

and transition between the different patterns of shock reflection-diffraction con-
figurations. This is partially because physical and numerical experiments are
hampered by various difficulties and have not thusfar yielded clear transition
criteria between the different patterns. In particular, numerical dissipation or
physical viscosity smears the shocks and causes the boundary layers that inter-
act with the reflection-diffraction configurations and may cause spurious Mach
steams; cf. Woodward-Colella [273]. Furthermore, some different patterns occur
in which the wedge angles are only fractions of a degree apart; a resolution has
challenged even sophisticated modern numerical and laboratory experiments.
For this reason, it is almost impossible to distinguish experimentally between
the sonic and detachment criteria, as was pointed out by Ben-Dor in [12] (also cf.
Chapter 7 below). On account of this, a natural approach to understand fully
the shock reflection-diffraction configurations, especially the transition criteria,
is via rigorous mathematical analysis. To carry out this analysis, it is essential
to establish first the global existence, regularity, and structural stability of shock
reflection-diffraction configurations: That is the main topic of this book.

Furthermore, the shock reflection-diffraction configurations are core config-
urations in the structure of global entropy solutions of the two-dimensional Rie-
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Figure 1.4: Double Mach Reflection when the wedge angle becomes even smaller.
From Ben-Dor [12, pp. 67].
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Density contour curves Self-Mach number contour curves

Figure 1.5: Riemann solutions: Simple Mach Reflection; see [33]

mann problem for hyperbolic conservation laws (see Figs. 1.5–1.6), while the
Riemann solutions are building blocks and determine local structures, global
attractors, and large-time asymptotic states of general entropy solutions of mul-
tidimensional hyperbolic systems of conservation laws (see [31]–[35], [138, 139,
169, 175, 181, 233, 235, 236, 286], and the references cited therein). Conse-
quently, we have to understand the shock reflection-diffraction configurations
in order to fully understand global entropy solutions of the multidimensional
hyperbolic systems of conservation laws.

Mathematically, the analysis of shock reflection-diffraction configurations in-
volves several core difficulties that we have to face for the mathematical theory
of nonlinear PDEs:

(i) Nonlinear PDEs of Mixed Elliptic-Hyperbolic Type: The first is
that the underlying nonlinear PDEs change type from hyperbolic to elliptic in
the shock reflection-diffraction configurations, so that the nonlinear PDEs are
of mixed hyperbolic-elliptic type.

This can be seen as follows: Since both the system and the initial-boundary
conditions admit a symmetry group formed of space-time dilations, we seek
self-similar solutions of the problem:

ρ(t,x) = ρ(ξ), Φ(t,x) = tφ(ξ),

depending only upon ξ = x
t ∈ R2. For the Euler equation (1.5) for potential

flow, the corresponding pseudo-potential function ϕ(ξ) = φ(ξ) − |ξ|
2

2 satisfies
the following potential flow equation of second order:

div
(
ρ(|Dϕ|2, ϕ)Dϕ

)
+ 2ρ(|Dϕ|2, ϕ) = 0 (1.12)
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Density contour curves Self-Mach number contour curves

Figure 1.6: Riemann solutions: Double Mach reflection; see [33]

with
ρ(|Dϕ|2, ϕ) =

(
ργ−1

0 − (γ − 1)(ϕ+
1

2
|Dϕ|2)

) 1
γ−1 , (1.13)

where div and D represent the divergence and the gradient, respectively, with
respect to the self-similar variables ξ = (ξ1, ξ2), that is, D := (D1, D2) =
(Dξ1 , Dξ2). Then the sonic speed becomes:

c = c(|Dϕ|2, ϕ, ργ−1
0 ) =

(
ργ−1

0 − (γ − 1)(
1

2
|Dϕ|2 + ϕ)

) 1
2 . (1.14)

Equation (1.12) can be written in the following non-divergence form of non-
linear PDE of second order:

2∑

i,j=1

aij(ϕ,Dϕ)Dijϕ = f(ϕ,Dϕ), (1.15)

where [aij(ϕ,Dϕ)]1≤i,j≤2 is a symmetric matrix and Dij = DiDj , i, j = 1, 2.
The type of equation that (1.12) or (1.15) is depends on the values of solution
ϕ and its gradient Dϕ. More precisely, equation (1.15) is elliptic on a solu-
tion ϕ when the two eigenvalues λj(ϕ,Dϕ), j = 1, 2, of the symmetric matrix
[aij(ϕ,Dϕ)] have the same sign on ϕ:

λ1(ϕ,Dϕ)λ2(ϕ,Dϕ) > 0. (1.16)

Correspondingly, equation (1.15) is (strictly) hyperbolic on a solution ϕ if the
two eigenvalues of the matrix have the opposite signs on ϕ:

λ1(ϕ,Dϕ)λ2(ϕ,Dϕ) < 0. (1.17)
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The more complicated case is that of the mixed elliptic-hyperbolic type for which
λ1(ϕ,Dϕ)λ2(ϕ,Dϕ) changes its sign when the values of ϕ and Dϕ change in
the physical domain under consideration.

In particular, equation (1.12) is a nonlinear second-order conservation law
of mixed elliptic-hyperbolic type. It is elliptic if

|Dϕ| < c(|Dϕ|2, ϕ, ργ−1
0 ), (1.18)

and hyperbolic if
|Dϕ| > c(|Dϕ|2, ϕ, ργ−1

0 ). (1.19)

The types normally change with ξ from hyperbolic in the far field to elliptic
around the wedge vertex, which is the case that the corresponding physical
velocity ∇xΦ is bounded.

Similarly, for the full Euler equations, the corresponding self-similar solutions
are governed by a nonlinear system of conservation laws of composite-mixed
hyperbolic-elliptic type, as shown in (18.3.1) in Chapter 18.

Such nonlinear PDEs of mixed type also arise naturally in many other fun-
damental problems in continuum physics, differential geometry, elasticity, rela-
tivity, calculus of variations, and related areas.

Classical fundamental linear PDEs of mixed elliptic-hyperbolic type include
the following:

The Lavrentyev-Bitsadze equation for an unknown function u(x, y):

uxx + sign(x)uyy = 0. (1.20)

This becomes the wave equation (hyperbolic) in half-plane x < 0 and the Laplace
equation (elliptic) in half-plane x > 0, and changes the type from elliptic to
hyperbolic via a jump discontinuous coefficient sign(x).

The Keldysh equation for an unknown function u(x, y):

xuxx + uyy = 0. (1.21)

This is hyperbolic in half-plane x < 0, elliptic in half-plane x > 0, and de-
generates on line x = 0. This equation is of parabolic degeneracy in domain
x ≤ 0, for which the two characteristic families are quadratic parabolas lying
in half-plane x < 0 and tangential at contact points to the degenerate line
x = 0. Its degeneracy is also determined by the classical elliptic or hyperbolic
Euler-Poisson-Darboux equation:

uττ ± uyy +
β

τ
uτ = 0 (1.22)

with β = − 1
4 , where τ = 1

2 |x|
1
2 , and signs “± ” in (1.22) are determined by the

corresponding half-planes ±x > 0.
The Tricomi equation for an unknown function u(x, y):

uxx + xuyy = 0. (1.23)
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This is hyperbolic when x < 0, elliptic when x > 0, and degenerates on line
x = 0. This equation is of hyperbolic degeneracy in domain x ≤ 0, for which the
two characteristic families coincide perpendicularly to line x = 0. Its degeneracy
is also determined by the classical elliptic or hyperbolic Euler-Poisson-Darboux
equation (1.22) with β = 1

3 , where τ = 2
3 |x|

3
2 .

For linear PDEs of mixed elliptic-hyperbolic type such as (1.20)–(1.23), the
transition boundary between the elliptic and hyperbolic phases is known a pri-
ori. One of the classical approaches to the study of such mixed-type linear
equations is the fundamental solution approach, since the optimal regularity
and/or singularities of solutions near the transition boundary are determined
by the fundamental solution (see [17, 37, 39, 41, 275, 278]).

For nonlinear PDEs of mixed elliptic-hyperbolic type such as (1.12), the tran-
sition boundary between the elliptic and hyperbolic phases is a priori unknown,
so that most of the classical approaches, especially the fundamental solution
approach, no longer work. New ideas, approaches, and techniques are in great
demand for both theoretical and numerical analysis.

(ii) Free Boundary Problems: Following the discussion in (i), above,
the analysis of shock reflection-diffraction configurations can be reduced to the
analysis of a free boundary problem, as we will show in §2.4, in which the
reflected-diffracted shock, defined as the transition boundary from the hyper-
bolic to elliptic phase, is a free boundary that cannot be determined prior to
the determination of the solution.

The subject of free boundary problems has its origin in the study of the
Stefan problem, which models the melting of ice (cf. Stefan [250]). In that
problem, the moving-in-time boundary between water and ice is not known a
priori, but is determined by the solution of the problem. More generally, free
boundary problems are concerned with sharp transitions in the variables in-
volved in the problems, such as the change in the temperature between water
and ice in the Stefan problem, and the changes in the velocity and density
across the shock wave in the shock reflection-diffraction configurations. Mathe-
matically, this rapid transition is simplified to be seen as occurring infinitely fast
across a curve or surface of discontinuity or constraint in the PDEs governing
the physical or other processes under consideration. The location of these curves
and surfaces, called free boundaries, is required to be determined in the process
of solving the free boundary problem. Free boundaries subdivide the domain
into subdomains in which the governing equations (usually PDEs) are satisfied.
On the free boundaries, the free boundary conditions, derived from the models,
are prescribed. The number of conditions on the free boundary is such that
the PDE governing the problem, combined with the free boundary conditions,
allows us to determine both the location of the free boundary and the solution in
the whole domain. That is, more conditions are required on the free boundary
than in the case of the fixed boundary value problem for the same PDEs in a
fixed domain. Great progress has been made on free boundary problems for lin-
ear PDEs. Further developments, especially in terms of solving such problems
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for nonlinear PDEs of mixed type, ask for new mathematical approaches and
techniques. For a better sense of these, see Chen-Shahgholian-Vázquez [67] and
the references cited therein.

(iii) Estimates of Solutions to Nonlinear Degenerate PDEs: The
third difficulty concerns the degeneracies that are along the sonic arc, since the
sonic arc is another transition boundary from the hyperbolic to elliptic phase in
the shock reflection-diffraction configurations, for which the corresponding non-
linear PDE becomes a nonlinear degenerate hyperbolic equation on its one side
and a nonlinear degenerate elliptic equation on the other side; both of these de-
generate on the sonic arc. Also, unlike the reflected-diffracted shock, the sonic
arc is not a free boundary; its location is explicitly known. In order to con-
struct a global regular reflection-diffraction configuration, we need to determine
the unknown velocity potential in the subsonic (elliptic) domain such that the
reflected-diffracted shock and the sonic arc are parts of its boundary. Thus, we
can view our problem as a free boundary problem for an elliptic equation of
second order with ellipticity degenerating along a part of the fixed boundary.
Moreover, the solution should satisfy two Rankine-Hugoniot conditions on the
transition boundary of the elliptic region, which includes both the shock and the
sonic arc. While this over-determinacy gives the correct number of free bound-
ary conditions on the shock, the situation is different on the sonic arc that is a
fixed boundary. Normally, only one condition may be prescribed for the elliptic
problem. Therefore, we have to prove that the other condition is also satisfied on
the sonic arc by the solution. To achieve this, we exploit the detailed structure
of the elliptic degeneracy of the nonlinear PDE to make careful estimates of the
solution near the sonic arc in the properly weighted and scaled C2,α–spaces, for
which the nonlinearity plays a crucial role.

(iv) Corner Singularities: Further difficulties include the singularities of
solutions at the corner formed by the reflected-diffracted shock (free boundary)
and the sonic arc (degenerate elliptic curve), at the wedge vertex, as well as
at the corner between the reflected shock and the wedge at the reflection point
for the transition from the supersonic to subsonic regular reflection-diffraction
configurations when the wedge angle decreases. For the latter, it requires uni-
form a priori estimates for the solutions as the sonic arc shrinks to a point; the
degenerate ellipticity then changes to the uniform ellipticity when the wedge
angle decreases across the sonic angle up to the detachment angle, as described
in §2.4–§2.6.

These difficulties also arise in many further fundamental problems in continu-
um physics (fluid/solid), differential geometry, mathematical physics, materials
science, and other areas, such as transonic flow problems, isometric embedding
problems, and phase transition problems; see [9, 10, 16, 93, 68, 69, 95, 99,
139, 147, 168, 181, 220, 270, 286] and the references cited therein. Therefore,
any progress in shock reflection-diffraction analysis requires new mathematical
ideas, approaches, and techniques, all of which will be very useful for solving
other problems with similar difficulties and open up new research opportunities.
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We focus mainly on the mathematics of shock reflection-diffraction and von
Neumann’s conjectures for potential flow, as well as offering (in Parts I–IV) new
analysis to overcome the associated difficulties. The mathematical approaches
and techniques developed here will be useful in tackling other nonlinear prob-
lems involving similar difficulties. One of the recent examples of this is the
Prandtl-Meyer problem for supersonic flow impinging onto solid wedges, an-
other longstanding open problem in mathematical fluid mechanics, which has
been treated in Bae-Chen-Feldman [5, 6].

In Part I, we state our main results and give an overview of the main steps
of their proofs.

In Part II, we present some relevant results for nonlinear elliptic equations
of second order (for which the structural conditions and some regularity of co-
efficients are not required), convenient for applications in the rest of the book,
and study the existence and regularity of solutions of certain boundary value
problems in the domains of appropriate structure for an equation with elliptic-
ity degenerating on a part of the boundary, which include the boundary value
problems used in the construction of the iteration map in the later chapters.
We also present basic properties of the self-similar potential flow equation, with
focus on the two-dimensional case.

In Part III, we first focus on von Neumann’s sonic conjecture – that is, the
conjecture concerning the existence of regular reflection-diffraction solutions up
to the sonic angle, with a supersonic shock reflection-diffraction configuration
containing a transonic reflected-diffracted shock, and then provide its whole
detailed proof and related analysis. We treat this first on account of the fact
that the presentation in this case is both foundational and relatively simpler
than that in the case beyond the sonic angle.

Once the analysis for the sonic conjecture is done, we present, in Part IV,
our proof of von Neumann’s detachment conjecture – that is, the conjecture
concerning the existence of regular reflection-diffraction solutions, even beyond
the sonic angle up to the detachment angle, with a subsonic shock reflection-
diffraction configuration containing a transonic reflected-diffracted shock. This
is more technically involved. To achieve it, we make the whole iteration again,
starting from the normal reflection when the wedge angle is π

2 , and prove the
results for both the supersonic and subsonic regular reflection-diffraction con-
figurations by going over the previous arguments with the necessary additions
(instead of writing all the details of the proof up to the detachment angle from
the beginning). We present the proof in this way to make it more readable.

In Part V, we present the mathematical formulation of the shock reflection-
diffraction problem for the full Euler equations and uncover the role of the
potential flow equation for the shock reflection-diffraction even in the realm of
the full Euler equations. We also discuss further connections and their roles
in developing new mathematical ideas, techniques, and approaches for solving
further open problems in related scientific areas.



Chapter Two

Mathematical Formulations and Main Theorems

In this chapter, we first analyze the potential flow equation (1.5) and its pla-
nar shock-front solutions, and then formulate the shock reflection-diffraction
problem into an initial-boundary value problem. Next we employ the self-
similarity of the problem to reformulate the initial-boundary value problem into
a boundary value problem in the self-similar coordinates. To solve von Neu-
mann’s conjectures, we further reformulate the boundary value problem into a
free boundary problem for a nonlinear second-order conservation law of mixed
hyperbolic-elliptic type. Finally, we present the main theorems for the exis-
tence, regularity, and stability of regular reflection-diffraction solutions of the
free boundary problem.

2.1 THE POTENTIAL FLOW EQUATION

The time-dependent potential flow equation of second order for the velocity
potential Φ takes the form of (1.5) with ρ(∂tΦ,∇xΦ) determined by (1.4), which
is a nonlinear wave equation.

Definition 2.1.1. A function Φ ∈ W 1,1
loc (R+ × R2) is called a weak solution of

equation (1.5) in a domain D ⊂ R+ ×R2 if Φ satisfies the following properties:

(i) B0 −
(
∂tΦ + 1

2 |∇xΦ|2
)
≥ h(0+) a.e. in D;

(ii) (ρ(∂tΦ, |∇xΦ|2), ρ(∂tΦ, |∇xΦ|2)|∇xΦ|) ∈ (L1
loc(D))2;

(iii) For every ζ ∈ C∞c (D),
∫

D

(
ρ(∂tΦ, |∇xΦ|2)∂tζ + ρ(∂tΦ, |∇xΦ|2)∇xΦ · ∇xζ

)
dxdt = 0.

In the study of a piecewise smooth weak solution of (1.5) with jump for
(∂tΦ,∇xΦ) across an oriented surface S with unit normal n = (nt,nx),nx =
(n1, n2), in the (t,x)–coordinates, the requirement of the weak solution of (1.5)
in the sense of Definition 2.1.1 yields the Rankine-Hugoniot jump condition
across S:

[ρ(∂tΦ, |∇xΦ|2)]nt + [ρ(∂tΦ, |∇xΦ|2)∇xΦ] · nx = 0, (2.1.1)

where the square bracket, [w], denotes the jump of quantity w across the oriented
surface S; that is, assuming that S subdivides D into subregions D+ and D−
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so that, for every (t,x) ∈ S, there exists ε > 0 such that (t,x) ± sn ∈ D± if
s ∈ (0, ε), define

[w](t,x) := lim
(τ,y) → (t,x)

(τ,y) ∈ D+

w(τ,y)− lim
(τ,y) → (t,x)

(τ,y) ∈ D−

w(τ,y).

Notice that Φ ∈W 1,1 is required in Definition 2.1.1, which implies the continuity
of Φ across a shock-front S for piecewise smooth solutions:

[Φ]S = 0. (2.1.2)

In fact, the continuity of Φ in (2.1.2) can also be derived for the piecewise
smooth solution Φ (without assumption Φ ∈W 1,1) by requiring that Φ keep the
validity of the equations:

∇x × v = 0, ∂tv = ∇x(∂tΦ) (2.1.3)

in the sense of distributions. This is tantamount to requiring that

(∂tΦ,v) = (∂tΦ,∇xΦ). (2.1.4)

The condition on v is that

(∂t,∇x)× (∂tΦ,v) = 0,

which is equivalent to (2.1.3). By definition, the equations in (2.1.4) for piecewise
smooth solutions are understood as

∫∫
Φ∂xiψ dtdx = −

∫∫
viψ dtdx, i = 1, 2,

for any test function ψ ∈ C∞0 ((0,∞) × R2). Using the Gauss-Green formula
in the two regions of continuity of (∂tΦ,∇xΦ) separated by S in the standard
fashion, we obtain ∫

S
[Φ]ψ dσ = 0,

where dσ is the surface measure on S. This implies the continuity of Φ across a
shock-front S in (2.1.2).

The discontinuity S of (∂tΦ,∇xΦ) is called a shock if Φ further satisfies the
physical entropy condition: The corresponding density function ρ(∂tΦ,∇xΦ)
increases across S in the relative flow direction with respect to S (cf. [94, 99]).

Definition 2.1.2. Let Φ be a piecewise smooth weak solution of (1.5) with jump
for (∂tΦ,∇xΦ) across an oriented surface S. The discontinuity S of (∂tΦ,∇xΦ)
is called a shock if Φ further satisfies the physical entropy condition: The cor-
responding density function ρ(∂tΦ,∇xΦ) increases across S in the relative flow
direction with respect to S (cf. [94, 99]).
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The jump condition in (2.1.1) from the conservation of mass and the continu-
ity of Φ in (2.1.2) are the conditions that are actually used in practice, especially
in aerodynamics, resulting from the Rankine-Hugoniot conditions for the time-
dependent potential flow equation (1.5). The empirical evidence for this is that
entropy solutions of (1.1) or (1.5) are fairly close to the corresponding entropy
solutions of the full Euler equations, provided that the strengths of shock-fronts
are small, the curvatures of shock-fronts are not too large, and the amount of
vorticity is small in the region of interest. In fact, for the solutions containing a
weak shock, especially in aerodynamic applications, the potential flow equation
(1.5) and the full Euler flow model (1.7) match each other well up to the third
order of the shock strength. Furthermore, we will show in Chapter 18 that, for
the shock reflection-diffraction problem, the Euler equations (1.1) for potential
flow are actually an exact match in an important region of the shock reflection-
diffraction configurations to the full Euler equations (1.7). See also Bers [16],
Glimm-Majda [139], and Morawetz [220, 221, 222].

Planar shock-front solutions are special piecewise smooth solutions given by
the explicit formulae:

Φ =

{
Φ+, x1 > st,

Φ−, x1 < st
(2.1.5)

with
Φ± = a±0 t+ u±x1 + v±x2. (2.1.6)

Then the continuity condition (2.1.2) of Φ across the shock-front implies

[v] = 0, [a0] + s[u] = 0. (2.1.7)

The jump condition (2.1.1) yields

s[ρ] = [ρu], (2.1.8)

since n = 1√
s2+1

(−s, 1, 0).
The relation between ρ and Φ via the Bernoulli law is

[a0 +
1

2
u2] +

1

γ − 1
[ργ−1] = 0, (2.1.9)

where we have used (1.2) for polytropic gases. From now on, we focus on γ > 1.
Combining (2.1.7)–(2.1.9), we conclude





[u] = −
√

2[ρ][ργ−1]

(γ − 1)(ρ+ + ρ−)
,

[a0] = − [ρu][u]

[ρ]
,

s =
[ρu]

[ρ]
.

(2.1.10)
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This implies that the shock speed s is

s = u+ + ρ−

√
2[ργ−1]

(γ − 1)[ρ2]
. (2.1.11)

The entropy condition is

ρ+ < ρ− if u± > 0. (2.1.12)

2.2 MATHEMATICAL PROBLEMS FOR SHOCK
REFLECTION-DIFFRACTION

When a plane shock in the (t,x)–coordinates, t ∈ R+ := [0,∞),x = (x1, x2) ∈
R2, with left state (ρ,∇xΦ) = (ρ1, u1, 0) and right state (ρ0, 0, 0), u1 > 0, ρ0 <
ρ1, hits a symmetric wedge

W := {x : |x2| < x1 tan θw, x1 > 0}
head-on (see Fig. 1.1), it experiences a reflection-diffraction process. Then
system (1.1) in R+ × (R2 \W ) becomes





∂tρ+ divx(ρ∇xΦ) = 0,

∂tΦ +
1

2
|∇xΦ|2 +

ργ−1 − ργ−1
0

γ − 1
= 0,

(2.2.1)

where we have used the Bernoulli constant B0 =
ργ−1

0 −1
γ−1 determined by the right

state (ρ0, 0, 0). From (2.1.10), we find that u1 > 0 is uniquely determined by
(ρ0, ρ1) and γ > 1:

u1 =

√
2(ρ1 − ρ0)(ργ−1

1 − ργ−1
0 )

(γ − 1)(ρ1 + ρ0)
> 0, (2.2.2)

where we have used that ρ0 < ρ1.
Then the shock reflection-diffraction problem can be formulated as the fol-

lowing problem:

Problem 2.2.1 (Initial-Boundary Value Problem). Seek a solution of system
(2.2.1) for B0 =

ργ−1
0 −1
γ−1 with the initial condition at t = 0:

(ρ,Φ)|t=0 =





(ρ0, 0) for |x2| > x1 tan θw, x1 > 0,

(ρ1, u1x1) for x1 < 0,
(2.2.3)

and the slip boundary condition along the wedge boundary ∂W :

∇xΦ · ν|R+×∂W = 0, (2.2.4)

where ν is the exterior unit normal to ∂W (see Fig. 2.1).
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Figure 2.1: Initial-boundary value problem

Notice that the initial-boundary value problem (Problem 2.2.1) is invariant
under the self-similar scaling:

(t,x) 7→ (αt, αx), (ρ,Φ) 7→ (ρ,
Φ

α
) for α 6= 0. (2.2.5)

That is, if (ρ,Φ)(t,x) satisfy (2.2.1)–(2.2.4), so do (ρ, Φ
α )(αt, αx) for any constant

α 6= 0.
Therefore, we seek self-similar solutions with the following form:

ρ(t,x) = ρ(ξ), Φ(t,x) = t φ(ξ) for ξ = (ξ1, ξ2) =
x

t
. (2.2.6)

We then see that the pseudo-potential function ϕ = φ− |ξ|
2

2 satisfies the following
Euler equations for self-similar solutions:





div (ρDϕ) + 2ρ = 0,

(γ − 1)(
1

2
|Dϕ|2 + ϕ) + ργ−1 = ργ−1

0 ,
(2.2.7)

where div and D represent the divergence and the gradient, respectively, with
respect to the self-similar variables ξ.

This implies that the pseudo-potential function ϕ(ξ) is governed by the fol-
lowing potential flow equation of second order:

div
(
ρ(|Dϕ|2, ϕ)Dϕ

)
+ 2ρ(|Dϕ|2, ϕ) = 0 (2.2.8)

with
ρ(|Dϕ|2, ϕ) =

(
ργ−1

0 − (γ − 1)(ϕ+
1

2
|Dϕ|2)

) 1
γ−1 . (2.2.9)

We consider (2.2.8) with (2.2.9) for functions ϕ satisfying

ργ−1
0 − (γ − 1)

(
ϕ+

1

2
|Dϕ|2

)
≥ 0. (2.2.10)
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Definition 2.2.2. A function ϕ ∈W 1,1
loc (Ω) is called a weak solution of equation

(2.2.8) in domain Ω if ϕ satisfies (2.2.10) and the following properties:

(i) For ρ(|Dϕ|2, ϕ) determined by (2.2.9),

(ρ(|Dϕ|2, ϕ), ρ(|Dϕ|2, ϕ)|Dϕ|) ∈ (L1
loc(Ω))2;

(ii) For every ζ ∈ C∞c (Ω),
∫

Ω

(
ρ(|Dϕ|2, ϕ)Dϕ ·Dζ − 2ρ(|Dϕ|2, ϕ)ζ

)
dξ = 0.

We will also use the non-divergence form of equation (2.2.8) for φ = ϕ+ |ξ|
2

2 :

(c2 − ϕ2
ξ1)φξ1ξ1 − 2ϕξ1ϕξ2φξ1ξ2 + (c2 − ϕ2

ξ2)φξ2ξ2 = 0, (2.2.11)

where the sonic speed c = c(|Dϕ|2, ϕ, ργ−1
0 ) is determined by (1.14).

Equation (2.2.8) or (2.2.11) is a nonlinear second-order PDE of mixed elliptic-
hyperbolic type. It is elliptic if and only if (1.18) holds, which is equivalent to
the following condition:

|Dϕ| < c∗(ϕ, ρ0, γ) :=

√
2

γ + 1

(
ργ−1

0 − (γ − 1)ϕ
)
. (2.2.12)

Throughout the rest of this book, for simplicity, we drop term “pseudo” and
simply call ϕ as a potential function and Dϕ as a velocity, respectively, when
no confusion arises.

Shocks are discontinuities in the velocity functions Dϕ. That is, if Ω+ and
Ω− := Ω \Ω+ are two non-empty open subsets of Ω ⊂ R2, and S := ∂Ω+ ∩Ω is
a C1–curve where Dϕ has a jump, then ϕ ∈ W 1,1

loc (Ω) ∩ C1(Ω±) ∩ C2(Ω±) is a
global weak solution of (2.2.8) in Ω in the sense of Definition 2.2.2 if and only if
ϕ is in W 1,∞

loc (Ω) and satisfies equation (2.2.8) in Ω± and the Rankine-Hugoniot
condition on S: [

ρ(|Dϕ|2, ϕ)Dϕ · ν
]
S = 0. (2.2.13)

Note that the condition that ϕ ∈ W 1,∞
loc (Ω) implies the continuity of ϕ across

shock S:
[ϕ]S = 0. (2.2.14)

The plane incident shock solution in the (t,x)–coordinates with the left and
right states:

(ρ,∇xΦ) = (ρ0, 0, 0), (ρ1, u1, 0)

corresponds to a continuous weak solution ϕ of (2.2.8) in the self-similar coor-
dinates ξ with the following form:

ϕ =

{
ϕ0 for ξ1 > ξ0

1 ,

ϕ1 for ξ1 < ξ0
1 ,

(2.2.15)
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where

ϕ0(ξ) = −|ξ|
2

2
, (2.2.16)

ϕ1(ξ) = −|ξ|
2

2
+ u1(ξ1 − ξ0

1), (2.2.17)

and

ξ0
1 = ρ1

√
2(ργ−1

1 − ργ−1
0 )

(γ − 1)(ρ2
1 − ρ2

0)
=

ρ1u1

ρ1 − ρ0
> 0 (2.2.18)

is the location of the incident shock in the ξ–coordinates, uniquely determined
by (ρ0, ρ1, γ) through (2.2.13), which is obtained from (2.1.11) and (2.2.2) owing
to the fact that ξ0

1 = s here. Since the problem is symmetric with respect to
the ξ1–axis, it suffices to consider the problem in half-plane ξ2 > 0 outside the
half-wedge:

Λ := {ξ : ξ1 ∈ R, ξ2 > max(ξ1 tan θw, 0)}. (2.2.19)

Then the initial-boundary value problem (2.2.1)–(2.2.4) in the (t,x)–coordinates
can be formulated as a boundary value problem in the self-similar coordinates
ξ.

·
ϕ∇

=
0

wθ

ν

2ξ

1ξ

θtan1ξ=2ξ

1
0ξ

=0

ν

2ξ
ϕ

1ϕ

ϕ

ϕ

0ϕIncident 
    shock

Figure 2.2: Boundary value problem

Problem 2.2.3 (Boundary Value Problem; see Fig. 2.2). Seek a solution ϕ of
equation (2.2.8) in the self-similar domain Λ with the slip boundary condition:

Dϕ · ν|∂Λ = 0 (2.2.20)

and the asymptotic boundary condition at infinity:

ϕ→ ϕ̄ =

{
ϕ0 for ξ ∈ Λ, ξ1 > ξ0

1 ,

ϕ1 for ξ ∈ Λ, ξ1 < ξ0
1 ,

when |ξ| → ∞, (2.2.21)
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where (2.2.21) holds in the sense that lim
R→∞

‖ϕ− ϕ‖C0,1(Λ\BR(0)) = 0.

This is a boundary value problem for the second-order nonlinear conservation
law (2.2.8) of mixed elliptic-hyperbolic type in an unbounded domain. The
main feature of this boundary value problem is that Dϕ has a jump at ξ1 = ξ0

1

at infinity, which is not conventional, coupling with the wedge corner for the
domain. The solutions with complicated patterns of wave configurations as
observed experimentally should be the global solutions of this boundary value
problem: Problem 2.2.3.

2.3 WEAK SOLUTIONS OF PROBLEM 2.2.1 AND
PROBLEM 2.2.3

Note that the boundary condition (2.2.20) for Problem 2.2.3 implies

ρDϕ · ν|∂Λ = 0. (2.3.1)

Conditions (2.2.20) and (2.3.1) are equivalent if ρ 6= 0. Since ρ 6= 0 for the
solutions under consideration, we use condition (2.3.1) instead of (2.2.20) in the
definition of weak solutions of Problem 2.2.3.

Similarly, we write the boundary condition (2.2.4) for Problem 2.2.1 as

ρ∇xΦ · ν|R+×∂W = 0. (2.3.2)

Condition (2.3.1) is the conormal condition for equation (2.2.8). Also, (2.3.2)
is the spatial conormal condition for equation (1.5). This yields the following
definitions:

Definition 2.3.1 (Weak Solutions of Problem 2.2.1). A function

Φ ∈W 1,1
loc (R+ × (R2 \W ))

is called a weak solution of Problem 2.2.1 if Φ satisfies the following properties:

(i) B0 −
(
∂tΦ + 1

2 |∇xΦ|2
)
≥ h(0+) a.e. in R+ × (R2 \W );

(ii) For ρ(∂tΦ,∇xΦ) determined by (1.4),

(ρ(∂tΦ, |∇xΦ|2), ρ(∂tΦ, |∇xΦ|2)|∇xΦ|) ∈ (L1
loc(R+ × R2 \W ))2;

(iii) For every ζ ∈ C∞c (R+ × R2),
∫ ∞

0

∫

R2\W

(
ρ(∂tΦ, |∇xΦ|2)∂tζ + ρ(∂tΦ, |∇xΦ|2)∇Φ · ∇ζ

)
dxdt

+

∫

R2\W
ρ|t=0ζ(0,x)dx = 0,
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where

ρ|t=0 =

{
ρ0 for |x2| > x1 tan θw, x1 > 0,

ρ1 for x1 < 0.

Remark 2.3.2. Since ζ does not need to be zero on ∂W , the integral identity
in Definition 2.3.1 is a weak form of equation (1.5) and the boundary condition
(2.3.2).

Definition 2.3.3 (Weak solutions of Problem 2.2.3). A function ϕ ∈W 1,1
loc (Λ)

is called a weak solution of Problem 2.2.3 if ϕ satisfies (2.2.21) and the fol-
lowing properties:

(i) ργ−1
0 − (γ − 1)

(
ϕ+ 1

2 |Dϕ|2
)
≥ 0 a.e. in Λ;

(ii) For ρ(|Dϕ|2, ϕ) determined by (2.2.9),

(ρ(|Dϕ|2, ϕ), ρ(|Dϕ|2, ϕ)|Dϕ|) ∈ (L1
loc(Λ))2;

(iii) For every ζ ∈ C∞c (R2),
∫

Λ

(
ρ(|Dϕ|2, ϕ)Dϕ ·Dζ − 2ρ(|Dϕ|2, ϕ)ζ

)
dξ = 0.

Remark 2.3.4. Since ζ does not need to be zero on ∂Λ, the integral identity in
Definition 2.3.3 is a weak form of equation (2.2.8) and the boundary condition
(2.3.1).

Remark 2.3.5. From Definition 2.3.3, we observe the following fact: If B ⊂ R2

is an open set, and ϕ is a weak solution of Problem 2.2.3 satisfying ϕ ∈
C2(B ∩ Λ) ∩ C1(B ∩ Λ), then ϕ satisfies equation (2.2.8) in the classical sense
in B ∩ Λ, the boundary condition (2.3.1) on B ∩ ∂Λ \ {0}, and Dϕ(0) = 0.

2.4 STRUCTURE OF SOLUTIONS: REGULAR
REFLECTION-DIFFRACTION CONFIGURATIONS

We now discuss the structure of solutions ϕ of Problem 2.2.3 corresponding
to shock reflection-diffraction.

Since ϕ1 does not satisfy the slip boundary condition (2.2.20), the solution
must differ from ϕ1 in {ξ1 < ξ0

1} ∩ Λ so that a shock diffraction by the wedge
occurs. We now describe two of the most important configurations: the su-
personic and subsonic regular reflection-diffraction configurations, as shown in
Fig. 2.3 and Fig. 2.4, respectively. From now on, we will refer to these two
configurations as a supersonic reflection configuration and a subsonic reflection
configuration respectively, whose corresponding solutions are called the super-
sonic reflection solution and the subsonic reflection solution respectively, when
no confusion arises.
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In Figs. 2.3 and 2.4, the vertical line is the incident shock S0 = {ξ1 = ξ0
1}

that hits the wedge at point P0 = (ξ0
1 , ξ

0
1 tan θw), and state (0) and state (1),

ahead of and behind S0, are given by ϕ0 and ϕ1 defined in (2.2.16) and (2.2.17),
respectively. Thus, we only need to describe the solution in subregion P0P2P3

between the wedge and the reflected-diffracted shock. The solution is expected
to be C1 in P0P2P3. Now we describe its structure. Below, ϕ denotes the
potential of the solution in P0P2P3, while we use the uniform states ϕ0 and ϕ1

to describe the solution outside P0P2P3, ahead of and behind the incident shock
S1, respectively. In particular, Dϕ(P0) denotes the limit at P0 of the gradient
of the solution in P0P2P3.

2.4.1 Definition of state (2)

Since ϕ is C1 in region P0P2P3, it should satisfy the boundary conditionDϕ·ν =
0 on the wedge boundary P0P3 including the endpoints, as well as the Rankine-
Hugoniot conditions (2.2.13)–(2.2.14) at P0 across the reflected shock separating
ϕ from ϕ1. Let

(u2, v2) := Dϕ(P0) + ξP0
.

Then v2 = u2 tan θw by Dϕ ·ν = 0. Moreover, using (2.2.17), in addition to the
previous properties, we see by a direct calculation that the uniform state with
the pseudo-potential:

ϕ2(ξ) = −|ξ|
2

2
+ u2(ξ1 − ξ0

1) + u2 tan θw(ξ2 − ξ0
1 tan θw), (2.4.1)

called state (2), satisfies the boundary condition on the wedge boundary:

Dϕ2 · ν = 0 on ∂Λ ∩ {ξ1 = ξ2 cot θw}, (2.4.2)

and the Rankine-Hugoniot conditions (2.2.13) on the flat shock S1 determined
by (2.2.14):

S1 := {ϕ1 = ϕ2} (2.4.3)



26 CHAPTER 2

which passes through P0 between states (1) and (2).
We note that the constant velocity u2 > 0 is determined by (ρ0, ρ1, γ, θw)

from the algebraic equation expressing (2.2.13) for ϕ1 and ϕ2 across S1, where
we have used (2.2.2) to eliminate u1 from the list of parameters and have noted
that νS1

= (u1−u2,−u2 tan θw)
|(u1−u2,−u2 tan θw)| .

Thus, state (2) is defined by the following requirements: It is a uniform state
with pseudo-potential ϕ2(ξ) such that Dϕ2 · ν = 0 on the wedge boundary, and
the Rankine-Hugoniot conditions (2.2.13)–(2.2.14) for ϕ1 and ϕ2 hold at P0. As
we will discuss in §2.5, such a state (2) exists for any wedge angle θw ∈ [θd

w,
π
2 ],

for some θd
w = θd

w(ρ0, ρ1, γ) > 0. From the discussion above, it is apparent that
the existence of state (2) is a necessary condition for the existence of regular
reflection-diffraction configurations as shown in Figs. 2.3–2.4.

From now on, we fix the data, i.e., parameters (ρ0, ρ1, γ). Thus, the param-
eters of state (2) depend only on θw.

State (2) can be either pseudo-subsonic or pseudo-supersonic at P0. This
determines the subsonic or supersonic type of regular reflection-diffraction con-
figurations, as shown in Figs. 2.3–2.4.

We note that the uniform state (2) is pseudo-subsonic within its sonic circle
with center O2 = (u2, u2 tan θw) and radius c2 = ρ

(γ−1)/2
2 > 0, the sonic speed

of state (2), and that ϕ2 is pseudo-supersonic outside this circle.
Thus, if state (2) is pseudo-supersonic at P0, P0 lies outside the sonic cir-

cle Bc2(O2) of state (2). It can be shown (see §7.5) that line S1 intersects
∂Bc2(O2) at two points and, denoting by P1 the point that is closer to P0, we
find that P1 lies in Λ and segment P0P1 lies in Λ and outside of Bc2(u2, v2); see
Fig. 2.3. Denote by P4 the point of intersection of ∂Bc2(O2) with the wedge
boundary {ξ2 = ξ1 tan θw, ξ1 > 0} such that arc P1P4 lies between S1 and
{ξ2 = ξ1 tan θw, ξ1 > 0}.

2.4.2 Supersonic regular reflection-diffraction configurations

This is the case when state (2) is supersonic at P0.
The supersonic reflection configuration as shown in Fig. 2.3 consists of three

uniform states: (0), (1), (2), plus a non-uniform state in domain Ω = P1P2P3P4.
As described above, the solution is equal to state (0) and state (1) ahead of and
behind the incident shock S0, away from subregion P0P2P3. The solution is
equal to state (2) in subregion P0P1P4. Note that state (2) is supersonic in
P0P1P4.

The non-uniform state in Ω is subsonic, i.e., the potential flow equation
(2.2.8) for ϕ is elliptic in Ω.

We denote the boundary parts of Ω by

Γshock := P1P2, Γsym := P2P3, Γwedge := P3P4, Γsonic := P1P4, (2.4.4)

where Γshock is the curved part of the reflected shock, Γsonic is the sonic arc, and
Γwedge (the wedge boundary) and Γsym are the straight segments, respectively.
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Note that the curved part of the reflected shock Γshock separates the su-
personic flow outside Ω from the subsonic flow in Ω, i.e., Γshock is a transonic
shock.

2.4.3 Subsonic regular reflection-diffraction configurations

This is the case when state (2) is subsonic or sonic at P0.
The subsonic reflection configuration as shown in Fig. 2.4 consists of two

uniform states – (0) and (1) – in the regions described above, and a non-uniform
state in domain Ω = P0P2P3. The non-uniform state in Ω is subsonic, i.e., the
potential flow equation (2.2.8) for ϕ is elliptic in Ω. Moreover, solution ϕ in Ω
matches with ϕ2 at P0 as follows:

ϕ(P0) = ϕ2(P0), Dϕ(P0) = Dϕ2(P0).

The boundary parts of Ω in this case are

Γshock := P0P2, Γsym := P2P3, Γwedge := P0P3. (2.4.5)

Similar to the previous case, Γshock is a transonic shock. We unify the notations
with supersonic reflection configurations by introducing points P1 and P4 for
subsonic reflection configurations via setting

P1 := P0, P4 := P0, Γsonic := {P0}. (2.4.6)

Note that, with this convention, (2.4.5) coincides with (2.4.4).
In Part III, we develop approaches, techniques, and related analysis to es-

tablish the global existence of a supersonic reflection configuration up to the
sonic angle, or the critical angle in the attached case (defined in §2.6).

In Part IV, we develop the theory further to establish the global existence of
regular reflection-diffraction configurations up to the detachment angle, or the
critical angle in the attached case. In particular, this will imply the existence of
both supersonic and subsonic reflection configurations.

2.5 EXISTENCE OF STATE (2) AND CONTINUOUS
DEPENDENCE ON THE PARAMETERS

We note that state (2), the uniform state (2.4.1), satisfies (2.4.2) and the
Rankine-Hugoniot condition with state (1) on S1 = {ϕ1 = ϕ2} as defined in
(2.4.3):

ρ2Dϕ2 · ν = ρ1Dϕ1 · ν on S1, (2.5.1)

where ν is the unit normal on S1.
From the regular reflection-diffraction configurations as described in §2.4.2–

§2.4.3, the existence of state (2) is a necessary condition for the existence of
such a solution. We note that S1, defined in (2.4.3), is a straight line, which
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is concluded from the explicit expressions of ϕj , j = 1, 2, and the fact that
(u1, 0) 6= (u2, v2). The last statement holds since ϕ1 does not satisfy (2.4.2).

State (2), (u2, v2) in (2.4.1), is obtained as a solution of the algebraic system
involving the slope of S1 (i.e., the direction of ν) and the equality in (2.5.1); see
§7.4 below.

This algebraic system has solutions for some but not all θw ∈ (0, π2 ). More
precisely, there exist the sonic angle θs

w and the detachment angle θd
w satisfying

0 < θd
w < θs

w <
π

2

such that there are two states (2), weak and strong with ρwk
2 < ρsg

2 , for all
θw ∈ (θd

w,
π
2 ), but ρwk

2 = ρsg
2 at θw = θd

w. Moreover, the strong state (2) is
always subsonic at the reflection point P0(θw), while the weak state (2) is:

(i) supersonic at the reflection point P0(θw) for θw ∈ (θs
w,

π
2 );

(ii) sonic at P0(θw) for θw = θs
w;

(iii) subsonic at P0(θw) for θw ∈ (θd
w, θ̂

s
w), for some θ̂s

w ∈ (θd
w, θ

s
w].

Moreover, the weak state (2)= (u2, v2) depends continuously on θw in [θd
w,

π
2 ].

For details of this, see Theorem 7.1.1 in Chapter 7.
As for the weak and strong states for each θw ∈ (θd

w,
π
2 ), there has been a

long debate to determine which one is physical for the local theory; see Courant-
Friedrichs [99], Ben-Dor [12], and the references cited therein. It has been
conjectured that the strong reflection-diffraction configuration is non-physical.
Indeed, when the wedge angle θw tends to π

2 , the weak reflection-diffraction con-
figuration tends to the unique normal reflection as proved in Chen-Feldman [54];
however, the strong reflection-diffraction configuration does not (see Chapter 7
below).

In the existence results of regular reflection-diffraction solutions below, we
always use the weak state (2).

2.6 VON NEUMANN’S CONJECTURES, PROBLEM 2.6.1
(FREE BOUNDARY PROBLEM), AND MAIN THEOREMS

If the weak state (2) is supersonic, on which equation (2.2.8) is hyperbolic,
the propagation speeds of the solution are finite, and state (2) is completely
determined by the local information: state (1), state (0), and the location of
point P0. That is, any information from the region of shock reflection-diffraction,
such as the disturbance at corner P3, cannot travel towards the reflection point
P0. However, if the weak state (2) is subsonic, on which equation (2.2.8) is
elliptic, the information can reach P0 and interact with it, potentially creating a
new type of shock reflection-diffraction configurations. This argument motivated
the conjecture by von Neumann in [267, 268], which can be formulated as follows:
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von Neumann’s Sonic Conjecture: There exists a supersonic regular
reflection-diffraction configuration when θw ∈ (θs

w,
π
2 ), i.e., the supersonicity

of the weak state (2) at P0(θw) implies the existence of a supersonic regular
reflection-diffraction configuration to Problem 2.2.3 as shown in Fig. 2.3.

Another conjecture states that the global regular reflection-diffraction con-
figuration is possible whenever the local regular reflection at the reflection point
P0 is possible, even beyond the sonic angle θs

w up to the detachment angle θd
w:

von Neumann’s Detachment Conjecture: There exists a global regu-
lar reflection-diffraction configuration for any wedge angle θw ∈ (θd

w,
π
2 ), i.e.,

the existence of state (2) implies the existence of a regular reflection-diffraction
configuration to Problem 2.2.3. Moreover, the type (subsonic or supersonic)
of the reflection-diffraction configuration is determined by the type of the weak
state (2) at P0(θw), as shown in Figs. 2.3–2.4.

It is clear that the supersonic and subsonic reflection configurations are not
possible without a local two-shock configuration at the reflection point on the
wedge, so that it is the necessary criterion for the existence of supersonic and
subsonic reflection configurations.

There has been a long debate in the literature whether there still exists a
global regular reflection-diffraction solution beyond the sonic angle θs

w up to
the detachment angle θd

w; see Ben-Dor [12] and the references cited therein. As
shown in Fig. 18.7 for the full Euler case, the difference on the physical pa-
rameters between the sonic conjecture and the detachment conjecture is only
fractions of a degree apart in terms of the wedge angles; a resolution has chal-
lenged even sophisticated modern numerical and laboratory experiments. In
Part IV (Chapters 15–17), we rigorously prove the global existence of regular
reflection-diffraction configurations, beyond the sonic angle up to the detach-
ment angle. This indicates that the necessary criterion is also sufficient for
the existence of supersonic and subsonic reflection configurations, at least for
potential flow.

To solve von Neumann’s conjectures, we reformulate Problem 2.2.3 into
the following free boundary problem:

Problem 2.6.1 (Free Boundary Problem). For θw ∈ (θd
w,

π
2 ), find a free bound-

ary (curved reflected-diffracted shock) Γshock in region Λ ∩ {ξ1 < ξ1P1
} (where

we use (2.4.6) for subsonic reflections) and a function ϕ defined in region Ω as
shown in Figs. 2.3–2.4 such that ϕ satisfies:

(i) Equation (2.2.8) in Ω;

(ii) ϕ = ϕ1 and ρDϕ · ν = ρ1Dϕ1 · ν on the free boundary Γshock separating
the elliptic phase from the hyperbolic phase;

(iii) ϕ = ϕ2 and Dϕ = Dϕ2 on Γsonic for the supersonic reflection configuration
as shown in Fig. 2.3 and at P0 for the subsonic reflection configuration as
shown in Fig. 2.4;
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(iv) Dϕ · ν = 0 on Γwedge ∪ Γsym,

where ν is the interior unit normal to Ω on Γshock ∪ Γwedge ∪ Γsym.

We remark that condition (iii) is equivalent to the Rankine-Hugoniot condi-
tions for ϕ across Γsonic. The sonic arc Γsonic is a weak discontinuity of ϕ (which
is different from a strong discontinuity such as Γshock); that is, if the state from
one side is sonic, the Rankine-Hugoniot conditions require the gradient of ϕ to
be continuous across Γsonic.

Furthermore, since condition (ii) is the Rankine-Hugoniot conditions for ϕ
across Γshock, we can extend solution ϕ of Problem 2.6.1 from Ω to Λ so that
the extended function (still denoted) ϕ is a weak solution of Problem 2.2.3
(at least when Γshock and ϕ are sufficiently regular). More specifically,

Definition 2.6.2. Let ϕ be a solution of Problem 2.6.1 in region Ω. Define
the extension of ϕ from Ω to Λ by setting:

ϕ =





ϕ0 for ξ1 > ξ0
1 and ξ2 > ξ1 tan θw,

ϕ1 for ξ1 < ξ0
1 and above curve P0P1P2,

ϕ2 in region P0P1P4,

(2.6.1)

where we have used the notational convention (2.4.6) for subsonic reflections.
In particular, for subsonic reflections, region P0P1P4 is one point, and curve
P0P1P2 is P0P2. See Figs. 2.3 and 2.4.

We note that ξ0
1 used in (2.6.1) is the location of the incident shock; cf.

(2.2.15) and (2.2.18). Also, the extension by (2.6.1) is well-defined because of
the requirement Γshock ⊂ Λ ∩ {ξ1 < ξ1P1

} in Problem 2.6.1.
From now on, using Definition 2.6.2, we consider solutions ϕ of Problem

2.6.1 to be defined in Λ.
It turns out that another key obstacle for establishing the existence of regular

reflection-diffraction configurations is the additional possibility that, for some
wedge angle θc

w ∈ (θd
w,

π
2 ), the reflected-diffracted shock P0P2 may strike the

wedge vertex P3, an additional sub-type of regular reflection-diffraction config-
urations in which the reflected-diffracted shock is attached to the wedge vertex
P3, i.e., P2 = P3. Indeed, in such a case, we establish the existence of such a
global solution of regular reflection-diffraction configurations as shown in Figs.
2.5–2.6 for any wedge angle θw ∈ (θc

w,
π
2 ).

Observe that some experimental results (cf. [263, Fig. 238, Page 144])
suggest that solutions with an attached shock to the wedge vertex may exist
for the Mach reflection case. We are not aware of experimental or numerical
evidence of the existence of regular reflection-diffraction configurations with an
attached shock to the wedge vertex. However, it is possible that such solutions
may exist, as shown in Figs. 2.5–2.6. Thus, it is not surprising that two different
cases on the parameters of the initial data in Problem 2.2.1 are considered
separately in our study.
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We show that the solutions with an attached shock do not exist when the
initial data of Problem 2.2.1, equivalently parameters (ρ0, ρ1, γ) in Problem
2.6.1 which also define u1 by (2.2.2), satisfy u1 ≤ c1. Moreover, in this case,
the regular reflection-diffraction solution of Problem 2.6.1 exists for each θw ∈
(θd

w,
π
2 ), as von Neumann conjectured [267, 268]. In the other case, u1 > c1, we

assert the existence of a regular reflection-diffraction configuration for Problem
2.6.1 for any θw ∈ (θc

w,
π
2 ), where either θc

w = θd
w or θc

w ∈ (θd
w,

π
2 ) is the hitting

wedge angle in the sense that a solution with P2 = P3 exists for θw = θc
w.

We also note that both cases u1 ≤ c1 and u1 > c1 exist, for the corresponding
parameters (ρ0, ρ1, γ), where ρ1 > ρ0 by the entropy condition on S1. Indeed,

since c1 = ρ
γ−1

2
1 , and u1 is a function of (ρ0, ρ1) for fixed γ > 1, determined by

(2.2.2), then, for each ρ0 > 0, there exists ρ∗1 > ρ0 such that

(i) u1 < c1 for any ρ1 ∈ (ρ0, ρ
∗
1);

(ii) u1 = c1 for ρ1 = ρ∗1;

(iii) u1 > c1 for any ρ1 ∈ (ρ∗1,∞).

This is verified via a straightforward but lengthy calculation by both noting that
(2.2.2) implies that u1 = 0 < c1 for ρ1 = ρ0 and showing that ∂ρ1

(u1 − c1) ≥
C(ρ0) > 0 for ρ1 > ρ0.

Therefore, Case u1 ≤ c1 (resp. Case u1 > c1) corresponds to the weaker
(resp. stronger) incident shocks.

In Parts II–III, we focus on von Neumann’s sonic conjecture, that is, the
existence of supersonic reflection configurations up to the sonic angle θs

w for
θw ∈ (θs

w,
π
2 ), or the critical angle θc

w ∈ (θs
w,

π
2 ) for θw ∈ (θc

w,
π
2 ). We estab-

lish two existence theorems: Theorem 2.6.3, which corresponds to the case of
a relatively weaker incident shock, and Theorem 2.6.5, which corresponds to
the case of a relatively stronger incident shock. We also establish a regularity



32 CHAPTER 2

theorem, Theorem 2.6.6, for supersonic reflection solutions. We stress that, in
what follows, ϕ2 always denotes the weak state (2). Furthermore, in all of the
theorems below, we always assume that ρ1 > ρ0 > 0 and γ > 1.

Theorem 2.6.3 (Existence of Supersonic Reflection Configurations for u1 ≤ c1).
Consider all (ρ0, ρ1, γ) such that u1 ≤ c1. Then there is α = α(ρ0, ρ1, γ) ∈ (0, 1

2 )
so that, when θw ∈ (θs

w,
π
2 ), there exists a solution ϕ of Problem 2.6.1 such

that

Φ(t,x) = t ϕ(
x

t
) +
|x|2
2t

for
x

t
∈ Λ, t > 0

with

ρ(t,x) =
(
ργ−1

0 − (γ − 1)
(
Φt +

1

2
|∇xΦ|2

)) 1
γ−1

is a global weak solution of Problem 2.2.1 in the sense of Definition 2.3.3,
which satisfies the entropy condition (cf. Definition 2.1.2). Furthermore,

(a) ϕ ∈ C∞(Ω) ∩ C1,α(Ω);

(b) ϕ has structure (2.6.1) in Λ \ Ω;

(c) ϕ is C1,1 across part Γsonic of the sonic circle including endpoints P1 and
P4;

(d) The reflected-diffracted shock P0P1P2 is C2,β up to its endpoints for any
β ∈ [0, 1

2 ) and C∞ except P1;

(e) The relative interior of the reflected-diffracted shock P0P1P2 lies in {ξ2 >
ξ1 tan θw, ξ2 > 0}, i.e., the domain bounded by the wedge and the symmetry
line {ξ2 = 0}.

Moreover, ϕ satisfies the following properties:

(i) Equation (2.2.8) is strictly elliptic in Ω \ Γsonic:

|Dϕ| < c(|Dϕ|2, ϕ) in Ω \ Γsonic; (2.6.2)

(ii) In Ω,
ϕ2 ≤ ϕ ≤ ϕ1. (2.6.3)

See Fig. 2.3.

Remark 2.6.4. In fact, ϕ in Theorem 2.6.3 is an admissible solution in the
sense of Definition 8.1.1 below so that ϕ satisfies the further conditions listed in
Definition 8.1.1.

Now we address Case u1 > c1. In this case, the results of Theorem 2.6.3
hold for any wedge angle θw from π

2 until either θs
w or θc

w ∈ (θs
w,

π
2 ) when the

shock hits the wedge vertex P3.
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Theorem 2.6.5 (Existence of Supersonic Reflection Configurations when u1 > c1).
Consider all (ρ0, ρ1, γ) such that u1 > c1. There are θc

w ∈ [θs
w,

π
2 ) and α ∈ (0, 1

2 )
depending only on (ρ0, ρ1, γ) so that the results of Theorem 2.6.3 hold for each
wedge angle θw ∈ (θc

w,
π
2 ). If θc

w > θs
w, then, for the wedge angle θw = θc

w, there
exists an attached solution as shown in Fig. 2.5 (i.e., a solution ϕ of Problem
2.6.1 with the properties as those in Theorem 2.6.3 except that P3 = P2) with
the regularity:

ϕ ∈ C∞(Ω) ∩ C2,α(Ω \ (Γsonic ∪ {P2})) ∩ C1,1(Ω \ {P2}) ∩ C0,1(Ω),

and the reflected-diffracted shock P0P1P2 is Lipschitz up to its endpoints, C2,β

for any β ∈ [0, 1
2 ) except point P2, and C∞ except points P1 and P2.

Since solution ϕ of Problem 2.6.1 constructed in Theorems 2.6.3 and
2.6.5 satisfies the C1,1–continuity across P1P4, (2.6.2)–(2.6.3), and further es-
timates including (11.2.23)–(11.2.24), (11.2.38)–(11.2.40), (11.4.38)–(11.4.39),
and (11.5.2), as well as Propositions 11.2.8 and 11.4.6, then the regularity re-
sults of Theorem 14.2.8 and Corollary 14.2.11 apply. More precisely, we have

Theorem 2.6.6 (Regularity of Solutions up to Γsonic). Any solution ϕ in The-
orems 2.6.3 and 2.6.5 satisfies the following:

(i) ϕ is C2,α up to the sonic arc Γsonic away from point P1 for any α ∈ (0, 1).
That is, for any α ∈ (0, 1) and any given ξ0 ∈ Γsonic \ {P1}, there exist
C < ∞ depending only on (ρ0, ρ1, γ, α) and dist(ξ0, Γshock), and d > 0
depending only on (ρ0, ρ1, γ) and dist(ξ0, Γshock) such that

‖ϕ‖
2,α;Bd(ξ0)∩Ω

≤ C.

(ii) For any ξ0 ∈ Γsonic \ {P1},

lim
ξ→ξ0

ξ∈Ω

(Drrϕ−Drrϕ2) =
1

γ + 1
,

where (r, θ) are the polar coordinates with the center at (u2, v2).

(iii) D2ϕ has a jump across Γsonic: For any ξ0 ∈ Γsonic \ {P1},

lim
ξ→ξ0

ξ∈Ω

Drrϕ − lim
ξ→ξ0

ξ∈Λ\Ω

Drrϕ =
1

γ + 1
.

(iv) lim ξ→P1
ξ∈Ω

D2ϕ does not exist.

From Chapter 4 to Chapter 14, we develop approaches, techniques, and
related analysis to complete the proofs of these theorems in detail, which provide
a solution to von Neumann’s Sonic Conjecture. We give an overview of
these techniques in Chapter 3.



34 CHAPTER 2

In Part IV, we extend Theorems 2.6.3 and 2.6.5 beyond the sonic angle
to include the wedge angles θw ∈ (θd

w, θ
s
w]. Therefore, we establish the global

existence of regular reflection-diffraction configurations for any wedge angle be-
tween π

2 and the detachment angle θd
w, or the critical angle θc

w in the attached
case. As in Theorems 2.6.3 and 2.6.5, we need to analyze two separate cases:
Case u1 ≤ c1 and Case u1 > c1, since the reflected-diffracted shock may hit
the wedge vertex in the latter case. Below, we use the notations introduced in
§2.4.2–§2.4.3, and ϕ2 denotes the weak state (2).

The theorems that follow assert the global existence of regular reflection-
diffraction configurations for any wedge angle between π

2 and the detachment
angle θd

w, or the critical angle θc
w in the attached case. The type of regular

reflection-diffraction configuration for θw ∈ (θd
w,

π
2 ) is supersonic if |Dϕ2(P0)| >

c2 and subsonic if |Dϕ2(P0)| ≤ c2. In particular, the regular reflection-diffraction
configuration is supersonic for all θw ∈ (θs

w,
π
2 ), as we have presented in Theo-

rems 2.6.3 and 2.6.5. Also, as we have discussed in (iii) of §2.5 and will prove
in Theorem 7.1.1(vi) later, there exists θ̂s

w ∈ (θd
w, θ

s
w] such that |Dϕ2(P0)| < c2

for all θw ∈ (θd
w, θ̂

s
w), and then the regular reflection-diffraction configuration is

subsonic for these wedge angles.

Theorem 2.6.7 (Global Solutions up to the Detachment Angle when u1 ≤ c1).
Consider all (ρ0, ρ1, γ) such that u1 ≤ c1. Then there is α = α(ρ0, ρ1, γ) ∈ (0, 1

2 )
so that, when θw ∈ (θd

w,
π
2 ), there exists a solution ϕ of Problem 2.6.1 such

that

Φ(t,x) = t ϕ(
x

t
) +
|x|2
2t

for
x

t
∈ Λ, t > 0

with

ρ(t,x) =
(
ργ−1

0 − (γ − 1)
(
Φt +

1

2
|∇xΦ|2

)) 1
γ−1

is a global weak solution of Problem 2.2.1 in the sense of Definition 2.3.3,
which satisfies the entropy condition (cf. Definition 2.1.2), and the type of re-
flection configurations (supersonic or subsonic) is determined by θw:

• If |Dϕ2(P0)| > c2, then ϕ has the supersonic reflection configuration and
satisfies all the properties in Theorem 2.6.3, which is the case for any
wedge angle θw ∈ (θs

w,
π
2 );

• If |Dϕ2(P0)| ≤ c2, then ϕ has the subsonic reflection configuration and
satisfies

ϕ ∈ C∞(Ω) ∩ C2,α(Ω \ {P0, P3}) ∩ C1,α(Ω),

ϕ =





ϕ0 for ξ1 > ξ0
1 and ξ2 > ξ1 tan θw,

ϕ1 for ξ1 < ξ0
1 and above curve P0P2,

ϕ2(P0) at P0,

(2.6.4)

Dϕ(P0) = Dϕ2(P0), and the reflected-diffracted shock Γshock is C1,α up to
its endpoints and C∞ except P0. Also, the relative interior of shock Γshock



MATHEMATICAL FORMULATIONS AND MAIN THEOREMS 35

lies in {ξ2 > ξ1 tan θw, ξ2 > 0}, i.e., a domain bounded by the wedge and
the symmetry line {ξ2 = 0}.
Furthermore, ϕ satisfies the following properties:

(i) Equation (2.2.8) is strictly elliptic:

|Dϕ| < c(|Dϕ|2, ϕ) (2.6.5)

in Ω \ {P0} if |Dϕ2(P0)| = c2 and in Ω if |Dϕ2(P0)| < c2;

(ii) In Ω,
ϕ2 ≤ ϕ ≤ ϕ1. (2.6.6)

Note that the regular reflection-diffraction solution has a subsonic reflec-
tion configuration for any θw ∈ (θd

w, θ̂
s
w), where θ̂s

w is from (iii) in §2.5.

Moreover, the optimal regularity theorem, Theorem 2.6.6, applies to any global
regular reflection solutions of supersonic reflection configuration.

Remark 2.6.8. Solution ϕ in Theorem 2.6.7 is also an admissible solution in
the sense of Definition 15.1.1 in the supersonic case and of Definition 15.1.2 in
the subsonic case, so that ϕ satisfies the further conditions listed in Definitions
15.1.1–15.1.2, respectively, in Chapter 15.

Now we address Case u1 > c1. In this case, the results of Theorem 2.6.7
hold from the wedge angle π

2 until either θd
w or the critical angle θc

w ∈ (θd
w,

π
2 )

when the shock hits the wedge vertex P3.

Theorem 2.6.9 (Global Solutions up to the Detachment Angle when u1 > c1).
Consider all (ρ0, ρ1, γ) such that u1 > c1. Then there are θc

w ∈ [θd
w,

π
2 ) and

α ∈ (0, 1
2 ) depending only on (ρ0, ρ1, γ) so that the results of Theorem 2.6.7 hold

for each wedge angle θw ∈ (θc
w,

π
2 ).

If θc
w > θd

w, then, for the wedge angle θw = θc
w, there exists an attached

solution ϕ as shown in Fig. 2.5–2.6, i.e., a solution ϕ of Problem 2.6.1 with
the properties as in Theorem 2.6.7 except that P2 = P3. Moreover, the attached
solution ϕ has the following two cases:

• If |Dϕ2(P0)| > c2 for θw = θc
w (the supersonic case), the reflected-

diffracted shock of the attached solution satisfies all of the properties listed
in Theorem 2.6.5;

• If |Dϕ2(P0)| ≤ c2 for θw = θc
w (the subsonic case),

ϕ ∈ C∞(Ω) ∩ C2,α(Ω \ {P0, P3}) ∩ C1,α(Ω \ {P3}) ∩ C0,1(Ω).

The reflected-diffracted shock is Lipschitz up to its endpoints, C1,α except
point P2, and C∞ except its endpoints P0 and P2.
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Remark 2.6.10. We emphasize that all the results in the main theorems –
Theorem 2.6.3, Theorems 2.6.5–2.6.7, and Theorem 2.6.9 – hold when γ = 1,
which can be handled similarly with appropriate changes in the formulas in their
respective proofs.

Remark 2.6.11. In Chen-Feldman-Xiang [60], the strict convexity of self-
similar transonic shocks has also been proved in the regular shock reflection-
diffraction configurations in Theorem 2.6.3, Theorems 2.6.5–2.6.7, and Theorem
2.6.9.

In Part IV, we further develop analytical techniques to complete the proofs
of these theorems and further results, which provides a solution to von Neu-
mann’s Detachment Conjecture. The main challenge is the analysis of the
transition from the supersonic to subsonic reflection configurations, which re-
quires uniform a priori estimates for the solutions at the corner between the
reflected-diffracted shock and the wedge when the wedge angle θw decreases
across the sonic angle θs

w up to the detachment angle θd
w, or the critical angle

θc
w in the attached case.



Chapter Three

Main Steps and Related Analysis in the Proofs of the

Main Theorems

In this chapter, we give an overview of the main steps and related analysis in
the proofs of the main theorems for the existence of global regular reflection-
diffraction solutions. We first discuss the proof of the existence and properties
of supersonic regular reflection-diffraction configurations up to the sonic angle
in Theorems 2.6.3 and 2.6.5. Then we discuss the proofs of the existence and
properties of regular reflection-diffraction configurations beyond the sonic angle,
up to the detachment angle, in Theorems 2.6.7 and 2.6.9. The detailed proofs
and analysis developed for the main theorems will be given in Parts III–IV.

3.1 NORMAL REFLECTION

When the wedge angle θw = π
2 , the incident shock reflects normally (see Fig.

3.1). The reflected shock is also a plane at ξ1 = ξ̄1 < 0. Then the velocity of
state (2) is zero, ū2 = v̄2 = 0, state (1) is of form (2.2.17), and state (2) is of
the form:

ϕ2(ξ) = −|ξ|
2

2
+ u1(ξ̄1 − ξ0

1), (3.1.1)

where ξ0
1 = ρ1u1

ρ1−ρ0
> 0, which is the position of the incident shock in the self-

similar coordinates ξ.
The position: ξ1 = ξ̄1 < 0 of the reflected shock and density ρ̄2 of state (2)

can be determined uniquely from the Rankine-Hugoniot condition (2.2.13) at
the reflected shock and the Bernoulli law (2.2.7).

3.2 MAIN STEPS AND RELATED ANALYSIS IN THE PROOF
OF THE SONIC CONJECTURE

In this section, we always discuss the global solutions of Problem 2.6.1 in
§2.6 for the wedge angles θw ∈ (θs

w,
π
2 ), where θs

w is the sonic angle. Then the
expected solutions are of the supersonic reflection configuration as described in
§2.4.2.

To solve the free boundary problem (Problem 2.6.1) for the wedge angles
θw ∈ (θs

w,
π
2 ), we first define a class of admissible solutions that are of the
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Figure 3.1: Normal reflection

structure of §2.4.2 and satisfy some additional properties as discussed below.
Then we make a priori estimates of admissible solutions. Finally, based on the
a priori estimates, we obtain the existence of admissible solutions as fixed points
of the iteration procedure by employing the Leray-Schauder degree theory. We
now discuss these steps in more detail.

3.2.1 Admissible solutions

To solve the free boundary problem (Problem 2.6.1), we first define a class
of admissible solutions ϕ that are the solutions with supersonic reflection con-
figuration as described in §2.4.2, which is the case when the wedge angle θw is
between θs

w and π
2 .

Let γ > 1 and ρ1 > ρ0 > 0 be given constants, and let ξ0
1 > 0 and u1 > 0 be

defined by (2.2.18). Let the incident shock be defined by S0 := {ξ1 = ξ0
1}, and

let state (0) and state (1) ahead of and behind S0 be given by (2.2.16)–(2.2.17),
respectively, so that the Rankine-Hugoniot condition (2.2.13) holds on S0. As
we will show in Theorem 7.1.1 (see also the discussion in §2.5), there exists
θs

w ∈ (0, π2 ) such that, when the wedge angle θw ∈ (θs
w,

π
2 ), there is a unique

weak state (2) of form (2.4.1) so that

(i) u2 > 0. Then v2 = u2 tan θw > 0, and S1 := {ϕ1 = ϕ2} is a line. Lines S0

and S1 meet the wedge boundary {ξ2 = ξ1 tan θw} at point P0 ≡ P0(θw) =
(ξ0

1 , ξ
0
1 tan θw).

(ii) The entropy condition, ρ2 > ρ1, holds.

(iii) The Rankine-Hugoniot condition (2.2.13) holds for ϕ1 and ϕ2 along line
S1.

(iv) ϕ2 is supersonic at the reflection point P0, i.e., |Dϕ2(P0)| > c2.

(v) u2 and ρ2 depend continuously on θw ∈ (θs
w,

π
2 ).
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(vi) limθw→π
2−(u2(θw), ρ2(θw)) = (0, ρ̄2), where ρ̄2 is the unique density of state

(2) for the normal reflection solution.

Using the properties of the uniform state solutions of (2.2.8), we show that,
for each θw ∈ (θs

w,
π
2 ), line S1 = {ϕ1 = ϕ2} necessarily intersects with boundary

∂Bc2(u2, v2) of the sonic circle of state (2) in two points. Let P1 be the nearest
point of intersection of S1 with ∂Bc2(u2, v2) to P0 = (ξ0

1 , ξ
0
1 tan θw); see Fig. 2.3.

Then P1 necessarily lies within Λ, so does the whole segment P0P1.
With this, for any θw ∈ (θs

w,
π
2 ), we define the points, segments, and curves

shown in Fig. 2.3 as follows:

• Line S1 := {ϕ1 = ϕ2}.
• Point P0 := (ξ0

1 , ξ
0
1 tan θw).

• Point P1 is the unique point of intersection of S1 with ∂Bc2(u2, v2) such
that state (2) is supersonic at any ξ = (ξ1, ξ2) ∈ S1 satisfying ξ2 > ξ2P1

.

• Point P3 := 0 := (0, 0).

• Point P4 := (q2 + c2)(cos θw, sin θw), where q2 :=
√
u2

2 + v2
2 ; that is, P4

is the upper point of intersection of the sonic circle of state (2) with the
wedge boundary {ξ2 = ξ1 tan θw}. From the definition,

ξ1P1
< ξ1P4

.

• Line segment Γwedge := P3P4 ⊂ {ξ2 = ξ1 tan θw}.
• Γsonic is the upper arc P1P4 of the sonic circle of state (2), that is,

Γsonic := {(ξ1, v2 +
√
c22 − (ξ1 − u2)2) : ξ1P1

≤ ξ1 ≤ ξ1P4
}.

Now we define the admissible solutions of Problem 2.6.1 for the wedge
angles θw ∈ (θs

w,
π
2 ). The admissible solutions are of the structure of supersonic

reflection configuration described in §2.4.2. These conditions are listed in con-
ditions (i)–(iii) of Definition 3.2.1. We also add conditions (iv)–(v) of Definition
3.2.1. This is motivated by the fact that, for the wedge angles sufficiently close
to π

2 , the solutions of Problem 2.6.1 which satisfy conditions (i)–(iii) of Defi-
nition 3.2.1 also satisfy conditions (iv)–(v) of Definition 3.2.1, as we will prove
in Appendix 8.3.

Definition 3.2.1. Fix a wedge angle θw ∈ (θs
w,

π
2 ). A function ϕ ∈ C0,1(Λ) is

called an admissible solution of the regular shock reflection-diffraction problem
if ϕ is a solution of Problem 2.6.1 and satisfies the following:

(i) There exists a relatively open curve segment Γshock (without self-intersection)
whose endpoints are P1 = (ξ1P1

, ξ2P1
) and P2 = (ξ1P2

, 0) with

ξ1P2
< min{0, u1 − c1}, ξ1P2

≤ ξ1P1
,

such that Γshock satisfies that:
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• For the sonic circle ∂Bc1(u1, 0) of state (1),

Γshock ⊂
(
Λ \Bc1(u1, 0)

)
∩ {ξ1P2

≤ ξ1 ≤ ξ1P1
}; (3.2.1)

• Γshock is C2 in its relative interior, and curve Γext
shock := Γshock ∪

Γ−shock∪{P2} is C1 at its relative interior (including P2), where Γ−shock

is the reflection of Γshock with respect to the ξ1–axis.

Let Γsym := P2P3 be the line segment. Then Γsonic, Γsym, and Γwedge

do not have common points except their common endpoints {P3, P4}. We
require that there be no common points between Γshock and curve Γsym ∪
Γwedge ∪ Γsonic except their common endpoints {P1, P2}. Thus, Γshock ∪
Γsym ∪ Γwedge ∪ Γsonic is a closed curve without self-intersection. Denote
by Ω the open bounded domain restricted by this curve. Note that Ω ⊂ Λ
and ∂Ω ∩ ∂Λ = Γsym ∪ Γwedge.

(ii) ϕ satisfies

ϕ ∈ C0,1(Λ) ∩ C1(Λ \ P0P1P2),

ϕ ∈ C3(Ω \ (Γsonic ∪ {P2, P3})) ∩ C1(Ω),

ϕ =





ϕ0 for ξ1 > ξ0
1 and ξ2 > ξ1 tan θw,

ϕ1 for ξ1 < ξ0
1 and above curve P0P1P2,

ϕ2 in P0P1P4.

(3.2.2)

(iii) Equation (2.2.8) is strictly elliptic in Ω \ Γsonic:

|Dϕ| < c(|Dϕ|2, ϕ) in Ω \ Γsonic. (3.2.3)

(iv) In Ω,
ϕ2 ≤ ϕ ≤ ϕ1. (3.2.4)

(v) Let eS1 be the unit vector parallel to S1 oriented so that eS1 ·Dϕ2(P0) > 0;
that is,

eS1 =
P1 − P0

|P1 − P0|
= − (v2, u1 − u2)√

(u1 − u2)2 + v2
2

. (3.2.5)

Then

∂eS1
(ϕ1 − ϕ) ≤ 0 in Ω, (3.2.6)

∂ξ2(ϕ1 − ϕ) ≤ 0 in Ω. (3.2.7)

Remark 3.2.2. Condition (3.2.4) of Definition 3.2.1 implies that Ω ⊂ {ϕ2 <
ϕ1}, i.e., that Ω lies between line S1 and the wedge boundary; see Fig. 3.2.



MAIN STEPS AND RELATED ANALYSIS IN THE PROOFS OF THE MAIN THEOREMS 41
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Figure 3.2: Location of domain Ω

Remark 3.2.3 (Cone of monotonicity directions). Conditions (3.2.6) and (3.2.7)
imply that, if ϕ is an admissible solution of Problem 2.6.1 in the sense of Def-
inition 3.2.1, then

∂e(ϕ1 − ϕ) ≤ 0 in Ω, for all e ∈ Cone(eS1
, eξ2), e 6= 0, (3.2.8)

where, for e,g ∈ R2 \ {0} with e,g 6= 0 and e 6= cg,

Cone(e,g) := {ae + bg : a, b ≥ 0}. (3.2.9)

We denote by Cone0(e,g) the interior of Cone(e,g).

Remark 3.2.4 (Γshock does not intersect with Γwedge and the sonic circle of
state (1)). The property that Γshock ⊂ Λ \ Bc1(u1, 0) of (3.2.1) implies that
Γshock intersects with neither Γwedge nor the sonic circle ∂Bc1(u1, 0) of state (1)
with

Bc1(u1, 0) ∩ Λ ⊂ Ω. (3.2.10)

Remark 3.2.5 (ϕ matches with ϕ2 on Γsonic). From Definition 3.2.1(ii), it
follows that

ϕ = ϕ2, Dϕ = Dϕ2 on Γsonic.

Note that the Rankine-Hugoniot conditions (2.2.13)–(2.2.14) imply the fol-
lowing equalities on Γshock:

ρ(|Dϕ|2, ϕ)∂νϕ = ρ1∂νϕ1, (3.2.11)
∂τϕ = ∂τϕ1, (3.2.12)
ϕ = ϕ1, (3.2.13)

where, on the left-hand sides of (3.2.11)–(3.2.12), Dϕ is evaluated on the Ω–side
of Γshock.

Throughout the rest of this section, we always assume that ϕ is an admissible
solution of Problem 2.6.1.
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3.2.2 Strict monotonicity cone for ϕ1 − ϕ and its geometric
consequences

First, we prove that, for any e ∈ Cone0(eS1 , eξ2),

∂e(ϕ1 − ϕ) < 0 in Ω, (3.2.14)

where Cone0(e,g) is the interior of Cone(e,g) defined by (3.2.9) for e,g ∈
R2 \ {0}. For the proof, we derive an equation for w = ∂e(ϕ1 − ϕ) in Ω, and
employ the maximum principle and boundary conditions on ∂Ω, including the
conditions on Γsonic in Remark 3.2.5.

This implies that Γshock is a graph in the directions of the cone. That is,
for e ∈ Cone0(eS1

, eξ2) with e⊥ being orthogonal to e and oriented so that
e⊥ · eS1 < 0 and |e| = |e⊥| = 1, coordinates (S, T ) with basis {e, e⊥}, and
Pk = (SPk , TPk), k = 1, . . . , 4, with TP2 < TP1 < TP4 , there exists fe,sh ∈ C1(R)
such that

(i) Γshock = {S = fe,sh(T ) : TP2
< T < TP1

} and
Ω ⊂ {S < fe,sh(T ) : T ∈ R}.

(ii) In the (S, T )–coordinates, Pk = (fe,sh(TPk), TPk), k = 1, 2.

(iii) The tangent directions to Γshock are between the directions of line S1 and
{teξ2 : t ∈ R}, which are the tangent lines to Γshock at points P1 and P2,
respectively. That is, for any T ∈ (TP2

, TP1
),

−∞ <
eS1
· e

eS1
· e⊥ = f ′e,sh(TP1

)

≤ f ′e,sh(T ) ≤ f ′e,sh(TP2
) =

eξ2 · e
eξ2 · e⊥

<∞.

Note that the last property gives an estimate of the Lipschitz constant of Γshock

for an admissible solution in terms of the parameters of states (0), (1), and (2).

3.2.3 Monotonicity cone for ϕ− ϕ2 and its consequences

We prove that, for any e ∈ Cone0(eS1 ,−νw),

∂e(ϕ− ϕ2) ≥ 0 in Ω, (3.2.15)

where Cone0(eS1 ,−νw) is defined by (3.2.9), and νw is the unit normal on
Γwedge, interior to Ω.

As a consequence of this, we conclude that, in the local coordinates (x, y)
with x the normal directional coordinate into Ω with respect to the sonic arc
Γsonic,

∂x(ϕ− ϕ2) ≥ 0

in a uniform neighborhood of Γsonic. This is important for the regularity esti-
mates near Γsonic; see §3.2.5.2.
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3.2.4 Uniform estimates for admissible solutions

We next discuss several uniform estimates for admissible solutions. Some of
these estimates hold for any wedge angle θw ∈ (θs

w,
π
2 ). The universal constant

C in these estimates depends only on the data: (ρ0, ρ1, γ).
In the other estimates, we have to restrict the range of wedge angles as

follows: Fix any θ∗w ∈ (θs
w,

π
2 ), and consider admissible solutions with θw ∈

[θ∗w,
π
2 ). In the case of Theorem 2.6.5, for some estimates, we need to restrict

the wedge angles further by considering only θ∗w ∈ (θc
w,

π
2 ), where θc

w ∈ [θs
w,

π
2 )

is defined in §2.6 (also see §3.2.4.3). Then we obtain the uniform estimates for
admissible solutions with the wedge angles θw ∈ [θ∗w,

π
2 ]. The universal constant

C in these estimates depends only on the data and θ∗w.
The proofs are achieved by employing the conditions of admissible solutions

in Definition 3.2.1 and the monotonicity properties discussed in §3.2.2–§3.2.3.
The arguments are based on the maximum principle via the strict ellipticity of
the equation in Ω.

3.2.4.1 Uniform estimate of the size of Ω, the Lipschitz norm of the
potential, and the density from above and below

In estimating diam(Ω), a difficulty is that we cannot exclude the possibility that
the ray:

S+
1 = {P0 + t(P1 − P0) : t > 0}

does not intersect with the ξ1–axis for θw ∈ [θs
w,

π
2 ). Then diam(Ω) would not

be estimated by the coordinates of the points of intersection of S+
1 with the

ξ1–axis.
By using the potential flow equation (2.2.8) and the conditions of admissible

solutions in Definition 3.2.1, including the strict ellipticity in Ω, we show that
there exists C > 0 such that, if ϕ is an admissible solution of Problem 2.6.1
with θw ∈ (θs

w,
π
2 ), then

Ω ⊂ BC(0), (3.2.16)
‖ϕ‖0,1,Ω ≤ C, (3.2.17)

aρ1 ≤ ρ ≤ C in Ω with a =
(

2
γ+1

) 1
γ−1 > 0, (3.2.18)

ρ1 < ρ ≤ C on Γshock ∪ {P3}. (3.2.19)

These properties allow us to obtain the uniform C2,α–estimates of ϕ in Ω away
from Γshock ∪ Γsonic ∪ {P3}. With this, we obtain certain (preliminary) com-
pactness properties of admissible solutions. In particular, we show that the
admissible solutions tend to the normal reflection as the wedge angles tend to
π
2 , where the convergence is understood in the appropriate sense that implies
the convergence of Γshock to the normal reflected shock Γnorm

shock.
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Figure 3.3: Supersonic regular
reflection-diffraction configuration
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3.2.4.2 Separation of Γshock and Γsym

There exists µ > 0 depending only on the data such that, for any admissible
solution ϕ of Problem 2.6.1 with θw ∈ (θs

w,
π
2 ),

fsh(ξ1) ≥ min(
c1
2
, µ(ξ1 − ξP2

1 )) for all ξ1 ∈ [ξP2
1 ,min{ξP1

1 , 0}],

where ξ2 = fsh(ξ1) represents Γshock when ξ1 ∈ [ξP2
1 ,min{ξP1

1 , 0}].

3.2.4.3 Uniform positive lower bound for the distance between
Γshock and Γwedge

We now extend the set of admissible solutions by including the normal reflection
as the unique admissible solution for θw = π

2 . This is justified by the fact that
all the admissible solutions converge to the normal reflection solution as the
wedge angles tend to π

2 ; see §3.2.4.1. Fix θ∗w ∈ (θs
w,

π
2 ).

If u1 ≤ c1, which is determined by (ρ0, ρ1, γ), then there exists C > 0 such
that

dist(Γshock,Γwedge) >
1

C
(3.2.20)

for any admissible solution of Problem 2.6.1 with θw ∈ [θ∗w,
π
2 ]. In this case,

the reflected-diffracted shock does not hit the wedge vertex P3, since point P2

should be away from the sonic circle of state (1), as shown in Figs. 3.3–3.4.
Without assuming the condition that u1 ≤ c1, we show the uniform lower

bound of the distance between Γshock and Γwedge away from P3 for any θw ∈
[θ∗w,

π
2 ]: For any small r > 0, there exists Cr > 0 such that

dist(Γshock,Γwedge \Br(P3)) >
1

Cr
(3.2.21)

for every admissible solution with θw ∈ [θ∗w,
π
2 ].
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Recall that estimates (3.2.20)–(3.2.21) hold for the wedge angles θw ∈ [θ∗w,
π
2 ],

and the constants in these estimates depend on θ∗w. However, for the application
in §3.2.4.4, we need an estimate of the distance between Γshock and Γwedge which
holds for all the wedge angles θw ∈ [θs

w,
π
2 ]. We do not assume that u1 ≤ c1,

which implies that our estimate has to be made away from P3, as we discussed
earlier. Moreover, for θw = θs

w, Γshock and Γwedge meet at P0, which implies
that our estimate has to be made away from P0. Then we obtain the following
estimate: For every small r > 0, there exists Cr > 0 depending on (ρ0, ρ1, γ, r)
such that

dist (Γshock, Γwedge \ (Br(P0) ∪Br(P3))) ≥ 1

Cr
(3.2.22)

for any admissible solution of Problem 2.6.1 with the wedge angle θw ∈
(θs

w,
π
2 ).

If u1 > c1, the critical angle θc
w in Theorem 2.6.5 is defined as follows:

θc
w = inf A,

where

A :=



θ
∗
w ∈ (θs

w,
π

2
] :
∃ ε > 0 so that dist(Γshock,Γwedge) ≥ ε for

any admissible solution with θw ∈ [θ∗w,
π

2
]



 .

Since the normal reflection solution is the unique admissible solution for θw = π
2 ,

the set of admissible solutions with angles θw ∈ [θ∗w,
π
2 ] is non-empty for any

θ∗w ∈ (θs
w,

π
2 ]. Moreover, since dist(Γshock,Γwedge) > 0 for the normal reflection

solution, we conclude that π
2 ∈ A, i.e., A 6= ∅. Furthermore, we show that

θc
w < π

2 by using that Γshock → Γnorm
shock as θw → π

2 ; see §3.2.4.1. Then it follows
directly from the definition of θc

w that, for each θ∗w ∈ (θc
w,

π
2 ), there exists C > 0

such that
dist(Γshock,Γwedge) ≥ 1

C
(3.2.23)

for any admissible solution with θw ∈ [θ∗w,
π
2 ].

We note that property (3.2.21) is employed in the proof of Theorem 2.6.5 to
show the existence of the attached solution for θw = θc

w when θc
w > θs

w.

3.2.4.4 Uniform positive lower bound for the distance between
Γshock and the sonic circle of state (1)

Employing the detail structure of the potential flow equation (2.2.8) for a solu-
tion ϕ that is close to a uniform state near its sonic circle, and the property of
admissible solutions that ϕ ≤ ϕ1 holds in Ω by (3.2.4), we use estimate (3.2.22)
to prove that there exists C > 0 such that

dist(Γshock, Bc1(O1)) >
1

C
(3.2.24)
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for any admissible solution ϕ of Problem 2.6.1 with θw ∈ (θs
w,

π
2 ), where

O1 = (u1, 0) is the center of the sonic circle of state (1).
Estimate (3.2.24) is crucial, especially since it is employed for the ellipticity

estimate in §3.2.4.5 below and the uniform estimate of the lower bound of the
gradient jump across Γshock in the radial direction with respect to the sonic
circle of state (1); see (3.2.29).

3.2.4.5 Uniform estimate of the ellipticity of equation (2.2.8) in Ω up
to Γshock

Set the Mach number

M2 =
|Dϕ|2
c2

=
|Dϕ|2

ργ−1
0 − (γ − 1)(ϕ+ 1

2 |Dϕ|2)
, (3.2.25)

where we have used (2.2.9) for the second equality. Note that, for an admissible
solution of Problem 2.6.1, by (3.2.2),

M ∈ C(Ω) ∩ C2(Ω \ (Γsonic ∪ {P2, P3})).

We conclude that there exists µ > 0 depending only on (ρ0, ρ1, γ) such that, if
ϕ is an admissible solution of Problem 2.6.1 with θw ∈ (θs

w,
π
2 ), then

M2(ξ) ≤ 1− µdist(ξ,Γsonic) for all ξ ∈ Ω(ϕ). (3.2.26)

To achieve this, we show that a maximum of M2 +µd, which is close to one,
cannot be attained on Ω \Γsonic, where µ > 0 is a small constant and d(ξ) is an
appropriate function comparable with dist(ξ,Γsonic).

First, the maximum of M2 + µd cannot be attained on Ω ∪ Γwedge ∪ Γsym if
1 −M2 ≥ 0 is sufficiently small; see §5.2–§5.3 below. Also, we explicitly check
that M = 0 at P3 so that, by choosing µ small, we conclude that M2 + µd is
small at P3.

Thus, it remains to show that the maximum of M2 + µd cannot be attained
on Γshock∪{P2}. Crucially, the result of §3.2.4.4 on the positive lower bound on
the distance between Γshock and the sonic circle of state (1) is employed, since it
allows us to estimate that state (1) is sufficiently hyperbolic on the other side of
Γshock. Then, assuming that the maximum ofM2 +µd is attained at P ∈ Γshock,
we use the first-order conditions at the maximum point, ∂τ (M2 + µd)(P ) = 0
and ∂ν(M2 + µd)(P ) ≤ 0 (where ν is the interior normal to Γshock), the fact
that the equation holds at P , and the Rankine-Hugoniot condition:

∂τ

(
(ρDϕ− ρ1Dϕ1) · Dϕ−Dϕ1

|Dϕ−Dϕ1|
)

= 0 on Γshock,

to obtain the four relations at P for the three components of D2ϕ, which leads
to a contradiction. Thus, the maximum of M2 + µd cannot be attained on
Γshock. The maximum at P2 is handled similarly, since P2 can be regarded as
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an interior point of Γshock after extending the solution by even reflection with
respect to the ξ1–axis. This completes the proof of (3.2.26).

Write equation (2.2.8) in the form:

divA(Dϕ,ϕ, ξ) + B(Dϕ,ϕ, ξ) = 0 (3.2.27)

with p = (p1, p2) ∈ R2 and z ∈ R, where

A(p, z, ξ) ≡ A(p, z) := ρ(|p|2, z)p, B(p, z, ξ) ≡ B(p, z) := 2ρ(|p|2, z)

with function ρ(|p|2, z) defined by (2.2.9). We restrict (p, z) in a set such that
(2.2.9) is defined, i.e., satisfying ργ−1

0 − (γ − 1)(z + 1
2 |p|2) ≥ 0.

As a corollary of (3.2.26), we employ (3.2.18) to conclude that, for any
θ∗w ∈ (θs

w,
π
2 ), there exists C > 0 depending only on (ρ0, ρ1, γ) such that, if ϕ is

an admissible solution of Problem 2.6.1 with θw ∈ [θ∗w,
π
2 ), equation (3.2.27)

satisfies the strict ellipticity condition:

dist(ξ,Γsonic)

C
|κ|2 ≤

2∑

i,j=1

Aipj (Dϕ(ξ), ϕ(ξ), ξ)κiκj ≤ C|κ|2 (3.2.28)

for any ξ ∈ Ω and κ = (κ1, κ2) ∈ R2. Note that the ellipticity degenerates on
Γsonic.

3.2.5 Regularity and related uniform estimates

We consider θ∗w ∈ (θs
w,

π
2 ) for Case u1 ≤ c1 and θ∗w ∈ (θc

w,
π
2 ) for Case u1 > c1.

Then, from §3.2.4.3, we obtain the uniform estimate:

dist(Γshock,Γwedge) ≥ 1

C

for any admissible solution with θw ∈ [θ∗w,
π
2 ). This fixes the geometry of Ω for

such a solution.
With the geometry of Ω and the strict ellipticity controlled, we can conclude

the estimates in the properly scaled and weighted Ck,α–spaces. We perform the
estimates separately away from Γsonic where the equation is uniformly elliptic,
and near Γsonic where the ellipticity degenerates.

3.2.5.1 Weighted Ck,α–estimates away from Γsonic

Away from the ε-neighborhood of Γsonic, we use the uniform ellipticity to es-
timate admissible solutions with the bounds independent of the solution and
the wedge angle θw ∈ [θ∗w,

π
2 ). Also, in order to avoid the difficulty related to

the corner at point P2 of intersection of Γshock and Γsym, we extend the elliptic
domain Ω by reflection over the symmetry line and use the even extension of
the solution. From the structure of the potential flow equation (2.2.8), it follows
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that (2.2.8) is satisfied in the extended domain, and the Rankine-Hugoniot con-
ditions (2.2.13)–(2.2.14) are satisfied on the extended shock. Now the boundary
part Γsym lies in the interior of the extended domain Ωext, and P2 is the interior
point of the extended shock Γext

shock.
In the argument below, we consider the points of Ωext which are on the

distance, d > 0, from the original and reflected sonic arcs, and for which the
constants in the estimates depend on d.

We use the estimates obtained in §3.2.4.2–§3.2.4.3 to control the geometry
of domain Ω. Then, for any α ∈ (0, 1), the C2,α–estimates in the interior of Ωext

and near Γwedge and the reflected Γ−wedge (away from corner P3) follow from the
standard elliptic theory, where we use the homogeneous Neumann boundary
condition on Γwedge, the uniform estimate of the distance between Γshock and
Γwedge, and the Lipschitz estimates of the solution.

For the estimates of the shock curve Γshock and the solution near Γshock

(away from the ε–neighborhood of Γsonic), we first show that the function:

φ̄ := ϕ1 − ϕ

is uniformly monotone in a uniform neighborhood of Γshock in the radial direction
with respect to the center of the sonic circle O1 of state (1), i.e., there exist
δ, σ > 0 such that

∂rφ̄ ≤ −δ in Nσ(Γext
shock) ∩ Ωext. (3.2.29)

Note that φ̄ = 0 on Γshock, by the Rankine-Hugoniot condition (2.2.14), and
that φ̄ > 0 in Ωext. Using that ϕ is an admissible solution of Problem 2.6.1,
we show that the extended shock Γext

shock is a graph in the radial direction in
the polar coordinates (r, θ) with center O1. With this, working in the (r, θ)–
coordinates, we inductively make the Ck,α–estimates of Γext

shock and ϕ near Γext
shock,

for k = 1, 2, . . . , as follows: ϕ satisfies the uniformly elliptic equation in Ωext

(away from the original and reflected sonic arcs) and an oblique boundary con-
dition on Γext

shock from the Rankine-Hugoniot conditions. The nonlinear equation
and boundary condition are given by smooth functions. Now we use the esti-
mates due to Lieberman [192] (stated in §4.3 below) for two-dimensional elliptic
equations with nonlinear boundary conditions, which show that the regular-
ity of the solution is higher than that of the boundary. More precisely, from
(3.2.17) and (3.2.29), we obtain the Lipschitz estimates of Γext

shock and of ϕ in
Ωext. Then, from Theorem 4.3.2, we obtain the C1,α–estimates of ϕ near Γext

shock

for some α ∈ (0, 1). Moreover, by (3.2.29) and the fact that ϕ = ϕ1 on Γext
shock,

we obtain the C1,α–estimates of Γext
shock. Now, using Corollary 4.3.5, we obtain

the C2,α–estimates of ϕ near Γext
shock, which in turn implies the C2,α–estimates

of Γext
shock. We repeat this argument inductively for k = 2, 3, . . . .
Finally, we obtain the C1,α–estimates near corner P3 for sufficiently small

α > 0 by using the results of Lieberman [189], stated in Theorem 4.3.13 below.
For that, we work on the original domain Ω instead of the extended domain
Ωext, and use the homogeneous Neumann conditions on Γwedge ∪ Γsym. This is
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crucial, because the angle at the corner point P3 of ∂Ω is less than π in this
way, which allows us to obtain the C1,α–estimates.

Combining all the above estimates, we obtain

ϕ ∈ Ck(Ω \ (Nd(Γsonic) ∪ {P3})) ∩ C1,α(Ω \ Nd(Γsonic))

and
Γshock \ Nd(Γsonic) ∈ Ck for k = 1, 2, . . . ,

with uniform estimates.

3.2.5.2 Weighted and scaled C2,α–estimates near Γsonic

Near Γsonic, i.e., in Nε1(Γsonic)∩Ω for sufficiently small ε1 > 0, it is convenient
to work in the coordinates flattening Γsonic. We consider the polar coordinates
(r, θ) with respect to O2 = (u2, v2), note that Γsonic is an arc of the circle with
radius r = c2 and center O2, and define

(x, y) = (c2 − r, θ).

Then there exists ε0 ∈ (0, ε1) such that, for any ε ∈ (0, ε0],

Ωε := Ω ∩Nε1(Γsonic) ∩ {x < ε} = {0 < x < ε, θw < y < f̂(x)},
Γsonic = ∂Ωε ∩ {x = 0},
Γwedge ∩ ∂Ωε = {0 < x < ε, y = θw},

Γshock ∩ ∂Ωε = {0 < x < ε, y = f̂(x)}

(3.2.30)

for some f̂(x) defined on (0, ε0). We perform the estimates in terms of the
function:

ψ = ϕ− ϕ2.

Note that ψ(0, y) ≡ 0, since ϕ = ϕ2 on Γsonic by Definition 3.2.1(ii).
We write the potential flow equation (2.2.8) in terms of ψ in the (x, y)–

coordinates. Then (3.2.28) implies that there exists δ > 0 so that, for each
admissible solution,

ψx ≤
2− δ
1 + γ

x in Ωε.

Combining this with the estimate that ψx ≥ 0 shown in §3.2.3, we obtain

|ψx| ≤ Cx in Nε(Γsonic) ∩ Ω.

From this, using the monotonicity cone of ψ discussed in §3.2.3, we obtain

|ψy| ≤ Cx.
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Now, since |Dψ| ≤ Cx, we can modify equation (2.2.8) to obtain that any
admissible solution ψ satisfies an equation in Nε(Γsonic):

2∑

i,j=1

Aij(Dψ,ψ, x)Dijψ +
2∑

i=1

Ai(Dψ,ψ, x)Diψ = 0 (3.2.31)

with smooth (Aij , Ai)(p, z, x) (independent of y), which is of the degenerate
ellipticity structure:

λ|ξ|2 ≤ A11(p, z, x)
ξ2
1

x
+ 2A12(p, z, x)

ξ1ξ2√
x

+A22(p, z, x)ξ2
2 ≤

1

λ
|ξ|2 (3.2.32)

for (p, z) = (Dψ,ψ)(x, y) and for any (x, y) ∈ Ωε, where we recall (3.2.30).
We use (3.2.31)–(3.2.32) for the estimates in the weighted and scaled C2,α–

norms with the weights depending on x, which reflect the ellipticity structure.
One way to define these norms is as follows: For any (x0, y0) ∈ Ωε and ρ ∈ (0, 1),
let

R̃(x0,y0)
ρ :=

{
(s, t) : |s− x0| <

ρ

4
x0, |t− y0| <

ρ

4

√
x0

}
,

R(x0,y0)
ρ := R̃(x0,y0)

ρ ∩ Ω.
(3.2.33)

Rescale ψ from R
(x0,y0)
ρ to the portion of the square with side-length 2ρ, i.e.,

define the rescaled function:

ψ(x0,y0)(S, T ) =
1

x2
0

ψ(x0 +
x0

4
S, y0 +

√
x0

4
T ) inQ(x0,y0)

ρ , (3.2.34)

where

Q(x0,y0)
ρ :=

{
(S, T ) ∈ (−ρ, ρ)2 : (x0 +

x0

4
S, ŷ0 +

√
x0

4
T ) ∈ Ω

}
.

The parabolic norm of ‖ψ‖(par)
2,α,Ωε

is the supremum over (x0, y0) ∈ Ωε of norms

‖ψ(x0,y0)‖
2,α,Q

(x0,y0)
1

. Note that the estimate in norm ‖ · ‖(par)
2,α,Ωε

implies the

C1,1–estimate in Ωε.
In order to estimate ‖ψ‖(par)

2,α,Ωε
, we need to obtain the C2,α–estimates of the

rescaled functions ψ(x0,y0). By the standard covering argument, it suffices to
consider three cases:

(i) The interior rectangle: R(x0,y0)
1/10 ⊂ Ω for (x0, y0) ∈ Ωε;

(ii) Rectangle R(x0,y0)
1/2 centered at (x0, y0) ∈ Γwedge ∩ ∂Ωε (on the wedge);

(iii) Rectangle R(x0,y0)
1/2 centered at (x0, y0) ∈ Γshock ∩ ∂Ωε (on the shock).
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Figure 3.5: Rectangles in Cases (i) and (iii)

See Fig. 3.5 for d = x0

4 .
The gradient estimate |Dψ| ≤ Cx and the property that ψ(0, y) ≡ 0 imply

|ψ| ≤ Cx2,

so that
‖ψ(x0,y0)‖

L∞(Q
(x0,y0)
1 )

≤ C for any (x0, y0) ∈ Ωε.

Also, writing equation (3.2.31) in terms of the rescaled function ψ(x0,y0)

and using the ellipticity structure (3.2.32), we see that ψ(x0,y0) satisfies a uni-
formly elliptic homogeneous equation in Q

(x0,y0)
1 , with the ellipticity constants

and certain Hölder norms of the coefficients independent of (x0, y0). Then the
C2,α–estimates of ψ(x0,y0) in the smaller square Q(x0,y0)

1/20 in Case (i) follow from
the interior elliptic estimates. In Case (ii), in addition to the equation, we use
the boundary condition ∂νψ = 0 on Γwedge, which holds under rescaling.

In Case (iii), we need to make the estimates up to Γshock, i.e., the free
boundary, for which only the Lipschitz estimates are a priori available. Thus,
we rescale the region as in Cases (i)–(ii) to obtain the uniformly elliptic equation,
and then follow the argument in §3.2.5.1 for the estimates near Γshock.

Owing to the non-isotropic rescaling (3.2.34), some difference from the esti-
mates in §3.2.5.1 appears because:

(a) The Lipschitz estimate for ψ, combined with (3.2.34), does not imply the
uniform Lipschitz estimate of ψ(x0,y0) with respect to (x0, y0) ∈ Γshock∩∂Ωε.
The estimate blows up as d = x0

4 → 0, i.e., for the rectangles close to Γsonic.
Thus we have, a priori, only the L∞ bound of ψ(x0,y0) uniform with respect
to (x0, y0) ∈ Γshock ∩ ∂Ωε.

(b) The boundary condition for ψ on Γshock is uniformly oblique up to P1 (i.e.,
up to x = 0). However, the obliqueness of the rescaled condition for ψ(x0,y0)

on Γshock degenerates as d → 0. On the other hand, we can show that the
rescaled boundary condition has an almost tangential structure with the
constants uniform with respect to (x0, y0) ∈ Γshock ∩ ∂Ωε.
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For these reasons, we cannot use the estimates of [192] (stated in §4.3 below) for
the oblique derivative problem, with the bounds depending on the C0,1–norm
of the solution. Instead, we employ the estimates for the problem with almost
tangential structure, when only the L∞ bound of the solution is a priori known;
see Theorems 4.2.4 and 4.2.8. These results give the gain-in-regularity similar to
the estimates in [192], i.e., we obtain the C1,α–estimate of the solution for the
C1–boundary with the Lipschitz estimate and the C2,α–estimate of the solution
for the C1,α–boundary. This allows us to obtain the C2,α–estimates of Γshock

and ψ(x0,y0) in Case (iii).

3.2.6 Existence of the supersonic regular reflection-diffraction
configurations up to the sonic angle

Once the a priori estimates are established, we obtain a solution to Problem
2.6.1 as a fixed point of an iteration map. The existence of a fixed point follows
from the Leray-Schauder degree theory (cf. §3.4).

In order to apply the degree theory, the iteration set should be bounded
and open in an appropriate function space (actually, in its product with the
parameter space, i.e., interval [θ∗w,

π
2 ] of the wedge angles), the iteration map

should be defined and continuous on the closure of the iteration set, and any fixed
point of the iteration map should not occur on the boundary of the iteration set.
We choose this function space according to the norms and the other quantities
in the a priori estimates. Then the a priori estimates allow us to conclude that
the fixed point cannot occur on the boundary of the iteration set, if the bounds
defining the iteration set are chosen appropriately large or small, depending on
the context and the a priori estimates. This can be done for any θ∗w ∈ (θs

w,
π
2 )

if u1 ≤ c1 and for any θ∗w ∈ (θc
w,

π
2 ) if u1 > c1.

In our case, there is an extra issue of connecting the admissible solutions
with the normal reflection solution in the setup convenient for the application of
the degree theory. We use the strict monotonicity properties of the admissible
solutions (proved as a part of the a priori estimates) in our definition of the
iteration set. These strict monotonicity properties can be made uniform for any
wedge angle θw away from π

2 and any point away from the appropriate parts
of the boundary of the elliptic region by using the compactness of the set of
admissible solutions, which is a corollary of the a priori estimates. However,
the monotonicities become nonstrict when the wedge angle θw is π

2 , i.e., at the
normal reflection solution. Then, for the wedge angles near π

2 , we use the fact
that the admissible solutions converge to the normal reflection solution as θw

tends to π
2 .

From this fact, we can derive the estimates similar to Chen-Feldman [54] for
the admissible solutions and the approximate solutions for θw near π

2 . Then, for
the wedge angle θw near π

2 , the iteration set Kθw is a small neighborhood of the
normal reflection solution, where the norms used and the size of neighborhood
are related to the estimates of Chapters 9–11. For the wedge angle θw away
from π

2 , the iteration set Kθw is defined by the bounds in the appropriate norms
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related to the a priori estimates and by the lower bounds of certain directional
derivatives, corresponding to the strict monotonicity properties so that the ac-
tual solution cannot be on the boundary of the iteration set according to the a
priori estimates. These two definitions are combined into one setup, with the
bounds depending continuously on the wedge angle θw.

Also, since the elliptic domain Ω depends on the solution, we define the
iteration set in terms of the functions on the unit square Qiter = (0, 1)2 :=
(0, 1)× (0, 1) and, for each such function and wedge angle θw, define the elliptic
domain Ω of the approximate solution and a smooth invertible map from Qiter to
Ω, where Ω is of the same structure as the elliptic region of supersonic reflection
configurations; see §2.4.2 and Fig. 2.3. This defines the iteration set:

K = ∪θw∈[θ∗w,
π
2 ]Kθw × {θw}

with Kθw ⊂ C, where C is a weighted and scaled C2,α–type space on Qiter so
that C ⊂ C2,α(Qiter) ∩C1,α(Qiter). For each (u, θw) ∈ K, the map from Qiter to
Ω(u, θw) can be extended to the smooth and smoothly invertible map Qiter 7→ Ω,
where the sides of square Qiter are mapped to the boundary parts Γsonic, Γshock,
Γsym, and Γwedge of Ω.

The iteration map I is defined as follows: Given (u, θw) ∈ K, define the
corresponding elliptic domain Ω = Ω(u, θw) by both mapping from the unit
squareQiter to the physical plane and determining the iteration Γshock depending
on (u, θw), and set up a boundary value problem in Ω for an elliptic equation
that is degenerate near Γsonic. Let ϕ̂ be the solution of the boundary value
problem in Ω. Then we define û on Qiter by mapping ϕ̂ back in such a way
that the gain-in-regularity of the solution is preserved. This requires some care,
since the original mapping between Qiter and the physical domain is defined by
u and hence has a lower regularity. Then the iteration map is defined by

I(u, θw) = û.

The boundary value problem in the definition of I is defined so that, at the
fixed point u = û, its solution satisfies the potential flow equation (2.2.8) with
the ellipticity cutoff in a small neighborhood of Γsonic, and both the Rankine-
Hugoniot conditions (2.2.13)–(2.2.14) on Γshock and Dϕ̂ ·ν = 0 on Γwedge∪Γsym.
On the sonic arc Γsonic that is a fixed boundary, we can prescribe only one
condition, the Dirichlet condition ϕ̂ = ϕ2. However, it is not sufficient to have
the potential flow equation (2.2.8) satisfied across Γsonic. Indeed, the Rankine-
Hugoniot conditions (2.2.13)–(2.2.14) need to be satisfied for ϕ̂ and ϕ2 on Γsonic,
and condition (2.2.13) implies that Dϕ = Dϕ2 on Γsonic, since ϕ2 is sonic on
Γsonic. Thus, we need to prove that the last property holds for the solution of
the iteration problem (at least for the fixed point). In this proof, we use the
elliptic degeneracy of the iteration equation in Ω near Γsonic by obtaining the
estimates of ψ̂ = ϕ̂−ϕ2 in the norms of ‖·‖(par)

2,α,Nε(Γsonic)∩Ω introduced in §3.2.5.2.

These estimates imply that Dψ̂ = 0 on Γsonic, i.e., Dϕ = Dϕ2 on Γsonic.
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Furthermore, the other conditions required in the definition of an admissible
solution ϕ (including the inequalities, ϕ2 ≤ ϕ ≤ ϕ1, and the monotonicity
properties) are satisfied for ϕ̂ for any wedge angle θw away from π

2 and for any
point away from the appropriate parts of the boundary of the elliptic domain.

Then we prove the following facts:
(i) Any fixed point u = I(u, θw), mapped to the physical plane, is an ad-

missible solution ϕ. For that, we remove the ellipticity cutoff and prove the
inequalities and monotonicity properties mentioned above for the regions and
the wedge angles where they are not readily known from the definition of the
iteration set. The fact that these estimates need to be proved only in the local-
ized regions is crucial. This localization is achieved by using the uniform bounds
and monotonicity properties which are a part of the a priori estimates.

(ii) The iteration set is open. We prove this by showing the existence of a
solution for the iteration boundary value problem determined by any (v, θ) in a
sufficiently small neighborhood of any (u, θw) ∈ K.

(iii) The iteration map is compact. We prove this by using the gain-in-
regularity of the solution of the iteration boundary value problem.

(iv) Any fixed point of the iteration map cannot occur on the boundary of
the iteration set. This is shown by using the a priori estimates, which can be
applied since the fixed point is, by (i) above, an admissible solution.

(v) The normal reflection solution u(norm), expressed on the unit square, is
in the iteration set, which shows that the iteration set is non-empty for θw = π

2 .
Now the Leray-Schauder degree theory (see §3.4) guarantees that the fixed

point index:
Ind(I(θw),K(θw))

of the iteration map on the iteration set (for given θw) is independent of the
wedge angle θw ∈ [θ∗w,

π
2 ].

It remains to show that Ind(I(θw),K(θw)) is nonzero. In fact, at θw = π
2 , we

show that Iπ
2

(v) = u(norm) for any v ∈ Kπ
2
. This implies that Ind(I(π2 ),K(π2 )) =

1.
Then, for any θw ∈ [θ∗w,

π
2 ], Ind(I(θw),K(θw)) = 1, which implies that a fixed

point exists. Moreover, the fixed point is an admissible solution of Problem
2.6.1.

Since θ∗w is arbitrary in interval (θs
w,

π
2 ) if u1 ≤ c1 and in (θc

w,
π
2 ) if u1 > c1,

we obtain the existence of admissible solutions in the intervals of the wedge
angles θw indicated in Theorems 2.6.3 and 2.6.5.

Moreover, for Case u1 > c1, if θc
w > θs

w, then, from the definition of θc
w

in §3.2.4.3, there exists a sequence θ(i)
w ∈ [θc

w,
π
2 ) with limi→∞ θ

(i)
w = θc

w and a
corresponding admissible solution ϕ(i) with the wedge angle θ(i)

w such that

lim
i→∞

dist(Γ(i)
shock,Γ

(i)
wedge) = 0.

Taking the uniform limit in a subsequence of ϕ(i) and employing the geometric
properties of the free boundary (shock) proved in §3.2.4.3, including (3.2.21),
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and the regularity of admissible solutions and involved shocks, we obtain an
attached solution for the wedge angle θw = θc

w as asserted in Theorem 2.6.5.
In Part III, we give the detailed proofs of the steps described above for the

main theorems for von Neumann’s sonic conjecture, as well as related further
finer estimates and analysis of the solutions.

3.3 MAIN STEPS AND RELATED ANALYSIS IN THE PROOF
OF THE DETACHMENT CONJECTURE

In this section we discuss the solutions of Problem 2.6.1 in §2.6 for the full
range of wedge angles for which state (2) exists, i.e., for any θw ∈ (θd

w,
π
2 ),

where θd
w is the detachment angle. We make the whole iteration again, starting

from the normal reflection, and prove the results for both the supersonic and
subsonic reflection configurations. We follow the procedure discussed in §3.2
with the changes described below.

The difference with §3.2 is from the fact that, depending on θw ∈ (θd
w,

π
2 ), the

expected solutions have the structure of either supersonic or subsonic reflection
configurations described in §2.4.2 and §2.4.3, respectively; it is of supersonic
(resp. subsonic) structure if state (2) is supersonic (resp. subsonic or sonic) at
P0, i.e., |Dϕ2(P0)| > c2 (resp. |Dϕ2(P0)| ≤ c2), where we recall that P0 and
(u2, v2, c2) depend only on θw.

Then we will use the following terminology: θw ∈ (θd
w,

π
2 ) is a supersonic

(resp. subsonic, or sonic) wedge angle if |Dϕ2(P0)| > c2 (resp. |Dϕ2(P0)| < c2,
or |Dϕ2(P0)| = c2) for θw. Note that the sonic angle θs

w, introduced above, is a
sonic wedge angle according to this terminology; moreover, θs

w is the supremum
of the set of sonic wedge angles (even though it is not clear if more sonic wedge
angles other than θs

w exist).
Note that, if θ(i)

w ∈ (θd
w,

π
2 ) is a sequence of supersonic wedge angles, and

θ
(i)
w → θ

(∞)
w for a sonic wedge angle θ(∞)

w , then P0
(i) → P0

(∞), P1
(i) → P0

(∞),
P4

(i) → P0
(∞), and Γsonic

(i)
shrinks to point P0

(∞). Thus, we define that, for
the subsonic/sonic wedge angles, P1 = P4 := P0 and Γsonic := {P0}. That is,
P0 = P1 = P4 for the subsonic/sonic wedge angles.

Now we comment on the steps in §3.2 with the changes necessary in the
present case.

3.3.1 Admissible solutions of Problem 2.6.1

The definition of admissible solutions of Problem 2.6.1 in §3.2.1 has included only
the supersonic reflection solutions. Now we need to define admissible solutions
of both supersonic and subsonic reflection configurations.

For the supersonic wedge angles θw ∈ (θd
w,

π
2 ), we define the admissible so-

lutions by Definition 3.2.1.
For the subsonic/sonic wedge angles θw ∈ (θd

w,
π
2 ), we define the admissible

solutions which correspond to the subsonic configuration described in §2.4.3 and
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shown on Fig. 2.4, which are elliptic in Ω as in Definition 3.2.1(iii), and satisfy
conditions (iv)–(v) of Definition 3.2.1. Moreover, we require the property similar
to that in Remark 3.2.5 to be held for the subsonic reflection configurations.
Since Γsonic = {P0} in this case, Definition 3.2.1(ii) for the subsonic reflection
solutions is changed into the following:

(ii) ϕ satisfies (2.6.4) and

ϕ ∈ C0,1(Λ) ∩ C1(Λ \ Γshock),

ϕ ∈ C3(Ω \ {P0, P2, P3}) ∩ C1(Ω),
(3.3.1)

together with

ϕ(P0) = ϕ2(P0), Dϕ(P0) = Dϕ2(P0). (3.3.2)

3.3.2 Strict monotonicity cones for ϕ1 − ϕ and ϕ− ϕ2

All of the results discussed in §3.2.2–§3.2.3 hold without change. In the proofs,
the only difference is that, for subsonic reflection solutions, Γshock is only one
point, P0. However, we use (3.3.2) instead of Remark 3.2.5 in this case, and
then the argument works without change.

3.3.3 Uniform estimates for admissible solutions

We discuss the extensions of the estimates stated in §3.2.4 to the present case.
Some of the estimates hold for any θw ∈ (θd

w,
π
2 ), in which the universal

constant C depends only on (ρ0, ρ1, γ).
In the other estimates, we have to restrict the range of angles by fixing any

θ∗w ∈ (θd
w,

π
2 ) and considering the admissible solutions with θw ∈ [θ∗w,

π
2 ). The

universal constant C in these estimates depends only on (ρ0, ρ1, γ, θ
∗
w). Note that

both the supersonic and subsonic reflection configurations occur if θ∗w ∈ (θd
w, θ

s
w].

We need to consider such θ∗w, since we will prove the existence of solutions up
to θd

w.

3.3.3.1 Basic estimates of (ϕ, ρ,Ω), the distance between Γshock and
the sonic circle of state (1), and separation of Γshock and Γsym

The estimates in §3.2.4.1–§3.2.4.2 and §3.2.4.4 hold without change in the present
case.

Specifically, the estimates of (ϕ, ρ,Ω) in §3.2.4.1 hold for admissible solutions
(supersonic and subsonic) with θ∗w ∈ (θd

w, θ
s
w] for some C > 0. The proofs are

the same as those in the previous case; indeed, the only difference is that, in the
subsonic reflection case, we use (3.3.2) instead of Remark 3.2.5.

Then we obtain (3.2.24) with uniform C for any admissible solution for
θw ∈ (θd

w,
π
2 ).

The estimate in §3.2.4.2 is extended to all θw ∈ (θd
w,

π
2 ) without change in

its proof, since the supersonic and subsonic admissible solutions are of similar
structures near Γsym.
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3.3.3.2 The distance between Γshock and Γwedge

We note that estimates (3.2.20)–(3.2.21) of the distance between Γshock and
Γwedge discussed in §3.2.4.3 cannot hold for the subsonic reflection configura-
tions. Indeed, in this case, Γshock ∩Γwedge = {P0}, i.e., dist(Γshock,Γwedge) = 0,
even if u1 ≤ c1. Thus, we need to consider the distance between Γshock and
Γwedge away from P0, as we have done in estimate (3.2.22). Then the estimates
in §3.2.4.3 in the present case have the following two forms:

If u1 ≤ c1, then, for every small r > 0, there exists Cr > 0 such that

dist(Γshock,Γwedge \Br(P0)) >
1

Cr
(3.3.3)

for any admissible solution (supersonic and subsonic) of Problem 2.6.1 with
θw ∈ (θd

w,
π
2 ). Note that, if θw is supersonic, P0 /∈ Γwedge. Thus, choosing r

sufficiently small, we see that Γwedge \Br(P0) = Γwedge so that, for such θw and
r, estimate (3.3.3) coincides with (3.2.20). Moreover, in this case, the reflected-
diffracted shock does not hit the wedge vertex P3 as shown in Figs. 3.3–3.4.

Without assuming the condition that u1 ≤ c1, we show the uniform lower
bound of the distance between Γshock and Γwedge away from P0 and P3, i.e.,
extending estimate (3.2.22) to the present case. That is, for any small r > 0,
there exists Cr > 0 such that

dist (Γshock, Γwedge \ (Br(P0) ∪Br(P3))) ≥ 1

Cr
(3.3.4)

for every admissible solution with θw ∈ (θd
w,

π
2 ).

If u1 > c1, the wedge angle θc
w in Theorem 2.6.9 is defined as follows: As in

§3.2.4.3, we extend the set of admissible solutions by including the normal reflec-
tion as the unique admissible solution for θw = π

2 . Let r1 := infθw∈(θd
w,
π
2 ) |Γ(θw)

wedge|,
which can be shown that r1 > 0. Then we replace the definition of set A in
§3.2.4.3 by

A :=




θ∗w ∈ (θd

w,
π

2
] :

For each r ∈ (0, r1), there exists ε > 0 such that
dist(Γshock,Γwedge \Br(P0)) ≥ ε for all admissible

solutions with the wedge angles θw ∈ [θ∗w,
π

2
]




.

Since the normal reflection solution is the unique admissible solution for θw = π
2 ,

the set of admissible solutions with angles θw ∈ [θ∗w,
π
2 ] is non-empty for any

θ∗w ∈ (θd
w,

π
2 ]. Moreover, since dist(Γshock,Γwedge) > 0 for the normal reflection

solution, then π
2 ∈ A, i.e., A 6= ∅. Thus, we have

θc
w = inf A.

Similarly to §3.2.4.3, we find that θc
w < π

2 . Therefore, for any θ
∗
w ∈ (θc

w,
π
2 ) and

r ∈ (0, r1), there exists Cr > 0 such that, for any admissible solution ϕ with
θw ∈ [θ∗w,

π
2 ),

dist(Γshock,Γwedge \Br(P0)) ≥ 1

Cr
. (3.3.5)
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We note that, while the estimates of this section are weaker than the es-
timates in §3.2.4.3, since Γwedge is replaced by Γwedge \ Br(P0), the present
estimates are used in the same way as the estimates in §3.2.4.3. Specifically,
(3.2.20) and (3.2.23) are used in §3.2.5.1 to obtain the weighted Ck,α–estimates
away from Γsonic. Clearly, (3.3.3) and (3.3.5) can be used for that purpose as
well. Similarly, one can replace (3.2.21) by (3.3.4) in the proof that, for the
attached solution for θw = θc

w, the relative interior of Γwedge is disjoint from
Γshock.

3.3.3.3 Uniform estimate of the ellipticity of equation (2.2.8) in Ω up
to Γshock

We estimate the Mach number defined by (3.2.25).
First, we prove that (3.2.26) holds for all the supersonic admissible solutions

with any supersonic wedge angle θw ∈ (θd
w,

π
2 ), with uniform µ > 0.

For the subsonic admissible solutions, we obtain the following estimate of
the Mach number:

M2(ξ) ≤ max(1− ζ̂, |Dϕ2(P0)|2
c22

− µ̂|ξ − P0|) for all ξ ∈ Ω(ϕ),

where the positive constants ζ̂ and µ̂ depend only on (ρ0, ρ1, γ).
From these estimates, we obtain the following ellipticity properties of the

potential flow equation (2.2.8), written in the form of (3.2.27): There exist
ζ̂ > 0 and C > 0 depending only on (ρ0, ρ1, γ) such that, if ϕ is an admissible
solution of Problem 2.6.1 with θw ∈ (θd

w,
π
2 ), then

(i) For any supersonic wedge angle θw, (3.2.28) holds;

(ii) For any subsonic/sonic wedge angle θw,

1

C
min(c2 − |Dϕ2(P0)|+ |ξ − P0|, ζ̂)|κ|2

≤
2∑

i,j=1

Aipj (Dϕ(ξ), ϕ(ξ))κiκj ≤ C|κ|2
(3.3.6)

for any ξ ∈ Ω and κ = (κ1,κ2) ∈ R2.

Note that, if θw is a subsonic wedge angle, then |Dϕ2(P0)| < c2 so that (3.3.6)
shows the uniform ellipticity of (2.2.8) for ϕ in Ω. However, this ellipticity
degenerates near P0 as the subsonic wedge angles tend to a sonic angle. If θw is
a sonic angle, |Dϕ2(P0)| = c2 and Γsonic = {P0} so that (3.3.6) coincides with
(3.2.28) in this case.
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3.3.4 Regularity and related uniform estimates

3.3.4.1 Weighted Ck,α–estimates away from Γsonic or the reflection
point

Now all the preliminary results used for the estimates in §3.2.5.1 are extended
to all the admissible solutions (supersonic and subsonic) with θw ∈ (θd

w,
π
2 ),

where there is some difference in the estimates of the distance between Γshock

and Γwedge. However, the estimates obtained there are sufficient, as discussed
in §3.3.3.2. Then we obtain the weighted Ck,α–estimates away from Γsonic or
the reflection point for any admissible solutions (supersonic and subsonic) with
θw ∈ (θd

w,
π
2 ) by the same argument as that in §3.2.5.1.

3.3.4.2 Weighted and scaled Ck,α–estimates near Γsonic or the
reflection point

The main difference between the structure of supersonic and subsonic admissible
solutions is near Γsonic, since Γsonic is an arc for the supersonic wedge angles,
and Γsonic = {P0} is one point for the subsonic and sonic wedge angles. Thus,
the main difference from the argument in §3.2 is in the estimates near Γsonic or
the reflection point, i.e., near Γsonic.

Similarly to (3.2.30), we define and characterize Ωε, which now works for
both supersonic and subsonic reflection solutions. We work in the (x, y)–coordi-
nates introduced in §3.2.5.2, and note that Γsonic ⊂ {(x, y) : x = xP1

} for any
wedge angle, where xP1

= 0 for supersonic and sonic wedge angles, and xP1
> 0

for subsonic wedge angles. Then, for appropriately small ε1 > ε0 > 0, we find
that, for any ε ∈ (0, ε0],

Ωε := Ω ∩Nε1(Γsonic) ∩ {x < xP1 + ε}
= {xP1

< x < xP1
+ ε, θw < y < f̂(x)},

Γsonic = ∂Ωε ∩ {x = xP1
},

Γwedge ∩ ∂Ωε = {xP1
< x < xP1

+ ε, y = θw},

Γshock ∩ ∂Ωε = {xP1
< x < xP1

+ ε, y = f̂(x)}

(3.3.7)

for some f̂(x) defined on (xP1
, xP1

+ ε0) and satisfying
{
f̂(xP1

) = yP1
> yP4

= θw for supersonic reflection solutions,

f̂(xP1
) = yP0

= yP1
= yP4

= θw otherwise,
(3.3.8)

and

0 < ω ≤ df̂

dx
< C for any x ∈ (xP1

, xP1
+ ε0). (3.3.9)

To obtain the estimates near Γsonic, we consider four separate cases depend-

ing on the Mach number
|Dϕ2|
c2

at P0:
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(a) Supersonic: |Dϕ2(P0)|
c2

≥ 1 + δ;

(b) Supersonic-almost-sonic: 1 + δ > |Dϕ2(P0)|
c2

> 1;

(c) Subsonic-almost-sonic: 1 ≥ |Dϕ2(P0)|
c2

≥ 1− δ;

(d) Subsonic: |Dϕ2(P0)|
c2

≤ 1− δ.
We derive the uniform estimates in Ωε for any θw ∈ [θ∗w,

π
2 ), where ε is indepen-

dent of θw. Recall that P1 = P0 in the subsonic case. The choice of constants
(ε, δ) will be described below with the following properties: δ is chosen small,
depending on (ρ0, ρ1, γ), so that the estimates in Cases (b)–(c) work in Ωε for
some ε > 0; then ε is further reduced so that all the estimates in Cases (a)–(d)
work in Ωε.

We first present a general overview of the estimates. In Cases (a)–(b), equa-
tion (2.2.8) is degenerate elliptic in Ω near Γsonic = P1P4; see Fig. 2.3. In Case
(c), the equation is uniformly elliptic in Ω, but the ellipticity constant is small
near P0 in Fig. 2.4. Thus, in Cases (a)–(c), we use the local elliptic degeneracy,
which allows us to find a comparison function in each case, to show the appro-
priately fast decay of ϕ−ϕ2 near P1P4 in Cases (a)–(b) and near P0 in Case (c).
Similarly to the argument of §3.2.5.2, we perform the local non-isotropic rescal-
ing (different in each of Cases (a)–(c)) near each point of Ωε so that the rescaled
functions satisfy a uniformly elliptic equation and the uniform L∞–estimates,
which follow from the decay of ϕ − ϕ2 obtained above. Then we obtain the
a priori estimates in the weighted and scaled C2,α–norms, which are different
in each of Cases (a)–(c), but they imply the standard C1,1–estimates. This is
an extension of the methods in §3.2.5.2. In the uniformly elliptic case, Case
(iv), the solution is of subsonic reflection configuration (cf. Fig. 2.4) and the
estimates are more technically challenging than those in Cases (a)–(c), owing
to the fact that the lower a priori regularity (Lipschitz) of the free boundary
presents a new difficulty in Case (d) and the uniform ellipticity does not allow
a comparison function that shows the sufficiently fast decay of ϕ− ϕ2 near P0.
Thus, we prove the Cα–estimates of D(ϕ − ϕ2) near P0 by deriving the corre-
sponding elliptic equations and oblique boundary conditions for appropriately
chosen directional derivatives of ϕ− ϕ2.

Now we discuss the estimates in Cases (a)–(c) in more detail.
The techniques described in §3.2.5.2, for θw ∈ [θ∗w,

π
2 ) with θ∗w ∈ (θs

w,
π
2 ),

cannot be extended to all the supersonic reflection solutions. The reason for
this is that, if the length of Γsonic is very small, rectangles R(x0,y0)

ρ specified in
Cases (i)–(iii) in §3.2.5.2 do not fit into Ω in the following sense: The argument
in §3.2.5.2 uses the property that the rectangles in Cases (i)–(ii) do not inter-
sect with Γshock and the rectangles in Cases (i) and (iii) do not intersect with
Γwedge (cf. Fig. 3.5) so that rectangles R(x0,y0)

ρ fit into Ω. From (3.3.7)–(3.3.9),
rectangles R(x0,y0)

1/2 in Cases (ii)–(iii) fit into Ω if
√
x0 . yP1 −yP4 , and do not fit

into Ω in the opposite case; see Fig. 3.6. Thus, all the rectangles R(x0,y0)
1/2 with
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Figure 3.7: Estimates in the supersonic-almost-sonic case

(x0, y0) ∈ Γwedge ∪ Γshock fit into Ω only if yP1
− yP4

&
√
ε, i.e., when Γsonic is

sufficiently long, depending only on ε. Note that making the rectangles smaller
by choosing ρ < 1

2 in (3.2.33) does not change the argument. The condition that
|Dϕ2(P0)|

c2
≥ 1 + δ implies a positive lower bound b > 0 on the length of Γsonic,

depending on δ > 0. We fix δ > 0 below. Then the estimates in §3.2.5.2 apply to

any θw ∈ (θd
w,

π
2 ) satisfying

|Dϕ2(P0)|
c2

≥ 1+δ, and these estimates are obtained

in Ωε with ε ∼ b2. This describes the estimates in Case (a) (supersonic).
In Case (b) (supersonic-almost-sonic), when yP1 − yP4 is very small, we use

(3.3.7)–(3.3.9) to note that there exists k > 1 so that the rectangles:

R̂(x0,y0) :=
{
|x− x0| <

x
3/2
0

10k
, |y − y0| <

x0

10k

}
∩ Ω (3.3.10)

for (x0, y0) ∈ (Γwedge∪Γshock)∩∂Ωε fit into Ω in the sense described above. Note
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that the ratio of the lengths in the x– and y–directions of R̂(x0,y0) is
√
x0, i.e.,

the same as for the rectangles in (3.2.33). This implies that, rescaling R̂(x0,y0)

to the portion of square (−1, 1)2 := (−1, 1)× (−1, 1):

Q̂(x0,y0) :=
{

(S, T ) ∈ (−1, 1)2 : (x0 + x
3
2
0 S, y0 +

x0

10k
T ) ∈ Ω

}
,

we obtain a uniformly elliptic equation for the function:

ψ(x0,y0)(S, T ) :=
1

xm0
ψ(x0 + x

3
2
0 S, y0 +

x0

10k
T ) in Q̂(x0,y0) (3.3.11)

with any positive integer m. Thus, if the uniform L∞ bound is obtained for
functions ψ(x0,y0), we can follow the argument in §3.2.5.2 by using the rectangles
in (3.3.10). However, ifm = 2 is used, the resulting estimates, rescaled back into
the (x, y)–variables, are weaker than the estimates obtained in §3.2.5.2, where we
have used the rectangles in (3.2.33), and such estimates are not sufficient for the
rest of the argument. In fact, we need to use m = 4. This requires the estimate:
ψ(x, y) ≤ Cx4, in order to obtain the uniform L∞ bound of ψ(x0,y0). However,
Theorem 2.6.6 implies that ψ ∈ C2,α(Ωε \ {P1}) with ψxx = 1

γ+1 > 0 on Γsonic

so that, recalling that ψ = ψx = 0 on Γsonic, we conclude that the estimate,
ψ(x, y) ≤ Cx4, does not hold near Γsonic. For this reason, we decompose Ωε
into two subdomains; see Fig. 3.7. For θw ∈ (θd

w,
π
2 ) satisfying the condition of

Case (b), define
bso := yP1

− yP4
.

As we have discussed above, in Ωb2so , we can use the argument in §3.2.5.2 to
obtain the estimates described there. Furthermore, for each m = 2, 3, . . . , if δ
is small in the condition of Case (b) depending only on (ρ0, ρ1, γ,m), we obtain

0 ≤ ψ(x, y) ≤ Cxm in Ωε ∩ {x >
b2so
10
}, (3.3.12)

where C > 0 and ε ∈ (0, ε0] depend only on (ρ0, ρ1, γ,m). The main point
here is that C > 0 and ε are independent of bso. Estimate (3.3.12) is proved by
showing that

0 ≤ ψ(x, y) ≤ C(x+Mb2so)m in Ωε

with C,M , and ε depending only on (ρ0, ρ1, γ,m). We use m = 4 in (3.3.12).
This fixes δ for Cases (a)–(b). Then, as we have discussed above, we obtain the
estimates in Ωε ∩ {x > b2so

2 } by using the rectangles in (3.3.10) and the rescaled
functions (3.3.11) with m = 4. Combining this with the estimates in Ωb2so , we
complete the uniform estimates in Ωε for Case (b).

If θw ∈ (θd
w,

π
2 ) satisfies the condition of Case (c), we argue similar to Case

(b), by changing the size of the rectangles (i.e., the scaling) according to the
geometry of the domain; see Fig. 3.8. Specifically, for each m = 2, 3, . . . , if δ is
small depending only on (ρ0, ρ1, γ,m) in the condition of Case (c), we obtain

0 ≤ ψ(x, y) ≤ C(x− xP0)m in Ωε (3.3.13)
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Figure 3.8: Estimates in the subsonic-almost-sonic case

with C,M , and ε depending only on (ρ0, ρ1, γ,m). Recall that xP0
= xP1

> 0
in the subsonic case. Also, for sufficiently large k > 1, the rectangles:

R̂(x0,y0) :=
{
|x− x0| <

√
x0

10k
(x− xP0

), |y − y0| <
1

10k
(x− xP0

)
}
∩ Ω

for (x0, y0) ∈ (Γwedge ∪ Γshock) ∩ ∂Ωε fit into Ω in the sense described above.
The ratio of the side lengths in the x– and y–directions of R̂(x0,y0) is

√
x0, as in

the previous cases. Thus, rescaling R̂(x0,y0) to the portion of square (−1, 1)2:

Q̂(x0,y0) :=
{

(S, T ) ∈ (−1, 1)2 : (x0 +

√
x0

10k
(x−xP0

)S, y0 +
1

10k
(x−xP0

)T ) ∈ Ω
}
,

we obtain a uniformly elliptic equation in Q̂(x0,y0) for the function:

ψ(z0)(S, T ) :=
1

(x− xP0
)m
ψ(x0+

√
x0

10k
(x−xP0

)S, y0+
1

10k
(x−xP0

)T ). (3.3.14)

We use m = 5 in (3.3.13), which fixes δ for Cases (c)–(d). Then, repeating the
argument of the previous cases for the rescaled functions (3.3.14) with m = 5,
we obtain the uniform estimates of ψ in C2,α(Ωε) with ε(ρ0, ρ1, γ).

Next we consider Case (d). If θ∗w ∈ (θd
w,

π
2 ) is fixed, and θw ∈ (θd

w,
π
2 ) satisfies

the condition of Case (d) with δ fixed above, we use the uniform ellipticity
(independent of θw) in the estimates. The main steps of these estimates are
described in §16.6.1. We note the following points of this argument:

• We use the fact that ϕ2 in (3.3.2) is the weak state (2);

• We use the monotonicity cone of ϕ1 −ϕ (cf. §3.3.2), and the convexity of
the shock polar;

• We obtain the estimates in C1,α up to P0, which is a weaker regularity
than that in Cases (a)–(c);
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• The constants in the estimates depend on θ∗w, in addition to (ρ0, ρ1, γ),
and blow up as θ∗w → θd

w+.

3.3.5 Existence of the regular reflection-diffraction configuration
up to the detachment angle

Let θ∗w ∈ (θd
w,

π
2 ). We show that there exists an admissible solution for any

wedge angle θw ∈ (θ∗w,
π
2 ].

We follow the argument described in §3.2.6 with the changes necessary to
handle both cases of supersonic and subsonic reflection solutions in the argu-
ment. This includes the following three steps:

1. As in §3.2.6, the iteration set K consists of pairs (u, θw), for a function u
on the unit square Qiter and θw ∈ [θ∗w,

π
2 ]:

K = ∪θw∈[θ∗w,
π
2 ]Kθw × {θw}

with Kθw ⊂ C, where C is a weighted and scaled C2,α–type space on Qiter for
some α = α(ρ0, ρ1, γ) ∈ (0, 1), which satisfies

C ⊂ C2,α(Qiter) ∩ C1,α(Qiter).

For each (u, θw) ∈ K, the elliptic domain Ω of the approximate solution and
a smooth invertible map Gu,θw : Qiter 7→ Ω are defined. As in §3.2.6, for any
supersonic wedge angle θw ∈ (θ∗w,

π
2 ], region Ω is of the same structure as an

elliptic region of supersonic reflection solutions; see §2.4.2 and Fig. 2.3. Map
Gu,θw : Qiter 7→ Ω(u, θw) can be extended to the smooth and smoothly invertible
map Qiter 7→ Ω, where the sides of square Qiter are mapped to the boundary
parts Γsonic,Γshock,Γsym, and Γwedge of Ω. However, for any subsonic/sonic
wedge angle θw, Ω(u, θw) is of the structure described in §2.4.3 and Fig. 2.4,
i.e., has a triangular shape P0P2P3. Thus, map Gu,θw : Qiter 7→ Ω is smooth but
not invertible; one of the sides of Qiter is now mapped into point Γsonic = {P0}.

2. The singularity of mapping Gu,θw : Qiter 7→ Ω, described above, affects the
choice of the function space C introduced above. The norm in C is a weighted
and scaled C2,α–type norm on Qiter such that

• If (u, θw) ∈ K and v ∈ C, then, expressing v as a function w on Ω(u, θw)
by w = v ◦ G−1

u,θw
, we obtain that w ∈ C1,α(Ω) ∩ C2,α(Ω) and some more

detailed properties.

• If ϕ is an admissible solution for the wedge angle θw, there exists u ∈ Kθw ,
which is related to ϕ through map Gu,θw . The a priori estimates of the
admissible solutions for all the cases described in §3.3.4.1–§3.3.4.2 imply
the estimates for u in a norm which is stronger than the norm of C. This
allows us to define an iteration map which is compact in the norm of C and
to show that there is no fixed point of the iteration map on the boundary
of the iteration set.
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3. The properties of the potential flow equation (2.2.8) for admissible solu-
tions, near Γsonic or the reflection point, are different for θw belonging to the
different cases (a)–(d) in §3.3.4.2. This affects the definition of the equation in
the boundary value problem used in the definition of the iteration map for the
corresponding angle θw. Also, in solving this problem and deriving the estimates
of its solutions, we employ techniques similar to the estimates of admissible solu-
tions in §3.3.4.1–§3.3.4.2 for Cases (a)–(d). This allows us to define the iteration
map and obtain its compactness.

3.4 APPENDIX: THE METHOD OF CONTINUITY AND
FIXED POINT THEOREMS

For completeness, we now present several fundamental theorems regarding the
method of continuity and fixed point theorems that are used in this book.

Theorem 3.4.1 (Method of Continuity). Let B be a Banach space and V a
normed linear space, and let L0 and L1 be bounded linear operators from B into
V. Suppose that there is a constant C such that, for any τ ∈ [0, 1],

‖x‖B ≤ C‖
(
(1− τ)L0 + τL1

)
x‖V for any x ∈ B. (3.4.1)

Then L1 maps B onto V if and only if L0 maps B onto V.

Definition 3.4.2. Let X and Y be metric spaces. A map h : X 7→ Y is compact
provided that

(i) h is continuous;

(ii) f(A) is compact whenever A ⊂ X is bounded.

Theorem 3.4.3 (Leray-Schauder Fixed Point Theorem). Let T be a compact
mapping of a Banach space B into itself. Suppose that there exists a constant
M such that, for all x ∈ B and τ ∈ [0, 1] satisfying x = τTx,

‖x‖B ≤M. (3.4.2)

Then T has a fixed point.

Theorems 3.4.1 to 3.4.3 can be found as Theorem 5.2 and 11.3 in [131].

Theorem 3.4.4 (Schauder Fixed Point Theorem). Let K be a closed and convex
subset of a Banach space, and let J : K 7→ K be a continuous map such that
J(K) is precompact. Then J has a fixed point.

More details can be found in [131], including Corollary 11.2.
Next we present some further basic definitions and facts in the Leray-Schauder

degree theory.
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Definition 3.4.5. Let G be an open bounded set in a Banach space X. Denote
by V (G,X) the set of all the maps f : Ḡ 7→ X satisfying the following:

(i) f is compact;

(ii) f has no fixed points on boundary ∂G.

Definition 3.4.6. Two maps f ,g ∈ V (G,X) are called compactly homotopic
on ∂G if there exists a map H with the following properties:

(i) H : Ḡ× [0, 1] 7→ X is compact;

(ii) H(x, τ) 6= x for any (x, τ) ∈ ∂G× [0, 1];

(iii) H(x, 0) = f(x) and H(x, 1) = g(x) on Ḡ.

We write ∂G : f=̃g. This map H is called a compact homotopy.

Then we have the following Leray-Schauder degree theory.

Theorem 3.4.7. Let G be an open bounded set in a Banach space X. Then, to
each map f ∈ V (G,X), an integer number Ind(f , G) can be uniquely assigned
such that

(i) If f(x) ≡ x0 for any x ∈ Ḡ and some fixed x0 ∈ G, then Ind(f , G) = 1;

(ii) If Ind(f , G) 6= 0, there exists x ∈ G such that f(x) = x;

(iii) Ind(f , G) =
∑n
j=1 Ind(f , Gj), whenever f ∈ V (G,X) ∩

(
∪nj=1 V (Gj , X)

)
,

where {Gj} is a regular partition of G, i.e., Gj are pairwise disjoint and
Ḡ = ∪nj=1Ḡj ;

(iv) If ∂G : f=̃g, then Ind(f , G) = Ind(g, G).

The integer number Ind(f , G) is called the fixed point index of f on G.

We also need to consider the case in which set G varies with the homotopy
parameter t; see §13.6(A4∗) in [283].

Theorem 3.4.8 (Generalized Homotopy Invariance of the Fixed Point Index).
Let X be a Banach space, t2 > t1. Let U ⊂ X × [t1, t2], and let Ut := {x :
(x, t) ∈ U}. Then

Ind(h(·, t), Ut) = const. for all t ∈ [t1, t2],

provided that U is bounded and open in X × [t1, t2], and operator h : U 7→ X is
compact with h(x, t) 6= x on ∂U .

Note that set U is open with respect to the subspace topology on X× [t1, t2].
That is, U is an intersection of an open set in X × R with X × [t1, t2].

More details about the degree theory can be found in Chapters 12–13 in
[283].
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Chapter Four

Relevant Results for Nonlinear Elliptic Equations of

Second Order

In this chapter, we present some relevant results for nonlinear elliptic equations
of second order (for which the structural conditions and some regularity of the
coefficients are not required) with focus on the two-dimensional case, and study
the existence and regularity of solutions of certain boundary value problems in
domains of appropriate structure for an equation with ellipticity degenerating on
a part of the boundary. These results will be applied in solving von Neumann’s
conjectures in Parts III–IV.

Through this chapter, we use the following notations: x = (x1, x2) or X =
(X1, X2) for the coordinates in R2, R2

+ := {x2 > 0}, and Br := Br(0) and
B+
r := B+

r (0) ∩ R2
+ for r > 0.

4.1 NOTATIONS: HÖLDER NORMS AND ELLIPTICITY

In this section we first introduce some notations, including the Hölder norms
and notions of ellipticity, which will be used in subsequent developments.

4.1.1 Hölder norms

Let Ω ⊂ R2 be an open bounded set. We now introduce the Hölder norms in Ω.
For α ∈ (0, 1) and m ∈ {0, 1, . . . }, define

‖u‖m,0,Ω :=
∑

0≤|β|≤m

sup
x∈Ω
|Dβu(x)|,

[u]m,α,Ω :=
∑

|β|=m

sup
x,y∈Ω,x6=y

|Dβu(x)−Dβu(y)|
|x− y|α ,

‖u‖m,α,Ω := ‖u‖m,0,Ω + [u]m,α,Ω,

(4.1.1)

where Dβ = Dβ1

1 Dβ2

2 , Di = ∂xi , and β = (β1, β2) is a multi-index with βj ∈
N∪{0} and |β| = β1 +β2 (note that D(0,0)u = u), where N is the set of natural
numbers, i.e., all positive integers.

We denote by Cm,α,Ω := Cm,α(Ω) the space of functions on Ω with finite
norm ‖ · ‖m,α,Ω. We also write ‖u‖m,Ω for ‖u‖m,0,Ω, m = 0, 1, . . . .
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Let Σ ⊂ ∂Ω. We define partially interior norms in Ω ∪ Σ: For x,y ∈ Ω, let

dx = dist(x, ∂Ω \ Σ), dx,y = min(dx, dy).

For α ∈ (0, 1), m ∈ {0, 1, . . . }, and σ ∈ R, define

‖u‖(σ)
m,0,Ω∪Σ :=

∑

|β|=m

sup
x∈Ω

(
dm+σ
x |Dβu(x)|

)
,

[u]
(σ)
m,α,Ω∪Σ :=

∑

|β|=m

sup
x,y∈Ω,x6=y

(
dm+α+σ
x,y

|Dβu(x)−Dβu(y)|
|x− y|α

)
,

‖u‖(σ)
m,α,Ω∪Σ :=

m∑

k=0

‖u‖(σ)
k,0,Ω∪Σ,

‖u‖(σ)
m,α,Ω∪Σ := ‖u‖(σ)

m,0,Ω∪Σ + [u]
(σ)
m,α,Ω∪Σ.

(4.1.2)

Furthermore, we use the notations:

[u]∗m,0,Ω∪Σ = [u]
(0)
m,0,Ω∪Σ, ‖u‖∗m,0,Ω∪Σ = ‖u‖(0)

m,0,Ω∪Σ,

[u]∗m,α,Ω∪Σ = [u]
(0)
m,α,Ω∪Σ, ‖u‖∗m,α,Ω∪Σ = ‖u‖(0)

m,α,Ω∪Σ,
(4.1.3)

where the right-hand sides are the norms in (4.1.2). We denote by Cm,α,Ω∪Σ :=
Cm,α(Ω ∪ Σ) the space of functions with finite norm ‖ · ‖∗m,α,Ω∪Σ.

We also define the interior norms in Ω: For m ∈ N ∪ {0}, α ∈ (0, 1), and
σ ∈ R,

‖u‖(σ)
m,α,Ω, ‖u‖∗m,α,Ω are norms (4.1.2)–(4.1.3) with Σ = ∅. (4.1.4)

Next, we introduce the Hölder norms in Ω weighted by the distance to Σ ⊂
∂Ω. Set

δx := dist(x,Σ), δx,y := min(δx, δy) for x,y ∈ Ω.

Then, for k ∈ R, α ∈ (0, 1), and l,m ∈ N ∪ {0}, define

[u]
(k),Σ
l,0,Ω :=

∑

|β|=l

sup
x∈Ω

(
δmax{l+k,0}
x |Dβu(x)|

)
,

[u]
(k),Σ
m,α,Ω :=

∑

|β|=m

sup
x,y∈Ω,x6=y

(
δmax{m+α+k,0}
x,y

|Dβu(x)−Dβu(y)|
|x− y|α

)
,

‖u‖(k),Σ
m,0,Ω :=

m∑

l=0

[u]
(k),Σ
l,0,Ω ,

‖u‖(k),Σ
m,α,Ω := ‖u‖(k),Σ

m,0,Ω + [u]
(k),Σ
m,α,Ω.

(4.1.5)

We denote by C(k),Σ
m,α,Ω the closure of space C∞(Ω) under norm ‖ · ‖(k),Σ

m,α,Ω.
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Remark 4.1.1. If m ≥ −k ≥ 1 and k is an integer, any function u ∈ C(k),Σ
m,α,Ω

is C |k|−1,1 up to Σ, but not necessarily C |k| up to Σ.

We also note

Lemma 4.1.2. Let 0 ≤ α1 < α2 < 1, and let m be a nonnegative integer. Then

‖u‖(−m+1−α1),Σ
m,α1,Ω

≤ max{(diamΩ)α2−α1 , 1}‖u‖(−m+1−α2),Σ
m,α2,Ω

.

This follows directly from the expressions of norms in (4.1.5) by a straight-
forward estimate.

4.1.2 Notions of ellipticity

We adopt the following notions of strict ellipticity and uniform ellipticity. Let
Ω ⊂ R2 be open, u ∈ C2(Ω), and

N (u) =
2∑

i,j=1

Aij(Du, u,x)Diju+A(Du, u,x), (4.1.6)

where Aij(p, z,x) and B(p, z,x) are continuous on R2 × R × Ω, Dij = DiDj ,
p = (p1, p2) ∈ R2, and z ∈ R. Operator N is elliptic with respect to u in Ω
if the matrix of coefficients of the second-order terms, [Aij(Du(x), u(x),x)], is
nonnegative for every x ∈ Ω, i.e.,

2∑

i,j=1

Aij(Du(x), u(x),x)µiµj ≥ 0 for any x ∈ Ω and µ = (µ1, µ2) ∈ R2.

(4.1.7)
The ellipticity is strict when inequality (4.1.7) becomes strict for any x ∈ Ω
and µ = (µ1, µ2) ∈ R2 \ {0}, which means that matrix [Aij(Du(x), u(x),x)] is
positive for every x ∈ Ω; otherwise, the ellipticity is degenerate. Furthermore,
N is uniformly elliptic with respect to u in Ω if there exists a positive constant
λ > 0 such that, for any x ∈ Ω and µ = (µ1, µ2) ∈ R2,

λ|µ|2 ≤
2∑

i,j=1

Aij(Du(x), u(x),x)µiµj ≤ λ−1|µ|2.

The following standard comparison principle for operator N follows from
[131, Theorem 10.1]:

Lemma 4.1.3. Let Ω ⊂ R2 be an open bounded set. Let u, v ∈ C(Ω)∩C2(Ω) be
such that operator N is elliptic in Ω with respect to either u or v, and coefficients
Aij(p, z,x) and A(p, z,x) are independent of z. Let Nu ≤ N v in Ω and u ≥ v
on ∂Ω. Then u ≥ v in Ω.
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4.2 QUASILINEAR UNIFORMLY ELLIPTIC EQUATIONS

In this section, we present some estimates of solutions of the boundary value
problems for quasilinear elliptic equations in dimension two, which are applied
in later chapters. The main features of these estimates are that the structural
conditions (other than the ellipticity) and some regularity of the coefficients are
not required, and the Ck,α–estimates of the solution, k = 1, 2, depend only on
its C0–norm, independent of the C0,1–norm of the solution. These features are
necessary for our applications to the shock reflection-diffraction problems.

Consider a quasilinear elliptic equation of the form:

N (u) = f(x) (4.2.1)

with

N (u) :=

2∑

i,j=1

Aij(Du, u,x)Diju+A(Du, u,x), (4.2.2)

where Aij = Aij(p, z,x) with Aij = Aji, and A = A(p, z,x) with A(0, 0,x) = 0,
for (p, z,x) ∈ R2 × R× Ω, Ω ⊂ R2, and i, j = 1, 2.

We study boundary value problems with the following three types of bound-
ary conditions:

(i) the Dirichlet condition;
(ii) the oblique derivative condition;
(iii) the almost tangential derivative condition.
We restrict to the two-dimensional case that allows for equations of a general

structure. For equation (4.2.1), we require only the strict ellipticity and certain
regularity of the coefficients. In particular, we do not require equation (4.2.1) to
satisfy any structural conditions. This is important for our applications, because
our iteration equation does not satisfy the structural conditions used in higher
dimensions; cf. [131, Chapter 15] and [197].

The main point at which the structural conditions are needed in higher
dimensions is for the gradient estimates; cf. [131, Chapter 15] for the interior
estimates for the Dirichlet problem and [197] for the oblique derivative problem.
The interior gradient estimates and global gradient estimates for the Dirichlet
problem, without requiring the structural conditions, were obtained in the earlier
work in the two-dimensional case; see Trudinger [262] and the references therein.
However, it is not clear how this approach can be extended to the oblique and
almost tangential derivative problems. We also note some related results by
Lieberman [191, 192] for fully nonlinear equations with the boundary conditions
in the two-dimensional case, in which the Hölder estimates for the gradient
of a solution depend on both the bounds of the solution and its gradient. In
this section, we present the C2,α–estimates of the solution only in terms of its
C0–norm.

For simplicity, we restrict to the case of the quasilinear equation (4.2.1) with
boundary conditions which either are linear or are nonlinear but are of a certain
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linear structure, which is the case for later applications in this book. We first
present the interior estimate in the form that will be used in later parts of this
book. Then we give a proof of the C2,α–estimates for the almost tangential
derivative problem. Since the proofs for the Dirichlet and oblique derivative
problems are similar to that for the almost tangential derivative problem, we
will only sketch these proofs.

Let Ω ⊂ R2 be an open bounded set. Let Aij(p, z,x), Ai(p, z,x), and f(x)
satisfy the following conditions: There exist constants λ > 0 and α ∈ (0, 1) such
that

λ|µ|2 ≤
2∑

i,j=1

Aij(Du(x), u(x),x)µiµj ≤ λ−1|µ|2 (4.2.3)

for any x ∈ Ω,µ = (µ1, µ2) ∈ R2, and

‖(Aij , D(p,z)A)(p, z, ·)‖0,α,Ω ≤ λ−1 for all (p, z) ∈ R2 × R, (4.2.4)

‖D(p,z)Aij‖0,0,R2×R×Ω ≤ λ−1, (4.2.5)

A(0, 0,x) ≡ 0 for all x ∈ Ω. (4.2.6)

Theorem 4.2.1. Let Aij(p, z,x), Ai(p, z,x), and f(x) satisfy (4.2.3)–(4.2.6)
in Ω = B2r for r ∈ (0, 1]. Then, for any solution u ∈ C2,α(B2r) of (4.2.1) in
B2r satisfying

‖u‖0,B2r
+ ‖f‖0,α,B2r

≤M, (4.2.7)

there exists C > 0 depending only on (λ,M,α) such that

‖u‖2,α,Br ≤
C

r2+α

(
‖u‖0,B2r

+ r2‖f‖0,α,B2r

)
. (4.2.8)

Proof. We start by considering Case r = 1.
We first show the following estimate for A(Du(x), u(x),x) (to be used later

in the proof). For any β ∈ [0, α] and D ⊂ B2,

‖A(Du(·), u(·), ·)‖0,β,D ≤ C‖u‖1,β,D. (4.2.9)

Indeed, |A(Du, u,x)| ≤ C(|Du| + |u|) by (4.2.4) and (4.2.6). Furthermore,
denoting H(x) := A(Du(x), u(x),x), we have

|H(x)−H(x̂)| ≤ |A(Du(x), u(x),x)−A(Du(x̂), u(x̂),x)|
+ |A(Du(x̂), u(x̂),x)−A(Du(x̂), u(x̂), x̂)|

= : I1 + I2.

Then

I1 ≤
(
‖DpA‖L∞(R2×R×B2)[Du]0,β,D + ‖DzA‖0,R2×R×B2

[u]0,β,D
)
|x− x̂|β

≤C ([Du]0,β,D + [u]0,β,D) |x− x̂|β ,
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since ‖D(p,z)A‖L∞(R2×R×B2) ≤ λ−1 by (4.2.4). Moreover, using (4.2.6), we have

A(p, z,x) = a1p1 + a2p2 + a0z,

where

(a1, a2, a0)(x) =

∫ 1

0

(Dp1 , Dp2 , Dz)A(tp, tz,x)dt.

Thus, setting p = Du(x̂) and z = u(x̂), we have

I2 ≤ sup
t∈[0,1]

(
[DpA(tp, tz, ·)]0,β,B2 |Du(x̂)|+ [DzA(tp, tz, ·)]0,β,B2 |u(x̂)|

)
|x− x̂|β

≤ C
(
[Du]0,0,D + [u]0,0,D

)
|x− x̂|β ,

by (4.2.4). Now (4.2.9) is proved.
We consider (4.2.1) as a linear elliptic equation:

2∑

i,j=1

aij(x)Diju = f(x)−A(Du(x), u(x),x) in B3/2

with coefficients aij(x) = Aij(Du(x), u(x),x). The strict ellipticity and L∞

bounds of aij follow from (4.2.3)–(4.2.4). We use the interior norms (4.1.4). By
[131, Theorem 12.4], there exists β ∈ (0, 1) depending only on λ such that

[u]∗1,β,B2
≤ C(λ)

(
‖u‖0,B2

+ ‖f −A‖(2)
0,B2

)

≤ C(λ)
(
‖u‖0,B2

+ ‖Du‖(2)
0,B2

+ ‖f‖(2)
0,B2

)
,

where A = A(Du(x), u(x),x), and we have used (4.2.4) and (4.2.6) to obtain the
last inequality. Then, applying the interpolation inequality (cf. [131, (6.82)]):

[u]∗1,0,B2
≤ ε[u]∗1,β,B2

+ C(ε, β)‖u‖0,B2
,

using the fact that ‖Du‖(2)
0,B2

= [u]
(1)
1,0,B2

≤ 2[u]∗1,0,B2
and β = β(λ), and choosing

small ε = ε(λ), we obtain

‖u‖∗1,β,B2
≤ C(λ)

(
‖u‖0,B2

+ ‖f‖(2)
0,B2

)
. (4.2.10)

We can assume that β ≤ α. We obtain aij ∈ Cβ(B3/2) with

‖aij‖0,αβ,B3/2
≤ C,

by (4.2.4)–(4.2.5), (4.2.7), and (4.2.10).
Then the local estimates for linear elliptic equations yield

‖u‖2,β,B5/4
≤ C

(
‖u‖0,B3/2

+ ‖f‖0,β,B3/2
+ ‖A(Du, u,x)‖0,β,B3/2

)
.
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From this, using (4.2.9) with D = B3/2 and (4.2.10) to estimate ‖u‖1,β,B3/2
, we

have
‖u‖2,β,B5/4

≤ C
(
‖u‖0,B3/2

+ ‖f‖0,β,B3/2

)
.

With this estimate, we obtain that ‖aij‖0,α,B5/4
≤ C(λ,M). Then the local

estimates for linear elliptic equations in B5/4 yield (4.2.8) for r = 1.
In the general case r ∈ (0, 1), we rescale by defining

v(x) =
1

r
u(rx).

Then v is a solution of the equation of form (4.2.1) in B2 with the modified
ingredients (Âij , Â, B̂) and f̂ defined by

Âij(p, z,x) = Aij(p, rz, rx), Â(p, z,x) = rA(p, rz, rx), f̂(x) = rf(rx).

It follows that (Âij , Â) satisfy (4.2.3)–(4.2.6) in B2 with the unchanged constants
(λ,M,α). Therefore, estimate (4.2.8) with r = 1 holds for (v, f̂). Writing it in
terms of (u, f, h) and using that r ≤ 1, we conclude (4.2.8).

Remark 4.2.2. Note that ellipticity (4.2.3) of equation (4.2.1) in Theorem 4.2.1
and the following theorems are assumed only on solution u. We will use this for
application to the potential flow equation (2.2.8) with (2.2.9), which is of mixed
type.

Remark 4.2.3. From the proof, we also obtain the following estimate under the
conditions of Theorem 4.2.1: There exist β ∈ (0, 1) and Ĉ > 0 depending only
on λ such that

‖u‖1,β,Br ≤
Ĉ

r1+β

(
‖u‖0,B2r

+ r2‖f‖0,α,B2r

)
. (4.2.11)

Indeed, estimate (4.2.10) implies (4.2.11) for r = 1. Then the scaling performed
at the end of the proof of Theorem 4.2.1 yields (4.2.11) for any r ∈ (0, 1].

Now we consider the boundary value problems. We start with the almost
tangential derivative problem. The first result is the C1,α–estimates up to the
boundary. For these estimates, the C1–boundary suffices.

For Φ ∈ C(R) and R > 0, we set

ΩR := BR ∩ {x2 > εΦ(x1)}, ΓR := BR ∩ {x2 = εΦ(x1)}. (4.2.12)

Theorem 4.2.4. Let λ ∈ (0, 1) and r ∈ (0, 1]. Let Φ ∈ C1(R) satisfy

‖Φ‖1,R ≤ λ−1, Φ(0) = 0. (4.2.13)

Let Ω = Ω2r be of structure (4.2.12). Let Aij(p, z,x) and A(p, z,x) satisfy
(4.2.3), (4.2.6), and

‖(Aij , D(p,z)A)‖0,0,R2×R×Ω ≤ λ−1. (4.2.14)
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Let B(p2, z,x), f(x), and h(x) satisfy

B(0, 0,x) ≡ 0 for all x ∈ Γ2r, (4.2.15)

|∂p2B(p2, z,x)| ≤ ε for all (p2, z) ∈ R2, x ∈ Γ2r, (4.2.16)

‖D(p2,z)B(p2, z, ·)‖1,Γ2r
≤ λ−1 for all (p2, z) ∈ R× R, (4.2.17)

f ∈ L∞(Ω2r), h ∈ C1(Γ2r). (4.2.18)

Then there exist ε, β ∈ (0, 1) and C > 0 depending only on λ such that, for
u ∈ C2(Ω2r) ∩ C1,β(Ω2r ∪ Γ2r) satisfying (4.2.1) in Ω2r and

ux1
= B(ux2

, u,x) + h(x) on Γ2r, (4.2.19)

we have

‖u‖1,β,Ω9r/5
≤ C

r1+β

(
‖u‖0,Ω2r

+ r2‖f‖0,Ω2r
+ r‖h‖1,0,Γ2r

)
. (4.2.20)

Proof. From (4.2.13), if ε is small, depending only on λ, then

BR(x0) ∩ {x2 > εΦ(x1)} is connected for any x0 = (x0
1,Φ(x0

1)). (4.2.21)

We assume that (4.2.21) holds from now on. In particular, ΩR is connected for
any R. We divide the proof into six steps.

1. We first prove Theorem 4.2.4 for Case r = 1.
We extend B(p2, z,x) from R×R×Γ2 to R×R×Ω2, and h from Γ2 to Ω2, so

that (4.2.15)–(4.2.18) are satisfied for the extended functions in their domains,
where the bound in (4.2.17) may change, but still depends on λ. Specifically,
if x = (x1, x2) ∈ Ω2 ∩ B2−2ε, and ελ−2 is small, then (x1, εΦ(x1)) ∈ B2, which
implies that (x1, εΦ(x1)) ∈ Γ2. It follows that, by setting

B(p2, z,x) := B(p2, z, x1, 0), h(x) := h(x1, 0) (4.2.22)

for any (p2, z) ∈ R × R and x = (x1, x2) ∈ Ω2 ∩ B2−2ε, we obtain B and h
extended to Ω2 ∩ B2−2ε so that they satisfy all the required properties. Then,
for simplicity of notation, we assume without loss of generality that B(p2, z,x)
and h(x) are defined in R× R× Ω2 and Ω2, respectively, and satisfy

B(0, 0,x) ≡ 0 for all x ∈ Ω2, (4.2.23)

|∂p2
B(p2, z,x)| ≤ ε for all (p2, z) ∈ R2, x ∈ Ω2, (4.2.24)

‖D(p2,z)B(p2, z, ·)‖1,Ω2 ≤ λ−1 for all (p2, z) ∈ R× R, (4.2.25)

h ∈ C1(Ω2). (4.2.26)

The universal constant C in the argument below depends only on λ, unless
otherwise specified.
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2. As in [131, §13.2], we define wi := Diu for i = 1, 2. Then we conclude from
equation (4.2.1) that w1 and w2 are weak solutions of the following equations
of divergence form:

D1

(A11

A22
D1w1 +

A12 +A21

A22
D2w1

)
+D22w1 = D1

( f

A22
− A

A22

)
, (4.2.27)

and

D11w2 +D2

(A12 +A21

A11
D1w2 +

A22

A11
D2w2

)
= D2

( f

A11
− A

A11

)
, (4.2.28)

where (Aij , A) = (Aij , A)(Du, u,x).
Condition (4.2.3) implies that equations (4.2.27)–(4.2.28), considered as lin-

ear equations for w1 and w2 respectively, are elliptic with ellipticity constant λ.
Also, (4.2.3), (4.2.6), and (4.2.14) imply that, in Ω2,

A22(Du, u,x) ≥ λ, |Aij(Du, u,x)| ≤ C, (4.2.29)
∣∣∣
(f −A

Aii

)
(Du, u,x)

∣∣∣ ≤ C
(
|f |+ |u|+ |Du|

)
. (4.2.30)

From (4.2.19), we have

w1 = g on Γ2, (4.2.31)

where
g(x) := B(D2u(x), u(x),x) + h(x) in Ω2. (4.2.32)

We first obtain the following Hölder estimates of D1u, for which dx :=
dist(x, ∂Ω2 \ Γ2):

Lemma 4.2.5. There exist β ∈ (0, α] and C > 0 depending only on λ such
that, for any x0 ∈ Ω2 ∪ Γ2,

dβx0
[w1]0,β,B dx0

16

(x0)∩Ω2

≤ C
(
‖(Du, f)‖0,0,B dx0

2

(x0)∩Ω2
+ dβx0

[g]0,β,B dx0
2

(x0)∩Ω2

)
, (4.2.33)

where g is defined in (4.2.32).

Proof. For x0 ∈ {x2 = εΦ(x1)} and R > 0, denote

ΩR(x0) = BR(x0) ∩ {x2 > εΦ(x1)}. (4.2.34)

We first prove that, for x̂ ∈ Γ2 such that Ω2R(x̂) ⊂ Ω2,

Rβ [w1]0,β,ΩR(x̂) ≤ C
(
‖(Du,Rf)‖0,0,Ω2R(x̂) +Rβ [g]0,β,Ω2R(x̂)

)
. (4.2.35)
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We rescale u, w1, and f from Ω2R(x̂) into Ω̂1, where

Ω̂ρ = Bρ ∩ {X2 > εΦ̂(X1)}, Γ̂ρ = Bρ ∩ {X2 = εΦ̂(X1)}

with Φ̂(X1) = 1
2R

(
Φ(x1 + 2RX1)− Φ(x1)

)
.

Note that

‖Φ̂′‖L∞(R) = ‖Φ′‖L∞(R) ≤ λ−1, Φ̂(0) = 0.

For X ∈ Ω̂1, define

û(X) =
1

2R
u(x̂ + 2RX), f̂(X) = 2Rf(x̂ + 2RX),

(Âij , Â)(X) = (Aij , 2RA)(Dû(X), 2Rû(X), x̂ + 2RX),

ŵi = DXi û.

(4.2.36)

Then ŵ1 satisfies an equation of form (4.2.27) in Ω̂1 with (Aij , A, f) replaced
by (Âij(X), Â(X), f̂). Note that Âij(X), i, j = 1, 2, satisfy (4.2.3) in Ω̂1, and
(4.2.29)–(4.2.30) imply

∣∣∣ f̂ − Â
Â22

∣∣∣ ≤ C
(
|f̂ |+ 2R|û|+ |Dû|

)
in Ω̂1

with unchanged constants λ and C. By the elliptic version of [196, Theorem 6.33]
stated in the parabolic setting (it can also be obtained by using [196, Lemma
4.6] instead of [131, Lemma 8.23] in the proofs of [131, Theorems 8.27 and 8.29]
to achieve α = α0 in [131, Theorem 8.29]), we find β̃ ∈ (0, 1) depending only on
λ, and C = C(λ,Lip[εΦ̂]) such that, for β = min{β̃, α},

[ŵ1]0,β,Ω̂1/2
≤ C

(
‖(Rû,Dû, f̂)‖0,0,Ω̂1

+ [ŵ1]0,β,Γ̂1

)
.

Since Lip[εΦ̂] ≤ ελ−1 and ε < 1, it follows that C = C(λ).
Rescaling back and using (4.2.31), we obtain (4.2.35).
If x̂ ∈ Ω2 and B2R(x̂) ⊂ Ω2, an argument similar to the proof of (4.2.35) by

using the interior estimates [131, Theorem 8.24] yields

Rβ [w1]0,β,BR(x̂) ≤ C‖(u,Du,Rf)‖0,0,B2R(x̂). (4.2.37)

Now let x0 ∈ Ω2. If B dx0
8

(x0) ⊂ Ω2, we apply (4.2.37) with x̂ = x0 and

R =
dx0

16 ≤ 1 to obtain (4.2.33). Otherwise, there exists x′0 ∈ B dx0
8

(x0) ∩ Γ2

such that

B dx0
16

(x0) ∩ Ω2 ⊂ Ω dx0
2

(x′0) ⊂ Ω2.

Then, applying (4.2.35) with x̂ = x′0 and R =
dx0

2 ≤ 1 and using the inclusions
stated above, we obtain (4.2.33).



RELEVANT RESULTS FOR NONLINEAR ELLIPTIC EQUATIONS OF SECOND ORDER 79

3. Next, we make the Hölder estimates for Du. We first note that g defined
by (4.2.32) satisfies

|g| ≤ C
(
ε|Du|+ |u|

)
+ |h| in Ω2, (4.2.38)

|Dg| ≤ C
(
ε|D2u|+ |Du|+ |u|

)
+ |Dh| in Ω2, (4.2.39)

[g]0,β,D ≤ C
(
ε[Du]0,β,D + ‖u‖1,0,D

)
+ [h]0,β,D for any D ⊂ Ω2. (4.2.40)

Indeed, (4.2.38) follows directly from (4.2.23)–(4.2.25).
To show (4.2.39), we differentiate (4.2.32) with respect to xi to obtain

Dxig = Bp2
Di2u+BzDiu+Bxi + hxi , i = 1, 2, (4.2.41)

where (B,DB) = (B,DB)(Du, u,x). From (4.2.24) and the bound:

‖Bz‖0,R2×R×Ω2
≤ λ−1,

which follows from (4.2.25), we see that the first two terms on the right-hand side
of (4.2.41) are estimated by the right-hand side of (4.2.39). Thus, it only remains
to estimate Bxi(Du, u,x). We first note that Bxi(0, 0,x) ≡ 0 by (4.2.23). Also,
(4.2.25) implies that ‖Dx(Bp2 , Bz)‖0,R2×R×Ω2

≤ λ−1. Then |DxB(Du, u,x)| ≤
C
(
|Du|+ |u|

)
, which completes the proof of (4.2.39).

To show (4.2.40), we denote

g1(x) := B(D2u, u,x),

and estimate [g1]0,β,D. For x, x̂ ∈ D, we have

|g1(x)− g1(x̂)| ≤ |B(D2u(x), u(x),x)−B(D2u(x̂), u(x̂),x)|
+ |B(D2u(x̂), u(x̂),x)−B(D2u(x̂), u(x̂), x̂)|

= : I1 + I2.

Then

I1 ≤
(
‖Bp2

‖0,R2×R×Ω2
[Du]0,β,D + ‖Bz‖0,R2×R×Ω2

[u]0,β,D
)
|x− x̂|β

≤
(
ε[Du]0,β,D + C[u]0,β,D

)
|x− x̂|β ,

by (4.2.24)–(4.2.25). Furthermore, using (4.2.23), we have

B(p2, z,x) = a1p2 + a2z,

where (a1, a2) =
∫ 1

0
D(p2,z)B(tp2, tz,x)dt. Thus, setting p2 = D2u(x̂) and z =

u(x̂), we have

I2 ≤ sup
t∈[0,1]

(
[Bp2(tp2, tz, ·)]0,β,Ω2 |D2u(x̂)|+ [Bz(tp2, tz, ·)]0,β,Ω2 |u(x̂)|

)
|x− x̂|β

≤ C
(
[Du]0,0,D + [u]0,0,D

)
|x− x̂|β ,

by (4.2.25). Now (4.2.40) is proved.
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Lemma 4.2.6. Let β be as in Lemma 4.2.5. Then there exist ε0(λ) > 0 and
C(λ) > 0 such that, if 0 ≤ ε ≤ ε0,

dβx0
[Du]0,β,B dx0

32

(x0)∩Ω2
≤ C

(
‖u‖1,0,B dx0

2

(x0)∩Ω2
+ εdβx0

[Du]0,β,B dx0
2

(x0)∩Ω2

+ ‖f‖0,0,Ω2
+ ‖h‖1,0,Ω2

)
(4.2.42)

for any x0 ∈ Ω2 ∪ Γ2.

Proof. The Hölder norm of D1u has been estimated in Lemma 4.2.5. It remains
to estimate the Hölder norm of D2u. We follow the proof of [131, Theorem
13.1].

Fix x0 ∈ Ω2 ∪ Γ2. In order to prove (4.2.42), it suffices to show that, for
every x̂ ∈ B dx0

32

(x0) ∩ Ω2 and every R > 0 such that BR(x̂) ⊂ B dx0
16

(x0), we
have ∫

BR(x̂)∩Ω2

|D2u|2dx ≤ L2

d2β
x0

R2β , (4.2.43)

where L is the right-hand side of (4.2.42) (cf. [131, Theorem 7.19] and [196,
Lemma 4.11]).

In order to prove (4.2.43), we consider two separate cases: (i) B2R(x̂)∩Γ2 6= ∅
and (ii) B2R(x̂) ∩ Γ2 = ∅.

We first consider Case (i). Let B2R(x̂) ∩ Γ2 6= ∅. Since BR(x̂) ⊂ B dx0
16

(x0),
then

R ≤ dx0

16
. (4.2.44)

Let η ∈ C1
0 (B2R(x̂)) and ζ = (w1 − g)η2. Note that ζ ∈ W 1,2

0 (B2R(x̂) ∩ Ω2) by
(4.2.31). We use ζ as a test function in the weak form of (4.2.27):

∫

Ω2

( 2∑

i,j=1

aijDiw1Djζ
)
dx =

∫

Ω2

1

A22

(
f −A

)
D1ζ dx, (4.2.45)

where
aii =

Aii
A22

, a12 = 0, a21 =
A12 +A21

A22
,

and (Aij , A) = (Aij , A)(Du(x), u(x),x). We apply (4.2.3), (4.2.29)–(4.2.30),
and (4.2.39) to obtain

∫

Ω2

|Dw1|2η2 dx

≤ C
∫

Ω2

( (
(δ + ε)|Dw1|2 + ε|D2u|2

)
η2

+(
1

δ
+ 1)

(
(|Dη|2 + |f |η2)(w1 − g)2 + |(Du, u, f,Dh)|2η2

) )
dx,

(4.2.46)
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where C depends only on λ, and the sufficiently small constant δ > 0 will be
chosen below. Since

|Dw1|2 = (D11u)2 + (D12u)2, (4.2.47)

it remains to estimate |D22u|2. Using the ellipticity property (4.2.3) and (4.2.29),
we can express D22u from equation (4.2.1) and use (4.2.30) to obtain

|D22u|2 ≤ C(λ)|(D11u,D12u,Du, u, f)|2.

Combining this with (4.2.46)–(4.2.47), we have

∫

Ω2

|D2u|2η2 dx

≤ C
∫

Ω2

(
(ε+ δ)|D2u|2η2

+ (
1

δ
+ 1)

(
|(Dη, η)|2(w1 − g)2 + |(Du, u, f,Dh)|2η2

) )
dx.

Choose ε0 = δ = 1
4C , where C is from the last inequality. Then, when ε ∈ (0, ε0),

we have
∫

Ω2

|D2u|2η2 dx ≤ C
∫

Ω2

(
|(Dη, η2)|2(w1 − g)2 + |(Du, u, f,Dh)|2η2

)
dx.

(4.2.48)
Now we make a more specific choice of η: In addition to η ∈ C1

0 (B2R(x̂)),
we assume that η ≡ 1 on BR(x̂), 0 ≤ η ≤ 1 on R2, and |Dη| ≤ 10

R . Also, since
B2R(x̂) ∩ Γ2 6= ∅, we fix some x∗ ∈ B2R(x̂) ∩ Γ2. Then |x − x∗| ≤ 4R for any
x ∈ B2R(x̂). Moreover, (w1−g)(x∗) = 0 by (4.2.31). Since B2R(x̂) ⊂ B dx0

16

(x0),
we find from (4.2.33), (4.2.44), and (4.2.40) with D = B dx0

2

(x0) ∩ Ω2 that, for
any x ∈ B2R(x̂) ∩ Ω2,

|(w1 − g)(x)| = |(w1 − g)(x)− (w1 − g)(x∗)|
≤ |w1(x)− w1(x∗)|+ |g(x)− g(x∗)|

≤ C

dβx0

(
‖(Du, f)‖0,0,B dx0

2

(x0)∩Ω2
+ dβx0

[g]0,β,B dx0
2

(x0)∩Ω2

)
|x− x∗|β

+ [g]0,β,B dx0
2

(x0)∩Ω2
|x− x∗|β

≤ C
( 1

dβx0

‖(Du, f)‖0,0,B dx0
2

(x0)∩Ω2
+ ε[Du]0,β,B dx0

2

(x0)∩Ω2

+ ‖u‖0,0,B dx0
2

(x0)∩Ω2
+ [h]0,β,B dx0

2

(x0)∩Ω2

)
Rβ .
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Using this estimate and our choice of η, we obtain from (4.2.48) that

∫

BR(x̂)∩Ω2

|D2u|2dx

≤ C
( 1

d2β
x0

‖(Du, f)‖20,0,B dx0
2

(x0)∩Ω2
+ ‖h‖20,β,Ω2

+ ε2[Du]20,β,B dx0
2

(x0)∩Ω2

)
R2β

+C‖u‖21,0,B dx0
2

(x0)∩Ω2
(R2β +R2) + C‖Dh‖20,0,B dx0

2

∩Ω2
R2,

which implies (4.2.43) for Case (i).
Now we consider Case (ii): x̂ ∈ Ω2 and R > 0 satisfy BR(x̂) ⊂ B dx0

32

(x0)

and B2R(x̂)∩Γ2 = ∅. Then B2R(x̂) ⊂ B dx0
16

(x0)∩Ω2. Let η ∈ C1
0 (B2R(x̂)) and

ζ = η2(w1−w1(x̂)). Note that ζ ∈W 1,2
0 (Ω2), since B2R(x̂) ⊂ Ω2. Thus, we can

use ζ as a test function in (4.2.45). Performing estimates similar to those that
we have made for obtaining (4.2.48), we have

∫

Ω2

|D2u|2η2dx ≤ C(λ)

∫

Ω2

(
|(Dη, η)|2(w1 − w1(x̂))2 + |(Du, u, f)|2η2

)
dx.

(4.2.49)
Choose η ∈ C1

0 (B2R(x̂)) so that η ≡ 1 on BR(x̂), 0 ≤ η ≤ 1 on R2, and
|Dη| ≤ 10

R . Note that, for any x ∈ B2R(x̂),

|w1(x)− w1(x̂)| ≤ C
( 1

dβx0

‖(Du, f)‖0,0,B dx0
2

(x0)∩Ω2
+ ε[Du]0,β,B dx0

2

(x0)∩Ω2

)
Rβ

by (4.2.33), since B2R(x̂) ⊂ B dx0
16

(x0)∩Ω2. Now we obtain (4.2.43) from (4.2.49)
in a way similar to that for Case (i). Then Lemma 4.2.6 is proved.

4. Now we make the C1,β–estimate of u. In the next lemma, we use the
partially interior norms (4.1.3) in Ω2 ∪ Γ2. Note that the distance function
related to the norms is dx = dist(x, ∂Ω2 \Γ2), i.e., the function used in Lemmas
4.2.5–4.2.6.

Lemma 4.2.7. Let β and ε0 be as in Lemma 4.2.6. Then, for ε ∈ (0, ε0), there
exists C(λ) such that

[u]∗1,β,Ω2∪Γ2
≤ C

(
‖u‖∗1,0,Ω2∪Γ2

+ ε[u]∗1,β,Ω2∪Γ2
+ ‖f‖0,0,Ω2

+ ‖h‖1,0,Ω2

)
.

(4.2.50)

This can be seen as follows: Estimate (4.2.50) follows directly from Lemma
4.2.6 and an argument similar to the proof of [131, Theorem 4.8]. Let x̂, x̃ ∈ Ω2

with dx̂ ≤ dx̃ (so that dx̂,x̃ = dx̂) and let |x̂− x̃| ≤ dx̂
64 . Then x̃ ∈ B dx0

32

(x0)∩Ω2
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and, by Lemma 4.2.6 applied to x0 = x̂, we have

d1+β
x̂,x̃

|Du(x̂)−Du(x̃)|
|x̂− x̃|β

≤ C
(
dx̂‖u‖1,0,B dx̂

2

(x̂)∩Ω2
+ εd1+β

x̂ [Du]0,β,B dx̂
2

(x̂)∩Ω2

+‖f‖0,0,Ω2
+ ‖h‖1,0,Ω2

)

≤ C
(
‖u‖∗1,0,Ω2∪Γ2

+ ε[u]∗1,β,Ω2∪Γ2
+ ‖f‖0,0,Ω2 + ‖h‖1,0,Ω2

)
,

where the last inequality holds since 2dx ≥ dx̂ for any x ∈ B dx̂
2

(x̂) ∩ Ω2. If

x̂, x̃ ∈ Ω2 with dx̂ ≤ dx̃ and |x̂− x̃| ≥ dx̂
64 , then

d1+β
x̂,x̃

|Du(x̂)−Du(x̃)|
|x̂− x̃|β ≤ 64

(
dx̂|Du(x̂)|+ dx̃|Du(x̃)|

)

≤ 64 ‖u‖∗1,0,Ω2∪Γ2
.

5. Now we can complete the proof of Theorem 4.2.4. For sufficiently small
ε0 > 0 depending only on λ, when ε ∈ (0, ε0), we use Lemma 4.2.7 to obtain

[u]∗1,β,Ω2∪Γ2
≤ C(λ)

(
‖u‖∗1,0,Ω2∪Γ2

+ ‖f‖0,0,Ω2
+ ‖h‖1,0,Ω2

)
. (4.2.51)

We use the interpolation inequality [131, Eq. (6.89)] to estimate

‖u‖∗1,0,Ω2∪Γ2
≤ C(β, δ)‖u‖0,Ω2 + δ[u]∗1,β,Ω2∪Γ2

for δ > 0.

Since β = β(λ), we choose sufficiently small δ(λ) > 0 to find

‖u‖∗1,β,Ω2∪Γ2
≤ C(λ)

(
‖u‖0,0,Ω2

+ ‖f‖0,0,Ω2
+ ‖h‖1,0,Ω2

)
(4.2.52)

from (4.2.51). Since h has been obtained by extension from the boundary so
that ‖h‖1,0,Ω2

= ‖h‖1,0,Γ2
, estimate (4.2.20) is proved for r = 1.

6. Now let r ∈ (0, 1). We rescale into the case when r = 1, by defining

v(x) =
1

r
u(rx).

Then v is a solution of the equation of form (4.2.1) in Ω2, defined by the modified
boundary function Φ̂(t) = 1

rΦ(rt), and the boundary condition of form (4.2.19)
on the corresponding boundary Γ2, with the modified ingredients (Âij , Â, B̂)

and the right-hand sides (f̂ , ĥ), defined by

Âij(p, z,x) = Aij(p, rz, rx), Â(p, z,x) = rA(p, rz, rx),

B̂(p2, z,x) = B(p2, rz, rx), f̂(x) = rf(rx), ĥ(x) = h(rx).

It follows that (Φ̂, Âij , Â, B̂) satisfy (4.2.3), (4.2.6), and (4.2.14)–(4.2.17) with
r = 1 and the unchanged constant λ. Thus, if ε is small, depending only on λ,
estimate (4.2.20) with r = 1 holds for (v, f̂ , ĥ). Writing this in terms of (u, f, h),
we obtain (4.2.20).
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Now we assume the C1,α–regularity of the boundary, and more regularity in
the ingredients of the equation and the boundary condition than those in Theo-
rem 4.2.4, to prove the C2,α–estimates for the solutions of the almost tangential
derivative problem.

Theorem 4.2.8. Let λ > 0, α ∈ (0, 1), M > 0, and r ∈ (0, 1]. Let Φ ∈ C1(R)
satisfy

‖Φ‖C1,α(R) ≤ λ−1, Φ(0) = 0. (4.2.53)

Assume that Aij(p, z,x), A(p, z,x), and B(p2, z,x) satisfy (4.2.3)–(4.2.6) in
Ω = Ω2r, and (4.2.15)–(4.2.17), and

‖D(p2,z)B(p2, z, ·)‖1,α,Γ2r
≤ λ−1 for all (p2, z) ∈ R× R, (4.2.54)

‖D2
(p2,z)

B‖1,0,R×R×Γ2r
≤ λ−1. (4.2.55)

Then there exist ε ∈ (0, 1) and C > 0 depending only on (λ, α,M) such that,
for u ∈ C2,α(Ω2r ∪ Γ2r) satisfying (4.2.1), (4.2.19), and

‖u‖0,Ω2r
+ ‖f‖0,α,Ω2r

+ ‖h‖1,α,Γ2r
≤M, (4.2.56)

we have

‖u‖2,α,Ωr ≤
C

r2+α

(
‖u‖0,Ω2r + r2‖f‖0,α,Ω2r + r‖h‖1,α,Γ2r

)
. (4.2.57)

Proof. We first prove the theorem for Case r = 1 and then extend the results to
the general case r ∈ (0, 1] by scaling. The universal constant C in the argument
below depends only on (λ, α,M), unless otherwise specified. We divide the proof
into five steps.

1. For r = 1, we extend B(p2, z,x) from R×R×Γ2 to R×R×Ω2, and h from
Γ2 to Ω2, so that the conditions of the theorem still hold for the extension. The
extension can be done in the same way as that at the beginning of the proof of
Theorem 4.2.4: Extend to x ∈ Ω2∩B2−2ε by (4.2.22) and then, for simplicity of
notation, assume without loss of generality that B(p2, z,x) and h(x) are defined
in R × R × Ω2 and Ω2 respectively, and satisfy (4.2.15)–(4.2.16) and (4.2.54)–
(4.2.55) with Ω2 instead of Γ2. That is, B(p2, z,x) satisfies (4.2.23)–(4.2.25)
and

‖D(p2,z)B(p2, z, ·)‖1,α,Ω2 ≤ Cλ−1 for all (p2, z) ∈ R× R, (4.2.58)

‖D2
(p2,z)

B‖1,R×R×Ω2
≤ λ−1, (4.2.59)

‖h‖1,α,Ω2
≤ C‖h‖1,α,Γ2

, (4.2.60)

where C depends only on α and the C1,α–norm of Γ2, i.e., only on (α,M).
Note that the conditions of Theorem 4.2.8 imply the conditions of Theorem

4.2.4 with the same constant λ. Thus, u satisfies (4.2.20). Then, using (4.2.56)
with r = 1, i.e.,

‖u‖0,Ω2 + ‖f‖0,α,Ω2 + ‖h‖1,α,Γ2 ≤M,
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we obtain
‖u‖1,β,Ω9/5

≤ C. (4.2.61)

2. We may assume that β ≤ α. Now we consider (4.2.27) as a linear elliptic
equation:

2∑

i,j=1

Di(aij(x)Djw1) = D1F in Ω9/5, (4.2.62)

where aij(x) =
Aij
A22

, a12(x) = 0, a21(x) = A12+A21

A22
, and F (x) = −A−fA22

with
(Aij , A) = (Aij , A)(Du(x), u(x),x). Then aij , i, j = 1, 2, satisfy the ellipticity
in Ω9/5 with the same constant λ as in (4.2.3). Also, combining (4.2.61) with
(4.2.3)–(4.2.5) implies that

‖aij‖0,β,Ω9/5
≤ C(λ,M). (4.2.63)

From now on, dx denotes the distance related to the partially interior norms in
Ω9/5 ∪ Γ9/5, i.e., for x ∈ Ω9/5, dx := dist(x, ∂Ω9/5 \ Γ9/5) ≡ dist(x, ∂Ω9/5 ∩
∂B9/5). Now, similarly to the proof of Lemma 4.2.5, we rescale equation
(4.2.62) and the Dirichlet condition (4.2.31) from subdomains ΩR(x′1) ⊂ Ω9/5

and ΩR(x̂) ⊂ Ω9/5 with R ≤ 1 to B = B+
1 or B = B1, respectively, by defining

(ŵ1, ĝ, âij)(X) = (w1, g, aij)(x̂ +RX), F̂ (X) = RF (x̂ +RX) for X ∈ B.

Then
2∑

i,j=1

Di(âij(x)Djŵ1) = D1F̂ in B,

the strict ellipticity of this rescaled equation is the same as that for (4.2.62),
and ‖âij‖0,β,B ≤ C for C = C(λ,M) in (4.2.63), where we have used R ≤ 1.
This allows us to apply the local C1,β interior and boundary estimates for the
Dirichlet problem [131, Theorem 8.32, Corollary 8.36] to the rescaled problems
in balls B+

3dx0
8

(x′0) and B dx0
8

(x0) as in Lemma 4.2.5. Then scaling back, multi-

plying by dx0
, and applying the covering argument as in Lemma 4.2.5, we see

that, for any x0 ∈ Ω9/5 ∪ Γ9/5,

d2+β
x0

[w1]1,β,D1
+ d2

x0
‖w1‖1,0,D1

≤ C
(
dx0‖w1‖0,0,D2 + dx0‖F‖0,0,D2 + d1+β

x0
[F ]0,β,D2 + dx0‖w1‖0,0,Γ2

+ d2
x0
‖Dw1‖0,0,Γ2 + d2+β

x0
[Dw1]0,β,Γ2

)

≤ C
(
dx0‖u‖1,0,D2 + ‖f‖0,β,D2 + d1+β

x0
‖u‖1,β,D2 + dx0‖g‖0,0,D2

+ d2
x0
‖Dg‖0,0,D2 + d2+β

x0
[Dg]0,β,D2

)
,

(4.2.64)
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where

D1 = B dx0
16

(x0) ∩ Ω 9
5
, D2 = B dx0

2

(x0) ∩ Ω 9
5
, Γ2 = ∂D2 ∩ {x2 = 0},

and we have also used dx0
< 2, w1 = D1u, the boundary condition (4.2.19) with

(4.2.32), and the definition of F to obtain the last inequality. In addition, we
have also used that A(Du, u,x) satisfies estimate (4.2.9) for any β ∈ [0, α] and
D ⊂ Ω2, which follows from the present assumptions, by repeating the proof of
(4.2.9).

Now we prove that, for any D ⊂ Ω9/5,

[g]1,β,D ≤ C
(
ε[D2u]0,β,D + ‖u‖2,0,D + [h]1,β,D

)
. (4.2.65)

To obtain this estimate, we use expression (4.2.41). From (4.2.55) and (4.2.61),
we obtain that functions x 7→ D(p2,z)B(D2u(x), u(x),x) satisfy

‖D(p2,z)B(D2u(·), u(·), ·)‖0,β,Ω9/5
≤ C.

From this and (4.2.24), we obtain that [Bp2Di2u+BzDiu+hxi ]0,β,D is estimated
by the right-hand side of (4.2.65).

Thus, it remains to estimate [Bxi(D2u(·), u(·), ·)]0,β,D. Using thatBxi(0, 0,x)
≡ 0 by (4.2.23), we have

Bxi(p2, z,x) = a1p2 + a2z,

where (a1, a2) =
∫ 1

0
D(p2,z)Bxi(tp2, tz,x)dt. Therefore, we employ (4.2.58)–

(4.2.59) and (4.2.61) to obtain

[Bxi(D2u(·), u(·), ·)]0,β,D ≤ C‖Du‖2,0,D, i = 1, 2.

Now (4.2.65) is proved.
Recall thatDw1 = (D11u,D12u). ExpressingD22u from equation (4.2.1) and

then using (4.2.3)–(4.2.6), (4.2.9), and (4.2.52) to estimate the Hölder norms of
D22u, in terms of the norms of (D11u,D12u,Du, u, f), as follows:

d2+β
x0

[D22u]0,β,D1 + d2
x0
‖D22u‖0,0,D1

≤ C
(
d2+β
x0

[(D11, D12u, f)]0,β,D1
+ d2

x0
‖(D11, D12u, f)‖0,0,D1

+ d2
x0
‖u‖1,β,D1

)
,

and using (4.2.38)–(4.2.39) and (4.2.65) to estimate the terms involving g in
(4.2.64), we obtain from (4.2.64) that, for every x0 ∈ Ω9/5 ∪ Γ2,

d2+β
x0

[D2u]0,β,D1
+ d2

x0
‖D2u‖0,0,D1

≤ C
(
dx0‖u‖1,0,D2 + d1+β

x0
[u]1,β,D2 + dx0‖u‖1,0,D2 + ‖f‖0,β,D2

+d2+β
x0

(
ε[D2u]0,β,D2 + ‖D2u‖0,0,D2 + [h]1,β,D2

)
+ εd2

x0
‖D2u‖0,0,D2

)
.
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Then the argument in the proof of Lemma 4.2.7, combined with dx0
≤ 2, implies

‖u‖∗2,β,Ω9/5∪Γ9/5

≤ C
(
‖u‖∗2,0,Ω9/5∪Γ9/5

+ ε‖u‖∗2,β,Ω9/5∪Γ9/5
+ ‖f‖0,β,Ω9/5

+ ‖h‖1,β,Ω9/5

)
.

(4.2.66)

Using the interpolation inequality – For any ε > 0, there exists Cε > 0 such
that

‖u‖∗2,0,Ω9/5∪Γ9/5
≤ ε‖u‖∗2,β,Ω9/5∪Γ9/5

+ Cε‖u‖0,Ω9/5
,

reducing ε0 if necessary, and using (4.2.60), we conclude

‖u‖∗2,β,Ω9/5∪Γ9/5
≤ C(λ,M)

(
‖u‖0,Ω2

+ ‖f‖0,β,Ω2
+ ‖h‖1,β,Γ2

)
. (4.2.67)

This implies

‖u‖1,α,Ω8/5
≤ C(λ,M)

(
‖u‖0,Ω2

+ ‖f‖0,β,Ω2

)
≤ C(λ,M),

that is, we obtain (4.2.61) with α in place of β. Now we can repeat the argument,
which leads from (4.2.61) to (4.2.67) with β replaced by α in Ω8/5, to obtain

‖u‖∗2,α,Ω8/5∪Γ8/5
≤ C(λ,M,α)

(
‖u‖0,Ω2

+ ‖f‖0,α,Ω2
+ ‖h‖1,α,Γ2

)
, (4.2.68)

where we have used norm (4.1.3). This implies (4.2.57). Theorem 4.2.8 is proved
for r = 1.

3. Now let r ∈ (0, 1). By Theorem 4.2.4, estimate (4.2.20) holds. Then,
using (4.2.56), we have

‖u‖1,β,Ω9r/5
≤ C(λ,M).

We rescale by defining

v(x) =
1

ρ
u(ρx) with ρ =

9r

10
.

Then v is a solution of the equation of form (4.2.1) in Ω2, defined by the modified
boundary function Φ̂(t) = 1

rΦ(rt), and the boundary condition of form (4.2.19)
on the corresponding boundary Γ2 with the modified ingredients (Âij , Â, B̂) and
the right-hand sides (f̂ , ĥ), defined by

Âij(p, z,x) = Aij(p, ρz, ρx), Â(p, z,x) = ρA(p, ρz, ρx),

B̂(p2, z,x) = B(p2, ρz, ρx), f̂(x) = ρf(ρx), ĥ(x) = h(ρx).

It follows that (Φ̂, Âij , Â, B̂) satisfy the conditions of Theorem 4.2.8 with r = 1
and the unchanged constants (λ,M,α). Therefore, if ε is small, depending only
on (λ,M,α), estimate (4.2.57) with r = 1 holds for (v, f̂ , ĥ). Writing this in
terms of (u, f, h) and using that r ≤ 1, we conclude (4.2.57).
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Next we show the a priori estimates for the Dirichlet problem. Below, we
use the notations:

B+
R := BR(0) ∩ {x2 > 0}, ΣR := BR(0) ∩ {x2 = 0} for R > 0.

Theorem 4.2.9. Let λ > 0 and α ∈ (0, 1). Let Φ ∈ C2,α(R) satisfy

‖Φ‖2,α,R ≤ λ−1, Φ(0) = 0, (4.2.69)

and let ΩR := BR ∩ {x2 > Φ(x1)} for R ∈ (0, 2]. Let u ∈ C2(ΩR) ∩ C(ΩR)
satisfy (4.2.1) in ΩR and

u = g on ΓR := ∂ΩR ∩ {x2 = Φ(x1)}, (4.2.70)

where Aij = Aij(Du,x), A = A(Du, u,x), and f = f(x) satisfy the assumptions
of Theorem 4.2.8, and g = g(x) satisfies

‖g‖2,α,ΩR ≤M. (4.2.71)

Assume that ‖u‖0,ΩR ≤M . Then

‖u‖2,α,ΩR/2 ≤ C(λ,M,α,R)
(
‖u‖0,ΩR + ‖f‖0,α,ΩR + ‖g‖2,α,ΩR

)
. (4.2.72)

Proof. We flatten the boundary by the change of variables:

A(x1, x2) = (x1, x2 − Φ(x1)).

Assumption (4.2.69) implies that A : R2 7→ R2 is a C2,α–diffeomorphism with
‖(A,A−1)‖2,α,R2 ≤ C(λ,R), and that B+

R/K ⊂ A(ΩR) with K = K(λ,R) > 1.
Then, changing further the variables to rescale B+

R/K to B+
2 , and noticing that

the ingredients and the right-hand sides of the equation and the boundary con-
dition in the new variables satisfy the same conditions as those for the original
equation with the constants depending only on (λ,M,R, α), we reduce the prob-
lem to Case R = 2 with ΩR = B+

2 .
Furthermore, replacing u by u− g, we can assume without loss of generality

that g ≡ 0. Thus, D1u = 0 on Γ2. Then estimate (4.2.72) in our case ΩR =
B+

2 and g ≡ 0 follows from Theorem 4.2.8. Changing the variables back, we
obtain (4.2.72) with the norm of the left-hand side in domain ΩµR for some
µ ∈ (0, 1

2 ) depending only on (λ,M,R). Then, from a covering argument and
using the interior estimates (4.2.8) in Theorem 4.2.1, we obtain the full estimate
(4.2.72).

We now derive the estimates for a class of oblique derivative problems.

Theorem 4.2.10. Let λ > 0, α ∈ (0, 1), and M > 0. Let Φ ∈ C2,α(R) satisfy
(4.2.69), and let

ΩR := BR ∩ {x2 > Φ(x1)}, ΓR := ∂ΩR ∩ {x2 = Φ(x1)} for R ∈ (0, 2).
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Let u ∈ C2,α(ΩR ∪ ΓR) satisfy

2∑

i,j=1

Aij(Du, u,x)Diju+A(Du, u,x) = f in ΩR, (4.2.73)

b ·Du+ b0u = h on ΓR. (4.2.74)

Assume that Aij = Aij(Du, u,x) and A = A(Du, u,x) satisfy (4.2.3)–(4.2.6),
and that b = (b1, b2)(x) and b0 = b0(x) satisfy the following obliqueness condi-
tion and C1,α–bounds:

b · ν ≥ λ on ΓR, (4.2.75)

‖(b, b0)‖1,α,ΓR ≤ λ−1. (4.2.76)

Assume that (4.2.56) holds in ΩR∪ΓR. Then there exists C > 0 depending only
on (λ, α,M) such that

‖u‖2,α,ΩR/2 ≤
C

R2+α

(
‖u‖0,ΩR +R2‖f‖0,α,ΩR +R‖h‖1,α,ΓR

)
. (4.2.77)

In addition, there exist β ∈ (0, 1) and Ĉ > 0 depending only on λ such that

‖u‖1,β,ΩR/2 ≤
Ĉ

R1+β

(
‖u‖0,ΩR +R2‖f‖0,ΩR +R‖h‖0,1,ΓR

)
. (4.2.78)

Proof. We divide the proof into five steps.

1. We first consider Case R = 2. Then, by flattening boundary ΓR = Γ2 as
at the beginning of the proof of Theorem 4.2.9, we can assume without loss of
generality that

R = 2, ΩR = B+
2 , ΓR = Σ2,

that u ∈ C2,α(B+
2 ∪ Σ2) satisfies (4.2.73)–(4.2.74) with ΩR = B+

2 and ΓR =
Σ2, and (4.2.56) holds, and that the ingredients of the equation, the boundary
condition, and the right-hand sides satisfy the same assumptions as those for
the original problem. We also note that (4.2.75) now is of the form:

b2(x) ≥ λ for all x ∈ Σ2. (4.2.79)

We need to prove that

‖u‖2,α,B+
1
≤ C

(
‖u‖0,B+

2
+ ‖f‖0,α,B+

2
+ ‖h‖1,α,Σ2

)
, (4.2.80)

‖u‖1,β,B+
1
≤ Ĉ

(
‖u‖0,B+

2
+ ‖f‖1,B+

2
+ ‖h‖1,0,Σ2

)
, (4.2.81)

where C depends only on (λ,M,α) in (4.2.80), and Ĉ and β ∈ (0, 1) depend
only on λ in (4.2.81).
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Using (4.2.76)–(4.2.79), we can extend (b, b0) to B+
2 so that

b2(x) ≥ λ

2
for all x ∈ B+

2 , (4.2.82)

‖(b, b0)‖1,α,B+
2
≤ λ−1. (4.2.83)

Note that, in order to prove (4.2.80), it suffices to prove that there exist K
and C depending only on (λ,M,α) such that

‖u‖2,α,B+
1/K
≤ C

(
‖u‖0,B+

2
+ ‖f‖0,α,B+

2
+ ‖h‖1,α,Σ2

)
. (4.2.84)

Indeed, if (4.2.84) is proved, (4.2.80) is obtained by the standard covering tech-
nique, the scaled estimates (4.2.84), and the interior estimates (4.2.8) in Theo-
rem 4.2.1.

2. To obtain (4.2.84), we first make a linear change of variables to normalize
the problem so that

b1(0) = 0, b2(0) = 1 (4.2.85)

for the modified problem.
This can be done as follows: Let

X = Ψ̃(x) :=
1

b2(0)
(b2(0)x1 − b1(0)x2, x2).

Then

x = Ψ̃−1(X) = (X1 + b1(0)X2, b2(0)X2), |DΨ̃|+ |DΨ̃−1| ≤ C(λ),

where the estimate follows from (4.2.82)–(4.2.83). Then

v(X) := u(x) ≡ u(X1 + b1(0)X2, b2(0)X2)

is a solution of the equation of form (4.2.73) in domain Ψ̃(B+
2 ) and the boundary

condition of form (4.2.74) on the boundary part Ψ̃(Σ1) such that (4.2.3)–(4.2.6),
(4.2.56), and (4.2.82)–(4.2.83) are satisfied with constant λ̂ > 0 depending only
on λ, (4.2.85) holds, and ‖v‖0,Ψ̃(B+

2 ) ≤ M , which can be verified by a straight-
forward calculation.

Moreover, Ψ̃(B+
2 ) ⊂ R2

+ := {X2 > 0} and Ψ̃(Σ1) = ∂Ψ̃(B+
2 ) ∩ {X2 = 0}.

Since |DΨ̃| + |DΨ̃−1| ≤ C(λ), there exists K1 = K1(λ) > 0 such that, for any
r > 0, Br/K1

⊂ Ψ̃(Br) ⊂ BK1r. Therefore, it suffices to prove

‖v‖2,α,B+
r/2
≤ C

(
‖v‖0,B+

r
+ ‖f̂‖0,α,B+

r
+ ‖ĥ‖1,α,Σr

)

for some r ∈ (0, 1
K1

), where f̂ and ĥ are the right-hand sides in the equation and
the boundary condition for v. This estimate implies (4.2.84) with K = 2K1

r .
3. As a result of the reduction performed in Step 2, it suffices to prove that

there exist ε ∈ (0, 1) and C depending only on (λ, α,M) such that, if u satisfies
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(4.2.73)–(4.2.74) in B+
2ε and on Σ2ε respectively, if (4.2.3)–(4.2.6), (4.2.56),

(4.2.82)–(4.2.83) in B+
2ε, ‖u‖0,B+

2ε
≤M , and (4.2.85) hold, then

‖u‖2,α,B+
ε
≤ C

(
‖u‖0,B+

2ε
+ ‖f‖0,α,B+

2ε
+ ‖h‖1,α,Σ2ε

)
. (4.2.86)

This implies (4.2.80), and the corresponding C1,β–estimate leads to (4.2.81).
We now prove (4.2.86). For ε > 0 to be chosen later, we rescale from B+

2ε

into B+
2 by defining

v(x) =
1

ε

(
u(εx)− u(0)

)
for x ∈ B+

2 . (4.2.87)

Then v satisfies

2∑

i,j=1

Ãij(Dv, v,x)Dijv + Ã(Dv, v,x) = f̃ in B+
2 , (4.2.88)

D2v = b̃ ·Dv + b̃0v + b0(εx)u(0) + h̃ on Σ2, (4.2.89)

where

(Ãij , Ãi)(p, z,x) = (Aij , εAi)(p, εz + u(0), εx) for i = 1, 2,

b̃(x) = (−b1(εx),−b2(εx) + 1), b̃0(x) = −εb0(εx),

f̃(x) = εf(εx), h̃(x) = h(εx),

so that (Ãij , Ãi) satisfy (4.2.3)–(4.2.6) in B+
2 . Using (4.2.76), (4.2.85), and

ε ≤ 1, and extending (b̃, b̃0) from Σ2 by (b̃, b̃0)(x) := (b̃, b̃0)(x1, 0), we have

‖(b̃, b̃0)‖1,α,B+
2
≤ Cε for some C = C(λ). (4.2.90)

Similarly, (v, f̃ , h̃) satisfy (4.2.56) in B+
2 .

Now we follow the proofs of Theorems 4.2.4 and 4.2.8 with the only difference
that we now work with w2 = D2v and equation (4.2.28), instead of w1 and
(4.2.27).

More specifically, the sketch of argument is as follows: We first find from
(4.2.88) that w2 is a weak solution of the equation:

D11w2 +D2

(2Ã12

Ã11

D1w2 +
Ã22

Ã11

D2w2

)
= D2

( f̃ − Ã
Ã11

)
in B+

2 . (4.2.91)

From (4.2.89), we have
w2 = g̃ on Σ2, (4.2.92)

where
g̃ := b̃ ·Dv + b̃0v + b0(εx)u(0) + h̃ in B+

2 .
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Using equation (4.2.91) and the Dirichlet boundary condition (4.2.92) for w2

and following the proof of Lemma 4.2.5, we can show the existence of β ∈ (0, α]
and C depending only on λ such that, for any x0 ∈ B+

2 ∪ Σ2,

dβx0
[w2]0,β,B dx0

16

(x0)∩B+
2

≤ C
(
‖(Dv, f̃)‖0,B dx0

2

(x0)∩B+
2

+ dβx0
[g̃]0,β,B dx0

2

(x0)∩B+
2

)
. (4.2.93)

Next, we obtain the Hölder estimates of Dv if ε is sufficiently small. We first
note that, by (4.2.90), g̃ satisfies

|Dg̃| ≤ Cε
(
|D2v|+ |Dv|+ |v|+ ‖u‖0,B+

2ε

)
+ |Dh̃| in B+

2 , (4.2.94)

[g̃]0,β,B dx0
2

(x0)∩B+
2
≤ Cε

(
‖v‖1,β,B dx0

2

(x0)∩B+
2

+ ‖u‖0,B+
2ε

)
+ [h̃]0,β,B+

2

(4.2.95)

for some C = C(λ). The term, ε‖u‖0,B+
2ε
, in (4.2.94)–(4.2.95) comes from term

b0(εx)u(0) in the definition of g̃. We follow the proof of Lemma 4.2.6, but we now
employ the integral form of equation (4.2.91) with a test function ζ = η2(w2− g̃)
and ζ = η2(w2 −w2(x̂)) to obtain an integral estimate of |Dw2|, i.e., |Dijv| for
i+ j > 2, and then use the elliptic equation (4.2.88) to estimate the remaining
derivative D11v. In these estimates, we use (4.2.93)–(4.2.95). We obtain that,
for sufficiently small ε depending only on λ,

dβx0
[Dv]0,β,B dx0

32

(x0)∩B+
2

≤ C
(
‖v‖1,B dx0

2

(x0)∩B+
2

+ εdβx0
[Dv]0,β,B dx0

2

(x0)∩B+
2

+εdβx0
‖u‖0,B+

2ε
+ ‖f‖0,0,B+

2ε
+ ‖h‖1,0,B+

2ε

)
(4.2.96)

for any x0 ∈ B+
2 ∪ Σ2, with C = C(λ). Using (4.2.96), we follow the proof of

Lemma 4.2.7 to obtain

[v]∗
1,β,B+

2 ∪Σ2
≤ C

(
‖v‖∗

1,0,B+
2 ∪Σ2

+ ε[v]∗
1,β,B+

2 ∪Σ2
+ ε‖u‖0,B+

2ε

+ ‖f‖0,0,B+
2ε

+ ‖h‖1,0,B+
2ε

)
, (4.2.97)

where we have used norms (4.1.3). Now we choose sufficiently small ε > 0
depending only on λ such that Cε ≤ 1

2 in (4.2.97). Then we obtain

[v]∗
1,β,B+

2 ∪Σ2
≤ C(λ)

(
‖v‖∗

1,0,B+
2 ∪Σ2

+ ‖u‖0,B+
2ε

+ ‖f‖0,0,B+
2ε

+ ‖h‖1,0,B+
2ε

)
.

We employ the interpolation inequality, similar to the proof of (4.2.52), to obtain

‖v‖∗
1,β,B+

2 ∪Σ2
≤ C(λ)

(
‖v‖0,B+

2
+ ‖u‖0,B+

2ε
+ ‖f‖0,0,B+

2ε
+ ‖h‖1,0,B+

2ε

)
. (4.2.98)
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4. We can assume that β ≤ α for the rest of the argument. Problem
(4.2.91)–(4.2.92) can be regarded as a Dirichlet problem for the linear elliptic
equation:

2∑

i,j=1

Di(aij(x)Djw2) = D2F in B+
9/5,

where aij(x) =
Ãij
Ã22

, a12(x) = 0, a21(x) = Ã12+Ã21

A22
, and F (x) = f̃−Ã

Ã22
with

(Ãij , Ã) = (Ãij , Ã)(Dv(x), v(x),x). Then ‖(aij , F )‖0,β,B+
9/5
≤ C(λ,M), from

(4.2.4)–(4.2.6), (4.2.56), and (4.2.98). Note that the equation and the estimates
of its coefficients are similar to (4.2.62)–(4.2.63). Thus, we employ (4.2.90) and
argue as in Step 2 of the proof of Theorem 4.2.8 to obtain estimate (4.2.65) for
g̃. Then we obtain the following estimate similar to (4.2.68):

‖v‖∗
2,α,B+

8/5
∪Σ8/5

≤ C(λ,M,α)
(
‖v‖0,B+

2
+ ‖f̃‖0,α,B+

2
+ ‖h̃‖1,α,Σ2

)
,

where we have used norm (4.1.3). By (4.2.87) with ε = ε(λ) as chosen above,
the last estimate implies (4.2.86) with C = C(λ,M,α).

As we have discussed in Steps 1–2, this implies (4.2.84), so that (4.2.80) holds.
Moreover, by the same change of variables, estimate (4.2.81) with Ĉ = Ĉ(λ) is
obtained directly from (4.2.98) by using ε = ε(λ).

As we have shown in Step 1, this implies (4.2.77)–(4.2.78) for R = 2.
5. To obtain (4.2.77)–(4.2.78) for any R ∈ (0, 2], we perform the scaling as

in Step 3 of Theorem 4.2.8; see also Step 6 of Theorem 4.2.4.

Corollary 4.2.11. Under the assumptions of Theorem 4.2.10, solution u satis-
fies the following estimates:

‖u‖∗2,α,ΩR∪ΓR ≤ C(λ,M,α)
(
‖u‖0,ΩR + ‖f‖(2)

0,α,ΩR∪ΓR
+ ‖h‖(1)

1,α,ΓR

)
, (4.2.99)

‖u‖∗1,β,ΩR∪ΓR ≤ C(λ)
(
‖u‖0,ΩR + ‖f‖(2)

0,0,ΩR∪ΓR
+ ‖h‖(1)

0,1,ΓR

)
(4.2.100)

for β = β(λ) ∈ (0, 1), where we have used norms (4.1.2)–(4.1.3).

Proof. To obtain (4.2.99), we use estimate (4.2.77) in Bdx/4(x) ∩ ΩR for each
x ∈ ΓR, and the interior estimate (4.2.8) in Bdx/4(x) ⊂ ΩR, where dx :=

dist(x, ∂ΩR \ΓR) and we have used radius dx
4 in the estimates; finally we argue

as in the proof of [131, Theorem 4.8] (cf. the proof of Lemma 4.2.7 above).
By a similar argument, using the boundary estimate (4.2.78) and the interior

estimate (4.2.11), we obtain (4.2.100).

Next we consider a version of Theorem 4.2.10 where some nonlinearity in
the boundary conditions is included.

Theorem 4.2.12. Let λ > 0, α ∈ (0, 1), and M > 0. Let Φ ∈ C2,α(R) satisfy
(4.2.69), and let

ΩR := BR ∩ {x2 > Φ(x1)}, ΓR := ∂ΩR ∩ {x2 = Φ(x1)} for R > 0.
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Let u ∈ C2,α(ΩR ∪ΓR) satisfy equation (4.2.73) in ΩR and the boundary condi-
tion:

B(Du, u,x) = 0 on ΓR. (4.2.101)

Assume that equation (4.2.73) satisfies (4.2.3)–(4.2.6) in ΩR. Assume that there
exist δ ∈ (0, 1), a nonhomogeneous linear operator:

L(p, z,x) := b(x) · p + b0(x)z − h(x) for (p, z,x) ∈ R2 × R× ΓR,

and a function v ∈ C2,α(ΓR) such that

|B(p, z,x)− L(p, z,x)| ≤ δ
(
|p−Dv(x)|+ |z − v(x)|

)
,∣∣D(p,z)(B − L)(p, z,x)

∣∣ ≤ δ
(4.2.102)

for any (p, z,x) ∈ R2 × R× ΓR. Assume that B satisfies

‖D(p,z)B(p, z, ·)‖C1,α(ΓR) ≤ λ−1 for all (p, z) ∈ R2 × R, (4.2.103)

‖D2
(p,z)B‖C1(R2×R×ΓR) ≤ λ−1, (4.2.104)

that b satisfies (4.2.75)–(4.2.76) with c = b0, that

‖v‖2,α,ΓR ≤M,

and that (4.2.56) holds in ΩR. Then there exist δ0 > 0 and C < ∞ depending
only on (λ, α,M,R) such that, if δ ∈ (0, δ0), u satisfies

‖u‖2,α,ΩR/2 ≤ C. (4.2.105)

Proof. Repeating the argument in the first part of the proof of Theorem 4.2.9,
we flatten the boundary and reduce Problem (4.2.73) with (4.2.101) to the case:

R = 2, ΩR = B+
2 , ΓR = Σ2.

We work in this setting for the rest of proof, which is divided into three steps.
The universal constant C below depends only on (λ, α,M), unless otherwise
specified.

1. First we may assume that v ≡ 0. Indeed, introducing ũ := u − v, and
substituting u = ũ+v and its derivatives into (4.2.73) and (4.2.101), we find that
ũ satisfies the problem of form (4.2.73) and (4.2.101) with (Aij , A,B) satisfying
the same properties as the problem for u, except that (4.2.102) holds with v = 0
and the new function h in operator L is hold−b ·Dv− b0v, which has a similar
estimate. Also, from the regularity of v, estimate (4.2.105) for ũ implies a similar
estimate for u.

Then it suffices to prove (4.2.105) for ũ. That is, keeping the original notation
for u and the ingredients of the problem, we can assume that v ≡ 0 so that
(4.2.102) is of the form:

|(B − L)(p, z,x)| ≤ δ (|p|+ |z|) ,
∣∣D(p,z)(B − L)(p, z,x)

∣∣ ≤ δ (4.2.106)
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for any (p, z,x) ∈ R2 ×R×Σ2. Furthermore, we extend (B,L) from Σ2 to B+
2

by (B,L)(p, z,x) := (B,L)(p, z, (x1, 0)) for x = (x1, x2). Then it follows that
these extensions satisfy (4.2.106) for any (p, z,x) ∈ R2 × R×B+

2 .
We can rewrite the boundary condition (4.2.101) as

b(x) ·Du+ b0(x)u = h(x) +H(x), (4.2.107)

where H(x) = L(Du(x), u(x),x) − B(Du(x), u(x),x). Let β = β(λ) ∈ (0, 1)
be the constant from (4.2.78) for the present constants λ and R = 2. Com-
bining (4.2.106) with the other assumptions on (B,L), i.e., (4.2.76), (4.2.103)–
(4.2.104), and arguing as in the proof of (4.2.38)–(4.2.39), we conclude that H
satisfies (4.2.38)–(4.2.39) inB+

2 , without term involving h. Let dx := dist(x, ∂B+
2 \

Σ2). Then, for each x ∈ B+
2 , multiplying (4.2.38) and (4.2.39) for H at x by dx

and d2
x, respectively, we obtain

‖H‖(1)

0,1,B+
2 ∪Σ2

≤ δ[u]∗
1,β,B+

2 ∪Σ2
+ C‖u‖∗

1,0,B+
2 ∪Σ2

(4.2.108)

for C depending only on (λ,M, β). Here and hereafter, we use norms (4.1.2)–
(4.1.3). Since u satisfies equation (4.2.73) and the boundary condition (4.2.107),
our assumptions allow us to apply Corollary 4.2.11. From (4.2.100), we have

‖u‖∗
1,β,B+

2 ∪Σ2
≤ C

(
‖u‖0,B+

2
+ ‖f‖(2)

0,0,B+
2 ∪Σ2

+ ‖(h,H)‖(1)
0,1,Σ2

)
,

where β ∈ (0, 1) depends only on λ. Now we apply (4.2.108) to obtain

‖u‖∗
1,β,B+

2 ∪Σ2
≤ C

(
δ‖u‖∗

1,β,B+
2 ∪Σ2

+ ‖u‖∗
1,0,B+

2 ∪Σ2

)

+ C
(
‖u‖0,B+

2
+ ‖f‖(2)

0,0,B+
2 ∪Σ2

+ ‖h‖(1)
0,1,Σ2

)
. (4.2.109)

Using the interpolation inequality [131, Eq. (6.89)]:

‖u‖∗
1,0,B+

2 ∪Σ2
≤ δ[u]∗

1,β,B+
2 ∪Σ2

+ C(β, δ)‖u‖0,B+
2

on the right-hand side of estimate (4.2.109), choosing small δ depending only
on (λ,M) (which also fixes constant C), and using (4.2.56), we have

‖u‖∗
1,β,B+

2 ∪Σ2
≤ C

(
‖u‖0,B+

2
+ ‖f‖(2)

0,0,B+
2 ∪Σ2

+ ‖h‖(1)
0,1,Σ2

)
≤ C. (4.2.110)

Now we consider two separate cases: α ≤ β and α > β.
2. If α ≤ β, we argue as in the proof of (4.2.65) by using estimate (4.2.110)

and the assumptions with (4.2.76), (4.2.103)–(4.2.104), and (4.2.106) to obtain
(4.2.65) for H in B+

2 , without term involving h. Then, for each x ∈ B+
2 ,

multiplying (4.2.65) for H with D = Bdx/4(x) by d1+α
x and combining these

estimates as in the proof of Lemma 4.2.7, we have

[H]
(1)

1,α,B+
2 ∪Σ2

≤ δ[u]∗
2,α,B+

2 ∪Σ2
+ C‖u‖∗

2,0,B+
2 ∪Σ2

. (4.2.111)
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Since u satisfies equation (4.2.73) and the boundary condition (4.2.107), we
apply estimate (4.2.99) in Corollary 4.2.11 to obtain

‖u‖∗
2,α,B+

2 ∪Σ2
≤ C

(
‖u‖0,B+

2
+ ‖f‖(2)

0,α,B+
2 ∪Σ2

+ ‖(h,H)‖(1)
1,α,Σ2

)
.

From this, using (4.2.108) and (4.2.111), we have

‖u‖∗
2,α,B+

2 ∪Σ2

≤ C
(
δ[u]∗

2,α,B+
2 ∪Σ2

+ ‖u‖∗
2,0,B+

2 ∪Σ2
+ ‖u‖0,B+

2
+ ‖f‖(2)

0,α,B+
2 ∪Σ2

+ ‖h‖(1)
1,α,Σ2

)
.

Using the interpolation inequality [131, Eq.(6.89)]:

‖u‖∗
2,0,B+

2 ∪Σ2
≤ δ[u]∗

2,α,B+
2 ∪Σ2

+ C(α, δ)‖u‖0,B+
2

on the right-hand side of the last estimate, choosing δ small, and using (4.2.56),
we obtain (4.2.105).

3. If α > β, we obtain (4.2.111) and the subsequent estimates with β instead
of α, so that ‖u‖∗

2,β,B+
2 ∪Σ2

≤ C holds. Now we can obtain (4.2.111) with α, and
then the subsequent estimates imply (4.2.105).

Remark 4.2.13. The conditions for A(p, z,x) in (4.2.4)–(4.2.6) in Theorems
4.2.1, 4.2.8–4.2.10, and 4.2.12 can be replaced by the following conditions:

A(p, z,x) = A1(p, z,x)p1 +A2(p, z,x)p2 +A0(p, z,x)z,

‖Ai(p, z, ·)‖0,α,Ω ≤ λ−1 for all (p, z) ∈ R2 × R,
‖D(p,z)Ai‖0,R2×R×Ω ≤ λ−1,

(4.2.112)

where Ω is the respective domain considered in the conditions of the respective
theorems. Then the conclusions of these theorems remain unchanged. This can
be seen from the proofs of these theorems, which may be briefly summarized as
follows: Condition (4.2.6) follows from (4.2.112) and, furthermore, conditions
(4.2.4)–(4.2.6) for A(·) are used in the proofs in the following way:

(i) To obtain that |A(p, z,x)| ≤ C(λ)(|p|+ |z|). Clearly, (4.2.112) also implies
this estimate.

(ii) To obtain (4.2.9) with constant C depending only on (λ,M). Under as-
sumptions (4.2.112), we can obtain (4.2.9) with constant C depending only
on (λ,M, ‖u‖1,D). However, in the proof, we obtain the estimate that
‖u‖1,β,D ≤ C(λ,M), before we apply (4.2.9). With this estimate, condi-
tions (4.2.112) imply (4.2.9) with C depending only on (λ,M). This allows
us to complete the proof of the corresponding theorem without change.
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Remark 4.2.14. Conditions (4.2.6) and (4.2.14) in Theorem 4.2.4 can be re-
placed by

A(p, z,x) = A1(p, z,x)p1 +A2(p, z,x)p2 +A0(p, z,x)z,

‖Ai‖0,R2×R×Ω ≤ λ−1.
(4.2.113)

Then the conclusion of Theorem 4.2.4 remains unchanged.
This can be seen from the proof of Theorem 4.2.4. Indeed, (4.2.6) and (4.2.14)

are used only to obtain (4.2.30). Clearly, (4.2.113), combined with the strict
ellipticity, also implies (4.2.30).

Next we discuss an estimate of a solution of an oblique derivative problem
near a corner, in the case that the equation in the domain is linear, but the
boundary condition is nonlinear. In this case, we can allow a lower regularity of
the coefficients for the lower-order terms of the equation.

Let λ > 0, α ∈ (0, 1), M > 0, and

Φ(0) = 0, |Φ′(0)| ≤ λ−1, ‖Φ‖(−1−α),{0}
2,α,(0,∞) ≤M. (4.2.114)

Denote

R+,Φ
r = Br(0) ∩ {x1 > 0, x2 > Φ(x1)} for r > 0. (4.2.115)

We denote the boundary parts of R+,Φ
r by

Γ(l)
r =

(
∂R+,Φ

r ∩ {x1 = 0}
)0
, Γ(n)

r =
(
∂R+,Φ

r ∩ {x2 = Φ(x1)}
)0
, x0 = 0,

(4.2.116)
where (·)0 denotes the relative interior of a segment of a curve or line. From
(4.2.114), it follows that there exists R0 depending only on (λ,M,α) such that

Γ(n)
r is connected for all 0 < r ≤ R0. (4.2.117)

For R ∈ (0, R0), we consider the following problem:

2∑

i,j=1

aij(x)Diju+

2∑

i=1

ai(x)Diu+ a0(x)u = f in R+,Φ
R , (4.2.118)

B(Du, u,x) = 0 on Γ
(n)
R , (4.2.119)

b(l)(x) ·Du+ b
(l)
0 (x)u = h(l)(x) on Γ

(l)
R . (4.2.120)

Theorem 4.2.15. Let λ ∈ (0, 1), κ > 0, and M > 0. Let Φ satisfy (4.2.114).
Let R+,Φ

R be defined by (4.2.115) for some R ∈ (0, R0), where R0 is such that
(4.2.117) holds. Then there exists α1 ∈ (0, 1) depending only on (λ, κ) so that,
for each α, β ∈ (0, α1) with β ≤ α, there exist δ ∈ (0, 1) and C > 0 depending
only on (κ, λ,M,R, α, β) with the following property: Let u ∈ C2,α(R+,Φ

R ∪
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Γ
(n)
R ) ∩ C1,α(R+,Φ

R ∪ Γ
(l)
R ∪ Γ

(n)
R ) satisfy (4.2.118)–(4.2.120). Assume that the

coefficients of (4.2.118) satisfy the ellipticity:

2∑

i,j=1

aij(x)µiµj ≥ λ|µ|2 for all x ∈ R+,Φ
R , µ = (µ1, µ2) ∈ R2, (4.2.121)

and

‖aij‖(−β), Γ
(l)
R

0,α,R+,Φ
R

+ ‖(ai, a0)‖(1−α), Γ
(l)
R

0,α,R+,Φ
R

≤M. (4.2.122)

Assume that the boundary condition (4.2.119) satisfies

‖D(p,z)B(p, z, ·)‖(−α),x0

1,α,Γ
(n)
R

≤M for all (p, z) ∈ R2 × R, (4.2.123)

‖D2
(p,z)B‖C1(R2×R×Γ

(n)
R )
≤M. (4.2.124)

Let there be a nonhomogeneous linear operator:

L(n)(p, z,x) = b(n)(x) · p + b
(n)
0 (x)z − h(n)(x),

defined for (p, z,x) ∈ R2 × R× Γ
(n)
R , and a function v satisfying

‖v‖(−1−α), Γ
(l)
R

2,α,R+,Φ
R

≤M,

such that (4.2.102) holds for any (p, z,x) ∈ R2 × R× Γ
(n)
R . Assume that

λ ≤ b(l) · ν ≤ λ−1 on Γ
(l)
R , λ ≤ b(n) · ν ≤ λ−1 on Γ

(n)
R , (4.2.125)

‖(b(l), b
(l)
0 )‖

0,α,Γ
(l)
R

+ ‖(b(n), b
(n)
0 )‖(−α),{x0}

1,α,Γ
(n)
R

≤M, (4.2.126)
∣∣∣∣
b(l)

|b(l)| −
b(n)

|b(n)|

∣∣∣∣ ≥ κ at x0 = 0. (4.2.127)

Furthermore, assume that

‖u‖0,R+,Φ
R

+ ‖f‖(1−α), Γ
(l)
R

0,α,R+,Φ
R

+ ‖h(l)‖
0,α,Γ

(l)
R

+ ‖h(n)‖(−α),{x0}
1,α,Γ

(n)
R

≤M. (4.2.128)

Then u satisfies

‖u‖(−1−α), Γ
(l)

R/2

2,α,R+,Φ
R/2

≤ C. (4.2.129)

Before establishing Theorem 4.2.15, we prove the local versions in some cases
of intermediate Schauder estimates for linear equations.

Lemma 4.2.16. Let α, β, σ, λ ∈ (0, 1) with β ≤ α.
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(i) Let u ∈ C(−1−σ), Σ1

2,α,B+
1

satisfy equation (4.2.118) in half-ball B+
2 = B2∩{x1 >

0} and the boundary condition:

b(x) ·Du+ b0(x)u = h(x) on Σ2 := B2 ∩ {x1 = 0}, (4.2.130)

where the equation and boundary conditions satisfy ellipticity (4.2.121) in
B+

2 , obliqueness (4.2.75) on Σ2, and

‖aij‖(−β), Σ2

0,α,B+
2

+ ‖(ai, a)‖(1−σ), Σ2

0,α,B+
2

+ ‖b‖0,σ,Σ2
≤ λ−1.

Then u satisfies

‖u‖(−1−σ), Σ1

2,α,B+
1

≤ C
(
‖u‖0,B+

2
+ ‖f‖(1−σ),Σ2

0,α,B+
2

+ ‖h‖0,σ,Σ2

)
, (4.2.131)

where C depends only on (λ, α, β, σ).

(ii) Let k ∈ {0, 1}. Let u ∈ C(−k−σ), Σ1

2,α,B+
1

satisfy equation (4.2.118) in half-ball

B+
2 = B2 ∩ {x1 > 0} and the boundary condition:

u = h(x) on Σ2 := B2 ∩ {x1 = 0}. (4.2.132)

We assume that the coefficients of equation (4.2.118) satisfy the same prop-
erties as in part (i) above. Then u satisfies

‖u‖(−k−σ), Σ1

2,α,B+
1

≤ C
(
‖u‖0,B+

2
+ ‖f‖(2−k−σ),Σ2

0,α,B+
2

+ ‖h‖k,σ,Σ2

)
, (4.2.133)

where C depends only on (λ, k, α, β, σ).

Proof. We first prove part (i). The universal constant C below depends only on
(λ, α, β, σ), unless otherwise specified.

In the proof, we will use the following partially interior Hölder norms, related
to norms (4.1.5): For open Ω ⊂ R2 and E ⊂ ∂Ω, let

δx := dist(x,Σ), δx,y := min(δx, δy),

dx := dist(x, ∂Ω \ Σ), dx,y := min(dx, dy)

for x,y ∈ Ω. Then, for nonnegative integers l and m, and for k ∈ R and
α ∈ (0, 1), define the weights:

d(k; l)
x := min

(
dlx, d

min{l,−k}
x δmax{l+k,0}

x

)
,

d(k;m;α)
x,y := min

(
dm+α
x,y , dmin{m+α,−k}

x,y δmax{m+α+k,0}
x,y

)
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and the norms:

[u]
∗,(k),Σ
l,0,Ω :=

∑

|β|=l

sup
x∈Ω

(
d(k; l)
x |Dβu(x)|

)
,

[u]
∗,(k),Σ
m,α,Ω :=

∑

|β|=m

sup
x,y∈Ω,x6=y

(
d(k;m;α)
x,y

|Dβu(x)−Dβu(y)|
|x− y|α

)
,

‖u‖∗,(k),Σ
m,0,Ω :=

m∑

l=0

[u]
∗,(k),Σ
l,0,Ω ,

‖u‖∗,(k),Σ
m,α,Ω := ‖u‖∗,(k),Σ

m,0,Ω + [u]
∗,(k),Σ
m,α,Ω .

(4.2.134)

We first discuss the motivation for the choice of weights in norms (4.2.134). In
the following discussion, we use the fact that min{l,−k} + max{l + k, 0} = l
and min{m+ α,−k}+ max{m+ α+ k, 0} = m+ α.

To fix the notations, we consider the case that Ω = B+
2 and Σ = Σ2. First,

the homogeneity of weights in norms ‖ · ‖∗,(k),Σ
m,α,Ω and its seminorms is the same

as for norms ‖ · ‖∗m,α,Ω∪Σ in (4.1.3). Also, away from Σ for which dx < δx

and dx,y < δx,y, the weights in norms ‖ · ‖∗,(k),Σ
m,α,Ω in (4.2.134) coincide with the

weights in norms ‖ · ‖∗m,α,Ω∪Σ in (4.1.3). On the other hand, for x,y ∈ B+
1 , i.e.,

away from Γ := ∂Ω \ Σ, we see that δx, δx,y < 1 and dx, dx,y > 1, and then

[u]
(−1−σ), Σ1

2,α,B+
1

≤ [u]
∗,(−1−σ), Σ2

2,α,B+
2

.

Thus, to obtain (4.2.131), it suffices to show

‖u‖∗,(−1−σ), Σ2

2,α,B+
2

≤ C
(
‖u‖0,B+

2
+ ‖f‖(1−σ),Σ2

0,α,B+
2

+ ‖h‖0,σ,Σ2

)
. (4.2.135)

Now we prove (4.2.135).
Fix an open region D with ∂D ∈ C2,α such that

B+
8/5 ⊂ D ⊂ B+

9/5.

Such D clearly exists. Let η ∈ C∞(R2) be such that η ≡ 1 in B1(0), and η ≡ 0
in R2 \B6/5(0).

Denote by L the operator on the left-hand side of (4.2.118). Then v = ηu
satisfies

Lv = f̂ in D, (4.2.136)

where f̂ := ηf − uLη −∑2
i,j=1 aij(DiηDju+DjηDiu).

In order to determine the boundary condition for v on ∂D, we note that
∂D∩ (supp η) ⊂ Σ6/5, so that functions ηb, ηb0, and ηh are well-defined on ∂D,
and the boundary condition for v is

b̂ ·Dv + b0v = ĥ on ∂D,
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where b̂ = ζb+ (1− ζ)ν, ĥ = ηh−ub ·Dη, ν is the interior normal to ∂D, and
ζ ∈ C∞(R2) is such that ζ ≡ 1 in B7/5(0) and ζ ≡ 0 in R2 \B8/5(0). Note that
this boundary condition has the same obliqueness and regularity properties of
the coefficients with the modified constants which depend only on λ, since D is
fixed. Now, from [186, Corollary] with parameters a = 2 + α and b = 1 + σ, we
obtain

‖v‖(−1−σ), ∂D
2,α,D ≤ C

(
‖v‖0,D + ‖f̂‖(1−σ),∂D

0,α,D + ‖ĥ‖0,σ,∂D
)
, (4.2.137)

which implies

‖u‖(−1−σ), Σ1

2,α,B+
1

≤ C
(
‖u‖1,B+

2
+ ‖f‖(1−σ),Σ2

0,α,B+
2

+ ‖h‖0,σ,Σ2

)

≤ C
(
Ĉ(δ)‖u‖0,B+

2
+ δ[u]

(−1−σ), Σ2

2,α,B+
2

+ ‖f‖(1−σ),Σ2

0,α,B+
2

+ ‖h‖0,σ,Σ2

)
,

where we have used the interpolation inequality to obtain the last expression.
Note that δ > 0 will be chosen below.

Furthermore, by the scaling argument as in Step 6 of the proof of Theorem
4.2.4, we see that, for any r ∈ (0, 1],

‖u‖(−1−σ), Σr

2,α,B+
r

≤ C

r1+σ

(
Ĉ(δ)‖u‖0,B+

2r
+ r1+σδ[u]

(−1−σ), Σ2r

2,α,B+
2r

+ r‖f‖(1−σ),Σ2r

0,α,B+
2r

+ r‖h‖0,σ,Σ2r

)
.

(4.2.138)

Similarly, for any B2r(x0) ⊂ B+
2 , we apply Theorem 4.2.1 to equation (4.2.136),

rewrite the resulting estimate (4.2.8) in terms of (u, f), and use the interpolation
inequality on the right-hand side to obtain

‖u‖2,α,B+
r (x0)

≤ C

r2+α

(
Ĉ(δ)‖u‖0,B+

2r(x0) + σr2+α[u]2,α,B+
2r(x0) + r2‖f‖0,α,B+

2r(x0)

)
.
(4.2.139)

Next, we note that

(i) For any x and y in the boundary half-balls B+
dx0/10(x0) with x0 ∈ Σ2,

δx ≤ dx so that d(−1−σ; 2+α)
x,y = d1+σ

x,y δ
1+α−σ
x,y .

(ii) For any x and y in the interior balls Bdx0
/50(x0) ⊂ B+

2 with dx0

20 ≤ δx0
,

d(−1−σ; 2+α)
x,y

d2+α
x,y

∈ [
(

1
20

)1+α−σ
, 1].

Also, dx
dx0
∈ ( 1

2 , 2) for any x in the half-balls and balls in (i) and (ii), while these
half-balls and balls cover all B+

2 .
Thus, for the half-balls described in (i), we use (4.2.138) in B+

dx0/10(x0) with

r =
dx0

10 , and multiply this by d1+σ
x0

. For the balls described in (ii), we use
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(4.2.139) in Bdx0
/50(x0) with r =

dx0

50 , and multiply this by d2+α
x0

. Combining
these estimates with the argument as in the proof of [131, Theorem 4.8] (cf. also
the proof of Lemma 4.2.7 above), we have

‖u‖∗,(−1−σ), Σ2

2,α,B+
2

≤ C
(
Ĉ(δ)‖u‖0,B+

2
+ δ[u]

∗,(−1−σ), Σ2

2,α,B+
2

+ ‖f‖(1−σ),Σ2

0,α,B+
2

+ ‖h‖0,σ,Σ2

)
.

Choosing δ small, we obtain (4.2.135) so that (4.2.131) holds.
Now we prove part (ii). We follow the proof of part (i) and use domain D

and function η defined above. Then v = ηu satisfies equation (4.2.136) in D,
and the Dirichlet boundary condition:

v = ĥ on ∂D,

where ĥ := ηh. We use that ∂D∩ (supp η) ⊂ Σ6/5 to verify these boundary con-
ditions. Now we apply the estimate for the Dirichlet problem in [130, Theorem
5.1], with parameters γ = a = 2 + α and b = k + σ, to obtain

‖v‖(−k−σ), ∂D
2,α,D ≤ C

(
‖v‖0,D + ‖f̂‖(2−k−σ),∂D

0,α,D + ‖ĥ‖k,σ,∂D
)
. (4.2.140)

Now we follow the argument in the proof of part (i) starting after (4.2.137), and
use (4.2.140) instead of (4.2.137) to conclude (4.2.133).

Proof of Theorem 4.2.15. From (4.2.114), there exists R̂ ∈ (0, R] depend-
ing only on (λ, α,M) such that

‖Φ′‖L∞((0,R̂)) ≤ 2λ−1. (4.2.141)

Denote
R+
r := R+,Φ

r for Φ ≡ 0.

By flattening boundary Γ
(n)
R via the map: A(x1, x2) = (x1, x2 − Φ(x1)), it

follows from (4.2.114)–(4.2.115) that A is a diffeomorphism on R2, and there
exists R′ ∈ (0, R̂] depending only on (λ, α,M) such that A(R+,Φ

R ) ∩ BR′(0) =
R+
R′ . Moreover, the equations and boundary conditions, written in the new

coordinates, have the same properties as in the original coordinates, with the
modified constants. More precisely, it follows from (4.2.141) that the constants
in (4.2.121) and (4.2.125) in the new coordinates depend only on λ, and the
constant in (4.2.127) depends only on (λ, κ), while the constants in the other
conditions depend only on (λ, α,M) by (4.2.114).

Then it suffices to prove the results in R+
R′ with α1 depending only on the

constants in conditions (4.2.121), (4.2.125), and (4.2.127), i.e., on (λ, κ), and
with C depending on the constants in all the conditions, i.e., on (λ, κ, α,M),
where we have used thatR′ depends also on these constants. Indeed, by (4.2.114)
and (4.2.141), we obtain the estimate:

‖u‖(−1−α), Γ
(l)
ρ

2,α,R+,Φ
ρ

≤ C
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in the original coordinates for some ρ := ρ(R, λ) = ρ(λ, α,M) with unchanged α,
and for C depending only on (λ, κ, α,M). Then, performing a covering argument
by employing the interior estimates in Theorem 4.2.1, and using Theorem 4.2.12
in the balls of radius r(λ,R) centered at boundaries Γ

(l)
R ∪ Γ

(n)
R , we recover the

full estimate (4.2.129).
Thus, it remains to prove the results in R+

R′ . Assuming without loss of
generality that R′ ≤ 2, we can rescale to R+

2 so that, in the new coordinates,
the constants in the assumptions for the equation and boundary conditions
are unchanged. Since R′ depends only on (λ, α,M), we rescale the resulting
estimate back from R+

2 into R+
R′ to obtain the unchanged Hölder exponent, and

the modified constant C depending only on (λ, κ, α,M). Then we reduce the
case to the following:

R = 2, Φ ≡ 0, R+,Φ
R = R+

2 .

For the rest of the proof, we work in this setting. We divide the proof into four
steps.

1. Similarly to the proof of Theorem 4.2.12, introducing ũ := u−v, rewriting
the problem in terms of ũ, and noting that the problem is of the same structure
with similar estimates for its ingredients, we reduce the problem to the case that
v ≡ 0. Thus, we assume without loss of generality that (4.2.106) holds, instead
of (4.2.102).

For 0 < ρ < r ≤ 2, denote

R+
[ρ,r] = R+

2 ∩ {ρ < |x| < r},

Γ
(l)
[ρ,r] = Γ

(l)
2 ∩ {ρ < |x| < r}, Γ

(n)
[ρ,r] = Γ

(n)
2 ∩ {ρ < |x| < r},

and

Γr = Γ(l)
r ∪ Γ(n)

r ∪ {x0}, Γ[ρ,r] = Γ2 ∩ {ρ < |x| < r}. (4.2.142)

2. We first show that u satisfies the following estimate in R+
[1/5,9/5]:

‖u‖(−1−α), Γ[1/2,5/4]

2,α,R+
[1/2,5/4]

≤ C. (4.2.143)

Indeed, in D = R+
[1/3,3/2] \ N1/20(Γ

(l)
[1/3,3/2]), we see from (4.2.122) that

‖(aij , ai, a)‖0,α,D ≤ C,

where Nr(·) denotes the r–neighborhood of a set. Thus, applying the properly
scaled Theorem 4.2.12 in B1/100(x)∩D for each x ∈ Γ

(n)
[1/2,5/4] and the standard

interior Schauder estimates for linear elliptic equations in each B1/200(x) ⊂ D,
we have

‖u‖
2,α,R+

[1/2,5/4]
\N1/10(Γ

(l)

[1/2,5/4]
)
≤ C.
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Applying (4.2.131), scaled from B+
2 into half-balls B1/4(x) ∩ R+

2 for each x ∈
Γ

(l)
[1/2,5/4], we complete the proof of (4.2.143).
3. Now we make the estimates near the corner. Similarly to the proof of

Theorem 4.2.12, we rewrite the boundary conditions (4.2.119) as

b(n)(x) ·Du+ b
(n)
0 (x)u = h(n)(x) +H(n)(x) on Γ

(n)
2 , (4.2.144)

where H(n)(x) := L(n)(Du, u,x) − B(n)(Du, u,x). Using the assumptions on
(B(n), L(n)), i.e., (4.2.106), (4.2.123)–(4.2.124), and (4.2.126), and arguing as in
the proof of (4.2.38) and (4.2.40), we obtain that, for each ρ ∈ (0, 2],

‖H(n)‖
0,α,Γ

(n)
ρ
≤ ‖H(n)‖0,α,R+

ρ
≤ δ‖u‖1,α,R+

ρ
+ C‖u‖1,0,R+

ρ
.

Now, u satisfies the linear elliptic equation (4.2.118) and the linear oblique
boundary conditions (4.2.120) and (4.2.144). Also, (4.2.143) implies that u
satisfies the condition:

∂νu = h(Σ) on Σ6/5 := ∂R+
6/5 \ Γ6/5, (4.2.145)

where Γ6/5 is defined by (4.2.142) with

‖h(Σ)‖0,α,Σ6/5
≤ C.

Furthermore, we can modify the coefficients of the conditions on Γ(n) ∪ Γ(l)

within Γ6/5 \ B1, without changing notations, so that, at corners {x(n),x(l)}
where Σ6/5 meets Γ

(n)
6/5 and Γ

(l)
6/5, respectively, the resulting coefficients satisfy

b(l)(x(l)) = νΓ(l) and b(n)(x(n)) = νΓ(n) , obliqueness (4.2.125) is satisfied on
Γ6/5 with the same constant, and (4.2.126) is satisfied with an updated constant
depending only on (λ, α). We note that all the properties are achieved by
defining the modified function b(l) at xr = Γ(l)∩∂Br by η(r)b(l)+(1−η(r))νΓ(l)

for r ∈ [1, 6
5 ], where η(·) is smooth and monotone on R with η ≡ 1 on (−∞, 1]

and η ≡ 0 on [ 6
5 ,∞). On Γ(n), the definition is similar.

Then, from (4.2.128), (4.2.143), and the estimates of the modified coeffi-
cients discussed above, u satisfies these modified conditions on Γ6/5 with the
modified right-hand sides (h(l), h(n)) satisfying (4.2.128) on Γ6/5 with the con-
stant depending only on (λ, α). Now, at corners {x(n),x(l)}, all the boundary
conditions are in the normal direction to the respective boundary curves, so
that a condition similar to (4.2.127) is satisfied at the corner points x(n) and
x(l) with uniform constant

√
2, from the definition of domain R+

6/5.
Lemma 1.3 in [193] implies the existence of α1 ∈ (0, 1) depending only on

(κ, λ) such that, if α ∈ (0, α1), then

‖u‖(−1−α), ∂R+
6/5

2,α,R+
6/5

≤ C
(
‖u‖0,R+

6/5
+ ‖f‖(1−α), Γ

(l)

3/2

α,R+
6/5

+ ‖h(l)‖
0,α,Γ

(l)

6/5

+ ‖h(n) +H(n)‖
0,α,Γ

(n)

6/5

+ ‖h(Σ)‖0,α,Σ6/5

)
,
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where C = C(κ, λ,M,α, β).
Using the estimates of H(n) and h(Σ) obtained above, we have

‖u‖(−1−α), ∂R+
6/5

2,α,R+
6/5

≤ C
(
δ[u]1,α,R+

6/5
+ ‖u‖1,0,R+

6/5
+ ‖u‖0,R+

2
+ ‖f‖0,α,R+

2

+ ‖h(l)‖
0,α,Γ

(l)
2

+ ‖h(n)‖
0,α,Γ

(n)
2

+ 1
)
.

Using the interpolation inequality:

‖u‖1,0,R+
6/5
≤ δ[u]1,α,R+

6/5
+ C(α, δ)‖u‖0,R+

6/5

on the right-hand side of the last estimate, choosing δ small, and then using

(4.2.128), we obtain that ‖u‖(−1−α), ∂R+
6/5

2,α,R+
6/5

≤ C, which implies

‖u‖(−1−α), ∂R+
7/6

2,α,R+
7/6

≤ C. (4.2.146)

4. In order to complete the proof of (4.2.105), we need to prove the higher
regularity near Γ

(n)
1 . Let x̂ ∈ Γ

(n)
1 . Denote dx := dist(x,Γ(n)

2 ). Then dx̂ =
dist(x̂,x0) = |x̂|. Rescale u from half-ball B dx̂

2

(x̂) ∩ R+
2 to half-ball B+

2 by
defining

v(x̂)(X) =
1

d1+α
x̂

(
u(x̂ +

dx
4
R(X))− u(x0)− dx

4
Du(x0) ·R(X)

)
,

where R(X) = X1ν + X2τ . Then ‖v(x̂)‖1,α,B+
2
≤ ‖u‖1,α,Bdx̂/2(x̂)∩R+

2
≤ C by

(4.2.143) and (4.2.146). The equation in B+
2 and the boundary condition on Σ2

for v(x̂), obtained from (4.2.118)–(4.2.119), satisfy the conditions of Theorem
4.2.12. Thus, v(x̂) satisfies (4.2.105). Then, writing this estimate in terms of
u(x) and following an argument similar to the proof of Lemma 4.2.7, we conclude
the proof of (4.2.129). 2

4.3 ESTIMATES FOR LIPSCHITZ SOLUTIONS OF ELLIPTIC
BOUNDARY VALUE PROBLEMS

In this section we state and prove some results by Lieberman [192], as well
as some related results, which are used in the later sections. The results in
[192] are obtained for fully nonlinear elliptic equations with nonlinear first-order
boundary conditions. We state these results for quasilinear equations with less
general assumptions than those in [192] (for convenience in later applications in
this book). The difference from the results in §4.2 is that the Ck,α–estimates
of solutions in this section, k = 1, 2, are obtained for more general nonlinear
boundary conditions, without assumptions on the linear structure as in §4.2.
However, now the estimates depend on the C0,1–norm of the solution, while, in
§4.2, the estimates depend only on the L∞–norm of solutions.
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Remark 4.3.1. In later chapters, the estimates of this section are used for
the a priori estimates of the regular reflection-diffraction solutions, where the
boundary conditions, derived from the Rankine-Hugoniot conditions, are not of
a linear structure as required in §4.2, but the Lipschitz estimates of the solutions
are available. The estimates in §4.2 are used for solving the iteration problem,
where the boundary condition is defined so that it is of a linear structure, but
the Lipschitz estimate of the solution is not available a priori.

Some calculations and notations below are from the proof of [192, Theorem
2.1], given in [111, Appendix 5.1].

4.3.1 Estimates near the Lipschitz boundary

Theorem 4.3.2. Let R > 0, λ ∈ (0, 1), γ ∈ [0, 1), and K > 0. Let Φ ∈ C1(R)
satisfy

‖Φ‖0,1,R ≤ λ−1, Φ(0) = 0, (4.3.1)

let Ωr := Br ∩ {x2 > Φ(x1)} and Γr := Br ∩ {x2 = Φ(x1)} for r > 0, and
let d(x) := dist(x,ΓR) for x ∈ ΩR. Assume that u ∈ C3(ΩR) ∩ C1(ΩR) is a
solution of

2∑

i,j=1

Aij(Du, u,x)Diju+A(Du, u,x) = 0 in ΩR, (4.3.2)

B(Du, u,x) = 0 on ΓR. (4.3.3)

Let Aij(p, z,x), A(p, z,x), and z ∈ R satisfy that, for any x ∈ ΩR and |p|+|z| ≤
2K,

λ|µ|2 ≤
2∑

i,j=1

Aij(Du(x), u(x),x)µiµj

≤ λ−1|µ|2 for all µ = (µ1, µ2) ∈ R2,

(4.3.4)

|(Aij , A)(p, z,x)| ≤ λ−1, (4.3.5)

|D(p,z)(Aij , A)(p, z,x)|+ [d(x)]γ |Dx(Aij , A)(p, z,x)| ≤ λ−1, (4.3.6)

and let B(p, z,x) satisfy

|DpB(Du(x), u(x),x)| ≥ λ for all x ∈ ΩR, (4.3.7)

‖B‖2,{|p|+|z|≤2K, x∈ΩR} ≤ λ
−1. (4.3.8)

Assume that u satisfies

|u|+ |Du| ≤ K on ΩR ∪ ΓR. (4.3.9)

Then there exist β ∈ (0, 1] depending only on (λ,K, γ), and C > 0 depending
only on (R, λ,K, γ), such that

‖u‖1,β,ΩR/2 ≤ C (4.3.10)
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and
‖u‖(−1−β),ΓR/2

2,β,ΩR/2
≤ C. (4.3.11)

Proof. We may assume without loss of generality that

A12(p, z,x) = A21(p, z,x), (4.3.12)

which can be achieved by replacing A12 and A21 by 1
2 (A12 + A21). We divide

the proof into six steps.
1. First we show that the proof may be reduced to Case R = 1.
Indeed, if R ≤ 1, we reduce to R = 1 by scaling, i.e., rewriting the problem

in terms of ũ(x) := u(Rx)−u(0)
R on Ω1. Then the rescaled domain Ω̃1 has the

boundary part Γ̃1 = ∂Ω̃1 ∩ B1 with the same Lipschitz constant as for ΓR,
ũ(x) satisfies (4.3.9) in Ω̃1 with the same K, and the equation and boundary
conditions written in terms of ũ(x) satisfy the assumptions in the theorem with
the same constants (λ, γ,M), since R ≤ 1. When estimates (4.3.10)–(4.3.11),
proved for ũ in Ω̃1/2, rewritten in terms of u and β remain unchanged, constant
C depends on R.

If R > 1, we cover ΩR/2 by the balls of radius 1
2 centered on ΓR/2 and

by the interior balls B1/4(x) ⊂ ΩR. Combining estimates (4.3.11)–(4.3.12) for
the boundary balls with the interior estimates in Theorem 4.2.1 for the interior
balls, we obtain (4.3.10)–(4.3.11) with β independent of R.

Thus, for the rest of the proof, we fix R = 1. Then d(x) = dist(x,Γ1) for
x ∈ Ω1. All the constants in this proof depend only on (λ,K, γ). We also use
the notations:

(aij , a, g)(x) := (Aij , A,B)(Du(x), u(x),x).

2. By [214], there exist δ > 0 and L0 > 1 (depending only on λ) and a
function w ∈ C2(Ω1) ∩ C0(Ω1) such that

2∑

i,j=1

aijDijw(x) ≤ −[d(x)]δ−2,

1

L0
[d(x)]δ ≤ w(x) ≤ L0[d(x)]δ, |∇w(x)| ≤ L0[d(x)]δ−1,

(4.3.13)

where the upper and lower bounds of w(x) follow from [214, Eq. (53)] and
Lemma 3.6 with k = 0. With these bounds, the other estimates follow from
[214, Theorem 3.7] and [215, Definition 3.1].

Then it follows that there exists L1 = L1(λ) > 1 such that, for any ε ∈ (0, 1],
x ∈ Ω1,

2∑

i,j=1

aijDijw
ε(x) ≤ − ε

L1
[d(x)]εδ−2,

[d(x)]εδ

L1
≤ wε(x) ≤ L1[d(x)]εδ, |∇wε(x)| ≤ εL1[d(x)]εδ−1.

(4.3.14)
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Denote
v(x) = g(x) + Swε(x) + S|x|2, (4.3.15)

where
S = d̂−εδε−

1
2 , (4.3.16)

and ε, d̂ ∈ (0, 1] will be determined below. The assumptions in the theorem
imply v ∈ C2(Ω) ∩ C(Ω).

It suffices to prove the estimates in Ω(d̂) := Ω1 ∩ {d(x) ≤ d̂}, where d̂ =

d̂(λ, γ,K) ∈ (0, 1) will be determined below. Then, combining this with the
interior estimates of Theorem 4.2.1 in balls Bd̂/4(x) for x ∈ Ω1 ∩ {d(x) ≥ d̂

2},
we obtain (4.3.10)–(4.3.11) with R = 1.

3. We now derive the boundary conditions for v in Ω(d̂) = Ω1 ∩ {d(x) ≤ d̂}.
Since

∂Ω(d̂) = Γ1 ∪
(
∂Ω(d̂) ∩ ∂B1

)
∪
(
Ω1 ∩ {d(x) = d̂}

)
,

we employ (4.3.3) and (4.3.14)–(4.3.16), use the fact that g(x) ≥ −λ−1 in Ω1 by
(4.3.8)–(4.3.9), and choose small ε > 0 depending only on (λ,K) to compute:

v = S(wε + x2) ≥ 0 on Γ1,

v(x) ≥ g(x) + S ≥ −λ−1 + ε−
1
2 ≥ 0 on ∂Ω1 ∩ ∂B1,

v ≥ g + Swε ≥ g + ε−
1
2 d̂−εδ

d̂εδ

L1
≥ −λ−1 +

ε−
1
2

L1
≥ 0 on Ω1 ∩ {d(x) = d̂}.

Thus, for ε > 0 chosen small as above,

v ≥ 0 on ∂Ω(d̂). (4.3.17)

4. We now derive the differential inequality for v in Ω(d̂) = Ω1 ∩{d(x) ≤ d̂}.
Notice that

Dig = Di(B(Du, u,x)) = Bp ·D(Diu) +BzDiu+Bxi for i = 1, 2. (4.3.18)

We write these expressions and equation (4.3.2) as a linear algebraic system for
(D11u,D12u,D22u):


a11 2a12 a22

Bp1
Bp2

0
0 Bp1 Bp2





D11u
D12u
D22u


 =




0
D1g
D2g


−



a
BzD1u+Bx1

BzD2u+Bx2


 . (4.3.19)

The determinant of the matrix in this system is

a11(Bp2)2 − 2a12Bp1Bp2 + a22(Bp1)2 ≥ λ|DpB|2 ≥ λ3, (4.3.20)

where we have used (4.3.7), and (4.3.4) with µ = (−Bp2
, Bp1

). Then we have


D11u
D12u
D22u


 = Q(x)Dg +R(x), (4.3.21)
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where Q is a 3× 2 matrix, and

|(Q,R)(x)| ≤ C, (4.3.22)

by (4.3.8)–(4.3.9) and (4.3.20).
Now we compute

2∑

i,j=1

aijDijg =
∑

i,j,k

BpkaijDkiju

+
∑

i,j,k

aij
(
BpkplDikuDjlu+BpkzDikuDju+BpkzDjkuDiu

+BpkxjDiku+BpkxiDjku
)

+
∑

i,j

aij
(
BzDiju+ 2BzxiDju+Bxixj

)
.

(4.3.23)

Taking the partial derivative with respect to xk on both sides of equation
(4.3.2), we have

2∑

i,j=1

(
aijDkiju+ ∂plAij DijuDklu+ ∂zAij DijuDku+ ∂xAij Diju

)

+
2∑

l=1

AplDklu+AzDku+Axk = 0.

(4.3.24)

We replace the term of BpkaijDkiju in (4.3.23) by its expression from (4.3.24).
In the resulting equation (which does not contain the third derivatives of u), we
replace Diju by their expression from (4.3.21) to obtain the equation for g:

∑

i,j=1

(
aijDijg+mijDigDjg

)
+[d(x)]−γ

( 2∑

i=1

miDig+m
)

= 0 in Ω(d̂), (4.3.25)

where
|(mij ,mi,m)(x)| ≤ C in Ω(d̂), (4.3.26)

by (4.3.5)–(4.3.6), (4.3.8)–(4.3.9), (4.3.12), and (4.3.22) so that C depends only
on (λ, γ,K).

Now we derive the differential inequality for v given by (4.3.15). Denote

qi =

2∑

j=1

(
mijvj − S(mij +mji)((w

ε)xj + 2xj)
)

+ [d(x)]−γmi,
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where S is defined by (4.3.16). Then, substituting Dkg = Dkv − S
(
Dk(wε) +

Dk(x2)
)
into (4.3.25) and using (4.3.14), we obtain that, in Ω(d̂) = Ω1∩{d(x) ≤

d̂},

2∑

i,j=1

aijDijv +
2∑

i=1

qiDiv

=
2∑

i,j=1

(
Saij(w

ε + |x|2)xixj − S2mij((w
ε)xi + 2xi)((w

ε)xj + 2xj)
)

+ [d(x)]−γ
( 2∑

i=1

Smi((w
ε)xi + 2xi)−m

)

≤ − ε

L1
S[d(x)]εδ−2 + CS + C

(
ε2S2[d(x)]2εδ−2 + S2[d(x)]2

)

+ C
(
εS[d(x)]εδ−γ−1 + [d(x)]−γ

)

= I1 + I2,

(4.3.27)

where

I1 = − ε

L1
S[d(x)]εδ−2 + Cε2S2[d(x)]2εδ−2 + CεS[d(x)]εδ−γ−1,

I2 = CS + CS2[d(x)]2 + C[d(x)]−γ .

We first estimate I1. Using (4.3.16), 0 < d(x) < d̂ < 1 in Ω(d̂), and γ < 1,
we have

I1 =
S

L1
ε[d(x)]εδ−2

(
− 1 + C

√
ε
[d(x)

d̂

]εδ
+ C[d(x)]1−γ

)

≤ S

L1
ε[d(x)]εδ−2

(
−1 + C

√
ε+ Cd̂1−γ

)
.

To estimate the last expression, we choose (ε, d̂) so that ε ∈ (0, 1) is small
enough with C

√
ε ≤ 1

4 and all the previous requirements are satisfied. Now
ε > 0 is fixed for the rest of proof. Then we choose d̂ = d̂(λ,K, γ) small so that
Cd̂1−γ ≤ 1

4 . We obtain

I1 ≤ −
S

2L1
ε[d(x)]εδ−2.

Now we estimate I1 + I2. We compare I1
3 with each of the three terms in I2.

For the first term, we use 2 − εδ > 1 and recall that C is a universal constant
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independent of ε and L1 to obtain that, if d̂ is small,

I1
3

+ CS ≤ − S

6L1
ε[d(x)]εδ−2 + CS

=
S

6L1
ε[d(x)]εδ−2

(
− 1 + Cε−1[d(x)]2−εδ

)

≤ S

6L1
ε[d(x)]εδ−2

(
− 1 + Cε−1d̂

)
< 0.

For the next term, we employ (4.3.16), εδ < 1, and 0 < d(x) < d̂ to obtain that,
if d̂ is small,

I1
3

+ C[d(x)]2S2 ≤ − S

6L1
ε[d(x)]εδ−2 + CS2[d(x)]2

=
S

6L1
ε[d(x)]εδ−2

(
− 1 + Cε−

3
2 [d(x)]4−2εδ

(d(x)

d̂

)εδ)

≤ S

6L1
ε[d(x)]εδ−2

(
−1 + Cε−

3
2 d̂2
)
< 0.

For the last term, we use 2− εδ − γ > 0 and choose d̂ small to find

I1
3

+ C[d(x)]−γ ≤ − Sε

6L1
[d(x)]εδ−2 + C[d(x)]−γ

=
Sε

6L1
[d(x)]εδ−2

(
−1 + Cε−

1
2 [d(x)]2−εδ−γ

)
< 0.

Therefore, we have

2∑

i,j=1

aijDijv +
2∑

i=1

qiDiv < 0 in Ω(d̂).

Combining this with (4.3.17) and recalling that v ∈ C2(Ω) ∩ C(Ω), we see that
v(x) = g(x) + Lwε(x) + Lx2 ≥ 0 in Ω(d̂). A similar argument shows that
ṽ(x) = −g(x) + Lwε(x) + Lx2 ≥ 0 in Ω(d̂). This implies

|g(x)| ≤ C[d(x)]β + C|x|2 in Ω(d̂)

with β = min{εδ, 1}. Shifting the origin to the other points in Γ7/8 and taking
the infimum of the right-hand sides of the resulting estimates, we have

|g(x)| ≤ C[d(x)]β + [d(x)]2 ≤ 2C[d(x)]β in Ω(d̂) ∩B5/6(0).

Also, the interior estimates in Theorem 4.2.1 yield

‖u‖2,α,Ω3/4∩{d(x)≥d̂/2} ≤ C.
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Combining the last two estimates, we have

|g(x)| ≤ C[d(x)]β in Ω3/4. (4.3.28)

5. We now estimate Dg and D2u. Let x0 ∈ Ω3/4. Denote r := d(x0).
Denote V (x) = r1−βg(x). We note that d(x) ≥ 9r

10 for any x ∈ Br/10(x0) and
that β + γ < 2. Then, from (4.3.25) and (4.3.28),

|aijDijV | ≤
C

r

(
DV |2 + 1

)
, |V | ≤ Cr in Br/10(x0).

By [262, Part (i) on Page 75], we obtain that |DV (x0)| ≤ C, which implies

|Dg(x)| ≤ C[d(x)]β−1 in Ω3/4.

By (4.3.21), we have

|D2u(x)| ≤ C[d(x)]β−1 in Ω3/4. (4.3.29)

Let η ∈ C∞(R2) satisfy η ≡ 1 on B1/2(0) and η ≡ 0 on R2 \ B5/8(0). Then,
using (4.3.29) and (4.3.9) with R = 1, we have

|D2(ηu)(x)| ≤ C[dist(x, ∂Ω3/4)]β−1 in Ω3/4.

Combining this with (4.3.9), we obtain that ‖ηu‖(−1−β),∂Ω3/4

2,0,Ω3/4
≤ C. Now (4.3.10)

with R = 1 follows from

‖ηu‖1,β,Ω3/4
= ‖ηu‖(−1−β),∂Ω3/4

1,β,Ω3/4
≤ ‖ηu‖(−1−β),∂Ω3/4

2,0,Ω3/4
,

where the last inequality holds by [130, Lemma 2.1].
6. Estimate (4.3.11) follows from (4.3.10) by the standard argument, which

we now sketch below. By the covering argument, we obtain (4.3.10) in Ω3R/4,
instead of ΩR/2. We continue to consider Case R = 1, without loss of generality.

For each x0 ∈ Ω1/2, denote ρ := d(x0)
10 and

U(X) =
u(x0 + ρX)− u(x0)− ρDu(x0) ·X

ρβ+1
for all X ∈ B1(0).

By (4.3.10) in Ω3/4, we find that ‖U‖1,β,B1(0) ≤ C, independent of x0. Since u
satisfies equation (4.3.2), U satisfies the equation of similar form with ingredients
(Âij , Â)(p, z,X) in B1(0), where

(Âij , Â)(p, z,X)

= (Aij , ρ
1−βA)(Du(x0) + ρβp, u(x0) + ρ1+βz + ρDu(x0) ·X, x0 + ρX).

In particular, by (4.3.6), γ ≤ 1, and 1
2d(x0) ≤ d(x) ≤ 2d(x0) for any x ∈ Bρ(x0),

we note that, for any X, X̂ ∈ B1(0) and (p, z) ∈ R2 ×R with |Du(x0) + ρβp|+
|u(x0) + ρDu(x0) ·X + ρβ+1z| ≤ 2K, we have

|Âij(p, z,X)− Âij(p, z, X̂)| ≤ Cρ−γ |ρX− ρX̂| ≤ C|X− X̂|,
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and the same holds for Â(·). Combining this with the estimate of D(p,z)(Aij , A)
in (4.3.6), estimate (4.3.9), and ‖U‖1,β,B1(0) ≤ C, we have

‖(aij , a)‖0,β,B1(0) ≤ C,

where (aij , a)(X) := (Âij , Â)(DU(X), U(X),X).
Since U satisfies the linear equation:

2∑

i,j=1

aij(X)DijU + a(X) = 0 in B1(0),

which is elliptic by (4.3.4), and ‖U‖1,β,B1(0) ≤ C, we conclude

‖U‖2,β,B1/2(0) ≤ C.

Since this holds for each x0 ∈ Ω1/2 with the same constant C, and (4.3.10) also
holds, then (4.3.11) follows.

We obtain the C2,α–regularity of the solution under stronger assumptions,
including the C1,α–boundary. We start by noting that the localized intermediate
Schauder estimates for linear boundary value problems shown in Lemma 4.2.16,
in the case that the boundary conditions are prescribed on the flat boundary
parts, can be extended to the case of C1,α–boundaries. We state this only for
the linear Dirichlet problem which will be used below, since the estimates for
the oblique derivative problem are extended similarly.

Lemma 4.3.3. Let α, β, σ, λ ∈ (0, 1) with β ≤ α. Let

‖Φ‖C1,σ(R) ≤ λ−1, Φ(0) = 0,

and let Ωr := Br ∩ {x2 > Φ(x1)} and Γr := Br ∩ {x2 = Φ(x1)} for r > 0. Let
R > 0, and let u ∈ C(−1−σ), ΓR

2,α,ΩR
satisfy equation (4.2.118) in ΩR with

u = h(x) on ΓR, (4.3.30)

where equation (4.2.118) satisfies ellipticity (4.2.121) in ΩR, and

‖aij‖(−β), ΓR
0,α,ΩR

+ ‖(ai, a)‖(1−σ), ΓR
0,α,ΩR

≤ λ−1. (4.3.31)

Then u satisfies

‖u‖(−1−σ), ΓR/2
2,α,ΩR/2

≤ C
(
‖u‖0,ΩR + ‖f‖(1−σ),ΓR

0,α,ΩR
+ ‖h‖1,σ,ΓR

)
, (4.3.32)

where C depends only on (λ, α, β, σ,R).
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Proof. The proof consists of two steps.

1. First consider Case α ≤ σ. We flatten the boundary by the change of
variables: A(x1, x2) = (x1, x2 − Φ(x1)) and reduce the problem to Case R = 2,
as in the proof of Theorem 4.2.9. Using the C1,σ–regularity of Φ with σ ≥ α,
we note that, under this change of variables, the ellipticity and regularity of the
coefficients remain unchanged, with the modified constants depending only on
(λ, σ, α, β,R). Now the assertion follows from Lemma 4.2.16(ii) with k = 1.

2. Next we consider Case α > σ. First, we note that, reducing α by setting
α := σ, then the conditions of the lemma are satisfied for this reduced α. Thus,
by the result of Step 1, we obtain (4.3.32) with σ instead of α. Also, by a covering
argument, we obtain a similar estimate with region Ω3R/4 on the left-hand side.
In particular,

‖u‖1,σ, Ω3R/4
≤ CM. (4.3.33)

Here and hereafter, M denotes the sum of norms on the right-hand side of
(4.3.32), and C = C(λ, α, β, σ,R).

It remains to prove the higher interior regularity of the solution by using the
higher interior regularity of the coefficients in (4.3.31), determined by α > σ.
This is done by following the argument in Step 6 of the proof of Theorem 4.3.2.
Specifically, for each x0 ∈ ΩR/2, denote ρ := d(x0)

10 and

U(X) :=
u(x0 + ρX)− u(x0)− ρDu(x0) ·X

ρσ+1
for all X ∈ B1(0).

From (4.3.33), we find that ‖U‖1,σ,B1(0) ≤ CM . Also, U satisfies an equation
of form (4.2.118) in B1(0), with coefficients (âij , âi, â) and the right-hand side
f̂ defined by

(âij , âi, â)(X) = (aij , ρai, ρ
2a)(x),

f̂(X) = ρ1−σ(f(x)−
2∑

i=1

ai(x)ui(x0)− a(x0)(u(x0) + ρDu(x0) ·X)
)
,

where x = x0 + ρX and X ∈ B1(0). Recalling that ρ = d(x0)
10 , we have

‖(âij , âi, â)‖0,α,B1
≤ ‖aij‖(−β), ΓR

0,α,ΩR
+ ‖(ai, a)‖(1−σ), ΓR

0,α,ΩR
≤ λ−1,

‖f̂‖0,α,B1
≤ C

(
‖f‖(1−σ),ΓR

0,α,ΩR
+ ‖(ai, a)‖(1−σ), ΓR

0,α,ΩR
‖u‖1,0,Ω3R/4

)
≤ CM.

Thus, the interior Schauder estimates imply that ‖U‖2,σ,B1/2(0) ≤ CM . Com-
bining with (4.3.33) and arguing as in the proof of [131, Theorem 4.8] (cf. the
proof of Lemma 4.2.7 above), we obtain (4.3.32).

The next theorem is a version of [192, Corollary 1.4].
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Theorem 4.3.4. Let the assumptions of Theorem 4.3.2 be satisfied with γ = 0.
In addition, assume that α, σ ∈ (0, 1),

‖Φ‖C1,σ(R) ≤ λ−1, Φ(0) = 0, (4.3.34)

and

‖(Aij , A)‖C1,α({|p|+|z|≤2K, x∈ΩR}) + ‖B‖C2,α({|p|+|z|≤2K, x∈ΩR}) ≤ λ
−1.

(4.3.35)

Then
‖u‖C2,σ(ΩR/4) ≤ C, (4.3.36)

where C depends only on (λ,K, α, σ,R).

Proof. As in the proof of Theorem 4.3.2, we may assume R = 1, without loss
of generality. All the constants in this proof depend only on (λ,K, α, σ). Fur-
thermore, we may also assume without loss of generality that σ ≥ α. Indeed, if
α > σ, (4.3.35) holds with σ instead of α, i.e., we can set α := σ.

From (4.3.11) in Theorem 4.3.2 with R = 1 and by a covering argument, we
have

‖u‖(−1−β),Γ3/4

2,β,Ω3/4
≤ C. (4.3.37)

We write equation (4.3.25) with γ = 0 as

2∑

i,j=1

aijDijg +
2∑

i=1

m̃iDig +m = 0, (4.3.38)

with m̃i =
∑2
j=1mijDjg + mi, i = 1, 2. Note that this equation is satisfied in

the whole region Ω1 and is also uniformly elliptic. Using (4.3.35) and (4.3.37),
we see that coefficients (Q,R) in (4.3.21) and (aij ,m) in (4.3.38), i, j = 1, 2,
have Cαβ(Ω3/4)–bounds, and m̃i, i = 1, 2, have a C1−β,Γ3/4

0,αβ,Ω3/4
–bound depending

only on (λ, α, β). Since β depends only on (λ,K), it follows that these estimates
of the coefficients depend only on (λ,K, α).

Moreover, g(x) := B(Du(x), u(x),x) satisfies the linear elliptic equation
(4.3.38) in Ω3/4 with the coefficients discussed above, and the boundary condi-
tion: g = 0 on Γ3/4. Also, |g| ≤ C in Ω1 by (4.3.35) and (4.3.37). Then we
employ Lemma 4.3.3 to obtain

‖g‖(−1−αβ),Γ1/2

2,αβ,Ω1/2
≤ C.

In particular, from (4.3.21) with Cαβ(Ω3/4)–coefficients (Q,R), we have

‖u‖C2,αβ(Ω1/2) ≤ C.

From this, we obtain the estimates of coefficients (Q,R) in (4.3.21) in the
C1,αβ(Ω1/2)–norm, and hence in the Cσ(Ω1/2)–norm, and the estimates of m̃i
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in (4.3.38) in the Cαβ(Ω1/2)–norm. We also recall that the estimates of (aij ,m)

in (4.3.38) in the Cαβ(Ω3/4)–norm have been obtained earlier. Then we use
Lemma 4.3.3 to obtain

‖g‖(−1−σ),Γ1/2

2,αβ,Ω1/4
≤ C,

that is, ‖g‖1,σ,Ω1/4
≤ C. Now, from (4.3.21) with Cσ(Ω1/2)–coefficients (Q,R),

we conclude (4.3.36).

Corollary 4.3.5. Let the assumptions of Theorem 4.3.2 be satisfied with γ = 0.
In addition, we assume that α ∈ (0, 1), k ≥ 1 integer,

‖Φ‖k,α,R ≤ λ−1, Φ(0) = 0, (4.3.39)

and

‖(Aij , A)‖Ck,α({|p|+|z|≤2K, x∈ΩR}) + ‖B‖Ck+1,α({|p|+|z|≤2K, x∈ΩR}) ≤ λ
−1.

(4.3.40)
Then

‖u‖k+1,α,ΩR/2
≤ C, (4.3.41)

where C depends only on (λ,K, k, α,R).

Proof. As in the proof of Theorem 4.3.2, we may assume that R = 1, without
loss of generality. We do induction over k.

If k = 1, this is Theorem 4.3.4.
Assume that k ≥ 2, and estimate (4.3.41) with R = 1 holds for k−1 instead of

k. Then, by a covering argument, we obtain that ‖u‖k,α,Ω3/4
≤ C, which yields

the estimates of coefficients (Q,R) in (4.3.21) and (aij , m̃i,m) in (4.3.38) in the
Ck−1+α(Ω3/4)–norm. Arguing as in the proof of Theorem 4.3.4, we note that g
satisfies the elliptic equation (4.3.38) in Ω3/4, g = 0 on Γ3/4, and |g| ≤ C in Ω1.
The ellipticity of [aij ], the estimates of coefficients (aij , m̃i,m) in Ck−1+α(Ω3/4),
and the boundary regularity (4.3.39) with k ≥ 2 allow us to use the standard
local Schauder estimates for the Dirichlet problem (see e.g. [131, the argument
after Theorem 6.19]) to obtain

‖g‖k,α,Ω1/2
≤ C.

Now, from (4.3.21) with Ck−1+α(Ω1/2)–coefficients (Q,B), we obtain (4.3.41)
for k.

Theorem 4.3.6. The assertions of Theorems 4.3.2 and 4.3.4 and Corollary
4.3.5 remain true when condition (4.3.7) is replaced by

|DpB(p, z,x)| ≥ λ (4.3.42)

for any (p, z,x) ∈ (R2 × R× ΓR) ∩ {|p|+ |z| ≤ 3K}.



RELEVANT RESULTS FOR NONLINEAR ELLIPTIC EQUATIONS OF SECOND ORDER 117

Proof. From (4.3.8), there exists R̂ ∈ (0, R) depending only on (λ,M) such that

|DpB(p, z,x)| ≥ λ

2

for any (p, z,x) ∈
(
R2 × R× {x ∈ ΩR : dist(x,Γ1) ≤ R̂}

)
∩ {|p|+ |z| ≤ 2K}.

Now we can apply Theorems 4.3.2 and 4.3.4 and Corollary 4.3.5 in ΩR̂.

4.3.2 Estimates of solutions at a corner for the oblique derivative
problem

Next we present the results in Lieberman [192, Theorem 2.1] on the C1,α–
regularity of solutions of the oblique derivative problem at a corner. Some
of the argument and notations below follow the presentation of the results in
[111, Appendix 5.1]. In addition, we prove some related estimates under weaker
assumptions than those in [192, Theorem 2.1] and [111, Appendix 5.1]. We need
to do this in order to apply these results in the situation when one side of the
corner is a free boundary with a priori unknown regularity, and the functional
independence of the boundary conditions is known only for the solution on the
free boundary, i.e., not for all (p, z,x).

We first consider the case that the solution is a priori known to be C1 up
to the corner.

Proposition 4.3.7. Let R > 0, β ∈ (0, 1), γ ∈ [0, 1), λ ∈ (0, 1], and K,M ≥ 1.
Let Ω̂ ⊂ R2 be an open domain contained within x0 + {x : x2 > τ |x1|} for
some x0 ∈ ∂Ω̂ and τ > 0, and let

∂Ω̂ ∩BR(x0) = Γ1 ∪ Γ2,

where Γk, k = 1, 2, are two Lipschitz curves intersecting only at x0. Let

Ω ≡ ΩR := Ω̂ ∩BR(x0).

Assume that Γ2 is C1,σ up to the endpoints for some σ ∈ (0, 1) with the bound:

‖Γ2‖1,σ ≤M. (4.3.43)

Let u ∈ C1(Ω) ∩ C2(Ω ∪ Γ2) ∩ C3(Ω) satisfy

‖u‖0,1,Ω ≤ K. (4.3.44)

Assume that u is a solution of the boundary value problem:

2∑

i,j=1

Aij(Du, u,x)Diju+A(Du, u,x) = 0 in Ω, (4.3.45)

B(1)(Du, u,x) = h(x) on Γ1, (4.3.46)

B(2)(Du, u,x) = 0 on Γ2, (4.3.47)
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where functions (Aij , A,B
(k)) are defined in the set:

V = {(p, z,x) ∈ R2 × R× Ω : |p|+ |z| ≤ 2K}. (4.3.48)

Assume that (Aij , A) ∈ C(V ) ∩ C1(V \ {x0}), B(1) ∈ C2(V ), B(2) ∈ C1(V ),
and h ∈ C(Γ1) with

‖(Aij , A)‖0,V + ‖D(p,z)(Aij , A)‖0,V ≤M, (4.3.49)

|Dx(Aij , A)(p, z,x)| ≤M |x− x0|−γ for all (p, z,x) ∈ V, (4.3.50)

‖B(1)‖2,V + ‖B(2)‖1,V ≤M, (4.3.51)

|h(x)− h(x0)| ≤ λ−1

Rβ
|x− x0|β for all x ∈ Γ1. (4.3.52)

Assume that equation (4.3.45) is uniformly elliptic on solution u in Ω:

λ|µ|2 ≤
2∑

i,j=1

Aij(Du(x), u(x),x)µiµj ≤
1

λ
|µ|2 (4.3.53)

for any x ∈ Ω and µ = (µ1, µ2) ∈ R2, and that the boundary condition B(2) is
oblique for u on Γ2:

DpB
(2)(Du(x), u(x),x) · ν ≥ λ for any x ∈ Γ2, (4.3.54)

where ν is the interior unit normal to Γ2. Moreover, assume

|DpB
(1)(Du(x), u(x),x)| ≥ λ for any x ∈ Ω2. (4.3.55)

Furthermore, assume the functional independence of B(1) and B(2) for u on Γ2:

|detG(Du(x), u(x),x)| ≥ λ for any x ∈ Γ2, (4.3.56)

where G(p, z,x) is the matrix with columns DpB
(k)(p, z,x), k = 1, 2.

Then there exist α ∈ (0, β] and C depending only on (λ,K,M), and R′ ∈
(0, R] depending on (λ, γ,K,M, σ), such that, for any x ∈ Ω ∩BR′(x0),

|B(1)(Du(x), u(x),x)−B(1)(Du(x0), u(x0),x0)| ≤ C|x− x0|α. (4.3.57)

Proof. We use the notations and some calculations from the proof of Theorem
4.3.2. In particular, we define

(aij , a, g
(k))(x) := (Aij , A,B

(k))(Du(x), u(x),x). (4.3.58)

Constants α, µ, and C, below, depend only on (λ,K,M), and constant R′
depends only on (λ, γ,K,M, σ), unless otherwise specified. We may also assume
as before, without loss of generality, that (4.3.12) holds. We divide our proof
into four steps.
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1. We use the polar coordinates (r, θ) centered at x0. Under the assumptions
on Ω given in Proposition 4.3.7 and (4.3.43), reducing R depending only on M ,
there exists θ1 ∈ (0, π) so that, choosing the direction of θ and ray θ = 0
appropriately, we have

Γk ∩BR(x0) = {(r, φk(r)) : 0 < r < R} for k = 1, 2,

‖φ2‖C1,σ([0,R]) ≤ CM, −θ1

2
≤ φ1(·) < φ2(·) ≤ θ1

2
,

(4.3.59)

Ω = {0 < r < R, φ1(r) < θ < φ2(r)}. (4.3.60)

Denote
w(r, θ) = rαh(θ), h(θ) = 1− µe−L̄θ, (4.3.61)

where α ∈ (0, 1
2 ] and L̄, µ > 0 to be chosen. Take µ so small that h(θ) ≥ 1

2 for
any θ ∈ [−π2 , π2 ]. Then the explicit calculation in [111, Page 97] shows, by using
(4.3.43) and (4.3.53), that, for x ∈ Ω, rotating the coordinates to be along the
angular and radial directions, and denoting (arr, arθ, aθθ) as the corresponding
components of aij , we have

2∑

i,j=1

aijDijw ≤
(
e−L̄θµL̄

(
2|arθ| − L̄aθθ

)
+ αaθθ

)
rα−2 at x.

Note that 2 sup |arθ+1|
inf arr

≤ 3
λ2 . If L̄ = 3

λ2 , then, for every µ > 0 small, there
exist α0 ∈ (0, µ] depending only on (λ, µ), and R′ ∈ (0, R) depending only on
(λ,M, µ), so that, for every α ∈ (0, α0),

2∑

i,j=1

aij(x)Dijw(x) ≤ −µL̄
2
e−L̄θrα−2,

|Dw(x)| ≤ C(α+ µ)rα−1,
1

2
rα ≤ w(x) ≤ rα in Ω.

(4.3.62)

The further calculation in [111, Page 97] shows that, for any T : Γ2 ∩BR′ 7→ R,

wν + Twτ ≤ −
(
µL̄e−L̄θ − C(R′)σ − T (α+ C(R′)σL̄µ)

)
rα−1 on Γ2 ∩BR′ ,

(4.3.63)
where ν is the inner normal to Ω on Γ2.

Define
v(x) = g(1)(x)− g(1)(x0) + Lw(x), (4.3.64)

where
L =

1√
µ(R′)α

. (4.3.65)

Then our assumptions imply that v ∈ C(Ω) ∩ C1(Ω ∪ Γ2) ∩ C2(Ω).
2. We first derive the boundary conditions for v on ∂(Ω∩BR′(x0))\Γ2, i.e.,

on Γ1 ∩BR′(x0) and ∂BR′(x0) ∩ Ω.
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Notice that |B(1)(Du(x), u(x),x)| ≤ ‖B(1)‖L∞(V ) ≤ C for any x ∈ Ω, by
(4.3.44) and (4.3.51). Also, w(x) ≥ 1

2 (R′)α on ∂BR′(x0)∩Ω, by (4.3.62). Thus,
using (4.3.65) and choosing µ sufficiently small,

v ≥ −2‖B(1)‖L∞(V ) +
(R′)α

2
√
µ(R′)α

≥ 0 on ∂BR′(x0) ∩ Ω. (4.3.66)

For x ∈ Γ1 ∩ BR′(x0), we choose α ≤ β and employ (4.3.46) and (4.3.52) to
obtain that, on Γ1 ∩BR′(x0),

v(x) = h(x)− h(x0) +
w(x)√
µ(R′)α

≥ −λ−1
( r
R

)β
+

1√
µ

( r
R′

)α
≥ 0,

(4.3.67)

by using that r < R′ < R and choosing µ so small that µ−1/2 ≥ λ−1.
3. Next, using (4.3.55) and following the calculations in Step 4 of the proof

of Theorem 4.3.2, we find that D2u and g(1) satisfy (4.3.21) with (Q(x), R(x))
satisfying (4.3.22) in Ω and that, similar to (4.3.25), g(1) satisfies

2∑

i,j=1

(
aijDijg

(1) +mijDig
(1)Djg

(1)
)

+ r−γ
( 2∑

i=1

miDig
(1) +m

)
= 0 in Ω,

(4.3.68)
where, similar to (4.3.26),

|(mij ,mi,m)(x)| ≤ C for x ∈ Ω.

Now, setting

qi :=
2∑

j=1

(
mijvj − L(mij +mji)wj

)
+ r−γmi, (4.3.69)

we perform a calculation similar to (4.3.27): Substituting Dkg(1) = Dkv −
LDkw, k = 1, 2, into (4.3.68) and using (4.3.62) and (4.3.65), we find that, in
Ω ∩BR′(x0),

2∑

i,j=1

aijDijv +
2∑

i=1

qiDiv

= L
2∑

i,j=1

(
aijDijw − LmijDiwDjw

)
+ r−γ

(
L

2∑

i=1

miDiw −m
)

≤ −Lµ
C
rα−2 + CL2(α2 + µ2)r2α−2 + CL(α+ µ)rα−γ−1 + Cr−γ

=
(
−
√
µ

C
+ C

α2 + µ2

µ

( r
R′
)α

+ C
α+ µ√

µ
r1−γ

)( r
R′
)α
r−2 + Cr−γ .
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Using that α ≤ µ (where α will further be chosen below), γ ∈ [0, 1), and
r
R′ ∈ (0, 1), we have

2∑

i,j=1

aijDijv +
2∑

i=1

qiDiv ≤
(
−
√
µ

C
+ Cµ+ C

√
µ(R′)1−γ

)( r
R′
)α
r−2 + Cr−γ

≤ −
√
µ

2C

( r
R′
)α
r−2 + Cr−γ ,

where the last inequality has been obtained by choosing µ so small that −
√
µ

4C +

Cµ < 0 and then taking R′ = R′(λ,M,K, γ) small so that−
√
µ

4C +C
√
µ(R′)1−γ <

0. Now µ ∈ (0, 1) is fixed for the rest of the proof.
Next, noting that α, γ ∈ (0, 1) so that α+γ < 2, we find that, in Ω∩BR′(x0),

2∑

i,j=1

aijDijv +
2∑

i=1

qiDiv ≤ r−γ
(
−
√
µ

2C
(R′)−αr−2+γ+α + C

)

≤ r−γ
(
−
√
µ

2C
(R′)−α(R′)−2+γ+α + C

)

= r−γ
(
−
√
µ

2C
(R′)−2+γ + C

)
.

Since µ > 0 is fixed and γ < 1, we choose R′ small to conclude

2∑

i,j=1

aijDijv +

2∑

i=1

qiDiv < 0 in Ω ∩BR′(x0). (4.3.70)

4. We now derive a differential inequality for v on the C1,σ–curve Γ2. First,
we seek T = T (x) on Γ2 so that

|g(1)
ν + Tg(1)

τ | ≤ C on Γ2. (4.3.71)

Since g(2)
τ = 0 on Γ2 and equation (4.3.45) holds, it suffices to find (T, y1, y2)

at every point x ∈ Γ2 so that, after substituting (4.3.18) for (g(1), g(2)) into the
expression:

g(1)
ν + Tg(1)

τ + y1N (u) + y2g
(2)
τ ,

all the coefficients of Diju vanish, where N (u) is the left-hand side of (4.3.45).
By explicit calculation, this happens if

[y1 y2 1]



aττ 2aτν aνν

B
(2)
pτ B

(2)
pν 0

TB
(1)
pτ TB

(1)
pν +B

(1)
pτ B

(1)
pν


 = 0,

where we have used (4.3.12). Then the determinant must vanish, which gives

aνν(B(1)
pν
B(2)

pτ
−B(1)

pτ
B(2)

pν
)T = m̃, (4.3.72)
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where m̃ = −aννB(1)
pτ B

(2)
pτ + B

(1)
pν (aττB

(2)
pν − 2aντB

(2)
pτ ). From (4.3.49) and

(4.3.51), we see that |m̃(x)| ≤ C on Γ2. The assumptions in (4.3.53) and
(4.3.56) allow us to solve for T to obtain |T (x)| ≤ C on Γ2. From (4.3.54),
B

(2)
pν ≥ λ so that

y1 = −B
(1)
pν

aνν
, y2 = −aννB

(1)
pτ − 2aτνB

(1)
pν + TaννB

(1)
pν

aνν B
(2)
pν

, (4.3.73)

which implies that |(y1, y2)| ≤ C on Γ2. It follows that (4.3.71) holds. With
this, using (4.3.63) with L̄ + |T (x)| ≤ C and θ ∈ [−π2 , π2 ] by (4.3.59)–(4.3.60),
and using (4.3.65), we obtain that, on Γ2 ∩BR′(x0),

vν + Tvτ = L(wν + Twτ ) + g(1)
ν + Tg(1)

τ

≤ − 1√
µ

{ µ
C
− C(R′)σ − C(α+ C(R′)σµ)

} rα−1

(R′)α
+ C.

Now we choose α and R′ small so that the first term of the expression in the
braces dominates the other terms. For this, we recall that µ ∈ (0, 1) has been
fixed. First choose α ≤ µ

10C2 . Combining this with the previous requirements on
α, we fix α ∈ (0, β] such that it depends only on (λ,M,K) and is independent
of (γ, σ). Now, choosing R′ small so that

C
(
1 + µC

)
(R′)σ ≤ µ

10C
,

we obtain that, for r ∈ (0, R′),

vν + Tvτ ≤ −
√
µrα−1

2C(R′)α
+ C ≤ −

√
µ

2C

(R′)α−1

(R′)α
+ C = −

√
µ

2C
(R′)−1 + C.

Since µ > 0 is fixed, we choose R′ = R′(λ,M, γ, σ,K) small to obtain

vν + Tvτ < 0 on Γ2 ∩BR′(x0). (4.3.74)

Therefore, v ∈ C(Ω)∩C1(Ω∪Γ2)∩C2(Ω) satisfies the differential inequality
(4.3.70) in Ω ∩ BR′(x0) and the boundary conditions (4.3.74) and (4.3.66)–
(4.3.67) on ∂(Ω∩BR′(x0)). Note that matrix [aij ] satisfies the uniform ellipticity.
Then, by the maximum principle, v ≥ 0 in Ω ∩BR′(x0), i.e.,

B(1)(Du(x), u(x),x)−B(1)(Du(x0), u(x0),x0) + Lw(x) ≥ 0 in Ω ∩BR′(x0).

By a similar argument,

−
(
B(1)(Du(x), u(x),x)−B(1)(Du(x0), u(x0),x0)

)
+Lw(x) ≥ 0 in Ω∩BR′(x0).

Combining these estimates and using (4.3.62), we obtain (4.3.57).



RELEVANT RESULTS FOR NONLINEAR ELLIPTIC EQUATIONS OF SECOND ORDER 123

Remark 4.3.8. Note that, in Proposition 4.3.7, we assume the functional in-
dependence (4.3.56) only on {(p, z,x) = (Du(x), u(x),x) : x ∈ Γ2}. Also, the
C1,σ–regularity of Γ1 is not required in Proposition 4.3.7.

Next we note the following fact for the functional independence.

Proposition 4.3.9. Suppose that Ω = ΩR is as in Proposition 4.3.7 and that
u ∈ C1(Ω) satisfies (4.3.44). Assume that functions B(k), k = 1, 2, are defined
in V given by (4.3.48) and satisfy

|B(k)(Ŷ)−B(k)(Ỹ)| ≤M |Ŷ − Ỹ| for all Ŷ, Ỹ ∈ V. (4.3.75)

Moreover, denoting

h(k)(p) = B(k)(p, u(x0),x0) for k = 1, 2,

and noting that functions h(k) are defined on BK(Du(x0)), we assume that
h(k) ∈ C1,α(BK(Du(x0))) with

‖h(k)‖
1,α,BK(Du(x0))

≤M (4.3.76)

and
|detH(Du(x0))| ≥M−1, (4.3.77)

where α ∈ (0, 1), and H(p) is the matrix with columns Dph
(k)(p), k = 1, 2.

Let W ⊂ Ω satisfy

W ∩∂Br(x0) 6= ∅, W ∩∂Br(x0) ⊂W ∩Br(x0) for all r ∈ (0, R), (4.3.78)

where Br(x0) is the open ball of radius r centered at x0. For k = 1, 2, let

|B(k)(Du(x), u(x),x)−B(k)(Du(x0), u(x0),x0)|
≤M |x− x0|α for all x ∈W.

(4.3.79)

Then there exists C depending only on (K,M,R, α) such that

|Du(x)−Du(x0)| ≤ C|x− x0|α for all x ∈W. (4.3.80)

Proof. In this proof, constants C and Ck depend only on (K,M,R, α).
From (4.3.79), using (4.3.44) and (4.3.75), we obtain that, for k = 1, 2,

|B(k)(Du(x), u(x0),x0)−B(k)(Du(x0), u(x0),x0)| ≤ C|x− x0|α,

which is

|h(k)(Du(x))− h(k)(Du(x0))| ≤ C|x− x0|α for any x ∈W. (4.3.81)

From (4.3.76)–(4.3.77), by the inverse function theorem, there exists ρ ∈
(0,K) depending only on (K,M,α) such that the map:

h(p) := (h(1), h(2))(p)
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is one-to-one on Bρ(Du(x0)) onto an open set U , and

|h−1(q1)− h−1(q2)| ≤ C|q1 − q2| for all q1,q2 ∈ U. (4.3.82)

Since u ∈ C1(Ω), there exists r > 0 such that

|Du(x)−Du(x0)| ≤ ρ for all x ∈W ∩Br(x0). (4.3.83)

Then
Du(x) = h−1(h(Du(x))) for all x ∈W ∩Br(x0),

so that, from (4.3.81)–(4.3.82) and u ∈ C1(Ω),

|Du(x)−Du(x0)| ≤ C|h(Du(x))− h(Du(x0))| ≤ C1|x− x0|α (4.3.84)

for any x ∈W ∩Br(x0).
Let R′ be the supremum of all r ∈ (0, R) such that (4.3.83) holds. Since

ρ ∈ (0,K), the regularity that u ∈ C1(Ω) and h(k) ∈ C1,α(BK(Du(x0))) and
properties (4.3.78) of W imply that (4.3.83)–(4.3.84) hold in W ∩BR′(x0).

If R′ = R, (4.3.84) in W ∩BR′(x0) implies (4.3.80).
If R′ < R, we obtain from (4.3.76) and (4.3.84), with r = R′, that

|Du(x)−Du(x0)| ≤MC1(R′)α for all x ∈W ∩BR′(x0).

If MC1(R′)α < ρ, we use (4.3.78) and u ∈ C1(Ω) to conclude that (4.3.83)
holds with some r > R′. This contradicts the definition of R′. Therefore,
(4.3.84) holds in W ∩Br(x0) with r = R′ ≥

(
ρ

MC1

)1/α, where we recall that ρ
depends only on (K,M,α). From this, using (4.3.44), we obtain (4.3.80).

Remark 4.3.10. Examples for such sets W ⊂ Ω satisfying (4.3.78) include:

(i) W = Ω;

(ii) W = {(r, θ) : 0 ≤ r ≤ R, θ = f(r)} ⊂ Ω, where f(·) is continuous. In
particular, if Ω = ΩR is as in Proposition 4.3.7 and (4.3.43) holds, then,
from (4.3.59), W = Γ2 ∩BR(x0) satisfies (4.3.78).

To obtain the C1,α–regularity at the corner, we now prove

Proposition 4.3.11. Let R, λ > 0, α ∈ (0, 1], γ ∈ [0, 1), and M ≥ 1.

(i) Let Ω = ΩR be the domain between two Lipschitz curves as in Proposition
4.3.7. Assume that

Γk ∈ C1 with ‖Γk‖C0,1 ≤M, k = 1, 2, (4.3.85)

in the sense that, for k = 1, 2, there exist c(k) > 0 and f (k) ∈ C1((0, c(k)))
with ‖f (k)‖C0,1([0,c(k)]) ≤M such that, in the appropriate basis in R2,

Ω ⊂ {x2 > f (k)(x1)}, Γk = {x2 = f (k)(x1) : 0 ≤ x1 ≤ c(k)}.
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Moreover, curves Γ1 and Γ2 are separated in the sense that, for k = 1, 2,

B d(x)
M

(x) ∩ ∂Ω = B d(x)
M

(x) ∩ Γk for all x ∈ Γk ∩B 3R
4

(x0), (4.3.86)

where d(x) := |x− x0|. Assume that u ∈ C1(Ω) ∩ C3(Ω) satisfies (4.3.44)
and is a solution of (4.3.45)–(4.3.47) with h ≡ 0. Let (Aij , A)(p, z,x)
satisfy (4.3.49)–(4.3.50) and ellipticity (4.3.53). For k = 1, 2, let

‖B(k)‖2,{|p|+|z|≤2K, x∈Ω} ≤M, (4.3.87)

|DpB
(k)(Du(x), u(x),x)| ≥ λ for all x ∈ Ω. (4.3.88)

Moreover, assume that

|Du(x)−Du(x0)| ≤M |x− x0|α for all x ∈ Ω. (4.3.89)

Then there exist β ∈ (0, α] depending only on (λ,K,M,α), and C > 0
depending only on (λ,K,M,R, α), such that u ∈ C1,β(Ω ∩BR/2(x0)) with

‖u‖1,β,Ω∩BR/2(x0) ≤ C. (4.3.90)

(ii) If, in addition to the previous assumptions,

‖Γk‖1,σ ≤M, k = 1, 2, (4.3.91)

for some σ ∈ (0, 1) in the sense that, for k = 1, 2, functions fk introduced
above satisfy ‖f (k)‖1,σ,[0,c(k)] ≤ M , and if assumptions (4.3.49)–(4.3.50)
and (4.3.87) for (Aij , A) and B(k) are replaced by

‖((Aij , A)(0, 0, ·), Dm
(p,z)(Aij , A)(p, z, ·))‖(−δ),{x0}

1,δ,Ω ≤M (4.3.92)

for any |p|+ |z| ≤ 2K and m = 1, 2, and

‖B(k)‖2,δ,{|p|+|z|≤2K, x∈Ω} ≤M for k = 1, 2, (4.3.93)

with some δ ∈ (0, 1), then

‖u‖(−1−α),{x0}
2,σ,Ω∩BR/2(x0) ≤ C, (4.3.94)

where C depends only on (λ,K,M,R, α, σ, δ).

Proof. In the proof, constants R′, C, and Ck depend only on (λ,K,M,R, α).
We first note that it suffices to prove the estimates in Ω ∩ BR′/2(x0) for

some R′ ∈ (0, R) depending only on (λ,K,M,R, α). Indeed, estimate (4.3.90)
in Ω∩

(
BR/2(x0) \BR′/2(x0)

)
is obtained by a covering argument and by using:

(a) estimates (4.3.10) from Theorem 4.3.2 in Ω ∩ BR′/(10M)(x) for each x ∈
Γk∩(BR/2(x0)\BR′/2(x0)), k = 1, 2, where we have used condition (4.3.86);
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(b) the interior estimates (as in Theorem 4.2.1) applied in the interior balls
BR′/(50M)(x) ⊂ Ω.

These estimates imply

‖u‖1,β,Ω∩(BR/2(x0)\BR′/2(x0)) ≤ C. (4.3.95)

In the conditions of assertion (ii), for the balls described in (b), we use
Theorem 4.3.4 to obtain

‖u‖2,σ,Ω∩(BR/2(x0)\BR′/2(x0)) ≤ C. (4.3.96)

Thus, it remains to prove the estimates in Ω∩BR′(x0), for sufficiently small
R′ ∈ (0, R2 ) which will be chosen. We divide the proof into two steps.

1. We first prove (4.3.90) in Ω ∩BR′(x0). There are two cases.
Case 1: k ∈ {1, 2} and x = (x1, x2) ∈ Γk ∩ BR′(x0). Then x2 = f (k)(x1) in

the appropriate basis. Let rx := min(d(x)
4M , 1), where d(x) = |x−x0|. Define the

function:
v(X) =

u(x + rxX)− u(x)− rxDu(x) ·X
r1+α
x

(4.3.97)

for X ∈ Ω̃x = {X ∈ B1(0) : x + rxX ∈ Ω}. Then (4.3.86) implies that,
in the appropriate basis in R2, Ω̃x = B1(0) ∩ {X2 > Φ(X1)} with Φ(X1) =
1
rx

(
f (k)(x1 + rxX1) − f (k)(x1)

)
. Thus, Φ(0) = 0 and ‖Φ‖C0,1(R) ≤ M , by

(4.3.85). Furthermore, using (4.3.89), we have

‖v‖1,0,Ω̃x
≤ C1, (v,Dv)(0) = (0,0). (4.3.98)

Also, v satisfies an equation of form (4.3.45) in Ω̃x, and a condition that comes
from rescaling (4.3.46) (with h ≡ 0) or (4.3.47) on Γ̃x = B1(0)∩{X2 = Φ(X1)}.
The condition is of a form similar to the original conditions; specifically, the cor-
responding functions (Âij , Â, B̂

(k)) in the equation and the boundary condition
for v are

(Âij , Â, B̂
k)(p, z,X) = (Aij , r

1−α
x A, r−αx Bk)(Y), (4.3.99)

where Y = (Du(x) + rαxp, u(x) + rxDu(x) ·X + rα+1
x z, x + rxX). Denote

V = {(p, z,X) : |p|+ |z| ≤ 2C1, X ∈ Ω̃x},

where C1 is from (4.3.98). Since |Du(x)|+ |u(x)| ≤ K and rx ≤ d(x)
4 ≤ R′

4 , we
choose R′ small to conclude

Y(p, z,x) ∈ {(q, w,y) ∈ R2 × R× Ω : |q|+ |w| ≤ 2K} if (p, z,X) ∈ V .

Noting that

B(k)(Du(x0), u(x0),x0) = 0, |x− x0| = 10rx, rx ≤ 1, |X| ≤ 1 in Ω̃x,
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we see that (Âij , Â) satisfy condition (4.3.53) on Ω̃x, B̂(k) satisfies (4.3.88) on
Ω̃x with unchanged constants, and

‖(Âij , Â)‖0,V + ‖D(p,z)(Âij , Â)‖0,V ≤M for i, j = 1, 2,

‖B̂(k)‖2,V ≤M for k = 1, 2,
(4.3.100)

from (4.3.49)–(4.3.50) and (4.3.87). Then, from Theorem 4.3.2, there exist β̂ ∈
(0, 1) and C > 0 depending only on (λ,K,M,α) such that

‖v‖1,β̂,Ω̃x∩B1/2(0) ≤ C. (4.3.101)

Case 2: x ∈ Ω and dist(x, ∂Ω) ≥ d(x)
10M . Let rx := d(x)

10M . Defining v(X) by
(4.3.97) as in Case 1, v is now defined on B1(0) and satisfies the same rescaled
elliptic equation in B1(0) as in Case 1, with (Âij , Â) satisfying (4.3.100) for
Ω̃x = B1(0). The interior estimates (e.g., Theorem 4.2.1) imply that, for any
κ ∈ (0, 1),

‖v‖2,κ,B1/2(0) ≤ C(κ), (4.3.102)

where C(κ) depends only on (λ,K,M,R, α, κ).
Now, defining β = min{β̂, α}, we note that estimates (4.3.89) and (4.3.101)–

(4.3.102) hold with exponent β, which also fixes constant C in (4.3.102), de-
pending on (λ,K,M,R, α). These estimates imply (4.3.90) on Ω∩BR′(x0) by a
standard argument; cf. the proof of Lemma 4.2.7 or the proof of [131, Theorem
4.8]. Combining this with (4.3.95), we obtain the full estimate (4.3.90).

2. Now we prove (4.3.94) on Ω ∩ BR′(x0) under the assumptions of part
(ii). We consider Cases 1–2 as in Step 1 above. In Case 1, by using the nota-
tions introduced there, assumption (4.3.91) implies that ‖Φ‖C1,σ(R) ≤ M , and
assumptions (4.3.92)–(4.3.93) imply that

‖(Âij , Â)‖1,δ,V ≤ C(M,K,α, δ) for i, j = 1, 2,

‖B̂(k)‖2,δ,V ≤M for k = 1, 2.
(4.3.103)

Thus, for the boundary value problem introduced in Case 1, we can use Theorem
4.3.4 to obtain the stronger estimate:

‖v‖2,σ,Ω̃x∩B1/2(0) ≤ C, (4.3.104)

instead of (4.3.101).
In Case 2, we employ estimate (4.3.102) with κ = σ. These estimates and

(4.3.89) imply (4.3.94).
Finally, we extend estimate (4.3.94) from Ω ∩ BR′(x0) to Ω ∩ BR/2(x0) by

using (4.3.96).

Remark 4.3.12. Condition (4.3.92) implies (4.3.49)–(4.3.50) with γ = 1 − δ
and an updated constant M , depending only on M in (4.3.92) and K.
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Combining Proposition 4.3.7 with Proposition 4.3.11, we obtain the following
C1,α–regularity:

Theorem 4.3.13. Let R > 0, γ ∈ [0, 1), λ ∈ (0, 1], σ ∈ (0, 1), and K,M ≥ 1.

(i) Let Ω ≡ ΩR be as in Proposition 4.3.7 with

‖Γk‖1,σ ≤M for k = 1, 2. (4.3.105)

We also assume that curves Γ1 and Γ2 satisfy (4.3.86). Let u ∈ C1(Ω) ∩
C2(Ω ∪ Γ1 ∪ Γ2) ∩ C3(Ω) be a solution of (4.3.45)–(4.3.47) with h ≡ 0 in
(4.3.46), satisfying (4.3.44). Let (Aij , A)(p, z,x) satisfy (4.3.49)–(4.3.50)
and ellipticity (4.3.53). Assume that B(k)(p, z,x) satisfy (4.3.87)–(4.3.88)
for k = 1, 2, and

DpB
(k)(Du(x), u(x),x) · ν ≥ λ for all x ∈ Γk, (4.3.106)

|detG(Du(x), u(x),x)| ≥ λ for all x ∈ Γ1 ∪ Γ2, (4.3.107)

where G(p, z,x) is the matrix with columns DpB
(k)(p, z,x), k = 1, 2.

Then there exist β ∈ (0, 1) depending only on (λ,K,M), and C > 0 de-
pending only on (λ,K,M, γ,R, σ), such that u ∈ C1,β(Ω ∩BR/2), and
(4.3.90) holds.

(ii) Replace conditions (4.3.49)–(4.3.50) and (4.3.87) on (Aij , A,B
(k))(p, z,x)

by conditions (4.3.92)–(4.3.93) for some δ ∈ (0, 1) with all the other as-
sumptions unchanged. Then u satisfies (4.3.94) with α ∈ (0, 1) depending
only on (λ,K,M) and C > 0 depending only on (λ,K,M,R, δ, σ).

Proof. By Proposition 4.3.7 with h ≡ 0, we have

|B(k)(Du(x), u(x),x)−B(k)(Du(x0), u(x0),x0)| ≤ C|x− x0|α (4.3.108)

for any x ∈ Ω ∩ BR′(x0), k = 1, 2, where α and C depend only on (λ,K,M),
and R′ depends only on (λ,K,M, γ, σ). Now, we apply Proposition 4.3.9 with
W = Ω ∩ BR′(x0), and note that (4.3.75)–(4.3.76) hold, by (4.3.87), and that
(4.3.77) holds, by (4.3.107). Then we have

|Du(x)−Du(x0)| ≤ C|x− x0|α for all x ∈ Ω ∩BR′(x0), (4.3.109)

where C = C(λ,K,M, γ, σ).
Now estimate (4.3.90) for some β ∈ (0, α] depending only on (λ,K,M, γ) and

the fact that C also depends on (R, σ) directly follow from Proposition 4.3.11(i)
applied in Ω ∩ BR′(x0). Then we use Theorems 4.2.1 and 4.3.2 to extend this
estimate from Ω ∩ BR′/2(x0) to Ω ∩ BR/2(x0) by arguing as in the proof of
(4.3.95).

If (Aij , A,B
(k))(p, z,x) satisfy (4.3.92)–(4.3.93) for some δ ∈ (0, 1), we use

Remark 4.3.12 and apply Proposition 4.3.7 with h ≡ 0 to obtain (4.3.108) with
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α and C depending only on (λ,K,M), and R′ depending only on (λ,K,M, δ, σ).
Note that α is independent of δ. From this, arguing as above, we obtain (4.3.109)
with C = C(λ,K,M, δ, σ). Using (4.3.109), we can apply Proposition 4.3.11(ii)
to obtain (4.3.94) in Ω ∩ BR′(x0). Then we apply Theorems 4.2.1 and 4.3.4 to
extend this estimate from Ω ∩ BR′/2(x0) to Ω ∩ BR/2(x0) by arguing as in the
proof of (4.3.96).

Next we obtain a refined version of estimate (4.3.94) in Theorem 4.3.13(ii):
Under the conditions of Theorem 4.3.13(ii), the Hölder exponent α in (4.3.94)
can be chosen independently of ‖u‖C0,1(Ω), constant γ, and some higher regular-
ity norms of the ingredients of the equation and the oblique boundary conditions
(even though these norms still affect estimate (4.3.94) through constant C). This
form of (4.3.94) will be used in §12.7.2 and §17.4 via Lemma 4.5.12.

Remark 4.3.14. In what follows, constant λ is used in the conditions that
affect the Hölder exponent of the resulting estimates, and the other constants
(M,K, . . . ) are used for the conditions that do not affect the Hölder expo-
nent, so that the Hölder exponent in the resulting estimates depends only on
λ. This sometimes leads to a redundancy in the conditions (e.g., in (4.3.92)
and (4.3.110) of Theorem 4.3.15; we include both, since the weaker condition
(4.3.110) has bound λ, and the stronger condition (4.3.92) does not).

Theorem 4.3.15. Assume that all the conditions of Theorem 4.3.13(ii) hold:
Ω ≡ ΩR is as in Proposition 4.3.7, and curves Γ1 and Γ2 satisfy (4.3.86)
and (4.3.105). Furthermore, u ∈ C1(Ω) ∩ C2(Ω ∪ Γ1 ∪ Γ2) ∩ C3(Ω) is a so-
lution of (4.3.45)–(4.3.47) with h ≡ 0 and satisfies (4.3.44), where functions
(Aij , A,B

(k))(p, z,x) satisfy (4.3.53), (4.3.88), (4.3.92)–(4.3.93), and (4.3.106)–
(4.3.107). Moreover, assume

‖Aij‖0,{|p|+|z|≤2K, x∈Ω} ≤ λ−1 for i, j = 1, 2, (4.3.110)

‖DpB
(k)‖0,{|p|+|z|≤2K, x∈Ω} ≤ λ−1 for k = 1, 2; (4.3.111)

see Remark 4.3.14. Then there exist α̂ ∈ (0, 1) depending only on λ, and C > 0
depending only on (λ,K,M,R, δ, σ) such that

‖u‖(−1−α̂),{x0}
2,σ,Ω∩BR/2 ≤ C. (4.3.112)

Proof. The assumptions above allow us to apply Theorem 4.3.13(ii) to obtain
(4.3.94) with α ∈ (0, 1) depending only on (λ,K,M), and C > 0 depending only
on (λ,K,M,R, δ, σ). We denote this α by α1.

Then the main part of proof is to use estimate (4.3.94) and the additional
assumptions (4.3.110)–(4.3.111) to refine the argument for Proposition 4.3.7
(with h ≡ 0) to obtain (4.3.57) with α depending only on λ, which is α̂ in
(4.3.112). We do that in Step 1 now.

1. Note that B(k) are the same as in Proposition 4.3.7. We set h ≡ 0. Then
the assumptions of Proposition 4.3.7 are satisfied with γ = 1− δ; we use this γ
and follow the proof of Proposition 4.3.7 with the changes specified below.
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In the remaining part of Step 1, constants α, µ, L̄, and Cλ depend only on
λ, the universal constant C depends only on (λ, γ,K,M), and R′ depends on
(λ, γ,K,M, σ), unless otherwise specified. We use the notations introduced in
the proof of Proposition 4.3.7, especially the notations in (4.3.58).

Then, using (4.3.55) and following the calculations in Step 3 of the proof
of Theorem 4.3.2, we find that D2u and B(1) satisfy (4.3.19) and (4.3.21) with
(Q,R)(x) satisfying (4.3.22) in Ω. Using (4.3.19), (4.3.94), and assumptions
(4.3.92)–(4.3.93), we have

|Dg(1)(x)| ≤ C|Du(x)|+ C ≤ Crα1−1 for any x ∈ ΩR/2, (4.3.113)

where r = |x|.
Furthermore, g(1) satisfies equation (4.3.68) in Ω with

|(mij ,mi,m)(x)| ≤ C in Ω.

Denote

q̃i =

2∑

j=1

mijDjg
(1) + r−γmi. (4.3.114)

Then equation (4.3.68) takes the form:

2∑

i,j=1

aijDijg
(1) +

2∑

i=1

q̃iDig
(1) + r−γm = 0. (4.3.115)

Moreover, from (4.3.113)–(4.3.114), we have

|q̃i(x)| ≤ Cr−γ1 in ΩR/2, (4.3.116)

where γ1 = max{1− α1, γ} ∈ (0, 1). Note that this is the main point where we
have used (4.3.94) to improve the estimates in the proof of Proposition 4.3.7: We
have rewritten equation (4.3.68) as a linear elliptic equation with |(aij ,m)| ≤ C
and the coefficients of the first-order terms satisfying (4.3.116).

Now we define w(x) by (4.3.61) with µ = 1
2 and L̄ = 3

λ2 . Then there exist
α0 ∈ (0, 1

2 ] depending only on λ, and R′ ∈ (0, R2 ) depending only on (λ,M) so
that, for every α ∈ (0, α0) and T : Γ2 ∩ BR′ 7→ R, we obtain (4.3.62)–(4.3.63)
with µ = 1

2 . We will fix α later, depending only on λ, and further reduce R′ in
the following calculations.

Define
v(x) = g(1)(x) +

4M

(R′)α
w(x) in ΩR′ . (4.3.117)

Then, by (4.3.58), (4.3.62), and (4.3.93), we have

v ≥ −‖g(1)‖L∞(V ) +
1

2

4M

(R′)α
(R′)α

= −‖g(1)‖L∞(V ) + 2M ≥ 0 on Ω ∩ ∂BR′(x0).

(4.3.118)
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Also, since h ≡ 0 so that B(1)|Γ1
≡ 0, we have

v(x) =
4M

(R′)α
w(x) ≥ 0 on Γ1 ∩BR′(x0). (4.3.119)

Now, using (4.3.115)–(4.3.116) and (4.3.62) with µ = 1
2 , we calculate in Ω ∩

BR′(x0):

2∑

i,j=1

aijDijv +
2∑

i=1

q̃iDiv =
4M

(R′)α

( 2∑

i,j=1

aijwij +
2∑

i=1

q̃iwi

)
− r−γm

≤ 4M

(R′)α

(
− 1

C
rα−2 + Cr−γ1+α−1 + Cr−γ(R′)α

)

=
4M

(R′)α
rα−2

(
− 1

C
+ Cr1−γ1 + Cr2−α−γ(R′)α

)
.

Using that α, γ, γ1 ∈ (0, 1) (so that 2− α− γ > 1− γ > 0) and r ∈ (0, R′), and
choosing R′ small depending only on (C, γ, γ1), i.e., on (λ,K,M, γ, δ), we have

2∑

i,j=1

aijDijv +
2∑

i=1

q̃iDiv < 0 in Ω ∩BR′(x0). (4.3.120)

It remains to derive a differential inequality for v on Γ2. Repeating the
argument starting from (4.3.71), we obtain (4.3.72), where

m̃ = −aννB(1)
pτ
B(2)

pτ
+B(1)

pν

(
aττB

(2)
pν
− 2aντB

(2)
pτ

)
.

Using (4.3.110)–(4.3.111), we obtain

|m̃| ≤ Cλ on Γ2,

where we recall that constant Cλ depends only on λ. Then assumptions (4.3.53)
and (4.3.56) allow us to solve for T with |T (x)| ≤ Cλ on Γ2. From (4.3.54),
B

(2)
pν ≥ λ. Using this, we obtain (4.3.73), which yields |(y1, y2)| ≤ Cλ on Γ2

by using (4.3.110)–(4.3.111) and (4.3.53) again. It follows that (4.3.71) holds.
With this, using (4.3.63) with µ = 1

2 and L̄ = 3
λ2 , |T (x)| ≤ Cλ, and recalling

that θ ∈ [−π2 , π2 ] by (4.3.59)–(4.3.60), we obtain that, on Γ2 ∩ BR′(x0), v(x) in
(4.3.117) satisfies

vν + Tvτ =
4M

(R′)α
(
wν + Twτ

)
+ g(1)

ν + Tg(1)
τ

≤ −4M
{

(
1

Cλ
− C(R′)σ − Cλ

(
α+ C(R′)σ

)} rα−1

(R′)α
+ C.

Now we choose α and R′ small so that the first term of the expression in the
braces dominates the other terms. For that, we first choose α = 1

10C2
λ
(which



132 CHAPTER 4

fixes α ∈ (0, 1) depending only on λ) and then choose R′ so small that C(1 +
Cλ)(R′)σ ≤ 1

10Cλ
to deduce that, for r ∈ (0, R′),

vν + Tvτ ≤ −
M

Cλ

rα−1

(R′)α
+ C ≤ −M

Cλ

(R′)α−1

(R′)α
+ C = −M

Cλ
(R′)−1 + C.

Now, choosing R′ = R′(λ,M, γ, σ,K) small, we obtain (4.3.74). Then, following
the rest of the argument in the proof of Proposition 4.3.7, we conclude the proof
of (4.3.57) with B(1)(Du(x0), u(x0),x0) = 0, since h ≡ 0, and with α chosen
above so that α = α(λ), C = C(λ, δ,K,M), and R′ = R′(λ, δ,K,M, σ), where
we recall that γ = 1− δ.

We also obtain a similar estimate for B(2)(Du(x), u(x),x). Denote by α̂ the
exponent α chosen above so that α̂ = α̂(λ).

2. With both B(k), k = 1, 2, satisfying (4.3.57) with α = α̂, we apply
Proposition 4.3.9 with W = Ω ∩ BR′(x0) and note that (4.3.75)–(4.3.76) hold
by (4.3.93), and that (4.3.77) holds by (4.3.107). Then we have

|Du(x)−Du(x0)| ≤ C|x− x0|α̂ for any x ∈ Ω ∩BR′(x0),

where C and R′ depend only on (λ,K,M, ε0, δ, σ). Using (4.3.44), we have

|Du(x)−Du(x0)| ≤ C|x− x0|α̂ for any x ∈ Ω ∩BR(x0)

with an updated constant C, depending only on R, in addition to the previous
parameters. Now we conclude the proof by applying Proposition 4.3.11(ii).

Next, we consider the case that the solution is a priori assumed to be only
Lipschitz up to the corner. Then, following [192, Theorem 2.1], we show the
C1,α–regularity up to the corner under stronger assumptions on the functional
independence of the boundary conditions.

Theorem 4.3.16. Let R > 0, λ ∈ (0, 1], σ, δ ∈ (0, 1), and K,M ≥ 1. Let
Ω := ΩR be as in Proposition 4.3.7, and let curves Γ1 and Γ2 satisfy (4.3.86)
and (4.3.105). Let u ∈ C0,1(Ω)∩C2(Ω \ {x0})∩C3(Ω) satisfy (4.3.44) and be a
solution of (4.3.45)–(4.3.47) with h ≡ 0 in (4.3.46). Let (Aij , A,B

(k))(p, z,x)
satisfy (4.3.53), (4.3.88), (4.3.92)–(4.3.93), (4.3.106), (4.3.110)–(4.3.111), and
the following functional independence condition: Map H : R2 7→ R2 defined by
H(p) := (B(1), B(2))(p, u(x0),x0) satisfies

H : R2 7→ R2 is one-to-one and onto, (4.3.121)

H ∈ C1(R2; R2), ‖DH‖L∞(R2) ≤ λ−1, (4.3.122)

|detDH(p)| ≥ λ for all p ∈ R2. (4.3.123)

Then there exist α̂ ∈ (0, 1) depending only on λ, and C > 0 depending only on
(λ,K,M, δ, σ,R), such that (4.3.112) holds.
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Proof. In the argument below, constants α and R̃ depend only on λ, whereas
constants C, R′, and R′′ depend only on (λ,K,M, δ,R, σ). We also set γ = 1−δ
based on Remark 4.3.12. Then the proof consists of five steps.

1. We combine (4.3.123) with (4.3.44) and (4.3.111) to obtain (4.3.107) on
(Γ1 ∪ Γ2) ∩ BR̃(x0) for some small R̃ ∈ (0, R) depending only on (K,λ,R).
In order to prove (4.3.112) with R̃ instead of R, it suffices to show that u ∈
C1(Ω ∩BR̃(x0)): Indeed, we can then apply Theorem 4.3.15 in Ω ∩ BR̃(x0)
and extend (4.3.112) in Ω ∩ BR̃/2(x0) to the similar estimate in Ω ∩ BR/2(x0)

by applying the interior estimates (Theorem 4.2.1) and the estimates near the
C1,σ–boundaries (Theorem 4.3.4), as in the proof of (4.3.96).

Therefore, it remains to show that u ∈ C1(Ω ∩BR̃(x0)).

2. As a preliminary step, we show that, for sufficiently small R̃,

|D2u(x)| ≤ C

|x− x0|
for any x ∈ Ω ∩BR̃(x0). (4.3.124)

Now the argument repeats the proof of Proposition 4.3.11: For x ∈ Ω ∩
BR̃(x0), we denote rx := |x−x0|

M and define

v(X) :=
u(x + rxX)− u(x)

rx
(4.3.125)

for X ∈ Ω̃x = {X ∈ B1(0) : x + rxX ∈ Ω}. Then (4.3.44) implies that v(X)
satisfies (4.3.98) with C1 = K. We argue as in the proof of Proposition 4.3.11
by considering Cases 1–2 and deriving the equation and boundary condition for
v, which have the same properties in the present case as in Proposition 4.3.11.
Indeed, Ω and Γk now have the same properties as in Proposition 4.3.11(ii).
Thus, as in Step 2 of the proof of Proposition 4.3.11, we find that, in Case 1,
i.e., when x ∈ Γk ∩BR̃(x0), in the appropriate basis in R2, Ω̃x = B1(0)∩{X2 >
Φ(X1)} with Φ(0) = 0 and ‖Φ‖C1,σ(R) ≤ M . Also, v satisfies an equation of
form (4.3.45) in Ω̃x, a condition of form (4.3.47) on Γ̃x = B1(0)∩{X2 = Φ(X1)},
and the corresponding functions (Âij , Â, B̂

(k)) in the equation and the boundary
condition for v are

(Âij , Â, B̂
(k))(p, z,X) = (Aij , rxA,B

(k))(p, u(x) + rxz, x + rxX). (4.3.126)

Then Âij and B̂(k) satisfy (4.3.53) and (4.3.88) on Ω̃x with the unchanged
constants, respectively. Moreover, since |u(x)| ≤ K by (4.3.44), then (4.3.92)–
(4.3.93) imply

‖(Âij , Â)‖
C1,δ({|p|+|z|≤2K, X∈Ω̃x})

≤M,

‖B̂(k)‖
2,δ,{|p|+|z|≤2K, x∈Ω̃x}

≤M for k = 1, 2,
(4.3.127)

by using rx ≤ R̃ and further reducing R̃ if necessary.
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Thus, following the argument in Proposition 4.3.11, we obtain estimate
(4.3.104) in Case 1 and (4.3.102) in Case 2. This implies (4.3.124).

3. We now show that, for k = 1, 2,

|B(k)(Du(x), u(x),x)| ≤ C|x− x0|α for all x ∈ Ω ∩BR′(x0). (4.3.128)

We first show (4.3.128) with k = 1. We follow the proof of Proposition
4.3.7, with R replaced by R̃, and h ≡ 0. Let w be defined by (4.3.61), with the
parameters chosen so that (4.3.62)–(4.3.63) are satisfied. We use the notations
in (4.3.58) and define

v(x) = g(1)(x) + Lw(x), (4.3.129)

where L is defined by (4.3.65). Then v ∈ L∞(Ω)∩C1(Ω \ {x0})∩C2(Ω), where
we have used (4.3.44) to conclude that v ∈ L∞(Ω). By (4.3.46) with h ≡ 0, and
(4.3.62), we have

v(x) = Lw(x) > 0 on Γ1 ∩BR′(x0). (4.3.130)

Furthermore, using that (4.3.107) holds on (Γ1 ∪ Γ2) ∩ BR̃(x0), as we have
discussed in Step 1, we can repeat the calculations in the proof of Proposition
4.3.7. Then we obtain that v satisfies (4.3.66), and (4.3.70) with qi defined by
(4.3.69), as well as (4.3.74) if parameters (µ, α,R′) are chosen appropriately.
However, since v is not known to be continuous up to x0 ∈ ∂Ω ∩ BR′(x0), we
cannot apply the maximum principle in Ω ∩BR′(x0).

Then we construct a comparison function which becomes infinite at x0.
Specifically, we show that, for some R′′ ∈ (0, R], there exist both a function
W ∈ C∞(Ω \ {x0}) and a constant β > 0 such that

2∑

i,j=1

aijDijW +
2∑

i=1

qiDiW < 0 in Ω ∩BR′′(x0), (4.3.131)

Wν + TWτ < 0 on Γ2 ∩BR′′(x0), (4.3.132)

W ≥ 1

2
|x− x0|−β in Ω ∩BR′′(x0), (4.3.133)

where (aij , qi)(x) are the same as in (4.3.70), and T (x) is the same as in (4.3.74).
The proof largely repeats the existence proof of w satisfying (4.3.62)–(4.3.63),
given in [111, Page 97]. We only sketch the proof here.

We again use the polar coordinates (r, θ), centered at x0, chosen so that
(4.3.59)–(4.3.60) hold. Then we set

W (r, θ) = r−βh̄(θ), h̄(θ) = 1− µ̄e−L̂θ, (4.3.134)

where the positive constants β, µ̄, L̂, and R′′ will be fixed below. More specifi-
cally, we will choose (β, µ̄, R′′) depending on (λ,K,M,R, γ, σ) and L̂, and even-
tually choose a large L̂ depending only on (λ,K,M,R, γ, σ).
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For each L̂ ≥ 1, we choose µ̄ = 1
2e
−π2 L̂ so that h̄(θ) ≥ 1

2 for all θ ∈ [−π2 , π2 ].
Then (4.3.133) holds. We fix such a constant µ̄ from now on.

Now we show (4.3.131). Fix a point x ∈ Ω ∩ BR′′(x0), and rotate the
Cartesian coordinates in R2 so that (x1, x2) become the radial and tangential
coordinates at x. We denote by arr, arθ, etc. the coefficients of equation
(4.3.131) in these rotated coordinates. As usual, C is a universal constant that
may be different at each occurrence, depending only on (λ,K,M,R, γ, σ). We
use that β ∈ (0, 1) and 1

2 ≤ h(θ) ≤ 1 to compute at x:

2∑

i,j=1

aijDijW

= arrWrr + 2arθ(r
−1Wrθ − r−2Wθ) + aθθ(r

−2Wθθ + r−1Wr)

=
(
µ̄L̂e−L̂θ

(
− aθθL̂− 2arθ(β + 1)

)
+ β

(
(β + 1)arr − aθθ

)
h̄(θ)

)
r−β−2

≤
(
µ̄L̂e−L̂θ

(
− L̂

C
+ C

)
+ Cβ

)
r−β−2.

Then, for any L̂ ≥ 10C2, using that µ̄ = 1
2e
−π2 L̂ > 0, we can choose β(L̂) so

small that

2∑

i,j=1

aijDijW ≤ −µ̄
L̂2

2C
e−L̂θr−β−2.

Next, we estimate qi by using expression (4.3.69) with L given by (4.3.65) and
|(mij ,mi)| ≤ C. First we note that |Dv| ≤ C

r by (4.3.129), since u satisfies
(4.3.44), (4.3.124), and L|Dw| ≤ C

r by (4.3.62) and (4.3.65). Using the last
estimate in the second term of (4.3.69) as well, and noting that γ < 1, we
conclude that

|qi| ≤
C

r
.

Then we have

2∑

i,j=1

aijDijW +
2∑

i=1

qiDiW ≤ −µ̄
L̂2

2C
e−L̂θr−β−2 +

C

r
|DW |

≤
(
− µ̄ L̂

2

2C
e−L̂θ + C(β + µ̄L̂e−L̂θ)

)
r−β−2

=
(
µ̄L̂e−L̂θ(− L̂

2C
+ C) + Cβ

)
r−β−2.

We first choose L̂ large so that − L̂
2C +C ≤ − L̂

4C , i.e., L̂ ≥ 4C2. Then, for such
L̂, using that µ̄ = 1

2e
−π2 L̂ > 0 and θ ∈ [−π2 , π2 ], we can choose β(L̂) small so

that the last expression is negative, i.e., that (4.3.131) holds.
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To show (4.3.132), we use (4.3.59)–(4.3.60) to see that, at x ∈ Γ2, choosing
ν to be the interior unit normal to Γ2 and τ the unit tangent vector pointing
away from the corner,

Wν = −1 +O(rσ)

r
Wθ +O(rσ)Wr, Wτ =

(
1 +O(rσ)

)
Wr +

O(rσ)

r
Wθ,

where O(rσ) denotes any quantity satisfying that |O(rσ)| ≤ Crσ. Then, differ-
entiating (4.3.134) and using that |T (x)| ≤ C, we have

Wν + TWτ ≤
(
− µ̄L̂e−L̂θ + Cβ + Crσ

)
r−β−1

≤
(
− µ̄L̂e−L̂θ + Cβ + C(R′′)σ

)
r−β−1.

Therefore, for any L̂ ≥ 1, using that µ̄ = 1
2e
−π2 L̂ > 0, we can choose both β and

R′′ small such that the last expression is negative for each θ ∈ [−π2 , π2 ] so that
(4.3.132) holds. Thus, we fix L̂ sufficiently large to satisfy all the conditions
stated above, which fixes (µ̄, β, R′′). This determines W satisfying (4.3.131)–
(4.3.133).

Now we note that, from the proof of Proposition 4.3.7 applied above to
function v defined by (4.3.129), it follows that R′ can be replaced by any R̂ ∈
(0, R′] without change of (µ, α), and the resulting function v (which changes
because we now use R̂ in (4.3.65)) satisfies (4.3.70) in Ω ∩ BR̂(x0), as well as
(4.3.66), (4.3.74), and (4.3.130) on the corresponding boundary parts of Ω ∩
BR̂(x0). Thus, replacing R′ by min{R′, R′′}, we can assume without loss of
generality that R′′ ≥ R′.

Now, for any ε ∈ (0, 1), we can define

vε = v + εW in Ω ∩BR′(x0).

Then vε ∈ C1(Ω \ {x0}) ∩ C2(Ω) satisfies (4.3.70) and (4.3.74), and vε ≥ 0 on(
Ω∩∂BR′(x0)

)
∪
(
Γ1∩BR′(x0)

)
. Also, since v ∈ L∞(Ω) andW satisfies (4.3.133),

it follows that there exists rε > 0 such that vε > 0 in Brε(x0). Therefore, for
any ρ ∈ (0, rε), applying the maximum principle in Ω ∩ (BR′(x0) \ Bρ(x0)),
we see that vε ≥ 0 in that domain. Sending ρ → 0+, we find that vε ≥ 0 in
Ω ∩BR′(x0). Sending ε→ 0+, we conclude that v ≥ 0 in Ω ∩BR′(x0), i.e.,

B(1)(Du(x), u(x),x) + Lw(x) ≥ 0 in Ω ∩BR′(x0).

By a similar argument,

−B(1)(Du(x), u(x),x) + Lw(x) ≥ 0 in Ω ∩BR′(x0).

Combining these estimates together, we conclude (4.3.128) for k = 1. By a
similar argument, we also conclude (4.3.128) for k = 2.

4. Using (4.3.121), we can define

p0 := H−1(0).



RELEVANT RESULTS FOR NONLINEAR ELLIPTIC EQUATIONS OF SECOND ORDER 137

In this step, we now show that

|Du(x)− p0| ≤ C|x− x0|α for all x ∈ Ω ∩BR′(x0) (4.3.135)

with α > 0 depending only on (λ,K,M, γ), and C > 0 depending also on (σ,R).
Denote B(p, z,x) := (B(1), B(2))(p, z,x). Let x ∈ Ω ∩BR′(x0). Then

H(Du(x)) = B(Du(x), u(x),x) +
(
B(Du(x), u(x0),x0)−B(Du(x), u(x),x)

)
.

From (4.3.128), |B(Du(x), u(x),x)| ≤ C|x− x0|α. From (4.3.44) and (4.3.87),

|B(Du(x), u(x0),x0)−B(Du(x), u(x),x)| ≤ C|x− x0|,

which implies
|H(Du(x))| ≤ C|x− x0|α.

Also, from (4.3.121)–(4.3.123) and the inverse function theorem, map H−1 is in
C1(R2; R2) with ‖DH−1‖L∞(R2) ≤ C. Then

|Du(x)− p0| = |H−1
(
H(Du(x))

)
−H−1(0)| ≤ C|H(Du(x))− 0| ≤ C|x− x0|α.

Thus, (4.3.135) is proved.
5. Now we show that u is differentiable at x0 with Du(x0) = p0.
We recall that Ω is as in Proposition 4.3.7. In particular, Ω is contained in

x0 + {x : x2 > τ |x1|} for x0 ∈ ∂Ω and τ > 0, and is between curves Γ1 and Γ2

passing through x0, and (4.3.86) holds. Then, using (4.3.105), we can choose a
coordinate system such that x0 = 0 and, for small R′ = R′(M,σ),

Ω ∩ {x1 < R′} = {x : 0 < x1 < R′, f1(x1) < x2 < f2(x1)}

with ‖fk‖C1,σ([0,R′]) ≤ C and fk(0) = 0, k = 1, 2. Let x ∈ Ω ∩ BR′ . Then
x = (x1, x2) in our coordinate system with x1 ∈ (0, R′) and x2 = κf1(x1) +
(1 − κ)f2(x1) for some κ ∈ (0, 1), and f̄(s) := κf1(s) + (1 − κ)f2(s) satisfies
‖f̄‖C1,σ([0,R′]) ≤ C, f̄(0) = 0, and (s, f̄(s)) ∈ Ω for each s ∈ [0, x̄1].

With this, using that x0 = 0 in our coordinates and applying (4.3.135), we
have

|u(x)− u(0)− p0 · x| =
∣∣∣
∫ x1

0

(Du(s, f̄(s))− p0) · (1, f̄ ′(s))ds
∣∣∣ ≤ C|x1|1+α

≤C|x|1+α.

Therefore, Du(0) = p0, i.e., Du(x0) = p0.
Combining this with (4.3.135), we conclude that Du is continuous at x0.

Thus, u ∈ C1(Ω ∩BR̃(x0)). Now the argument in Step 1 implies (4.3.112).

We note one case (important for our applications in later chapters) in which
conditions (4.3.121)–(4.3.123) are satisfied:
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Lemma 4.3.17. Let λ, κ ∈ (0, 1). Let Ω, x0, and Γk, k = 1, 2, be as in
Theorem 4.3.16. Let B(k) ∈ C1(R2 × R × Γk), k = 1, 2, satisfy (4.2.102) with
some δ ≥ 0 and functions L(k)(p, z,x) = b(k)(x) · p + b

(k)
0 (x)z − h(k)(x) and

v(k)(x), where b(k) = (b
(k)
1 , b

(k)
2 ), b

(k)
0 , h(k), v(k) ∈ C(Γk),

|b(k)(x0)| ≤ λ−1 for k = 1, 2, (4.3.136)

and ∣∣∣∣
b(1)

|b(1)| −
b(2)

|b(2)|

∣∣∣∣ ≥ κ at x0. (4.3.137)

If δ in (4.2.102) is small, depending only on (λ, κ), then, for any z0 ∈ R, map
H : R2 7→ R2 defined by H(p) := (B(1), B(2))(p, z0,x0) satisfies (4.3.121)–
(4.3.123) with some λ̃(λ, κ) ∈ (0, 1).

Proof. Fix z0 ∈ R. Denote L(p) = (L(1), L(2))(p, z0,x0). Let L : R2 7→ R2

be defined by L(p) := L(p) − L(0) for p ∈ R2. Then L is a linear map,
namely, L(p) = Bp, where B is the 2 × 2 matrix with rows b(k)(x0). Thus,
(4.3.136)–(4.3.137) imply that L satisfies (4.3.121)–(4.3.123) with λ̂ ∈ (0, 1)
depending only on (λ, κ). In particular, the constant matrix B is invertible,
with ‖B−1‖ ≤ C(κ, λ).

Using the second inequality in (4.2.102) forBk(p, z0,x0), k = 1, 2, and noting
that DpL(p, z,x0) = B for any (p, z), it follows that, if δ is small depending
only on (λ, κ), H satisfies (4.3.122)–(4.3.123) with λ̃ = λ̂

2 .
Therefore, it remains to prove (4.3.121) for H. In the following calculations,

we use that L satisfies (4.3.121)–(4.3.123). Then, for any p̂, p̃ ∈ R2, we have

p̂− p̃ = L−1
(
H(p̂)−H(p̃)− q(p̂, p̃)

)
,

where
q(p̂, p̃) = H(p̂)−H(p̃)− L(p̂− p̃). (4.3.138)

Since L(p) = Bp for any p ∈ R2, where B is a constant matrix,

|q(p̂, p̃)| =
∣∣∣∣
∫ 1

0

(
DH(tp̂ + (1− t)p̃)− B

)
(p̂− p̃)dt

∣∣∣∣

≤
2∑

k=1

∣∣∣∣
∫ 1

0

(
DpB

(k)(tp̂ + (1− t)p̃, z0,x0)− b(k)(x0)
)
· (p̂− p̃)dt

∣∣∣∣

≤ δ|p̂− p̃|,

where we have used the second inequality in (4.2.102) and the fact that

DpL
(k)(p, z,x0) = b(k)(x0) for any (p, z).

If δ is small, depending only on (λ, κ), then

|L−1
(
q(p̂, p̃)

)
| ≤ C|q(p̂, p̃)| ≤ 1

2
|p̂− p̃| for all p̂, p̃ ∈ R2, (4.3.139)
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so ∣∣L−1
(
H(p̂)−H(p̃)

)∣∣ ≥ 1

2
|p̂− p̃|,

which implies that H is one-to-one on R2.
Now we show that H(R2) = R2. Let v ∈ R2. Then H(p) = v if and only if

p = Gv(p) is a fixed point of map Gv(p) = L−1
(
v + (L(p)−H(p))

)
. We show

that Gv : R2 7→ R2 is a contraction map if δ is small, depending only on (λ, κ),
so that (4.3.139) holds. Indeed, we then see that

|Gv(p̂)−Gv(p̃)| = |L−1
(
q(p̂, p̃)

)
| ≤ 1

2
|p̂− p̃|.

Therefore, a fixed point of Gv exists for any v ∈ R2, which implies that H(R2) =
R2.

Next, we prove the regularity of the solution at a corner without assuming its
Lipschitz bound a priori. Instead, we assume the linear growth of the solution
from the corner.

Theorem 4.3.18. Let R > 0, κ > 0, λ ∈ (0, 1], σ, δ̂ ∈ (0, 1), and L,M ≥ 1.
Let Ω ≡ ΩR be as in Theorem 4.3.16, satisfying (4.3.86) and (4.3.105). Let
u ∈ C(Ω) ∩ C2(Ω \ {x0}) ∩ C3(Ω) be a solution of (4.3.45)–(4.3.47) with h ≡ 0
in (4.3.46) and satisfy

|u(x0)| ≤ L, (4.3.140)
|u(x)− u(x0)| ≤ L|x− x0| for all x ∈ Ω. (4.3.141)

Let (Aij , A,B
(k))(p, z,x) satisfy (4.3.53), (4.3.88), (4.3.92)–(4.3.93), (4.3.106),

and (4.3.110)–(4.3.111) with K =∞, and δ̂ instead of δ.
Furthermore, assume that B(k)(p, z,x), for k = 1, 2, satisfy (4.2.102) with

some δ ≥ 0 and functions L(k)(p, z,x) = b(k)(x) · p + b
(k)
0 (x)z − h(k)(x) and

v(k)(x) for b(k), b
(k)
0 , h(k), v(k) ∈ C(Γk) satisfying (4.3.136) and

‖v(k)‖(−1−α),{x0}
2,α,Ω + ‖(b(k), h(k))‖(−α),{x0}

1,α,Γ(k) ≤M (4.3.142)

for k = 1, 2. Moreover, let (4.3.137) hold.
Then there exists δ0 > 0 depending only on (κ, λ, L,M, δ̂, σ,R) such that, if

δ ∈ (0, δ0), u satisfies (4.3.112) with α̂ ∈ (0, 1) depending only on (κ, λ), and
C > 0 depending only on (κ, λ, L,M, δ̂, σ,R).

Proof. We divide the proof into three steps. In the first two steps, we prove
estimate (4.3.112) in a smaller region Ω ∩ BR̃/4(x0) for R̃ ∈ (0, R), depending
only on (λ, L,M, δ̂, R, σ). In the last step, we extend this estimate to Ω ∩
BR/2(x0).

1. In this step, we show that u ∈ C0,1(Ω) and satisfies

‖Du‖L∞(Ω∩BR̃/2(x0)) ≤ K̂, (4.3.143)
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where R̃ ∈ (0, R), and K̂ depends only on (λ, L,M, δ̂, R, σ).
For the proof of (4.3.143), we follow the argument in Step 2 of the proof of

Theorem 4.3.16. We use R̃, rx, and Ω̃x introduced there, and denote d(x) :=
|x− x0|. Then v(X), defined by (4.3.125), satisfies

‖v‖L∞(Ω̃x) ≤ 3ML, (4.3.144)

under the present assumptions. Indeed, for each x ∈ Ω ∩ BR̃(x0) and X ∈ Ω̃x,
rx ≤ d(x) and |X| ≤ 1 so that |x + rxX − x0| ≤ |x − x0| + rx ≤ 2d(x), which
implies

|v(X)| ≤ |u(x + rxX)− u(x0)|
d(x)/M

+
|u(x)− u(x0)|

d(x)/M
≤M(2L+ L) = 3M̂L.

Thus, (4.3.144) is proved.
Now we show estimates (4.3.104) and (4.3.102) in Cases 1 and 2, respectively,

considered in the proof of Proposition 4.3.11.
First, as in Step 2 of the proof of Theorem 4.3.16, we note that, in Case 1, the

following properties of the rescaled domain, equation, and boundary conditions
hold: Domain Ω̃x := {X ∈ B1(0) : x + rxX ∈ Ω} is of the form:

Ω̃x = B1(0) ∩ {X2 > Φ(X1)} with Φ(0) = 0 and ‖Φ‖C1,σ(R) ≤M ;

v satisfies an equation of form (4.3.45) in Ω̃x and a condition of form (4.3.47) on
Γ̃x = B1(0) ∩ {X2 = Φ(X1)}, where the corresponding functions (Âij , Â, B̂

(k))
in the equation and the boundary condition for v are defined by (4.3.126) and
satisfy (4.3.53) and (4.3.88) on Ω̃x with the same λ, and (4.3.127) (with δ̂ instead
of δ) with the unchanged constants, M and K as in (4.3.92)–(4.3.93), so that
K =∞ in the present case.

However, since the Lipschitz continuity of v has not been proved yet, we
cannot use Theorem 4.3.4 to obtain (4.3.104) in Case 1. Instead, we use The-
orem 4.2.12. Then we need to check that the conditions of Theorem 4.2.12 are
satisfied.

The properties of (Âij , Â, B̂
(k)) discussed above imply that it suffices to

check that (4.2.102) is satisfied for B̂(k), k = 1, 2. Since condition (4.2.102) is
satisfied for B(k)(p, z,x) with L(k)(p, z,x) = b(k)(x) · p + b

(k)
0 (x)z − h(k)(x)

and v(k)(x), using (4.3.126) and rx ≤ 1, we obtain that, in the X-coordinates,
condition (4.2.102) is satisfied with the same constant δ for B̂(k)(p, z,X), where
the corresponding L̂(k)(p, z,X) and v̂(k) are defined by

L̂(k)(p, z,X) = L(k)(p, u(x)+rxz, x+rxX), v̂(k)(X) =
1

rx
(v(k)−u)(x+rxX).

Then
L̂(k)(p, z,X) = b̂(k)(X) · p + b̂

(k)
0 (X)z − ĥ(k)(X),



RELEVANT RESULTS FOR NONLINEAR ELLIPTIC EQUATIONS OF SECOND ORDER 141

where

(b̂(k), b̂
(k)
0 )(X) = (b(k), rxb

(k)
0 )(x + rxX),

ĥ(k)(X) = h(k)(x + rxX)− u(x)b
(k)
0 (x + rxX).

From (4.3.142), (4.3.144), and rx ≤ 1,

‖v̂(k)‖2,α,Ω̃x
+ ‖(b̂(k), ĥ(k))‖1,α,Γ̃x

≤ C(M,L) for k = 1, 2.

It follows that the conditions of Theorem 4.2.12 for the rescaled problem are
satisfied with the constants depending only on (λ, L,M, δ̂, σ,R), independent of
x ∈ Γk. Then there exist δ0 and C depending only on these constants such that,
when δ ∈ (0, δ0), (4.3.104) holds.

The argument for the interior estimate (4.3.102) in Case 2 works without
change, because the estimate of Theorem 4.2.1 depends only on its L∞–norm of
the solution, which is estimated in (4.3.144). Thus, in the present case, for any
κ ∈ (0, 1), we obtain (4.3.102) with C(κ) depending only on (λ, L,M,R, α, κ).

Estimates (4.3.102) and (4.3.104), with C depending only on (λ, L,M, δ̂, σ,R),
obtained for each v(·) = v(x)(·) for every x considered in Cases 1–2 for Propo-
sition 4.3.11, imply (4.3.143).

2. Combining (4.3.143) with (4.3.140), we obtain

‖u‖C0,1(Ω∩BR̃/2(x0)) ≤ C(λ, L,M, δ̂, R, σ).

With this estimate, we note that all the conditions of Theorem 4.3.16 are sat-
isfied in Ω ∩ BR̃/2(x0), where (4.3.121)–(4.3.123) hold in the present case with
some λ̃(λ, κ) > 0 by Lemma 4.3.17. Now we can apply Theorem 4.3.16 in
Ω∩BR̃/2(x0), with λ replaced by min{λ, λ̃}, to obtain (4.3.112) in Ω∩BR̃/4(x0).
Note that α̂ depends on (κ, α), since λ̃ depends on these constants.

3. Finally, we extend this estimate from Ω ∩ BR̃/4(x0) to Ω ∩ BR/2(x0),
arguing as in the proof of (4.3.96) with the following difference: From (4.3.140)–
(4.3.141), ‖u‖L∞(Ω∩(BR(x0)\BR̃/2(x0))) ≤ L(R + 1). With this, we can apply
Theorem 4.2.1 in the interior balls BR̃/50M̃ (x) ⊂ Ω. However, in the boundary
half-balls Ω∩BR̃/10M (x) for x ∈ Γk ∩ (BR/2(x0) \BR′/2(x0)), we cannot apply
Theorem 4.3.4 (since the Lipschitz bound of u is not available). Instead, we ap-
ply Theorem 4.2.12 by noting that its conditions are satisfied by the assumptions
of this theorem.

Corollary 4.3.19. The assertion of Theorem 4.3.18 also holds if assumption
(4.3.92) is replaced by the following:

(i) A(p, z,x) = (A1(p, z,x), A2(p, z,x)) · p +A0(p, z,x)z;

(ii) For any (p, z) ∈ R2 × R and m = 1, 2,

‖
(
(Aij , Ai)(p, z, ·), Dm

(p,z)(Aij , Ai)(p, z, ·)
)
‖(−δ),{x0}

1,δ,Ω ≤M. (4.3.145)
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Proof. We follow the proof of Theorem 4.3.18, except that we now apply The-
orem 4.2.12 with the conditions modified in Remark 4.2.13. Thus, we obtain
(4.3.143) with R̃ ∈ (0, R) and K̂ depending only on (κ, λ, L,M, δ̂, R, σ). Then
we notice that conditions (i)–(ii) imply (4.3.92) for K = 4K̂, with the constant
on the right-hand side depending only on (M, K̂), hence on (κ, λ, L,M, δ̂, R, σ).
With this, we can complete the proof as in Theorem 4.3.18.

4.4 COMPARISON PRINCIPLE FOR A MIXED BOUNDARY
VALUE PROBLEM IN A DOMAIN WITH CORNERS

We present a comparison principle for elliptic equations with degenerate ellip-
ticity near a part of the boundary of the domain with corners and with mixed
boundary conditions.

4.4.1 Linear case

We first define the obliqueness of the boundary conditions at a corner.

Definition 4.4.1. Let Ω ⊂ R2 be open, P ∈ ∂Ω, and R > 0, and let ∂Ω∩BR(P )
be a union of two C1–curves Γ1 and Γ2 with common endpoint P . Assume that,
for each i = 1, 2, a vector field b(i) = (b

(i)
1 , b

(i)
2 ) is defined on Γi, is continuous

up to P , and points into Ω, i.e., b(i) · ν(i) ≥ 0 on Γi, where ν(i) is the interior
unit normal on Γi to Ω. We say that the boundary conditions:

b(i) ·Du+ b
(i)
0 u = gi on Γi, for i = 1, 2,

are oblique at P if vectors b(i)(P ), i = 1, 2, lie on the same side of a supporting
C1,α–curve Σ at P as Ω, i.e., there exist a C1,α–curve Σ and a constant λ > 0
such that

Σ ∩ Ω = ∅, P ∈ Σ0,

b(i) · νΣ ≥ λ, at P for i = 1, 2,
(4.4.1)

where νΣ is a normal to Σ at P , oriented so that νΣ ·ν(i) ≥ 0 at P for i = 1, 2,
and Σ0 is the relative interior of Σ. We also say that the λ-obliqueness holds at
P for a particular choice of λ in (4.4.1).

Lemma 4.4.2 (Comparison Principle). Let Ω ⊂ R2 be a bounded domain whose
boundary ∂Ω is a union of curves Γk, k = 0, . . . , 3, such that curve Γk has
endpoints Pk and Pk+1 for each k = 1, 2, 3, and Γ0 has endpoints P1 and P4,
where Γk refers to the corresponding curve segment that includes the endpoints.
Assume that curves Γk, k = 1, 2, 3, are C2 at their relative interiors and C1,α

up to their endpoints for some α ∈ (0, 1). Furthermore, assume that curves Γk
do not intersect each other at the points of their relative interiors Γ0

k. Moreover,
assume that the angles (from the Ω–side) between the curves meeting at points
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P2 and P3 are less than π. Let u ∈ C(Ω) ∩ C1(Ω \ Γ0) ∩ C2(Ω) satisfy

L(u) ≤ 0 in Ω,
u ≥ 0 on Γ0,

b(k) ·Du+ b
(k)
0 u ≤ 0 on Γk for k = 1, 2, 3,

(4.4.2)

where

L(u) :=
2∑

i,j=1

aijDiju+
2∑

i=1

aiDiu+ a0u. (4.4.3)

Assume that coefficients (aij , ai) are continuous in Ω and that operator L in
(4.4.3) is strictly elliptic in Ω \ Γ0 in the sense that

∑2
i,j=1 aij(x)ξiξj > 0 for

every ξ ∈ R2 \ {0} and x ∈ Ω \ Γ0. Assume that

(b(1), b
(1)
0 ) ∈ C(Γ1 \ {P1}), (b(2), b

(2)
0 ) ∈ C(Γ2), (b(3), b

(3)
0 ) ∈ C(Γ3 \ {P4}),

and the strict obliqueness of the boundary conditions hold on Γk, k = 1, 2, 3, in
the following sense:

b(1) · ν(1) > 0 on Γ1 \ {P1},

b(2) · ν(2) > 0 on Γ2,

b(3) · ν(3) > 0 on Γ3 \ {P4},

where ν(k) is the interior unit normal on Γk to Ω. Moreover, assume that the
boundary conditions are oblique at corners {P2, P3} in the sense of Definition
4.4.1. Furthermore, assume

a0 ≤ 0 in Ω, b
(k)
0 ≤ 0 on Γk for k = 1, 2, 3.

Then u ≥ 0 in Ω.

Proof. If u is not a constant in Ω, then a negative minimum of u over Ω cannot
be attained:

(i) In the interior of Ω, by the strong maximum principle for linear elliptic
equations;

(ii) In the relative interiors of Γk for k = 1, 2, 3, by Hopf’s lemma, using the
C2–regularity of Γ0

k, the obliqueness of the boundary conditions on Γk,
and the non-positivity of the zero-order term on Γk for k = 1, 2, 3;

(iii) At corners P2 and P3, by the result in Lieberman [189, Lemma 2.2], via
the standard argument as in [131, Theorem 8.19], where we have used the
obliqueness of the boundary conditions at P2 and P3. Note that curves Γk
have to be flattened in order to apply [189, Lemma 2.2] near P2 and P3,
which can be done by using the C1,α–regularity of Γk.

Since u ≥ 0 on Γ0, we conclude the proof.
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4.4.2 Nonlinear case

Next, we consider the corresponding nonlinear problems and related comparison
principle.

Definition 4.4.3. Let Ω ⊂ R2 be open, P ∈ ∂Ω, and R > 0. Assume that
∂Ω ∩BR(P ) is a union of two C1–curves Γ1 and Γ2 with common endpoint P .
Assume that, for i = 1, 2, a function B(i)(p, z,x) is defined on R2 × R × Γi,
and B(i) and D(p,z)B

(i) are continuous on R2 ×R× (Γi ∪ {P}), and the vector
field DpB

(i) points into Ω, i.e., DpB
(i)(p, z,x) · ν(i)(x) ≥ 0 on Γi, for each

(p, z,x) ∈ R2 × R × Γi, where ν(i) is the interior unit normal on Γi to Ω. We
say that the boundary conditions:

B(i)(Du, u,x) = 0 on Γi, for i = 1, 2,

are oblique at P if, for each (p, z) ∈ R2 × R, vectors DpB
(i)(p, z, P ), i = 1, 2,

lie on the same side of a supporting C1,α–curve Σ at P ; that is, there exist a
C1–curve Σ and a constant λ > 0 such that Σ ∩ Ω = ∅, P ∈ Σ0, and, for
(p, z) ∈ R2 × R,

λ ≤ DpB
(i)(p, z, P ) · νΣ ≤

1

λ
for i = 1, 2, (4.4.4)

where νΣ is the unit normal to Σ at P , oriented so that νΣ · ν(i) ≥ 0 at P for
i = 1, 2, and Σ0 is the relative interior of Σ. We also say that the λ-obliqueness
holds at P for a particular choice of λ in (4.4.4).

Lemma 4.4.4 (Comparison Principle). Let Ω ⊂ R2, Γk, and Pk be as in Lemma
4.4.2. Let u, v ∈ C(Ω) ∩ C1(Ω \ Γ0) ∩ C2(Ω) satisfy

N (u) ≤ N (v) in Ω,

u ≥ v on Γ0,

B(k)(Du, u,x) ≤ B(k)(Dv, v,x) on Γk for k = 1, 2, 3,

where N (u) is defined in (4.2.2) in which (Aij , A) are functions of (p, z,x) ∈
R2 × R × Ω. Assume that (Aij , A) and D(p,z)(Aij , A) are continuous on R2 ×
R×Ω, and that the equation is strictly elliptic in Ω\Γ0 in the sense that matrix
[Aij ](p, z,x) is strictly positive definite for each (p, z,x) ∈ R2 × R × (Ω \ Γ0).
Assume that

(B(1), D(p,z)B
(1)) ∈ C(R2 × R× (Γ1 \ {P1})),

(B(2), D(p,z)B
(2)) ∈ C(R2 × R× Γ2),

(B(3), D(p,z)B
(3)) ∈ C(R2 × R× (Γ3 \ {P4})),

and that the boundary conditions on Γk, k = 1, 2, 3, are oblique in the following
sense:

DpB
(1)(p, z,x) · ν(1)(x) > 0 for (p, z,x) ∈ R2 × R× (Γ1 \ {P1}),

DpB
(2)(p, z,x) · ν(2)(x) > 0 for (p, z,x) ∈ R2 × R× Γ2,

DpB
(3)(p, z,x) · ν(3)(x) > 0 for (p, z,x) ∈ R2 × R× (Γ3 \ {P4}),
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where ν(k) is the interior unit normal on Γk to Ω. Moreover, assume that the
boundary conditions are oblique at corners {P2, P3} in the sense of Definition
4.4.3. Furthermore, assume that

DzA ≤ 0 in R2 × R× Ω,

DzB
(k) ≤ 0 on R2 × R× Γk for k = 1, 2, 3.

Then u ≥ v in Ω.

Proof. From the conditions, u−v solves a linear problem of form (4.4.2) with the
coefficients satisfying the conditions of Lemma 4.4.2. Now the assertion follows
directly from Lemma 4.4.2.

Remark 4.4.5. In most of our applications of Lemma 4.4.4, Γ0 = Γsonic, Γ1 =
Γshock, Γ2 = Γsym, and Γ3 = Γwedge.

Remark 4.4.6. Assume that P1 = P4, i.e., Γ0 is one point. In this case, in
Lemmas 4.4.2 and 4.4.4, the condition that u ≥ v on Γ0 is replaced by the one-
point condition that u ≥ v at P1 = P4. Then Lemmas 4.4.2 and 4.4.4 still hold
without change of the proofs.

Note that, in this case, sides Γ1 and Γ3 meet at corner P1 = P4. We do not
assume that the boundary conditions on Γ1 ∪ Γ3 satisfy the obliqueness at P1 in
the sense of Definitions 4.4.1 and 4.4.3 for Lemmas 4.4.2 and 4.4.4, respectively.
Indeed, we use the one-point Dirichlet condition: u ≥ v at P1 = P4 for the proofs
of the comparison principles.

4.5 MIXED BOUNDARY VALUE PROBLEMS IN A DOMAIN
WITH CORNERS FOR UNIFORMLY ELLIPTIC
EQUATIONS

4.5.1 Linear problem

In this section, we consider a domain

Ω = {x ∈ R2 : 0 < x1 < h, 0 < x2 < fbd(x1)}, (4.5.1)

where

fbd ∈ C1([0, h]), fbd(0) = t0, ‖f ′bd‖L∞([0,h]) ≤Mbd,

fbd(x1) ≥ min(t0 + t1x1, t2) for all x1 ∈ (0, h),
(4.5.2)

for some h, t0, t1, t2,Mbd > 0. We denote the boundary vertices and segments
as follows:

P1 = (0, fbd(0)), P2 = (h, fbd(h)), P3 = (h, 0), P4 = 0,

Γ0 = ∂Ω ∩ {x1 = 0}, Γ1 = ∂Ω ∩ {x2 = fbd(x1)},
Γ2 = ∂Ω ∩ {x1 = h}, Γ3 = ∂Ω ∩ {x2 = 0},

(4.5.3)
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and Γk, k = 0, . . . , 3, are the relative interiors of the segments defined above.
Then ∂Ω = ∪3

k=0(Γk ∪ {Pk+1}).
Consider the following mixed boundary value problem for the linear elliptic

equation:
2∑

i,j=1

aijDiju+
2∑

i=1

aiDiu+ a0u = f in Ω, (4.5.4)

b(k) ·Du+ b
(k)
0 u = gk on Γk for k = 1, 2, 3, (4.5.5)

u = 0 on Γ0. (4.5.6)

Assume that there exist constants λ > 0, κ > 0, and M <∞ such that

λ|µ|2 ≤
2∑

i,j=1

aij(x)µiµj ≤ λ−1|µ|2 (4.5.7)

for any x ∈ Ω, µ = (µ1, µ2) ∈ R2, and

a0 ≤ 0 in Ω, (4.5.8)

‖aij‖0,α,Ω + ‖(ai, a0)‖(1−α),Γ0

0,α,Ω ≤M, i, j = 1, 2. (4.5.9)

Assume that the boundary conditions satisfy

Obliqueness: λ ≤ b(k) · ν(k) ≤ λ−1 on Γk for k = 1, 2, 3, (4.5.10)
λ− obliqueness at corners {P2, P3} in the sense of Definition 4.4.1, (4.5.11)

b
(k)
0 ≤ 0 on Γk for k = 1, 2, 3, (4.5.12)
∣∣∣∣
b(k)

|b(k)| (Pk)± b(k−1)

|b(k−1)| (Pk)

∣∣∣∣ ≥ κ for k = 2, 3, (4.5.13)

max
k∈{1,3}

‖(b(k), b
(k)
0 )‖

C
(−α),∂Γk
1,α,Γk

+ ‖(b(2), b
(2)
0 )‖0,α,Γ2

≤M, (4.5.14)

where ν(k) is the interior unit normal on Γk to Ω, and ∂Γk denotes the endpoints
of Γk.

We consider the following norm in Ω: Let ε > 0 be such that Nε(Γ0) ∩
Nε(Γ2) = ∅. Also, denote by Ω(−ε/2) := Ω \ (Nε/2(Γ0) ∪ Nε/2(Γ2)). Then, for
m = 0, 1, . . . , and α ∈ (0, 1),

‖u‖∗,m,α,Ω := ‖u‖(−m+2−α),Γ0

m,α,Nε(Γ0)∩Ω + ‖u‖(−m+1−α),Γ2

m,α,Nε(Γ2)∩Ω + ‖u‖m,α,Ω(−ε/2)
.

Denote C∗,m,α(Ω) := {u ∈ Cm(Ω) : ‖u‖∗,m,α,Ω < ∞}. Then C∗,m,α(Ω) with
norm ‖·‖∗,m,α,Ω is a Banach space. Also, the choice of different ε > 0, satisfying
the properties described above, determines an equivalent norm on C∗,m,α(Ω).

Similarly, define

‖g‖∗,1,α,Γ1
:= ‖g‖(1−α),{P1}

1,α,Nε(Γ0)∩Γ1
+ ‖g‖(−α),{P2}

1,α,Nε(Γ2)∩Γ1
+ ‖g‖1,α,Ω(−ε/2)∩Γ1

,

‖g‖∗,1,α,Γ3 := ‖g‖(1−α),{P4}
1,α,Nε(Γ0)∩Γ3

+ ‖g‖(−α),{P3}
1,α,Nε(Γ2)∩Γ3

+ ‖g‖1,α,Ω(−ε/2)∩Γ3 ,
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and C∗,1,α(Γk) := {g ∈ C1(Γk) : ‖g‖∗,1,α,Γk <∞} for k = 1, 3.

Lemma 4.5.1. Let h, t0, t1, t2,Mbd > 0, and let Ω be a domain of structure
(4.5.1)–(4.5.3). Let κ, λ ∈ (0, 1] and M < ∞ be constants. Then there exists
α1(κ, λ,Mbd) ∈ (0, 1) such that, for every α ∈ (0, α1], there is C(Ω, λ, κ,M,α)
so that the following holds: Let

‖fbd‖(−1−α), {0,h}
2,α,(0,h) ≤M. (4.5.15)

Let (4.5.7)–(4.5.14) be satisfied. Then any solution u ∈ Cα(Ω)∩C1,α(Ω \ Γ0)∩
C2,α(Ω) of Problem (4.5.4)–(4.5.6) satisfies

‖u‖∗,2,α,Ω ≤ C
(
‖f‖∗,0,α,Ω +

∑

j=1,3

‖gj‖∗,1,α,Γj + ‖g2‖0,α,Γ2

)
. (4.5.16)

Proof. In this proof, constants α1 and C depend only on the parameters listed
in the statement, unless otherwise specified.

From (4.5.1), we obtain the existence of θ0 ∈ (0, π2 ) depending only on Mbd

such that angles θk at vertices Pk, k = 1, . . . , 4, satisfy

θ0 ≤ θk ≤
π

2
− θ0.

From (4.5.2), there exists r > 0 depending only on (t0, t1, t2,Mbd,M) such
that, for i = 1, . . . , 4,

(i) ∂Ω ∩B10r(Pi) ⊂ Γi−1 ∪ Γi, where Γ4 denotes Γ0;

(ii) ∂Ω∩B10r(P ) ⊂ Γi for any P ∈ Γi such that dist(P, ∂Γi) > 10r, where ∂Γi
denotes the endpoints of Γi.

Fix r in such a way.
We first estimate the solution near corners {Pi}4i=1.
We now estimate the solution in B2r(Pi) ∩ Ω for i = 1, 4. Consider i = 1

to fix the notations. We show that there exists α1 ∈ (0, 1) such that, for any
α ∈ (0, α1),

‖u‖(−α),Γ0

1,α,Ω∩B3r/4(P1) ≤ C
(
‖u‖0,Ω∩B2r(P1) + ‖f‖(2−α),Γ0

0,Ω∩B2r(P1)

+ ‖g1‖(1−α),{P1}
0,α,Γ1∩B2r(P1)

)
.

(4.5.17)

This is a localized version of the estimates of [194, Theorem 1] for the mixed
derivative problem.

Estimate (4.5.17) is obtained from the global estimate of [194, Theorem
1] by an argument similar to the proof of Lemma 4.2.16. The dependence of
the constants in (4.5.17) is as follows: α1 depends only on the ellipticity, the
obliqueness, and angle θ1, and hence on (λ,Mbd). Constant C depends on these
parameters, as well as (α, r) and the right-hand sides of estimates (4.5.9) and
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(4.5.14) for (b(1), b
(1)
0 ). Thus, C in (4.5.17) depends only on (λ,M,α) and r

(where Mbd is not included since M ≥ Mbd). Since r depends only on the
parameters of domain Ω in (4.5.2), we see that C = C(Ω, λ,M,α). That is, the
dependence of constants α1 and C is as asserted in this lemma.

Furthermore, we improve (4.5.17) by showing a higher regularity away from
Γ0, with the use of the corresponding higher regularity of the coefficients in
(4.5.9). Specifically, following Step 4 of the proof of Theorem 4.2.15, we obtain

‖u‖(−α),Γ0

2,α,Ω∩Br(P1) ≤ C
(
‖u‖0,Ω∩B2r(P1) + ‖f‖(2−α),Γ0

α,Ω∩B2r(P1)

+ ‖g1‖(1−α),{P1}
1,α,Γ1∩B2r(P1)

)
.

(4.5.18)

Near P4, we obtain a similar estimate, namely (4.5.18), with (P1,Γ1, g1) replaced
by (P4,Γ3, g3).

The estimates near P2 and P3 are obtained via a similar argument by using
the localized version of [193, Lemma 1.3] and then improving the regularity away
from Γ2. The resulting estimate near P2 is

‖u‖(−1−α),Γ2

2,α,Ω∩Br(P2) ≤ C
(
‖u‖0,Ω∩B2r(P2) + ‖f‖(1−α),Γ2

α,Ω∩B2r(P2)

+ ‖g1‖(−α),{P2}
1,α,Γ1∩B2r(P2) + ‖g2‖0,α,Γ2

)
.

(4.5.19)

Near P3, we obtain a similar estimate, with (P2,Γ1, g1) replaced by (P3,Γ3, g3).
Next we make the estimates near Γm, m = 0, . . . , 3, away from the corners. If

P ∈ Γm and Br/2(P )∩∂Γm = ∅, we obtain the following estimates in Br(P )∩Ω.
For m = 0, we have (4.2.133) with k = 0 and σ = α, rescaled from B+

2 to
Br/4(P ) ∩ Ω. For m = 2, we have (4.2.131) with σ = α, rescaled from B+

2 to
Br/4(P ) ∩ Ω. For m = 1, 3, we use the standard local Schauder estimates for
the oblique derivative problem near the C2,α–boundaries in Br/4(P )∩Ω, where
we note that

‖(aij , ai, a0)‖0,α,Br/4(P )∩Ω ≤ C, ‖(b(m), b
(m)
0 )‖1,α,Br/4(P )∩Ω ≤ C.

Similarly, in the interior, i.e., in Br/2(P ) ⊂ Ω, ‖(aij , ai, a0)‖0,α,Br/4(P ) ≤ C,
so that the standard interior local Schauder estimates for the elliptic equation
can be used.

Combining all the estimates discussed above with a scaling technique similar
to that of Step 4 of the proof of Theorem 4.2.15, and noticing the regularity
of ∂Ω, we obtain that there exists α1 depending only on (κ, λ, θ0), hence on
(κ, λ,Mbd), such that, for each α ∈ (0, α1), there is C > 0 depending only
on (Ω, λ, κ,M,α) so that any solution u ∈ Cα(Ω) ∩ C1,α(Ω \ Γ0) ∩ C2,α(Ω) of
Problem (4.5.4)–(4.5.6) satisfies

‖u‖∗,2,α,Ω ≤ C
(
‖u‖0,Ω + ‖f‖∗,0,α,Ω +

∑

j=1,3

‖gj‖∗,1,α,Γj + ‖g2‖0,α,Γ2

)
. (4.5.20)

Thus, in order to show (4.5.16), we need to estimate ‖u‖0,Ω by the right-hand
side of (4.5.16).
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Suppose that such an estimate is false. Then, for m = 1, 2, . . . , there exists
a sequence of problems of form (4.5.4)–(4.5.6) with coefficients (amij , a

m
i ,b

(k),m),
the right-hand sides (fm, gmk ), and solutions um ∈ C∗,2,α(Ω), where the assump-
tions on (amij ,b

(k),m) stated above are satisfied with the uniform constants κ, λ,
α, and M so that

‖fm‖∗,0,α,Ω +
∑

j=1,3

‖gmj ‖∗,1,α,Γj + ‖gm2 ‖Cα(Γ2) → 0 as m→∞,

but ‖um‖0,Ω = 1 for m = 1, 2, . . . . Then, from (4.5.20), we obtain that
‖um‖∗,2,α ≤ C with C independent of m. Passing to a subsequence (without
change of notation), we find that um → u∞ in C∗,2,

α
2 , amij → a∞ij in C

α
2 (Ω),

(ami , a
m
0 ) → (a∞i , a

∞
0 ) in C

(1−α2 ),Γ0

0,α/2,Ω , and b(k),m → b(k),∞ in C
(−α2 ),∂Γk
1,α/2,Γk

for
k = 1, 3, and in Cα(Γ2) for k = 2. Moreover, a∞ij and b(k),∞ satisfy (4.5.4)–
(4.5.14). Then ‖u∞‖0,Ω = 1, and u∞ is a solution of the homogeneous problem
(4.5.4)–(4.5.6) with coefficients (a∞ij ,b

(k),∞). Obviously, v = 0 is another solu-
tion of the same problem. This is in contradiction to the uniqueness of a solution
in C(Ω) ∩C1(Ω \ Γ0) ∩C2(Ω) of Problem (4.5.4)–(4.5.6), where the uniqueness
follows from Lemma 4.4.2. Therefore, (4.5.16) is proved.

We first prove the existence of solutions in the case that Ω is a unit square.

Proposition 4.5.2. Let Ω be a square Q = (0, 1)× (0, 1), which corresponds to
h = 1 and fbd ≡ 1 in (4.5.1). We use the notations in (4.5.3). Let κ, λ ∈ (0, 1],
M <∞, and α ∈ (0, α1] be constants, where α1(κ, λ, 0) ∈ (0, 1) is determined in
Lemma 4.5.1. Let (4.5.7)–(4.5.14) be satisfied. Then, for every (f, g1, g2, g3) ∈
C∗,0,α(Q) × C∗,1,α(Γ1) × Cα(Γ2) × C∗,1,α(Γ3), there exists a unique solution
u ∈ C∗,2,α(Q) of Problem (4.5.4)–(4.5.6). Moreover, u satisfies (4.5.16), where
C depends only on (κ, λ,M,α).

Proof. We first consider Problem P0 defined as follows:

∆u = f in Q; ∂νu|Γk = gk, k = 1, 2, 3; u|Γ0
= 0.

By [53, Theorem 3.2], for any f ∈ Cα(Q) and gk ∈ Cα(Γk) with k = 1, 2, 3,
there exists a unique weak solution u ∈ H1(Q) of Problem P0. Moreover,
u ∈ Cα(Q) ∩ C1,α(Q \ Γ0).

Next, it is easy to see that each

(f, g1, g2, g3) ∈ Yα := C∗,0,α(Q)× C∗,1,α(Γ1)× Cα(Γ2)× C∗,1,α(Γ3)

can be approximated by a sequence of Cα–functions (f (m), g
(m)
1 , g

(m)
2 , g

(m)
3 ),

which are uniformly bounded in the Yα–norm, such that f (m) → f uniformly
on every K b Q, and g

(m)
i → gi uniformly on every K b Γk as m → ∞ for
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i = 0, . . . , 3. Indeed, for m = 1, 2, . . . , we define that, for each (x1, x2) ∈ Q,

f (m)(x1, x2) =





f(x1, x2) if x1 ∈ [ 1
10m , 1− 1

10m ],

f( 1
10m , x2) if x1 ∈ (0, 1

10m ),

f(1− 1
10m , x2) if x1 ∈ (1− 1

10m , 1),

and g
(m)
j (x1), j = 1, 3, are defined similarly, while g(m)

2 := g2 ∈ Cα(Γ2). It is
easy to see that (f (m), g

(m)
1 , g

(m)
2 , g

(m)
3 ) satisfy the properties asserted above.

From the existence of a unique solution u(m) of Problem P0 with the right-
hand side (f (m), g

(m)
1 , g

(m)
2 , g

(m)
3 ), and using estimate (4.5.16), we find that there

exists C such that ‖u(m)‖∗,2,α,Q ≤ C for all m. Then a subsequence u(mj)

converges to u ∈ C∗,2,α(Q) in C∗,2,
α
2 (Q) which is a solution of Problem P0

for the right-hand sides (f, g1, g2, g3). This leads to the existence of a solution
u ∈ C∗,2,α for any (f, g1, g2, g3) ∈ Yα. By Lemma 4.5.1, u satisfies (4.5.16),
which also implies the uniqueness of the solution in C∗,2,α for Problem P0.

Now the existence of a unique solution u ∈ C∗,2,α(Q) of Problem (4.5.4)–
(4.5.6), denoted by Problem P, for any (f, g1, g2, g3) ∈ Yα, follows by the
method of continuity (cf. Theorem 3.4.1), applied to the family of Problems
tP+(1−t)P0 for t ∈ [0, 1], where we have used that all of these problems satisfy
estimate (4.5.16) with uniform C by Lemma 4.5.1.

Now we consider the case of general domain Ω.

Proposition 4.5.3. Let h, t0, t1, t2,Mbd > 0, and let Ω be a domain of structure
(4.5.1)–(4.5.3). Let κ, λ ∈ (0, 1), M < ∞, and α ∈ (0, α1] be constants, where
α1(κ, λ,Mbd) ∈ (0, 1) is determined in Lemma 4.5.1. Let fbd satisfy (4.5.15).
Let (4.5.7)–(4.5.14) be satisfied. Then, for every (f, g1, g2, g3) ∈ C∗,0,α(Ω) ×
C∗,1,α(Γ1) × Cα(Γ2) × C∗,1,α(Γ3), there exists a unique solution u ∈ C∗,2,α(Ω)
of Problem (4.5.4)–(4.5.6). Moreover, u satisfies (4.5.16), where C depends only
on (Ω, κ, λ,M,α).

Proof. LetQ be the unit square as in Proposition 4.5.2. We denote by Pk(Q) and
Γk(Q) its boundary parts in (4.5.3). Define mapping F : Ω 7→ Q by F (x1, x2) =

(
x1

h
,

x2

fbd(x1)
). Then (4.5.1) and (4.5.15) imply that F is a diffeomorphism

Ω 7→ Q, with F (Γk) = Γk(Q) and F (Pk+1) = Pk+1(Q) for k = 0, . . . , 3, and

‖F‖(−1−α),Γ0∪Γ2

2,α,Ω + ‖F−1‖(−1−α),Γ0(Q)∪Γ2(Q)
2,α,Q ≤ C,

where C = C(M, t0, t2). It is easy to check that, if u ∈ C∗,2,α(Ω) is a solution
of (4.5.4)–(4.5.6) (which is called Problem P1), then the function on Q defined
by v(x) := u(F−1(x)) satisfies v ∈ C∗,2,α(Q). Moreover, v is a solution of a
problem on Q with structure (4.5.4)–(4.5.6), which is called Problem P2. It is
easy to see that, for Problem P2, the equation and boundary conditions satisfy



RELEVANT RESULTS FOR NONLINEAR ELLIPTIC EQUATIONS OF SECOND ORDER 151

the assumptions of Proposition 4.5.2. If (f, g1, g2, g3) ∈ C∗,0,α(Ω)×C∗,1,α(Γ1)×
Cα(Γ2)× C∗,1,α(Γ3) and (f̂ , ĝk)(x) := (f, gk)(F−1(x)), then

(f̂ , ĝ1, ĝ2, ĝ3) ∈ C∗,0,α(Q)× C∗,1,α(Γ1(Q))× Cα(Γ2(Q))× C∗,1,α(Γ3(Q)).

Moreover, if v ∈ C∗,2,α(Q) is a solution of Problem P2 with the right-hand
sides (f̂ , ĝ1, ĝ2, ĝ3), then u(x) = v(F (x)) on Ω satisfies u ∈ C∗,2,α(Ω) and is
a solution of Problem P1 with the right-hand sides (f, g1, g2, g3). Then the
existence and uniqueness assertion in Proposition 4.5.2 implies the existence
and uniqueness assertion we want here. The estimate of the solution follows
from Lemma 4.5.1.

Next we discuss some cases in which the regularity at corners {P1, P4} can be
improved from Cα to C1,α. We prove the local estimates in the corner-shaped
domains in two cases.

Consider the corner domain:

R+
s = Bs(0) ∩ {x1 > 0, x2 > fob(x1)}, s > 0, fob(0) = 0, (4.5.21)

where fob ∈ C1([0,∞)). Denote the boundary parts of R+
s :

Γ(d)
s := ∂R+

s ∩ {x1 = 0}, Γ(ob)
s := ∂R+

s ∩ {x2 = fob(x1)}, P̂ = 0. (4.5.22)

We now consider equation (4.5.4) in R+
s with the boundary conditions:

b ·Du+ b0u = g on Γ(ob)
s , (4.5.23)

u = 0 on Γ(d)
s . (4.5.24)

The first case corresponds with the conditions near point P4, for which Γ
(ob)
s

is flat.

Lemma 4.5.4. Let s > 0, and let R+
s be the domain in (4.5.21) with

fob ≡ 0 on [0,∞).

Let α ∈ (0, 1), λ ∈ (0, 1], and M < ∞ be constants. Let (4.5.4) satisfy (4.5.7)
and (4.5.9) with Ω = R+

s , and

‖(aij , ai, a0)‖
Cα(R+

s )
≤M, i, j = 1, 2, (4.5.25)

a12(0) = a21(0) = 0. (4.5.26)

Let the coefficients of (4.5.23) satisfy b ≡ (0, 1) and b0 ≡ 0, and let g ≡ 0, i.e.,
condition (4.5.23) is

uν = 0 on Γ(ob)
s .

Furthermore, let f ∈ Cα(R+
s ). Then any solution u ∈ C(R+

s )∩C1(R+
s \Γ

(d)
s )∩

C2(R+
s ) of (4.5.4) and (4.5.23)–(4.5.24) is in C2,α(R+

s/2) with the estimate:

‖u‖
C2,α(R+

s/2
)
≤ C

(
‖u‖L∞(R+

s ) + ‖f‖Cα(R+
s )

)
, (4.5.27)

where C depends only on (λ,M,α).
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Proof. It suffices to prove (4.5.27) in R+
%/2 for some % > 0 depending only on

(λ,M). Indeed, in order to complete the proof of (4.5.27), it then suffices to
derive the C2,α–estimate in domain R+

s/2 \ R+
%/4. These estimates are obtained

by combining the standard interior estimates for elliptic equations and the local
estimates near the boundary for the Dirichlet and oblique derivative problems.
The small constant % ∈ (0, s2 ) will be chosen below. The proof is divided into
four steps.

1. Rescale u by
v(x) = u(%x) for x ∈ R+

2 .

Then v ∈ C(R+
2 ) ∩ C1(R+

2 \ {x1 = 0}) ∩ C2(R+
2 ) satisfies

‖v‖L∞(R+
2 ) = ‖u‖L∞(R+

2%), (4.5.28)

and is a solution of
2∑

i,j=1

â
(%)
ij Dijv + â

(%)
i Div + â

(%)
0 v = f̂ (%) in R+

2 , (4.5.29)

v = 0 on ∂R+
2 ∩ {x1 = 0}, (4.5.30)

vν ≡ D2v = 0 on ∂R+
2 ∩ {x2 = 0}, (4.5.31)

where

â
(%)
ij (x) = aij(%x), â

(%)
i (x) = % ai(%x) for i, j = 1, 2,

â
(%)
0 (x) = %2a0(%x), f̂ (%)(x) = %2f(%x) for x ∈ R+

2 .
(4.5.32)

Thus, â(%)
ij , i, j = 1, 2, satisfy (4.5.8), (4.5.26), and (4.5.7) with the unchanged

constant λ > 0. Moreover, since % ≤ 1,

‖(â(%)
ij , â

(%)
i , â

(%)
0 )‖

Cα(R+
2 )
≤ ‖(âij , âi, a0)‖

Cα(R+
s )
≤M,

‖f̂ (%)‖
Cα(R+

2 )
≤ ‖f‖

Cα(R+
s )
.

(4.5.33)

Denote Q := {x ∈ R+
2 : dist(x, ∂R+

2 ) > 1
50}. The interior estimates for the

elliptic equation (4.5.29) imply

‖v‖C2,α(Q) ≤ C
(
‖v‖L∞(R+

2 ) + ‖f̂ (%)‖
Cα(R+

2 )

)
.

The local estimates for the Dirichlet problem (4.5.29)–(4.5.30) imply

‖v‖
C2,α(B1/10(x)∩R+

2 )
≤ C

(
‖v‖L∞(R+

2 ) + ‖f̂ (%)‖
Cα(R+

2 )

)
(4.5.34)

for every x ∈ {x1 = 0, 1
2 ≤ x2 ≤ 3

2}. The local estimates for the oblique
derivative problem (4.5.29) and (4.5.31) imply (4.5.34) for every x ∈ { 1

2 ≤ x1 ≤
3
2 , x2 = 0}. Combining these estimates, we have

‖v‖
C2,α(R+

3/2
\R+

1/2
)
≤ C

(
‖v‖L∞(R+

2 ) + ‖f̂ (%)‖
Cα(R+

2 )

)
. (4.5.35)
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2. We modify domain R+
1 by mollifying the corner at (0, 1) and denote the

resulting domain by D. That is, D denotes an open domain such that

D ⊂ R+
1 , D \B1/10((0, 1)) = R+

1 \B1/10((0, 1)),

and ∂D ∩ B1/5((0, 1)) is a C2,α–curve. Then we prove the fact that, for any
f̂ ∈ Cα(D), there exists a unique solution w ∈ C2,α(D) of the problem:

∑2
i=1 â

(%)
ii Diiw + â

(%)
1 D1w = f̂ in D,

w = 0 on ∂D ∩ {x1 = 0, x2 > 0},
wν ≡ D2w = 0 on ∂D ∩ {x1 > 0, x2 = 0},
w = v on ∂D ∩ {x1 > 0, x2 > 0}

(4.5.36)

with
‖w‖C2,α(D) ≤ C

(
‖v‖L∞(R+

2 ) + ‖f̂‖Cα(D)

)
. (4.5.37)

This can be seen as follows: Denote B+
s := Bs(0) ∩ {x1 > 0} for any s > 0.

Denote by D+ the even extension of D from {x1 > 0, x2 > 0} into {x1 > 0},
i.e.,

D+ := D ∪ {(x1, 0) : 0 < x1 < 1} ∪ {x : (x1,−x2) ∈ D}.
Then B+

7/8 ⊂ D+ ⊂ B+
1 , and ∂D+ is a C2,α–curve.

Extend F = (v, g, â
(%)
11 , â

(%)
22 , â

(%)
1 , â

(%)
0 ) from R+

2 to B+
2 by setting

F (x1,−x2) = F (x1, x2) for (x1, x2) ∈ R+
2 .

Then it follows from (4.5.30)–(4.5.31) and (4.5.35) that, denoting by v̂ the re-
striction of the extended function v to ∂D+, we obtain that v̂ ∈ C2,α(∂D+)
with

‖v̂‖C2,α(∂D+) ≤ C
(
‖v‖L∞(R+

2 ) + ‖f̂‖Cα(D)

)
. (4.5.38)

Also, the extended function f̂ satisfies that f̂ ∈ Cα(D+) with ‖f̂‖
Cα(D+)

=

‖f̂‖Cα(D). For % ≤ 1, the extended functions (â
(%)
11 , â

(%)
22 , â

(%)
1 ) satisfy (4.5.7) and

‖(â(%)
11 , â

(%)
22 , â

(%)
1 )‖

Cα(B+
2 )

= ‖(â(%)
11 , â

(%)
22 , â

(%)
1 )‖

Cα(R+
2 )

≤
2∑

i,j=1

‖(aij , ai)‖Cα(R+
s )
.

Then, by [131, Theorem 6.8], there exists a unique solution w ∈ C2,α2 (D+) of
the Dirichlet problem:

2∑

i=1

â
(%)
ii Diiw + â

(%)
1 D1w = f̂ in D+, (4.5.39)

w = v̂ on ∂D+, (4.5.40)
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and w satisfies

‖w‖
C2,α(D+)

≤ C
(
‖v̂‖C2,α(∂D+) + ‖f̂‖

Cα(D+)

)
. (4.5.41)

From the structure of equation (4.5.39) and the symmetry of the domain, it
follows that ŵ, defined by ŵ(x1, x2) = w(x1,−x2) in D+, is also a solution of
(4.5.39)–(4.5.40), since the coefficients and right-hand sides are obtained by even
extension. By uniqueness for Problem (4.5.39)–(4.5.40), we have

w(x1, x2) = w(x1,−x2) in D+.

It follows that D2w(x1, 0) = 0 for all x1 ∈ (0, 1). Thus, w restricted to D is a
solution of (4.5.36), where we have used (4.5.30) to see that w = 0 on ∂D∩{x1 =
0, x2 > 0}. Moreover, (4.5.38) and (4.5.41) imply (4.5.37). The uniqueness of
solution w ∈ C2,α(D) of (4.5.36) follows from the maximum principle and Hopf’s
lemma, as in Steps (i) and (ii) of the proof of Lemma 4.4.2.

3. Now we prove the existence of a solution w ∈ C2,α(D) of the problem:
∑2
i,j=1 â

(%)
ij Dijw +

∑2
j=1 â

(%)
j Djw + â

(%)
0 w = f̂ (%) in D,

w = 0 on ∂D ∩ {x1 = 0},
wν ≡ D2w = 0 on ∂D ∩ {x2 = 0},
w = v on ∂D ∩ {x1 > 0, x2 > 0}.

(4.5.42)

Moreover, we prove that w satisfies

‖w‖C2,α(D) ≤ C
(
‖v‖L∞(R+

2 ) + ‖f̂ (%)‖Cα(D)

)
. (4.5.43)

We obtain such a function w as a fixed point of map K : C2,α(D) 7→ C2,α(D)
defined as follows: Let W ∈ C2,α(D). Define

f̂ = −2â
(%)
12 D12W − â(%)

2 D2W − â(%)
0 W + f̂ (%). (4.5.44)

By (4.5.25)–(4.5.26) and (4.5.32), we have

‖(a(%)
12 , a

(%)
2 , a

(%)
0 )‖Cα(D) ≤M%α, (4.5.45)

which implies
f̂ ∈ Cα(D).

Then, by the results of Step 2, there exists a unique solution w ∈ C2,α(D) of
(4.5.36) with f̂ defined by (4.5.44). We set K[W ] = w.

Now we prove that, if % > 0 is sufficiently small, K is a contraction map.
Let W (i) ∈ C2,α(D) and w(i) := K[W (i)] for i = 1, 2. Then w := w(1) − w(2) is
a solution of (4.5.36) with

f̂ = −2â
(%)
12 D12(W (1) −W (2))− â(%)

2 D2(W (1) −W (2))− â(%)
0 (W (1) −W (2)),

v ≡ 0.
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By (4.5.45), we have

‖f̂‖α,D ≤ C%α‖W (1) −W (2)‖2,α,D.
Thus, we apply (4.5.37) to obtain

‖w(1) − w(2)‖2,α,D ≤ C%α‖W (1) −W (2)‖2,α,D
≤ 1

2
‖W (1) −W (2)‖2,α,D,

where the last inequality holds if % > 0 is sufficiently small, depending only on
(M,α). We fix such %. Then map K has a fixed point w ∈ C2,α(D), which is a
solution of (4.5.42).

4. Since v satisfies (4.5.29)–(4.5.31), v satisfies (4.5.42). Now it follows from
the uniqueness of solutions in C(D) ∩ C1(D \ {x1 = 0}) ∩ C2(D) of Problem
(4.5.42) that w = v in D. Therefore, v ∈ C2,α(D), which implies that u ∈
C2,α(R+

%/2).

The next case we consider is modeled by the conditions near P1: Consider
domain R+

s , defined by (4.5.21), with curved boundary segment Γ
(ob)
s :

‖fob‖(−1−α),{0}
2,α,(0,s) ≤Mob for α ∈ (0, 1). (4.5.46)

For equation (4.5.4), the uniform ellipticity (4.5.7) is replaced by the ellip-
ticity that is uniform, but with a certain degeneracy near Γ

(d)
s : There exist

λ ∈ (0, 1] and δ > 0 such that

λ|µ|2 ≤
2∑

i,j=1

aij(x)
µiµj

(
max{x1, δ}

)2− i+j2

≤ λ−1|µ|2 (4.5.47)

for any x ∈ R+
s and µ ∈ R2, and that the conditions for x ∈ R+

s :

|aii(x)− aii(P̂ )|+ |a12(x)| ≤ λ−1|x|α, (4.5.48)

|ai(x)| ≤ λ−1|x|α−1, (4.5.49)
a0(x) ≤ 0, (4.5.50)
‖aij‖Cα(R+

s )
+ ‖(ai, a0)‖

C
(1−α),{P̂}
0,α,R+

s

≤M, (4.5.51)

and (4.5.8)–(4.5.9) hold with Ω = R+
s . The boundary condition (4.5.23) with

b = (b1, b2) satisfies that, on Γ
(ob)
s ,

Obliqueness: λ ≤ b · ν ≤ λ−1, (4.5.52)

|(b(x), b0(x))| ≤ λ−1, (4.5.53)

b0 ≤ 0, (4.5.54)

b1 ≤ −λ, (4.5.55)

‖(b, b0)‖
C

(−α),{P̂}

1,α,Γ
(ob)
s

≤M. (4.5.56)
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Lemma 4.5.5. Let s > 0 and Mob ≥ 1, and let R+
s be the domain in (4.5.21)

such that (4.5.46) holds. Let α ∈ (0, 1) and λ ∈ (0, 1]. Then there exists
δ0 ∈ (0, 1) depending only on (Mob, α, λ) such that, for every δ ∈ (0, δ0), if
(4.5.47)–(4.5.50) and (4.5.52)–(4.5.55) hold, and f ∈ C(1−α),{P̂}

α,R+
s

, g ∈ C(−α),{P̂}
1,α,Γ

(ob)
s

,
and one of the following assumptions hold:

(i) g(P̂ ) = 0,

(ii) (4.5.51) and (4.5.56) hold for some M,

then any solution u ∈ C(R+
s )∩C1(R+

s \Γ
(d)
s )∩C2(R+

s ) of (4.5.4) and (4.5.23)–
(4.5.24) satisfies

∣∣∣u(x)− g(P̂ )

b1(P̂ )
x1

∣∣∣

≤ C
(
‖u‖L∞(R+

s ) + ‖f‖(1−α),{P̂}
0,α,R+

s
+ ‖g‖(−α),{P̂}

1,α,Γ
(ob)
s

)
|x|1+α in R+

s ,

(4.5.57)

where constant C depends only on (s,Mob, α, λ, δ) for Case (i), and depends on
M in addition to the previous parameters for Case (ii).

In particular, for Case (ii), u is in C1,α(R+
s/2)∩C2,α(R+

s/2\{P̂}) and satisfies

‖u‖(−1−α),{P̂}
2,α,R+

s/2

≤ C
(
‖u‖L∞(R+

s ) + ‖f‖(1−α),{P̂}
0,α,R+

s
+ ‖g‖(−α),{P̂}

1,α,Γ
(ob)
s

)
(4.5.58)

with C depending only on (s,Mob, α, λ, δ,M).

Proof. We divide the proof into five steps.
1. In Steps 1–4, we prove (4.5.57). To achieve this, it suffices to prove (4.5.57)

in R+
% for some % > 0 and C depending only on (Mob, α, λ, δ) for Case (i), and

on (Mob, α, λ, δ,M) for Case (ii). Indeed, in order to extend (4.5.57) from R+
%

to R+
s , we need only the L∞–bound of u in R+

s . Then, since term ‖u‖L∞(R+
s ) is

present on the right-hand side of (4.5.57), we readily extend (4.5.57) from R+
%

to R+
s , where C now depends on s, in addition to the previous parameters.
2. We may assume without loss of generality that g(P̂ ) = 0. Otherwise,

(4.5.51) and (4.5.56) hold by assumption (ii), and then umay be replaced by ũ =

u− g(P̂ )

b1(P̂ )
x1 so that ũ satisfies (4.5.4) and (4.5.23)–(4.5.24) with the right-hand

sides f̃ = f− g(P̂ )

b1(P̂ )

(
a1(x)+a0(x)x1

)
in (4.5.4) and g̃ = g− g(P̂ )

b1(P̂ )
(b1(x)+b0(x)x1)

in (4.5.23). Since P̂ = 0, we obtain that g̃(P̂ ) = 0. Moreover, using (4.5.51)
and (4.5.55)–(4.5.56), we find that estimate (4.5.57) for (ũ, f̃ , g̃) implies (4.5.57)
for (u, f, g), with C depending on M , in addition to (Mob, α, λ, δ).

To summarize, it suffices to prove (4.5.57) in R+
% for some % > 0 and C,

depending only on (Mob, α, λ, δ), under the assumption that g(P̂ ) = 0.
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In Steps 3–4 below, the positive constants C, N , and % depend only on
(Mob, λ, δ, α), and constant δ0 > 0 depends only on (Mob, α, λ).

3. Since g(P̂ ) = 0, we use (4.5.46) to obtain

|g(x)| ≤ C‖g‖(−α),{P̂}
1,α,Γ

(ob)
s

|x1|α on Γ(ob)
s . (4.5.59)

Fix δ ∈ (0, δ0). We work in R+
% for % to be defined. We change the variables

in such a way that the second-order part of equation (4.5.4) at P̂ becomes the
Laplacian. Denote

µ =

√
â11(P̂ )/â22(P̂ ). (4.5.60)

Then, using (4.5.47) and P̂ = 0, we have

λ
√
δ ≤ µ ≤

√
δ

λ
. (4.5.61)

In particular, µ < 1, by choosing δ0 small.
Now we introduce the variables:

X = (X1, X2) := (
x1

µ
, x2).

Expressing domain R+
s in (4.5.21) and its boundary Γ

(ob)
s in (4.5.22) in the X-

coordinates, and restricting them to Br(0) for r ∈ (0, s), we obtain the following
regions: For r ∈ (0,∞),

R̂+
r = {X1 > 0, X2 > F (X1)} ∩Br(0),

Γ̂(ob)
r := {X1 > 0, X2 = F (X1)} ∩Br(0),

where
F (X1) = fob(µX1). (4.5.62)

From (4.5.21), (4.5.46), and (4.5.61)–(4.5.62),

F (0) = 0, |F ′(X1)| ≤ Mob

λ

√
δ for X1 ∈ [0,

s

µ
]. (4.5.63)

We now consider our problem in domain R̂+
% in the X–coordinates.

We first write u in the X–coordinates. Introduce the function:

v(X) := u(x) = u(µX1, X2).

Since µ < 1, and u is defined in R+
% , then v is defined in R̂+

% . Since u satisfies
equation (4.5.4) and the boundary conditions (4.5.23)–(4.5.24), v satisfies

Av :=
1

µ2
ã11vX1X1

+
2

µ
ã12vX1X2

+ ã22vX2X2
+

1

µ
ã1vX1

+ ã2vX2
+ ã0v = f̃

(4.5.64)
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in R̂+
% ,

Bv :=
1

µ
b̃1vX1

+ b̃2vX2
+ b̃0v = g̃ on Γ̂(ob)

% , (4.5.65)

and
v = 0 on {X1 = 0, X2 > F (0)} ∩B%, (4.5.66)

where (ãij , ãi, b̃i, f̃ , g̃)(X) = (aij , ai, bi, f, g)(µX1, X2). In particular, from (4.5.48)–
(4.5.50) and (4.5.60), we have

ã22(0) =
1

µ2
ã11(0), ã12(0) = ã2(0) = 0, ã0 ≤ 0, (4.5.67)

|ãii(X)− ãii(0)| ≤ C|X|α for i = 1, 2, (4.5.68)
|ã12(X)|+ µ1−α|X||(ã1, ã2)(X)| ≤ C|X|α. (4.5.69)

From (4.5.53) and (4.5.55), we have

b̃1 ≤ −λ, |b̃| ≤ λ−1 on Γ̂(ob)
% . (4.5.70)

Also, (4.5.52) and the expression of F in (4.5.62) imply

(
1

µ
b̃1, b̃2) · νF > 0 on Γ̂(ob)

% ,

where νF is the normal to Γ̂
(ob)
% . Therefore, condition (4.5.65) is oblique.

4. We use the polar coordinates (r, θ) on the X–plane, i.e.,

X = (r cos θ, r sin θ).

From (4.5.63), it follows that, if δ0 > 0 is small, |θ| ≤ C
√
δ on Γ

(ob)
% so that, on

Γ
(ob)
% ,

∂θ
(
X2 − F (X1)

)
= ∂θ

(
r sin θ − F (r cos θ)

)
≥ r
(

cos θ − C
√
δ| sin θ|

)
≥ r

2
,

∣∣∂r
(
X2 − F (X1)

)∣∣ =
∣∣∂r
(
r sin θ − F (r cos θ)

)∣∣ ≤ | sin θ + |F ′(r cos θ)| ≤ C
√
δ.

Thus, there exists a function θF ∈ C1([0, %]) such that

R̂+
% = {0 < r < %, θF (r) < θ <

π

2
},

Γ̂(ob)
% = {0 < r < %, θ = θF (r)}.

(4.5.71)

Also, by (4.5.63),
|θF (r)| ≤ C

√
δ. (4.5.72)

Choosing sufficiently small δ0 > 0 and % > 0, and large N = N(α, λ) ≥ 1,
we show that, for any δ ∈ (0, δ0), the function:

w(r, θ) = Lr1+α cos(G(θ)) (4.5.73)



RELEVANT RESULTS FOR NONLINEAR ELLIPTIC EQUATIONS OF SECOND ORDER 159

is a positive supersolution of (4.5.64)–(4.5.66) in R+
% , where

G(θ) =
3 + α

2
(θ − π

4
),

L = N
(
‖u‖L∞(R+

s ) + ‖f‖(1−α),{P̂}
0,α,R+

s
+ ‖g‖(−α),{P̂}

1,α,Γ
(ob)
s

)
.

(4.5.74)

From (4.5.71)–(4.5.72), we find that, for sufficiently small δ0 depending only
on (α, λ,M) and any δ ∈ (0, δ0),

−π
2

+
(1− α)π

16
≤ G(θ) ≤ π

2
− (1− α)π

16
for any (r, θ) ∈ R+

% .

In particular, we have

cos(G(θ)) ≥ sin
(1− α

16
π
)
> 0 for any (r, θ) ∈ R+

% \ {X = 0}, (4.5.75)

which implies
w > 0 in R+

% .

By (4.5.71)–(4.5.72), we find that, if δ ∈ (0, δ0) with small δ0 > 0,

cos(θF (r)) ≥ 1− Cδ0 > 0, | sin(θF (r))| ≤ C
√
δ0 for all r ∈ (0, %).

Now, possibly reducing δ0 further, we show that w is a supersolution of
(4.5.65). Using (4.5.61), (4.5.65), and (4.5.70), the estimates of (θF , G(θF ))

derived above, and the fact that θ = θF on Γ̂
(ob)
% , we have

Bw ≤ Lb̃1
µ
rα
(

(α+ 1) cos(θF ) cos(G(θF )) +
3 + α

2
sin(θF ) sin(G(θF ))

)

+ CLrα|b̃2|+ CLrα+1|b̃3|

≤ − Lrα
( λ2

√
δ0

(
(1− Cδ0) sin(

1− α
16

π)− C
√
δ0

)
− C

)

≤− Lrα,

if δ0 is sufficiently small. We now fix δ0 such that it satisfies all the smallness
assumptions above. Then we have

Bw ≤ −Lrα ≤ −N‖g‖(−α),{P̂}
1,α,Γ

(ob)
r

rα ≤ g,

where we have used (4.5.59) and chosen N sufficiently large to achieve the last
inequality.

Finally, we show that w is a supersolution of equation (4.5.64) in X ∈ {X1 >
0, X2 > F (X1)}∩B% if % is small. Denote by A0 the operator obtained by fixing
the coefficients of A in (4.5.64) at X = 0. Then A0 = ã22(0)∆ by (4.5.67). By
(4.5.47), we obtain that ã22(0) ≥ λ. Now, by explicit calculation and using
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(4.5.61), (4.5.67)–(4.5.69), and (4.5.75), we find that, for any δ ∈ (0, δ0) and
X ∈ {X1 > 0, X2 > F (X1)} ∩B%,

Aw(r, θ) = a2(0)∆w(r, θ) + (A−A0)w(r, θ)

≤Lã22(0)rα−1
(
(α+ 1)2 − (

3 + α

2
)2
)

cos(G(θ))

+ CLrα−1

(
1

µ2
|ã11(X)− ã11(0)|+ |ã22(X)− ã22(0)|

)

+
CL

µ

(
rα−1|ã12(X)|+ rα|ã1(X)|

)
+ CLrα

(
|ã2(X)|+ r|ã0(X)|

)

≤− Lrα−1

(
(1− α)(5 + 3α)

4
λ sin

(1− α
16

π
)
− C %

α

δ

)

≤− (1− α)(5 + 3α)

8
Lrα−1λ sin

(1− α
16

π
)
,

where we have chosen sufficiently small % > 0 to obtain the last inequality. Note
that such a small constant % depends on (δ, α, λ, C), and hence on (Mob, α, λ, δ)
as stated in Step 2. We now fix %. Choosing N in (4.5.74) sufficiently large, we
have

Aw ≤ −‖f‖(1−α),{P̂}
0,α,R+

%
rα−1 ≤ f.

Now the maximum principle and Hopf’s lemma imply that

v ≤ w ≤ Crα+1 in R+
% ,

by the argument that repeats Steps (i)–(ii) of the proof of Lemma 4.4.2. A
similar estimate can be obtained for −v. Thus, |v| ≤ w in R+

% . Then, from
(4.5.73)–(4.5.74) and v(X) = u(µX1, X2), we obtain (4.5.57) in R+

% in the case
that g(P̂ ) = 0. This implies the full estimate (4.5.57) in the general case,
according to Steps 1–2.

5. We now prove (4.5.58) under the assumption that (4.5.51) and (4.5.56)
hold. Similar to Step 2, it suffices to consider the case that g(P̂ ) = 0. In the fol-
lowing argument, the positive constants C and L depend only on
(s,Mob, λ, δ, α,M).

Estimate (4.5.58) can be obtained from (4.5.57), combined with rescaling
from balls Bd x

10
(x)∩R+

s for x ∈ R+
s/2 \ {P̂} into the unit ball and the standard

interior estimates for the linear elliptic equations and the local estimates for the
linear Dirichlet and oblique derivative problems in smooth domains. Specifically,
from (4.5.21) and (4.5.46), it follows that there exists L > 1, depending only on
Mob, such that

B dx
L

(x) ∩ (∂R+
s \ Γ(ob)

s ) = ∅ for any x ∈ Γ
(ob)
s/2 ,

B dx
L

(x) ∩ (∂R+
s \ Γ(d)

s ) = ∅ for any x ∈ Γ
(d)
s/2,
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where dx := dist(x, P̂ ). Also, for any x ∈ R+
s/2, we have at least one of the

following three cases:

(a) B dx
10L

(x) ⊂ R+
s ;

(b) x ∈ B dx̂
2L

(x̂) for some x̂ ∈ Γ
(d)
s ;

(c) x ∈ B dx̂
2L

(x̂) for some x̂ ∈ Γ
(ob)
s .

Thus, it suffices to make the C2,α–estimates of u in the following subdomains:

(i) B dx̂
20L

(x̂) when B dx̂
10L

(x̂) ⊂ R+
s ;

(ii) B dx̂
2L

(x̂) ∩R+
s for x̂ ∈ Γ

(d)
s/2;

(iii) B dx̂
2L

(x̂) ∩R+
s for x̂ ∈ Γ

(ob)
s/2 .

We discuss only Case (iii), since the other cases are simpler and can be
handled similarly.

Let x̂ ∈ Γ
(ob)
s/2 . Denote d̂ := dx̂

2L > 0. Without loss of generality, we can

assume that d̂ ≤ 1.
We rescale near x̂ = (x̂1, x̂2), i.e., define the coordinates:

X :=
x− x̂

d̂
.

Since Bd̂(x̂) ∩ (∂R+
s \ Γ

(ob)
s ) = ∅, then, for ρ ∈ (0, 1), the domain obtained by

rescaling R+
s ∩Bρd̂(x̂) is

Ωx̂
ρ := Bρ ∩

{
X2 > F (X1)

}
,

where F (X1) = fob(x̂1+d̂X1)−fob(x̂1)

d̂
. Then ‖F‖2,α,(−1,1) ≤ ‖f‖(−1−α),{0}

2,α,(0,s) ≤Mob.
Define

v(X) =
u(x̂ + d̂X)

d̂1+α
for X ∈ Ωx̂

1 . (4.5.76)

Then, by (4.5.57),

‖v‖0,Ωx̂
1
≤ C

(
‖u‖0,R+

s
+ ‖f‖(1−α),{P̂}

0,α,R+
s

+ ‖g‖(−α),{P̂}
1,α,Γ

(ob)
s

)
, (4.5.77)

since g(P̂ ) = 0 in the case under consideration.
Since u satisfies equation (4.5.4) in R+

s and the oblique derivative condition
(4.5.23) on Γ

(ob)
s , v satisfies an equation and an oblique derivative condition of

a similar form in Ωx̂
1 and on Γ

(ob)
x̂ := ∂Ωx̂

1 ∩ {X2 = F (X1)}, respectively, whose
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coefficients satisfy properties (4.5.47) and (4.5.51) with the same constants as
for the original equations, since d̂ ≤ 1. Moreover, (4.5.51) and (4.5.56) imply
that the coefficients of the rescaled equation and the boundary condition are in
Cα(Ωx̂

1 ) and C1,α(Γ
(ob)
x̂ ), respectively, with the norms bounded by M . Further-

more, the right-hand sides (f̂ , ĝ) of these equations and the oblique condition
for v are determined by

f̂(X) = d̂1−αf(x̂ + d̂X), ĝ(X) = d̂−αg(x̂ + d̂X).

Since g(P̂ ) = 0, we have

g(x̂) ≤ ‖g‖(−α),{P̂}
1,α,Γ

(ob)
s

|x̂|α ≤ C‖g‖(−α),{P̂}
1,α,Γ

(ob)
s

d̂α.

Using this estimate and d̂ ≤ 1, we have

‖f̂‖0,α,Ωx̂
1
≤ C‖f‖(1−α),{P̂}

0,α,R+
s

, ‖ĝ‖
1,α,Γ

(ob)
x̂

≤ C‖g‖(−α),{P̂}
1,α,Γ

(ob)
s

.

We also note the C2,α–regularity of the boundary Γ
(ob)
x̂ := ∂Ωx̂

1∩{X2 = F (X1)}:
‖F‖2,α,(−1,1) ≤Mob. Then, from the standard local estimates for linear oblique
derivative problems, we have

‖v‖2,α,Ωx̂
1/2
≤ C

(
‖v‖0,Ωx̂

1
+ ‖f̂‖

0,α,Ωx̂
1

+ ‖ĝ‖
1,α,Γ

(ob)
x̂

)

≤ C
(
‖u‖0,R+

s
+ ‖f‖(1−α),{P̂}

0,α,R+
s

+ ‖g‖(−α),{P̂}
1,α,Γ

(ob)
s

)

with C depending only on (λ,M, δ).
We obtain similar estimates for Cases (i)–(ii) by using the interior estimates

for elliptic equations for Case (i) and the local estimates for the Dirichlet problem
for linear elliptic equations for Case (ii).

Writing the above estimates in terms of u and using the fact that the whole
domain R+

s/2 is covered by the subdomains in (i)–(iii), we obtain (4.5.58) by an
argument similar to that for the proof of [131, Theorem 4.8]; see also the proof
of Lemma 4.2.7.

Now we obtain the following existence result for solutions of Problem (4.5.4)–
(4.5.6) with global C1,α–regularity:

Proposition 4.5.6. Let h, t0, t1, t2,Mbd > 0, and let Ω be a domain of structure
(4.5.1)–(4.5.3). Let ε ∈ (0, 1

2 min{h, t0}), κ, λ ∈ (0, 1], M < ∞, and α ∈ (0, α1]
be constants, where α1(κ, λ,Mbd) ∈ (0, 1) is determined in Lemma 4.5.1. Let
fbd satisfy (4.5.15). Let δ ∈ (0, δ0) for δ0(λ, α) determined in Lemma 4.5.5.
Assume that the coefficients of equation (4.5.4) satisfy the ellipticity condition
(4.5.47) for all x ∈ Ω and µ ∈ R2 and the properties:

‖aij‖0,α,Ω + ‖(ai, a0)‖(1−α),{P1}
0,α,Ω ≤M, (4.5.78)

a12(Pj) = a21(Pj) = 0, j = 1, 4, (4.5.79)
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and (4.5.8). Assume that the coefficients of the boundary conditions (4.5.5)
satisfy (4.5.10)–(4.5.14) and the following additional properties:

b
(1)
1 (P1) ≤ −λ, (4.5.80)

b
(3)
1 ≡ 0, b

(3)
2 ≡ 1, b

(3)
0 ≡ 0 on Γ3 ∩ {x1 < ε}. (4.5.81)

Let f ∈ C(1−α),{P1}∪Γ2

0,α,Ω , g2 ∈ Cα(Γ2), and gi ∈ C(−α),∂Γi
1,α,Γi

for i = 1, 3, where ∂Γi
denotes the endpoints of Γi. Moreover, let

g3 ≡ 0 on Γ3 ∩ {x1 < ε}. (4.5.82)

Then there exists a unique solution u ∈ C
(−1−α),{P1}∪Γ2

2,α,Ω of Problem (4.5.4)–
(4.5.6) with

‖u‖(−1−α),{P1}∪Γ2

2,α,Ω ≤ C
(
‖f‖(1−α),{P1}∪Γ2

0,α,Ω +
∑

i=1,3

‖gi‖(−α),∂Γi
1,α,Γi

+ ‖g2‖0,α,Γ2

)
,

(4.5.83)
where C depends only on (Ω, κ, λ,M, ε, α).

Proof. Fix α and δ satisfying the conditions above. Since λ and δ determine
the ellipticity in the present case, then, from Proposition 4.5.2, there exists
β1(κ, λ, δ) such that, for each β ∈ (0, β1), there is a solution u ∈ C∗,2,α,β(Ω)
of Problem (4.5.4)–(4.5.6) satisfying (4.5.16). Fix β = β1

2 . Then C in (4.5.16)
depends only on (κ, λ,M,α). Applying Lemma 4.5.4 in Bε(P4)∩Ω and Lemma
4.5.5 in Bε(P1)∩Ω, we obtain the higher regularity of u near {P1, P4}. Note that
our assumptions allow us to apply Lemmas 4.5.4–4.5.5, that assumption (4.5.82)
especially determines the size of region where we apply Lemma 4.5.4, and that
restriction ε ∈ (0, 1

2 min{h, t0}) implies that regions Bε(Pj) ∩ Ω, j = 1, 4, are
of structure (4.5.21) in the appropriate coordinate system. Also, we apply
the standard local Schauder estimates for the Dirichlet problem in Ωε/4(x) :=
Bε/4(x)∩Ω for any x ∈ Γ0 with dist(x, {P1, P4}) > ε

2 , where we have used that

‖f‖0,α,Ωε/4(x) ≤ C(ε, α)‖f‖(1−α),{P1}∪Γ2

0,α,Ω and

‖(a1, a0)‖0,α,Ωε/4(x) ≤ C(ε, α)M

by (4.5.78) to obtain

‖u‖2,α,Ωε/8(x) ≤ C(λ,M, ε, α)
(
‖u‖0,Ω + ‖f‖(1−α),{P1}∪Γ2

0,α,Ω

)
.

Combining these estimates allows us to improve (4.5.16) to (4.5.83). The unique-
ness of the solution follows from (4.5.83).

4.5.2 Nonlinear problem

In this section, we consider a nonlinear problem in the domain of structure
(4.5.1)–(4.5.2), which will be used later. We use the notations introduced in
(4.5.3) for its sides and vertices.
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The nonlinear problem under consideration is

2∑

i,j=1

Aij(Du,x)Diju+
2∑

i=1

Ai(Du,x)Diu = 0 in Ω, (4.5.84)

B(Du, u,x) = 0 on Γ1, (4.5.85)

b(2)(x) ·Du = g2 on Γ2, (4.5.86)

b(3)(x) ·Du = 0 on Γ3, (4.5.87)
u = 0 on Γ0. (4.5.88)

Now we list the assumptions for Problem (4.5.84)–(4.5.88). Let α ∈ (0, 1
2 ),

β ∈ ( 1
2 , 1), λ ∈ (0, 1], δ > 0, κ > 0, ε ∈ (0, h10 ), σ ∈ (0, 1), and M <∞.

Assumptions on the equation:

(i) Ellipticity degenerating on Γ0: For any x ∈ Ω and p,µ ∈ R2,

λ dist(x,Γ0)|µ|2 ≤
2∑

i,j=1

Aij(p,x)µiµj ≤ λ−1|µ|2; (4.5.89)

Anisotropic uniform ellipticity near Γ0: For any x ∈ Ω ∩ {x1 <
ε
2} and

p,µ = (µ1, µ2) ∈ R2,

λ|µ|2 ≤
2∑

i,j=1

Aij(p,x)
µiµj

(
max(x1, δ)

)2− i+j2

≤ λ−1|µ|2; (4.5.90)

(ii) Functions (Aij , Ai)(p,x) are independent of p on Ω ∩ {x1 ≥ ε}, i.e.,
(Aij , Ai)(p,x) = (Aij , Ai)(x) for any x ∈ Ω ∩ {x1 ≥ ε} and p ∈ R2,
with

‖Aij‖L∞(Ω∩{x1≥ε}) ≤ λ−1, ‖(Aij , Ai)‖C(−α),Γ2
1,α,Ω∩{x1≥ε}

≤M ; (4.5.91)

(iii) There exists β ∈ ( 1
2 , 1) such that, for any p ∈ R2,

‖(Aij , Ai)(p, ·)‖Cβ(Ω∩{x1<2ε})

+ ‖(DpAij , DpAi)(p, ·)‖L∞(Ω∩{x1<2ε}) ≤M ; (4.5.92)

(iv) (Aij , Ai) ∈ C1,α(R2 × (Ω \ (Γ0 ∪ Γ2))) and, for any s ∈ (0, h4 ),

‖(Aij , Ai)‖C1,α(R2×(Ω∩{s≤x1≤h−s})) ≤M
(h
s

)M
; (4.5.93)



RELEVANT RESULTS FOR NONLINEAR ELLIPTIC EQUATIONS OF SECOND ORDER 165

(v) For any (p, (x1, 0)) ∈ R2 × (Γ3 ∩ {x1 < ε}),

(A11, A22, A1)((p1,−p2), (x1, 0))

= (A11, A22, A1)((p1, p2), (x1, 0))
(4.5.94)

and, for any (p, (x1, x2)) ∈ R2 × (Ω ∩ {x1 < ε}),

|Aii(p, (x1, x2))−Aii(0, (0, x2))| ≤M |x1|β , i = 1, 2; (4.5.95)

(vi) For any p ∈ R2 and (0, x2) ∈ Γ0,

(A12, A21)(p, (0, x2)) = 0; (4.5.96)

(vii) For any p ∈ R2 and x ∈ Ω ∩ {x1 <
ε
2},

A1(p,x) ≤ −λ. (4.5.97)

Assumptions on the nonlinear boundary condition (4.5.85):

(a) Uniform obliqueness: For any (p, z,x) ∈ R2 × R× Γ1,

DpB(p, z,x) · ν(1)(x) ≥ λ, (4.5.98)

where ν(1) is the interior unit normal on Γ1 to Ω;

(b) Regularity of the coefficients: For any (p, z) ∈ R2 × R,

‖(B(0, 0, ·), Dk
(p,z)B(p, z, ·))‖C3(Ω) ≤M, k = 1, 2, 3, (4.5.99)

‖DpB(p, z, ·)‖C0(Ω) ≤ λ−1, (4.5.100)

DzB(p, z,x) ≤ −λ for all x ∈ Γ1, (4.5.101)
Dp1

B(p, z,x) ≤ −λ for all Γ1 ∩ {x1 < ε}; (4.5.102)

(c) Almost-linear structure: There exist v ∈ C3(Γ1) and a nonhomogeneous
linear operator:

L(p, z,x) = b(1)(x) · p + b
(1)
0 (x)z + g1(x),

defined for x ∈ Γ1 and (p, z) ∈ R2 × R, satisfying

‖v‖C3(Ω) + ‖(b(1), b
(1)
0 , g1)‖C3(Γ1) ≤M, (4.5.103)

such that, for any (p, z,x) ∈ R2 × R× Γ1,

|B(p, z,x)− L(p, z,x)| ≤ σ
(
|p−Dv(x)|+ |z − v(x)|

)
,

∣∣DpB(p, z,x)− b(1)(x)
∣∣+
∣∣DzB(p, z,x)− b(1)

0 (x)
∣∣ ≤ σ.

(4.5.104)
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Assumptions on the linear boundary conditions (4.5.86)–(4.5.87): The coeffi-
cients b(k) of the boundary conditions on Γk, k = 2, 3, satisfy

Obliqueness: b(k) · ν(k) ≥ λ on Γk, (4.5.105)

b
(3)
1 ≤ 0 on Γ3, b(3) = (0, 1) on Γ3 ∩ {0 < x1 < ε}, (4.5.106)

‖b(k)‖C3(Ω) ≤ λ−1 for k = 2, 3, (4.5.107)

where ν(k) is the interior unit normal on Γk to Ω, and ∂Γk denotes the endpoints
of Γk.
Assumptions at corners Pk, k = 2, 3:

The boundary conditions on Γk−1 and Γk satisfy the
λ-obliqueness at corner Pk in the sense of Definition 4.4.3,

(4.5.108)

∣∣∣∣
b(k−1)

|b(k−1)| −
b(k)

|b(k)|

∣∣∣∣ ≥ κ at Pk. (4.5.109)

Assumptions on the right-hand sides:

‖g2‖C3(Γ2) ≤M, (4.5.110)

B(0, 0, ·) ≡ 0 on Γ1 ∩ {x1 < ε}. (4.5.111)

We first establish the a priori estimates for solutions of (4.5.84)–(4.5.88).

Remark 4.5.7. Some of the estimates below are proved under the assumptions
of possibly nonstrictly positive t0 in (4.5.1). In the case that fbd(0) = t0 = 0,
P1 = P4 so that the boundary part Γ0 becomes one point. Then condition (4.5.6)
becomes the one-point Dirichlet condition. We will consider such problems in
§4.8.

We start with the L∞–estimates. One important point for our applications
to the degenerate elliptic equations is that these estimates are independent of
parameter δ in (4.5.90). Another important point is that these estimates are
independent of t0 ≥ 0 in (4.5.1).

Lemma 4.5.8. Let λ ∈ (0, 1) and M < ∞. Let Ω be a domain of structure
(4.5.1)–(4.5.3) with h, t1, t2,Mbd > 0 and t0 ≥ 0. Assume that h ∈ (λ, 1

λ ). Let
ε ∈ (0, h2 ). Let equation (4.5.84) be strictly elliptic in Ω \ Γ0, and let

(Aij , Ai) ∈ C1(R2 × Ω) with sup
(p,x)∈R2×Ω

|(A11, A1)(p,x)| ≤M, (4.5.112)

A11(p,x)

x1
≥ λ for all x = (x1, x2) ∈ Ω, p ∈ R2, (4.5.113)

and (4.5.97) hold.
Let the boundary condition (4.5.85) satisfy B ∈ C1(R2 × (Γ1 \ {P1})) with

‖B(0, 0, ·)‖0,Γ1
+ ‖B(p1,z)‖0,R2×R×Γ1

≤M, (4.5.114)



RELEVANT RESULTS FOR NONLINEAR ELLIPTIC EQUATIONS OF SECOND ORDER 167

the strict obliqueness:

DpB(p, z,x) · ν(1) > 0 for all (p, z,x) ∈ R2 × R× (Γ1 \ {P1}), (4.5.115)

and (4.5.101)–(4.5.102). Let coefficients b(k) of the boundary conditions on
Γ2 ∪ Γ3 satisfy

b(2) ∈ C(Γ2), b(3) ∈ C(Γ3 \ {P4}), ‖b(2)‖0,Γ2 ≤M, (4.5.116)

the obliqueness properties:

b(2) · ν(2) ≥ λ on Γ2, b(3) · ν(3) > 0 on Γ3 \ {P4}, (4.5.117)

and (4.5.106). Also, we assume that λ-obliqueness (4.5.108) holds at P2 ∪ P3.
Let f ∈ C(Ω) and gk ∈ C(Γk), k = 2, 3, with

‖f‖0,Ω + ‖g2‖0,Γ2 + ‖g3‖0,Γ3 ≤M. (4.5.118)

Let u ∈ C2(Ω) ∩C1(Ω \ Γ0) ∩C(Ω) be a solution of (4.5.84)–(4.5.88), in which
equation (4.5.84) and the boundary condition (4.5.87) are now nonhomogeneous
with the right-hand sides f and g3, respectively. Then there exists C depending
only on (λ,M, ε) so that

‖u‖0,Ω ≤ C, (4.5.119)

|u(x)| ≤ Cx1 in Ω. (4.5.120)

Proof. It suffices to prove (4.5.120), since it implies (4.5.119). Constants C and
C1 in this proof are positive and depend only on (λ,M, ε).

Consider equation (4.5.84) and the boundary condition (4.5.85) as a linear
equation and boundary condition:

Lu =
2∑

i,j=1

aij(x)Diju+
2∑

i=1

ai(x)Diu = f in Ω, (4.5.121)

B̂(1)u := b̂(1)(x) ·Du+ b̂
(1)
0 (x)u = ĝ1 on Γ1, (4.5.122)

where

(aij , ai)(x) = (Aij , Ai)(Du(x),x) for i, j = 1, 2,

(b̂(1), b̂
(1)
0 )(x) =

∫ 1

0

D(p,z)B(tDu(x), tu(x),x)dt,

ĝ1(x) = B(0, 0,x).

(4.5.123)

Then our assumptions imply that aij satisfy the strict ellipticity condition and
the bounds:

λx1 ≤ a11(x) ≤M for all x ∈ Ω,
|a1(x)| ≤M for all x ∈ Ω,
a1(x) ≤ −λ for all x ∈ Ω ∩ {0 < x1 <

ε
2},

(4.5.124)
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where the last property follows from (4.5.97). Also, from (4.5.101)–(4.5.102)
and (4.5.114)–(4.5.115), (b̂(1), b̂

(1)
0 , ĝ1) satisfy the strict obliqueness:

b̂(1) · ν(1) > 0 on Γ1

and

‖(b̂(1), ĝ1)‖L∞(Γ1) ≤M, b̂
(1)
1 ≤ −λ, b̂

(1)
0 ≤ −λ on Γ1. (4.5.125)

We use the comparison function:

v(x) = w(x1),

where w(x1) with
w′ > 0, w′′ < 0 on (0, h) (4.5.126)

will be determined below in such a way that v(x) is a supersolution of equation
(4.5.121) with the boundary conditions (4.5.86)–(4.5.88) and (4.5.122).

First we consider equation (4.5.121). We employ (4.5.124) and (4.5.126) to
compute that

Lv − f = a11w
′′ + a1w

′ − f ≤ λx1w
′′ +Mw′ +M. (4.5.127)

Now we work in Ω ∩ {x1 ≥ ε
2} and Ω ∩ {x1 <

ε
2}, separately.

We first consider Ω ∩ {x1 ≥ ε
2}. From (4.5.126)–(4.5.127), we obtain that

Lv ≤ f in Ω ∩ {x1 ≥ ε
2} if

λεw′′ +Mw′ +M = 0.

Solving this equation with condition: w(0) = 0, we have

w(x1) = −x1 + C1(1− e−M̂x1), w′(x1) = −1 + M̂C1e
−M̂x1 , (4.5.128)

where M̂ = M
λε > 0, and C1 is an arbitrary constant, which will be chosen

below. We define w(x1) by (4.5.128) on the whole interval (0, h). Then, from
the expression of w′(·) and its derivative, it follows that (4.5.126) holds if C1 =
C1(λ,M, ε) is sufficiently large, where we recall that h ∈ (λ, 1

λ ). This justifies
the estimates above.

We now show that Lv − f ≤ 0 on Ω ∩ {x1 < ε
2}, when C1 is large. On

Ω∩{x1 <
ε
2}, a1 ≤ −λ by (4.5.124). Thus, using that a11 > 0 by (4.5.124), and

employing (4.5.126) and the fact that x1 ∈ (0, ε2 ) in the present case, we find
from (4.5.124) and (4.5.127)–(4.5.128) that

Lv − f ≤ a1w
′ − f ≤ −λw′ +M < 0 on Ω ∩ {0 < x1 <

ε

2
},

if C1 > 0 is sufficiently large. Therefore, Lv − f < 0 in Ω.
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Next consider (4.5.86). Note that ν(2) = −(1, 0) so that (4.5.117) implies
that b(2)

1 ≤ −λ. Then, using (4.5.126), we have

B(2)v := b(2) ·Dv = b
(2)
1 w′(x1) ≤ −λw′(h).

Thus, B(2)v ≤ g2 on Γ2 if

w′(h) ≥ λ−1‖g2‖L∞ .
By (4.5.128), the last inequality holds if C1 is sufficiently large.

Furthermore, from (4.5.126) and (4.5.128), w(0) = 0 and w′ > 0 on (0, h) so
that

v(x) = w(x1) ≥ 0 in Ω.

Next we show that v is a supersolution of (4.5.87). We use (4.5.106) and
(4.5.126) to compute:

B(3)v := b(3) ·Dv = b
(3)
1 w′(x1) ≤ 0 on Γ3.

Finally, consider the boundary condition (4.5.122) on Γ1: From (4.5.122),

B̂(1)v(x) = b̂
(1)
1 (x)w′(x1) + b̂

(1)
0 (x)w(x1) ≤ b̂(1)

1 (x)w′(x1) for x ∈ Γ1,

where we have used (4.5.125) and w ≥ 0. Then, using (4.5.114), (4.5.123), and
(4.5.128), and choosing C1 large, we have

B̂(1)v(x) ≤ b̂(1)
1 (x)w′(x1) ≤ −M ≤ ĝ1(x) on Γ1.

Thus, Lv ≤ f in Ω, B̂(1)v ≤ ĝ1 on Γ1, B(i)v ≤ gi on Γi for i = 2, 3, and
v ≥ 0 on Γ0. Also, u satisfies the same equation and boundary conditions
with equalities. Now we can apply the comparison principle in Lemma 4.4.2
to this problem. Indeed, we use the assumptions regarding the strict ellipticity
of the equation and the strict obliqueness of the boundary conditions on Γi,
i = 1, . . . , 3. Therefore, we only need to check the obliqueness at the corner
points P2 and P3. The obliqueness at P3 follows directly from assumption
(4.5.108). Also, by (4.5.108), the λ-obliqueness at corner P2 is satisfied for the
nonlinear boundary condition (4.5.85) on Γ1 and (4.5.86) on Γ2. From Definition
4.4.3 and (4.5.123), the λ-obliqueness at P2 is still satisfied when the nonlinear
condition (4.5.85) is replaced by the linear condition (4.5.122). Then, by Lemma
4.4.2 applied to v − u, we conclude that u ≤ v in Ω. A similar argument shows
that −u ≤ v in Ω. Therefore, we have

|u(x)| ≤ v(x) = w(x1) in Ω.

From (4.5.126) and (4.5.128),

0 = w(0) ≤ w(x1) ≤ ‖w′‖L∞([0,h])x1 = (M̂C1 − 1)x1 for x1 ∈ [0, h).

Then
|u(x)| ≤ (M̂C1 − 1)x1 in Ω.

Now (4.5.120) is proved.
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We will also need the following version of Lemma 4.5.8.

Lemma 4.5.9. In the conditions of Lemma 4.5.8, assumptions (4.5.97) and
(4.5.113) are replaced by the following assumption:

A11(p,x) ≥ λ for all x ∈ Ω, p ∈ R2. (4.5.129)

Then the assertion of Lemma 4.5.8 still holds.

Proof. We argue similar to the proof of Lemma 4.5.8, with the changes outlined
below. We prove only (4.5.120), since that implies (4.5.119).

We rewrite equation (4.5.84) and the boundary condition (4.5.85) as a linear
equation (4.5.121) and boundary condition (4.5.122). Then (4.5.124) is now
replaced by

λ ≤ a11(x) ≤M, |a1(x)| ≤M for all x ∈ Ω. (4.5.130)

The properties of coefficients b̂(1) of (4.5.122) are the same as in the proof of
Lemma 4.5.8.

We use the comparison function v(x) = w(x1). In order to find w(·) so that
v(x) is a supersolution of equation (4.5.121), we require w to satisfy (4.5.126)
and follow the calculation in (4.5.127). In the present case, using (4.5.130), we
have

Lv − f = a11w
′′ + a1w

′ − f ≤ λw′′ +Mw′ +M in Ω.

Then it suffices to determine w by solving the equation:

λw′′ +Mw′ +M = 0 on (0, h)

with condition w(0) = 0. It has a solution w(x1) as in (4.5.128) with ε = 1
for an arbitrary constant C1. Thus, (4.5.126) holds if C1 > 0 is sufficiently
large. This justifies our estimates above, which implies that v(x) = w(x1) is a
supersolution of equation (4.5.121) in Ω.

Then, repeating the argument for Lemma 4.5.8, we show that v(·) is a su-
persolution of the boundary conditions if constant C1 is chosen appropriately
large, which leads to (4.5.120).

Now we prove the a priori estimates of solutions of (4.5.84)–(4.5.88). We
first estimate a solution away from Γ0.

Lemma 4.5.10. Let κ > 0, λ > 0, M < ∞, α ∈ (0, 1), β ∈ [ 1
2 , 1), and

s ∈ (0, λ10 ). Then there exist α1 ∈ (0, 1
2 ) depending only on (κ, λ) and σ > 0

depending only on (κ, λ,M,α, β, s) such that the following holds:
Let Ω be a domain of structure (4.5.1)–(4.5.3) with h, t1, t2 ∈ [λ, 1

λ ], Mbd ≤
1
λ , and t0 ≥ 0. Let fbd satisfy (4.5.15), and let ε ∈ (0, h10 ). Let (4.5.89),
(4.5.91)–(4.5.93), (4.5.98)–(4.5.100), (4.5.103)–(4.5.105), and (4.5.107)–(4.5.110)
hold with the constants fixed above, including σ = σ(s).
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Let u ∈ C2(Ω) ∩ C1(Ω \ Γ0) ∩ C(Ω) satisfy (4.5.84)–(4.5.87) and

‖u‖L∞(Ω) ≤ K.

Then
‖u‖(−1−α1), Γ2

2,α1,Ω(s) ≤ Cs, (4.5.131)

where Ω(s): = Ω ∩ {x1 > s}, and Cs depends only on (κ, λ,M,K, α, β, s).

Proof. In the proof below, all the following constants C, Ck, and Cs depend
only on (κ, λ,M,K, α, β, s). The proof is divided into two steps.

1. Fix s ∈ (0, λ10 ). Since dist(x,Γ0) ≥ s
4 for any x ∈ Ω(s/4), then, from

(4.5.89), equation (4.5.84) is uniformly elliptic in Ω(s/4). That is, for any x ∈
Ω(s/4) and p,µ ∈ R2,

s

4
λ|µ|2 ≤

2∑

i,j=1

Aij(p,x)µiµj ≤ λ−1|µ|2. (4.5.132)

To do further estimates, we note that, from (4.5.1) with t0 ≥ 0 and t1, t2 ∈
[λ, 1

λ ],

fbd ≥ ls := min{t1s, t2} ≥ λmin{s, 1} > 0 on [s, h]. (4.5.133)

We note that ls is independent of t0.
From (4.5.133), for ρ := 1

4 min{λ, s} ≤ 1
4 min{t1s, t2, s} and k = 1, 3, we

have
Bρ(x) ∩ ∂Ω = Bρ(x) ∩ (Γk ∪ Γ2) for all x ∈ Γk ∩ ∂Ω(s).

From h ∈ [λ, 1
λ ], we find that ρ ≤ h

4 . Also, from (4.5.1), we see that, for any
R < ρ, Ω ∩BR(P2) is of structure (4.2.115)–(4.2.116) with Γ

(n)
r = Γ1 ∩BR(P2)

and Γ
(l)
r = Γ2 ∩ BR(P2). Then, by (4.5.15), there exists R0 ∈ (0, ρ] depending

only on (λ,M,α, s) such that (4.2.117) holds. Using (4.5.15), we find that, for
R1 = R0

8
√

1+M2
and k = 1, 2, 3,

BR1
(x) ∩ ∂Ω = BR1

(x) ∩ Γk (4.5.134)

for x ∈ (Γk ∩ {x1 ≥ s
4}) \ (BR0/8(P2) ∪ BR0/8(P3)), where we have used that

R1 ≤ ρ
8 ≤ s

32 .
Also, combining (4.5.91) with (4.5.92), we have

‖(Aij , Ai)(p, ·)‖(−α),Γ2

0,β,Ω + ‖Dp(Aij , Ai)(p, ·)‖L∞(Ω) ≤ C, (4.5.135)

and β ∈ [ 1
2 , 1).

We now make the estimates of u in Ωs, in which equation (4.5.84) is uniformly
elliptic by (4.5.132). We use R0 and R1 defined above and, in the argument
below, we further reduce R0 depending only on (λ,M, κ), keeping R1 = R0

8
√

1+M2
,

so that (4.5.134) holds.
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(a) We apply the interior estimates in Theorem 4.2.1, rescaled into the balls:

BR1/100(x) ⊂ Ω with x ∈ Ω(s).

We then obtain that ‖u‖
C2,β(BR1/200(x))

≤ C, where we have used (4.5.135).

Thus, we estimate u in the interior of Ω(s) and near ∂Ω(s) ∩ {x1 = s}, away
from Γ1 and Γ3.

(b) We employ estimate (4.2.131) in Lemma 4.2.16, rescaled into half-balls
BR1/10(x) ∩ Ω with x ∈ Γ2 \ (BR0(P2) ∪ BR0(P3)) for the estimates near
Γ2 away from P2 ∪ P3, where we have used the fact that the equation
near Γ2 and the boundary condition on Γ2 are linear, with the regular-
ity of the coefficients given in (4.5.91) and (4.5.107). Then we obtain that
‖u‖(−1−γ), Γ2

2,γ,BR1/20(x)∩Ω ≤ Cγ for any γ ∈ (0, 1).

(c) We apply estimate (4.2.77) in Theorem 4.2.10, rescaled into the half-balls:

BR1/10(x) ∩ Ω with x ∈ Γ3 ∩ {s < x1 < 1− s},

with the regularity of coefficients in (4.5.135), to obtain

‖u‖
C2,β(BR1/20(x)∩Ω)

≤ C(M,λ, β, s).

Thus, we obtain the estimates on Γ3 ∩ ∂Ω(s) away from P3.

(d) Now we obtain the estimates near corners {P2, P3}, i.e., in BR0(P2)∩Ω and
BR0

(P3)∩Ω, by reducing R0 depending only on (λ,M, κ), since h ∈ (λ, 1
λ ).

We recall that regions BR0
(P2) ∩ Ω and BR0

(P3) ∩ Ω are of the structure
of R+,Φ

R0
in (4.2.115) with Φ(x1) = fbd(h − x1) for P2, and Φ ≡ 0 for P3.

Therefore, in both cases,

‖Φ‖(−1−α),{0}
2,α,(0,R0) ≤M,

where we have used (4.5.15) near P2.

We also note that, since R0 < ρ ≤ h
4 , BR0

(Pk) ⊂ {x1 ≥ h
2 } for k = 2, 3,

so that, by (4.5.89), equation (4.5.84) is uniformly elliptic in BR0
(P2) ∩ Ω

and BR0
(P3) ∩ Ω with constant λ̃ := λ

2 min{h, 1}. The assumption that
h ∈ (λ, 1

λ ) implies that λ̃ depends only on λ.

With this, we will perform the estimates in two steps. First, since we do not
have the Lipschitz bound of u near the corners, we apply Theorem 4.2.15.
Then we obtain the C1,α2–estimate near the corners, with α2 depending only
on (κ, λ, α), where the dependence on α is from the requirement α2 ∈ (0, α).
However, we show that the Hölder exponent in the corner can be estimated
in terms of (κ, λ) only, but independent of α. Thus, we refine the previous
estimate as follows: Using the Lipschitz bound provided by that estimate,
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we can apply Theorem 4.3.15 to obtain the C1,α1–estimate of u near the
corners with α1 depending only on (κ, λ). Now we prove these estimates:

(i) In this sub-step, we obtain the Lipschitz estimate of u in BR0
(Pk)∩Ω, k =

2, 3. We apply Theorem 4.2.15, with Γ2 corresponding to Γ(l) in Theorem
4.2.15 for both corners {P2, P3}.
Our assumptions now imply that all the conditions of Theorem 4.2.15 are
satisfied, where we only need to note that (4.5.98) and the second esti-
mate in (4.5.104) with σ ≤ λ

2 imply that b(1) satisfies (4.2.125) with con-
stant λ̃. Indeed, λ

2 ≤ b(1) · νΓ2
≤ (λ2 )−1 on Γ2, and λ̃ ≤ λ

2 . Let α̂1 :=

α1(λ̃, κ) determined in Theorem 4.2.15 with κ from (4.5.109), and let α2 :=
1
2 min{α̂1, α}. Then, further reducing σ depending only on (κ, λ,M,α),

we obtain from Theorem 4.2.15 that ‖u‖(−1−α2), Γ2

2,α2,BR0/2
(Pk)∩Ω ≤ Ĉ for k =

2, 3, where Ĉ = Ĉ(κ, λ,M,K, α,R0) = Ĉ(κ, λ,M,K, α, s). In particular,
‖u‖1,0,BR0/2

(Pk)∩Ω ≤ Ĉ.
(ii) We now apply Theorem 4.3.15 in BR0/2(Pk) ∩ Ω. As we have dis-
cussed above, domains BR0

(Pk) ∩ Ω, for k = 2, 3, are of the structure of
R+,Φ
R0

in (4.2.115) with ‖Φ‖1,α,(0,R0) ≤ M . The estimate of the solution in
C1(BR0/2(Pk) ∩ Ω) is obtained in (a). The assumptions of Theorem 4.3.15
on the equations and boundary conditions are satisfied as described below.

For equation (4.5.84) in BR0/2(Pk) ∩ Ω, k = 2, 3, the ellipticity with con-
stant λ̃ > 0 depending only on λ is shown above. The regularity estimate
(4.3.92) holds by (4.5.91), where we also note that the equation is linear in
BR0/2(Pk) ∩ Ω so that D2

(p,z)(Aij , A) = 0.

For the boundary conditions, the obliqueness condition (4.3.106) holds with
constant λ by (4.5.98) and (4.5.105). Regularity (4.3.93) holds by (4.5.99)
and (4.5.107). Condition (4.3.88) is satisfied in BR0/2(Pk)∩Ω, k = 2, 3, with
constant λ

2 after further reducing R0 depending only on (λ, α,M). Indeed,
for B(Du, u,x), this follows from (4.5.98)–(4.5.99), while, for Gk(Du,x) :=
b(k)(x) ·Du, k = 2, 3, this follows from (4.5.105) and (4.5.107).

Furthermore, the functional independence (4.3.107) holds in BR0/2(P2) ∩
Ω with constant κ

2 by (4.5.109) with k = 2, combined with (4.5.104) for
sufficiently small σ depending only on (κ, λ), and by reducing R0 depending
only on (λ,M, κ), where we have used (4.5.99) and (4.5.107). Similarly,
(4.3.107) holds in BR0/2(P3)∩Ω with constant κ

2 by (4.5.109) for k = 3, by
using (4.5.107) for small R0.

Finally, (4.3.110) holds with constant λ by the first estimate in (4.5.91), and
(4.3.111) holds with constant λ for B(·) by (4.5.100) and the conditions:
b(k)(x) ·Du, k = 2, 3, by (4.5.107).

We note that, from the discussion above, the conditions of Theorem 4.3.15
with the bounds depending only on λ are now satisfied with the constants
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depending only on parameters (λ, κ). Thus, applying Theorem 4.3.15 and
recalling that Γ1 is a C1,α–curve by (4.5.15), and Γ2 and Γ3 are flat, there
exists α̂ ∈ (0, 1) depending only on (λ, κ) such that

‖u‖(−1−α̂), Γ2

2,α,BR0/4
(Pk)∩Ω ≤ Ĉ for k = 2, 3,

where Ĉ = Ĉ(λ, κ,M,K, α,R0) = Ĉ(λ, κ,M,K, α, s). Then, using the
higher regularity of Γ1 in (4.5.15), recalling that Γ2 and Γ3 are flat, and
employing the argument in Step 4 of the proof of Theorem 4.2.15 by using
Theorem 4.3.4 instead of Theorem 4.2.12, we find that, for any γ ∈ (0, 1),

‖u‖(−1−α̂), Γ2

2,γ,BR0/4
(Pk)∩Ω ≤ Ĉ for k = 2, 3, with Ĉ = Ĉ(λ, κ,M,K, α, s, γ).

We now fix α1 in the lemma to be α̂ from the last estimate.

Therefore, combining the estimates obtained above and noting that α1 ≤
1
2 ≤ β, we see that there exists α1 depending only on (λ, κ) such that

‖u‖(−1−α1), Γ2

2,α1,Ω(s)\NR1/100(Γ1\BR0/4
(P2))

≤ Cs, (4.5.136)

where Nr(·) denotes the r–neighborhood.

Remark 4.5.11. Note that, in the proof of (4.5.136), we have introduced a
smallness requirement for σ in the argument of the estimate near P2, but at this
point, σ depends only on (κ, λ), i.e., is independent of s.

It remains to obtain the estimates near Γ1 ∩ ∂Ω(s) away from P2, i.e., near
(Γ1 ∩ {x1 ≥ s}) \ BR0/4(P2), where we recall (4.5.134). To do this, we will
introduce a further smallness requirement for σ, which will depend on s, among
the other parameters.

2. We now estimate u in NR1/10((Γ1∩{x1 ≥ s})\BR0/4(P2))∩Ω. Since the
boundary condition on Γ1 is oblique and is of structure (4.5.104), we intend to
apply Theorem 4.2.12 with Remark 4.2.13, followed by Theorem 4.3.4, similar
to the estimates near corners {P2, P3} in Step 1(d). For the application of The-
orem 4.2.12, we then need to choose σ in (4.5.104) sufficiently small, depending
especially on the ellipticity of the equation, which degenerates near Γ0, i.e., for
small x1. This will introduce the dependence of σ on s.

We use R0 and R1 chosen above so that (4.5.134) holds. Fix

x = (x1, fbd(x1)) ∈ (Γ1 ∩ {x1 ≥ s}) \BR0/4(P2).

Note that, by (4.5.15) and R1 = R0

8
√

1+M2
, it follows that

(Γ1 ∩ {x1 ≥ s}) \BR0/4(P2) ⊂ Γ1 ∩ {h− 2R1 ≥ x1 ≥ s}.
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Also, by (4.5.15), h ∈ (λ, 1
λ ), and Mbd ≤ 1

λ ,

‖fbd‖2,α,(s/2,h−R1) ≤Ms, (4.5.137)

where Ms depends only on (M,λ, α, s,R1), and hence on (M,λ, κ, α, s). We
also recall that R1 ≤ ρ

8 ≤ s
32 . Then domain BR1(x) ∩ Ω satisfies the condi-

tions of Theorem 4.2.12 in the appropriately rotated coordinate system. Using
the uniform ellipticity (4.5.132) with the constant depending on s, oblique-
ness (4.5.98), regularity (4.5.91)–(4.5.92) and (4.5.99), and structure (4.5.103)–
(4.5.104), we can choose σ in (4.5.104) depending only on (κ, λ,M,K, α, s) such
that Theorem 4.2.12 with Remark 4.2.13 can be applied in BR1

(x) for any
x = (x1, fbd(x1)) ∈ (Γ1 ∩ {x1 ≥ s}) \BR0/4(P2). Thus, we have

‖u‖C2,α(BR1/2(x)∩Ω) ≤ C for all x ∈ (Γ1 ∩ {x1 ≥ s}) \BR0/4(P2)

with C = C(κ, λ,M,K, α, s). This implies that ‖u‖
C1,0(BR1/2

(x)∩Ω)
≤ C. There-

fore, we can apply Theorem 4.3.4 in BR1/2(x)∩Ω. Its conditions are satisfied in
BR1/2(x)∩Ω by (4.5.89) and (4.5.93) (since x ∈ (Γ1∩{x1 ≥ s})\BR0/4(P2)) and
(4.5.98)–(4.5.99), where the last two properties also imply that (4.3.7) holds in
BR1/2(x) ∩Ω after reducing R1 depending only on (λ,M). Moreover, (4.5.137)
implies that ‖fbd‖1,γ,(s/2,h−R1) ≤ Ms for any γ ∈ (0, 1), which means that
(4.3.34) is satisfied for any Hölder exponent in (0, 1). Therefore, Theorem 4.3.4
implies that, for any γ ∈ (0, 1),

‖u‖
C2,γ(BR1/4

(x)∩Ω)
≤ C for all x ∈ (Γ1 ∩ {x1 ≥ s}) \BR0/4(P2)

with C = C(κ, λ,M,K, α, s). Combining this with (4.5.136), we obtain (4.5.131).

Now we show the a priori estimates for Problem (4.5.84)–(4.5.88). We use
the structural conditions near Γ0 in order to remove the dependence of σ on s,
which we have in Lemma 4.5.10.

Lemma 4.5.12. Let κ > 0, λ > 0, M < ∞, α ∈ (0, 1), β ∈ [ 1
2 , 1), and

ε ∈ (0, λ10 ). Then there exist α1 ∈ (0, 1
2 ) depending only on (κ, λ), and σ, δ0 > 0

depending only on (κ, λ,M,α, β, ε), such that the following holds:
Let Ω be a domain of structure (4.5.1)–(4.5.3) with h, t1, t2 ∈ (λ, 1

λ ), Mbd ≤
1
λ , and t0 ≥ 0. Let fbd satisfy (4.5.15), and δ ∈ (0, δ0). Let (4.5.89)–(4.5.111)
hold. Let u ∈ C2(Ω)∩C1(Ω\Γ0)∩C(Ω) be a solution of (4.5.84)–(4.5.88). Then
u satisfies (4.5.119)–(4.5.120) with constant C depending only on (λ,M, ε) and,
for each s ∈ (0, h10 ), there exists Cs depending only on (κ, λ,M,α, β, ε, s), but
independent of δ, so that

‖u‖(−1−α1), Γ2

2,α1,Ω(s) ≤ Cs, (4.5.138)

where Ω(s) := Ω ∩ {x1 > s}. Moreover, if t0 > 0 in addition to the previous
assumptions, then

‖u‖(−1−α1), {P1}∪Γ2

2,α1,Ω
≤ Ĉδ, (4.5.139)
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where Ĉδ depends only on (κ, λ,M,α, β, ε, δ, t0).

Proof. We first note that our assumptions allow us to apply Lemma 4.5.8, so
that u satisfies the L∞–estimates (4.5.119)–(4.5.120) with constant C depending
only on (λ,M, ε). Then it remains to show the regularity. We divide the proof
into four steps.

In the proof, we assume without loss of generality that A12 = A21. Other-
wise, we replace A12 and A21 by 1

2 (A12 + A21) so that the modified Aij satisfy
the same assumptions and u is a solution of the modified equation.

1. We first prove (4.5.138). In this step, constants C,Ck, and Cs depend
only on (κ, λ,M,α, β, s), but are independent of δ. Also, from the conditions,
ε < λ

10 ≤ 1
10 min{h, 1}.

We note that an estimate similar to (4.5.138) is obtained in Lemma 4.5.10,
but now we need σ to be independent of s and constant δ in (4.5.90). As we
have discussed in Step 2 of the proof of Lemma 4.5.10, this dependence comes
from the application of Theorem 4.2.12 with Remark 4.2.13, since we need then
to choose σ in (4.5.104) sufficiently small, depending on the ellipticity of the
equation among the other parameters. In the present lemma, the ellipticity is
uniform up to Γ0, but depends on δ, or we can consider the uniform ellipticity in
Ω(s) independent of δ but depending on s. In both cases, we do not obtain the
required estimate by employing Theorem 4.2.12. Instead, for small ε∗ ∈ (0, ε)
to be chosen depending only on the parameters in the assumptions, we use the
non-isotropy of the ellipticity condition (4.5.90) and property (4.5.102) to apply
Theorem 4.2.8 for the estimates near Γ1 ∩ {x1 < ε∗}, after the rescaling that
makes the equation locally uniformly elliptic, and then the boundary condition
becomes almost tangential. On Γ1 ∩ {x1 ≥ ε∗

2 }, we obtain the estimate from
Lemma 4.5.10 with σ = σ( ε

∗

2 ), hence independent of (δ, s). Combining these
estimates, we obtain (4.5.138).

More precisely, let ε∗ ∈ (0, ε) be chosen depending only on (κ, λ,M,α, β, ε)
below. Let α1 and σ be determined in Lemma 4.5.10 for s = ε∗

2 , where Lemma
4.5.10 is applied with parameters (κ, λ,M,α, β) in this lemma, and withK equal
to the right-hand side of the L∞–estimate (4.5.119) for u, which depends only
on (λ,M, ε). Thus, α1 = α1(κ, λ) and σ = σ(κ, λ,M,α, β, ε).

If s ≥ ε∗

2 , then (4.5.138) with Cs depending only on (κ, λ,M,α, β, ε) follows
from Lemma 4.5.10 applied with s = ε∗

2 and the parameters described in the
previous paragraph. Therefore, we assume that s < ε∗ from now on.

We follow the argument in Step 1 of the proof of Lemma 4.5.10 by using
L∞–estimate (4.5.119) for u obtained above and noting Remark 4.5.11. Then,
for fixed σ above, we obtain estimate (4.5.136) with R0 ≤ 1

4 min{λ, s} depend-
ing only on (λ,M, κ, s) and satisfying R0 ≤ 1

4 min{t1s, t2, s} such that R1 =
R0

8
√

1+M2
satisfies (4.5.134), and with Cs depending only on (κ, λ,M,α, β, ε, s).

Now it remains to estimate u near Γ1 ∩ {s < x1 < ε∗}, i.e., in NR1/10(Γ1 ∩
{s < x1 < ε∗}). Specifically, we show that

‖u‖
C2,β(BR1/10(x̂)∩Ω)

≤ C(λ,M, β, s) (4.5.140)
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for all x̂ ∈ Γ1 ∩ {s < x1 ≤ ε∗}.
We first note that, using (4.5.102), we can rewrite the boundary condition

(4.5.85) on Γ1 ∩ { s2 < x1 < ε} in the form:

ux1 = B̃(ux2
, u,x) on Γ1 ∩ {0 < x1 < ε}, (4.5.141)

where

B̃(0, 0,x) = 0 for all x ∈ Γ1 ∩ {0 < x1 < ε}, (4.5.142)

by (4.5.111). Using (4.5.99) and (4.5.102), we have

‖Dk
(p2,z)

B̃(p2, z, ·)‖C3(Γ1∩{0≤x1≤ε}) ≤ C(λ)M (4.5.143)

for any (p2, z) ∈ R× R, k = 1, 2, 3.
From (4.5.133), in which we can assume without loss of generality that ls ≤ 1

2 ,
we conclude that, if ε∗ ∈ (0, 1) is small, depending on M in (4.5.15), then, for
each x̂ = (x̂1, fbd(x̂1)) ∈ Γ1 ∩ {s < x1 < ε∗},

(x̂ +Qx̂
s ) ∩ Ω = {x ∈ x̂ +Qx̂

s : x2 < fbd(x1)},

(x̂ +Qx̂
s ) ∩ Γ1 = {(x1, fbd(x1)) : x2 = fbd(x1)},

(4.5.144)

where Qx̂
s := (−lsx̂1, lsx̂1)×(−ls

√
x̂1, ls

√
x̂1). We rescale u in x̂+Qx̂

s as follows:
Let

d(δ)
x = max(δ, x1) for x = (x1, x2) ∈ Ω. (4.5.145)

Define the change of variables:

x = (x̂1 + d
(δ)
x̂ X1, fbd(x̂1)−

√
d

(δ)
x̂ X2) for X = (X1, X2) ∈ R2,

so that

x ∈ (x̂ +Qx̂
s ) ∩ Ω if and only if X = (X1, X2) ∈ Ω̂(x̂) ,

where

Ω̂(x̂) :=



X :

X1 ∈
(
− lsx̂1

d
(δ)
x̂

, lsx̂1

d
(δ)
x̂

)
, X2 ∈

(
− ls

√
x̂1

d
(δ)
x̂

, ls
√

x̂1

d
(δ)
x̂

)

X2 ≥
√
d

(δ)
x̂ f

(x̂)
bd (X1)





(4.5.146)
with f (x̂)

bd (X1) = 1

d
(δ)
x̂

(
fbd(x̂1)− fbd(x̂1 + d

(δ)
x̂ X1)

)
.

Denote Γ
(x̂)
1 := ∂Ω(x̂) ∩ {X2 = f

(x̂)
bd (X1)}. From (4.5.144),

Γ
(x̂)
1 =

{
(X1,

√
d

(δ)
x̂ f

(x̂)
bd (X1)) : X1 ∈ (− lsx̂1

d
(δ)
x̂

,
lsx̂1

d
(δ)
x̂

)
}
, (4.5.147)
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and

x ∈ (x̂ +Qx̂
s ) ∩ Γ1 if and only if X = (X1, X2) ∈ Γ

(x̂)
1 .

From the definition of f (x̂)
bd and (4.5.15), we have

‖fbd‖(−1−α), {h}
1,β,(s/2,h) ≤Ms,

where Ms depends only on (M,β, s). Then

f
(x̂)
bd (0) = 0, ‖f (x̂)

bd ‖C1,β(− x̂1

10d
(δ)
x̂

,
x̂1

10d
(δ)
x̂

)
≤ CMs, (4.5.148)

where C depends only on β. From the first equality in (4.5.148),

0 ∈ Γ
(x̂)
1 . (4.5.149)

From (4.5.148), noting that

d(δ)
x = max(δ, x1) ≤ max{ε∗, δ0} for x ∈ Ω ∩ {x1 < ε∗},

and choosing δ0 and ε∗ small, depending on (β,M), we have

√
d

(δ)
x̂ |f

(x̂)
bd (X1)| ≤ lsx̂1

d
(δ)
x̂

≤ ls
√

x̂1

d
(δ)
x̂

for X1 ∈ (− lsx̂1

d
(δ)
x̂

,
lsx̂1

d
(δ)
x̂

),

where we have used that x̂1 ≤ d
(δ)
x̂ in the last inequality. With this, restricting

v to the region:

Ω(x̂) :=
(

(− lsx̂1

d
(δ)
x̂

,
lsx̂1

d
(δ)
x̂

)× (− lsx̂1

d
(δ)
x̂

,
lsx̂1

d
(δ)
x̂

)
)
∩ Ω̂(x̂),

we have

Ω(x̂) =



X :

X1 ∈
(
− lsx̂1

d
(δ)
x̂

, lsx̂1

d
(δ)
x̂

)
,

X2 ∈
(
− lsx̂1

d
(δ)
x̂

,

√
d

(δ)
x̂ f

(x̂)
bd (X1)

)



 (4.5.150)

and Γ
(x̂)
1 = Ω(x̂) ∩ {X2 = f

(x̂)
bd (X1)}.

Now define

v(X) =
1

d
(δ)
x̂

u(x̂1 + d
(δ)
x̂ X1, fbd(x̂1)−

√
d

(δ)
x̂ X2) in Ω(x̂). (4.5.151)

Estimate (4.5.120) for u(·) implies that

‖v‖L∞(Ω(x̂)) ≤ C,
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where C is independent of x̂1.
Furthermore, v satisfies an equation of form (4.5.84) in Ω(x̂), and the bound-

ary condition of form (4.5.141) on Γ
(x̂)
1 with modified ingredients (Âij , Âi, B̂)

defined as follows:

Âij(p,X)

= (−1)i+j(d
(δ)
x̂ )

i+j
2 −2 Aij(p1, −

√
d

(δ)
x̂ p2, x̂1 + d

(δ)
x̂ X1, fbd(x̂1)−

√
d

(δ)
x̂ X2),

Âi(p,X)

= (−1)i+1(d
(δ)
x̂ )

i−1
2 Ai(p1, −

√
d

(δ)
x̂ p2, x̂1 + d

(δ)
x̂ X1, fbd(x̂1)−

√
d

(δ)
x̂ X2),

B̂(p2, z,X) = B̃(−
√
d

(δ)
x̂ p2, d

(δ)
x̂ z, x̂1 + d

(δ)
x̂ X1, fbd(x̂1)−

√
d

(δ)
x̂ X2).

From (4.5.142), choosing ε∗ ≤ ε
2 , we have

B̂(0, 0,X) = 0 on Γ
(x̂)
1 .

Also, since ls ≤ 1
2 , it follows from (4.5.90) that Âij , i, j = 1, 2, satisfy (4.2.3)

with constant λ
2 in Ω(x̂), independent of the rescaling base point x̂. Further-

more, from (4.5.135), it follows that (4.2.113) holds for Âi in Ω(x̂). Also, from
the properties of B̃, it follows that B̂ satisfies (4.5.143) on Γ

(x̂)
1 with constant

C(λ,M). Furthermore,

B̂p2
(p2, z,X)

= −
√
d

(δ)
x̂ B̃p2(−

√
d

(δ)
x̂ p2, d

(δ)
x̂ z, x̂1 + d

(δ)
x̂ X1, fbd(x̂1)−

√
d

(δ)
x̂ X2).

Thus, using (4.5.143), we have

|B̂p2
(p2, z,X)| ≤ C

√
d

(δ)
x̂ ≤ C

√
max{ε∗, δ0} for all (p2, z,X) ∈ R× R× Γ

(x̂)
1 .

(4.5.152)

That is, B̂ satisfies (4.2.16) with
√
d

(δ)
x̂ on the right-hand side and, from (4.5.145),

this quantity can be made small for all x̂ ∈ Γ1 ∩ {0 < x1 ≤ ε∗} by making ε∗
and δ0 sufficiently small and recalling that δ ∈ (0, δ0). Furthermore, if x̂1 ≥ s
and δ0 ∈ (0, 1), then

s ≤ x̂1

δ
≤ x̂1

d
(δ)
x̂

≤ 1, (4.5.153)

from (4.5.145). Also, we use the boundary structure (4.5.147) and (4.5.150) with
(4.5.148). Then Theorem 4.2.4 and Remark 4.2.14 imply that, if ε∗ ∈ (0, h10 )
and δ0 ∈ (0, 1) are small in (4.5.152), depending only on (λ,M), there exists
γ = γ(λ,M) ∈ (0, 1) such that, for any x̂ ∈ Γ1 ∩ {s < x1 ≤ ε∗},

‖v‖
C1,γ(Ω

(x̂)

1/2
)
≤ C

( x̂1

10d
(δ)
x̂

)−(γ+1)

‖v‖
C(Ω(x̂))

≤ C(λ,M, s), (4.5.154)
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where Ω
(x̂)
ρ :=

(
(−ρ lsx̂1

d
(δ)
x̂

, ρ lsx̂1

d
(δ)
x̂

)× (−ρ lsx̂1

d
(δ)
x̂

, ρ lsx̂1

d
(δ)
x̂

)
)
∩ Ω(x̂) for ρ ∈ (0, 1].

However, we cannot apply Theorem 4.2.8 with Remark 4.2.13 to obtain
a C2,β–estimate, since (Â11, Â12) do not satisfy (4.2.4)–(4.2.5) for the Hölder
exponent β with the constant independent of δ, s > 0. Instead, we use (4.5.154)
and perform further rescaling:

For x̂ ∈ Γ1∩{s < x1 ≤ ε∗}, let v(X) be the corresponding function (4.5.151).
Define

v(%)(X) =
1

%1+γ

(
v(%X)− v(0)− %Dv(0) ·X

)
in 1

ρΩ
(x̂)
ρ . (4.5.155)

From (4.5.147) and (4.5.150),

1

ρ
Ω(x̂)
ρ =

{
(− lsx̂1

d
(δ)
x̂

,
lsx̂1

d
(δ)
x̂

)× (− lsx̂1

d
(δ)
x̂

,
lsx̂1

d
(δ)
x̂

) : X2 ≥
√
d

(δ)
x̂ f

(x̂,ρ)
bd (X1)

}
,

where f (x̂,ρ)
bd (X1) = 1

ρf
(x̂)
bd (ρX1). It follows that f (x̂,ρ)

bd satisfies (4.5.148) with

unchanged constants for any ρ ∈ (0, 1). Also, Γ
(x̂,ρ)
1 := ∂( 1

ρΩ
(x̂)
ρ ) ∩ {X2 =

f
(x̂,ρ)
bd (X1)} is of form (4.5.147) with function f (x̂,ρ)

bd .
From (4.5.154),

‖v(%)‖
L∞( 1

ρΩ
(x̂)
ρ )
≤ C(λ,M, s).

Furthermore, v(%) satisfies an equation of form (4.5.84) with the right-hand side
f̂ (%)(X) in domain 1

ρΩ
(x̂)
ρ , and the boundary condition of form (4.5.141) on Γ

(x̂,ρ)
1

with the modified ingredients (Â
(%)
ij , Â

(%)
i , f̂ (%), B̂(%)) defined as follows:

Â
(%)
ij (p,X) = Âij(%

γp +Dv(0), %X),

Â
(%)
i (p,X) = %Âi(%

γp +Dv(0), %X),

f̂ (%)(X) = −%1−γ
2∑

i=1

Âi(%
γp +Dv(0), %X)Div(0),

B̂(%)(p2, z,X) =
1

%γ

(
B̂(%γp2 + vX2

(0), Ẑ, %X)− vX1
(0)
)
,

(4.5.156)

where Ẑ = %1+γz + %Dv(0) ·X + v(0).
Since Âij , i, j = 1, 2, satisfy (4.2.3) with constant λ2 in Ω(x̂), then Â(%)

ij satisfy
the same property in 1

ρΩ
(x̂)
ρ . This and Â(%)

12 = Â
(%)
21 imply

‖A(%)
ij ‖L∞(R2×( 1

ρΩ
(x̂)
ρ ))
≤ C.

Also, from the definition of Â(%)
ij and using (4.5.135), it follows that, for every

p ∈ R2,

[A
(%)
ij (p, ·)]

Cβ( 1
ρΩ

(x̂)
ρ )

+ ‖DpA
(%)
ij (p, ·)‖

L∞( 1
ρΩ

(x̂)
ρ )
≤ C%β(d

(δ)
x̂ )

i+j
2 −2 ≤ C(λ,M, β)
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when % ≤ s 1
β . Then we fix % = 1

2 min{s 1
β , 1}. Moreover, from (4.5.135),

[A
(%)
i (p, ·)]

Cβ( 1
ρΩ

(x̂)
ρ )

+ ‖DpA
(%)
i (p, ·)‖

L∞( 1
ρΩ

(x̂)
ρ )
≤ C(λ,M, β).

Next we discuss the properties of B̂(%)(·). Note that

vX1
(0) = B̂(vX2

(0), v(0), 0)

by (4.5.149) and the boundary condition for v on Γ
(x̂)
1 . Also, recall that B̂

satisfies (4.5.143) on Γ
(x̂)
1 with C(λ,M). Then there exists C(λ,M) such that,

for k = 1, 2, 3,

‖Dk
(p2,z)

B̂(%)(p2, z, ·)‖
C3(Γ̂

(x̂)
1 )
≤ C for any (p2, z) ∈ R× R. (4.5.157)

Also, (4.5.152) holds for B̂(%) with the same constant as for B̂. Furthermore,
B̂(%)(0, 0,X) = 0 for any X ∈ Γ

(x̂,ρ)
1 , since B̂ has the property on Γ

(x̂)
1 . Also,

(4.5.135), (4.5.154), and the expression of f (%) in (4.5.156) imply

‖f (%)‖
Cβ( 1

ρΩ
(x̂)
ρ )
≤ C(λ,M, β).

Therefore, we have shown that (Â
(%)
ij , Â

(%)
i , B̂(%)) satisfy all the conditions in

Theorem 4.2.8 and Remark 4.2.13 in 1
ρΩ

(x̂)
ρ , for β in place of α and ‖h‖C1,β ≡ 0,

with the constants depending only on (λ,M, β). Recall that (4.5.152) holds
for B̂(%) with the same constant as for B̂. Thus, further reducing ε∗ and δ0
depending only on (λ,M, β), we have

‖v(%)‖
C2,β( 1

ρΩ
(x̂)

ρ/2
)
≤ C

( x̂1

10d
(δ)
x̂

)−(β+2)(
‖v(%)‖

C( 1
ρΩ

(x̂)
ρ )

+ ‖B̂(%)(0, ·)‖
C1,β(Γ̂

(x̂)
1 )

)

≤ C(λ,M, β, s),

where we have used (4.5.153) in the second inequality. Combining this estimate
with (4.5.154) and expressing them in terms of u, we find that r̂ > 0 depends
only on (t1, t2,M, s), hence on (λ,M, s), such that

‖u‖
C2,β(Br̂(x̂)∩Ω)

≤ C(λ,M, β, s) for all x̂ ∈ Γ1 ∩ {s < x1 ≤ ε∗}.

Since R1 satisfies (4.5.134), we combine the last estimate with the standard
interior estimates to obtain (4.5.140).

Now combine (4.5.140) with estimate (4.5.131) for s = ε∗

2 , where K =
K(λ,M, ε) is from (4.5.119) in the application of Lemma 4.5.10, as we have
discussed at the beginning of Step 1. Then we obtain (4.5.138) for any s ∈
(0,min{ h10 , 1}).

2. It remains to prove (4.5.139) under the assumption that t0 > 0. The
main part is to estimate u(·) near corners {P1, P4}, which we do from now on.
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Furthermore, the universal constant C ≥ 1 depends only on (λ,M,α, β, ε, δ),
unless otherwise specified; constants Ct0 ≥ 1 and % ∈ (0, 1) depend only on
(λ,M,α, β, ε, δ, t0); the small constant δ0 > 0 depends only on (λ,M,α, β, ε).
We always assume that δ ∈ (0, δ0) in the proof.

In this step, we first prove that u ∈ C2,β(B%(P4) ∩ Ω) for sufficiently small
% > 0, so that

‖u‖
C2,β(B%(P4)∩Ω)

≤ Ct0 , (4.5.158)

where exponent β is from (4.5.135).
We follow the proof of Lemma 4.5.4. We use R+

% defined by (4.5.21). Since
Γ3 ⊂ {x2 = 0}, then Ω ∩ B4%(P4) is R+

4% with fob ≡ 0 on [0,∞), if we choose
% ≤ 1

8 min{λ, t0} which implies % ≤ 1
8 min{t0, t2, h}. Also, we define B+

% :=
B%(0) ∩ {x1 > 0} as in Step 2 of the proof of Lemma 4.5.4, and consider the
function:

v(x) =
1

%
u(%x) for x ∈ R+

2 .

Then, by (4.5.120), v satisfies

‖v‖L∞(R+
2 ) ≤ C. (4.5.159)

Moreover, v is a solution of

2∑

i,j=1

Â
(%)
ij Dijv + (Â

(%)
1 , Â

(%)
2 ) ·Dv = 0 in R+

2 , (4.5.160)

v = 0 on ∂R+
2 ∩ {x1 = 0}, (4.5.161)

vν ≡ D2v = 0 on ∂R+
2 ∩ {x2 = 0}, (4.5.162)

with (Â
(%)
ij , Â

(%)
i ) = (A

(%)
ij , A

(%)
i )(Dv,x) defined by

Â
(%)
ij (p,x) = Aij(p, %x), Â

(%)
i (p,x) = %Ai(p, %x),

where we have used (4.5.111) and assumed that % < ε to have the homogeneous
equation and boundary condition (4.5.160)–(4.5.162).

Then, by (4.5.90), (Â
(%)
ij , Â

(%)
i ) satisfy that, for any x ∈ R+

2 and p ∈ R2,

δλ|µ|2 ≤
2∑

i,j=1

Â
(%)
ij (p,x)µiµj ≤ λ−1|µ|2 for any µ ∈ R2, (4.5.163)

and, by (4.5.92),

‖(A(%)
ij , DpA

(%)
ij )‖

L∞(R2×R+
2 )
≤M, (4.5.164)

‖(A(%)
i , DpA

(%)
i )‖

L∞(R2×R+
2 )
≤ %M, (4.5.165)

[(A
(%)
ij , A

(%)
i )(p, ·)]

Cβ(R+
2 )
≤M%β , (4.5.166)
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since 0 < % ≤ 1. Moreover, by (4.5.94), we find that, for any (p, (x1, 0)) ∈
R2 × (∂R+

2 ∩ {x2 = 0}),

(A
(%)
11 , A

(%)
22 , A

(%)
1 )((p1,−p2), (x1, 0)) = (A

(%)
11 , A

(%)
22 , A

(%)
1 )((p1, p2), (x1, 0)).

(4.5.167)
Furthermore, (4.5.92) and (4.5.96) imply that

|(A12, A21)(p,x)| ≤Mxβ1 (4.5.168)

for any (p,x) ∈ R2 × Ω ∩ {x1 < ε}, so that

|(A(%)
12 , A

(%)
21 )(p,x)| ≤M%βxβ1 for any (p,x) ∈ R2 ×R+

2 . (4.5.169)

Using (4.5.159) and (4.5.163)–(4.5.166), and combining the estimates in The-
orems 4.2.1 and 4.2.9–4.2.10 with Remark 4.2.13 and the argument that has led
to (4.5.35), we have

‖v‖
C2,β(R+

3/2
\R+

1/2
)
≤ C, (4.5.170)

where C is independent of %.
We now use domain D introduced in Step 2 of the proof of Lemma 4.5.4.

Recall that D ⊂ R+
1 . We prove that, for any g ∈ Cβ(D) with ‖g‖Cβ(D) ≤ 1,

there exists a unique solution w ∈ C2,β(D) of the following problem:

2∑

i=1

Â
(%)
ii Diiw + Â

(%)
1 D1w = g in D, (4.5.171)

w = 0 on ∂D ∩ {x1 = 0, x2 > 0}, (4.5.172)

wν ≡ D2w = 0 on ∂D ∩ {x1 > 0, x2 = 0}, (4.5.173)

w = v on ∂D ∩ {x1 > 0, x2 > 0}, (4.5.174)

with (A
(%)
ii , A

(%)
1 ) = (A

(%)
ii , A

(%)
1 )(Dw,x). Moreover, we show

‖w‖C2,β(D) ≤ C. (4.5.175)

For that, in a way similar to Step 2 of the proof of Lemma 4.5.4, we consider the
even reflection D+ of D and the even reflection of (v, g, Â

(%)
11 , Â

(%)
22 , Â

(%)
1 ) fromR+

2

to B+
2 , without change of notation, where the even reflection of (Â

(%)
11 , Â

(%)
22 , Â

(%)
1 ),

which depends on (p,x), is defined by

Â
(%)
ii ((p1, p2), x1,−x2) = Â

(%)
ii ((p1,−p2), x1, x2),

Â
(%)
1 ((p1, p2), x1,−x2) = Â

(%)
1 ((p1,−p2), x1, x2)

(4.5.176)

for any x = (x1, x2) ∈ R+
2 and p = (p1, p2) ∈ R2.
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Also, denote by v̂ the restriction of the extended function v to ∂D+. It
follows from (4.5.161)–(4.5.162) and (4.5.170) that v̂ ∈ C2,β(∂D+) with

‖v̂‖C2,β(∂D+) ≤ C. (4.5.177)

Moreover, the extended function g satisfies that g ∈ Cβ(D+) with ‖g‖
Cβ(D+)

=

‖g‖Cβ(D) ≤ 1. The extended functions (Â
(%)
11 , Â

(%)
22 , Â

(%)
1 ) satisfy (4.5.163) and

(4.5.166) in D+ with the same constants as in R+
2 . Also, using (4.5.164)–

(4.5.165) and (4.5.167) inR+
2 , we see that the extended functions (Â

(%)
11 , Â

(%)
22 , Â

(%)
1 )

are Lipschitz with respect to p in D+ and satisfy

‖(A(%)
ij , A

(%)
i , DpA

(%)
ij , DpA

(%)
i )(p, ·)‖

L∞(D+)
≤M.

We consider the Dirichlet problem:

2∑

i=1

Â
(%)
ii Diiw + Â

(%)
1 D1w = g in D+, (4.5.178)

w = v̂ on ∂D+, (4.5.179)

with (A
(%)
ii , A

(%)
1 ) := (A

(%)
ii , A

(%)
1 )(Dw,x). By the maximum principle,

‖w‖L∞(D+) ≤ ‖v̂‖L∞(∂D+) + C‖g‖L∞(D+) ≤ ‖v̂‖L∞(∂D+) + C.

Using (4.5.177), we obtain an estimate of ‖w‖L∞(D+). Now, using Theorems
4.2.1 and 4.2.9 and the estimates of ‖g‖

Cβ(D+)
and ‖v̂‖C2,β(∂D+) discussed above,

we obtain the a priori estimate for the C2,β–solution w of (4.5.178)–(4.5.179):

‖w‖
C2,β(D+)

≤ C. (4.5.180)

Moreover, for every ŵ ∈ C1,β(D+), the existence of a unique solution w ∈
C2,β(D+) of the linear Dirichlet problem, obtained by substituting ŵ into the
coefficients of (4.5.178), follows from [131, Theorem 6.8]. Now, by a standard ap-
plication of the Leray-Schauder theorem, there exists a solution w ∈ C2,β(D+) of
the Dirichlet problem (4.5.178)–(4.5.179), which satisfies (4.5.180). The unique-
ness of this solution follows from the comparison principle.

From the structure of equation (4.5.178) in D+, specifically from (4.5.167),
(4.5.176), and the symmetry of the right-hand sides obtained by even exten-
sion, it follows that ŵ, defined by ŵ(x1, x2) = w(x1,−x2), is also a solution
of (4.5.178)–(4.5.179). By uniqueness for Problem (4.5.178)–(4.5.179), we find
that w(x1, x2) = w(x1,−x2) in D+. Thus, w restricted to D is a solution of
(4.5.171)–(4.5.174), where (4.5.172) follows from (4.5.161) and (4.5.179). More-
over, (4.5.180) implies (4.5.175).

The uniqueness of a solution w ∈ C2,β(D) of (4.5.171)–(4.5.174) follows from
the standard comparison principle.
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Now we prove the existence of a solution w ∈ C2,β(D) of the problem:
∑2
i,j=1 Â

(%)
ij Dijw +

∑2
i=1 Â

(%)
i Diw = 0 in D,

w = 0 on ∂D ∩ {x1 = 0, x2 > 0},
wν ≡ D2w = 0 on ∂D ∩ {x1 > 0, x2 = 0},
w = v on ∂D ∩ {x1 > 0, x2 > 0},

(4.5.181)
where (A

(%)
ij , A

(%)
i ) := (A

(%)
ij , A

(%)
i )(Dw,x). Moreover, we prove that w satisfies

‖w‖C2,β(D) ≤ C. (4.5.182)

Define

R(N) :=
{
W ∈ C2,β(D) : ‖W‖C2,β(D) ≤ N

}
, (4.5.183)

where N will be determined later. We obtain such w as a fixed point of map
K : R(N) 7→ R(N) (if % is small and N is large) defined as follows:

For W ∈ R(N), define

g = −2Â
(%)
12 (DW,x)Wx1x2

− Â(%)
2 (DW,x)Wx2

. (4.5.184)

By (4.5.164)–(4.5.166) and (4.5.169), we can estimate ‖g‖Cβ(D). First, G(x) :=

Â
(%)
12 (DW (x),x) satisfies

‖G‖C(D) ≤ C%β , ‖DG‖C(D) ≤ CN,

where constant C depends only on the parameters described at the beginning of
Step 2, which are fixed for this argument, so we do not specify the dependence
on them below. Then, by the interpolation inequality, for any ε > 0,

‖G‖Cβ(D) ≤ ε‖DG‖C(D) + Ĉ(ε, β)‖G‖C(D) ≤ CNε+ Ĉ(ε, β)C%β ,

where Ĉ(ε, β) depends only on ε and β. Thus, choosing ε small depending on
N so that CNε ≤ 1

4N2 , and then choosing % small depending on (ε, β,N), we
obtain that ‖G‖Cβ(D) ≤ 1

2N2 . With this, we have

‖g‖Cβ(D) ≤
1

2N2
N + CN(1 +N)%β ≤ 1,

if % ≤ %0 with %0(N, β, δ) small. Then, as we have proved above, there exists a
unique solution w ∈ C2,β(D) of (4.5.171)–(4.5.174) with g defined by (4.5.184).
Moreover, w satisfies (4.5.175). Choosing N to be constant C in (4.5.175), we
conclude that w ∈ R(N). Thus, N is chosen depending only on (λ,M,α, β, ε, δ).
Now our choice of % ≤ %0 and the other smallness conditions stated above
determines % in terms of (δ, λ,M,α, β, ε, δ, t0). We define K[W ] := w so that
K : R(N) 7→ R(N).
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Now the existence of a fixed point of K follows from the Schauder fixed
point theorem in the following setting: From its definition, R(N) is a compact
and convex subset in C2,β/2(D). Map K : R(N) 7→ R(N) is continuous in
C2,β/2(D). Indeed, if Wk ∈ R(N) for k = 1, . . . , and Wk →W in C2,β/2(D), it
is easy to see thatW ∈ R(N). Define gk and g∞ by (4.5.184) forWk andW , re-
spectively. Then gk → g∞ in Cβ/2(D) by (4.5.164)–(4.5.166). Let wk = K[Wk].
Then wk ∈ R(N), and R(N) is bounded in C2,β(D). Thus, for any subsequence
wkl , there exists a further subsequence wklm converging in C2,β/2(D). The limit
function w̃ is a solution of (4.5.171)–(4.5.174) with g∞ on the right-hand side
of (4.5.171). By the uniqueness of solutions in R(N) to (4.5.171)–(4.5.174), we
find that w̃ = K[W ]. Then it follows that the whole sequence K[Wk] converges
to K[W ], so that K : R(N) 7→ R(N) is continuous in C2,β/2(D). Therefore,
there exists w ∈ R(N), which is a fixed point of K. This function w is a solution
of (4.5.181).

Since v satisfies (4.5.160)–(4.5.162) and D ⊂ R+
1 , it follows from the unique-

ness of solutions in C(D)∩C1(D \ {x1 = 0})∩C2(D) of Problem (4.5.181) that
w = v in D. Thus, v ∈ C2,β(D) and satisfies (4.5.175). This implies that u
satisfies (4.5.158).

3. In this step, we show the following estimate near corner P1: There exist
(δ0, C, %) such that, if δ ∈ (0, δ0),

‖u‖(−1−β),{P1}
2,β,Ω∩B%(P1) ≤ Ct0 . (4.5.185)

The dependence of constants (δ0, C, Ct0 , %) on the parameters in the problem
has been discussed at the beginning of Step 2.

We assume that % < 1
10 min{t0, λ, ε} so that % < 1

10 min{t0, t2, h, ε}. Then,
by shifting the origin into P1 and inverting the direction of the x2–axis, Ω ∩
B4%(P1) becomes R+

4% defined by (4.5.21) with

fob(x1) = fbd(0)− fbd(x1) on [0,∞),

and parts Γ0 and Γ1 within ∂Ω ∩ B4%(P1) are mapped into Γ
(d)
4% and Γ

(ob)
4% ,

respectively. We now work in these coordinates.
As in Step 1 of the proof of Lemma 4.5.8, we consider equation (4.5.84) and

the boundary condition (4.5.85) as a linear equation and boundary condition
(4.5.121)–(4.5.122), in which we now have that f = 0 by (4.5.84), and ĝ1 = 0

within Γ
(ob)
4% by (4.5.111) for % ≤ ε. Also, since u ∈ C1(Ω) satisfies (4.5.88),

(4.5.85) with (4.5.102), and (4.5.111), Du(P1) = 0 in the original coordinates,
which is Du(P̂ ) = 0 in the new coordinates, where we recall that P̂ = 0. Then
(4.5.90), (4.5.92), and (4.5.95)–(4.5.102) imply that conditions (4.5.47)–(4.5.50)
and (4.5.52)–(4.5.55) are satisfied for Problem (4.5.121)–(4.5.122) in the present
case with β in place of α, where we have used that Du(P̂ ) = 0 to derive (4.5.48)
from (4.5.95). Using that f = 0 and ĝ1 = 0, we obtain estimate (4.5.57) for u
with α replaced by β and with f = g = 0, if δ is sufficiently small, depending
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only on (λ,M,α, ε):

|u(x)| ≤ C‖u‖L∞(R+
% )|x|1+β ≤ C|x|1+β in R+

% , (4.5.186)

where we have used the L∞–bound (4.5.119) of u.
We note that d(δ)

x defined by (4.5.145) satisfies

d(δ)
x ≡ δ for all x ∈ Ω ∩ {x1 < δ}.

We assume that δ0 ≤ ε and rescale u in R+
% by combining (4.5.151) with

(4.5.155), which now takes the form:

w(x) :=
1

%1+β
u(
√
δ %x1, %x2) for x = (x1, x2) ∈ R̂+

1 , (4.5.187)

where

R̂+
r := Br(0) ∩ {x1 > 0, x2 >

√
δF (x1)} for r > 0 (4.5.188)

with
F (x1) =

1√
δ %
fob(
√
δ %x1) =

1√
δ %

(
fbd(0)− fbd(

√
δ %x1)

)
.

From (4.5.15),

F (0) = 0, ‖F‖(−1−α),{0}
2,α,(0,2) ≤ 2M. (4.5.189)

Hence, R̂+
r is of structure (4.5.21), where Γ̂

(d)
r and Γ̂

(ob)
r are denoted as its

boundary parts from (4.5.22). We note that (4.5.187) is well-defined if δ0 < 1,
since, in this case, (%

√
δx1, %x2) ∈ R+

% if (x1, x2) ∈ R̂+
1 . Thus, defining β

′ := 1+β
2

so that 1
2 < β′ < β (since β ∈ ( 1

2 , 1)), and choosing % > 0 small, depending only
on (β, δ), we use (4.5.186) to obtain

|w(x)| ≤ Cδ− 1
2 %β−β

′ |x|1+β′ ≤ |x|1+β′ in R+
% . (4.5.190)

Furthermore, w satisfies an equation of form (4.5.84) in R+
% , and a boundary

condition of form (4.5.141) on Γ̂
(ob)
1 = ∂R̂+

1 ∩{x2 = 0} with modified ingredients
(Âij , Âi, f̂ , B̂) defined as follows:

Âij(p,x) = δ
i+j
2 −2 Aij(

%β√
δ
p1, %

βp2,
√
δ %x1, %x2),

Âi(p,x) = δ
i−2

2 % Ai(
%β√
δ
p1, %

βp2,
√
δ %x1, %x2),

B̂(p2, z,x) =
√
δ %−βB̃(%βp2, %

1+βz,
√
δ %x1, %x2).

Choosing δ0 < ε, we obtain from (4.5.142) that

B̂(0, 0,x) = 0.
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Also, w = 0 on Γ̂
(d)
% = ∂R̂+

1 ∩ {x1 = 0}.
From (4.5.90), it follows that Âij , i, j = 1, 2, satisfy (4.2.3) with constant λ

in R+
1 . This also implies that ‖Âij‖L∞(R2×R̂+

1 ) ≤ C(λ), where we have used
the symmetry: A12 = A21. Using this estimate, (4.5.92), and the definitions
of (Âij , Âi), and choosing % small depending only on (δ, β), we obtain that, for
each p ∈ R2,

‖(Âij , Âi)(p, ·)‖Cβ(R̂+
1 )

+ ‖Dp(Âij , Âi)(p, ·)‖L∞(R̂+
1 ) ≤ 1. (4.5.191)

Since %, δ0 < 1, then |Dk
(p,z,x)B̂| ≤ |Dk

(p,z,x)B̃|, k = 1, 2, . . . . Combining this
with (4.5.143), and again choosing % small depending only on (δ, β), we have

‖Dk
(p2,z)

B̂(p2, z, ·)‖
C3(Γ̂

(ob)
1 )
≤ C(λ, β,M) (4.5.192)

for any (p2, z) ∈ R×R and k = 0, 1, 2, 3, where we have used (4.5.142) to obtain
the estimate for k = 0.

Also, B̂p2(p2, z, x1) =
√
δB̃p2(

√
δp2, δz, δx1). Thus, using (4.5.143), we

have

|B̂p2
(p2, z, x1)| ≤ C(λ, β,M)

√
δ for all (p2,x) ∈ R× Γ̂(ob)

% . (4.5.193)

That is, B̂ satisfies (4.2.16) with
√
δ on the right-hand side.

Then, for small %(δ, β), (Âij , Âi, B̂) satisfy all the conditions of Theorem 4.2.8
and Remark 4.2.13 in R+

1 , with the constants depending only on (λ,M, β). At
this point, recalling also our previous requirements on the smallness of %, we fix
% for the rest of Step 3.

Now we follow the argument in Step 5 of the proof of Lemma 4.5.5. Consider
Cases (i)–(iii) in R̂+

1/2, which are defined by the same conditions. We discuss
only Case (iii), since the other cases are simpler and can be handled similarly.
On the other hand, in Case (iii), we use that the boundary condition is almost
tangential, instead of using its obliqueness as in Step 5 of the proof of Lemma
4.5.5. The details are as follows:

We define L > 0 and dx as in Step 5 of the proof of Lemma 4.5.5 with respect
to R̂+

1/2. Then, in this case, dx := dist(x, P1) = |x|, since we have shifted P1 to
the origin. Also, using (4.5.189), we have L = L(M).

In Case (iii), we fix x̂ ∈ Γ̂
(ob)
1/2 and define v(x), similar to (4.5.76), by

v(x) =
1

d̂1+β′
w(x̂ + d̂x) for x ∈ Ωx̂

1 ,

where d̂ = dx̂
2L and, for r ∈ (0, 1],

Ωx̂
r := Br(0) ∩

{
x2 >

√
δ F (x̂)(x1)

}
,
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where F (x̂)(x1) := F (x̂1+d̂x1)−F (x̂1)

d̂
and F (x1) is from (4.5.188). By (4.5.189),

F (x̂)(0) = 0, ‖F (x̂)‖2,0,(−2,2) ≤ C(L)M, (4.5.194)

so that ‖F (x̂)‖1,β,(−2,2) ≤ C(M), where we have used that L = L(M). By
(4.5.190), we have

‖v‖L∞(Ωx̂
1 ) ≤ C

with C independent of x̂. Also, v satisfies an equation of form (4.5.84) in Ωx̂
1

and the boundary condition of form (4.5.141) on

Γx̂
1 = ∂Ωx̂

1 ∩ {x2 =
√
δ F (x̂)(x1)},

with ingredients:

(Â
(x̂)
ij , Â

(x̂)
i )(p,x) = (Âij , d̂Âi)(d̂

β′p, x̂ + d̂x),

B̂(x̂)(p2, z,x) =
1

d̂β′
B̂(d̂β

′
p2, d

1+β′z, x̂ + d̂x).

From the properties of (Âij , Âi, B̂), it follows that (Â
(x̂)
ij , Â

(x̂)
i , B̂(x̂)) satisfy

the uniform ellipticity, the almost tangentiality property (4.5.193), and the
regularity estimates (4.5.191)–(4.5.192) with the unchanged constants, since
B̂(0, 0,x) ≡ 0 and d̂ < 1. Also, for boundary Γx̂

1 , we note (4.5.194). Then we
can choose δ0 small, depending only on these constants, i.e., (h, t1, t2, λ,M, β),
such that, for any δ ∈ (0, δ0), we can employ Theorem 4.2.8 and Remark 4.2.13
in Ωx̂

1 to obtain

‖v‖C2,β(Ωx̂
1/2

) ≤ C
(
‖v‖L∞(Ωx̂

1 ) + ‖B̂(%)(0, 0, ·)‖
C1,β(Γ̂

(x̂)
1 )

)
≤ C(λ,M, β, δ).

Cases (i)–(ii) in Step 5 of the proof of Lemma 4.5.5 are handled similarly, by
using Theorem 4.2.1 for Case (i) and Theorem 4.2.9 for Case (ii).

Combining these estimates as in Step 5 of the proof of Lemma 4.5.5, we find
that, for w in (4.5.187),

‖w‖(−1−β),{0}
2,β,R+

1/2

≤ C.

This implies (4.5.185) with % fixed above.
4. In this step, we prove (4.5.139). Let σ be fixed as in Step 1. Let δ0 be

small, depending only on (λ,M,α, β, ε), to satisfy the conditions in Steps 1–3.
Let % be small, depending on (λ,M,α, ε, δ, t0), to satisfy the conditions of Steps
2–3. Then we combine estimate (4.5.138) with s = %

100 so that constant Cs
depends only on (κ, λ,M,α, ε, δ, t0), estimates (4.5.158) and (4.5.185), and the
estimates of Theorem 4.2.9 with Remark 4.2.13 applied in half-balls B%/10(x̂)∩
{x1 > 0} for any x̂ = (0, x̂2) with x̂2 ∈ (%4 , t0 −

%
4 ), where the constants in

(4.2.72) with f = g = 0 depend only on (λ,M,α, β, ε), since % depends on these
parameters, and the ellipticity constant is δ. Finally, we conclude (4.5.139).
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Next we prove the existence of solutions.

Proposition 4.5.13. Let κ > 0, λ > 0, M < ∞, α ∈ (0, 1), β ∈ [ 1
2 , 1), and

ε ∈ (0, λ10 ). Then there exist α1 ∈ (0, 1
2 ) depending only on (κ, λ), and σ, δ0 > 0

depending only on (κ, λ,M,α, β, ε), such that the following holds: Let Ω be a
domain of structure (4.5.1)–(4.5.3) with h, t1, t2,Mbd ∈ (λ, 1

λ ) and t0 > 0. Let
fbd satisfy (4.5.15), and let ε ∈ (0, h10 ) and δ ∈ (0, δ0). Let (4.5.89)–(4.5.111)
hold.

Then there exists a unique solution u ∈ C(Ω)∩C1(Ω\Γ0)∩C2(Ω) of (4.5.84)–
(4.5.88). Moreover, u ∈ C(Ω)∩C1,α1(Ω\Γ0)∩C2,α1(Ω\ (Γ0∪Γ2)) and satisfies
(4.5.119)–(4.5.120), (4.5.139), as well as (4.5.138) for each s ∈ (0, h10 ). The
constants in these estimates depend only on the parameters described in Lemma
4.5.12. In particular, both constant C in (4.5.119)–(4.5.120) and Cs in (4.5.138)
are independent of δ and t0.

Proof. We employ a nonlinear method of continuity for this proof.
Let α1 be sufficiently small in order to satisfy the conditions of Lemma 4.5.1,

Proposition 4.5.6, and Lemma 4.5.12 with κ
2 ,

λ
2 , and Mbd = 2

λ , where κ and λ
are given in the assumptions. Then α1 = α1(κ, λ). Fix α ∈ (0, 1). Let δ0 be
chosen to satisfy the conditions of Proposition 4.5.6 and Lemma 4.5.12, and let σ
be as in Lemma 4.5.12 so that these constants depend only on (κ, λ,M,α, β, ε).

For t ∈ [0, 1], denote by Pt the operator defined for u ∈ C1(Ω) ∩ C2(Ω) by

Pt(u) =




∑2
i,j=1Aij(Du,x)uxixj +

∑2
i=1Ai(Du,x)uxi(

B(Du, u,x)− (1− t)B(0, 0,x)
)
|Γ1(

b(2)(x) ·Du− tg2

)
|Γ2

b(3)(x) ·Du|Γ3



,

where (Aij , Ai, B, b
(k)
i , g2) are from (4.5.84)–(4.5.87). Note that we do not in-

clude condition (4.5.88) in the operator, since it will be included in the definition
of spaces below. With that, the existence of a solution of (4.5.84)–(4.5.88) is
equivalent to the existence of u such that P1(u) = 0.

Now we define the spaces:

CD =
{
u ∈ C(−1−α1),{P1}∪Γ2

2,α1,Ω
: uν |Γ3∩{0<x1<ε} = 0, u|Γ0

= 0
}
,

CT =

{
(f, g1, g2, g3) ∈ C(1−α1),{P1}∪Γ2

0,α1,Ω
× C(−α1),∂Γ1

1,α1,Γ1
× Cα1(Γ2)× C(−α1),∂Γ3

1,α1,Γ3

with g3|Γ3∩{0<x1<ε} = 0

}
.

Sets CD and CT are closed subspaces of the Banach spaces C(−1−α1),{P1}∪Γ2

2,α1,Ω
and

C
(1−α1),{P1}∪Γ2

0,α1,Ω
× C(−α1),∂Γ1

1,α1,Γ1
× Cα1(Γ2) × C(−α1),∂Γ3

1,α1,Γ3
, respectively. Therefore,

CD and CT are the Banach spaces with respect to these norms. Also, u ∈ CD
implies that u satisfies (4.5.88).
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Our assumptions in this proposition imply that (t, u) 7→ Pt(u) is a Fréchet-
differentiable mapping from [0, 1] × CD to CT . In particular, (4.5.106) implies
that, if u ∈ CD and Pt(u) = (f, g1, g2, g3), then g3 = 0 on Γ3 ∩ {0 < x1 < ε}.

Denote
T = {t ∈ [0, 1] : Pt(ut) = 0 for some ut ∈ CD}.

We need to show that 1 ∈ T . For that, we show that T = [0, 1].
From the explicit definition of Pt(·), we see that P0(0) = 0 so that 0 ∈ T ;

that is, T is non-empty.
Next, we show that T is relatively open in [0, 1]. Let t0 ∈ T . Then there

exists a corresponding ut0 ∈ CD such that Pt0(ut0) = 0. From assumptions
(4.5.89)–(4.5.111), it follows that the linearization on u = ut0 of the boundary
value problem:

Pt0(u) = 0, u = 0 on Γ0

is a boundary value problem of form (4.5.4)–(4.5.6), satisfying the conditions of
Proposition 4.5.6 with α = α1. In addition to the ellipticity, obliqueness, non-
positive zero-order terms, and properties of the boundary conditions at corners
P1 ∪ P4, we note the following properties of the linearization:

(i) (4.5.78) with α = α1, which follows from the fact that the equation is
linear on Ω ∩ {x1 ≥ ε} with the coefficients satisfying (4.5.91), as well as
from (4.5.92) with u ∈ C(−1−α1),{P1}∪Γ2

2,α1,Ω
;

(ii) (4.5.14) with α = α1, which follows from u ∈ C(−1−α1),{P1}∪Γ2

2,α1,Ω
and (4.5.99);

(iii) (4.5.79) which follows from (4.5.96);

(iv) (4.5.80) from (4.5.102);

(v) (4.5.81) from (4.5.106) and b(3)
0 = 0 in (4.5.87).

Also, (4.5.82) holds for the linearized problem from the definition of space CT .
Then Proposition 4.5.6 with α = α1 implies that the partial Fréchet derivative
DuPt0(ut0) : CD 7→ CT is an isomorphism. Thus, by the implicit function
theorem, for each t ∈ [0, 1] sufficiently close to t0, Problem Pt(u) = 0 has a
solution ut ∈ CD; that is, T is open.

Finally, for each t ∈ [0, 1], Problem Ptu = 0 with u|Γ0 = 0 has the form of
(4.5.84)–(4.5.88) and satisfies (4.5.90)–(4.5.111) with the constants independent
of t. In fact, this applies with the same constants as for the original problem
for all the conditions with one exception that, for Bt(p, z, x1) := B(p, z,x) −
(1− t)B(0, 0,x), estimate (4.5.99) holds with constant 2M instead of M . Then
estimate (4.5.139) of Lemma 4.5.12 implies that T is closed. Indeed, let T 3 ti →
t∞. Then t∞ ∈ [0, 1]. Also, for each i, there exists ui ∈ CD such that Pti(ui) = 0.
Estimate (4.5.139) holds for each i with the uniform constant. Thus, there exists
a subsequence uij converging in the norm of C(−1−α1/2),{P1}∪Γ2

2,α1/2,Ω
, and its limit

u∞ satisfies u∞ ∈ CD and Pt∞(u∞) = 0, so that t∞ ∈ T .
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Thus, T = [0, 1], which implies the existence of a solution u ∈ C(−1−α1),{P1}∪Γ2

2,α1,Ω

for the original problem (4.5.84)–(4.5.88). Furthermore, Lemmas 4.5.8 and
4.5.12 imply that this solution satisfies the estimates asserted.

The uniqueness of the solution follows directly from Lemma 4.4.4.

4.6 HÖLDER SPACES WITH PARABOLIC SCALING

We now define a family of norms convenient for the analysis of degenerate elliptic
equations in the open domain D ⊂ {(x1, x2) : x1 > 0} ⊂ R2, with ellipticity
degenerating at {x1 = 0}.

For α ∈ (0, 1), denote

δ(par)
α (x, x̃) :=

(
|x1 − x̃1|2 + max(x1, x̃1)|x2 − x̃2|2

)α
2 . (4.6.1)

For a nonnegative integer m, and real constants σ > 0 and α ∈ (0, 1), define the
parabolic Hölder norms, weighted and scaled by the distance to {x1 = 0}:

‖u‖(σ),(par)
m,0,D :=

∑

0≤k+l≤m

sup
z∈D

(
x
k+ l

2−σ
1 |∂kx1

∂lx2
u(x)|

)
,

[u]
(σ),(par)
m,α,D :=

∑

k+l=m

sup
x,x̃∈D,x6=x̃

(
min

(
x
α+k+ l

2−σ
1 , x̃

α+k+ l
2−σ

1

)

× |∂
k
x1
∂lx2

u(x)− ∂kx1
∂lx2

u(x̃)|
δ

(par)
α (x, x̃)

)
,

‖u‖(σ),(par)
m,α,D := ‖u‖(σ),(par)

m,0,D + [u]
(σ),(par)
m,α,D ,

(4.6.2)

where k and l are nonnegative integers.
For integer m ≥ 0 and constant α ∈ [0, 1), denote by Cm,ασ,(par)(D) the com-

pletion of space {u ∈ C∞(D) : ‖u‖(σ),(par)
m,α,D <∞} under norm ‖ · ‖(σ),(par)

m,α,D .
Related to the estimates of the degenerate elliptic equations in later sections,

we characterize spaces Cm,ασ,(par)(D) in terms of the Cm,α–norms of the rescaled
functions in the parabolic rectangles.

Fix ε > 0. Denote Dε := D ∩ {0 < x1 < ε}. We define a scaled version of
function u(x) in the parabolic rectangles: For x ∈ Dε and ρ ∈ (0, 1],

Rx,ρ :=
{

(s, t) : |s− x1| <
ρ

4
x1, |t− x2| <

ρ

4

√
x1

}
∩ Dε. (4.6.3)

Note that, for ρ ∈ (0, 1],

Rx,ρ ⊂ Dε ∩ {(s, t) :
3x1

4
< s <

5x1

4
}. (4.6.4)

For ρ ∈ (0, 1], denote Qρ := (−ρ, ρ)× (−ρ, ρ). Then, rescaling Rx,ρ, we obtain

Q(x)
ρ :=

{
(S, T ) ∈ Qρ : (x1 +

x1

4
S, x2 +

√
x1

4
T ) ∈ Dε

}
. (4.6.5)
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Denote by u(x)(S, T ) the following function in Q(x)
ρ :

u(x)(S, T ) :=
1

xσ1
u(x1 +

x1

4
S, x2 +

√
x1

4
T ) for (S, T ) ∈ Q(x)

ρ . (4.6.6)

Lemma 4.6.1. For any ε ∈ (0, 1) and ρ ∈ (0, 1], we have

C−1 sup
x∈D3ε/4

‖u(x)‖
m,α,Q

(x)
ρ
≤ ‖u‖(σ),(par)

m,α,Dε ≤ C sup
x∈Dε

‖u(x)‖
m,α,Q

(x)
ρ
, (4.6.7)

where C depends only on (m,α, σ, ρ) and is independent of D and ε > 0.

Proof. Most of the asserted estimates follow directly from the definitions. We
prove only the estimate of [u]

(σ),(par)
m,α,D in terms of the right-hand side of (4.6.7).

For simplicity of notation, we consider only Case ρ = 1, since Case ρ ∈ (0, 1)
can be handled similarly. We also use the notation for the rectangles in (4.6.3):

Rx := Rx,1.

The universal constant C below depends only on (m,α, σ) and ρ = 1.
For integers k, l ≥ 0, differentiating (4.6.6), we obtain

1

4k+l
x
k+ l

2−σ
1 ∂kx1

∂lx2
u(x) = ∂kS∂

l
Tu

(x)(0),

which implies
‖u‖(σ),(par)

m,0,Dε ≤ C sup
x∈Dε

‖u(x)‖
m,α,Q

(x)
1

=: M. (4.6.8)

Let k + l = m and α ∈ (0, 1). Let x = (x1, x2), x̃ = (x̃1, x̃2) ∈ D , and let

x1 ≥ x̃1.

If x̃ ∈ Rx, then, from (4.6.5)–(4.6.6), there exist (Sj , Tj) ∈ Q(x)
1 , j = 1, 2,

such that x = x+(x1

4 S1,
√
x1

4 T1) and x̃ = x+(x1

4 S2,
√
x1

4 T2), where (S1, T1) = 0.
With this, we have

x
α+k+ l

2−σ
1 |∂kx1

∂lx2
u(x)− ∂kx1

∂lx2
u(x̃)|

4k+l+α (|x1 − x̃1|2 + x1|x2 − x̃2|2)
α
2

=
|∂kS∂lTu(x)(0)− ∂kS∂lTu(x̃)(S2, T2)|

|(S2, T2)|α .

Also, x̃ ∈ Rx implies x̃1 ∈ ( 3
4x1,

5
4x1). It follows that

min(x
α+k+ l

2−σ
1 , x̃

α+k+ 1
2−σ

1 )
|∂kx1

∂lx2
u(x)− ∂kx1

∂lx2
u(x̃)|

δ
(par)
α (x, x̃)

≤ C‖u(x)‖
m,α,Q

(x)
1
.

If x̃ /∈ Rx, there are two cases:

(i) x1 − x̃1 ≥ x1

4 ;
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(ii) 0 < x1 − x̃1 <
x1

4 , but
√
x1|x2 − x̃2| ≥ x1

4 .

Thus, in both Cases (i) and (ii),

δ(par)
α (x, x̃) ≥

(x1

4

)α
≥
(
x̃1

4

)α
. (4.6.9)

Also, 0 < x̃1 ≤ x1 ≤ ε < 1. Then, using (4.6.8),

|∂kx1
∂lx2

u(x)− ∂kx1
∂lx2

u(x̃)|
δ

(par)
α (x, x̃)

≤ C
(
|∂kx1

∂lx2
u(x)|

xα1
+
|∂kx1

∂lx2
u(x̃)|

x̃α1

)

≤ C max(x
−α−k− l

2 +σ
1 , x̃

−α−k− l
2 +σ

1 )M,

(4.6.10)

where M is from (4.6.8). This implies

min(x
α+k+ l

2−σ
1 , x̃

α+k+ l
2−σ

1 )
|∂kx1

∂lx2
u(x)− ∂kx1

∂lx2
u(x̃)|

δ
(par)
α (x, x̃)

≤ CM.

The proof is completed.

We also note the following properties:

Lemma 4.6.2. Let D be an open bounded subset of R2. Let m be a nonnegative
integer, α ∈ (0, 1), and σ > 0. Then there exists C such that, for any ε > 0,

‖u‖(σ),(par)
m,α,D ≤ C

(
‖u‖(σ),(par)

m,α,D∩{x1>ε} + ‖u‖(σ),(par)
m,α,D∩{x1<2ε}

)
(4.6.11)

for any u ∈ Cm,ασ,(par)(D).

Proof. The assertion obviously holds for norms ‖ · ‖(σ),(par)
m,0,D . Then we only need

to estimate [u]
(σ),(par)
m,α,D in terms of the right-hand side of (4.6.11). More precisely,

it suffices to consider points x and x̃ with x1 > 2ε and x̃1 < ε, since the other
cases are included in the norms on the right-hand side of (4.6.11). Therefore,
x1− x̃1 >

1
2x1 so that we can follow the argument in Case (i) in the last part of

the proof of Lemma 4.6.1. We first see that (4.6.9) holds, and then we obtain
the first inequality in (4.6.10) and, from that,

min(x
α+k+ 1

2−σ
1 , x̃

α+k+ 1
2−σ

1 )
|∂kx1

∂lx2
u(x)− ∂kx1

∂lx2
u(x̃)|

δ
(par)
α (x, x̃)

≤ ‖u‖(σ),(par)
m,0,D ≤ ‖u‖(σ),(par)

m,0,D∩{x1>ε} + ‖u‖(σ),(par)
m,0,D∩{x1<2ε}.

Lemma 4.6.3. Let D be an open bounded subset of R2 with a Lipschitz bound-
ary. Let m1 and m2 be nonnegative integers, α1, α2 ∈ [0, 1), and m1 + α1 >
m2 + α2. Let σ1 > σ2 > 0. Then Cm1,α1

σ1,(par)(D) is compactly imbedded into
Cm2,α2

σ2,(par)(D).
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Proof. We note first that, for every ε > 0, norm ‖ · ‖(σ),(par)
m,α,D∩{x1>ε} is equivalent

to the standard Hölder norm ‖ · ‖m,α,D∩{x>ε}. This follows directly from the
definitions (though the constants in the equivalence of the norms would blow
up as ε→ 0).

Let ‖ui‖(σ1),(par)
m1,α1,D ≤ C for i = 1, 2, . . . . Let j = 1. From the equivalence

of the norms mentioned above and the standard compactness results on the
Hölder spaces, there exists a subsequence of {ui}, denoted as {u1k}∞k=1, which
is a Cauchy sequence in Cm2,α2

σ2,(par)(D∩{x1 >
1
2j }). Then, for j = 2, we can select

a further subsequence, denoted as {u2k}∞k=1, with the properties stated above
(for j = 2), and continue the process for j = 3, 4, . . . .

Now, using the properties of the selected subsequences, for each j, there
exists N(j) > 0 so that, for any k, l ≥ N(j),

‖ujk − ujl‖(σ2),(par)

m2,α2,D∩{x1>
1
2j }
≤ jσ2−σ1 .

Moreover, we can choose these N(j) so that N(j + 1) > N(j) for each j. Then
it follows that {ujN(j)}∞j=1 is a subsequence of the original sequence {ui}.

Also, for any j, k, l = 1, 2, . . . ,

‖ujk − ujl‖(σ2),(par)

m2,α2,D∩{x1<
1
j }
≤ ‖ujk‖(σ2),(par)

m2,α2,D∩{x1<
1
j }

+ ‖ujl‖(σ2),(par)

m2,α2,D∩{x1<
1
j }

≤ jσ2−σ1

(
‖ujk‖(σ1),(par)

m1,α1,D + ‖ujl‖(σ1),(par)
m1,α1,D

)

≤ Cjσ2−σ1 .

From the estimates above and Lemma 4.6.2, there exists C so that, for each
j1 > j2 ≥ 1,

‖uj1N(j1) − uj2N(j2)‖(σ2),(par)
m2,α2,D ≤ Cj

σ2−σ1
2 .

That is, {ujN(j)}∞j=1 is a Cauchy sequence in Cm2,α2

σ2,(par)(D) for σ2 < σ1.

We also note the following fact:

Lemma 4.6.4. Let 0 ≤ α1 < α2 < 1, σ > 0, and let m be a nonnegative integer.
Then

‖u‖(σ),(par)
m,α1,D ≤ 9‖u‖(σ),(par)

m,α2,D .

Proof. It suffices to show that

[u]
(σ),(par)
m,α1,D ≤ 8‖u‖(σ),(par)

m,0,D + [u]
(σ),(par)
m,α2,D . (4.6.12)

For all nonnegative integers k and l with k + l = m, and α ∈ (0, 1), and for
any x, x̃ ∈ D with x 6= x̃, define

A
(α)
kl (x, x̃) := min(x

α+k+ l
2−σ

1 , x̃
α+k+ l

2−σ
1 )

|∂kx1
∂lx2

u(x)− ∂kx1
∂lx2

u(x̃)|
δ

(par)
α (x, x̃)

.
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To prove (4.6.12), we need to estimate A(α1)
kl (x, x̃) for all k, l,x, and x̃ as above.

We use rectangles (4.6.3), with the simplified notation Rx := Rx,1. We can
assume without loss of generality that

x1 ≥ x̃1.

If x̃ ∈ Rx, it follows that δ(par)
1 (x, x̃) ≤

√
2

4 x1. Also, x̃ ∈ Rx with x1 ≥ x̃1

implies x1 ≥ x̃1 ≥ 3
4x1. Then we have

δ
(par)
1 (x, x̃) ≤

√
2

3
x̃1 =

√
2

3
min(x1, x̃1).

Now we note that 0 ≤ α1 < α2 < 1 implies

A
(α2)
kl (x, x̃) ≥

( (x1, x̃1)

δ
(par)
1 (x, x̃)

)α2−α1

A
(α1)
kl (x, x̃).

Therefore, when x̃ ∈ Rx, we have

A
(α1)
kl (x, x̃) ≤

(√2

3

)α2−α1

A
(α2)
kl (x, x̃) ≤ [u]

(σ),(par)
m,α2,D ,

where we have used that α2 − α1 ∈ (0, 1).
If x̃ /∈ Rx, we have shown that inequalities (4.6.9) hold. Then we have

A
(α1)
kl (x, x̃) ≤ (max(x1, x̃1))α1

δ
(par)
α (x, x̃)

(
|x1|k+ l

2−σ|∂kx1
∂lx2

u(x)|+ |x̃1|k+ l
2−σ|∂kx1

∂lx2
u(x̃)|

)

≤ 4α1
(
2‖u‖(σ),(par)

m,0,D
)
≤ 8‖u‖(σ),(par)

m,0,D ,

since α1 ∈ (0, 1).
Combining the two cases considered above, we conclude (4.6.12).

Next we consider the functions on a unit square: Ω ≡ (0, 1)× (0, 1). We use
the notations for the sides and vertices of Ω, introduced in Proposition 4.5.2.
We introduce the following spaces: For a set S ∈ {Ω,Γ1,Γ3}, and for integer
k ≥ 0 and constants σ > 0 and α ∈ (0, 1), we choose ε ∈ (0, 1] and denote

‖u‖∗,σk,α,S := ‖u‖(−k+1−α),Γ2

k,α,S∩{x1>ε/10} + ‖u‖(σ),(par)
k,α,S∩{x1<ε/5}. (4.6.13)

Of course, for a different choice of ε ∈ (0, 1], we obtain an equivalent norm
(4.6.13).

Define

Ck,α∗,σ (S) :=
{
u ∈ Ck−1(S) ∩ Ck(S) : ‖u‖∗,σk,α,S <∞

}
. (4.6.14)

Lemma 4.6.5. Let α1, α2 ∈ (0, 1), and α1 > α2. Let σ ≥ 0. Then C2,α1
∗,σ (Ω) is

dense in C2,α2
∗,σ (Ω).
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Proof. Let u ∈ C2,α2
∗,σ2 (Ω). We approximate u by the following functions uε ∈

C∞(Ω \ Γ0) for ε > 0:
We first extend u to a larger region. Using Theorem 13.9.5, we extend

u through the boundary parts Γ1 = {x2 = 1} ∩ ∂Ω and Γ3 = {x2 = 0} ∩
∂Ω so that u ∈ C2,α2

∗,σ ((0, 1) × (−1, 2)). In particular, we obtain that u ∈
W 2, 1

1−α2 ((0, 1) × (−1, 2)) ∩ C1,α2([ 1
2 , 1] × [−1, 2]). Then the standard exten-

sion of order 2 of u through the boundary part {x1 = 1} yields the extended
function u that is in W 2, 1

1−α2 ((0, 2) × (−1, 2)) ∩ C1,α2([ 1
2 , 2] × [−1, 2]); more-

over, u ∈ C
(−1−α2),{x1=1}
2,α2

((0, 1) × (−1, 2)) ∩ C(−1−α2),{x1=1}
2,α2

((1, 2) × (−1, 2)).
In particular, |D2u(x)| ≤ C|x1 − 1|α2−1 for x ∈ (( 1

2 , 2)× (−1, 2)) \ {x1 = 1}.
Let ζ ∈ C∞c (R2) with ζ ≥ 0 and

∫
R2 ζ dx = 1. We introduce the following

elliptic and parabolic rescaling on ζ: For r > 0, let

ζ(ell)
r (x) =

1

r2
ζ(

x

r
), ζ(par)

r (x) =
1

r3/2
ζ(
x1

r
,
x2√
r

).

Let η ∈ C∞(R) with η ≡ 1 on ( 3
4 ,∞), η ≡ 0 on (−∞, 1

4 ), and η ≥ 0 on R. Then,
for u extended as described above, we define that, for ε ∈ (0, 1

10 ),

uε(x) = η(x1)

∫

R2

u(x̂)ζ(ell)
ε (x− x̂)dx̂ +

(
1− η(x1)

) ∫

R2

u(x̂)ζ
(par)
2εx1

(x− x̂)dx̂

for x ∈ Ω. This can also be written as

uε(x) = η(x1)

∫

R2

u(x− εX)ζ(X)dX

+
(
1− η(x1)

) ∫

R2

u(x1 − εx1X1, x2 −
√
εx1X2)ζ(X) dX.

Now a standard calculation by using the properties of the extended function u
yields that uε ∈ C2,α1

∗,σ (Ω) and ‖uε − u‖∗,σ2,α2,Ω
→ 0 as ε→ 0+.

4.7 DEGENERATE ELLIPTIC EQUATIONS

4.7.1 Mixed boundary value problem in a domain with corners for
degenerate elliptic equations: The nonlinear case

In this section, we establish the existence of solutions for Problem (4.5.84)–
(4.5.88) under the conditions that include the case that the equation is degen-
erate elliptic with ellipticity degenerating near Γ0. That is, we require δ to be
small in (4.5.90), including Case δ = 0. Then we consider either degenerate
elliptic or close to degenerate elliptic equations.

Furthermore, we consider the domain of structure (4.5.1)–(4.5.3) with t0 ≥ 0.
In Case t0 = 0, i.e., fbd(0) = 0, the boundary part Γ0 becomes a single point,
i.e., P1 = P4 = 0 and

Γ0 = P1 = P4 if t0 = 0.
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In this case, we interpret (4.5.88) as a one-point Dirichlet condition. To simplify
the notation, we denote point P1 = P4 by P0:

P0 := P1 = P4 = 0 when t0 = 0 in (4.5.1)–(4.5.3). (4.7.1)

Remark 4.7.1. Let t0 = 0. Then the oblique derivative conditions are pre-
scribed on sides Γ1 and Γ3 that meet at P0, where we have used the notation
in (4.7.1). If the obliqueness holds at P0 in the sense of Definition 4.4.3, and
the equation is uniformly elliptic at and near P0, Lieberman’s Harnack estimate
at the corner [189, Lemma 2.2], combined with (4.5.101), would not allow us
to prescribe a one-point Dirichlet condition at P0. Thus, it is important that
(4.5.102), (4.5.106), and the structure of Ω imply that conditions (4.5.85) and
(4.5.88) do not satisfy the obliqueness at P0. In Proposition 4.7.2 below, we
show that, under these conditions and for the small ellipticity constant of the
equation at and near P0, we can prescribe the one-point Dirichlet condition at
P0. The case of similar boundary conditions, but with the uniform ellipticity of
the equation near P0 (without smallness assumption on the ellipticity constant),
will be considered in §4.8.

Now we show the existence of solutions.

Proposition 4.7.2. Let κ > 0, λ ∈ (0, 1
2 ), M < ∞, α ∈ (0, 1), β ∈ [ 1

2 , 1), and
ε ∈ (0, λ10 ). Then there exist α1 ∈ (0, 1

2 ) depending only on (κ, λ), and σ, δ0 > 0
depending only on (κ, λ,M,α, β, ε) such that the following hold: Let Ω be a
domain of structure (4.5.1)–(4.5.3) with h, t1, t2,Mbd ∈ (λ, 1

λ ) and t0 ≥ 0. Let
fbd satisfy (4.5.15), and let ε ∈ (0, h10 ). Let δ ∈ [0, δ0). Let (4.5.89)–(4.5.111)
be satisfied. Then there exists a unique solution u ∈ C(Ω)∩C1(Ω \Γ0)∩C2(Ω)
of (4.5.84)–(4.5.88). Moreover, u satisfies (4.5.119)–(4.5.120) with constant C
depending only on (λ,M, ε). Furthermore, u ∈ C(Ω)∩C1,α1(Ω\Γ0)∩C2,α1(Ω\
(Γ0∪Γ2)) and satisfies (4.5.138) for each s ∈ (0, h10 ), with constant Cs depending
only on (κ, λ,M,α, β, ε, s).

Proof. Let α1, σ, and δ0 be the constants defined in Proposition 4.5.13 for
(κ,M,α, β), and (λ2

√
λ2 + 1, ε2 ) instead of (λ, ε). Note that α1 depends only

on (κ, λ) given in this proposition.
Let δ ∈ (0, δ0). We assume that (4.5.89)–(4.5.111) are satisfied with σ fixed

above, and with (κ, λ,M,α, β, ε) given in this proposition.
We approximate (4.5.84)–(4.5.88) in Ω by the problems in domains Ω(γ) of

structure (4.5.1) and (4.5.3) with t
(γ)
0 > 0. More precisely, for each γ ∈

(0,min{ε
2
, δ0 − δ}), denote

Ω(γ) := Ω ∩ {x1 > γ}, Γ
(γ)
0 := ∂Ω(γ) ∩ {x1 = γ},

Γ
(γ)
k := Γk ∩ {x1 > γ} for k = 1, 2, 3.
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Denoting the left-hand side of equation (4.5.84) by N (Du,x), we consider the
following boundary value problem in Ω(γ) for uγ ∈ C1(Ω(γ)) ∩ C2(Ω(γ)):

N (Du,x) = 0 in Ω(γ),

B(Du, u,x) = 0 on Γ
(γ)
1 , (4.7.2)

b(k) ·Du+ b
(k)
0 u = gk on Γ

(γ)
k , k = 2, 3,

u = 0 on Γ
(γ)
0 ,

where g3 ≡ 0.
We shift the coordinates replacing x1 by x1 − γ, so that {x1 = γ} becomes

{x1 = 0}. In the new coordinates, domain Ω(γ) is of structure (4.5.1) with
constants (t

(γ)
k , h(γ)) and function f (γ)

bd , where

t
(γ)
0 = fbd(γ) ≥ min{t1γ + t0, t2}, (t

(γ)
1 , t

(γ)
2 ) = (t1, t2),

h(γ) = h− γ, fbd(x1)(γ) = fbd(x1 + γ).

Thus, t(γ)
0 ≥ min{t1γ, t2} ≥ λγ > 0. Also, h(γ) ≥ 9

10h, M
(γ)
bd = Mbd, and f

(γ)
bd

satisfies (4.5.15) on (0, h(γ)).
Moreover, in the shifted coordinates, the boundary value problem (4.7.2) for

uγ satisfies conditions (4.5.89)–(4.5.111) in Ω(γ) for each γ ∈ (0,min{ ε2 , δ0−δ}),
with constants (κ,M,α) given in the proposition, and with (λ, δ, ε) replaced by
(λ2
√
λ2 + 1, δ + γ, ε2 ). Indeed, condition (4.5.90) in the shifted coordinates is

satisfied with δ + γ instead of δ, where we note that δ + γ ∈ (0, δ0). The lower
bound in condition (4.5.89) with a modified constant follows from (4.5.90), since
dist(x,Γ0) ≤ 1

λ
√
λ2+1

x1 by (4.5.2) with Mbd ∈ [λ, 1
λ ], and the upper bound in

(4.5.89) is unchanged. Furthermore, since γ < ε
2 , conditions (4.5.91)–(4.5.111)

are satisfied with ε
2 instead of ε, and the other constants are unchanged, for

Problem (4.7.2) in the shifted coordinates. We note that the modified constant
λ depends only on the original constant λ.

Finally, since λ ∈ (0, 1
2 ), λ̂ := λ2

√
λ2 + 1 > λ

2 . Also, since ε ∈ (0, λ10 ), h ≥ λ,
and γ ≤ ε

2 , then h
(γ) = h− γ > h

2 . Thus, (h(γ), t
(γ)
1 , t

(γ)
2 ,M

(γ)
bd ) ∈ [λ̂, 1

λ̂
].

Therefore, by Proposition 4.5.13, there exists a solution uγ ∈ C(Ω(γ)) ∩
C1(Ω(γ)\Γ(γ)

0 )∩C2(Ω(γ)) of (4.7.2) and, for each s ∈ (0, h10 ), solution uγ satisfies
(4.5.138) in Ω(γ) ∩ {x1 > s} in the shifted coordinates.

Then, for each γ ∈ (0,min{ ε2 , δ0 − δ}), we can apply Lemma 4.5.8 (with
ε
2 instead of ε) to Problem (4.8.8) to obtain that uγ satisfies (4.5.120) in Ω(γ).
Writing this estimate in the original coordinates, we obtain that, for each γ ∈
(0,min{ ε2 , δ0 − δ}),

|uγ(x)| ≤ C(x1 − γ) ≤ Cx1 in Ω ∩ {x1 > γ}, (4.7.3)

where constant C depends only on (λ,M, ε).
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Since each uγ satisfies (4.5.138) in (Ω(γ))(s) ≡ Ω(γ+s) for each s ∈ (0, h10 ), we
have

‖uγ‖(−1−α1), Γ2

2,α1,Ω(γ+s) ≤ Cs, (4.7.4)

where Cs depends only on (κ, λ, α,M, s).
Define

h1 = min{ε
2
,
h

10
}.

From (4.7.4) with s = h1

2 , there exists a sequence γj → 0+ such that uγj
converges in C

(−1−α1
2 ), Γ2

2,α1/2,Ω(h1) . Similarly, from (4.7.4) with s = h1

4 ,
h1

8 , . . . , there

exists a subsequence of {uγj}, converging in C(−1−α1
2 ), Γ2

2,α1/2,Ω(h1/2) , then a further sub-

sequence converging in C(−1−α1
2 ), Γ2

2,α1/2,Ω(h1/4) , etc. By the diagonal procedure, there ex-

ists a sequence γ̂k → 0 such that uγ̂k converges to a function u in C(−1−α1
2 ), Γ2

2,α1/2,K

for each compact K ⊂ Ω \ Γ0. Since each uγ̂k is a solution of (4.7.2) sat-
isfying the uniform estimates (4.7.3)–(4.7.4), it follows that u satisfies u ∈
C1,α1(Ω\Γ0)∩C2,α1(Ω\(Γ0∪Γ2)) and is a solution of (4.5.84)–(4.5.87) satisfying

|u(x)| ≤ Cx1 in Ω, (4.7.5)

where C = C(λ,M, ε) is from (4.7.3). Then (4.7.5), combined with the property
that u ∈ C1,α1(Ω \ Γ0), implies that u ∈ C(Ω), and (4.5.88) holds. Therefore,
u ∈ C(Ω)∩C1,α1(Ω\Γ0)∩C3(Ω) and is a solution of (4.5.84)–(4.5.88) satisfying
(4.5.138) for each s ∈ (0, h10 ), where we have used the interior regularity of
solutions of (4.5.84).

Remark 4.7.3. Note that the existence result in Proposition 4.7.2 applies to
the case that the ellipticity of the equation either degenerates on Γ0 or is close
to degenerate near Γ0. In §4.8, we consider Case t0 = 0, when the equation is
uniformly elliptic at Ω.

4.7.2 Regularity in the Hölder spaces with parabolic scaling for a
class of degenerate elliptic equations

In this section, we make the estimates in the norms defined in (4.6.2) with
σ = 2 for a nonlinear mixed problem for an elliptic equation with ellipticity
degenerating near the boundary part Γ0, under the condition that the solution
has a quadratic growth from Γ0. In Chapter 12, we will have this case for the
iteration problem.

We consider domain Ω ⊂ R2 of the form:

Ω = {x : x1 > 0, 0 < x2 < f(x1)}, (4.7.6)
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where f ∈ C1,α(R+) and f > 0 on R+. We denote the boundary parts of Ω as
follows:

Γ0 = ∂Ω ∩ {x1 = 0}, Γn = ∂Ω ∩ {x2 = 0}, Γf = ∂Ω ∩ {x1 > 0, x2 = f(x1)}.

For r > 0, denote

Ωr = Ω ∩ {x1 < r}, Γn,r = Γn ∩ {x1 < r}, Γf,r = Γf ∩ {x1 < r}.

For r > 0, we consider a boundary value problem of the form:

2∑

i,j=1

Aij(Du, u,x)Diju+
2∑

i=1

Ai(Du, u,x)Diu = 0 in Ωr, (4.7.7)

B(Du, u,x) = 0 on Γf,r, (4.7.8)
D2u = 0 on Γn,r, (4.7.9)
u = 0 on Γ0. (4.7.10)

We assume that (4.7.7) satisfies the following degenerate ellipticity condition:
For any p ∈ R2, z ∈ R, x ∈ Ωr, and κ = (κ1, κ2) ∈ R2,

λ|κ|2 ≤
2∑

i,j=1

Aij(p, z,x)
κiκj

x
2− i+j2
1

≤ 1

λ
|κ|2. (4.7.11)

Note that the ellipticity degenerates near x1 = 0. We show the following regu-
larity result for solutions with quadratic growth from Γsonic:

Theorem 4.7.4. Let Ω be of form (4.7.6). Let r > 0, M ≥ 1, and l, λ ∈ (0, 1).
Let β ∈ (0, 1), and let f ∈ C1,β([0, r]) satisfy

‖f‖
C

(−1−β),{0}
2,β,(0,r)

≤M, f ≥ l on R+, (4.7.12)

and let Problem (4.7.7)–(4.7.10) be given in Ωr. Let functions (Aij , Ai), j = 1, 2,
satisfy ellipticity (4.7.11) and the following regularity properties:

‖(A11, A12)‖0,1,R2×R×Ωr
≤M, (4.7.13)

|Dx2A11(p, z,x)| ≤M√x1 on R2 × R× Ωr, (4.7.14)
‖(A22, A1, A2)‖0,R2×R×Ωr

+ ‖D(p,z)(A22, A1, A2)‖0,R2×R×Ωr
≤M, (4.7.15)

sup
(p,z)∈R2×R,x∈Ωr

∣∣(x1Dx1
,
√
x1Dx2

)(A22, A1, A2)(p, z,x)
∣∣ ≤M. (4.7.16)

Let B satisfy

‖B‖3,R2×R×Γf,r ≤M, (4.7.17)

∂p1B(p, z,x) ≤ −M−1 for all (p, z) ∈ R2 × R, x ∈ Γf,r, (4.7.18)
B(0, 0,x) = 0 for all x ∈ Γf,r. (4.7.19)
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Let u ∈ C(Ωr) ∩ C2(Ωr \ Γ0) be a solution of (4.7.7)–(4.7.10) satisfying

|u(x)| ≤Mx2
1 in Ωr. (4.7.20)

Then, for any α ∈ (0, 1), there exist r0 ∈ (0, 1] and C > 0 depending only on
(M,λ, α) such that

‖u‖(2),(par)
2,α,Ωε

≤ C, (4.7.21)

where
ε = min{r

2
, r0, l

2}. (4.7.22)

Proof. In this proof, the universal constant C depends only on (M,λ, β), and
constants C(α) and r0 depend only on (M,λ, β, α). We divide the proof into
five steps.

1. Let r0 > 0 to be chosen below. Denote r′ = min{ r2 , r0} so that ε =
min{r′, l2} for ε defined by (4.7.22).

For x ∈ Ωr′ and ρ ∈ (0, 1), define

R̃x,ρ :=
{

(s, t) : |s− x1| <
ρ

4
x1, |t− x2| <

ρ

4

√
x1

}
, Rx,ρ := R̃x,ρ ∩ Ωr.

(4.7.23)
Then, for any x ∈ Ωr′ and ρ ∈ (0, 1),

Rx,ρ ⊂ Ωr ∩ {(s, t) :
3

4
x1 < s <

5

4
x1} ⊂ Ωr. (4.7.24)

Let ε be defined by (4.7.22). For any x ∈ Ωε, we have at least one of the
following three cases:

(i) Rx,1/10 = R̃x,1/10;

(ii) x ∈ Rxn,1/2 for xn = (x1, 0) ∈ Γn,ε;

(iii) x ∈ Rxf ,1/2 for xf = (x1, f(x1)) ∈ Γf,ε.

Then it suffices to make the local estimates of Du and D2u in the following
rectangles:

(i) Rx̂,1/20 for x̂ ∈ Ωε such that Rx̂,1/10 = R̃x̂,1/10;

(ii) Rx̂,1/4 for x̂ ∈ Γn,ε;

(iii) Rx̂,1/4 for x̂ ∈ Γf,ε.

Since ε ≤ l2 by (4.7.22), we obtain from (4.7.23) with ρ = 1 and f ≥ l in
(4.7.12) that

Rx,1 ∩ Γf,r = ∅ for all x = (x1, 0) ∈ Γn,ε,

Rx,1 ∩ Γn,r = ∅ for all x = (x1, f(x1)) ∈ Γf,ε.
(4.7.25)
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Furthermore, denoting
Qρ := (−ρ, ρ)2,

and introducing variables (S, T ) by the invertible change of variables:

x = x̂ +
1

4
(x̂1S,

√
x̂1T ), (4.7.26)

we find that there exists Qx̂
ρ ⊂ Qρ such that rectangle Rx̂,ρ in (4.7.12) is ex-

pressed as:

Rx̂,ρ =
{

(x̂1 +
x̂1

4
S, x̂2 +

√
x̂1

4
T ) : (S, T ) ∈ Qx̂

ρ

}
. (4.7.27)

Rescale u in Rx̂,ρ by defining

u(x̂)(S, T ) :=
1

x̂2
1

u(x̂1 +
x̂1

4
S, x̂2 +

√
x̂1

4
T ) for (S, T ) ∈ Qx̂

ρ . (4.7.28)

Then, by (4.7.20) and (4.7.24),

‖u(x̂)‖
0,Q

(x̂)
ρ
≤ 4M. (4.7.29)

Moreover, since u satisfies equation (4.7.7) in Rx̂,ρ, then u(x̂) satisfies

2∑

i,j=1

A
(x̂)
ij Diju

(x̂) +
2∑

i

A
(x̂)
i Diu

(x̂) = 0 in Qx̂
ρ , (4.7.30)

where (Ax̂
ij , A

x̂
i ) are defined by

A
(x̂)
ij (p, z, S, T ) = x̂

i+j
2 −2

1 Aij(4x̂1p1, 4x̂
3
2
1 p2, x̂

2
1z,x),

A
(x̂)
i (p, z, S, T ) =

1

4
x̂
i−1

2
1 Ai(4x̂1p1, 4x̂

3
2
1 p2, x̂

2
1z,x),

(4.7.31)

with
x = x̂ +

1

4
(x̂1S,

√
x̂1T ). (4.7.32)

From (4.7.11) and (4.7.24), it follows that (4.7.30) is uniformly elliptic, i.e., it
satisfies that, for p ∈ R2, z ∈ R, (S, T ) ∈ Q(x̂)

ρ , and κ = (κ1, κ2) ∈ R2,

λ

2
|κ|2 ≤

2∑

i,j=1

A
(x̂)
ij (p, z, S, T )κiκj ≤

2

λ
|κ|2. (4.7.33)

Also, from (4.7.33) with A(x̂)
12 = A

(x̂)
21 , we obtain

|A(x̂)
ij (p, z, S, T )| ≤ C.
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Combining this with (4.7.15) and using the fact that, in (4.7.31) for A(x̂)
i , the

corresponding function Ai is multiplied by x̂ in a nonnegative power, we obtain

‖(A(x̂)
ij , A

(x̂)
i )‖

0,R2×R×Q(x̂)
ρ
≤ C for i, j = 1, 2. (4.7.34)

Next we show that

‖D(p,z,S,T )(A
(x̂)
ij , A

(x̂)
i )‖

0,R2×R×Q(x̂)
ρ
≤ C for i, j = 1, 2. (4.7.35)

Indeed, let (p, z) ∈ R2 × R and (S, T ) ∈ Q(x̂)
ρ . Then, using that x in (4.7.31) is

given by (4.7.32), we obtain from (4.7.13)–(4.7.14) that

|Dp1A
(x̂)
11 (p, z, S, T )| = 4x̂−1

1 x̂1|(Dp1
A11)(4x̂1p1, 4x̂

3
2
1 p2, x̂

2
1z,x)| ≤ C,

|DTA
(x̂)
11 (p, z, S, T )| = 1

4
x̂−1

1

√
x̂1|(Dx2

A11)(4x̂1p1, 4x̂
3
2
1 p2, x̂

2
1z,x)|

≤ Cx̂−1
1 x̂1 = C.

The estimates of D(p2,z,S)A
(x̂)
11 are obtained similarly. This confirms (4.7.35) for

A
(x̂)
11 . Also, (4.7.35) for A(x̂)

12 is obtained similarly.
Next we show (4.7.35) for A(x̂)

22 . Using (4.7.15)–(4.7.16) and (4.7.31)–(4.7.32),
we estimate

|Dp1
A

(x̂)
22 (p, z, S, T )| = 4x̂1|(Dp1

A22)(4x̂1p1, 4x̂
3
2
1 p2, x̂

2
1z,x)| ≤ C,

|DSA
(x̂)
22 (p, z, S, T )| = 1

4
x̂1|(Dx1A22)(4x̂1p1, 4x̂

3
2
1 p2, x̂

2
1z,x)| ≤ Cx̂1x̂

−1
1 = C,

|DTA
(x̂)
22 (p, z, S, T )| = 1

4

√
x̂1|(Dx2

A22)(4x̂1p1, 4x̂
3
2
1 p2, x̂

2
1z,x)| ≤ C.

The estimates of D(p2,z)A
(x̂)
22 are obtained similarly. This confirms (4.7.35) for

A
(x̂)
22 . Also, (4.7.35) for A(x̂)

i , i = 1, 2, is obtained similarly.
2. We first consider Case (i) in Step 1. Let x̂ ∈ Ωε be such that Rx,1/10 =

R̃x,1/10. Then Q
(x̂)
1/10 = Q1/10 in (4.7.27), i.e., for any ρ ∈ (0, 1

10 ],

Rx̂,ρ =
{
x̂ +

1

4
(x̂1S,

√
x̂1T ) : (S, T ) ∈ Qρ

}
.

Using the bounds in (4.7.29) and (4.7.33)–(4.7.35) in Q1/10, and employing
Theorem 4.2.1 with Remark 4.2.13, where conditions (4.2.4)–(4.2.5) for A(x̂)

ij

and (4.2.112) for A(x̂)
i in Q1/10 are satisfied in our case with any α ∈ (0, 1) by

(4.7.34)–(4.7.35), we obtain that, for each α ∈ (0, 1), ‖u(x̂)‖2,α,Q1/20
≤ C(α),

that is,
‖u(x̂)‖

2,α,Q
(x̂)

1/20

≤ C(α). (4.7.36)
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3. We then consider Case (ii) in Step 1. Let x̂ ∈ Γn,ε. By (4.7.25), for any
ρ ∈ (0, 1],

Rx̂,ρ =
{
x̂ +

1

4
(x̂1S,

√
x̂1T ) : (S, T ) ∈ Qρ ∩ {T > 0}

}
,

so that
Q(x̂)
ρ = Qρ ∩ {T > 0}.

Define u(x̂)(S, T ) by (4.7.28) for (S, T ) ∈ Q1 ∩ {T > 0}. Then, by (4.7.20)
and (4.7.24), we have

‖u(x̂)‖C(Q1∩{T≥0}) ≤ 4M. (4.7.37)

Moreover, u(x̂) satisfies equation (4.7.30) in Q1 ∩ {T > 0}. As in Step 2, we
conclude that (4.7.30) satisfies ellipticity (4.7.33) in Q1∩{T > 0} and properties
(4.2.4)–(4.2.5) and (4.2.112) for any α ∈ (0, 1) in Q1∩{T > 0}. Moreover, since
u satisfies (4.7.9), it follows that

∂Tu
(x̂) = 0 on {T = 0} ∩Q1.

Then, from Theorem 4.2.10 and Remark 4.2.13, we obtain that, for each α ∈
(0, 1), ‖u(x̂)‖2,α,Q1/2∩{T≥0} ≤ C; that is,

‖u(x̂)‖
2,α,Q

(x̂)

1/2

≤ C. (4.7.38)

4. We now consider Case (iii) in Step 1. Let x̂ ∈ Γf,ε. By (4.7.23) and
(4.7.25), for any ρ ∈ (0, 1],

Rx̂,ρ =
{
x̂ +

1

4
(x̂1S,

√
x̂1T ) : (S, T ) ∈ Qρ ∩ {T < Fx̂(S)}

}
(4.7.39)

with Fx̂(S) = 4
f(x̂1+

x̂1
4 S)−f̂(x̂1)√
x̂1

. That is, for any ρ ∈ (0, 1],

Q(x̂)
ρ = Qρ ∩ {T < Fx̂(S)}.

Since ε ≤ r′ by (4.7.22), x̂1 ∈ (0, r′). Then we obtain

Fx̂(0) = 0,

‖Fx̂‖1,[−1,1] ≤
2‖f ′‖0,[0,r]x̂1√

x̂1

≤ 2M
√
r′,

‖F ′′x̂ ‖0,[−1,1] = sup
x1∈( 3

4 x̂1,
5
4 x̂1)

x̂2
1|f ′′(x1)|
16
√
x̂1

≤ ‖f‖(−1−β),{0}
2,β,(0,r)

√
x̂1 ≤M

√
r′.

Since r0 ≤ 1 so that r′ ≤ 1, we have

‖Fx̂‖1,α,[−1,1] ≤ C(M,α). (4.7.40)
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By (4.7.20) and (4.7.24), u(x̂)(S, T ) defined by (4.7.28) in Q
(x̂)
1 = Q1 ∩ {T <

Fx̂(S)} satisfies
‖u(x̂)‖0,Q1∩{T≤Fx̂(S)} ≤ 4M. (4.7.41)

Similar to Steps 2–3, u(x̂) satisfies equation (4.7.30), which satisfies ellipticity
(4.7.33) and properties (4.2.4)–(4.2.5) and (4.2.112) in Q1 ∩ {T < Fx̂(S)}.

Moreover, u satisfies (4.7.8) on Γf,r, which implies that u(x̂) satisfies

Bx̂(Du(x̂), u(x̂), S, T ) = 0 on {T = Fx̂(S)} ∩Q1, (4.7.42)

where
B(x̂)(p, z, S, T ) = B(4x̂1p1, 4x̂

3
2
1 p2, x

2
0z, x)

with x = x̂ + 1
4 (x̂1S,

√
x̂1T ). Using (4.7.18)–(4.7.19), this condition can be

written in the form:

∂Su
(x̂) = B̂x̂(∂Tu

(x̂), u(x̂), S, T ) on {T = Fx̂(S)} ∩Q1,

where B̂x̂(p2, z, S, T ) satisfies

∂p2
B̂x̂(p, z, S, T ) = −

√
x̂1
Bp2

Bp1

(4x̂1p1, 4x̂
3
2
1 p2, x̂

2
1z, x̂1(1 +

S

4
), x̂2 +

√
x̂1

4
T ).

Thus, from (4.7.17)–(4.7.18), using that x̂1 ∈ (0, ε) and 0 < ε ≤ r0, we have

|∂p2
B̂x̂| ≤ √r0M for all (p2, z) ∈ R2, (S, T ) ∈ {T = Fx̂(S)} ∩Q1. (4.7.43)

Also, computing Dk
(p2,z,S,T )B̂

x̂, k = 1, 2, 3, in a similar way and using (4.7.17)–
(4.7.18), we have

‖B̂x̂‖3,Γx̂
1
≤ CM.

Now, for any α ∈ (0, 1), if r0 in (4.7.43) is sufficiently small, depending only on
(M,λ, α), we can employ Theorem 4.2.8 to obtain

‖u(x̂)‖2,α,Q1/2∩{T≤Fz0 (S)} ≤ C,

which is
‖u(x̂)‖2,α,Qx̂

1/2
≤ C. (4.7.44)

5. Combining (4.7.36), (4.7.38), and (4.7.44), we have

‖u(x̂)‖2,α,Qx̂
1/100

≤ C for all x̂ ∈ Ωε \ Γsonic,

where we have used (4.6.5). Then Lemma 4.6.1 implies (4.7.21).
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4.8 UNIFORMLY ELLIPTIC EQUATIONS IN A CURVED
TRIANGLE-SHAPED DOMAIN WITH ONE-POINT
DIRICHLET CONDITION

In order to analyze the subsonic reflection configurations, we need to consider
Problem (4.5.84)–(4.5.88) in the domain of structure (4.5.1)–(4.5.3) with t0 = 0,
i.e., fbd(0) = 0. In this case, P1 = P4 = 0, so that Ω has the triangular shape
with one curved side P1P2. Also, Γ0 is now one point P1 = P4 which is origin 0,
so (4.5.1) becomes the one-point Dirichlet condition. To simplify the notations,
we denote point P1 = P4 by P0:

P0 := P1 = P4 = 0 when t0 = 0 in (4.5.1)–(4.5.3). (4.8.1)

Moreover, we need to consider the case that equation (4.5.84) is uniformly elliptic
in Ω. Note that the oblique derivative conditions are prescribed on sides Γ1 and
Γ3 that meet at P0. Then, if the obliqueness holds at P0 in the sense of Definition
4.4.3, Lieberman’s Harnack estimate [189, Lemma 2.2] at the corner, combined
with (4.5.101), would not allow us to prescribe a one-point Dirichlet condition at
P0. Therefore, it is important that (4.5.102), (4.5.106), and the structure of Ω
imply that conditions (4.5.85) and (4.5.88) do not satisfy the obliqueness at P0.
We will show that these conditions in fact allow us to prescribe the one-point
Dirichlet condition at P0.

Another important point is that, in the view of applications to the case for
subsonic reflection configurations, we will not require condition (4.5.97). For this
reason, we cannot use Lemma 4.5.8 for the L∞–estimates, but can use Lemma
4.5.9, since the equation is uniformly elliptic in Ω.

Now we state and prove the results. We follow the procedure of §4.5, and
consider first the corresponding linear problem.

4.8.1 Linear problems with one-point Dirichlet condition

We consider Problem (4.5.4)–(4.5.6) in the domain of structure (4.5.1)–(4.5.3)
with t0 = 0. Then, using (4.8.1), we can write (4.5.6) in the form:

u(P0) = 0. (4.8.2)

Throughout this section, we assume that equation (4.5.4) and the boundary
conditions (4.5.5) satisfy properties (4.5.7)–(4.5.15), (4.5.80) (P0 = P1 = P4 in
this case), (4.5.106), and

‖b(k)‖L∞(Γk) ≤ λ−1 for k = 1, 2, 3, (4.8.3)

where we introduce condition (4.8.3), in addition to (4.5.14), for the reasons
described in Remark 4.3.14.

We note that the conditions listed above imply that the following condition
similar to (4.5.13) holds at P0, where Γ1 and Γ3 meet:

∣∣∣∣
b(1)

|b(1)| (P0)± b(3)

|b(3)| (P0)

∣∣∣∣ ≥ λ2. (4.8.4)
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Indeed, using (4.5.80), (4.5.106), and (4.8.3), and denoting by L the left-hand
side of (4.8.4), we have

L =

∣∣∣∣
b(1)

|b(1)| (P0)± (0, 1)

∣∣∣∣ ≥
|b(1)

1 |
|b(1)| (P0) ≥ λ2.

Then (4.8.4) is proved.

Lemma 4.8.1. Let t0 = 0, let h, t1, t2,Mbd > 0, and let Ω be a domain of
structure (4.5.1)–(4.5.3) and (4.8.1). Let κ > 0, λ > 0, M <∞, and ε ∈ (0, h10 )
be constants. Then there exists α1(κ, λ,Mbd) ∈ (0, 1) such that, for every α ∈
(0, α1], there is C(Ω, λ, κ,M,α) so that the following holds: Let (4.5.7)–(4.5.15)
and (4.5.80) with P0 = P1 = P4, (4.5.106), and (4.8.3) be satisfied. Then any
solution u ∈ C1,α(Ω) ∩ C2,α(Ω) of Problem (4.5.4)–(4.5.5) and (4.8.2) satisfies

‖u‖(−1−α),{P0}∪Γ2

2,α,Ω ≤ C
(
‖f‖(1−α),{P0}∪Γ2

0,α,Ω +
∑

j=1,3

‖gj‖(−α),∂Γj
1,α,Γ1

+ ‖g2‖Cα(Γ2)

)
,

(4.8.5)
where ∂Γk denotes the endpoints of Γk.

Proof. From (4.5.1) with t0 = 0 and (4.5.15), there exists θ0 ∈ [π2 , π) depending
on Mbd such that angles θ1 at P0, and θk at Pk for k = 2, 3, satisfy

0 < θj ≤ θ0, j = 1, 2, 3.

Now we follow the proof of Lemma 4.5.1, with the only difference that the
localized version of the estimates of [193, Lemma 1.3] is used near all the three
corner points, i.e., in B2r(Pi) ∩ Ω for i = 0, 2, 3, where we use (4.8.4) for the
estimate near P0. We also use a scaling technique similar to Step 2 of the proof
of Proposition 4.3.11 to obtain the estimates in the weighted norms near P0.
Note that, for the estimate near P0, we use the oblique conditions on Γ1 ∪ Γ3

(but do not use the Dirichlet condition at P0). Then we have

‖u‖(−1−α),{P0}∪Γ2

2,α,Ω

≤ C
(
‖u‖0,Ω + ‖f‖(1−α),{P0}∪Γ2

0,α,Ω +
∑

j=1,3

‖gj‖(−α),∂Γj
1,α,Γ1

+ ‖g2‖Cα(Γ2)

)
,

(4.8.6)

where C = C(Ω, λ, κ,M,α). Thus, it remains to estimate ‖u‖0,Ω by the right-
hand side of (4.8.5) multiplied by C(Ω, λ, κ,M,α). For that, we employ an
argument similar to the one after (4.5.20) in the proof of Lemma 4.5.1, by using
(4.8.6) and the uniqueness for Problem (4.5.4)–(4.5.5) and (4.8.2), which follows
from Lemma 4.4.2 and Remark 4.4.6.

Remark 4.8.2. In the proof of Lemma 4.8.1, the Dirichlet condition (4.8.2)
at P0 has been used only through the application of the comparison principle in
Lemma 4.4.2 with Remark 4.4.6.
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Next we note that any solution of Problem (4.5.4)–(4.5.6) in the domain of
structure (4.5.1)–(4.5.3) with t0 ≥ 0 satisfies the estimates similar to (4.5.131)
in Lemma 4.5.10.

Lemma 4.8.3. Let κ > 0, λ > 0, and M <∞ be constants. Let Ω be a domain
of structure (4.5.1)–(4.5.3) with h, t1, t2 ∈ (λ, 1

λ ), Mbd ≤ 1
λ , and t0 ≥ 0. Let

fbd satisfy (4.5.15). Then there exists α1(κ, λ) ∈ (0, 1) such that the following
holds: Let α ∈ (0, α1]. Let (4.5.7)–(4.5.15) and (4.8.3) be satisfied. Let u ∈
C2(Ω) ∩ C1(Ω \ {P0}) satisfy (4.5.4)–(4.5.5). Then

‖u‖(−1−α), Γ2

2,α,Ω(s) ≤ Cs
(
‖u‖0,Ω(s/2) +‖f‖(1−α),Γ2

0,α,Ω(s/2) +
∑

j=1,3

‖gj‖(−α),{P2}
1,α,Γ

(s/2)
j

+‖g2‖Cα(Γ2)

)
,

(4.8.7)
where Ω(s) = Ω ∩ {x1 > s}, Γ

(s)
j = Γj ∩ {x1 > s} for j = 1, 3, and Cs depends

only on (κ, λ,M,K, α, s).

Proof. The proof follows that for Lemma 4.5.10, in which we replace the esti-
mates for the nonlinear equations and boundary conditions by the corresponding
linear estimates used in the proof of Lemma 4.8.1.

Next we prove the existence of solutions of Problem (4.5.4)–(4.5.5) and
(4.8.2) in the domain of structure (4.5.1)–(4.5.3) with t0 = 0.

Proposition 4.8.4. Let κ > 0, λ > 0, and M < ∞ be constants. Let t0 = 0,
h, t1, t2 ∈ (λ, 1

λ ), and Mbd ≤ 1
λ , and let Ω be a domain of structure (4.5.1)–

(4.5.3) and (4.8.1). Then there exists α1 = α1(κ, λ) ∈ (0, 1) such that the
following holds: Let ε ∈ (0, h10 ), and let α ∈ (0, α1]. Let fbd satisfy (4.5.15). Let
(aij , ai,b

(k)) satisfy (4.5.7)–(4.5.15) and (4.5.80) with P0 = P1 = P4, (4.5.106),
and (4.8.3). Then, for every (f, g1, g2, g3) ∈ C

(1−α),{P0}∪Γ2

0,α,Ω × C
(−α),∂Γ1

1,α,Γ1
×

Cα(Γ2)×C(−α),∂Γ3

1,α,Γ3
, there exists a unique solution u ∈ C(−1−α),{P0}∪Γ2

2,α,Ω of Prob-
lem (4.5.4)–(4.5.5) and (4.8.2). Moreover, u satisfies (4.8.5), where C depends
only on (Ω, κ, λ,M,α).

Proof. We assume that α ∈ (0, α1), where α1 := α1(κ, λ) will be fixed below.
We divide the proof into two steps.

1. We first replace equation (4.5.4) by the corresponding Poisson equation,
and consider Problem P0 defined as follows:

∆u = f in Ω; b(k) ·Du+ b
(k)
0 u = gk on Γk, k = 1, 2, 3; u(P0) = 0.

Clearly, Problem P0 satisfies all the conditions in the proposition. We first
prove that, for every (f, g1, g2, g3) ∈ C

(1−α),{P0}∪Γ2

0,α,Ω × C
(−α),∂Γ1

1,α,Γ1
× Cα(Γ2) ×

C
(−α),∂Γ3

1,α,Γ3
, there exists a unique solution u ∈ C(−1−α),{P0}∪Γ2

2,α,Ω of Problem P0.

Note that, while f ∈ C
(1−α),{P0}∪Γ2

0,α,Ω may be unbounded, the assumptions
on gk imply that gk ∈ L∞(Γk). We first prove the existence of a solution
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of Problem P0 for the right-hand sides (f, g1, g2, g3) satisfying the additional
condition that f ∈ L∞(Ω).

We approximate Problem P0 by the problems of structure (4.5.4)–(4.5.6)
in domains Ω(δ) of structure (4.5.1)–(4.5.3) with t(δ)0 > 0. Specifically, for each
δ ∈ (0, h10 ), denote

Ω(δ) := Ω ∩ {x1 > δ}, Γ
(δ)
0 := ∂Ω(δ) ∩ {x1 = δ},

Γ
(δ)
k := Γk ∩ {x1 > δ} for k = 1, 2, 3.

We consider the following boundary value problem P(δ)
0 for uδ ∈ C1(Ω(δ)) ∩

C2(Ω(δ)):

∆u = f in Ω(δ); u = 0 on Γ
(δ)
0 ; b(k) ·Du+ b

(k)
0 u = gk on Γ

(δ)
k , k = 1, 2, 3.

(4.8.8)
We shift the coordinates, replacing x1 by x1 + δ, so that {x1 = δ} becomes
{x1 = 0}. In the new coordinates, domain Ω(δ) is of structure (4.5.1), with
constants t(δ)k and h(δ), and function f (δ)

bd , where

t
(δ)
0 = fbd(δ) ≥ min{t1δ + t0, t2}, (t

(δ)
1 , t

(δ)
2 ) = (t1, t2),

h(δ) = h− δ, fbd(x1)(δ) = fbd(x1 + δ).

Then t
(δ)
0 ≥ min{t1δ, t2} > 0. Also, h(δ) ≥ 9

10h, M
(δ)
bd = Mbd, and f

(δ)
bd sat-

isfies (4.5.15) on (0, h(δ)). Thus, Ω(δ) for δ ∈ (0, h10 ) satisfies the conditions of
Proposition 4.5.3 with λ

2 instead of λ.
Moreover, in the shifted coordinates, the boundary value problem (4.8.8)

for uδ is of the structure of Problem (4.5.4)–(4.5.6) in Ω(δ). It is also easy to
see that conditions (4.5.7)–(4.5.14) are satisfied for Problem (4.8.8) in Ω(δ) for
each δ, with constants (κ, λ,M,α) given in the proposition. Furthermore, the
right-hand sides (f, g1, g2, g3) restricted to {x1 > δ} satisfy the conditions of
Proposition 4.5.3 for each δ ∈ (0, h10 ].

Thus, by Proposition 4.5.3 applied with λ
2 instead of λ, and the other con-

stants from this proposition unchanged, there exists α1 = α1(κ, λ) ∈ (0, 1) such
that, if α ∈ (0, α1], for each δ ∈ (0, h10 ], there is a solution uδ ∈ C(Ω(δ)) ∩
C1(Ω(δ) \ Γ

(δ)

0 ) ∩ C2(Ω(δ)) of (4.8.8), which satisfies (4.5.16) in domain Ω(δ) in
the shifted coordinates.

Furthermore, from (4.5.80), using (4.5.14)–(4.5.15), we obtain the existence
of ε̂ ∈ (0, ε] depending only on (λ, α,M, ε) such that

b
(1)
1 ≤ −λ

2
on Γ1 ∩ {x1 < ε̂}.

Then, using the uniform ellipticity (4.5.7), for each δ ∈ (0, ε̂2 ), we can ap-
ply Lemma 4.5.9 (with ε̂ instead of ε) to Problem (4.8.8), so that uδ satisfies
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(4.5.120) in Ω(δ). Writing this estimate in the original coordinates, we obtain
that, for each δ ∈ (0, ε̂2 ),

|uδ(x)| ≤ C(x1 − δ) ≤ Cx1 in Ω ∩ {x1 > δ}, (4.8.9)

where C depends only on (λ,M, ε̂), while we keep (f, g1, g2, g3) ∈ L∞ fixed.
Thus, C = C(λ, α,M, ε), since ε̂ = ε(λ, α,M, ε).

Applying Lemma 4.8.3 with λ
2 instead of λ, and (κ,M,α) given in this propo-

sition, which possibly requires the reduction of α1 depending only on (κ, λ), and
using that ‖uδ‖0,Ωδ ≤ Ch for C from (4.8.9), we obtain that uδ satisfies (4.8.7)
in (Ω(δ))(s) ≡ Ω(δ+s) for each s ∈ (0, h10 ), which implies

‖uδ‖(−1−α), Γ2

2,α,Ω(δ+s)

≤ Cs
(
Ch+ ‖f‖(1−α),Γ2

0,α,Ω(s/2) +
∑

j=1,3

‖gj‖(−α),{P2}
1,α,Γ

(s/2)
j

+ ‖g2‖Cα(Γ2)

)
=: C̃s, (4.8.10)

where Cs depends only on (κ, λ, α,M, s), and C̃s depends on the same parame-
ters if we keep (f, g1, g2, g3) fixed.

Define h1 = min{ ε2 , h10}. From (4.8.10), we have

‖uδ‖(−1−α), Γ2

2,α,Ω(2s) ≤ C̃s for all s ∈ (0,
h1

2
], δ ∈ (0, s]. (4.8.11)

Thus, from (4.8.11) with s = h1

2 , there exists a sequence δj → 0+ such that

uδj converges in C
(−1−α2 ), Γ2

2,α/2,Ω(h1) . Similarly, from (4.8.11) with s = h1

4 ,
h1

8 , . . . ,

there exists a subsequence of {uδj}, converging in C(−1−α2 ), Γ2

2,α/2,Ω(h1/2) , then a further

subsequence converging in C(−1−α2 ), Γ2

2,α/2,Ω(h1/4) , etc. By the diagonal procedure, there

exists a sequence δ̂k → 0 such that uδ̂k converges in C
(−1−α2 ), Γ2

2, α/2, K for each compact
K ⊂ Ω\Γ0. Since each uδ̂k is a solution of (4.8.8) satisfying the uniform estimates
(4.8.9)–(4.8.11), it follows that the limit function u is a solution of

∆u = f in Ω, b(k) ·Du+ b
(k)
0 u = gk on Γk, k = 1, 2, 3,

and satisfies u ∈ C1,α(Ω \ Γ0) ∩ C2,α(Ω \ (Γ0 ∪ Γ2)) and

|u(x)| ≤ Cx1 in Ω, (4.8.12)

where C = C(λ, α,M) is from (4.8.9). Then (4.8.12), combined with the fact
that u ∈ C1,α(Ω \ {P0}), implies that u ∈ C(Ω) with u(P0) = 0. Therefore,
u ∈ C(Ω)∩C1,α(Ω \ {P0})∩C3(Ω) and is a solution of Problem P0, where we
have used (4.8.12) (that is satisfied by u) and the interior regularity of harmonic
functions.

Now we note that Theorem 4.3.18 (with the conditions as in Corollary
4.3.19) applies to Problem P0 near corner P0. Indeed, (4.5.1)–(4.5.3) with
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t0 = 0, (4.8.1), and (4.5.15) imply that region Ω ∩ Br(P0) for sufficiently small
r = r(M,α, λ) > 0 is of the structure described in Proposition 4.3.7, (4.3.86)

holds for M =

√
t21+1

t1
≤
√
λ2+1
λ2 , and (4.3.105) holds with σ = α and M as in

this proposition. The ellipticity of the equation, obliqueness of the boundary
conditions, and regularity of the ingredients and the right-hand sides required
in Theorem 4.3.18 (with the conditions as in Corollary 4.3.19) follow from the
assumptions. Condition (4.2.102) for the boundary conditions on both Γ1 and
Γ3 is satisfied with δ = 0, v ≡ 0, and the nonhomogeneous linear operator
L(·, ·, ·) equal to the original linear boundary condition minus the right-hand
side, so that (4.3.142) is satisfied. Also, (4.3.137) holds by (4.8.4) with κ = λ2

√
2
.

Furthermore, u satisfies (4.8.12) so that constant L in Theorem 4.3.18 is now
constant C in (4.8.12). Thus, reducing α1 if necessary depending only on λ so
that the resulting constant α1 depends only on (κ, λ), we obtain from Theorem
4.3.18 (with the conditions as in Corollary 4.3.19) that u ∈ C1,α(Ω) ∩ C2,α(Ω).
Then estimate (4.8.5) for u follows from Lemma 4.8.1. This estimate also implies
the uniqueness of the solution.

Therefore, we have proved the existence of α1 = α1(κ, λ) ∈ (0, 1) such that,
for each α ∈ (0, α1], there exists a solution u ∈ C1,α(Ω) ∩ C2,α(Ω) of Problem
P0 for the general functions:

(f, g1, g2, g3) ∈ Y := C
(1−α),{P0}∪Γ2

0,α,Ω × C(−α),∂Γ1

1,α,Γ1
× Cα(Γ2)× C(−α),∂Γ3

1,α,Γ3

with the additional assumption of the boundedness of f .
The existence of solution u ∈ C1,α(Ω)∩C2,α(Ω) of Problem P0, for general

(f, g1, g2, g3) ∈ Y, follows by the approximation procedure via repeating the one
in Proposition 4.5.2 and employing estimate (4.8.5). Here, in the present case,
the bounded approximations of f are defined as follows: For (x1, x2) ∈ Ω and
m = 1, 2, . . . ,

f (m)(x1, x2) =





f(x1, x2) if x1 ∈ [ h
10m , h− h

10m ],

f( h
10m , x2) if x1 ∈ (0, h

10m ),

f(h− h
10m , x2) if x1 ∈ (h− h

10m , h),

and g
(m)
k = gk for k = 1, 2, 3, sequence (f (m), g

(m)
1 , g

(m)
2 , g

(m)
3 ) is uniformly

bounded in Y. Estimate (4.8.5) for u follows from Lemma 4.8.1, which also
implies the uniqueness of the solution.

Therefore, the proposition is proved for Problem P0.

2. Now the existence and uniqueness of solutions for Problem (4.5.4)–(4.5.5)
and (4.8.2) satisfying the assumptions of the proposition (denoted this problem
as Problem P) follow by the method of continuity, applied to the family of
Problems tP + (1 − t)P0 for t ∈ [0, 1], where we have used that all of these
problems satisfy estimate (4.8.5) with uniform C by Lemma 4.8.1.
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Remark 4.8.5. The proof of Proposition 4.8.4 is based crucially on assumptions
(4.5.15), (4.5.80) (with P0 = P1 = P4), and (4.5.106); they allow us to employ
Lemma 4.5.9 to obtain (4.8.9) and (4.8.12), which leads to the C1,α–regularity at
P0 by Theorem 4.3.18 with Corollary 4.3.19. It is also easy to see from (4.5.15)
and (4.5.80) that the obliqueness at the corner point P0 in the sense of Definition
4.4.1 is not satisfied.

4.8.2 Nonlinear problems with one-point Dirichlet condition

We consider Problem (4.5.84)–(4.5.88) in the domain of structure (4.5.1)–(4.5.3)
with t0 = 0. We continue to use notation (4.8.1). Then the Dirichlet condition
(4.5.88) becomes the one-point Dirichlet condition (4.8.2).

Our assumptions on the ingredients of the problem are the following: Fix
constants α ∈ (0, 1

2 ), β ∈ (0, 1), λ ∈ (0, 1], δ > 0, κ > 0, ε ∈ (0, h10 ), σ ∈ (0, 1),
and M <∞. Then we assume that

(
λ dist(x,Γ0) + δ

)
|µ|2 ≤

2∑

i,j=1

Aij(p,x)µiµj ≤ λ−1|µ|2 (4.8.13)

for all x ∈ Ω and p,µ ∈ R2,

‖((Aij , A)(0, ·), Dm
p (Aij , A)(p, ·))‖(−α),{P0}

1,α,Ω∩{x1<2ε} ≤M (4.8.14)

for all p ∈ R2 and m = 1, 2, as well as (4.5.91), (4.5.93), and (4.5.98)–(4.5.110).
We note that the conditions listed above imply that, if σ is small, depending

on λ, the following condition similar to (4.5.109) holds at P0 where Γ1 and Γ3

meet: ∣∣∣∣
b(1)

|b(1)| (P0)± b(3)

|b(3)| (P0)

∣∣∣∣ ≥
3λ2

8
(4.8.15)

with b(1) from (4.5.103)–(4.5.104). Indeed, using (4.5.100), (4.5.102), and (4.5.104)
with small σ = σ(λ), we have

‖b(1)‖L∞(Γk) ≤
2

λ
, b

(1)
1 (P0) ≤ −3λ

4
.

Also, b(3)(P0) = (0, 1) by (4.5.106). With this, we prove (4.8.15) by repeating
the corresponding calculation in the proof of (4.8.4). Now (4.8.15) is proved.

We first show an a priori estimate. Note that, unlike Lemma 4.5.12, here
σ depends on δ, i.e., we only consider the uniformly elliptic case, but do not
consider the limit for these estimates as δ → 0+.

Lemma 4.8.6. Let κ > 0, λ > 0, δ > 0, M < ∞, α ∈ (0, 1), and ε ∈
(0, λ10 ). Then there exists σ > 0 depending only on (κ, λ, δ,M,α, ε) such that
the following hold: Let Ω be a domain of structure (4.5.1)–(4.5.3) with h, t1, t2 ∈
(λ, 1

λ ), Mbd ≤ 1
λ , and t0 = 0. Let fbd satisfy (4.5.15). Let (4.8.13)–(4.8.14),
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(4.5.91), (4.5.93), and (4.5.98)–(4.5.110) hold. Let u ∈ C2(Ω) ∩C1(Ω \ {P0}) ∩
C(Ω) be a solution of Problem (4.5.84)–(4.5.87) and (4.8.2). Then u satisfies
(4.5.119)–(4.5.120) with C depending only on (λ,M, δ, ε). Moreover,

‖u‖(−1−α1), {P0}∪Γ2

2,α1,Ω
≤ Ĉ (4.8.16)

with α1 = α1(κ, λ, δ) ∈ (0, 1
2 ), where Ĉ depends on (κ, λ, δ,M,α, ε).

Proof. We divide the proof into two steps.
1. Condition (4.8.13) (which implies the uniform ellipticity with constant δ)

and condition (4.5.102), together with the obliqueness of the boundary condi-
tions and the regularity of the ingredients of the equation and boundary con-
ditions, imply that Lemma 4.5.9 can be employed to obtain (4.5.119)–(4.5.120)
with constant C depending only on (λ,M, δ, ε).

2. We now prove (4.8.16). First, using (4.8.15) and the uniform ellipticity
(4.8.13) (with the ellipticity constant δ > 0), together with the obliqueness of
the boundary conditions on Γ1∪Γ3, then the almost-linear structure (4.5.104) of
the boundary condition on Γ1, the regularity of the ingredients of the equation
and boundary conditions, and the structure of Ω allow us to apply Theorem
4.3.18 (with the conditions as in Corollary 4.3.19) near P0. More precisely,
we have shown in Step 1 of the proof of Proposition 4.8.4 that there exists
R(M,α, λ) > 0 such that Ω ∩ BR(P0) satisfies the requirements of Theorem
4.3.18. Reducing R if necessary, then R ∈ (0, ε] so that R = R(M,α, λ, ε). We
use estimate (4.5.120) of u obtained in Step 1 to satisfy assumption (4.3.141)
with L depending only on (λ,M, δ, ε). Also, (4.3.140) is satisfied by (4.8.2).
Furthermore, assumption (4.3.137) of Theorem 4.3.18 with κ = 3λ2

8 follows
from (4.8.15). The other assumptions of Theorem 4.3.18 (with the conditions as
in Corollary 4.3.19) follow directly from the assumptions of this lemma, where
we recall that the ellipticity constant is δ, by (4.8.13). Then we find that there
exist α2 = α2(λ, δ) ∈ (0, 1

2 ) and positive constants (σ1, Ĉ1) depending only on
(λ, δ,M, α, ε) such that, if (4.5.104) is satisfied with σ ∈ (0, σ1],

‖u‖(−1−α2), {P0}
2,α2,BR(P0)∩Ω ≤ Ĉ1.

Next, using the structure of Ω, we note that Ω ∩ {x1 < s∗} ⊂ BR(P0) ∩ Ω for
s∗ = R√

1+λ−2
. Then we have

‖u‖(−1−α2), {P0}
2,α2,Ω∩{x1<s∗} ≤ Ĉ1. (4.8.17)

Also, from its definition, s∗ = s∗(λ,M,α, ε).
Now we note that (4.8.13) with δ > 0 implies (4.5.89). With this, it follows

that our conditions and the L∞–bound of u obtained in Step 1 allow us to apply
Lemma 4.5.10 with K = K(λ,M, δ, ε). We use s = 1

2s
∗(λ, δ,M, α, ε) in Lemma

4.5.10 to obtain α3 = α3(κ, λ) ∈ (0, 1
2 ) and σ2 = σ2(κ, λ, δ,M,α, ε) > 0 such
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that, if (4.5.104) is satisfied with σ ∈ (0, σ2], then

‖u‖(−1−α3), Γ2

2,α3,Ω∩{x1>s∗/2} ≤ Ĉ2,

where Ĉ2 depends only on (κ, λ, δ,M,α, ε). Combining this estimate with
(4.8.17), choosing α1 = min{α2, α3}, and assuming that (4.5.104) is satisfied
with σ = min{σ1, σ2}, we obtain (4.8.16).

Now we prove the existence of solutions.

Proposition 4.8.7. Let κ > 0, λ > 0, δ > 0, M < ∞, α ∈ (0, 1), and
ε ∈ (0, λ10 ). Then there exist α1 ∈ (0, 1

2 ) depending only on (κ, λ, δ), and σ >
0 depending only on (κ, λ, δ,M,α, ε), such that the following holds: Let Ω be
a domain of structure (4.5.1)–(4.5.3) with h, t1, t2 ∈ (λ, 1

λ ), Mbd ≤ 1
λ , and

t0 = 0. Let fbd satisfy (4.5.15). Let (4.8.13)–(4.8.14), (4.5.91), (4.5.93), and
(4.5.98)–(4.5.110) hold. Then there exists a unique solution u ∈ C(Ω) ∩ C1(Ω \
{P0})∩C2(Ω) of (4.5.84)–(4.5.87) and (4.8.2). Moreover, u ∈ C(Ω)∩C1,α1(Ω\
{P0}) ∩C2,α1(Ω \ ({P0} ∪ Γ2)) satisfies (4.5.119)–(4.5.120) and (4.8.16), where
the constants in these estimates depend only on the parameters described in
Lemma 4.8.6.

Proof. We use a nonlinear method of continuity by following the proof of Propo-
sition 4.5.13. We only comment on the proof and highlight the differences.

Let α1 be sufficiently small to satisfy the conditions of Proposition 4.8.4 with
λ replaced by 1

2 min{λ, δ}, and with (κ2 ,
δ
2 ) and Mbd = 2

λ ; and the conditions
of Lemma 4.8.6 with (κ2 ,

λ
2 ,

δ
2 ) and Mbd = 2

λ , where (κ, λ, δ) are given in this
proposition. Hence, α1 = α1(κ, λ, δ). Fix α ∈ (0, 1). Let σ be as in Lemma
4.5.12, which depends only on (κ, λ, δ,M,α, ε).

In the proof, we define Problems Pt(u), spaces CD and CT , and set T in the
same way as in Proposition 4.5.13, with only notational change: Both Γ0 and
P1 are replaced by P0, in both the definitions and the argument. We employ
Proposition 4.8.4 to show that T is open, and Lemma 4.8.6 to show that T is
close.

Further details of the proof of Proposition 4.5.13 are easily adjusted to the
present case.



Chapter Five

Basic Properties of the Self-Similar Potential Flow

Equation

5.1 SOME BASIC FACTS AND FORMULAS FOR THE
POTENTIAL FLOW EQUATION

We first show some facts that hold for sufficiently regular solutions of Problem
2.6.1, as well as for approximate solutions which will be considered in Chapter
12. Therefore, we do not assume that ϕ is an admissible solution; that is, ϕ is not
required to satisfy any equation in Ω or any boundary conditions on ∂Ω, unless
otherwise specified. Instead, we use the following notations through this section:
Ω denotes a domain in R2 which is of the structure as described in §2.4.2, where
we assume that curve Γshock is C2 in its relative interior; furthermore, ϕ denotes
a function in Ω satisfying ϕ ∈ C3(Ω \ (Γsonic ∪ {P2, P3})) ∩ C1(Ω).

For a smooth function G on Ω and vectors a,b ∈ R2, we denote

D2G[a,b] ≡ D2G[a,b](ξ) :=

2∑

i,j=1

DijG(ξ)aibj for ξ ∈ Ω.

Note that the right-hand side in the above equality is invariant under the orthog-
onal transform so that we can use the partial derivatives of G and components
(a,b) with respect to any orthonormal basis in R2. In particular, we often use
the basis, {ν, τ}, at ξ = (ξ1, ξ2) ∈ Γshock.

Denote

φ(ξ) := (ϕ− ϕ0)(ξ) = ϕ(ξ) +
|ξ|2
2
, φ̄(ξ) := (ϕ1 − ϕ)(ξ), ψ(ξ) := (ϕ− ϕ2)(ξ),

(5.1.1)
where ϕ0, ϕ1, and ϕ2 are the potentials of states (0), (1), and (2) defined by
(2.2.16), (2.2.17), and (2.4.1), respectively. Since ϕ0, ϕ1, and ϕ2 are uniform
states, we have

D2φ = −D2φ̄ = D2ψ.

Denote
ρ̂(s) =

(
ργ−1

0 + (γ − 1)s
) 1
γ−1 .

Then, by (2.2.9),

ρ(|Dϕ|2, ϕ) = ρ̂(−(ϕ+
1

2
|Dϕ|2)). (5.1.2)
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In the calculations below, ρ̂ and ρ̂′ are always evaluated at −(ϕ+ 1
2 |Dϕ|2), and

we often drop the argument. From (1.14),

c2(|Dϕ|2, ϕ) =
ρ̂

ρ̂′
. (5.1.3)

5.1.1 Partial derivatives of the density and sonic speed

By explicit calculation from (5.1.2), we have

∂ξiρ(|Dϕ|2, ϕ) = −(ϕξi +Dϕ ·Dϕξi)ρ̂′ = −(ϕξi +Dϕ ·D2ϕ ei)ρ̂
′

= −
(
ϕξi +D2ϕ[ei, Dϕ]

)
ρ̂′,

(5.1.4)

where e1 = (1, 0)>, e2 = (0, 1)>, and D2ϕ[e,v] := e>D2ϕv for any vectors e
and v.

Using that D2ϕ = D2φ− I, we can write (5.1.4) as

∂ξiρ(|Dϕ|2, ϕ) = −ρ̂′D2φ[ei, Dϕ]. (5.1.5)

Similarly, from (1.14), we have

∂ξic
2(|Dϕ|2, ϕ) =− (γ − 1)

(
ϕξi +D2ϕ[ei, Dϕ]

)

=− (γ − 1)ρ̂′D2φ[ei, Dϕ]. (5.1.6)

In particular, on Γshock,

ρτ = −
(
ϕτ +D2ϕ[τ , Dϕ]

)
ρ̂′ = −D2φ[τ , Dϕ]ρ̂′, (5.1.7)

ρν = −
(
ϕν +D2ϕ[ν, Dϕ]

)
ρ̂′ = −D2φ[ν, Dϕ]ρ̂′. (5.1.8)

Also, since D2φ = −D2φ̄ = D2ψ, we can replace D2φ by either −D2φ̄ or D2ψ
on the right-hand sides of (5.1.5)–(5.1.6).

5.1.2 An elliptic equation for ∂eφ in Ω, provided that ϕ is a
subsonic potential

In this subsection, we assume that ϕ satisfies equation (2.2.8) (hence its non-
divergence form (2.2.11)) in Ω and that equation (2.2.8) is strictly elliptic on ϕ
in Ω \ Γsonic.

Let e ∈ R2 be a unit vector and e⊥ the unit vector orthogonal to e. Denote
by (S, T ) the coordinates with basis {e, e⊥}. Then ∂eφ = ∂Sφ. Since equation
(2.2.11) is invariant with respect to the orthogonal coordinate transforms, it is
of the same form in the (S, T )–coordinates as in the ξ–coordinates, that is,

(c2 − ϕ2
S)φSS − 2ϕSϕTφST + (c2 − ϕ2

T )φTT = 0. (5.1.9)

We differentiate equation (5.1.9) with respect to S and use (5.1.6) to obtain

∂Sc
2 = −(γ − 1)D2φ[e, Dϕ] = −(γ − 1)(ϕSφSS + ϕTφST ).
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Also, we use that ϕST = φST . Then we have the following equation for
w := ∂eφ = ∂Sφ:

(c2 − ϕ2
S)wSS − 2ϕSϕTwST + (c2 − ϕ2

T )wTT

−
(
(γ − 1)ϕS(φSS + φTT ) + (γ − 1)ϕTφST + 2ϕS(φSS − 1)

)
wS

−
(
2ϕT (φSS − 1) + 2φSTϕS + (γ + 1)ϕTφTT

)
wT = 0.

(5.1.10)

Now we assume that (2.2.11) is strictly elliptic in a region D ⊂ Ω. Equation
(5.1.10) has the same coefficients of the second derivative terms as in (5.1.9),
i.e., in (2.2.11). Thus, (5.1.10) is strictly elliptic in D.

Furthermore, in some cases, we want to avoid the dependence of the coef-
ficients on the second derivatives of ϕ. Since (2.2.11) is strictly elliptic in D,
then, using its form (5.1.9), we obtain that c2 − ϕ2

T > 0 in D. Using (5.1.9)
to express φTT through (φSS , φST ) that are substituted by (wS , wT ) below, we
obtain the following nonlinear equation for w:

(c2 − ϕ2
S)wSS − 2ϕSϕTwST + (c2 − ϕ2

T )wTT

−
((

(γ − 1)
ϕ2
S − ϕ2

T

c2 − ϕ2
T

+ 2
)
ϕSwS

+ (γ − 1)
( 2ϕ2

S

c2 − ϕ2
T

+ 1
)
ϕTwT − 2ϕS

)
wS

−
((

(γ + 1)
c2 − ϕ2

S

c2 − ϕ2
T

+ 2
)
ϕTwS

+ 2
(2(γ + 1)ϕ2

S

c2 − ϕ2
T

+ 1
)
ϕSwT − (γ + 1)ϕT

)
wT = 0.

(5.1.11)

Equation (5.1.11) has the same coefficients of the second derivative terms as
(2.2.11). Thus, (5.1.11) is strictly elliptic in D.

5.1.3 Tangential derivative of ϕ on Γshock through the
Rankine-Hugoniot conditions

In this subsection, we assume that Ω ⊂ R2 is an open region, Γshock ⊂ ∂Ω,
and Γshock is a relatively open segment of curve, which is locally C2. Let ϕ ∈
C2(Ω ∪ Γshock) satisfy the Rankine-Hugoniot conditions (2.2.13)–(2.2.14) with
the uniform state ϕ1 across Γshock. Then, on Γshock,

ρ(|Dϕ|2, ϕ)∂νϕ = ρ1∂νϕ1, (5.1.12)
ϕ = ϕ1, (5.1.13)

where ρ1 > 0 is the density of state ϕ1. Moreover, we assume that

∂νϕ1 > ∂νϕ > 0 on Γshock. (5.1.14)
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Thus, by (5.1.12),

ρ(|Dϕ|2, ϕ) > ρ1 on Γshock. (5.1.15)

Then, assuming that ϕ satisfies (5.1.12)–(5.1.15) on Γshock and using the
notations in (5.1.1), we have the following:

• From (5.1.13)–(5.1.14) and (2.2.17), the normal to Γshock is in the direc-
tion:

ν̃ = Dϕ1 −Dϕ = (u1 − φξ1 ,−φξ2)>, (5.1.16)

and the tangent vector to Γshock is in the direction:

τ̃ = (φξ2 , u1 − φξ1)>. (5.1.17)

Then the unit normal and tangent vectors to Γshock are

ν =
ν̃

|ν̃| , τ =
τ̃

|τ̃ | ,

respectively. We can also express vectors ν and τ at P ∈ Γshock as

ν =
D(ϕ1 − ϕ)

|D(ϕ1 − ϕ)| =
Dφ̄

|Dφ̄| , τ = (τ1, τ2) =
(−∂ξ2 φ̄, ∂ξ1 φ̄)

|Dφ̄| , (5.1.18)

where φ̄ is defined by (5.1.1). Using the Rankine-Hugoniot conditions
(5.1.12)–(5.1.13) along Γshock, we have

|ν̃| = |Dϕ1 −Dϕ| = |Dϕ1 · ν −Dϕ · ν| =
ρ− ρ1

ρ1
ϕν > 0. (5.1.19)

• Since ν̃ξi = (Dϕ1)ξi −Dϕξi = D2ϕ1 ei−D2ϕ ei = −ei−D2ϕ ei, we have

ν̃τ = −τ −D2ϕ τ . (5.1.20)

Taking the tangential derivative to both sides of (5.1.12) with ν replaced
by ν̃ for convenience:

(ρDϕ− ρ1Dϕ1) · ν̃ = 0,

we have

(ρD2ϕ τ + ρτDϕ− ρ1τ ) · ν̃ + (ρDϕ− ρ1Dϕ1) · (−D2ϕ τ − τ ) = 0.

Noting that τ · ν̃ = 0 and using (5.1.3), (5.1.7), and (5.1.19), we have

D2ϕ
[
τ , ρν̃ + ρ1Dϕ1 − ρ(1 +

ρ− ρ1

ρ1

ϕ2
ν

c2
)Dϕ

]

=
ρ(ρ− ρ1)

ρ1c2
ϕτϕ

2
ν + (ρ− ρ1)ϕτ

=
ρ− ρ1

ρ1
ϕτ

(
ρ1 + ρ

ϕ2
ν

c2

)
.
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That is, for g = ρν̃ + ρ1Dϕ1,

D2ϕ[τ ,g] = ρ
(

1 +
ρ− ρ1

ρ1

ϕ2
ν

c2

)
D2ϕ[τ , Dϕ] +

ρ− ρ1

ρ1
ϕτ

(
ρ1 + ρ

ϕ2
ν

c2

)
.

(5.1.21)

Using that D2φ = D2ϕ+ I, we can rewrite (5.1.21) in terms of φ to obtain
the following lemma:

Lemma 5.1.1. Let Ω ⊂ R2 be an open set, and let Γshock be a relatively open
segment of curve, which is C2 locally. Let ϕ satisfy (5.1.12)–(5.1.14), where ϕ1

is a uniform state with density ρ1. Then

D2φ[τ ,h] = 0 on Γshock, (5.1.22)

where

h =
ρ− ρ1

ρ1c2
(
−ρ(c2 − ϕ2

ν)ϕνν + (ρϕ2
ν + ρ1c

2)ϕττ
)
. (5.1.23)

Remark 5.1.2. Note that (5.1.22)–(5.1.23) still hold if ν is replaced by −ν, or
τ by −τ .

We also use the expression of function h in basis {e1, e2} corresponding to
the ξ–coordinates:

h =
ρ− ρ1

ρ1c2

( (
−ρ(c2 − ϕ2

ν)ϕνν1 + (ρϕ2
ν + ρ1c

2)ϕτ τ1
)
e1

+
(
−ρ(c2 − ϕ2

ν)ϕνν2 + (ρϕ2
ν + ρ1c

2)ϕτ τ2
)
e2

)
,

(5.1.24)

where τ = (τ1, τ2) and ν = (ν1, ν2) are the unit tangent and normal vectors to
Γshock, respectively.

5.1.4 Oblique derivative condition for the directional derivatives of
φ on Γsym ∪ Γwedge.

Lemma 5.1.3. Let ϕ be a solution of Problem 2.6.1 with the structure of
supersonic reflection configuration as in §2.4.2, or subsonic reflection configura-
tion as in §2.4.3. Moreover, assume that equation (2.2.11) is strictly elliptic for
ϕ in Ω ∪ Γwedge ∪ Γsym. Let φ = ϕ+ |ξ|2

2 , and w := ∂eφ for e ∈ R2 \ {0}. Then

(i) Let e be non-orthogonal to Γwedge, i.e., e = a1ν + a2τ , where ν and τ are
the unit normal and tangent vectors to Γwedge, and a1 and a2 are constants
with a2 6= 0. Then w := ∂eφ satisfies the following oblique derivative
condition on Γwedge:

∂νw +
a1(c2 − ϕ2

ν)

a2(c2 − ϕ2
τ )
∂τw = 0. (5.1.25)
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(ii) Let e be non-orthogonal to Γsym, i.e., e = a1ν + a2τ , where ν and τ are
the unit normal and tangent vectors to Γsym, and a1 and a2 are constants
with a2 6= 0. Then (5.1.25) holds on Γsym.

Proof. Using that ϕν = 0 on Γwedge, we have

∂νφ = 0 on Γwedge. (5.1.26)

Now we work in the (S, T )–coordinates with basis {ν, τ} so that Γwedge ⊂ {S =
0}. Then (5.1.26) becomes

∂Sφ = 0 on Γwedge ⊂ {S = 0}. (5.1.27)

Differentiating condition (5.1.27) in the T -direction (tangential to Γwedge), we
have

∂STφ = 0 on Γwedge. (5.1.28)

Recall that equation (2.2.11) in the (S, T )–variables is of form (5.1.9). Moreover,
since the equation is strictly elliptic in Ω ∪ ΓwedgeΓsym, then

c2 − ϕ2
S > 0

in that region. Also recall that ϕS = ϕν and ϕT = ϕτ on Γwedge. Thus equation
(5.1.9), combined with (5.1.28), implies

∂SSφ = −c
2 − ϕ2

τ

c2 − ϕ2
ν

∂TTφ on Γwedge.

Now we use (5.1.28) to compute on Γwedge that

∂Sw = a1∂SSφ+ a2∂STφ = a1∂SSφ = −a1
c2 − ϕ2

τ

c2 − ϕ2
ν

∂TTφ

= −a1(c2 − ϕ2
τ )

a2(c2 − ϕ2
ν)

(
a1∂STφ+ a2∂TTφ

)
= −a1(c2 − ϕ2

τ )

a2(c2 − ϕ2
ν)
∂Tw.

This implies (5.1.25). Part (i) is proved.
Part (ii) is proved similarly, using that

∂νφ = ∂νϕ = 0 on Γsym.

More generally, we have

Lemma 5.1.4. Let Ω be an open region, and let L be a line in R2 passing through
the origin so that Γ = L ∩ ∂Ω is a non-empty segment. Let ϕ ∈ C2(Ω ∪ Γ0),
where Γ0 denotes the relative interior of Γ, with

∂νϕ = 0 on Γ0,
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and let φ = ϕ+ |ξ|2
2 satisfy the equation:

2∑

i,j=1

aijDijφ = 0 in Ω, (5.1.29)

where aij ∈ C(Ω) satisfy
2∑

i,j=1

aijνiνj ≥ κ on Γ0 (5.1.30)

for some constant κ > 0, and ν = (ν1, ν2) is the unit normal to Γ0. Let
e ∈ R2 \ {0} be non-orthogonal to L. Then w := ∂eφ satisfies the following
oblique derivative condition on Γ0:

∂νw + b∂τw = 0 on Γ0, (5.1.31)

where b ∈ C(Γ0).

Proof. Note that equation (5.1.29) remains the same form with some new coef-
ficients âij under a rotation of the coordinates, and these coefficients âij satisfy
(5.1.30). Then the rest of the proof follows the proof of Lemma 5.1.3. Indeed,
in the (S, T )–coordinates defined in that proof, ν = (1, 0) so that condition
(5.1.30) becomes â11 ≥ κ > 0. Also, (5.1.28) holds on Γ0. Therefore, equation
(5.1.29) implies

∂SSφ = − â22

â11
∂TTφ on Γ0.

Then we obtain (5.1.31) with

b =
a1â22

a2â11
on Γ0,

where a1 = e · ν and a2 = e · τ so that e = a1ν + a2τ , and a2 6= 0 since e is not
orthogonal to Γ.

5.2 INTERIOR ELLIPTICITY PRINCIPLE FOR
SELF-SIMILAR POTENTIAL FLOW

For γ ≥ 1, the coefficients of the self-similar potential flow equation for ϕ, written
in either the divergence form (2.2.8) or the non-divergence form (2.2.11), depend
on the potential function ϕ itself, besides Dϕ, which is a significant difference
from the steady case.

We now discuss an extension of the interior ellipticity principle of Elling-Liu
[110] in R2, as well as the corresponding ellipticity principle for flat boundaries
in §5.3. We let γ ≥ 1 and use the notation:

M :=
|Dϕ|

c(Dϕ,ϕ)

as the pseudo-Mach number.
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Theorem 5.2.1. Let Ω ⊂ R2 be an open bounded domain.

(i) Let ϕ ∈ C3(Ω) satisfy (2.2.11) with M ≤ 1 and ρ > 0 in Ω. Then either
M ≡ 0 in Ω or M does not attain its maximum in Ω.

(ii) More generally, for any d > 0, there exists C0 > 0 depending only on
(γ, d) such that, if diam(Ω) ≤ d, for any δ ≥ 0, ĉ ≥ 1, and b ∈ C2(Ω) with
|Db| + ĉ|D2b| ≤ δ

ĉ , and for any solution ϕ ∈ C3(Ω) of (2.2.11) satisfying
M ≤ 1, ρ(|Dϕ|2, ϕ) > 0, and c(|Dϕ|2, ϕ) ≤ ĉ in Ω, then either

M2 ≤ C0δ in Ω

or M2 + b does not attain its maximum in Ω.

Proof. In the proof below, for σ ∈ R, O(σ) denotes any expression that can
be estimated as |O(σ)| ≤ C|σ|, where C depends only on γ. We follow the
calculation in the proof of [110, Theorem 2.1], keeping more terms in its exact
form.

Note that assertion (i) is essentially assertion (ii) with δ = 0, except that (ii)
has the assumption of boundedness of c(|Dϕ|2, ϕ) in Ω, which is not present in
(i). Thus, we first prove (ii) for δ > 0, and then give the proof of (i).

1. Let δ > 0. Let b satisfy the conditions in (ii). Let the maximum ofM2 +b

be attained at P̂ = ξ̂ ∈ Ω, and let

M2 > C1δ at P̂

for a constant C1 ≥ 1 to be chosen. We will arrive at a contradiction if C1 is
large, depending only on γ.

Our assumptions imply that |Dϕ| = Mc > 0 at P̂ since M(P̂ ) > 0. Also,
since C1 ≥ 1, our assumptions imply that δ

M2 ≤ 1 at P̂ .
In the calculation below, all the equations and inequalities hold only at P̂ ,

unless otherwise specified. Also, we use expression (1.14) and the notations:
ϕi = ϕξi , ϕij = ϕξiξj , and ϕijk = ϕξiξjξk in the calculation for simplicity.

2. Since equation (2.2.11) is rotationally invariant, we can assume without
loss of generality that ϕξ1 = |Dϕ| and ϕξ2 = 0 at P̂ . Then the first-order
condition at the maximum point implies that, at P̂ ,

0 = ∂ξ1

( |Dϕ|2
c2(|Dϕ|2, ϕ)

+ b
)

=
2c2ϕ1ϕ11 + (γ − 1)(ϕ1 + ϕ1ϕ11)ϕ2

1

c4
+ ∂ξ1b

=
M
(
2ϕ11 + (γ − 1)(1 + ϕ11)M2

)

c
+ ∂ξ1b.

Using that M ≤ 1, we have

ϕ11 =
(1− γ)M2

2 + (γ − 1)M2
+O(

δ

M2
). (5.2.1)
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Remark 5.2.2. Equality (5.2.1) holds with O( δ
M ) instead of O( δ

M2 ), since
O( δ

M ) is a stronger estimate of the error term than O( δ
M2 ) owing to the fact

that M ≤ 1. We have adapted the weaker error term O( δ
M2 ) here and below,

since the weak error form is good enough to carry through our analysis later on
and some estimates below hold only with O( δ

M2 ).

Similarly,

0 = ∂ξ2

( |Dϕ|2
c2(|Dϕ|2, ϕ)

+ b
)

=
2c2ϕ1ϕ12 + (γ − 1)ϕ1ϕ12ϕ

2
1

c4
+ ∂ξ2b

=
M
(
2 + (γ − 1)M2

)
ϕ12

c
+ ∂ξ2b.

Thus, we have

ϕ12 = O(
δ

M2
). (5.2.2)

Now we note that equation (2.2.11) in Ω can be written in the following
form:

c2∆ϕ−
2∑

i,j=1

ϕiϕjϕij = |Dϕ|2 − 2c2. (5.2.3)

Then, at P̂ , we have

(1−M2)ϕ11 + ϕ22 = M2 − 2,

and, using (5.2.1),

ϕ22 =
(3− γ)M2 − 4

2 + (γ − 1)M2
+O(

δ

M2
). (5.2.4)

In particular, we have
|ϕ11|+ |ϕ22| ≤ C(γ), (5.2.5)

where we have used that δ
M2 ≤ 1.

3. We now use the second-order conditions at the maximum point. First we
compute at a generic point for k = 1, 2:

∂ξkξk

( |Dϕ|2
c2

)

= ∂ξk

( 2

c2

∑

i

ϕiϕki +
γ − 1

c4
(
ϕk +

∑

i

ϕiϕki
)
|Dϕ|2

)

=
2

c4

((∑

i

ϕiϕkki +
∑

i

ϕ2
ki

)
c2 + (γ − 1)

(
ϕk +

∑

j

ϕjϕkj
)∑

i

ϕiϕki

)

+
γ − 1

c4

((
ϕkk +

∑

i

ϕ2
ki +

∑

i

ϕiϕkki
)
|Dϕ|2 + 2

(
ϕk +

∑

i

ϕiϕki
)∑

j

ϕjϕkj

)

+
2(γ − 1)2

c6
(
ϕk +

∑

i

ϕiϕki
)2|Dϕ|2.
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Then, at P̂ , using that ϕ1 = |Dϕ| = Mc and ϕ2 = 0, and employing (5.2.2) and
(5.2.5), we obtain

0 ≥ ∂ξ1ξ1
( |Dϕ|2

c2
+ b
)

=
1

c2

(
Mc
(
2 + (γ − 1)M2

)
ϕ111 +O(

δ

M2
)

+
(
ϕ11 + 2(γ − 1)M2(1 + ϕ11)

)(
2ϕ11 + (γ − 1)M2(1 + ϕ11)

))
,

where we have used that δ
M2 ≤ 1 so that O( δ

M2 ) can be used instead of O
(
δ2

M4

)
.

Now, from (5.2.1), we have

2ϕ11 + (γ − 1)M2(1 + ϕ11) = O(
δ

M2
).

Thus, using (5.2.5), we have

1

c2

(
Mc(2 + (γ − 1)M2)ϕ111 +O(

δ

M2
)
)
≤ 0,

which implies

Mcϕ111 ≤ O(
δ

M2
). (5.2.6)

Similarly,

0 ≥ ∂ξ2ξ2
( |Dϕ|2

c2
+ b
)

=
1

c2

(
Mc(2 + (γ − 1)M2)ϕ122

+
(
2 + (γ − 1)M2

)
ϕ2

22 + (γ − 1)M2ϕ22 +O(
δ

M2
)
)
,

which implies

cMϕ122 ≤ −ϕ2
22 −

(γ − 1)M2

2 + (γ − 1)M2
ϕ22 +O(

δ

M2
).

Now, from (5.2.4), we obtain

cMϕ122 ≤ −
(
(γ − 3)M2 + 4

)(
4− 2M2

)
(
2 + (γ − 1)M2

)2 +O(
δ

M2
) ≤ − 4

(γ + 1)2
+O(

δ

M2
),

where we have used that γ ≥ 1 and 0 ≤ M ≤ 1 to derive the last inequality.
Therefore, we have

cMϕ122 ≤ −
4

(γ + 1)2
+O(

δ

M2
). (5.2.7)
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4. We differentiate equation (5.2.3) with respect to ξ1 and use ϕ1 = |Dϕ| =
Mc and ϕ2 = 0 at P̂ to obtain

c2(ϕ111 + ϕ122)− (γ − 1)ϕ1(1 + ϕ11)∆ϕ− ϕ2
1ϕ111 − 2ϕ1

(
ϕ2

11 + ϕ2
12

)

= 2ϕ1ϕ11 + 2(γ − 1)ϕ1(1 + ϕ11),

which, using also (5.2.2), implies

(c2 − ϕ2
1)ϕ111 + c2ϕ122

= (γ − 1)Mc(1 + ϕ11)∆ϕ+ 2Mcϕ2
11 + 2γMcϕ11

+ 2(γ − 1)Mc+ cMO(
δ

M2
).

Since M ≤ 1, we obtain from (5.2.6) that (c2 − ϕ2
1)ϕ111 ≤ c

MO( δ
M2 ). Then we

have

cMϕ122 ≥M2
(

(γ − 1)(1 + ϕ11)∆ϕ+ 2ϕ2
11 + 2γϕ11 + 2(γ − 1)

)
+O(

δ

M2
).

Substituting expressions (5.2.1) and (5.2.4) into the right-hand side of the in-
equality above, we conclude after a tedious but direct calculation that

cMϕ122 ≥ O(
δ

M2
). (5.2.8)

This contradicts (5.2.7) if δ
M2 ≤ 1

C1
for sufficiently large C1 ≥ 1, depending only

on γ.
Therefore, we have shown that the maximum of M2 + b cannot be attained

in Ω unless
δ

M2
≥ 1

C1
at P̂ , that is, M2(P̂ ) ≤ C1δ. Since oscΩb ≤

δ

ĉ
diam(Ω) ≤

δ diam(Ω), and P̂ is a maximum point of M2 + b, it follows that, at any point
in Ω,

M2 ≤M2(P̂ ) + oscΩb ≤ C0δ,

where C0 = C1 + diam(Ω). Assertion (ii) is proved for δ > 0.
5. Now we prove assertion (i). Let the maximum of M2 be attained at

P̂ = ξ̂ ∈ Ω, and let M2 be not identically zero in Ω. Then

M2 > 0 at P̂ .

It also follows that |Dϕ| = Mc > 0 at P̂ , since c = ρ
γ−1

2 > 0 in Ω.
Now we follow the proof of (ii) for δ > 0. The only difference is that, in all of

the expressions, the O(·)–terms are now replaced by zero. In particular, instead
of (5.2.7), we have

cMϕ122 ≤ −
4

(γ + 1)2
,

and, instead of (5.2.8), we obtain

cMϕ122 ≥ 0.

These two inequalities clearly contradict each other, thus assertion (i) is proved.
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5.3 ELLIPTICITY PRINCIPLE FOR SELF-SIMILAR
POTENTIAL FLOW WITH SLIP CONDITION ON THE
FLAT BOUNDARY

We consider a domain Ω ⊂ R2 with a flat boundary part Γ ⊂ ∂Ω, and a solution
ϕ ∈ C3(Ω ∪ Γ) of (2.2.11) satisfying

∂νϕ = 0 on Γ. (5.3.1)

Theorem 5.3.1. Let Ω ⊂ R2 be an open bounded domain and Γ ⊂ ∂Ω a
relatively open flat segment.

(i) Let ϕ ∈ C3(Ω ∪ Γ) satisfy (2.2.11) in Ω, and (5.3.1) on Γ, with M ≤ 1
and ρ > 0 in Ω∪ Γ. Then either M ≡ 0 in Ω∪ Γ or M does not attain its
maximum in Ω ∪ Γ.

(ii) More generally, for any d > 0, there exists C0 > 0 depending only on
(γ, d) such that, if diam(Ω) ≤ d, for any δ ≥ 0, ĉ ≥ 1, and b ∈ C2(Ω) with
∂νb = 0 on Γ and |Db| + ĉ|D2b| ≤ δ

ĉ in Ω, and for any ϕ ∈ C3(Ω ∪ Γ)
satisfying (2.2.11) in Ω and (5.3.1) on Γ with M ≤ 1, ρ(|Dϕ|2, ϕ) > 0,
and c(|Dϕ|2, ϕ) ≤ ĉ in Ω ∪ Γ, then either

M2 ≤ C0δ in Ω ∩ Γ

or M2 + b does not attain its maximum in Ω ∩ Γ.

Proof. The proof consists of two steps. We continue to use ϕk := ϕξk and form
(5.2.3) of equation (2.2.11) in the proof.

1. First consider the case that Ω = Bd/2(0) ∩ {ξ1 > 0} with Γ = Bd/2(0) ∩
{ξ1 = 0}, for some d > 0. Then (5.3.1) is of the form:

ϕ1 = 0 on Γ.

Taking the tangential derivative along Γ, we have

ϕ12 = 0, ϕ122 = 0 on Γ.

From this, using (5.1.6),

∂ξ1(c2(|Dϕ|2, ϕ)) = −(γ − 1)
(
ϕ1 + ϕ11ϕ1 + ϕ12ϕ2

)
= 0 on Γ.

Using all of the vanishing properties obtained above and taking ∂ξ1 to both sides
of equation (5.2.3), we obtain that c2ϕ111 = 0 on Γ, since all the other terms
vanish on Γ. Then, using that c = ρ

γ−1
2 > 0 in Ω ∪ Γ, we obtain

ϕ111 = 0 on Γ.

From all of the properties on Γ obtained above, we see that the even extension
ϕ(ξ1, ξ2) = ϕ(−ξ1, ξ2) of ϕ into Bd/2(0) satisfies ϕ ∈ C3(Bd/2(0)). Moreover,
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using the explicit form (5.2.3), it follows that the extended function ϕ is a
solution of (5.2.3) in Bd/2(0). Now, the conditions of Theorem 5.2.1 are satisfied.
Thus, we obtain Theorem 5.3.1 in the present special case of Ω and Γ, with the
same constant C0(γ, d) as in Theorem 5.2.1.

2. Now we consider the general case of Ω and Γ. We only give the argument
for the proof of (ii), since the proof of (i) is similar.

By an orthogonal coordinate transformation and a shift of the origin, we
reduce to the case that Γ ⊂ {ξ1 = 0} and ν = e1 on Γ, where the invariance
of equation (2.2.11) with respect to the rotation and translation of coordinates
has been used. Let d > 0 be such that diam(Ω) ≤ d. Let C0 = C0(γ, d) be from
Theorem 5.2.1. Assume that there exists P ∈ Ω ∩ Γ such that

M2(P ) = max
ξ∈Ω∩Γ

M2(ξ), M2(P ) > C0δ.

If P ∈ Ω, we arrive at a contradiction with Theorem 5.2.1. Thus, P ∈ Γ. Since
Γ is a relatively open segment, there exists r ∈ (0, d2 ) such that Br(P ) ∩ Ω =
Br(P ) ∩ {ξ1 > 0}. Also, since Γ ⊂ {ξ1 = 0}, then, shifting the origin into P ,
we obtain that P = 0 and Br(P ) ∩ Ω = Br(0) ∩ {ξ1 > 0}, and the maximum
of ϕ over Br(0) ∩ {ξ1 > 0} is attained at 0. Using that r < d

2 , we arrive at a
contradiction to the result of Step 1. This proves (ii).



Part III

Proofs of the Main Theorems for
the Sonic Conjecture
and Related Analysis





Chapter Six

Uniform States and Normal Reflection

In this chapter, we analyze the uniform states and normal reflection in the self-
similar coordinates for potential flow.

6.1 UNIFORM STATES FOR SELF-SIMILAR POTENTIAL
FLOW

Let ρ0 > 0 and O± = (u±, v±) be fixed constants. Let ϕ+ and ϕ− represent the
uniform (physical) states, i.e.,

ϕ±(ξ) = −|ξ|
2

2
+ (u±, v±) · (ξ − ξ±), (6.1.1)

where ξ± are constant vectors. Set

ργ−1
± := ργ−1

0 − (γ − 1)
(
− (u±, v±) · ξ± +

1

2
|(u±, v±)|2

)
> 0, (6.1.2)

where we assume that ρ0 is chosen so that the right-hand side is positive. Then
ϕ± are the solutions of equation (2.2.8) with constant densities ρ± defined by
(2.2.9) and corresponding constant sonic speeds c2± = ργ−1

± , respectively.

Lemma 6.1.1. Let P, τ ∈ R2 with |τ | = 1, and let L := {P + sτ : s ∈ R} be
a line. Let ν be a unit vector orthogonal to τ . Then Dϕ± · ν is constant along
line L. Moreover, |Dϕ± · ν|(ξ) = dist(O±, L) for any ξ ∈ L; see Fig. 6.1.

)u, v(

)P(ϕD

P

L

{ν·ϕ|D
) =

O,L(
dist

|

=

ν

O

Figure 6.1: |Dϕ± · ν| = dist(O±, L)
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Proof. Let Q ∈ L. Then L = {Q+ sτ : s ∈ R}. Moreover,

Dϕ±(ξ) = (u± − ξ1, v± − ξ2) = O± − ξ.

If ξ ∈ L, then ξ = Q+ sτ for some s ∈ R. Since ν · τ = 0, then

Dϕ±(ξ) · ν = (O± −Q) · ν,

independent of s, i.e., ξ ∈ L. Furthermore, since Q ∈ L, and ν is the unit vector
orthogonal to L, then |(O± −Q) · ν| = dist(O±, L).

Note that, if (u+, v+) 6= (u−, v−), set {ϕ+ = ϕ−} is a line. Also, if ρ+ 6= ρ−,
(u+, v+) 6= (u−, v−) by (1.13).

Lemma 6.1.2. Assume that ρ+ > ρ− so that (u+, v+) 6= (u−, v−). Denote

S := {ξ : ϕ+(ξ) = ϕ−(ξ)}.

Assume that ϕ± satisfy the Rankine-Hugoniot condition on S:

ρ+Dϕ
+ · ν = ρ−Dϕ

− · ν on S.

Then the following holds:

(i) Dϕ± · ν 6= 0 on S.

(ii) ϕ := min(ϕ+, ϕ−) is a weak solution of (2.2.8)–(2.2.9) satisfying the en-
tropy condition on shock S. That is, choosing the unit normal ν on S so
that Dϕ+ · ν > 0, we have

Dϕ− · ν > Dϕ+ · ν > 0 on S.

Thus, ϕ = ϕ− in the upstream half-plane {ξ ∈ R2 : (ξ−ξS)·ν < 0}, where
ξS ∈ S is arbitrary and fixed, and ϕ = ϕ+ in the downstream half-plane
{ξ ∈ R2 : (ξ − ξS) · ν > 0}.

(iii) In addition, we have

Bc−(O−) ⊂ {ϕ− > ϕ+}, (6.1.3)
Bc+(O+) ∩ S 6= ∅, (6.1.4)
O+ ∈ {ϕ− > ϕ+}, (6.1.5)
O+O− ⊥ S, (6.1.6)

where Ba(P ) is the ball with center at P and radius a > 0; see also Fig.
6.2.
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−> ϕ+ϕ

−< ϕ+ϕ

)+, v+u= (+

)−, v−u= (−

}+ϕ=−ϕ{=S
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Figure 6.2: Line S = {ϕ+ = ϕ−} and O+O− ⊥ S

Proof. We divide the proof into four steps.
1. The Rankine-Hugoniot conditions (2.2.13)–(2.2.14) imply that, at any

P ∈ S,

ρ+ϕ
+
ν = ρ−ϕ

−
ν , (6.1.7)

ϕ+ = ϕ−, (6.1.8)

ϕ+
τ = ϕ−τ . (6.1.9)

Also, ρ± 6= 0 and, by Lemma 6.1.1,

ϕ±ν = const. on S.

Thus, if ϕ+
ν = 0 on S, ϕ−ν = 0 by (6.1.7). This, combined with (6.1.9), yields

Dϕ+ = Dϕ− on S, which implies

Dφ+ = Dφ− on S

for φ = ϕ+ |ξ|2
2 . Since φ± are linear functions, then

Dφ+ = Dφ− in R2.

Using φ+ = φ− on S by (6.1.8), it follows that φ+ = φ− in R2, which is in
contradiction to the fact that ρ+ > ρ−. Thus, ϕ±ν 6= 0 on S. Assertion (i) is
proved.

2. By (6.1.7), ϕ+
ν and ϕ−ν on S have the same sign. Choose the direction

of ν so that ϕ±ν > 0 on S. Then (6.1.7) and ρ+ > ρ− imply that Dϕ− · ν >
Dϕ+ · ν > 0 on S. Assertion (ii) is proved.

3. It remains to prove (6.1.3)–(6.1.6). Note that assertion (i) and Lemma
6.1.1 imply that O± /∈ S. Let P ∈ S be such that PO− ⊥ S. Since Dϕ±(P ) =
O± − P by (6.1.1), ϕ−τ (P ) = Dϕ−(P ) · τ = 0. By (6.1.9), ϕ+

τ (P ) = 0 so that
PO+ ⊥ S. That is,

PO± ⊥ S. (6.1.10)
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Moreover, since (O±−P )·ν = ϕ±ν (P ) > 0, (6.1.10) implies that ϕ±ν (P ) = |PO±|.
Thus, from the entropy condition shown above, |PO−| > |PO+|. Note that we
have shown that

Dϕ±(P ) = O± − P = |PO±|ν.
Also, recall that φ± are linear functions, and ϕ−(P ) = ϕ+(P ) since P ∈ S.
Then we compute:

ϕ−(O−)− ϕ+(O−) = φ−(O−)− φ+(O−)

= (φ− − φ+)(O−)− (φ− − φ+)(P )

= D(φ− − φ+)(P ) · (O− − P )

= D(ϕ− − ϕ+)(P ) · (O− − P )

=
(
|PO−|ν − |PO+|ν

)
·
(
|PO−|ν

)

=
(
|PO−| − |PO+|

)
|PO−| > 0.

Hence, O− ∈ {ϕ− > ϕ+}. Then (O± − P ) · ν = ϕ±ν (P ) > 0 with P ∈ S =
{ϕ+ = ϕ−} implies that O+ ∈ {ϕ− > ϕ+}, which yields (6.1.5). Also, (6.1.10)
leads to (6.1.6).

Furthermore, since O− ∈ {ϕ− > ϕ+}, and P is the nearest point to O− on
S = ∂{ϕ− > ϕ+}, then, in order to prove (6.1.3), it suffices to show that ϕ− is
supersonic at P . Also, (6.1.4) follows if ϕ+ is shown to be subsonic at P .

4. It remains to show that |Dϕ−(P )| > c− and |Dϕ+(P )| < c+. The
Bernoulli law in (2.2.7), or equivalently, (2.2.9), implies that, at P ,

ργ−1
+ + (γ − 1)

(1

2
|Dϕ+|2 + ϕ+

)
= ργ−1
− + (γ − 1)

(1

2
|Dϕ−|2 + ϕ−

)
.

Using (6.1.8)–(6.1.9), this can be reduced to

ργ−1
+ +

γ − 1

2
|ϕ+
ν |2 = ργ−1

− +
γ − 1

2
|ϕ−ν |2 =: B0 at P. (6.1.11)

Consider the functions:

ρ̃(s) =
(
B0 −

γ − 1

2
s2
) 1
γ−1 and Φ(s) = sρ̃(s) on [0,

√
2B0

γ − 1
]. (6.1.12)

Then ρ± = ρ̃(ϕ±ν (P )), and condition (6.1.7) at P is equivalent to

Φ(ϕ−ν (P )) = Φ(ϕ+
ν (P )). (6.1.13)

By explicit differentiation, we have

ρ̃′(s) < 0 on (0, qmax) ,

Φ′(s)

{
> 0 if s ∈ (0, q∗) ,

< 0 if s ∈ (q∗, qmax) ,

(6.1.14)
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where qmax =
√

2B0

γ−1 and q∗ =
√

2B0

γ+1 .
Therefore, if (6.1.13) holds and ϕ−ν (P ) > ϕ+

ν (P ) > 0, then

ϕ−ν (P ) > q∗ > ϕ+
ν (P ) > 0. (6.1.15)

Also, by an explicit calculation,

ρ̃(q∗)
γ−1 = q2

∗. (6.1.16)

Then, using ρ̃′(s) < 0, we have

|ϕ−ν (P )|2 > q2
∗ = ρ̃(q∗)

γ−1 > ρ̃(ϕ−ν (P ))γ−1 = ργ−1
− = c2−,

|ϕ+
ν (P )|2 < q2

∗ = ρ̃(q∗)
γ−1 < ρ̃(ϕ+

ν (P ))γ−1 = ργ−1
+ = c2+.

Since ϕ±τ (P ) = 0, this implies that |Dϕ−(P )| > c− and |Dϕ+(P )| < c+.

In the next lemma, we show that, for any point P of the shock curve sepa-
rating the upstream uniform state ϕ− with density ρ− from a downstream state
ϕ+ (possibly non-uniform) such that the entropy condition holds at P , the gra-
dient jump across the shock at P depends only on ρ− and ∂νϕ−(P ), and strictly
increases with respect to ∂νϕ−(P ) when ρ− is fixed. Also, by Lemma 6.1.1 and
the entropy condition, ∂νϕ−(P ) = dist(LP ,O−), where LP is the tangent line
to the shock at P , so we can express the gradient jump at P through ρ− and
dist(LP ,O−).

Lemma 6.1.3. Let Ω ⊂ R2 be open. Let a smooth curve S subdivide Ω into two
open subdomains Ω+ and Ω−. Let ϕ ∈ C0,1(Ω) be a weak solution of equation
(2.2.8) in Ω such that ϕ ∈ C2(Ω±)∩C1(Ω±∪S). Denote by ϕ± := ϕ|Ω± . Suppose
that ϕ is a constant state in Ω− with density ρ− and sonic speed c− = ρ

γ−1
2
− ,

i.e.,

ϕ−(ξ) = −ξ
2

2
+ (u−, v−) · ξ +A,

where (u−, v−) is a constant vector and A is the constant such that ρ− =
ρ(|(u−, v−)|2, A) for ρ(·, ·) from (2.2.9). Let P ∈ S be such that

(i) ϕ− is supersonic at P , i.e., |Dϕ−| > c− at P ;

(ii) Dϕ− · ν > Dϕ+ · ν > 0 at P , where ν is the unit normal vector to S
oriented from Ω− to Ω+.

Let LP be the tangent line to S at P . Let d(P ) be the distance between line LP
and center O− = (u−, v−) of the sonic circle of state ϕ−, where d(P ) > c− by
(6.1.3); see Fig. 6.3. Then (ϕ−ν − ϕ+

ν )(P ) depends only on ρ− and d(P ).
More precisely, for each ρ− > 0, there exists a unique function

Ĥ ∈ C([c−,∞)) ∩ C∞((c−,∞))
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P

L {P
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+Ω
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O

Figure 6.3: Distance d(P ) between LP and O− = (u−, v−)

such that, for any Ω, S, ϕ±, and P , as above,

(ϕ−ν − ϕ+
ν )(P ) = Ĥ(d(P )).

Moreover, Ĥ satisfies

Ĥ(c−) = 0, Ĥ ′(d) > 0 for all d ∈ (c−,∞). (6.1.17)

Proof. We divide the proof into four steps.
1. The Rankine-Hugoniot conditions (2.2.13)–(2.2.14) imply that equations

(6.1.7)–(6.1.9) hold at P , where ρ− is the constant density of ϕ− and ρ+ =
ρ(|Dϕ+(P )|2, ϕ+(P )). Moreover, the Bernoulli law in (2.2.7), or equivalently,
(2.2.9), combined with (6.1.8)–(6.1.9), implies that (6.1.11) holds at P .

Since ν is orthogonal to LP , and Dϕ− · ν > 0 at P for Dϕ− = O1 − P , we
have

d(P ) = (O1 − P ) · ν(P ) = ∂νϕ
−(P ).

Denote d := d(P ). Then, at P , we have

ϕ+
ν = (ϕ+

ν − ϕ−ν ) + ϕ−ν = (φ+
ν − φ−ν ) + d = d− w,

where
w := φ−ν − φ+

ν = (u−, v−) · ν − φ+
ν at P. (6.1.18)

By conditions (i)–(ii),
d ∈ (c−,∞), w ∈ (0, d). (6.1.19)

With these notations, (6.1.7) and (6.1.11) imply

G(w, d) := ργ−1
−

( dγ−1

(d− w)γ−1
− 1
)

+
γ − 1

2

(
(d− w)2 − d2

)
= 0. (6.1.20)

We show that, for each d ∈ (c−,∞), this equation has a unique solution ŵ ∈
(0, d) and, defining Ĥ(·) by Ĥ(d) = ŵ, Ĥ ∈ C∞((c−,∞)).
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2. We now prove that, for any d ∈ (c−,∞), equation (6.1.20) has a unique
solution ŵ ∈ (0, d). Moreover, ∂G∂w (ŵ, d) > 0.

In order to show this, we note from the explicit definition of G(w, d) and
relation ργ−1

− = c2− that

G ∈ C∞({c− ≤ d <∞, 0 ≤ w < d}),
G(0, d) = 0 for all d ∈ (c−,∞),

∂G

∂w
(0, d) =

γ − 1

d
(c2− − d2) < 0 for all d ∈ (c−,∞),

lim
w→d−

G(w, d) =∞ for all d ∈ (c−,∞),

∂2G

∂w2
= (γ − 1)

( γργ−1
− dγ−1

(d− w)γ+1
+ 1
)
> 0 for all d ∈ (c−,∞) and w ∈ [0, d).

Combining these facts implies the assertion.
3. From Step 2 and the implicit function theorem, there exists Ĥ∈C∞((c−,∞))

such that, for any d ∈ (c−,∞), the unique solution w ∈ (0, d) of (6.1.20) is
w = Ĥ(d).

We also note that

∂G

∂w
=

γ − 1

(d− w)γ
(
dγ−1ργ−1

− − (d− w)γ+1
)
.

Since, by Step 2, ∂G∂w (d,H(d)) > 0, we have

dγ−1ργ−1
− − (d− w)γ+1 > 0 for all d ∈ (c−,∞), w = Ĥ(d). (6.1.21)

4. Now we show that Ĥ ′(d) > 0 for any d ∈ (c−,∞).
Differentiating the equality, G(Ĥ(d), d) = 0, with respect to d, we have

γ − 1

(d− w)γ

(
−w
(
dγ−2ργ−2

− + (d− w)γ
)

+ Ĥ ′(d)
(
dγ−1ργ−1

− − (d− w)γ+1
))

= 0 for all d ∈ (c−,∞) and w = Ĥ(d).

That is,

Ĥ ′(d) =
w
(
dγ−2ργ−2

− + (d− w)γ
)

dγ−1ργ−1
− − (d− w)γ+1

for all d ∈ (c−,∞) and w = Ĥ(d).

Then (6.1.21) and 0 < Ĥ(d) < d imply the assertion.
Finally, the assertions of Steps 2–4 yield the result stated in Lemma 6.1.3.

Lemma 6.1.4. Let Ω ⊂ R2, S, ϕ, and ϕ± be as in Lemma 6.1.3. Let Pk ∈ S,
k = 1, 2, be such that
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(i) ϕ− is supersonic at Pk, i.e., |Dϕ−| > c− := c(|Dϕ−|2, ϕ−) at Pk;

(ii) Dϕ− · ν > Dϕ+ · ν > 0 at Pk for the unit normal vector ν to S oriented
from Ω− to Ω+;

(iii) ν(P1) = ν(P2);

(iv) d(P1) > d(P2) for d(Pk) := dist(LPk ,O−), where O− = (u−, v−), and LPk
is the tangent line to S at Pk.

Let φ±(ξ) = 1
2 |ξ|2 + ϕ±(ξ). Then

φ+
ν (P1) < φ+

ν (P2).

Proof. By assumptions (i)–(ii), we can apply Lemma 6.1.3 to obtain

φ+
ν (Pk) = (u−, v−) · ν(Pk)− Ĥ(d(Pk)) for k = 1, 2,

where we note by assumption (i) that d(Pk) > c−. Now, using (6.1.17) and
assumptions (iii)–(iv), we have

φ+
ν (P2)− φ+

ν (P1) = Ĥ(d(P1))− Ĥ(d(P2)) > 0.

6.2 NORMAL REFLECTION AND ITS UNIQUENESS

We consider the shock reflection when the wedge angle θw is π
2 . Then the

incident shock reflects normally (see Fig. 3.1), and the reflected shock is also a
plane at ξ1 = ξ̄1 < 0, which will be defined below. Thus, we seek ξ̄1 < 0 and a
uniform state (2) with potential:

ϕ2(ξ) = −|ξ|
2

2
+ (ū2, v̄2) · ξ + C,

which satisfies ∂νϕ2 = 0 on Γwedge = {ξ1 = 0} and the Rankine-Hugoniot
conditions (2.2.13)–(2.2.14) for (ϕ1, ϕ2) on S1 = {ξ1 = ξ̄1}, where ϕ1 for state
(1) is of form (2.2.17). Then, from (2.2.14) on {ξ1 = ξ̄1}, we obtain that
∂ξ2ϕ2 = ∂ξ2ϕ1 on that line, so that v̄2 = v1 = 0 by (2.2.17). Also, from the
condition on Γwedge, ū2 = 0. Again using (2.2.14) on {ξ1 = ξ̄1} and (2.2.17), we
obtain that state (2) is of the form:

ϕ2(ξ) = −|ξ|
2

2
+ u1(ξ̄1 − ξ0

1), (6.2.1)

where ξ0
1 = ρ1u1

ρ1−ρ0
> 0 by (2.2.18).

Now the Rankine-Hugoniot condition (2.2.13) on {ξ1 = ξ̄1} implies

ξ̄1 = − ρ1u1

ρ̄2 − ρ1
, (6.2.2)
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where ρ̄2 is the density of state (2). In particular, we see that ξ̄1 < 0 if and only
if ρ̄2 > ρ1.

We use the Bernoulli law in (2.2.7) and expressions (2.2.17) and (6.2.1) to
see that

ργ−1
0 = ργ−1

1 + (γ − 1)
(1

2
u2

1 − u1ξ
0
1

)
= ρ̄γ−1

2 + (γ − 1)u1(ξ̄1 − ξ0
1),

so that we obtain the equation for ρ̄2:

ρ̄γ−1
2 = ργ−1

1 + (γ − 1)
(1

2
u2

1 +
ρ1u

2
1

ρ̄2 − ρ1

)
. (6.2.3)

Now we show that there is a unique solution ρ̄2 of (6.2.3) such that

ρ̄2 > ρ1.

Indeed, for fixed γ > 1 and ρ1, u1 > 0, and for F (ρ̄2) that is the right-hand side
of (6.2.3), we have

lim
s→∞

F (s) = ργ−1
1 +

γ − 1

2
u2

1 > ργ−1
1 , lim

s→ρ1+
F (s) =∞,

F ′(s) = − (γ − 1)ρ1u
2
1

(s− ρ1)2
< 0 for s > ρ1.

Thus, there exists a unique ρ̄2 ∈ (ρ1,∞) satisfying ρ̄γ−1
2 = F (ρ̄2), i.e., (6.2.3).

Then the position of the reflected shock ξ̄1 < 0 is uniquely determined by (6.2.2).
Note that, on S1 = {ξ1 = ξ̄1}, choosing the orientation of the normal as

ν = (1, 0), we find that ∂νϕ1 = u1 − ξ̄1 and ∂νϕ2 = −ξ̄1 > 0, so that ∂νϕ1 >
∂νϕ2 > 0. This allows us to apply Lemma 6.1.2 with ϕ− = ϕ1 and ϕ+ = ϕ2.

Then O+ = 0. From (6.1.4), we conclude that, for the sonic speed c̄2 =
√
ρ̄γ−1

2

of state (2),
|ξ̄1| < c̄2. (6.2.4)

This leads to the following theorem:

Theorem 6.2.1. There exists a unique solution to the normal reflection with
the unique state (2) whose velocity (ū2, v̄2) = 0 and density ρ̄2 ∈ (ρ1,∞), and
the unique location of the reflected shock:

ξ̄1 = − ρ1u1

ρ̄2 − ρ1
∈ (−c̄2, 0).

6.3 THE SELF-SIMILAR POTENTIAL FLOW EQUATION IN
THE COORDINATES FLATTENING THE SONIC CIRCLE
OF A UNIFORM STATE

Let ρ0 > 0 be a fixed constant. Let ϕ be a C2–solution of equation (2.2.8) with
(2.2.9) in a domain D ⊂ R2.
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Let (û, v̂) be a constant vector, P̂ = ξ̂ ∈ R2, and

ϕun(ξ) = −|ξ|
2

2
+ (û, v̂) · (ξ − ξ̂).

Assume that the above constants satisfy condition (6.1.2). Then ϕun is the
pseudo-potential of the uniform state, which is a solution of (2.2.8)–(2.2.9) with
the constant velocity (û, v̂) and density ρun defined by

ργ−1
un + (γ − 1)

(
− (û, v̂) · ξ̂ +

û2 + v̂2

2

)
= ργ−1

0 .

Introduce the function:

ψ = ϕ− ϕun in D. (6.3.1)

Since both ϕ and ϕun satisfy (2.2.9),

ργ−1(|Dϕ|2, ϕ) + (γ − 1)(ϕ+
1

2
|Dϕ|2) = ργ−1

un + (γ − 1)(ϕun +
1

2
|Dϕun|2).

Then we obtain the following expression for the sonic speed in terms of ψ:

c2(Dψ,ψ, ξ) = c2un − (γ − 1)
(
Dϕun ·Dψ +

1

2
|Dψ|2 + ψ

)
. (6.3.2)

Denote Oun := (û, v̂), so that Oun is the center of the sonic circle of state
ϕun. Introduce the polar coordinates (r, θ) with respect to Oun:

(ξ1 − û, ξ2 − v̂) = r(cos θ, sin θ). (6.3.3)

Then

ϕun(r, θ) = −r
2

2
+ C0 (6.3.4)

with C0 = û2+v̂2

2 − (û, v̂) · ξ̂.
In D \ {Oun}, we introduce the coordinates:

(x, y) = (cun − r, θ). (6.3.5)

Note that, in the (x, y)–coordinates, the sonic circle of state ϕun is {x = 0}, and
ϕun is subsonic on {0 < x < cun} and supersonic on {x < 0}.

Substituting ϕ = ψ + ϕun into the non-divergence form (2.2.11) of equation
(2.2.8), writing the resulting equation in the (x, y)–coordinates (6.3.5), and using
(6.3.2) and (6.3.4), we obtain that ψ satisfies the following equation in D\{Oun}:
(
2x− (γ + 1)ψx +O1

)
ψxx +O2ψxy +

( 1

cun
+O3

)
ψyy − (1 +O4)ψx +O5ψy = 0,

(6.3.6)
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where

O1(Dψ,ψ, x) = − x2

cun
+
γ + 1

2cun
(2x− ψx)ψx −

γ − 1

cun

(
ψ +

1

2(cun − x)2
ψ2
y

)
,

O2(Dψ,ψ, x) = − 2

cun(cun − x)2
(ψx + cun − x)ψy,

O3(Dψ,ψ, x) =
1

cun(cun − x)2

(
x(2cun − x)− (γ − 1)

(
ψ + (cun − x)ψx +

1

2
ψ2
x

)

− γ + 1

2(cun − x)2
ψ2
y

)
,

O4(Dψ,ψ, x) =
1

cun − x
(
x− γ − 1

cun

(
ψ + (cun − x)ψx +

1

2
ψ2
x

+
γ + 1

2(γ − 1)(cun − x)2
ψ2
y

))
,

O5(Dψ,ψ, x) = − 2

cun(cun − x)3

(
ψx + cun − 2x

)
ψy.

(6.3.7)

We also write equation (6.3.6)–(6.3.7) as

2∑

i,j=1

Aij(Dψ,ψ, x, y)Dijψ +

2∑

i=1

Ai(Dψ,ψ, x, y)Diψ = 0, (6.3.8)

where D1 = Dx, D2 = Dy, Dij = DiDj , and A12 = A21.



Chapter Seven

Local Theory and von Neumann’s Conjectures

In this chapter, we describe the local theory of shock reflection and von Neu-
mann’s conjectures for shock reflection-diffraction configurations.

7.1 LOCAL REGULAR REFLECTION AND STATE (2)

In this section, we follow von Neumann’s detachment criterion to derive the nec-
essary condition for the existence of regular reflection-diffraction configurations,
as described in §2.6.

The incident shock S0 = {ξ1 = ξ0
1} separates the upstream uniform state

(0) determined by pseudo-potential ϕ0 from the downstream uniform state (1)
determined by pseudo-potential ϕ1. Here the potential functions (ϕ0, ϕ1) and
positive constants (ξ0

1 , u1) are determined by (2.2.16)–(2.2.18), where ρ1 > ρ0 >
0 are the densities of states (0) and (1) determined by (2.2.9). For each wedge
angle θw ∈ (0, π2 ), the wedge in the upper half-plane is defined by

W := {ξ : 0 < ξ2 < ξ1 tan θw, ξ1 > 0}. (7.1.1)

The incident shock S0 intersects with the wedge boundary {ξ2 = ξ1 tan θw} at
the point:

P0 := (ξ0
1 , ξ

0
1 tan θw). (7.1.2)

We study the local reflection at point P0; that is, we seek a straight shock S1

passing through P0 and a uniform state ϕ2, so that S1 separates the upstream
state ϕ1 from the downstream state ϕ2 with the velocity parallel to the wedge
boundary, thus satisfying the boundary condition:

∂νwϕ2 = 0 on Γwedge := {ξ2 = ξ1 tan θw} (7.1.3)

for the unit normal νw to Γwedge:

νw = (− sin θw, cos θw). (7.1.4)

Then the Rankine-Hugoniot conditions (2.2.13)–(2.2.14) and the entropy con-
dition are satisfied on S1. From (2.2.14), it follows that S1 = {ϕ1 = ϕ2},
so that the unit normal to S1 in the direction of the downstream region is
ν = D(ϕ1−ϕ2)

|D(ϕ1−ϕ2)| . It also follows that Dϕ2 · τ = Dϕ1 · τ on S1.
In order to find such a two-shock configuration, it suffices to find the uniform

state (2) with pseudo-potential ϕ2, which satisfies all the conditions described
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above only at point P0 – then it satisfies these conditions at any P ∈ S1, a fact
that is easily checked by a direct calculation.

Thus, we seek a uniform state ϕ2 that satisfies the Rankine-Hugoniot con-
ditions with state (1):

ϕ2(P0) = ϕ1(P0),

ρ2Dϕ2 · ν = ρ1Dϕ1 · ν, Dϕ2 · τ = Dϕ1 · τ at P0,
(7.1.5)

the entropy condition:

Dϕ1 · ν > Dϕ2 · ν > 0 at P0 (7.1.6)

for ν = D(ϕ1−ϕ2)
|D(ϕ1−ϕ2)| , τ ⊥ ν, |τ | = 1, and ρk = ρ(|Dϕk|2, ϕk), with ρ(·) given by

(2.2.9) and k = 1, 2, and the boundary condition:

Dϕ2 · νw = 0 at P0, (7.1.7)

where νw is given by (7.1.4).
In particular, substituting the expression of νw into (7.1.5), we have

gsh(Dϕ2(ξ), ϕ2(ξ), ξ) = 0 at ξ = P0, (7.1.8)

where

gsh(p, z, ξ) :=
(
ρ(|p|2, z)p− ρ1Dϕ1(ξ)

)
· Dϕ1(ξ)− p

|Dϕ1(ξ)− p| (7.1.9)

for ρ(|p|2, z) defined by (2.2.9).

Theorem 7.1.1 (Local Theory). Let ρ1 > ρ0 > 0. Then there exists θd
w =

θd
w(ρ0, ρ1, γ) ∈ (0, π2 ), called the detachment angle, such that

(a) For each θw ∈ (θd
w,

π
2 ), there are exactly two states (2) satisfying (7.1.5)–

(7.1.7): the weak reflection state ϕwk
2 := ϕwk,θw

2 and the strong reflection
state ϕsg

2 := ϕsg,θw
2 , such that

ρ1 < ρwk,θw
2 < ρsg,θw

2 .

Moreover,

lim
θw→θd

w+
(ρwk,θw

2 , Dφwk,θw
2 ) = lim

θw→θd
w+

(ρsg,θw
2 , Dφsg,θw

2 ); (7.1.10)

(b) For the detachment angle θw = θd
w, there exists the unique state (2), φθ

d
w

2 (ξ),
satisfying (7.1.5)–(7.1.7) so that (ρ

θd
w

2 , Dφ
θd
w

2 ) is equal to the limit in (7.1.10),
which can be interpreted as the coincidence of the weak and strong states (2)
when θw = θd

w.
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Here ρwk,θw
2 and ρsg,θw

2 are the constant densities for the weak and strong states
(2), φwk,θw

2 (ξ) = ϕwk,θw
2 (ξ)+ |ξ|

2

2 and φsg,θw
2 (ξ) = ϕsg,θw

2 (ξ)+ |ξ|
2

2 with the pseudo-
potentials ϕwk,θw

2 (ξ) and ϕsg,θw
2 (ξ) of the weak and strong states (2), respectively.

Note that Dφwk,θw
2 and Dφsg,θw

2 are constant vectors.
Furthermore, denoting by cwk,θw

2 and csg,θw2 the sonic speeds of the weak and
strong states (2) respectively, we have

(i) ρwk,θw
2 , ρsg,θw

2 , Dφwk,θw
2 , and Dφsg,θw

2 depend continuously on θw ∈ [θd
w,

π
2 )

and C∞-smoothly on θw ∈ (θd
w,

π
2 ). Moreover, ρwk,θw

2 and Dφwk,θw
2 depend

continuously on θw ∈ [θd
w,

π
2 ] and C∞-smoothly on θw ∈ (θd

w,
π
2 ];

(ii) limθw→π
2−(ρwk,θw

2 , Dφwk,θw
2 ) = (ρ̄2,0), where ρ̄2 is the density of state (2)

for the normal reflection in Theorem 6.2.1, so that the normal state (2)
may be considered as the weak state (2) for θw = π

2 ;

(iii) For any θw ∈ [θd
w,

π
2 ),

|Dϕ1(P0(θw))| > c1; (7.1.11)

(iv) For any θw ∈ (θd
w,

π
2 ),

|Dϕsg,θw
2 (P0)| < csg,θw2 ; (7.1.12)

(v) There exists θs
w ∈ (θd

w,
π
2 ), called the sonic wedge angle, such that

|Dϕwk,θw
2 (P0)| > cwk,θw

2 for all θw ∈ (θs
w,
π

2
),

|Dϕwk,θw
2 (P0)| = cwk

2 for θw = θs
w;

(vi) There exists θ̃s
w ∈ (θd

w, θ
s
w] such that |Dϕwk,θw

2 (P0)| < cwk,θw
2 for any θw ∈

[θd
w, θ̃

s
w);

(vii) For any θw ∈ (θd
w,

π
2 ), the weak reflection satisfies

Dpg
sh(Dϕwk,θw

2 (P0), ϕwk,θw
2 (P0), P0) ·Dϕwk,θw

2 (P0) < 0,

and the strong reflection satisfies

Dpg
sh(Dϕsg,θw

2 (P0), ϕsg,θw
2 (P0), P0) ·Dϕsg,θw

2 (P0) > 0;

(viii) Let ϕ2 be a pseudo-potential of either the weak or strong state (2). Then,
for any ξ ∈ S1 = {ϕ1 = ϕ2},

Dpg
sh(Dϕ2(ξ), ϕ2(ξ), ξ) ·D⊥ϕ2(ξ) < 0,

where D⊥ϕ2(ξ) is the π
2 –rotation of Dϕ2(ξ) in the direction chosen so that

Dϕ1(ξ) ·D⊥ϕ2(ξ) < 0, that is, D⊥ϕ2(ξ) is either (−∂ξ2ϕ2(ξ), ∂ξ1ϕ2(ξ)) or
(∂ξ2ϕ2(ξ),−∂ξ1ϕ2(ξ)), for the sign chosen so that Dϕ1(ξ) ·D⊥ϕ2(ξ) < 0.
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For a possible two-shock configuration satisfying the corresponding bound-
ary condition on the wedge boundary ξ2 = ξ1 tan θw, the three state pseudo-
potentials ϕj , j = 0, 1, 2, must be of form (2.2.16)–(2.2.17) and (2.4.1).

We prove this theorem in the next subsections. We first consider the case
of large-angle wedges in §7.2. After that, we discuss the shock polar for steady
potential flow in §7.3. Then, in §7.4, we use the shock polar to prove the
existence of the weak and strong state (2) for any wedge angle θw ∈ (θd

w,
π
2 ),

and to identify the sonic angle θs
w.

7.2 LOCAL THEORY OF SHOCK REFLECTION FOR
LARGE-ANGLE WEDGES

In this section, we assume that θw ∈ (π2 − σ1,
π
2 ), where σ1 > 0 is small, as

determined below, depending only on (ρ0, ρ1, γ). We construct the weak state
(2) satisfying (7.1.5)–(7.1.7) close to state (2) of the normal reflection in §6.2
and show that (7.1.10) holds.

Let P0 = (ξ0
1 , ξ

0
1 tan θw) be the reflection point (i.e., the intersection point

of the incident shock with Γwedge). We show below that, if σ1 is small, then S1

intersects with the ξ1–axis, and the point of intersection (ξ̃1, 0) is close to point
(ξ̄1, 0) from Theorem 6.2.1. Denote by θsh the angle between line S1 and the
ξ1-axis.

We look for ϕ2(·) in the form:

ϕ2(ξ) = −|ξ|
2

2
+ (u2, v2) · ξ + C,

where (u2, v2, C) are constants to be determined. Note that ϕ1(ξ) is defined by
(2.2.17). Using that ϕ1 = ϕ2 on S1, we find that (ϕ1 − ϕ2)(ξ̃1, 0) = 0. This
implies

ϕ2(ξ) = −|ξ|
2

2
+ (u2, v2) · ξ + u1(ξ̃1 − ξ0

1)− u2ξ̃1. (7.2.1)

Furthermore, (7.1.4) and (7.1.7) yield

v2 = u2 tan θw. (7.2.2)

Also, since S1 passes through points P0 = (ξ0
1 , ξ

0
1 tan θw) and (ξ̃1, 0), and has

angle θsh with the ξ1–axis, we have

ξ̃1 = ξ0
1 − ξ0

1

tan θw

tan θsh
. (7.2.3)

The Bernoulli law (2.2.7) becomes

ργ−1
0 = ργ−1

2 + (γ − 1)
(1

2
(u2

2 + v2
2) + (u1 − u2)ξ̃1 − u1ξ

0
1

)
. (7.2.4)
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We can express τ = (cos θsh, sin θsh). Since ν = D(ϕ1−ϕ2)
|D(ϕ1−ϕ2)| = (u2−u1,v2)

|(u2−u1,v2)| , we
have

(u2 − u1, v2) · (cos θsh, sin θsh) = 0, (7.2.5)

so that, using (7.2.2),

u2 = u1
cos θw cos θsh

cos(θw − θsh)
. (7.2.6)

From (7.2.5), the Rankine-Hugoniot condition (2.2.13) along the reflected shock
is

[ρDϕ] · (sin θsh,− cos θsh) = 0,

that is,

ρ1(u1 − ξ̃1) sin θsh = ρ2

(
u2

sin(θsh − θw)

cos θw
− ξ̃1 sin θsh

)
. (7.2.7)

Combining (7.2.3)–(7.2.7), we obtain the following system for (ρ2, θsh, ξ̃1):

(ξ̃1 − ξ0
1) cos θw + ξ0

1 sin θw cot θsh = 0, (7.2.8)

ργ−1
2 − ργ−1

0

γ − 1
+

u2
1 cos2 θsh

2 cos2(θw − θsh)
+
u1 sin θw sin θsh

cos(θw − θsh)
ξ̃1 − u1ξ

0
1 = 0, (7.2.9)

(
u1 cos θsh tan(θsh − θw)− ξ̃1 sin θsh

)
ρ2 − ρ1(u1 − ξ̃1) sin θsh = 0. (7.2.10)

Lemma 7.2.1. There exist positive constants σ1, ε, and C depending only on
(ρ0, ρ1, γ) such that, for any θw ∈ [π2 − σ1,

π
2 ), system (7.2.8)–(7.2.10) has a

unique solution satisfying |(ρ2, θsh, ξ̃1)− (ρ̄2,
π
2 , ξ̄1)| < ε, where ρ̄2 and ξ̄1 are the

parameters of the normal reflection state (2) from Theorem 6.2.1. Moreover,
(ρ2, θsh, ξ̃1), as functions of θw, are in C∞([π2 − σ1,

π
2 ]) and

|ρ2 − ρ̄2|+ |
π

2
− θsh|+ |ξ̃1 − ξ̄1|+ |c2 − c̄2| ≤ C(

π

2
− θw), (7.2.11)

where c2 is the sonic speed of state (2).

Proof. We compute the Jacobian J of the left-hand side of (7.2.8)–(7.2.10) in
terms of (ρ2, θsh, ξ̃1) at the normal reflection state (ρ̄2,

π
2 , ξ̄1) in §3.1 for state (2)

when θw = π
2 to obtain

J = −ξ0
1

(
ρ̄γ−2

2 (ρ̄2 − ρ1)− u1ξ̄1
)
< 0,

since ρ̄2 > ρ1 and ξ̄1 < 0. Then, by the implicit function theorem, we conclude
the proof.

Reducing σ1 > 0 if necessary, we find that, for any σ ∈ (0, σ1),

ξ̃1 < 0, (7.2.12)
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from (6.2.2) and (7.2.11). Since θw ∈ (π2 − σ1,
π
2 ), θsh ∈ (π4 ,

3π
4 ) if σ1 is small,

which implies sin θsh > 0. We conclude from (7.2.8), (7.2.12), and ξ0
1 > 0 that

tan θw > tan θsh > 0. Therefore, we have

π

4
< θsh < θw <

π

2
. (7.2.13)

Now, given θw, we define ϕ2 as follows: We have shown that there exists
a unique solution (ρ2, θsh, ξ̃1) close to (ρ̄2,

π
2 , ξ̄1) of system (7.2.8)–(7.2.10), and

define u2 by (7.2.6), v2 by (7.2.2), and ϕ2 by (7.2.1). Now (7.2.2) and (7.2.6)
imply (7.2.5). This, combined with (2.2.17) and (7.2.1), implies that line S1 =
{ξ : ϕ1(ξ) = ϕ2(ξ)} is given by the equation:

ξ1 = ξ2 cot θsh + ξ̃1.

Now (7.2.10) implies that the Rankine-Hugoniot condition (2.2.13) holds on
S1. Furthermore, (7.2.8) implies (7.2.3). From (7.2.3), using that S1 = {ξ1 =
ξ2 cot θsh + ξ̃1}, we find that point P0 = (ξ0

1 , ξ
0
1 tan θw) lies on S1. Also, (7.2.9)

and (7.2.6) imply (7.2.4), i.e., (1.13), or equivalently (2.2.9), holds. This can be
stated as the Bernoulli law:

ργ−1
2 + (γ − 1)

(1

2
|Dϕ2|2 + ϕ2

)
= ργ−1

0 . (7.2.14)

Thus, we have shown that ϕ2 defined above satisfies (7.1.5)–(7.1.7).
We also notice from (7.2.2) and (7.2.6) that

|u2|+ |v2| ≤ C(
π

2
− θw), (7.2.15)

by using (7.2.11) and (7.2.13). Then, reducing σ1 if necessary, we obtain from
(7.2.1) and (7.2.11) that, for θw ∈ [π2 − σ1,

π
2 ) and P0 = (ξ0

1 , ξ
0
1 tan θw),

|Dϕ2(P0)| > c2.

Furthermore, from (6.2.4) and the continuity of (ρ2, ξ̃1) with respect to θw on
(π2 − σ1,

π
2 ], it follows that, if σ > 0 is small,

|ξ̃1| < c2. (7.2.16)

Therefore, we have

Proposition 7.2.2. There exist positive constants σ1 and C depending only on
(ρ0, ρ1, γ) such that, for any θw ∈ [π2 − σ1,

π
2 ), there exists a state (2) of form

(7.2.1). Its parameters (u2, v2, ξ̃1), and the corresponding density and the sonic
speed (ρ2, c2), determined by (1.13) and (1.14), satisfy (7.2.11) and (7.2.15)–
(7.2.16). Moreover, ϕ2 is supersonic at P0, i.e., |Dϕ2(P0)| > c2.
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7.3 THE SHOCK POLAR FOR STEADY POTENTIAL FLOW
AND ITS PROPERTIES

The steady potential flow is governed by the following equations for the velocity
potential ϕ:





div(ρDϕ) = 0,

(u, v) = Dϕ,
1
2 (u2 + v2) + h(ρ) = K0 (Bernoulli’s law),

(7.3.1)

with the Bernoulli constant K0, where h(ρ) is given by (1.2).
Suppose that a point P0 lies on a smooth shock curve S separating two

smooth states, and {ν, τ} are the unit normal and tangent vectors to S at P0.
Furthermore, assume that the upstream velocity and density are v∞ = (u∞, 0)
and ρ∞, and the downstream velocity and density are v = (uO, vO) and ρO.
Then the condition that the equations in (7.3.1) hold in the weak sense across
S implies the following Rankine-Hugoniot conditions at P0:

ρOv · ν = ρ∞v∞ · ν, (7.3.2)
(v∞ − v) · τ = 0, (7.3.3)

ργ−1
O
γ − 1

+
1

2
|v|2 =

ργ−1
∞
γ − 1

+
1

2
u2
∞. (7.3.4)

If the upstream and downstream states are uniform, S is a straight line SO,
and {ν, τ} are the unit normal and tangent vectors to SO, respectively. Thus,
if (ρO, uO, vO) is a solution of (7.3.2)–(7.3.4) with some unit vectors {ν, τ}
such that ν · τ = 0, then ρO and (uO, vO) are the density and velocity of the
downstream uniform state, separated by the straight shock SO ⊥ ν from the
upstream uniform state with density ρ∞ and velocity (u∞, 0), which will be
denoted as the incoming uniform state (ρ∞, u∞) below.

We also note that, if SO forms an angle β with the positive v–axis,

ν = (cosβ,− sinβ) and τ = (sinβ, cosβ) (7.3.5)

are a unit normal and a unit tangent vector to SO, respectively. Of course,
replacing ν by −ν and/or τ by −τ does not change system (7.3.2)–(7.3.4).
However, if u∞ > 0 is assumed, then the uniform flow (ρ∞, u∞) is the upstream
state, and ν in (7.3.5) is the unit normal to SO toward downstream. In fact, the
choice of directions of the normal ν and the tangent vector τ to SO in (7.3.5)
for v 6= v∞ is uniquely determined by the following requirements:

ν =
v∞ − v

|v∞ − v| , τ · v∞ = τ · v ≥ 0. (7.3.6)

Therefore, we have
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Definition 7.3.1. Let ρ∞ > 0 and u∞ > 0, and let (ρ∞, u∞) be the incoming
uniform state. Then ρO and (uO, vO) are the density and velocity of the down-
stream uniform state behind a straight oblique shock SO of angle β ∈ [0, π2 ) with
the positive v–axis if (ρO, uO, vO) is a solution of (7.3.2)–(7.3.4) with vectors
{ν, τ} defined by (7.3.5).

The shock polar is the collection of all the downstream velocities (uO, vO)
for a fixed incoming uniform state (ρ∞, u∞).

7.3.1 Convexity and further properties of the steady shock polar

We now present some further properties of the steady shock polar.

Lemma 7.3.2. Fix γ ≥ 1 and the incoming constant state (ρ∞, u∞) with u∞ >

c∞ := ρ
γ−1

2∞ . Then, for any β ∈ [0, cos−1( c∞u∞ )], there exists a unique state
(uO, vO) ∈ R+ × R+ so that (uO, vO) becomes the downstream velocity behind
a straight oblique shock SO of angle β with the positive v–axis in the sense
of Definition 7.3.1, and satisfies the entropy condition |(uO, vO)| ≤ u∞. In
particular,

• For β ∈ [0, cos−1( c∞u∞ )), the entropy inequality is strict: |(uO, vO)| < u∞;

• For β = cos−1( c∞u∞ ), the unique downstream state has velocity (u∞, 0);

• For β ∈ (cos−1( c∞u∞ ), π2 ), there is no solution (downstream state) satisfying
|(uO, vO)| ≤ u∞.

Furthermore, the following properties hold:

(a) The collection of all (uO, vO) for β ∈ [0, cos−1( c∞u∞ )] forms a convex curve in
the upper half-plane {v ≥ 0} of the (u, v)–plane. The curve: [0, cos−1( c∞u∞ )] 7→
R2, defined by β 7→ (uO, vO), is called a shock polar for potential flow. The
shock polar is in C([0, cos−1( c∞u∞ )]; R2) ∩ C∞((0, cos−1( c∞u∞ )); R2).

(b) Function β 7→ uO satisfies u′O(β) > 0 on (0, cos−1( c∞u∞ )].

(c) The shock polar in the upper half-plane {v ≥ 0} is the graph:

{(u, fpolar(u)) : û0 ≤ u ≤ u∞},
where û0 ∈ (0, u∞) is the unique solution of the equation on (0, u∞):

(
ργ−1
∞ +

γ − 1

2
(u2
∞ − û2

0)
) 1
γ−1 û0 = ρ∞u∞. (7.3.7)

Also fpolar satisfies fpolar ∈ C([û0, u∞]) ∩ C∞((û0, u∞)) and

fpolar(û0) = fpolar(u∞) = 0. (7.3.8)

Moreover, fpolar is strictly concave:

f ′′polar(u) < 0 for all u ∈ (û0, u∞). (7.3.9)
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(d) For a downstream state (uO, vO), define the wedge angle:

θw = tan−1
( vO
uO

)
.

Since (uO, vO) is uniquely defined by angle β, the above equation defines a
function θw = Θw(β), where Θw ∈ C([0, cos−1( c∞u∞ )])∩C∞((0, cos−1( c∞u∞ ))).
Then there exist the detachment wedge angle θd ∈ (0, π2 ) and the detachment
shock angle βd ∈ (0, cos−1( c∞u∞ )) such that

(i) Θw(βd) = θd, and βd is uniquely determined in (0, cos−1( c∞u∞ )) by this
equation;

(ii) For any θw ∈ [0, θd), there exist two values of β such that Θw(β) =
θw: The strong reflection βsg ∈ [0, βd) and the weak reflection βwk ∈
(βd, cos−1( c∞u∞ )];

(iii) Θw(·) is strictly increasing on (0, βd) and strictly decreasing on
(βd, cos−1( c∞u∞ )) with

Θw(0) = Θw(cos−1(
c∞
u∞

)) = 0.

(e) There exists the sonic value βs ∈ (βd, cos−1( c∞u∞ )) such that

|(uO, vO)| < c(|(uO, vO)|2) if β ∈ (0, βs),

|(uO, vO)| > c(|(uO, vO)|2) if β ∈ (βs, cos−1(
c∞
u∞

)),
(7.3.10)

where c∞ = c(u2
∞), and the sonic speed c(q2) ≥ 0 and density ρ(q2) ≥ 0 are

defined by

c2(q2) = ργ−1(q2) := ργ−1
∞ +

γ − 1

2
(u2
∞ − q2). (7.3.11)

We also denote by θs the wedge angle, introduced in (d) above, corresponding
to βs, i.e., θs := Θ(βs).

(f) Denote ud := uO(βd) as the detachment value of u, and us := uO(βs) the
sonic value of u. Then

û0 < ud < us < u∞. (7.3.12)

Furthermore,

v = (u, fpolar(u)) is

{
strong reflection if u ∈ [û0, ud),

weak reflection if u ∈ (ud, u∞].
(7.3.13)

Also, for v = (u, fpolar(u)),

|v| < c(|v|2) if u ∈ [û0, us), |v| > c(|v|2) if u ∈ (us, u∞]. (7.3.14)

In particular, all the strong reflections are subsonic.
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(g) The continuous dependence on the parameters of the incoming flow (ρ∞, u∞):

(i) û0 is a C∞–function of (ρ∞, u∞) on the domain:

{(ρ∞, u∞) : ρ∞ > 0, u∞ > c∞};

(ii) Denote by fpolar(· ; ρ∞, u∞) the shock polar function fpolar(·) for the
incoming flow (ρ∞, u∞). Then the function: (u, ρ∞, u∞) 7→
fpolar(u; ρ∞, u∞) is C∞ on the domain:

{(u, ρ∞, u∞) : ρ∞ > 0, u∞ > c∞, û0(ρ∞, u∞) < u < u∞};

(iii) (ud, us), defined in assertion (f), have the property that

(ud, us) depend continuously on (ρ∞, u∞). (7.3.15)

(h) Any v = (uO, vO) 6= v∞ on the shock polar satisfies

g(v) :=
(
ρ(|v|2)v − ρ∞v∞

)
· v∞ − v

|v∞ − v| = 0, (7.3.16)

where ρ(|v|2) is defined by (7.3.11). Moreover, Dg 6= 0 on the shock polar
and, for all u ∈ (û0, u∞),

Dg(u, fpolar(u)) =
|Dg(u, fpolar(u))|√

1 + (f ′polar(u))2
(f ′polar(u), −1). (7.3.17)

Furthermore, for any v = (uO, vO) on the shock polar,

Dg(v) · v < 0 if and only if v is a weak reflection,

Dg(v) · v > 0 if and only if v is a strong reflection,
(7.3.18)

and

Dg(v) · v⊥ < 0 for all β ∈ (0, cos−1(
c∞
u∞

)], (7.3.19)

where v⊥ is uniquely determined by

v⊥ · v = 0, v⊥ · v∞ ≤ 0, |v⊥| = |v|.

Here we have used the definition of weak and strong reflections given in
assertion (d)(ii) above.

Proof. The convexity of the shock polar curve will be shown by adjusting the
proof of [108, Theorem 1] to the case of steady flow.

Fix γ > 1 and set v∞ := (u∞, 0). Let SO be a straight oblique shock
with angle π

2 − β from the horizontal ground that is the u-axis, and let ρO and
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v = (uO, vO) be the density and velocity behind shock SO. In this case, the
unit normal ν towards the downstream and the unit tangent τ obtained from
rotating ν by π

2 counterclockwise are given in (7.3.5). On SO, state (ρO,v)
satisfies the Rankine-Hugoniot conditions (7.3.2)–(7.3.4). We divide the proof
into nine steps.

1. We first reduce the general case to Case ρ∞ = 1. From the explicit
expressions, if (ρO,v) satisfies (7.3.2)–(7.3.4) for the incoming constant state
(ρ∞, u∞), then, defining û∞ and (ρ̂O, v̂) by

u∞ = c∞û∞, v = c∞v̂, ρO = ρ∞ρ̂O

with c∞ = ρ
γ−1

2∞ , we see that (ρ̂O, v̂) satisfies (7.3.2)–(7.3.4) for the incoming
constant state (ρ̂∞, û∞) = (1, û∞). Moreover, the direction of shock SO does
not change. Indeed, from (7.3.6), we have

ν =
v − v∞
|v − v∞|

=
v̂ − v̂∞
|v̂ − v̂∞|

= ν̂.

Therefore, from now on, we assume without loss of generality that ρ∞ = 1.
Then c∞ = 1, and condition u∞ > c∞ becomes

u∞ > 1,

and (7.3.2)–(7.3.4) can be written as

ρOv · ν = v∞ · ν, (7.3.20)

(v∞ − v) · τ = 0, (7.3.21)

ργ−1
O
γ − 1

+
1

2
(v · ν)2 =

1

γ − 1
+

1

2
(v∞ · ν)2 =

1

γ − 1
+

1

2
(u∞ cosβ)2, (7.3.22)

where h(ρ) is given by (1.2). In particular, (7.3.22) is obtained from the Bernoulli
law in (7.3.1) and (7.3.21). By (7.3.21), the angle between vector v − v∞ and
the horizontal axis in Fig. 7.1 is β.

By the expression of {ν, τ} above, we have

v∞ · ν = u∞ cosβ, v∞ · τ = u∞ sinβ,

v · ν = uO cosβ − vO sinβ, v · τ = uO sinβ + vO cosβ.
(7.3.23)

2. Fix β ∈ [0, π2 ). Seek a solution (v, ρO) of (7.3.20)–(7.3.22) satisfying the
entropy condition:

|(uO, vO)| ≤ u∞
and the conditions on β for the existence of such a solution.

Since (uO, vO) = (v · ν)ν + (v · τ )τ , and v · τ = u∞ sinβ by (7.3.21) and
(7.3.23), it remains to express v · ν in terms of u∞ and β. From (7.3.20) and
(7.3.22), qν := v · ν satisfies

ρ(q2
ν)qν = u∞ cosβ, (7.3.24)
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Figure 7.1: The shock polar for potential flow

where ρ(q2
ν) =

(
1 + γ−1

2 (u2
∞ cos2 β − q2

ν)
) 1
γ−1 . In order to satisfy the entropy

condition, we seek a solution qν satisfying that 0 ≤ qν < u∞ cosβ.
Introducing the function:

ΦK(q) := ρK(q2)q =
(
K − γ − 1

2
q2
) 1
γ−1 q on [0,

√
2K

γ − 1
], (7.3.25)

we rewrite equation (7.3.24) as

ΦK(q) = ΦK(u∞ cosβ) for K := 1 + γ−1
2 u2

∞ cos2 β. (7.3.26)

We compute

ΦK(0) = ΦK(

√
2K

γ − 1
) = 0,

Φ′K(q) =
(
K − γ − 1

2
q2
) 2−γ
γ−1
(
K − γ + 1

2
q2
)
,

Φ′K > 0 on [0, qc], Φ′K < 0 on [qc,

√
2K

γ − 1
],

(7.3.27)

where qc =
√

2K
γ+1 . Moreover, q = u∞ cosβ obviously satisfies equation (7.3.26).

Then there exists a unique solution qν such that 0 ≤ qν 6= u∞ cosβ. Moreover,
qν < u∞ cosβ if u∞ cosβ > qc. The condition that u∞ cosβ > qc is

u2
∞ cos2 β >

2(1 + γ−1
2 u2

∞ cos2 β)

γ + 1
, i.e., u∞ cosβ > 1.

Thus, from (7.3.27), we obtain the following properties: For any β ∈ [0, cos−1( 1
u∞

)),
there exists a unique qν ∈ (0, u∞ cosβ) satisfying (7.3.25). For β = cos−1( 1

u∞
),
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we obtain that u∞ cosβ = qc = 1, and hence the only solution of equa-
tion (7.3.25) is qν = u∞ cosβ. Also, qν is a continuous function of β on
[0, cos−1( 1

u∞
)].

Once qν is determined, we find (uO, vO) from the last two equations in
(7.3.23) by setting that v · ν = qν and v · τ = u∞ sinβ, where the last equality
follows from (7.3.21). Also, from the continuity of qν(β) on [0, cos−1( 1

u∞
)], we

see that (uO, vO) depends continuously on β ∈ [0, cos−1( 1
u∞

)].
Therefore, we have shown that, for every β ∈ [0, cos−1( 1

u∞
)], there ex-

ists (uO, vO) satisfying (7.3.20)–(7.3.22) and the entropy condition, and that
curve β 7→ (uO, vO) has the regularity stated in assertion (a). Also, since qν <
u∞ cosβ for all β ∈ [0, cos−1( 1

u∞
)), (uO, vO) · ν = qν < u∞ cosβ = (u∞, 0) · ν

for these angles. Using (7.3.21), we show that, for β 7→ (uO, vO), the entropy
inequality is strict: |(uO, vO)| < u∞. Moreover, since

(qν)|β=cos−1( 1
u∞ ) = u∞ cosβ = 1,

it follows that
(uO, vO)|β=cos−1( 1

u∞ ) = (u∞, 0).

Furthermore, by the implicit function theorem, we obtain from equation
(7.3.25) that

function (ρ∞, u∞, β) 7→ (uO, vO) is C∞ on the set:

{(ρ∞, u∞, β) : ρ∞ > 0, u∞ > c∞, 0 < β < cos−1(
c∞
u∞

)}. (7.3.28)

Now, plugging (7.3.23) into (7.3.20)–(7.3.21), we have

(uO, vO) = (u∞(1− (1− 1

ρO
) cos2 β), u∞(1− 1

ρO
) cosβ sinβ). (7.3.29)

Combining the entropy condition with (7.3.21)–(7.3.22) implies

ρO > ρ∞ = 1 (7.3.30)

for each β. Then, by (7.3.29), curve β 7→ (uO, vO) for β ∈ (0, cos−1( c∞u∞ )) lies in
the first quadrant of the (u, v)–plane and is bounded.

Thus, we have proved the existence of (uO, vO, ρO), satisfying the conditions
in Definition 7.3.1, the entropy condition for all β ∈ [0, cos−1( c∞u∞ )], and the
properties of the shock polar stated in assertion (a).

3. Next, we prove assertion (b). Set Mν := v·ν
cO

and M∞,ν = v∞ · ν for

cO = ρ
γ−1

2

O . Also, since β ∈ [0, cos−1( 1
u∞

)], we employ (7.3.23) to conclude
M∞,ν > 1.

Furthermore, we note that (7.3.27) implies that the unique solution qν ∈
(0, u∞ cosβ) of (7.3.26) satisfies qν < qc for every β ∈ [0, cos−1( 1

u∞
)). Then,

from (7.3.25),
ργ−1
K (qν) > ργ−1

K (qc) = q2
c > q2

ν ,
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where the equality holds, since qc =
√

2K
γ+1 . Note that, for a fixed β, v · ν = qν

for K defined in (7.3.26). Since c2O = ργ−1
O = ργ−1

K (qν), we can rewrite the above
inequality as

(v · ν)2 < c2O, (7.3.31)

which implies that Mν < 1. Thus, we have shown that

0 < Mν < 1 < M∞,ν .

Plugging these expressions into (7.3.20) and (7.3.22), and then combining the
resulting expressions, we obtain the equation:

g(Mν) = g(M∞,ν), (7.3.32)

where
g(M) =

(
M2 +

2

γ − 1

)
M−

2(γ−1)
γ+1 .

We note that g′(M) = 4
γ+1 (M− 1

M )M−
2(γ−1)
γ+1 < 0 for 0 < M < 1, and g′(M) > 0

for M > 1. Thus, differentiating equation (7.3.32) with respect to β and using
0 < Mν < 1 < M∞,ν = u∞ cosβ, we obtain that, on (0, cos−1

(
1
u∞

)
],

dMν

dβ
=

g′(M∞,ν)

g′(Mν)

dM∞,ν
dβ

= −g′(M∞,ν)

g′(Mν)
u∞ sinβ > 0. (7.3.33)

Using the definition of Mν , we can write equation (7.3.24) as follows:

ρ
γ+1

2

O Mν = u∞ cosβ.

Differentiating this equation with respect to β and using (7.3.33), we have

dρO
dβ

< 0 for all β ∈ (0, cos−1
( 1

u∞

)
]. (7.3.34)

From (7.3.29), we have

duO
dβ

= u∞

((
1− 1

ρO

)
sin(2β)− cos2 β

ρ2
O

dρO
dβ

)
.

Thus, using (7.3.30) and (7.3.34), we conclude assertion (b).
This also implies assertion (c), except for the convexity part. In particular,

the definition of û0 in (c) is from the fact that û0 := (uO)|β=0 satisfies equation
(7.3.24) for β = 0. Noting that, for β = 0, ν = (1, 0) such that uO = v · ν, we
conclude that equation (7.3.24) for β = 0 is (7.3.7).

This also implies the smooth dependence of û0 on (ρ∞, u∞) as stated in part
(i) of assertion (g). Since the problem has been reduced to Case ρ∞ = 1 by a
smooth transformation, it suffices to consider the continuity of û0 with respect
to u∞, while keeping ρ∞ = 1.
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This continuity can be seen as follows: Note that qν = û0 is the unique
solution of equation (7.3.24) for β = 0, satisfying qν ∈ (0, qc(u∞)|β=0). Then
the C∞–smoothness of u∞ 7→ û0 follows from the implicit function theorem by
using form (7.3.26) of equation (7.3.24), considering ΦK(q) − ΦK(u∞) with K
defined in (7.3.26) and β = 0 as a function of (u∞, q), and using that ∂ΦK

∂q > 0

for any q ∈ (0, qc(u∞)|β=0) by (7.3.27).

4. Now we prove the strict convexity of the shock polar, i.e., the convexity
of curve (uO(β), vO(β)) for β ∈ [0, cos−1( c∞u∞ )].

Let v = (u, v) denote a point on the shock polar curve, corresponding to
β ∈ (0, cos−1( c∞u∞ )), i.e., v 6= v∞. By (7.3.21), the unit normal ν to SO is
defined by (7.3.6) up to the orientation. Plugging this expression into (7.3.20)
and expressing ρO from (7.3.4), we obtain equation (7.3.16) with ρ∞ = 1. On
the other hand, if ν and τ for v 6= v∞ are defined by (7.3.6), then (7.3.21)
holds. Under this condition, (7.3.20) with ρ defined by (7.3.23) is equivalent to
(7.3.16). This means that the shock polar curve is the zero level set of function
g on the first quadrant of the (u, v)–plane. Also, (7.3.21) holds on the shock
polar. Then, differentiating g and using (7.3.21), we obtain that, on the shock
polar,

gv · ν = ρ
(

1−
(v · ν

c

)2)
,

gv · τ = −(v∞ · τ )
(ρv · ν

c2
+

ρ− 1

|v∞ − v|
)
.

(7.3.35)

As we have discussed earlier, Mν < 1, which implies

gv · ν > 0.

Then we can define a vector q by

q =
gv

gv · ν
= ν +

gv · τ
gv · ν

τ .

We claim that

q× qβ < 0 for β ∈ (0, cos−1
(

1
u∞

)
).

Set A := − gv·τgv·ν . Noting that ν = (cosβ,− sinβ) and τ = (sinβ, cosβ), we find
that qβ = −(1 +Aβ)τ −Aν, which yields

q× qβ = −(1 +A2 +Aβ).

By (7.3.35), on the shock polar, A can be written as

A =
u∞ sinβ

1−M2
ν

(Mν

c
+

1

u∞ cosβ

)
for Mν :=

v · ν
c

,
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where we have used that (7.3.20)–(7.3.21) hold on the shock polar so that |v∞−
v| = (1− ρ∞

ρ )(v∞ · ν) = (1− ρ∞
ρ )u∞ cosβ. From (7.3.34), we obtain

dcO
dβ

< 0 on [0, cos−1 1
u∞

).

Then, using (7.3.33), we obtain that Aβ ≥ 0, which yields

q× qβ ≤ −1 for β ∈ (0, cos−1
(

1
u∞

)
].

From the definition of q, we see that q 6= 0. Then we finally obtain

q

|q| ×
(

q

|q|

)

β

=
q× qβ
|q|2 ≤ − 1

|q|2 < 0 (7.3.36)

on the shock polar curve.
Fix a point P0 = (uO, vO) on the curve that g(v) = 0, and let P0 correspond

to β0 for β0 ∈ (0, cos−1
(

1
u∞

)
).

Connect (u∞, 0) to P0 by a line L. Let L∗ be the line perpendicular to L
and passing through P0. Then vectors {ν, τ}, introduced above, are parallel to
lines L and L∗, respectively. We introduce a coordinate system (s, t) with basis
{ν, τ}. Then gs = −gv · ν < 0 at P0. Thus, we can apply the implicit function
theorem to see that there exists a function fP0 so that

{g(v) = 0, |v − P0| < ε0} = {(fP0
(t), t) : |t− tP0

| < ε1}

for some small positive constants ε0 and ε1. Note that q
|q| is the unit normal to

the shock polar at P0 with q
|q| · ν > 0. Then q

|q| can be expressed as

q

|q| =
(−f ′P0

(t), 1)√
1 + (f ′P0

)2(t)
for |t− tP0

| < ε1,

from which
q

|q| ×
(

q

|q|

)

t

=
f ′′P0

(t)

1 + (f ′P0
)2(t)

.

From the definition of the (s, t)–coordinates,
(

q

|q|

)

t

(P0) =
1

B

(
q

|q|

)

β

(P0),

where B = |P0 − (u∞, 0)| > 0. Then (7.3.36) implies that

f ′′P0
(tP0) < 0 for β0 ∈ (0, cos−1 1

u∞
).

This implies the strict convexity (7.3.9). One can repeat this argument to lead
to the same conclusion about the shock polar for Case γ = 1.
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Now we prove assertion (d). We have shown in Step 2 that curve β 7→
(uO, vO) for β ∈ (0, cos−1( c∞u∞ )) lies in the first quadrant of the (u, v)–plane and
is bounded. This implies that we can find θd ∈ (0, π2 ) such that line v

u = tan θd

is tangential to the shock polar curve, and the whole curve lies between line
v
u = tan θd and the u–axis in the first quadrant of the (u, v)–plane. Combining
the strict convexity of the shock polar with its structure of the graph as described
in assertion (c), property (7.3.8), we obtain that line v

u = tan θd has exactly
one contact point with the shock polar and, for any θw ∈ [0, θd), line v

u =
tan θw intersects with the curve of (uO, vO) at exactly two different points.
Applying the monotonicity shown in assertion (b) and using (7.3.8) again, we
obtain the existence of Θ(·) and its properties (i)–(iii) in assertion (d). Now
the regularity that Θw ∈ C([0, cos−1( c∞u∞ )]) ∩ C∞((0, cos−1( c∞u∞ ))) follows from
Θw(β) = tan−1

(
vO
uO

)
(β), the regularity of (uO, vO)(·) in assertion (a), and the

fact that uO ∈ [û0, u∞] with û0 > 0.
Now assertions (a)–(d) are proved.

5. Next we prove assertion (h). We first show (7.3.18). As shown in Step
4, equation (7.3.16) holds and Dg 6= 0 on the shock polar. Then the strict
convexity of the shock polar and its structure described in assertion (c) imply
that Dg(v) · v = 0 if and only if v is the detachment point that corresponds to
angle βd introduced in (d) and the sign of Dg(v) · v as a continuous function
of β ∈ [0, cos−1( c∞u∞ )] changes across β = βd. Therefore, it remains to check the
sign of Dg(v) · v for some β ∈ [0, βd).

At β = 0, as shown in Step 2, we have

ν = (1, 0), v = (û0, 0), 0 < û0 < c.

Then, from (7.3.35),

Dg(v) · v = ρ(1− û2
0

c2
) > 0 at β = 0.

Thus,

Dg(v) · v
{
> 0 for all β ∈ [0, βd),

< 0 for all β ∈ (βd, cos−1( c∞u∞ )].

This implies (7.3.18).
Furthermore, since g(v) = 0 and Dg(v) 6= 0 on the shock polar:

{(u, fpolar(u)) : û0 ≤ u ≤ u∞},

then either (7.3.17) holds on the whole shock polar or the right-hand side of
(7.3.17) is equal to the minus left-hand side of (7.3.17) on the whole shock
polar. Thus, it suffices to check the sign at one point. Choose any θw ∈ (0, θd).
As we have discussed at the end of Step 4, line v

u = tan θw intersects with the
curve of (uO, vO) at exactly two different points which lie in the first quadrant.
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Let v = (uO, fpolar(uO)) be the nearest to the origin of intersection. It follows
that the segment connecting the origin to v lies outside of the open convex set:

A := {(u, v) : û0 < u < u∞, 0 < v < fpolar(u)};

the line containing that segment (i.e., line v = u tan θw) has a non-empty inter-
section with A, and v ∈ ∂A. This implies that f ′polar(uO) >

fpolar(uO)
uO

. Then

v · (f ′polar(uO),−1) = (uO, fpolar(uO)) · (f ′polar(uO),−1) > 0.

Since Dg(v) · v > 0, we conclude (7.3.17) at v, and hence also on the whole
shock polar.

6. We continue the proof of assertion (h). It remains to show (7.3.19). We
can write (7.3.35) as

gv = ρOν −
ρO
c2O

(v · ν)v − ρO − 1

|v − v∞|
(v · τ )τ .

Let β 6= 0, i.e., β ∈ (0, cos−1( c∞u∞ )]. Then v = (uO, vO) and v∞ = (u∞, 0) with
uO, vO, u∞ > 0. Thus, from the definition of v⊥, it follows that

v⊥ = (−vO, uO),

that is, v⊥ is a counterclockwise rotation of v. Then, from (7.3.5),

τ = ν⊥,

so that v⊥ · ν = −v · τ and v⊥ · τ = v · ν. We calculate

gv · v⊥ = −(v · τ )
(
ρO +

ρO − 1

|v − v∞|
(v · ν)

)
< 0,

where we have used that ρO ≥ 1 by (7.3.22) and the entropy condition, and

v · ν > 0, v · τ > 0. (7.3.37)

The first inequality in (7.3.37) follows by (7.3.20), since ρOvν > 0 and v∞ ·ν =
u∞ cosβ > 0, where we have used (7.3.5). The second inequality in (7.3.37)
for β ∈ (0, cos−1( c∞u∞ )] follows by (7.3.5) and uO, vO > 0. Now assertion (h) is
proved.

7. It remains to prove assertions (e)–(g). In this step, we first prove assertion
(e).

Assertion (a) implies that the function:

β 7→ (qO, cO) is in C([0, cos−1( 1
u∞

)]; R2) ∩ C∞((0, cos−1( 1
u∞

)); R2).

Then we need to show that there exists a unique solution βs ∈ [0, cos−1
(

1
u∞

)
]

of the equation:
cO = qO (7.3.38)
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for qO = |(uO, vO)|, where qO and cO are functions of β (for fixed u∞ and
ρ∞ = 1).

Differentiating the Bernoulli law in (7.3.1), we obtain that dρO
dqO

= −ρOqO
c2O

.
Thus, (7.3.34) implies that

dqO
dβ

> 0 for all β ∈ (0, cos−1
( 1

u∞

)
].

Moreover, (7.3.34) implies that dcO
dβ < 0. Also, qO, cO > 0. Then

d( qOcO )

dβ
> 0 for all β ∈ (0, cos−1

( 1

u∞

)
]. (7.3.39)

Since v|β=0 = (û0, 0) by (7.3.29), and ν|β=0 = (1, 0), we conclude that û0 =
(v · ν)|β=0. Then (7.3.31) implies that

qO
cO

∣∣∣
β=0

=
û0

cO|β=0

< 1.

Since (uO, vO)|β=cos−1( 1
u∞ ) = (u∞, 0), as discussed in Step 2, and u∞ > c∞ by

the assumption, we obtain

qO
cO

∣∣∣
β=cos−1( 1

u∞ )
=
u∞
c∞

> 1.

This implies that there exists a unique βs ∈ (0, cos−1( c∞u∞ )) so that (7.3.10)
holds.

It remains to show that βs > βd, i.e., that the strong reflections are subsonic.
From (7.3.35), using the notations that vν = v · ν and vτ = v · τ , and recalling
that ρ∞ = 1, we have

gv · v = ρOvν

(
1− |v|

2

c2O

)
− v2

τ

ρO − 1

|v∞ − v| at βs.

We note that ρO > 1 by (7.3.22) and the entropy condition, where the inequality
is strict since βs ∈ (0, cos−1( c∞u∞ )). Then ρOvν > 0 by (7.3.37). Thus, gv ·v < 0

if |v|2 ≥ c2O. Then, using assertion (h), proved above, we see that |v|2 ≥ c2O can
hold only for (strictly) weak reflections. This implies that βs > βd.

8. We now prove assertion (f) with the following steps:

• (7.3.12) follows from the inequality: 0 < βd < βs < cos−1( c∞u∞ ), proved in
assertions (d) and (e), by using assertion (b) and recalling that uO(0) = û0

and uO
(

cos−1( c∞u∞ )
)

= u∞;

• (7.3.13) follows from assertions (b) and (d);

• (7.3.14) follows from assertions (b) and (e).
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9. It remains to prove assertion (g). Since we have reduced the problem
to Case ρ∞ = 1 by a smooth explicit transformation, it suffices to prove the
continuity and regularity stated in (g) with respect to the other parameters
stated there, while keeping ρ∞ = 1 fixed.

Part (i) of assertion (g) has been shown at the end of Step 3 above.
Part (ii) of assertion (g) follows from part (i), property (7.3.28), assertion

(b), the regularity of β 7→ uO in assertion (a), and the regularity of fpolar in
assertion (c).

Part (iii) of assertion (g) can be seen as follows: We first show the conti-
nuity of ud(u∞). Recall that (ud, vd) are the coordinates of the unique con-
tact point of the tangent line Ld = {v = u tan θd} from the origin to graph
{v = fpolar(u) : û0 ≤ u ≤ u∞} of the strictly concave and positive func-
tion fpolar ∈ C∞((û0, u∞))∩C([û0, u∞]) satisfying fpolar(û0) = fpolar(u∞) = 0.
These properties, combined with the continuity property of parts (i)–(ii) of as-
sertion (g), imply the continuous dependence of ud on u∞. Indeed, if u(j)

∞ → u∗∞,
then, from (i)–(ii) of assertion (g) and the concavity of f (j)

polar and f∗polar, it is

easy to see that lines L(j)
d converge to the tangent line L∗d from the origin to

graph {v = f∗polar(u) : û∗0 ≤ u ≤ u∗∞} and, for any subsequence of the contact
points of L(j)

d with graphs {v = f
(j)
polar(u) : û

(j)
0 ≤ u ≤ u

(j)
∞ }, we can extract a

further subsequence converging to a contact point of the limiting line and graph.
Such a contact point is unique, since f∗polar(·) is strictly concave and positive in
(û∗0, u

∗
∞) with f∗polar(û

∗
0) = f∗polar(u

∗
∞) = 0; we denote the unique contact point

by (u∗d, v
∗
d). Thus, u(j)

d → u∗d.
Now we show the continuity of us(u∞). From (7.3.28) and assertion (b), it

suffices to show that βs depends continuously on u∞, where βs ∈ (βd, cos−1( c∞u∞ ))

is defined in assertion (e). Recall that βs ∈ (0, cos−1( 1
u∞

)) is a solution of
equation (7.3.38). Considering qO and cO as functions of (u∞, β) (with ρ∞ = 1
fixed) and using (7.3.28) and (7.3.39) (where the derivative is now understood
as the partial derivative), we apply the implicit function theorem to obtain the
continuous dependence of u∞ 7→ βs, which yields the continuity of us(u∞).

7.3.2 The limit of the detachment angle as the upstream velocity
tends to the sonic speed for steady flow

Denote by θ̂d
w(u∞) the detachment angle for the steady incoming uniform flow

(ρ∞, u∞).

Lemma 7.3.3. Fix ρ∞ > 0. Then, for u∞ > c∞,

lim
u∞→c∞+

θ̂d
w(u∞) = 0.

Proof. In this proof, we denote û0 defined in Lemma 7.3.2(c) for the steady
incoming uniform flow (ρ∞, u∞) by û(u∞)

0 , while ρ∞ is fixed through this proof.
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1. We first show that

lim
u∞→c∞+

û
(u∞)
0 = c∞. (7.3.40)

Let u∞ > c∞. Then û(u∞)
0 ∈ (0, u∞) satisfies (7.3.7), which can be written

as
ρ̂(u2
∞, (û

(u∞)
0 )2)û

(u∞)
0 = ρ∞u∞, (7.3.41)

where
ρ̂(s2, t2) =

(
ργ−1
∞ +

γ − 1

2
(s2 − t2)

) 1
γ−1 .

Denote
Φ(s, t) := ρ̂(s2, t2)t.

We calculate:

∂Φ

∂t
(s, t) = ρ̂2−γ(s2, t2)

(
ργ−1
∞ +

γ − 1

2
s2 − γ + 1

2
t2
)
.

Then, for each s ≥ c∞, Φ(s, ·) is:

(i) defined on (0,

√
2

γ − 1
ργ−1
∞ + s2);

(ii) C∞ smooth on its domain;

(iii) ∂Φ
∂t (s, ·) > 0 on (0,

√
2

γ+1 (ργ−1
∞ + γ−1

2 s2) ), and
∂Φ
∂t (s, ·) < 0 on (

√
2

γ+1 (ργ−1
∞ + γ−1

2 s2),
√

2
γ−1ρ

γ−1
∞ + s2 ).

We also note that ρ∞ = ρ̂(u2
∞, u

2
∞). Thus, equation (7.3.41) can be written as

Φ(u∞, û
(u∞)
0 ) = Φ(u∞, u∞).

If u∞ > c∞ = ρ
γ−1

2∞ , u∞ >
√

2
γ+1 (ργ−1

∞ + γ−1
2 u2

∞), i.e., ∂Φ
∂t (u∞, u∞) < 0. From

properties (i)–(iii) above, and since Φ(u∞, 0) = 0 and Φ(u∞, u∞) = ρ∞u∞ > 0,
we conclude that, for each u∞ > c∞, there exists a unique solution û

(u∞)
0 ∈

(0, u∞) of (7.3.41).
Let u(i)

∞ → c∞ as i → ∞. Then there exists a subsequence (still denoted)
û

(u(i)
∞ )

0 converging to some constant û∗0 ∈ [0, c∞]. Taking the limit in (7.3.41),
using the smoothness of Φ(·, ·) in a neighborhood of {c∞}× [0, c∞], and recalling
that ρ∞ = ρ̂(u2

∞, u
2
∞), we have

Φ(c∞, û
∗
0) = Φ(c∞, c∞).

Note that c∞ = ρ
γ−1

2∞ =
√

2
γ+1 (ργ−1

∞ + γ−1
2 c2∞). Then it follows from property

(iii) of Φ(s, ·) that û∗0 = c∞. Therefore, (7.3.40) is proved.
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2. Let u(i)
∞ → c∞ as i→∞. Assume that there exists δ > 0 such that

θ̂d
w(u(i)
∞ ) ∈ (δ,

π

2
) for all i. (7.3.42)

Then we denote by (u
(i)
d , v

(i)
d ) the coordinates of the corresponding detachment

point on the shock polar f (u∞)
polar (·), i.e., the unique u

(i)
d ∈ [û

(u(i)
∞ )

0 , u
(i)
∞ ] with

u
(i)
d tan(θ̂d

w(u
(i)
∞ )) = f

(u∞)
polar (u

(i)
d ), and by βi the corresponding β–angle defined in

§7.3.1. From this, using u(i)
∞ → c∞ > 0, (7.3.40), and (7.3.42), we have

tanβi =
u

(i)
d tan(θ̂d

w(u
(i)
∞ ))

u
(i)
∞ − u(i)

d

→∞,

which implies
βi →

π

2
−, (7.3.43)

since βi ∈ (0, π2 ).
On the other hand, since (u

(i)
∞ , 0) and (u

(i)
d , v

(i)
d ) satisfy the Rankine-Hugoniot

conditions (7.3.20)–(7.3.21) on the straight-line shock:

{(u, v) : v = u cot(βd
w(u(i)
∞ ))},

where βd
w is angle β from Definition 7.3.1 for the detachment point of the shock

polar for the incoming flow (u∞, ρ∞) (where ρ∞ has been fixed at the beginning
of the proof). Then the equality of the tangential to the shock components of
(u

(i)
∞ , 0) and (u

(i)
d , v

(i)
d ) implies

u(i)
∞ sinβi = q

(i)
O sin(βi + θ̂d

w(u(i)
∞ )),

where q(i)
O =

∣∣(u(i)
d , v

(i)
d )
∣∣. Moreover, from the Rankine-Hugoniot conditions

(7.3.20)–(7.3.21), we know that u(i)
∞ ≥ q(i)

O for any i. From this and (7.3.43), we
have

lim inf
i→∞

sin(βi + θ̂d
w(u(i)
∞ )) = lim inf

i→∞

(u(i)
∞

q
(i)
O

sinβi

)
≥ 1,

which implies
lim
i→∞

sin(βi + θ̂d
w(u(i)
∞ )) = 1.

This is impossible, since both θ̂d
w(u

(i)
∞ ) ∈ (δ, π2 ) and (7.3.43) hold. Thus, (7.3.42)

is impossible. This completes the proof.

7.4 LOCAL THEORY FOR SHOCK REFLECTION: EXISTENCE
OF THE WEAK AND STRONG STATE (2) UP TO THE
DETACHMENT ANGLE

Proof of Theorem 7.1.1. We divide the proof into five steps.



264 CHAPTER 7

1. For any angle θw ∈ (0, π2 ), the existence of the weak and strong state (2)
can be proved by employing the steady shock polar.

We start by fixing θw ∈ (0, π2 ). This determines the reflection point P0 =
(ξ0

1 , ξ
0
1 tan θw) that is the intersection point of the incident shock with the wedge

boundary Γwedge = {ξ2 = ξ1 tan θw}, and the incident shock is line {ξ1 = ξ0
1}

with ξ0
1 = ρ1u1

ρ1−ρ0
> u1; see §6.2.

Note that we can rewrite (7.1.5) with ρ(·) given by (2.2.9) as

ρ2Dϕ2(P0) · ν = ρ1Dϕ1(P0) · ν,
Dϕ2(P0) · τ = Dϕ1(P0) · τ ,

ργ−1
2

γ − 1
+

1

2
|Dϕ2(P0)|2 =

ργ−1
1

γ − 1
+

1

2
|Dϕ1(P0)|2,

(7.4.1)

where ν, τ , and ρk, k = 1, 2, are defined in (7.1.5). Note that the condition that
ϕ2(P0) = ϕ1(P0) has been used to write the Bernoulli law (2.2.9), as the last
line in (7.4.1).

Also, with possibly changing τ to −τ , we may assume that

τ ·Dϕ1(P0) ≥ 0.

We consider (7.4.1) as an algebraic system for (ρ2, Dϕ2(P0)). Note that, if
(ρ2, Dϕ2(P0)) satisfy (7.4.1), the pseudo-potential ϕ2 of the self-similar uniform
state uniquely determined by ϕ2(P0) := ϕ1(P0) and Dϕ2(P0), i.e.,

ϕ2(ξ) = ϕ2(P0) +Dϕ2(P0) · (ξ − P0)− 1

2
(ξ − P0)2

satisfies (7.1.5), and its density, calculated by (2.2.9), is ρ2 = ρ(|Dϕ2|2, ϕ2).
The last assertion follows from (7.4.1), since ρ1 = ρ(|Dϕ1|2, ϕ1) and ϕ2(P0) =
ϕ1(P0). Therefore, we have proved the following claim:

Claim 7.4.1. Every state (2) for a self-similar wedge angle θw ∈ (0, π2 ) is
determined by a solution (ρ2, Dϕ2(P0)) of algebraic system (7.4.1) with P0 =
(ξ0

1 , ξ
0
1 tan θw).

Therefore, from now on, we study the existence and multiplicity of solutions
of the algebraic system (7.4.1) with P0 = (ξ0

1 , ξ
0
1 tan θw).

Fix a self-similar wedge angle θw ∈ (0, π2 ). Denote

τ (0)
w := −(cos θw, sin θw). (7.4.2)

Then τ (0)
w is a unit tangent vector to the wedge boundary Γwedge and

τ (0)
w ·Dϕ1(P0) > 0 for all θw ∈ (0,

π

2
). (7.4.3)



LOCAL THEORY AND VON NEUMANN’S CONJECTURES 265

Fact (7.4.3) can be seen as follows: Since Dϕ1(P0) = (u1 − ξ0
1 ,−ξ0

1 tan θw) by
(2.2.17), and ξ0

1 > u1 by (2.2.18), we have

τ (0)
w ·Dϕ1(P0) = (cos θw, sin θw) · (ξ0

1 − u1, ξ
0
1 tan θw)

=
ξ0
1

cos θw
− u1 sin θw > 0.

(7.4.4)

Thus, we can define the coordinate system with the origin at P0 and basis
{e(P0), e⊥(P0)} such that

e(P0) :=
Dϕ1(P0)

|Dϕ1(P0)| ,

e⊥(P0) ⊥ e(P0), e⊥(P0) · νw > 0,

(7.4.5)

where e⊥(P0) · νw 6= 0 by (7.4.3). Then we see that conditions (7.4.1) co-
incide with the Rankine-Hugoniot conditions (7.3.2)–(7.3.3) and the Bernoulli
law (7.3.4) for the steady shock with incoming steady flow:

(ρ∞, u∞) = (ρ1, |Dϕ1(P0)|). (7.4.6)

Definition 7.4.2. Fix the self-similar uniform state ϕ1(ξ) with density ρ1 and
sonic speed c1. For ξ ∈ R2 \ Bc1(O1), we denote by f (ξ)

polar(·) the steady shock
polar considered in Lemma 7.3.2 for the steady incoming flow with density and
velocity (ρ∞, u∞) = (ρ1, |Dϕ1(ξ)|); see Fig. 7.2.

We use the notations introduced in Lemma 7.3.2 below. One difference is
that θ̂w is denoted as the wedge angle for steady flow, introduced in Lemma
7.3.2(d), which will not be the same as the wedge angle θw for self-similar flow
in our application.

Note that, if state (2) exists for some θw ∈ (0, π2 ), the boundary condition
(7.1.7) and property (7.4.3) imply that

Dϕ2(P0) = |Dϕ2(P0)|τ (0)
w .

Thus, angle θ̂w between Dϕ1(P0) and Dϕ2(P0) is

θ̂w = θ̂w(θw) := cos−1(
Dϕ1(P0) · τ (0)

w

|Dϕ1(P0)| ) ∈ (0,
π

2
), (7.4.7)

where the last inclusion follows from both (7.4.3) and the fact that Dϕ1(P0) =

(u1− ξ0
1 ,−ξ0

1 tan θw) is not parallel to τ (0)
w , since u1 6= 0. From Lemma 7.3.2(d),

it follows that (ρ2, Dϕ2(P0)) satisfying (7.4.1)–(7.4.5) (or its non-existence) is
determined by the shock polar f (P0)

polar(·) and the steady wedge angle θ̂w defined

above. More precisely, by Lemma 7.3.2(c)–(d) and Definition 7.4.2 of f (ξ)
polar(·),

Dϕ2(P0) = u e(P0) + f
(P0)
polar(u)e⊥(P0), (7.4.8)
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where u is determined by the intersection point (u, v) of the shock polar curve:

{(u, v) : û
(|Dϕ1(P0)|)
0 ≤ u ≤ |Dϕ1(P0)|, v = f

(P0)
polar(u)}, (7.4.9)

with line {(u, v) : v = u tan θ̂w}. Note that, for the steady shock polar de-
scribed above, θ̂w in (7.4.7) is the angle introduced in Lemma 7.3.2(d) (denoted
by θw there). Thus, we have

Definition 7.4.3. Angle θ̂w = θ̂w(θw), defined by (7.4.7) for (P0, τ
(0)
w )(θw), is

called a steady wedge angle corresponding to the self-similar wedge angle θw ∈
(0, π2 ).

Furthermore, using Lemma 7.3.2(d), we see that the existence or non-existence
of solutions (ρ2, Dϕ2(P0)) of (7.4.1), when (7.1.11) holds, is determined as fol-
lows:

(a) If θ̂w < θ̂d
w(ρ1, |Dϕ1(P0)|), there are two solutions;

(b) If θ̂w = θ̂d
w(ρ1, |Dϕ1(P0)|), there is one solution;

(c) If θ̂w > θ̂d
w(ρ1, |Dϕ1(P0)|), there is no solution.

Here θ̂d
w(ρ∞, u∞) denotes the detachment angle for the steady incoming flow

(ρ∞, u∞) defined in Lemma 7.3.2(d) (denoted by θd there).
2. By Proposition 7.2.2, there exists σ1 > 0 such that, for any self-similar

wedge angle θw ∈ (π2−σ1,
π
2 ), there exists a solution (ρ2, Dϕ2(P0)) of (7.4.1) such

that |Dϕ2(P0)| > c2, i.e., the steady uniform flow (ρ2, Dϕ2(P0)) is supersonic:
|Dϕ2(P0)| > c2.

We note that, from Lemma 7.3.2(d)–(f), it follows that the unique solution
for the steady detachment wedge angle θ̂d

w is v = (ud, fpolar(ud)) which is sub-
sonic by (7.3.12). Since, for any self-similar wedge angle θw ∈ (π2 − σ1,

π
2 ), the

steady uniform flow (ρ2, Dϕ2(P0
(θw))) is supersonic as we have shown above,

it follows from Lemma 7.3.2(d)–(f) that, in this case, there exist two solutions
(ρwk

2 , Dϕwk
2 (P0)) and (ρsg

2 , Dϕ
sg
2 (P0)) of (7.4.1) with ρwk

2 < ρsg
2 , and solution ϕsg

2

is subsonic at P0, i.e., |Dϕsg
2 (P0)| < csg2 = (ρsg

2 )
γ−1

2 . Note that (ρ2, Dϕ2(P0))
obtained in §7.2 is the weak reflection solution (ρwk

2 , Dϕwk
2 (P0)), since it is su-

personic.
This implies that, for any self-similar wedge angle θw ∈ (π2 − σ1,

π
2 ), there

exist two solutions ϕwk
2 and ϕsg

2 for state (2).
Moreover, since Dϕwk

2 (P0) > cwk
2 for θw ∈ (π2 − σ1,

π
2 ) as discussed above,

then, by Lemma 7.3.2(d)–(e), we obtain that, for any θw ∈ (π2 − σ1,
π
2 ),

θ̂w(θw) < θ̂s
w(ρ1, |Dϕ1(P0

(θw))|) < θ̂d
w(ρ1, |Dϕ1(P0

(θw))|), (7.4.10)

where θ̂s
w(ρ∞, u∞) denotes the sonic angle for the steady incoming flow (ρ∞, u∞)

defined in Lemma 7.3.2(e).
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3. We next prove the existence of the self-similar detachment angle θd
w ∈

(0, π2 ) and assertions (i)–(iv) and (vi) of Theorem 7.1.1.
We first note that the incident shock S0 = {ξ1 = ξ0

1} is the shock between
states (0) and (1) with ρ0 < ρ1. Denoting by νS0 := (−1, 0) the normal to S0,
we have

Dϕ0(ξ) · νS0
= ξ0

1 > ξ0
1 − u1 = Dϕ1(ξ) · νS0

for all ξ ∈ S0.

Applying Lemma 6.1.2 with ϕ− = ϕ0 and ϕ+ = ϕ1, we obtain from (6.1.4) that
Bc1(O1) ∩ S0 6= ∅, that is,

c1 > ξ0
1 − u1.

Thus, denoting

θ+
w := tan−1(

√
c21 − (ξ0

1 − u1)2

ξ0
1

) > 0,

we obtain that the steady uniform flow (ρ1, |Dϕ1(P0
(θ+

w ))|) is sonic, and

|Dϕ1(P0
(θw))| > c

(θw)
1 for all θw ∈ (θ+

w ,
π

2
).

On the other hand,

θ̂+
w := θ̂w(θ+

w ) = ∠O1P0
(θ+

w )P3 > 0.

Using Lemma 7.3.3 and the continuous dependence of θ̂w on θw, we conclude
that there exists δ > 0 such that

θ̂w(θw) > θ̂d
w(ρ1, |Dϕ1(P0

(θw))|) for all θw ∈ (θ+
w , θ

+
w + δ).

Combining with (7.4.10), we obtain the existence of θ(d1)
w ∈ (θ+

w +δ, π2 −σ1) such
that

θ̂w(θ(d1)
w ) = θ̂d

w(ρ1, |Dϕ1(P0
(θ(d1)

w ))|). (7.4.11)

Defining θd
w to be the supremum of all such angles θ(d1)

w , we find that θd
w ∈

[θ+
w +δ, π2 −σ1]. Then it follows from Lemma 7.3.2(d) that there exist two states

for state (2) for each θw ∈ (θd
w,

π
2 ), and there exists a unique state (2) when

θw = θd
w.

We now show the continuous dependence of the weak and strong states (2)
on θw, stated in (7.1.10) and Theorem 7.1.1(i).

We first note the C∞–dependence of θ̂w on θw ∈ [θd
w,

π
2 ). Indeed, it follows

from the explicit formula of θ̂w(θw) in (7.4.7), using that Dϕ1(P0) = −(ξ0
1 −

u1, ξ
0
1 tan θw) by (2.2.17), and |Dϕ1(P0)| ≥ ξ0

1 − u1 > 0 by (7.4.4).
Now the continuous dependence of the weak and strong states for (2) on θw

can be seen by letting θ(i)
w ∈ (θd

w,
π
2 ) with θ(i)

w → θ
(∞)
w ∈ [θd

w,
π
2 ). Recall that, for

each θw ∈ (θd
w,

π
2 ), the strictly convex shock polar curve, defined by (7.4.9) and

denoted by Γ(θw), intersects with line L(θw) = {v = u tan(θ̂w(θw))} at exactly
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two points, with coordinates (uwk
O , vwk

O ) and (usg
O , v

sg
O ). Moreover, Dϕwk

2 (P0)
and Dϕsg

2 (P0), written in coordinates (7.4.8), are Dϕwk
2 (P0) = (uwk

O , vwk
O ) and

Dϕsg
2 (P0) = (usg

O , v
sg
O ), i.e.,

Dϕwk
2 (P0) = uwk

O e(P0) + vwk
O e⊥(P0), Dϕsg

2 (P0) = usg
Oe(P0) + vsg

O e
⊥(P0).
(7.4.12)

If θw = θd
w, L(θw) touches Γ(θw) at exactly one point, with the coordinates given

by the components of Dϕwk(P0) = Dϕsg(P0) in coordinates (7.4.8). From the
continuity of θ̂w(·), it follows that lines L(θ

(i)
w ) converge to L(θ

(∞)
w ). Then the

continuity stated in assertions (ii)–(iii) of Lemma 7.3.2(g) implies that

(uwk
O , vwk

O )(θ̂(i)
w )→ (uwk

O , vwk
O )(θ̂(∞)

w ), (usg
O , v

sg
O )(θ̂(i)

w )→ (usg
O , v

sg
O )(θ̂(∞)

w ),

where
(uwk
O , vwk

O )(θ̂(∞)
w ) 6= (usg

O , v
sg
O )(θ̂(∞)

w ) if θ∞w ∈ (θd
w,

π
2 ),

and
(uwk
O , vwk

O )(θ̂(∞)
w ) = (usg

O , v
sg
O )(θ̂(∞)

w ) if θ∞w = θd
w.

Then, using (7.4.12) where vectors (e(P0
(θw)), e⊥(P0

(θw))) depend C∞-smoothly
on θw, and using that Dφ2 = Dϕ2(P0) + P0 = (uO, vO) + (ξ0

1 , ξ
0
1 tan θw) for

any θw and for both the weak and strong states (2), we obtain the continuous
dependence of (ρwk

2 , ρsg
2 , Dφ

wk
2 , Dφsg

2 ) on θw ∈ [θd
w,

π
2 ). We have also shown

(7.1.10).
To show the C∞–dependence on θw ∈ (θd

w,
π
2 ), we consider the function:

G(u, θw) := u tan(θ̂w(θw))− f (P0
(θw))

polar (u),

where f (ξ)
polar(·) is from Definition 7.4.2. Then, for fixed θw ∈ (θd

w,
π
2 ),

G(u, θw) = 0 only for u = usg
O (θw) and u = uwk

O (θw).

From the smoothness of θ̂w(·) shown above and assertions (i)–(ii) of Lemma
7.3.2(g), we have

G ∈ C∞({(u, θw) : θd
w ≤ θw <

π

2
, û0(ρ1, |Dϕ1(P0

(θw))|) < u < |Dϕ1(P0
(θw))|}).

Since f (P0
(θw))

polar (·) is strictly concave in the interior of its domain, we have

∂uG(uwk
O (θw), θw) 6= 0, ∂uG(usg

O (θw), θw) 6= 0 for all θw ∈ (θd
w,
π

2
),

since L(θw) = {v = u tan(θ̂w(θw))} intersects with the graph of f (P0
(θw))

polar (·) at
two points, and hence intersects transversally at both points. Now, from the
implicit function theorem, we obtain the C∞–dependence of (uwk

O , usg
O ) on θw ∈

(θd
w,

π
2 ). Since vO = f

(P0)
polar(uO) for both the weak and strong reflections, with
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P0 = (ξ0
1 , ξ

0
1 tan θw), we use Definition 7.4.2 and assertion (ii) of Lemma 7.3.2(g)

to obtain the C∞–dependence of (uwk
O , vwk

O , usg
O , v

sg
O ) on θw ∈ (θd

w,
π
2 ). Finally,

using (7.4.12) with the argument as in the proof of continuity above, we conclude
the proof of the C∞–dependence of (ρwk

2 , ρsg
2 , Dφ

wk
2 , Dφsg

2 ) on θw ∈ (θd
w,

π
2 ). This

completes the proof of assertion (i) of Theorem 7.1.1.
Now we prove assertion (ii) of Theorem 7.1.1. First, we note that assertion

(iv) holds, since the existence of two states for (2) for a self-similar wedge angle
θw, and equivalently for the steady wedge angle θ̂w(θw), implies (7.1.12) as
follows: By (b) and (d) of Lemma 7.3.2, we conclude that usg

O ∈ [û0, ud), and
then (7.3.12)–(7.3.14) in Lemma 7.3.2(f) imply (7.1.12). Noting that state (2)
constructed in Proposition 7.2.2 is supersonic at P0, we conclude that it is a weak
state (2). Now Proposition 7.2.2 implies the C∞–dependence of (ρwk

2 , Dφwk
2 ) on

θw ∈ (π2 − σ1,
π
2 ]. Combining this with the C∞–dependence on θw ∈ (θd

w,
π
2 )

proved above, we conclude the C∞–dependence of (ρwk
2 , Dφwk

2 ) on θw ∈ (θd
w,

π
2 ].

Therefore, assertions (i)–(ii) and (iv) of Theorem 7.1.1 hold. Also, assertion
(iii) of Theorem 7.1.1 follows from the fact that θd

w > θ+
w .

Furthermore, from the continuity of θ̂w(·) and P0(·) on θw ∈ [θd
w,

π
2 ) and

assertion (iii) of Lemma 7.3.2(g), there exists δ > 0 such that, for any θw ∈
[θd

w,
π
2 − σ1],

θ̂d
w(ρ1, |Dϕ1(P0

(θw))|)− θ̂s
w(ρ1, |Dϕ1(P0

(θw))|) ≥ δ > 0. (7.4.13)

This, combined with (7.4.11), Lemma 7.3.2(f), and the continuity on θw ∈
[θd

w,
π
2 ) in assertion (i) of Theorem 7.1.1, implies assertion (vi) of Theorem 7.1.1.
Therefore, we have shown assertions (i)–(iv) and (vi) of Theorem 7.1.1.
4. Next, we show the existence of the self-similar sonic angle, i.e., assertion

(v) of Theorem 7.1.1. Denote by S the set of all angles θs1
w ∈ [θd

w,
π
2 ) such that

|Dϕwk
2 (P0)| > c2 for any θw ∈ (θs1

w ,
π
2 ). From Proposition 7.2.2 and Theorem

7.1.1(iv), we conclude that (π2 − σ1,
π
2 ) ⊂ S. Thus, S 6= ∅. Let θs

w := inf S. We
show that θs

w satisfies all the properties given in assertion (v) of Theorem 7.1.1.
First, we note that θs

w > θd
w, since

• (7.4.11) holds for θd
w;

• (7.4.10) holds for any θw ∈ (θs
w,

π
2 );

• (7.4.13) holds for any θw ∈ [θd
w,

π
2 − σ1].

Now, using assertion (i) of Theorem 7.1.1, we find that |Dϕwk
2 (P0)| = cwk

2

for θw = θs
w.

Now θs
w satisfies all the properties asserted in Theorem 7.1.1(v).

5. We show assertions (vii)–(viii) of Theorem 7.1.1. Let ϕ2 be the pseudo-
potential of either weak or strong state (2). Since ρ1 = ρ(|Dϕ1|2, ϕ1) for ρ(·)
given by (2.2.9) and ϕ1(P0) = ϕ2(P0) by (7.1.5), then, for function (7.1.9), we
have

gsh(p, ϕ2(P0), P0) =
(
ρ(|p|2, P0)p− ρ1Dϕ1(P0)

)
· Dϕ1(P0)− p

|Dϕ1(P0)− p| , (7.4.14)
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Figure 7.2: Dϕ2(P0) lies on the shock polar of the steady incoming flow
(ρ∞, u∞) = (ρ1, |Dϕ(P0)|)

where ρ(|p|2, P0) =
(
ργ−1

1 + γ−1
2 (|Dϕ1(P0)|2 − |p|2)

) 1
γ−1 . Thus, function p 7→

gsh(p, ϕ2(P0), P0) coincides with function (7.3.16) for the steady incoming flow
(ρ∞, u∞) = (ρ1, |Dϕ1(P0)|). Next, using that Dϕ1(P0) · Dϕ2(P0) > 0 by the
Rankine-Hugoniot conditions (7.4.1) at P0, by rotating the coordinates ξ so that
the new ξ1–axis is in the direction of Dϕ1(P0), and reflecting ξ2 if necessary,
we conclude that Dϕ1(P0) = (|Dϕ1(P0)|, 0), and v := Dϕ2(P0) has positive
components in the new coordinates. Then, using that Dϕ1(P0) ·τ = Dϕ2(P0) ·τ
by (7.1.5), we find that v := Dϕ2(P0) (expressed in the new coordinates) lies
on the shock polar of the steady incoming flow (ρ∞, u∞) = (ρ1, |Dϕ1(P0)|); see
Fig. 7.2.

Moreover, for any fixed self-similar wedge angle θw ∈ (θd
w,

π
2 ) and the corre-

sponding weak and strong reflection solutions ϕwk
2 and ϕsg

2 , velocities Dϕw
2 (P0)

and Dϕs
2(P0), which lie on the shock polar described in the previous paragraph,

correspond to the weak and strong steady reflection solutions for the steady
wedge angle θ̂w(θw) introduced in Definition 7.4.3. Indeed, the corresponding
steady flows have both the same steady wedge angle θ̂w(θw) with densities ρwk

2

and ρsg
2 , respectively. Since ρwk

2 < ρsg
2 , the assertion follows. Therefore, we have

proved the following lemma:

Lemma 7.4.4. For any θw ∈ (θd
w,

π
2 ) and the corresponding P0 = P0(θw),

denoting by ϕ2 the pseudo-potential of either weak or strong state (2), we have

(i) Function p 7→ gsh(p, ϕ2(P0), P0) coincides with function (7.3.16) for the
steady incoming flow (ρ∞, u∞) = (ρ1, |Dϕ1(P0)|);
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(ii) Change the coordinates in R2 to the ones determined on the basis of (7.4.5),
so that Dϕ1(P0) = (|Dϕ1(P0)|, 0), and Dϕ2(P0) has positive components.
Then v := Dϕ2(P0) (expressed in the new coordinates) lies on the shock
polar of the steady incoming flow (ρ∞, u∞) = (ρ1, |Dϕ1(P0)|); see Fig. 7.2.

(iii) For weak and strong self-similar reflection solutions ϕwk
2 and ϕsg

2 , veloc-
ities Dϕwk

2 (P0) and Dϕsg
2 (P0) correspond to the weak and strong steady

reflection solutions respectively on the steady shock polar described in (ii)
above with the steady wedge angle θ̂w(θw) introduced in Definition 7.4.3.

Now assertion (vii) of Theorem 7.1.1 directly follows from Lemma 7.4.4(ii)–
(iii) and (7.3.18) in Lemma 7.3.2(h).

Moreover, it is easy to check that, if two self-similar uniform states with
pseudo-potentials ϕ1 and ϕ2 satisfy (7.1.5)–(7.1.6) at some point P0 ∈ S1 :=
{ϕ1 = ϕ2}, then (7.1.5)–(7.1.6) with P0 replaced by ξ hold at any ξ ∈ S1.
Repeating the argument that leads to (7.4.14), we see that, for any ξ ∈ S1,

gsh(p, ϕ2(ξ), ξ) =
(
ρ(|p|2, ξ)p− ρ1Dϕ1(ξ)

)
· Dϕ1(ξ)− p

|Dϕ1(ξ)− p| , (7.4.15)

where

ρ(|p|2, ξ) =
(
ργ−1

1 +
γ − 1

2
(|Dϕ1(ξ)|2 − |p|2)

) 1
γ−1

. (7.4.16)

Then, arguing as in the proof of Lemma 7.4.4, we have

Lemma 7.4.5. Let ϕ1 and ϕ2 be the pseudo-potentials of two self-similar uni-
form states, and let (7.1.5)–(7.1.6) hold at some point P0 ∈ S1 := {ϕ1 = ϕ2}.
Then, for every ξ ∈ S1, we have

(i) (7.1.5)–(7.1.6) hold with P0 replaced by ξ ∈ S1;

(ii) Function p 7→ gsh(p, ϕ2(ξ), ξ) coincides with function (7.3.16) for the
steady incoming flow (ρ∞, u∞) = (ρ1, |Dϕ1(ξ)|);

(iii) There exists an orthogonal transformation of R2 such that, in the new coor-
dinates (still denoted ξ), Dϕ1(ξ) = (|Dϕ1(ξ)|, 0), and Dϕ2(ξ) has positive
components. Then v := Dϕ2(ξ) (expressed in the new coordinates) lies on
the shock polar of the steady incoming flow (ρ∞, u∞) = (ρ1, |Dϕ1(ξ)|).

Now assertion (viii) of Theorem 7.1.1 directly follows from (7.3.19) in Lemma
7.3.2(h).

Theorem 7.1.1 is proved.
Next we show some corollaries from Theorem 7.1.1 and their proofs.

Corollary 7.4.6. Let ϕ1 be a uniform state. Let Ω ⊂ R2 be open, and let Ω be
subdivided by a C1–smooth curve S into two open subdomains Ω1 and Ω2. Let
ϕ ∈ C0,1(Ω) be a weak solution of (2.2.8) in Ω such that ϕ ∈ C2(Ωk)∩C1(Ωk∪S)
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for k = 1, 2. Assume that S ⊂ R2 \ Bc1(O1) and that ϕ = ϕ1 on Ω1. Assume
that the following entropy condition holds on S:

∂νϕ1 > ∂νϕ > 0 on S,

where ν is the unit normal to S pointing into Ω2. Let ξ ∈ S. Denote

e(ξ) :=
Dϕ1(ξ)

|Dϕ1(ξ)| ,

e⊥(ξ) as the rotation of e(ξ) by
π

2
such that Dϕ2(ξ) · e⊥(ξ) ≥ 0.

(7.4.17)

Then, for u = Dϕ2(ξ) · e(ξ) and v = Dϕ2(ξ) · e⊥(ξ),

v = f
(ξ)
polar(u), (7.4.18)

where f (ξ)
polar(·) is introduced in Definition 7.4.2.

Proof. The argument is the same as that in the proof of (7.4.8) in Step 1 of the
proof of Theorem 7.1.1 for point ξ (instead of P0).

Corollary 7.4.7. Let ϕ1 and ϕ2 be pseudo-potentials of two self-similar uniform
states with densities ρ1 and ρ2, respectively, and let (7.1.5)–(7.1.6) hold at some
point P0 ∈ S1 := {ϕ1 = ϕ2}. Let gsh be defined by (7.1.9). Let ξ ∈ S1 satisfy
|Dϕ2(ξ)| ≥ c2, where c2 is the sonic speed of the uniform state ϕ2. Then

Dpg
sh(Dϕ2(ξ), ϕ2(ξ), ξ) ·Dϕ2(ξ) < 0. (7.4.19)

Proof. By Lemma 7.4.5, v = Dϕ2(ξ), expressed in the appropriately chosen
coordinates, lies on the shock polar of the steady incoming flow (ρ∞, u∞) =
(ρ1, |Dϕ1(ξ)|). Comparing (7.4.16) with (7.3.11), we see that the condition
that |Dϕ2(ξ)| ≥ c2 implies that the steady flow with velocity v = Dϕ2(ξ)
(expressed in the coordinates described in Lemma 7.4.5(iii)) is supersonic, i.e.,
|v| ≥ c(|v|2), where c(·) is given by (7.3.11) with (ρ∞, u∞) = (ρ1, |Dϕ1(ξ)|).
Now Lemma 7.3.2(f) implies that v is a weak reflection solution for the steady
shock polar of the incoming flow (ρ∞, u∞) = (ρ1, |Dϕ1(ξ)|).

Also, Dϕ1(ξ) 6= Dϕ2(ξ) by (7.1.6). Now (7.4.19) follows from Lemma
7.4.5(ii) and (7.3.18) in Lemma 7.3.2(h).

We also note the following property of state (2):

Lemma 7.4.8. Let θw ∈ (θd
w,

π
2 ), and let ϕ2 be a state (2) (weak or strong)

written in the form of (2.4.1). Then center O2 = (u2, u2 tan θw) of the sonic
circle of ϕ2 lies within the relative interior of segment P0P3 ⊂ {ξ2 = ξ1 tan θw},
where P3 = 0.
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Proof. Recall that P0 = (ξ0
1 , ξ

0
1 tan θw).

Points P0, P3, and O2 lie on line {ξ2 = ξ1 tan θw}, which implies

O2 − P0 = t(P3 − P0) for t ∈ R.

Thus, it remains to show that t ∈ (0, 1).
Denoting by O1 = (u1, 0) the center of state (1) and using (7.1.5) and the

fact that Dϕk(P0) = Ok − P0 for k = 1, 2, we can write (7.1.6) as

|P0O1| > |P0O2|.

Also, by (2.2.18),
ξ0
1 > u1 > 0,

and hence |P0P3| = ξ0
1 sec θw >

√
(ξ0

1)2 tan2 θw + (ξ0
1 − u1)2 = |P0O1|, which

implies
|P0P3| > |P0O2|.

Furthermore, P0 ∈ S1, and hence O2 6= P0 = (ξ0
1 , ξ

0
1 tan θw), on account of

(6.1.5) applied with ϕ− = ϕ1, ϕ+ = ϕ2, and S = S1. Then we have

|P0P3| > |P0O2| 6= 0,

which implies that |t| ∈ (0, 1).
It remains to show that t > 0. We first note that Dϕ1(P0) ·Dϕ2(P0) > 0 by

(7.1.5) so that
(O1 − P0) · (O2 − P0) > 0.

Again using that ξ0
1 > u1 > 0 by (2.2.18), we calculate

(O1 − P0) · (P3 − P0) = ξ0
1(ξ0

1 − u1) + (ξ0
1)2 tan2 θw > 0.

The last two inequalities imply t > 0, which concludes the proof.

From Lemma 7.4.8, we conclude

Corollary 7.4.9. For any θw ∈ (θd
w,

π
2 ), writing state (2) in the form of (2.4.1),

we have
u2 > 0, v2 > 0.

7.5 BASIC PROPERTIES OF THE WEAK STATE (2) AND THE
DEFINITION OF SUPERSONIC AND SUBSONIC WEDGE
ANGLES

In this section, for any wedge angle θw ∈ (θd
w,

π
2 ), we consider the weak state (2)

associated with the wedge angle (that is, state (2) means the weak state (2)),
and denote ϕ2 and (u2, v2, ρ2, c2) as the pseudo-potential and the quantities
related to the weak state (2) in the form of (2.4.1).
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Definition 7.5.1. We call the wedge angle θw ∈ (θd
w,

π
2 ) supersonic if state (2)

is supersonic at P0, i.e., if |Dϕ2(P0)| > c2 for θw; sonic if state (2) is sonic at
P0, i.e., if |Dϕ2(P0)| = c2 for θw; and subsonic if state (2) is subsonic at P0,
i.e., if |Dϕ2(P0)| < c2 for θw.

We also define the wedge angle θw = π
2 to be supersonic (since, as θw → π

2−,
P0(θw) → ∞, while Bc2(θw)(O2(θw)) → Bc̄2(0) in the Hausdorff metric, which
implies that |Dϕ2P0(θw)| = |P0(θw)−O2(θw)| → ∞ > c̄2).

Remark 7.5.2. By Theorem 7.1.1(v), any θw ∈ (θs
w,

π
2 ) is a supersonic wedge

angle.

Remark 7.5.3. The sonic angle θs
w introduced in Theorem 7.1.1(v) is also a

sonic angle in the terms of Definition 7.5.1. The existence (or non-existence) of
other sonic angles is unclear; however, if they existed, θs

w from Theorem 7.1.1(v)
would be the largest sonic angle, on account of Remark 7.5.2.

Remark 7.5.4. Let θ̃s
w be an angle introduced in assertion (vi) of Theorem

7.1.1. Then, by Theorem 7.1.1(vi), any θw ∈ (θd
w, θ̃

s
w) is a subsonic wedge angle.

Next we introduce some points and lines shown on Figs. 2.3 and 2.4. We
use region Λ defined by (2.2.19) and note the following remarks.

Remark 7.5.5. Let θw ∈ (θd
w,

π
2 ) be a supersonic wedge angle. Then

(i) Line S1 = {ϕ1 = ϕ2} necessarily intersects with the sonic circle ∂Bc2(u2, v2)
of state (2) in two points.

This follows from (6.1.4) of Lemma 6.1.2, which can be applied with ϕ− =
ϕ1 and ϕ+ = ϕ2 by properties (7.1.5)–(7.1.6) of state (2), where we note
that (7.1.5) at point P0 for the uniform states (1) and (2) implies that the
equalities in (7.1.5) hold at every point of S1 = {ϕ1 = ϕ2}.

(ii) Let P1 be the nearest point of intersection of S1 with ∂Bc2(u2, v2) to P0 =
(ξ0

1 , ξ
0
1 tan θw). Then P1 necessarily lies within Λ.

Indeed, by (6.1.6) of Lemma 6.1.2 (applied again with ϕ− = ϕ1 and ϕ+ =
ϕ2), it follows that O1O2 ⊥ S1. Denote by Q the point of intersection
of line LO through O1 and O2 with S1. Noting that Dϕi(P0) = Oi − P0

so that (6.1.6) implies that Dϕi(P0) · ν = |QOi| for i = 1, 2, we use
(7.1.6) to obtain |QO1| > |QO2|. Then, since O1,O2 ∈ {ϕ1 > ϕ2} by
(6.1.3) and (6.1.5), and Q ∈ S1 = {ϕ1 = ϕ2}, we conclude that O2 lies on
segment QO1. From this and (2.2.19), using that O1 = (u1, 0) /∈ Λ and
O2 = (u2, u2 tan θw) with u2 > 0 and θw ∈ (0, π2 ) so that O2 ∈ ∂Λ, we see
that Q ∈ Λ. Since θw is a supersonic wedge angle, i.e., P0 /∈ Bc2(u2, v2),
it follows that P1 is on segment P0Q. Using (2.2.19), we conclude that
P1 ∈ Λ.

(iii) From the last argument, it also follows that the whole segment P0P1 (in-
cluding endpoint P1, but excluding endpoint P0) lies within Λ.
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Remark 7.5.6. Let θw ∈ (θs
w,

π
2 ). Then θw is supersonic by Remark 7.5.2.

Let P1(θw) be the point introduced in Remark 7.5.5 for θw. Let P1(π2 ) be the
corresponding point for the normal reflection, i.e., P1(π2 ) is the unique point
of intersection within Λ(π2 ) of the vertical shock (between states (1) and (2))
and the sonic circle of state (2). That is, using the notations in §6.2, P1(π2 ) =

(ξ̄1,
√
c̄22 − ξ̄2

1). Then, by (7.2.11),

P1(θw)→ P1(
π

2
) as θw →

π

2
− .

Definition 7.5.7. If θw ∈ (θd
w,

π
2 ], the following lines, points, and segments are

defined for the wedge angle θw in terms of the data and the parameters of state
(2):

• Line S1 = {ϕ1 = ϕ2}. We note that, for θw ∈ (θd
w,

π
2 ), line S1 is not

parallel to the wedge boundary {ξ1 = ξ2 cot θw}; otherwise, ν = νw in
(7.1.6), which contradicts (7.1.7). For θw = π

2 , S1(π2 ) = {ξ1 = ξ̄1}, by
(2.2.16) and (6.2.1).

• Point P1 is defined as follows: If θw is a supersonic wedge angle, P1 ∈ Λ
is the point described in Remarks 7.5.5–7.5.6. If θw is a subsonic/sonic
wedge angle, we set P1 := P0.

• Point P3 = 0.

• Point P4 for supersonic wedge angles is defined by

P4 = (q2 + c2)(cos θw, sin θw) for q2 =
√
u2

2 + v2
2 .

That is, P4 is the upper point of intersection of the sonic circle of state
(2) with the wedge boundary {ξ1 = ξ2 cot θw}. Also, from the definitions,

ξ1P1
< ξ1P4

.

For supersonic wedge angles θw ∈ (θd
w,

π
2 ), we note that, since O2 =

(u2, v2) ∈ P0P3 (by Lemma 7.4.8) and |Dϕ2(P0)| > c2, we have

P4 ∈ P0O2 ⊂ P0P3 ⊂ {ξ1 = ξ2 cot θw}. (7.5.1)

Furthermore, since O2 = (u2, v2) ∈ P0P3, we obtain from the definition of
P4 that

O2 ⊂ (P3P4)0 ⊂ {ξ1 = ξ2 cot θw}. (7.5.2)

• For subsonic/sonic wedge angles θw, we set P4 := P0.

• The relatively open line segment Γwedge := P3P4 ⊂ {ξ1 = ξ2 cot θw}. Note
that, for subsonic/sonic wedge angles, the previous definition implies that
Γwedge = P0P3.
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• For supersonic wedge angles, denote by Γsonic the upper arc P1P4 of the
sonic circle of state (2), that is,

Γsonic = {(ξ1, fso(ξ1)) : ξ1P1
≤ ξ1 ≤ ξ1P4

}

with fso(ξ1) = v2 +
√
c22 − (ξ1 − u2)2. For subsonic/sonic wedge angles,

Γsonic denotes point P0 = P1 = P4.

The property that ξ1P1
< ξ1P4

for supersonic wedge angles, as claimed above,
is from (2.2.19), since O2, P4 ∈ {ξ1 = ξ2 cot θw} ⊂ ∂Λ, P1 ∈ Λ, and |O2P1| =
|O2P4| = c2, where O2 := (u2, v2) is the center of sonic circle of state (2).

Remark 7.5.8. If θw ∈ (θd
w,

π
2 ), then

ξ2P0
> v2, ξ2P1

> v2,

where we recall that P0 = P1 for subsonic/sonic wedge angles.
The first inequality follows from Lemma 7.4.8. This also implies the second

inequality for subsonic/sonic wedge angles. To show the second inequality for
supersonic wedge angles, we note that Lemma 7.4.8 and (7.5.1) imply that O2

lies in the relative interior of P3P4, which concludes the proof.

We now prove

Lemma 7.5.9. The points introduced in Definition 7.5.7 depend continuously
on θw:

(i) P0 depends continuously on θw ∈ [θd
w,

π
2 );

(ii) P1 and P4 continuously depend on θw ∈ [θd
w,

π
2 ];

(iii) P1 6= P3 and P4 6= P3 for any θw ∈ [θd
w,

π
2 ].

Proof. The proof consists of four steps.
1. Since P0 = (ξ0

1 , ξ
0
1 tan θw), (i) follows.

2. Next, we show the continuity of P1(θw) on interval [θd
w,

π
2 ]. To do this,

we first show the continuity of P1 on set A of all supersonic angles θw ∈ [θd
w,

π
2 ).

Since S1 = {ϕ1 = ϕ2}, the unit vector νS1
= (u1−u2,−v2)
|(u1−u2,−v2)| is orthogonal to S1.

Moreover, note that the denominator in the last expression of νS1
is nonzero for

any θw ∈ [θd
w,

π
2 ), by Corollary 7.4.9, and also for θw = π

2 , since (u2, v2)θw=π
2

= 0
by Theorem 7.1.1(ii) and u1 > 0. Now the continuity of the parameters of the
weak state (2) in Theorem 7.1.1(i) and the fact that (u2, v2) = Dφwk

2 imply that
νS1 depends continuously on θw ∈ [θd

w,
π
2 ]. Notice that, for any supersonic angle

θw ∈ [θd
w,

π
2 ), point P1 is the nearest intersection point of S1 with ∂Bc2(O2) to

P0, and S1 = {ϕ1 = ϕ2} is the line containing P0 and perpendicular to νS1
.

Then, noting that (7.1.2) and Theorem 7.1.1(i) imply that all of P0, νS1
, c2,

and O2 = (u2, v2) depend continuously on θw ∈ [θd
w,

π
2 ), and that A is open, we

obtain the continuous dependence of P1 on θw ∈ A.
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Also, combining this with Remark 7.5.6, we obtain the continuity of P1(θw)
on the set of all supersonic angles θw ∈ [θd

w,
π
2 ].

Since set B of all the subsonic and sonic angles θw satisfies B ⊂ [θd
w, θ

s
w] ⊂

(0, π2 ), and P1 = P0 on B, the continuity of P1(θw) on B follows from assertion
(i).

It remains to show that, if θ(i)
w are supersonic angles for i = 1, 2, . . . , such

that θ(i)
w → θ

(∞)
w for which θ(∞)

w is a sonic wedge angle, then

P1(θ(i)
w )→ P0(θ(∞)

w ). (7.5.3)

Indeed, from the definition of P1 for supersonic angles in Remark 7.5.5, we
estimate

|P0P1| ≤
√(

c2 + dist(P0, ∂Bc2(O2))
)2 − c22 for each θ(i)

w . (7.5.4)

Also, θ(∞)
w is a sonic wedge angle so that

dist(P0, ∂Bc2(O2))(θ(i)
w )→ dist(P0, ∂Bc2(O2))(θ(∞)

w ) = 0,

and c2(θw) is uniformly bounded on [θd
w,

π
2 ] for the weak states (2) by Theorem

7.1.1(i). Thus, from (7.5.4), we have

|P0P1|(θ(i)
w )→ 0 as i→∞.

This, combined with the continuity of P0(θw) and νS1
(θw) at θw = θ

(∞)
w , implies

(7.5.3).
Therefore, we have proved the continuous dependence of P1 on [θd

w,
π
2 ].

3. Next we show the continuity of P4(θw) on the angle interval [θd
w,

π
2 ].

On the set of supersonic angles θw ∈ [θd
w,

π
2 ], P4(θw) = q̂(cos θw, sin θw),

where q̂ =
√
u2

2 + v2
2 + c2. This implies the continuity of P4(θw) on the set of

all the supersonic angles θw ∈ [θd
w,

π
2 ]. The remaining part of the proof follows

an argument similar to that in Step 2, with the obvious modifications, by using
that |P0P4| = dist(P0, ∂Bc2(O2)) for any supersonic angle θw. Then assertion
(ii) is proved.

4. Now we prove assertion (iii).
We first show that P1 6= P3.
Consider first Case θw ∈ [θd

w,
π
2 ). Recall that P3 = 0 lies on the wedge

boundary {ξ2 = ξ1 tan θw}. If P1 = P3, then, using that P0 ∈ S1 ∩ {ξ2 =
ξ1 tan θw} and P1 ∈ S1, we obtain that S1 coincides with {ξ2 = ξ1 tan θw}.
Then ν = νw in (7.1.6), which contradicts (7.1.7). Therefore, P1 6= P3.

If θw = π
2 , O2 = 0, by Theorem 7.1.1(ii), so that P3 = O2. Then P1 ∈

∂Bc̄2(P3), so P1 6= P3, since c̄2 > c1 > 0.
Moreover, |P4P3| ≥ c2 > 0 for any θw ∈ [θd

w,
π
2 ].

Furthermore, we note the following properties of state (2).
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Lemma 7.5.10. For any θw ∈ (θd
w,

π
2 ),

Bc1(O1) ∩ Λ ⊂ {ϕ1 > ϕ2} ∩ Λ, (7.5.5)

∠P3O2O1 <
π

2
. (7.5.6)

Moreover, if θw ∈ (θd
w,

π
2 ) is any supersonic wedge angle,

Bc1(O1) ∩ Γsonic = ∅. (7.5.7)

Proof. (7.5.5) follows from (6.1.3). Now we prove (7.5.6) and (7.5.7).
From (6.1.6), it follows that O1O2 ⊥ S1. Denote by Q the point of intersec-

tion of line O1O2 with S1. Then, in triangle P0O2Q, angle ∠O2QP0 is π
2 , so

that ∠QO2P0 <
π
2 . Thus, ∠P3O2O1 = ∠QO2P0 <

π
2 , which shows (7.5.6).

Furthermore, let θw ∈ (θd
w,

π
2 ) be any supersonic wedge angle. Then, from

(7.5.1) and (7.5.6), ∠P4O2O1 = π−∠P3O2O1 >
π
2 . Since Γsonic and O1 are on

the opposite sides of line {ξ2 = ξ1 tan θw}, which contains points O2 and P4, it
follows that, for every P ∈ Γsonic, ∠PO2O1 ≥ ∠P4O2O1 >

π
2 . From triangle

PO2O1, |O1P | > |O2P |. Since P ∈ Γsonic, then |O2P | = c2. Also, ρ1 < ρ2, so
that c1 < c2. Then |O1P | > |O2P | = c2 implies that P /∈ Bc1(O1). Therefore,
(7.5.7) holds.

Lemma 7.5.11. There exists δ > 0 depending only on the data such that, for
any θw ∈ [θd

w,
π
2 ],

|D(ϕ1 − ϕ(θw)
2 )| ≥ δ.

Note that D(ϕ1 − ϕ(θw)
2 ) is a constant vector (independent of ξ).

Proof. The parameters of the weak state (2) depend continuously on θw ∈ [θd
w,

π
2 ]

by Theorem 7.1.1(i)–(ii). Thus, it suffices to show that

|D(ϕ1 − ϕ(θw)
2 )| > 0 for each θw ∈ [θd

w,
π
2 ].

If θd
w ≤ θw < π

2 , then, by Corollary 7.4.9, v2 > 0. Thus, we have

|D(ϕ1 − ϕ(θw)
2 )| =

√
(u1 − u2)2 + v2

2 > 0.

If θw = π
2 (which is the normal reflection case), then, by Theorem 6.2.1,

(u2, v2) = 0. Thus, using u1 > 0, we obtain

|D(ϕ1 − ϕ(θw)
2 )| =

√
(u1 − u2)2 + v2

2 = u1 > 0.

Let eS1
be the unit vector parallel to S1, oriented so that eS1

·Dϕ2(P0) > 0,
that is,

eS1 = − (v2, u1 − u2)√
(u1 − u2)2 + v2

2

. (7.5.8)
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Lemma 7.5.12. If θw ∈ (θd
w,

π
2 ), then eS1

is not orthogonal to Γwedge ∪ Γsym.

Proof. From its definition, eS1
‖ S1. If S1 were orthogonal to Γwedge, then,

since Dϕ2(P0) is parallel to Γwedge and ϕ1 = ϕ2 on S1, it would follow that
Dϕ1(P0) is parallel to Γwedge. However, Dϕ1(P0) = −(ξ1P0

, ξ2P0
) + (u1, 0),

where (ξ1P0
, ξ2P0

) is parallel to Γwedge and (u1, 0) is not parallel to Γwedge.
Thus, eS1

is not orthogonal to Γwedge.
Furthermore, by Corollary 7.4.9, v2 > 0. Then, by (7.5.8) with v2 > 0, we

see that eS1
is not orthogonal to Γsym ⊂ {ξ2 = 0}.

Remark 7.5.13. For any supersonic wedge angle θw ∈ (θd
w,

π
2 ), we can express

eS1
as

eS1
=

P1 − P0

|P1 − P0|
. (7.5.9)

Remark 7.5.14. For θw = π
2 , we also define eS1 by (7.5.8) for (u2, v2) = 0.

Then
eS1

= −(0, 1) = −eξ2 for θw =
π

2
.

7.6 VON NEUMANN’S SONIC AND DETACHMENT
CONJECTURES

The local theory indicates that there are two possible states for state (2), and
there has been a long debate on the issue of which one is physical for the lo-
cal theory; see Courant-Friedrichs [99], Ben-Dor [12], and the references cited
therein.

Notice that the shock reflection-diffraction is not a local problem. Therefore,
we take a different point of view, namely that the selection of state (2) should
be determined by the global feature of the problem and, more precisely, by the
stability of the configuration with respect to the wedge angle θw.

Stability/Continuity Criterion to Select the Correct State (2) (Chen-
Feldman [52]): Since the normal reflection solution is unique when the wedge
angle θw = π

2 , the global regular reflection-diffraction configurations should be
required to converge to the unique normal reflection solution when θw → π

2 ,
provided that such global configurations can be constructed.

Employing this stability/continuity criterion, we conclude that the choice
of state (2) should be ϕwk

2 , provided that such a global configuration can be
constructed, as is confirmed in the main theorems of this book.

As indicated in the previous sections, in general, ϕwk
2 may be supersonic or

subsonic.
As described in §2.6, von Neumann’s Sonic Conjecture asserts that there

exists a global supersonic reflection configuration when θw ∈ (θs
w,

π
2 ) for θs

w > θd
w

such that |Dϕwk
2 (P0)| > cwk

2 at the reflection point P0. In Chapters 8–13, we
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present the detailed proof of this conjecture. Also, in Chapter 14, we study the
further regularity properties of solutions.

Another conjecture, von Neumann’s Detachment Conjecture, states
that global regular reflection is possible whenever the local regular reflection
at the reflection point is possible. That is, there exists a regular reflection-
diffraction configuration for any wedge angle θw ∈ (θd

w,
π
2 ), i.e., the existence

of state (2) implies the existence of a regular reflection-diffraction solution to
Problem 2.2.3, of the structure shown in Figs. 2.3–2.6. In particular, there
exists a global subsonic reflection configuration when θw is beyond the sonic angle
up to the detachment angle as shown in Figs. 2.4 and 2.6.

It is clear that the regular reflection-diffraction configurations are not possi-
ble without a local two-shock configuration at the reflection point on the wedge
(i.e., the existence of state (2)), so this is the necessary criterion. In Chapters
15–17, we prove this conjecture, which indicates that the detachment criterion
is also sufficient to ensure a global regular reflection-diffraction configuration.

The local theory developed in this chapter indicates that, for any θw ∈
(θd

w,
π
2 ), there are two possible solutions for state (2). In the case of subsonic

wedge angles, both states (2) are subsonic at the reflection point P0. In Chapters
15–17, we show that the weak state (2) is physically admissible indeed, while
the strong state (2) will not ensure the existence of a global regular reflection-
diffraction in general. On the other hand, the regime between the wedge angles
θs

w and θd
w is normally very narrow, and the two are only fractions of a degree

apart; see also Fig. 18.7, below.



Chapter Eight

Admissible Solutions and Features of

Problem 2.6.1

8.1 DEFINITION OF ADMISSIBLE SOLUTIONS

Let γ > 1 and ρ1 > ρ0 > 0 be given constants. We use the terminology and
notations introduced in §7.5.

Starting from this chapter, right through to Chapter 14, we focus on the
wedge angles in the angle interval (θs

w,
π
2 ), where θs

w is the sonic angle introduced
in Theorem 7.1.1(v). From Definition 7.5.1 and Remark 7.5.2, any wedge angle
θw ∈ (θs

w,
π
2 ) is supersonic.

Now we define the admissible solutions of Problem 2.6.1 for the wedge an-
gles θw ∈ (θs

w,
π
2 ), for which we establish the existence of such solutions starting

in this chapter and carrying on to Chapter 13. The admissible solutions are of
the structure of supersonic reflection configuration described in §2.4.2. These
properties are listed in (i)–(iii) of Definition 8.1.1. We also add conditions (iv)–
(v) of Definition 8.1.1. This is motivated by the fact that, for any wedge angle
sufficiently close to π

2 , the solution of Problem 2.6.1 which satisfies (i)–(iii)
of Definition 8.1.1 also satisfies (iv)–(v) of Definition 8.1.1, as we will show in
Appendix 8.3, below.

Definition 8.1.1. Fix a wedge angle θw ∈ (θs
w,

π
2 ). A function ϕ ∈ C0,1(Λ) is

called an admissible solution of the regular shock reflection-diffraction problem
if ϕ is a solution of Problem 2.6.1 and satisfies the following:

(i) There exists a relatively open curve segment Γshock (without self-intersection)
whose endpoints are P1 and P2 = (ξ1P2

, 0) with

ξ1P2
< min{0, u1 − c1}, ξ1P2

≤ ξ1P1
, (8.1.1)

so that

• For the sonic circle C1 = ∂Bc1(u1, 0) of state (1),

Γshock ⊂
(
Λ \Bc1(u1, 0)

)
∩ {ξ1P2

≤ ξ1 ≤ ξ1P1
}; (8.1.2)

• Γshock is C2 in its relative interior. Moreover, denote Γext
shock :=

Γshock ∪ Γ−shock ∪ {P2}, where Γ−shock is the reflection of Γshock with
respect to the ξ1–axis. Then curve Γext

shock is C1 at its relative interior
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including P2 in the sense that, for any P in the relative interior of
Γext

shock, there exist r > 0, f ∈ C1(R), and an orthonormal coordinate
system (S, T ) ∈ R2 such that Γshock ∩Br(P ) = {S = f(T )} ∩Br(P ).
Furthermore, if P 6= P2, f ∈ C2(R) can be chosen for sufficiently
small r.

Let Γsonic and Γwedge be the arc and line segment introduced in Defini-
tion 7.5.7, respectively. Let Γsym := P2P3 be the line segment. Note that
Γsonic, Γsym, and Γwedge do not have common points except their common
endpoints {P3, P4}. We require that there be no common points between
Γshock and curve Γsym ∪ Γwedge ∪ Γsonic except their common endpoints
{P1, P2}. Thus, Γshock ∪ Γsym ∪ Γwedge ∪ Γsonic is a closed curve with-
out self-intersection. Denote by Ω the open bounded domain restricted by
this curve. Note that Ω ⊂ Λ, ∂Ω = Γshock ∪ Γsym ∪ Γwedge ∪ Γsonic, and
∂Ω ∩ ∂Λ = Γsym ∪ Γwedge.

(ii) ϕ satisfies

ϕ ∈ C0,1(Λ) ∩ C1(Λ \ P0P1P2),

ϕ ∈ C3(Ω \ (Γsonic ∪ {P2, P3})) ∩ C1(Ω),

ϕ =





ϕ0 for ξ1 > ξ0
1 and ξ2 > ξ1 tan θw,

ϕ1 for ξ1 < ξ0
1 and above curve P0P1P2,

ϕ2 in P0P1P4.

(8.1.3)

(iii) Equation (2.2.8) is strictly elliptic in Ω \ Γsonic:

|Dϕ| < c(|Dϕ|2, ϕ) in Ω \ Γsonic. (8.1.4)

(iv) In Ω,
ϕ2 ≤ ϕ ≤ ϕ1. (8.1.5)

(v) Let eS1 be defined by (7.5.8). Then, in Ω,

∂eS1
(ϕ1 − ϕ) ≤ 0, (8.1.6)

∂ξ2(ϕ1 − ϕ) ≤ 0. (8.1.7)

Remark 8.1.2 (C1–smoothness across Γsonic). By Definition 8.1.1(ii), solution
ϕ is C1 across Γsonic so that

ϕ = ϕ2, Dϕ = Dϕ2 on Γsonic.

Remark 8.1.3 (Γsym ∪ {P2} are interior points). Let Ω− (resp. Γ−sonic) be the
reflection of Ω (resp. Γsonic) with respect to the ξ1–axis, and

Ωext = Ω ∪ Ω− ∪ Γsym, Γext
sonic = Γsonic ∪ Γ−sonic.
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Then Γext
shock ⊂ ∂Ωext, where Γext

shock is defined in Definition 8.1.1(i). Let ϕext

be the even extension of ϕ into Ωext, i.e., ϕext(ξ1,±ξ2) = ϕ(ξ1, ξ2) for ξ2 > 0.
Using (8.1.3) and ∂νφ = 0 on Γsym, we have

ϕext ∈ C2(Ωext \ (Γext
sonic ∪ {P2, P3})) ∩ C1(Ωext). (8.1.8)

Then φext := ϕext + |ξ|2
2 ≡ ϕext − ϕext

0 is the even extension of φ into Ωext with
φext ∈ C2(Ωext \ (Γext

sonic ∪{P2, P3}))∩C1(Ωext). It can be checked by an explicit
calculation that ϕext and φext satisfy equations (2.2.8) and the non-divergence
form (2.2.11) in Ωext and that the equations are strictly elliptic in Ωext \ Γext

sonic.
Moreover, ϕ1(ξ1,−ξ2) = ϕ1(ξ1, ξ2) in R2 so that ϕext satisfies

ϕext = ϕ1, ρ(|Dϕext|2, ϕext)Dϕext · ν = ρ1Dϕ1 · ν on Γext
shock.

Remark 8.1.4 (Velocity jump across Γshock). Condition (8.1.2) implies that
ϕ1 is pseudo-supersonic on Γshock. Then Definition 8.1.1(iii) implies that Dϕ 6=
Dϕ1 on Γshock. A similar argument, using ξ1P2

< u1 − c1 from (8.1.1), implies
the gradient jump at P2. Also, using (8.1.3), Dϕ(P1) = Dϕ2(P1) 6= Dϕ1(P1).
Thus, we have

Dϕ 6= Dϕ1 on Γshock. (8.1.9)

In the next remark, we use the following notation: For e,g ∈ R2 \ {0} with
e 6= cg,

Cone(e,g) := {ae + bg : a, b ≥ 0},
Cone0(e,g) is the interior of Cone(e,g).

(8.1.10)

Remark 8.1.5 (Cone of monotonicity directions). Conditions (8.1.6)–(8.1.7)
imply that, for any admissible solution ϕ of Problem 2.6.1 in the sense of
Definition 8.1.1,

∂e(ϕ1 − ϕ) ≤ 0 in Ω, for all e ∈ Cone(eS1
, eξ2) with e 6= 0. (8.1.11)

Remark 8.1.6 (Γshock does not intersect with Γwedge and the sonic circle of
state (1)). Γshock ⊂ Λ \ Bc1(u1, 0) in condition (8.1.2) implies that Γshock does
not intersect with Γwedge and the sonic circle of state (1). Furthermore, from
this property and Lemma 7.5.10, we have

Bc1(u1, 0) ∩ Λ ⊂ Ω. (8.1.12)

Note that the Rankine-Hugoniot conditions (2.2.13)–(2.2.14) imply the fol-
lowing equalities on Γshock:

ρ(|Dϕ|2, ϕ)∂νϕ = ρ1∂νϕ1, (8.1.13)
∂τϕ = ∂τϕ1, (8.1.14)
ϕ = ϕ1, (8.1.15)

where, on the left-hand sides of (8.1.13)–(8.1.14), Dϕ is evaluated on the Ω–side
of Γshock.

We also note the following property:
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Lemma 8.1.7 (Directions of pseudo-velocities on Γshock: The entropy con-
dition). If ϕ is a solution of Problem 2.6.1 satisfying conditions (i)–(iii) of
Definition 8.1.1, then

∂νϕ1 > ∂νϕ > 0 on Γshock, (8.1.16)

where ν is the unit normal to Γshock, interior to Ω.

Proof. We first notice that Dϕ1(P2) = (u1 − ξ1P2
, 0) = (u1 + |ξ1P2

|, 0), and
νsh(P2) = (1, 0), since Γext

shock is C1 in part (i) of Definition 8.1.1. Then

∂νϕ1(P2) > 0.

Suppose that ∂νϕ1(P̂ ) = 0 at some point P̂ ∈ Γshock. Then the Rankine-
Hugoniot condition (8.1.13) at P̂ implies that either ∂νϕ = 0 or ρ(|Dϕ|2, ϕ) = 0

at P̂ . In the latter case, c(|Dϕ|2, ϕ) = ρ
γ−1

2 (|Dϕ|2, ϕ) = 0 at P̂ , and then the
ellipticity condition (8.1.4) in Definition 8.1.1 implies that Dϕ(P̂ ) = 0. Thus,
in either case, ∂νϕ(P̂ ) = 0 = ∂νϕ1 at P̂ . This, combined with (8.1.14), implies

Dϕ(P̂ ) = Dϕ1(P̂ ).

Therefore, by (8.1.13), we have

ρ(|Dϕ|2, ϕ) = ρ1 at P̂ ,

which implies that c(|Dϕ|2, ϕ) = c1 at P̂ . Now the ellipticity condition (8.1.4)
implies that |Dϕ1(P̂ )| ≤ c1, that is, P̂ ∈ Bc1(u1, 0). This contradicts (8.1.2).
Thus, ∂νϕ1 6= 0 on Γshock. Also, ∂νϕ1 is continuous on Γshock ∪ {P2} since
Γext

shock ∈ C1. Since ∂νϕ1(P2) > 0, we conclude that ∂νϕ1 > 0 on Γshock. Also,
ρ1 > 0 and ρ(|Dϕ|2, ϕ) ≥ 0 since ϕ ∈ C1(Ω) is a solution of (2.2.8) in Ω, i.e.,
satisfies (2.2.10) in Ω. Now (8.1.13) implies

∂νϕ > 0, ρ(|Dϕ|2, ϕ) > 0 on Γshock.

Then expression (2.2.9) of the density, the Rankine-Hugoniot conditions (8.1.13)–
(8.1.15), and the strict ellipticity of equation (8.1.4) in Ω imply the first inequal-
ity in (8.1.16).

Corollary 8.1.8. Let ϕ be a solution of Problem 2.6.1 satisfying conditions
(i)–(iii) of Definition 8.1.1. Let h be defined by (5.1.23) (or equivalently, by
(5.1.24)) for ϕ on Γshock. Then

h · ν = −ρ− ρ1

ρ1c2
ρ(c2 − ϕ2

ν)ϕν < 0 on Γshock, (8.1.17)

where ρ = ρ(|Dϕ|2, ϕ). Moreover, assertion (5.1.22) of Lemma 5.1.1 holds.
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Proof. From Lemma 8.1.7, (5.1.14)–(5.1.15) hold.
The first equality in (8.1.17) follows from (5.1.23). The inequality in (8.1.17)

follows from (5.1.15), (8.1.4), and (8.1.16).
Also, since (5.1.14) holds, ϕ satisfies all the conditions of Lemma 5.1.1.

Next, we show that condition (iv) of Definition 8.1.1 in fact holds with strict
inequalities. This follows from the more general fact below (which we will use
later). Let D ⊂ Λ be open. Denote

Γwedge(D) :=
(
∂D \ (∂D \ {ξ2 = ξ1 tan θw})

)0
,

Γsym(D) :=
(
∂D \ (∂D \ {ξ2 = 0})

)0
,

(8.1.18)

where these sets may be empty, and (·)0 denotes the relative interior of the
subset of a line. Note also that, by definition,

Γwedge(D) ⊂ ∂D ∩ {ξ2 = ξ1 tan θw}, Γsym(D) ⊂ ∂D ∩ {ξ2 = 0}.

Furthermore, it is easy to show that every point of Γwedge(D)∪ Γsym(D) has an
interior ball with respect to D.

Lemma 8.1.9. Let D ⊂ Λ be open. Let ϕ ∈ C1(D) ∩ C2(D) satisfy equation
(2.2.8) in D and ∂νϕ = 0 on Γwedge(D) ∪ Γsym(D) if any of the boundary parts
are non-empty. Let equation (2.2.8) be strictly elliptic on ϕ in D ∪ Γwedge(D)∪
Γsym(D). Assume that (8.1.5) holds in D. Then

ϕ < ϕ1 in D ∪ Γwedge(D) ∪ Γsym(D) if Γwedge(D) 6= ∅; (8.1.19)
ϕ > ϕ2 in D ∪ Γwedge(D) ∪ Γsym(D) if Γsym(D) 6= ∅. (8.1.20)

If, in addition to the previous assumptions, Λ ∩Br(0) ⊂ D for some r > 0 and
equation (2.2.8) is strictly elliptic on ϕ at 0, then

ϕ2 < ϕ < ϕ1 in D ∪ Γwedge(D) ∪ Γsym(D) ∪ {0}. (8.1.21)

Proof. We divide the proof into three steps.
1. We first show (8.1.19). Note that equality ϕ ≡ ϕ1 in D is not possible if

Γwedge(D) 6= ∅, since ϕ1 does not satisfy that ∂νϕ = 0 on Γwedge(D).
Note that ϕ satisfies the non-divergence form (2.2.11) of (2.2.8). φ̄ := ϕ1 −

ϕ = φ1 − φ satisfies D2φ̄ = −D2φ, since φ1 is a linear function. Thus equation
(2.2.11), considered as a linear equation for D2φ, is satisfied with D2φ replaced
by D2φ̄, and the equation is strictly elliptic in D ∪ Γwedge(D) ∪ Γsym(D). Also,
since φ1 = u1ξ1 + const. and ∂νϕ = 0 on Γwedge(D) ∪ Γsym(D), we have

∂ν φ̄ = 0 on Γsym(D), ∂ν φ̄ = −u1 sin θw < 0 on Γwedge(D).

Moreover, φ̄ ≥ 0 in D since ϕ1 ≥ ϕ in D. Then, by the strong maximum
principle and Hopf’s lemma, the minimum value φ̄ = 0 cannot be achieved in D∪
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Γwedge(D)∪Γsym(D) unless φ̄ ≡ 0 in D, since every point of Γwedge(D)∪Γsym(D)
has an interior ball with respect to D. However, φ̄ ≡ 0 in D is impossible, since
ϕ ≡ ϕ1 in D is not possible as we have shown above in that case. Therefore,
φ̄ > 0 on D ∪ Γwedge(D) ∪ Γsym(D), which is (8.1.19).

2. Assertion (8.1.20) is proved similarly by considering ψ = ϕ−ϕ2 = φ−φ2,
and by noting that equality ϕ ≡ ϕ2 in D is impossible if Γsym(D) 6= ∅ (since ϕ2

does not satisfy that ∂νϕ = 0 on Γsym(D)) and that ∂νψ = −∂νψ2 = −v2 < 0
on Γsym(D), where the last inequality holds by Corollary 7.4.9.

3. If, in addition to the previous assumptions, Λ ∩ Br(0) ⊂ D for some
r > 0, then both Γwedge(D) and Γsym(D) are non-empty. Since ϕ ∈ C1(D) and
∂νϕ = 0 on Γwedge(D) ∪ Γsym(D), we conclude

Dφ(0) = 0.

We perform the reflection about the ξ1–axis, as in Remark 8.1.3, to the extended
domain Dext. Then equation (2.2.11) in Dext is strictly elliptic on ϕ in Dext∪{0},
and hence in a neighborhood of 0. Since φ1(ξ) = u1ξ1 + const. is independent
of ξ2, the extended function φ1 is of the same form φ1(ξ) = u1ξ1 + const. in
domain Dext.

We now consider the extended function φ̄ = φ1 − φ. Note that domain Dext

satisfies the interior sphere condition at 0 ∈ ∂Dext with ν(0) = (−1, 0), since
0 ∈ ∂Br(r, 0). Then, using (2.2.19), we have

Br(−
r

2
, 0) ∩ {ξ2 > 0} ⊂ Br(0) ∩ Λ ⊂ D,

which implies that Br(− r2 , 0) ⊂ Dext. If the minimum value φ̄ = 0 is attained
at 0, then, by Hopf’s lemma, ∂ν φ̄(0) > 0, i.e., ∂ξ1 φ̄(0) < 0. On the other hand,
from Dφ(0) = 0 and φ1(ξ) = u1ξ1 + const., we find that ∂ξ1 φ̄(0) = u1 > 0.
This contradiction shows that the minimum value φ̄ = 0 cannot be attained
at 0; hence the first inequality in (8.1.21) is proved. The second inequality in
(8.1.21) is proved similarly by considering ψ = ϕ− ϕ2.

Corollary 8.1.10. Let ϕ be an admissible solution of Problem 2.6.1. Then

ϕ2 < ϕ < ϕ1 in Ω ∪ Γwedge ∪ Γsym ∪ {0}. (8.1.22)

8.2 STRICT DIRECTIONAL MONOTONICITY FOR
ADMISSIBLE SOLUTIONS

We consider a solution ϕ of Problem 2.6.1 for the wedge angle θw ∈ [θs
w,

π
2 ).

For further applications, some results of this section are proved for the solutions
of Problem 2.6.1 only satisfying a priori some conditions stated in Definition
8.1.1.

In this section, the universal positive constant C depends only on the data,
which may be different at different occurrence. Throughout this section, we use
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the notations introduced in Definition 7.5.7. We note that, from (7.1.6) and
assertion (i) of Theorem 7.1.1 for the weak state (2), there exists C such that,
for any θw ∈ [θs

w,
π
2 ],

|(u2, v2)| ≤ C, 0 < ρ1 < ρ2 ≤ C, 0 < c1 < c2 ≤ C,
|ξ0

1 |+ |P1|+ |P3|+ |P4| ≤ C.
(8.2.1)

8.2.1 Directions of strict monotonicity of ϕ1 − ϕ
We first prove several properties of the directional derivatives of φ and φ̄ =
ϕ1 − ϕ.

Lemma 8.2.1. Let ϕ = φ − |ξ|
2

2 be a solution of Problem 2.6.1 satisfying
conditions (i)–(iii) of Definition 8.1.1. Let e ∈ R2 \ {0}. Then ∂eφ is not a
constant in Ω.

Proof. Denote by (S, T ) the coordinates with basis {e, e⊥}. Let a ∈ R, and let
∂eφ ≡ a in Ω. Then φS ≡ a in Ω, which implies that φSS ≡ 0 and φST ≡ 0 in Ω.
Since both equation (2.2.8) and equation (5.1.9) are strictly elliptic in Ω\ Γsonic,
it follows that φTT ≡ 0 in Ω. Thus, there exist constants (u, v) and C such that

φ(ξ) = (u, v) · ξ + C in Ω.

Now, using that ϕ is C1 across Γsonic by Definition 8.1.1(ii), we see that (ϕ,Dϕ) =
(ϕ2, Dϕ2) on Γsonic. This implies that (u, v) = (u2, v2) so that

ϕ = ϕ2 in Ω.

This is a contradiction, since ϕ2 does not satisfy (2.2.20) on Γsym. Therefore,
∂eφ is not a constant in Ω.

Corollary 8.2.2. Let ϕ, φ, and e be as those in Lemma 8.2.1. Then, for
φ̄ = ϕ1 − ϕ, ∂eφ̄ is not a constant in Ω. Furthermore, for ψ = ϕ − ϕ2, ∂eψ is
not a constant in Ω.

Proof. Since φ1 is a linear function, ∂eφ̄ = ∂e(φ1 − φ) is not constant in Ω by
Lemma 8.2.1. The argument for ∂eψ is similar.

Lemma 8.2.3. Let ϕ = φ − |ξ|
2

2 be a solution of Problem 2.6.1 satisfying
conditions (i)–(iii) of Definition 8.1.1. Let e ∈ R2 \ {0} and w = ∂eφ in Ω. Let
m = minΩ w and M = maxΩ w, where M > m by Lemma 8.2.1. Then

(i) m < w < M in Ω;

(ii) If e is not orthogonal to Γwedge, m < w < M on Γwedge;

(iii) If e is not orthogonal to Γsym, m < w < M on Γsym,

where segments Γwedge and Γsym do not include their endpoints.
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Proof. Let e = (a1, a2) in the ξ–coordinates. Then

w = e ·Dφ.

Now we prove each item.
For (i), we know that w = ∂eφ satisfies equation (5.1.10) in Ω, and the

equation is strictly elliptic in Ω \ Γsonic and has continuous coefficients in Ω ∪
Γwedge ∪ Γsym by Definition 8.1.1(ii)–(iii), where we recall that segments Γwedge

and Γsym do not include their endpoints. Also, w is not constant in Ω by
Lemma 8.2.1. Then the strong maximum principle implies that w cannot attain
its minimum or maximum in Ω.

For (ii), Lemma 5.1.3(i) implies that w = ∂eφ satisfies the oblique derivative
condition (5.1.25) on Γwedge whose coefficients are continuous on Γwedge by Def-
inition 8.1.1(ii)–(iii). Since w satisfies the elliptic equation (5.1.10) in Ω with
continuous coefficients in Ω ∪ Γwedge ∪ Γsym, and w is not a constant in Ω, we
conclude from (5.1.25) and Hopf’s lemma that w cannot attain its minimum or
maximum over Ω on Γwedge.

The proof of (iii) is similar to the proof of (ii), and is achieved by using
Lemma 5.1.3(ii).

Lemma 8.2.4. Let ϕ be a solution of Problem 2.6.1 satisfying conditions (i)–
(iv) of Definition 8.1.1. Let w = ∂eφ in Ω for e ∈ R2\{0}. Let h = hνν+hττ is
defined by (5.1.23). If the extremum of w over Ω is attained at P̂ ∈ Γshock, then
h(P̂ ) = ke for some k ∈ R, where curve Γshock does not include its endpoints.

Proof. Notice that, for e ∈ R2 \ {0},

w = ∂eφ = e ·Dφ.

Since w is not constant in Ω by Lemma 8.2.1, we may assume that the minimum
of w over Ω is attained at P̂ = ξ̂ ∈ Γshock, since the maximum case can be argued
similarly. Then w(ξ̂) = minξ∈Ω w(ξ). Thus, we have the following equalities at
ξ = ξ̂:

• Since ∂τw = 0 at P̂ , and ∂τw = τ ·D(e ·Dφ) = D2φ[e, τ ], we have

D2φ[e, τ ] = 0 at P̂ . (8.2.2)

Writing (8.2.2) in basis {ν(P̂ ), τ (P̂ )}, we have

φντ bν + φττ bτ = 0 at P̂ , (8.2.3)

where (bν , bτ ) are the coordinates of e with basis {ν(P̂ ), τ (P̂ )}, i.e.,
e = bνν(P̂ ) + bττ (P̂ ).

• Writing (5.1.22) at P̂ in basis {ν(P̂ ), τ (P̂ )}, we obtain

φντhν + φττhτ = 0 at P̂ , (8.2.4)

where h = hνν + hττ is defined by (5.1.23).
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Assume that
h 6= ke for any k ∈ R. (8.2.5)

Then (8.2.3)–(8.2.4) imply that

φντ = φττ = 0 at P̂ . (8.2.6)

Equation (2.2.11), written in the (S, T )–coordinates with basis {ν(P̂ ), τ (P̂ )}, is
of form (5.1.9). Equality (8.2.6) becomes

φST (P̂ ) = φTT (P̂ ) = 0.

Since equation (5.1.9) is strictly elliptic in Ω∪Γshock, we obtain that φSS(P̂ ) = 0.
Thus, D2φ = 0 at P̂ .

Then, at P̂ ,
∂νw = D2φ[e,ν] = 0. (8.2.7)

On the other hand, w satisfies equation (5.1.10), which is uniformly elliptic
and has continuous coefficients in Ω ∩ Br(P̂ ) for some small r > 0, P̂ is a
minimum point of w over Ω, and w is not constant in Ω by Lemma 8.2.1. Then
Hopf’s lemma implies that ∂νw > 0 at P̂ . Therefore, we have arrived at a
contradiction with (8.2.7). This completes the proof.

Lemma 8.2.5. Let ϕ be a solution of Problem 2.6.1 satisfying conditions
(i)–(iv) of Definition 8.1.1. Let ∂eφ̄ ≥ 0 in Ω for some e ∈ R2 \ {0}, where
φ̄ = ϕ1 − ϕ. Then ∂eφ̄ > 0 on Γshock, where curve Γshock does not include its
endpoints.

Proof. By Corollary 8.2.2, ∂eφ̄ is not constant in Ω. We need to show that the
minimum value ∂eφ̄ = 0 over Ω cannot be attained on Γshock.

Since φ̄ = ϕ1 − ϕ = φ1 − φ and Dφ1(ξ) = (u1, 0) for any ξ ∈ R2, we need to
show that the maximum of w := ∂eφ over Ω cannot be attained at ξ̂ ∈ Γshock if
∂eφ̄(ξ̂) = 0.

Suppose that there exists ξ̂ ∈ Γshock such that

w(ξ̂) = max
ξ∈Ω

w(ξ), ∂eφ̄(ξ̂) = 0.

Then, by Lemma 8.2.4,

h(ξ̂) = ke for some k ∈ R,

where h = hνν + hττ is defined by (5.1.23).
Furthermore, ∂eφ̄(ξ̂) = 0, i.e., e ·Dφ̄(ξ̂) = 0. From this, we use (5.1.14) and

(5.1.18) to see that
e = lτ (ξ̂) for some l ∈ R.

Thus, h(ξ̂) = klτ (ξ̂), that is,

h · ν = 0 at ξ = ξ̂.

This contradicts (8.1.17).
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Now we can establish the strict monotonicity of φ̄ in the appropriate direc-
tions.

Proposition 8.2.6. Let ϕ be an admissible solution of Problem 2.6.1 in the
sense of Definition 8.1.1. Then

∂eS1
(ϕ1 − ϕ) < 0 in Ω \ Γsonic, (8.2.8)

where eS1
is defined by (7.5.8).

Proof. Denote
w := ∂−eS1

(ϕ1 − ϕ) = ∂−eS1
φ̄.

We need to show that w > 0 in Ω \ Γsonic.
Note that w is not constant in Ω by Corollary 8.2.2. From Definition 8.1.1(v),

w ≥ 0 in Ω. We need to show that the minimum value w = 0 cannot be attained
within Ω \ Γsonic.

From Lemma 7.5.12, eS1 is not orthogonal to Γwedge∪Γsym. Then combining
the fact that w ≥ 0 in Ω with Lemmas 8.2.3 and 8.2.5 implies that w > 0 in
Ω ∪ Γshock ∪ Γwedge ∪ Γsym. Thus, it remains to show that w > 0 at points
{P2, P3}. We recall that ϕ is C1 up to P2 and P3.

The condition that ∂νϕ = 0 on Γsonic and (2.2.17) imply that ∂ξ2ϕ1 = ∂ξ2ϕ =
0 at P2. Then

∂ξ2 φ̄(P2) = 0.

Also, ∂ξ1ϕ1(P2) = u1 − ξ1P2
> 0 since ξ1P2

< 0 by (8.1.1). Furthermore,
considering the reflection with respect to the ξ1–axis as in Remark 8.1.3, we
find that the shock normal νsh(P2) = (1, 0), and (8.1.13) is satisfied at P2 so
that

0 < ∂ξ1ϕ =
ρ1

ρ(|Dϕ|2, ϕ)
∂ξ1ϕ1 < ∂ξ1ϕ1 at P2,

where we have used (5.1.15) in the last inequality. Then ∂ξ1 φ̄(P2) > 0. Now,
using (7.5.8), we compute at P2 that

w =
v2∂ξ1 φ̄+ (u1 − u2)∂ξ2 φ̄√

(u1 − u2)2 + v2
2

=
v2∂ξ1 φ̄√

(u1 − u2)2 + v2
2

> 0.

We estimate w(P3). The condition that ϕν = 0 on Γwedge ∪ Γsym implies
Dϕ(P3) = 0. Thus, using (7.5.8), we compute at P3 = 0 to obtain

w = ∂−eS1
(ϕ1 − ϕ) = ∂−eS1

ϕ1 =
u1v2√

(u1 − u2)2 + v2
2

> 0.

Corollary 8.2.7. Let ϕ be an admissible solution of Problem 2.6.1 in the
sense of Definition 8.1.1 for θw ∈ (θs

w,
π
2 ). Then

(i) Γshock \ {P1} ⊂ {ϕ2 < ϕ1};
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(ii) ϕ > ϕ2 on Ω \ Γsonic.

Proof. Since Γshock ⊂ {ϕ2 ≤ ϕ1} from Definition 8.1.1(iv), then, in order to
prove assertion (i), we need to show that no point of Γshock \ {P1} lies on line
S1 := {ϕ1 = ϕ2}. On the contrary, we suppose that Q ∈ (Γshock \ {P1}) ∩ S1.

We first consider the case that Q 6= P2, i.e., when Q ∈ Γshock ∩ S1. Then
Γshock ⊂ {ϕ2 ≤ ϕ1} touches S1 = {ϕ2 = ϕ1} at Q. That is, denoting by
ν the unit normal to Γshock at Q interior for Ω, and by τ the unit tangent
vector to Γshock at Q, we see that τ = ±eS1 . Hence, we can choose τ = eS1 .
Moreover, since ϕ1 − ϕ ≡ 0 on Γshock, then, by Proposition 8.2.6, Γshock ∩ S1

cannot include the segments of nonzero length. Thus, there exists δ > 0 such
that Γshock ∩ {Q + seS1

: |s| < δ} = {Q}. From this, and since Γshock is
a C1–curve, there exist small constants ε, σ > 0 so that Qε := Q + εν ∈ Ω
and Qε − seS1 ∈ Ω for s ∈ [0, σ), but Qε − σeS1 ∈ Γshock. Then Proposition
8.2.6 implies that (ϕ1 − ϕ)(Qε) < (ϕ1 − ϕ)(Qε − σeS1). On the other hand,
Qε ∈ Ω ⊂ {ϕ ≤ ϕ1} by Definition 8.1.1(iv), and Qε−σeS1

∈ Γshock ⊂ {ϕ = ϕ1}
so that (ϕ1−ϕ)(Qε) ≥ 0 = (ϕ1−ϕ)(Qε−σeS1

), which contradicts the previous
estimate. Therefore, Γshock ∩ S1 = ∅.

The remaining case is that P2 ∈ S1. Recall that P2 ⊂ {ξ1 < 0, ξ2 = 0}. Since
P0 ∈ S1 ∩ {ξ1 > 0 ξ2 > 0}, and eS1 is parallel to S1, (7.5.8) with u1, u2, v2 > 0
implies that S1 intersects half-line {ξ1 < 0, ξ2 = 0} only if u1 > u2. Also, we
note that the normal to S1 = {ϕ1 = ϕ2} in the direction to region {ϕ1 > ϕ2} is
νS1

= (u1−u2,−v2)√
(u1−u2)2+v2

2

. Finally, since Γshock ⊂ {ϕ1 ≥ ϕ2} is C1 up to P2 (because

Γext
shock is C1), it follows that the tangent line LP2

to Γshock at P2 is parallel to
vector eS1

+ sνS1
for some s ≤ 0. We calculate

(eS1
+ sνS1

) · (1, 0) = − v2 − s(u1 − u2)√
(u1 − u2)2 + v2

2

< 0,

since u1 > u2, v2 > 0, and s ≤ 0. Thus, line LP2
is not vertical. However, LP2

is the tangent line to Γext
shock at P2, which must be vertical. This contradiction

yields the proof of assertion (i).
Now we prove assertion (ii). Using ψ = ϕ − ϕ2 and φ = ϕ − ϕ0, we have

D2ψ = D2(φ+ ϕ0 − ϕ2) = D2φ because ϕ0 − ϕ2 = φ0 − φ2 is a linear function.
Thus, equation (2.2.11) is satisfied with D2φ replaced by D2ψ. This equation
(considered as a linear equation for ψ) is uniformly elliptic on each compact
subset of Ω \Γsonic, by Definition 8.1.1(iii) and since ϕ ∈ C1(Ω). Also, ψ ≥ 0 in
Ω by (8.1.5).

If the minimum value ψ(P ) = 0 is attained at some point P ∈ Ω, ψ = 0
everywhere in Ω by the strong maximum principle. This contradicts Corollary
8.2.2.

On Γwedge, ∂νψ = ∂νϕ − ∂νϕ2 = 0. Thus, if the minimum value ψ(P ) = 0
is attained at some point P ∈ Γwedge, then ψ = 0 everywhere in Ω by Hopf’s
lemma and the strong maximum principle. This leads to a contradiction, as in
the previous case.
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On Γsym, the interior unit normal to Ω is eξ2 . Thus, using the regularity:
ϕ ∈ C1(Ω), and the boundary condition: ∂νϕ = 0 on Γsym ⊂ {ξ2 = 0}, we find
that ∂νφ = ∂νϕ+∂ξ2

( |ξ|2
2

)
= 0 on Γsym so that ∂νψ = ∂νφ−∂ξ2(u2ξ1 +v2ξ2) =

−v2 < 0, where we have used that θw < π
2 . This implies that the minimum of

ψ cannot be attained on Γsym.
Also, from part (i) as we have proved above, and by the fact that ϕ = ϕ1 on

Γshock, we have
ϕ = ϕ1 > ϕ2 on Γshock \ {P1}.

Now assertion (ii) is proved.

Proposition 8.2.8. Let ϕ be an admissible solution of Problem 2.6.1 in the
sense of Definition 8.1.1. Then

∂ξ2(ϕ1 − ϕ) < 0 in Ω \ Γsym. (8.2.9)

Proof. Denote
w := −∂ξ2 φ̄,

where φ̄ = ϕ1 − ϕ. Then w is not constant in Ω by Corollary 8.2.2.
From Definition 8.1.1(v), w ≥ 0 in Ω. We need to show that the minimum

value w = 0 cannot be attained within Ω \ Γsym.
Note that e−ξ2 = (0,−1) is not orthogonal to Γwedge. Then, repeating

the argument in the proof of Proposition 8.2.6, we conclude that w > 0 in
Ω ∪ Γshock ∪ Γwedge.

Thus, it remains to show that w > 0 on Γsonic. We recall that, by (8.1.3),
(ϕ,Dϕ) = (ϕ2, Dϕ2) on Γsonic. Then

−∂ξ2(ϕ1 − ϕ) = −∂ξ2(ϕ1 − ϕ2) = v2 > 0 on Γsonic.

Since φ1 − φ = ϕ1 − ϕ = 0 on Γshock and ∂ξ2(φ1 − φ) = ∂ξ2(ϕ1 − ϕ) < 0 in
Ω\Γsym by Proposition 8.2.8 with φ1 = u1ξ2 +const., we employ (8.1.2)–(8.1.3)
to obtain

Corollary 8.2.9 (Γshock is a graph in the vertical direction). The strict inequal-
ity ξ1P1

> ξ1P2
holds in (8.1.1). Moreover, there exists

fsh ∈ C2((ξ1P2
, ξ1P1

)) ∩ C1((ξ1P2
, ξ1P1

])

such that

Γshock = {(ξ1, fsh(ξ1)) : ξ1P2
≤ ξ1 ≤ ξ1P1

} (8.2.10)

and

Ω =

{
ξ ∈ Λ :

ξ1P2
< ξ1 < ξ1P4

, ξ2 < fsh(ξ1) for ξ1 ∈ (ξ1P2
, ξ1P1

]

ξ2 < fso(ξ1) for ξ1 ∈ [ξ1P1
, ξ1P4

)

}

(8.2.11)
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with fso(ξ1) = v2 +
√
c22 − (ξ1 − u2)2. Furthermore, for ξ1 ∈ (ξ1P2

, ξ1P1
),

fsh(ξ1) > max(ξ1 tan θw,
√

max(0, c21 − (ξ1 − u1)2) ). (8.2.12)

Next, Propositions 8.2.6 and 8.2.8, combined with Γsonic ∩ Γsym = ∅, imply

Corollary 8.2.10 (Cone of strict monotonicity directions for ϕ1 − ϕ). Let ϕ
be an admissible solution of Problem 2.6.1 in the sense of Definition 8.1.1.
Then, for all e ∈ Cone0(eS1

, eξ2),

∂e(ϕ1 − ϕ) < 0 in Ω, (8.2.13)

where Cone0(eS1
, eξ2) is defined by (8.1.10).

In the next lemma, we show that, for any θw ∈ (θs
w,

π
2 ), the interior unit

normal to Γwedge with respect to Λ:

νw = (− sin θw, cos θw), (8.2.14)

is in Cone0(eS1 , eξ2). We use the terminology in §7.5. In particular, we re-
call vector eS1 defined for θw ∈ (θd

w,
π
2 ] by (7.5.8) and Remark 7.5.14. From

this, Cone0(eS1 , eξ2) is a half-plane when θw = π
2 , since Cone0(eS1 , eξ2) =

Cone0(−eξ2 , eξ2); see also (9.2.20). To be precise, we define this to be the
left half-plane:

Cone0(eS1 , eξ2)|θw=π
2

:= {ξ1 < 0}. (8.2.15)

Then, by (7.5.8) and Remark 7.5.14, it follows that, for any R > 0,

BR(0) ∩ Cone0(eS1
, eξ2)|θw=θ

(i)
w
→ BR(0) ∩ Cone0(eS1

, eξ2)|θw=π
2

(8.2.16)

in the Hausdorff metric, as θ(i)
w → π

2−.
We also define τw to be the unit tangent vector to Γwedge in the direction of

Dϕ2(P3), i.e., from P3 to P4:

τw =
P3P4

|P3P4|
= (cos θw, sin θw). (8.2.17)

Note that νw and τw can be defined when θw = π
2 by (8.2.14) and (8.2.17).

Then νw = −eξ1 and τw = eξ2 when θw = π
2 .

Lemma 8.2.11. For any wedge angle θw ∈ (θd
w,

π
2 ],

τw · eS1
< 0, (8.2.18)

νw ∈ Cone0(eS1
, eξ2). (8.2.19)

Moreover, if (S, T ) are the coordinates in R2 with basis {νw, τw} and the origin
at P3, then

T (P2) < T (P3) < T (P1) < T (P4) < T (P0) for supersonic θw ∈ (θd
w,

π
2 ),

T (P2) < T (P3) < T (P0) for subsonic θw ∈ (θd
w,

π
2 ),

T (P2) = T (P3) < T (P1) < T (P4) for θw = π
2 .

(8.2.20)
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Proof. We divide the proof into three steps.
1. Prove (8.2.18). If θw ∈ (θd

w,
π
2 ), we use v2 = u2 tan θw with u2 > 0 to find

from (8.2.17) that

τw = (cos θw, sin θw) =
(u2, v2)

|(u2, v2)| .

Now, using (7.5.8),

τw · eS1 =
−u1v2

|(u1 − u2,−v2)||(u2, v2)| < 0,

which is (8.2.18).
If θw = π

2 , we have

τw · eS1 = eξ2 · (−eξ2) = −1.

Now (8.2.18) is proved.
2. Prove (8.2.19). For θw = π

2 , νw = (0,−1) so that (8.2.19) follows directly
from definition (8.2.15) of Cone0(eS1

, eξ2)|θw=π
2
.

Now let θw ∈ (θd
w,

π
2 ). Then v2 6= 0. Thus, (7.5.8) shows that eS1 6= ceξ2 .

Also, |(u1 − u2, v2)| 6= 0. Therefore, there exist a and b such that

νw = a|(u1 − u2, v2)|eS1 + beξ2 .

We need to show that a, b > 0.
From (7.5.8), (8.2.14), (8.2.17), and eξ2 = (0, 1), we have

a =
sin θw

v2
> 0,

b =
v2 cos θw + (u1 − u2) sin θw

v2
= −|(u1 − u2, v2)|τw · eS1

v2
.

From (8.2.18), we see that b > 0. This implies (8.2.19).
3. Prove (8.2.20). First let θw ∈ (θd

w,
π
2 ) be supersonic. Since P2 = (0, a)

with a < 0 in the ξ–coordinates, TP2 = a cos θw < 0 = TP3 . Also, we use that
P3, O2, P4, and P0 lie on line {ξ1 = ξ2 cot θw} (i.e., on the T–axis) to obtain

O2 = P3 + |(u2, v2)|τw, P4 = O2 + c2τw, P0 = O2 + |O2P0|τw (8.2.21)

with |O2P0| > c2. This implies

TO2 = |(u2, v2)| > 0 = TP3 , TP4 = TO2 + c2 > TO2 ,

TP0
= TO2

+ |O2P0| > TO2
+ c2 = TP4

.

Furthermore, |O2P1| = c2 and ∠P1O2P0 ∈ (0, π2 ), since segment P1P0 is outside
circle Bc2(O2) and is not tangential to the circle by assertion (6.1.4) of Lemma
6.1.2 applied with ϕ− = ϕ1 and ϕ+ = ϕ2. Thus, we have

TP1 = TO2 + |O2P1| cos(∠P1O2P0) = TO2 + c2 cos(∠P1O2P0) ∈ (TO2 , TP4),
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since ∠P1O2P0 ∈ (0, π2 ). Now (8.2.20) is proved for supersonic wedge angles.
For subsonic angles θw ∈ (θd

w,
π
2 ), the argument is similar, except now we

take into account that P0 = P1 = P4.
If θw = π

2 , then TP2 = ξ2P2
= 0 = TP3 . The rest of the argument is as

above.

Remark 8.2.12. Let (S, T ) be the coordinates in R2 with basis {νw, τw} and
the origin at P3. Using (8.2.20), we define the function:

fνw,so(T ) =
√
c22 − (T − |(u2, v2)|)2 on (TP1

, TP4
),

and the linear functions:

Lνw,w(T ) = 0, Lνw,sym(T ) = −(T − TP3
) tan θw,

and recall that TP3
= 0, where we have used that |T−(u2, v2)| < c2 on (TP1

, TP4
).

Then

Γsonic = {S = fνw,so(T ) : TP1
< T < TP4

},
Γwedge = {S = Lνw,w(T ) : TP3

< T < TP4
},

Γsym = {S = Lνw,sym(T ) : TP2
< T < TP3

}.

On Γshock, the assertion of Corollary 8.2.10 can be expressed as follows:

Corollary 8.2.13. Let ϕ be an admissible solution of Problem 2.6.1 in the
sense of Definition 8.1.1. Then, for all e ∈ Cone0(eS1 , eξ2),

ν · e < 0 on Γshock, (8.2.22)

where Cone0(eS1 , eξ2) is defined by (8.1.10), and ν is the interior unit normal
to Γshock with respect to Ω.

Proof. We first see that e · ν = e·D(ϕ1−ϕ)
|D(ϕ1−ϕ)| on Γshock, by (5.1.18). Then (8.2.22)

follows from (8.2.13).

In the next property, we use the following fact: For g(1),g(2) ∈ R2 \{0} with
g(1) 6= cg(2), it follows from definition (8.1.10) of Cone(g(1),g(2)) that

e⊥ · g(k) 6= 0 for all e ∈ Cone0(g(1),g(2)), k = 1, 2,

(e⊥ · g(1))(e⊥ · g(2)) < 0.
(8.2.23)

Corollary 8.2.14 (Γshock is a graph for a cone of directions). Let ϕ be an
admissible solution of Problem 2.6.1. Let e ∈ Cone0(eS1 , eξ2) with |e| = 1,
and let e⊥ be orthogonal to e and oriented, so that |e⊥| = 1 and e⊥ · eS1

< 0,
which is possible by (8.2.23). Let (S, T ) be the coordinates with basis {e, e⊥}.
Denote (SPk , TPk) the (S, T )–coordinates of points Pk, k = 1, . . . , 4, and note
that TP2 < TP1 . Then there exists fe := fe,sh ∈ C1(R) such that
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(i) Γshock = {S = fe(T ) : TP2
< T < TP1

} and Ω ⊂ {S < fe(T ) : T ∈ R};

(ii) In the (S, T )–coordinates, P1 = (fe(TP1
), TP1

) and P2 = (fe(TP2
), TP2

);

(iii) For any P ∈ Γshock, there exists r > 0 such that
(
P − Cone0(eS1

, eξ2)
)
⊂ {S < fe(T ) : T ∈ R},

(
P − Cone0(eS1

, eξ2)
)
∩Br(P ) ⊂ Ω,

(
P + Cone0(eS1 , eξ2)

)
⊂ {S > fe(T ) : T ∈ R},

(
P + Cone0(eS1

, eξ2)
)
∩ Ω = ∅.

That is, at P , Cone0(eS1 , eξ2) is below the graph of fe, and −Cone0(eS1 , eξ2)
is above the graph of fe.

Moreover, fe satisfies the following:

(a) The directions of tangent lines to Γshock are between the directions of line
S1 and {teξ2 : t ∈ R}, which are tangent lines to Γshock at points P1 and
P2, respectively. That is, for any T ∈ (TP2

, TP1
),

−∞ <
eS1 · e
eS1
· e⊥ = f ′e(TP1) ≤ f ′e(T ) ≤ f ′e(TP2) =

eξ2 · e
eξ2 · e⊥

<∞. (8.2.24)

(b) In particular, when e = νw (cf. (8.2.14)), region Ω in the (S, T )–coordinates
is of the following form:

fe,sh(T ) > max(Le,w(T ), Le,sym(T )) ≥ 0 for T ∈ [TP2
, TP1

],

fe,so(T ) > max(Le,w(T ), Le,sym(T )) for T ∈ [TP1
, TP4

),

Λ =
{

(S, T ) ∈ R2 : T ∈ R, S > max(Le,w(T ), Le,sym(T ))
}
,

Ω =





(S, T ) ∈ R2 :

TP2
< T < TP4

,
−(T − TP3

) tan θw < S < fe,sh(T )
for T ∈ (TP2

, TP3
],

0 < S < fe,sh(T ) for T ∈ (TP3
, TP1

],
0 < S < fe,so(T ) for T ∈ (TP1 , TP4)




,

(8.2.25)

where fe,sh = fe,so at TP1
, and the notations introduced in Remark 8.2.12

have been used.

Proof. Since ϕ = ϕ1 on Γshock and ϕ < ϕ1 in Ω by Corollary 8.1.10, then
Corollary 8.2.10, regularity ϕ ∈ C1(Ω) given in (8.1.3), and the implicit function
theorem imply the existence of fe ∈ C1([TP2

, TP1
]) such that (i) holds. Thus,

(ii) follows from the definition of P1 and P2.
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We extend fe from [TP2
, TP1

] to R by the tangent lines to S = fe(T ) at the
endpoints, i.e., we define

fe(T ) =

{
f ′e(TP2

)(T − TP2
) + fe(TP2

) for T < TP2
,

f ′e(TP1
)(T − TP1

) + fe(TP1
) for T > TP1

.

Note that the tangent lines to Γshock at P1 and P2 are in directions eS1 and eξ2 ,
respectively. Also, the extended function fe is in C1(R).

From Corollary 8.2.10 (combined with the extension of fe beyond [TP2 , TP1 ]
defined above), it follows that Γshock intersects only once with each line t 7→
P + te, where P ∈ Γshock and e ∈ Cone0(eS1

, eξ2). Moreover, ∂e(ϕ1−ϕ) < 0 in
Ω by Corollary 8.2.10 and Ω ⊂ {ϕ1 > ϕ}∩Λ with Γshock ⊂ {ϕ1 = ϕ}. Using this
and the fact that Γshock ⊂ ∂Ω is a C1–curve without self-intersection, which does
not intersect with the other boundary parts in the points of its relative interior
as assumed in Definition 8.1.1(i), we conclude (iii).

Now we prove (8.2.24). We work in the (S, T )–coordinates. For any P =
(SP , TP ) ∈ R2 and g 6= ce, line {P + tg : t ∈ R} is the graph: {(S, T ) : S =
lg(T ), T ∈ R}, where

lg(T ) = SP +
g · e
g · e⊥ (T − TP ).

Let T ∈ (TP2
, TP1

). Then P = (fe(T ), T ) ∈ Γshock. Recall that e⊥ is chosen so
that e⊥ · eS1 < 0. Also, e ∈ Cone0(eS1 , eξ2) implies e = aeS1 + beξ2 for some
a, b > 0. Then

beξ2 · e = |e|2 − aeS1 · e > −aeS1 · e,
beξ2 · e⊥ = −aeS1

· e⊥ > 0,

so that
eξ2 · e
eξ2 · e⊥

>
eS1
· e

eS1 · e⊥
.

It follows from (iii) that, for any small τ > 0,

leξ2 (T + τ) ≥ f(T + τ) ≥ leS1
(T + τ),

that is,

f(T ) +
eξ2 · e
eξ2 · e⊥

τ ≥ f(T + τ) ≥ f(T ) +
eS1 · e
eS1
· e⊥ τ.

This implies (8.2.24).
Finally, combining assertions (i)–(iii) with the facts about state (2) stated

in Definition 7.5.7 and Lemma 8.2.11, we conclude (8.2.25).
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8.2.2 Directional derivatives of φ in a cone of directions cannot
attain the maximum on Γshock

In §8.2.1, we have shown that φ̄ = ϕ1 − ϕ is strictly monotone in the cone of
directions, Cone0(eS1

, eξ2). In order to prove this, we have demonstrated in
Lemma 8.2.3 that the maximum or minimum of ∂eφ (and hence of φ̄) for any
e ∈ R2 \ {0} cannot be attained within Ω ∪ Γwedge ∪ Γsym. On the other hand,
in order to prove the same property on Γshock, we used Lemma 8.2.5, which is
specific to φ̄ because of the assumption of non-positivity of ∂eφ̄ in the cone of
directions e ∈ Cone0(eS1

, eξ2) and the fact that φ̄ = 0 on Γshock.
In this section, we partially extend the properties proved in Lemma 8.2.3 to

Γshock. We first refine the result of Lemma 8.2.4.

Lemma 8.2.15. Let ϕ be a solution of Problem 2.6.1 satisfying conditions
(i)–(iv) of Definition 8.1.1. For a fixed e ∈ R2 \ {0}, define w := ∂eφ in Ω.
If the maximum of w over Ω is attained at P̂ ∈ Γshock and ν(P̂ ) · e < 0, then
φττ (P̂ ) < 0, where ν denotes the interior unit normal to Γshock with respect to
Ω, and curve Γshock does not include its endpoints.

Proof. Let e = (a1, a2) in the ξ–coordinates. Then w = e ·Dφ. By Lemma 8.2.4,

h(P̂ ) = ke for some k ∈ R,

where h is defined by (5.1.23). From (8.1.17), h·ν < 0 at P̂ . Thus, ke·ν(P̂ ) < 0.
Now the assumption that ν(P̂ ) · e < 0 implies

k > 0.

Writing (5.1.22) at P̂ in basis {ν(P̂ ), τ (P̂ )}, we obtain (8.2.4):

φντ = −hτ
hν
φττ at P̂ . (8.2.26)

Equation (2.2.11), written in the (S, T )–coordinates with basis {ν(P̂ ), τ (P̂ )},
combined with (8.2.26), implies

φνν =
1

c2 − ϕ2
ν

(
− 2ϕνϕτ

hτ
hν
− (c2 − ϕ2

τ )
)
φττ at P̂ , (8.2.27)

where we have used that |Dϕ| < c in Ω \ Γsonic.
We have

wν = (e · ν)φνν + (e · τ )φντ = D2φ[ν, e] =
1

k
D2φ[ν,h] at P̂ ,

so that
wν =

1

k
(hνφνν + hτφντ ) at P̂ .
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Then, substituting the expressions of hν and hτ given by (5.1.23), and the ex-
pressions of ψνν and ψντ given by (8.2.26)–(8.2.27), we obtain (after a somewhat
tedious but straightforward calculation):

wν =
c2

kρϕν(c2 − ϕ2
ν)

(
ρ2ϕ2

ν(c2 − |Dϕ|2) + ρ2
1c

2ϕ2
τ

)
φττ at P̂ . (8.2.28)

Since w satisfies equation (5.1.10), which is uniformly elliptic and has continuous
coefficients in Ω∩Br(P̂ ) for some small r > 0, and since P̂ is a maximum point
of w over Ω and w is not constant in Ω by Lemma 8.2.1, then Hopf’s lemma
implies

wν(P̂ ) < 0.

Thus, the right-hand side of (8.2.28) is negative. We employ that ϕν > 0 on
Γshock (by Lemma 8.1.7), |Dϕ| < c at P̂ , and k > 0 to conclude

φττ < 0 at P̂ .

Now we prove the main result of this subsection.

Proposition 8.2.16. Let ϕ = φ − |ξ|
2

2 be an admissible solution of Problem
2.6.1 in the sense of Definition 8.1.1. Let e ∈ Cone0(eS1 , eξ2). Then the maxi-
mum of ∂eφ over Ω cannot be attained on Γshock.

Proof. We can assume without loss of generality that |e| = 1. Denote

w = ∂eφ.

We need to show that w cannot attain its maximum over Ω on Γshock. We divide
the proof into three steps.

1. Suppose that there exists P̂ = ξ̂ ∈ Γshock such that

w(P̂ ) = max
ξ∈Ω

w(ξ).

Let (S, T ) be the coordinates with basis {e, e⊥}, where e⊥ is as in Corollary
8.2.14. Then, by Corollary 8.2.14, Γshock is a graph in the S–direction, i.e.,
there exists fe ∈ C1(R) such that Γshock = {S = fe(T ) : TP2 < T < TP1},
Ω ⊂ {S < fe(T ) : T ∈ R}, and fe satisfies all the other properties in Corollary
8.2.14.

Furthermore, by Lemma 8.2.15,

φττ (P̂ ) < 0. (8.2.29)

Let P̂ = (Ŝ, T̂ ) in the (S, T )–coordinates. Then T̂ ∈ (TP2
, TP1

). From
the definition of fe, φ̄(fe(T ), T ) = 0 holds on T ∈ (TP2

, TP1
) for φ̄ = φ1 − φ.
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Differentiating this equality twice and using ν = Dφ̄
|Dφ̄| and τ = ν⊥, which imply

that ∂τ φ̄(P̂ ) = 0, and ∂eφ̄(P̂ ) > 0 by Corollary 8.2.10, we have

f
′′

e (T̂ ) = −D
2φ̄[D⊥φ̄,D⊥φ̄]

(∂eφ̄)3
(P̂ ) = − (∂ν φ̄)2φ̄ττ

(∂eφ̄)3
(P̂ ),

where D⊥φ̄ = (−DT φ̄,DSφ̄), and we have also used the fact that the expression
ofD2φ̄[D⊥φ̄,D⊥φ̄] is invariant with respect to the orthogonal change of variables
that can be expressed in basis {ν, τ}. Recall that φ1 is a linear function so that
D2φ̄ = D2(φ1 − φ) = −D2φ. Then φ̄ττ (P̂ ) > 0 by (8.2.29). Also, ∂eφ̄(P̂ ) > 0
by Corollary 8.2.10. Thus, we have

f
′′

e (T̂ ) > 0.

The tangent line to Γshock at P̂ is {S = l(T )}, where

l(T ) = f ′e(T̂ )(T − T̂ ) + Ŝ.

Denote
F (T ) = fe(T )− l(T ).

Let T ∗ ∈ [TP2
, TP1

] be a point at which the maximum of F (T ) over [TP2
, TP1

] is
attained. Let S∗ = fe(T ∗) and P ∗ = (S∗, T ∗). Then P ∗ ∈ Γshock.

Since l(T ) is a linear function, F
′′
(T̂ ) = f

′′

e (T̂ ) > 0. Using that T̂ ∈
(TP2

, TP1
), we find that the maximum of F over [TP2

, TP1
] cannot be attained

at T̂ . Thus, T̂ 6= T ∗ and
F (T̂ ) < F (T ∗). (8.2.30)

Note that
F ′(T̂ ) = f ′e(T̂ )− f ′e(T̂ ) = 0.

If T ∗ ∈ (TP2
, TP1

), then F ′(T ∗) = 0, since T ∗ is a maximum point. Suppose
that T ∗ = TP2

or T ∗ = TP1
. Since l(T ) is a linear function, we obtain from

(8.2.24) that

F ′(TP1
) ≤ F ′(T ) ≤ F ′(TP2

) for all T ∈ [TP2
, TP1

]. (8.2.31)

From this, since F ′(T̂ ) = 0, TP2
< TP1

, and T ∗ is a maximum point, we find that
F ′(T ∗) = 0 if T ∗ = TP2

or T ∗ = TP1
. Indeed, if T ∗ = TP2

, then F ′(TP2
) ≤ 0,

since the maximum over [TP2
, TP1

] is attained at TP2
. If F ′(TP2

) < 0, we use
(8.2.31) to see that F ′(T ) ≤ F ′(TP2) < 0 for any T ∈ [TP2 , TP1 ], which is in
contradiction to the fact that F ′(T̂ ) = 0. Case T ∗ = TP1 is similar. Thus, in all
cases, F ′(T ∗) = 0 = F ′(T̂ ), which implies

f ′e(T ∗) = f ′e(T̂ ).

Therefore, the tangent lines to Γshock at P̂ and P ∗, denoted by LP̂ and LP∗ ,
are parallel to each other.
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Moreover, using that Ω ⊂ {S < fe(T ) : T ∈ R} and denoting by B :=
f ′e(T ∗) = f ′e(T̂ ), we have

νsh(P̂ ) = νsh(P ∗) =
1√

1 +B2

(
−e +Be⊥

)
. (8.2.32)

2. Denote by O1 the center of sonic circle of state (1). Then O1 = (0, u1) in
the ξ–coordinates. In this step, we show that dist(O1, LP∗) > dist(O1, LP̂ ).

Since ν(P̂ ) = ν(P ∗) and τ (P̂ ) = τ (P ∗) from the results of Step 1, in the
calculations below, νsh denotes both ν(P̂ ) and ν(P ∗), and τ sh denotes both
τ (P̂ ) and τ (P ∗).

By Lemma 8.1.7, we see that (O1 − P ) · ν(P ) = Dϕ1(P ) · ν(P ) > 0 for any
P ∈ Γshock. Then, since P̂ ∈ LP̂ and P ∗ ∈ LP∗ , and νsh is the normal to both
LP̂ and LP∗ , we obtain by Lemma 6.1.1 that

dist(O1, LP̂ ) = νsh · (O1 − P̂ ), dist(O1, LP∗) = νsh · (O1 − P ∗).

We now find the expression of O1 − P ∗ in terms of O1 − P̂ .
From the definition of (S, T )–coordinates and the shock function fe in Step

1, we have
P ∗ = P̂ +

(
fe(T ∗)− fe(T̂ )

)
e +

(
T ∗ − T̂

)
e⊥.

Using the definitions of functions F (T ) and l(T ) in Step 1, we rewrite this
expression as

P ∗ = P̂ +
(
F (T ∗)− F (T̂ )

)
e +

(
T ∗ − T̂

)(
f ′e(T̂ )e + e⊥

)
.

Since Γshock = {S = fe(T ) : TP2
< T < TP1

}, we have

τ sh = τ (P̂ ) =
1√

1 + (f ′e(T̂ ))2

(
f ′e(T̂ )e + e⊥

)
.

Combining the last two equations, we obtain

P ∗ = P̂ + (F (T ∗)− F (T̂ ))e +Mτ sh,

where M = (T ∗ − T̂ )

√
1 + (f ′e(T̂ ))2. This implies

O1 − P ∗ = (O1 − P̂ )− (F (T ∗)− F (T̂ ))e−Mτ sh.

Then

νsh · (O1 − P ∗) = νsh · (O1 − P̂ )− (F (T ∗)− F (T̂ ))e · νsh > νsh · (O1 − P̂ ),

where the inequality holds since F (T ∗)− F (T̂ ) > 0 by (8.2.30) and e · νsh < 0
by Corollary 8.2.13. Thus, we have shown that

dist(O1, LP∗) > dist(O1, LP̂ ). (8.2.33)
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3. By (8.1.2), Lemma 8.1.7, and (8.2.32)–(8.2.33), we can apply Lemma
6.1.4 to points P̂ and P ∗ to obtain

∂νφ(P ∗) < ∂νφ(P̂ ) for ν := νsh(P̂ ) = νsh(P̂ ∗).

Also, since τ sh(P ∗) = τ sh(P̂ ) =: τ sh, and φ1 is a linear function, we use (8.1.14)
to obtain

∂τφ(P ∗) = τ sh ·Dφ1(P ∗) = τ sh ·Dφ1(P̂ ) = ∂τφ(P̂ ).

Furthermore, e · νsh < 0, by Corollary 8.2.13. Then we have

e ·Dφ(P ∗) = ∂νφ(P ∗)νsh · e + ∂τφ(P ∗)τ sh · e

= ∂νφ(P ∗)νsh · e + ∂τφ(P̂ )τ sh · e

>∂νφ(P̂ )νsh · e + ∂τφ(P̂ )τ sh · e

= e ·Dφ(P̂ ),

which is to say that w(P ∗) > w(P̂ ). This contradicts the assumption that the
maximum of w over Ω is attained at P̂ .

8.2.3 Directions of monotonicity of ϕ− ϕ2

Proposition 8.2.17. Let ϕ be an admissible solution of Problem 2.6.1 in the
sense of Definition 8.1.1. Then

∂eS1
(ϕ− ϕ2) > 0 in Ω \ Γsonic, (8.2.34)

where eS1
is defined by (7.5.8).

Proof. Since eS1
‖ S1 and S1 = {ϕ1 = ϕ2} = {φ1 = φ2}, and φ1 and φ2 are

linear functions, we find that ∂eS1
φ1 = ∂eS1

φ2 in R2. Thus, by Proposition
8.2.6, we obtain

∂eS1
(ϕ− ϕ2) = ∂eS1

(φ− φ2) = ∂eS1
(φ− φ1) = ∂eS1

(ϕ− ϕ1) > 0

in Ω \ Γsonic.

Next, we show that ϕ−ϕ2 is monotone in the direction orthogonal to Γwedge.
More precisely, ϕ− ϕ2 is non-decreasing in the nw–direction in Ω, where

nw = −νw = (sin θw,− cos θw). (8.2.35)

We first prove some preliminary facts. We will use vector τw defined by
(8.2.17).
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Lemma 8.2.18. Let ϕ be a solution of Problem 2.6.1 satisfying (8.1.7) and
conditions (i)–(iv) of Definition 8.1.1. Then

φ(P2) ≤ φ(P ) for all P ∈ Ω, (8.2.36)

∂ξ1φ(P ) ≥ 0 for all P ∈ Γsym. (8.2.37)

Proof. We divide the proof into two steps.
1. We first note that ∂ξ2(φ1 − φ) = ∂ξ2(ϕ1 − ϕ) ≤ 0 in Ω by (8.1.7), where

∂ξ2φ1 = 0 by (2.2.17). Then

∂ξ2φ ≥ 0 in Ω. (8.2.38)

Let R+ = {t > 0}. By (8.2.11), we have

Ω ⊂ ∪P∈Γsym∪Γwedge

(
P + R+eξ2

)
.

Thus, by (8.2.38),
minΩφ = minΓsym∪Γwedge

φ. (8.2.39)

On the other hand, we can express the unit tangent vector to Γwedge as

τw = A
(

cot θwnw +
1

sin θw
eξ2

)
for A =

sin θw√
cos2 θw + 1

> 0.

From that, using φν = 0 on Γwedge and (8.2.38), we have

∂τw
φ = A

(
cot θw∂nw

φ+
1

sin θw
∂eξ2φ

)
=

A

sin θw
∂eξ2φ ≥ 0 on Γwedge.

Thus, φ(P ) ≥ φ(P3) for any P ∈ Γwedge. Then (8.2.39) implies

minΩφ = minΓsym
φ. (8.2.40)

Clearly, (8.2.40), combined with (8.2.37), implies (8.2.36). Therefore, it
remains to prove (8.2.37).

2. To achieve this, it is convenient to consider the extension of φ by even
reflection into domain Ωext, as in Remark 8.1.3. Then the extended function
φ ∈ C1(Ωext). Also, Dφ(P3) = 0, since φνsym(P3) = 0 and φnw(P3) = 0, where
νsym = (0, 1). Furthermore, (8.2.38) and the extension of φ into ξ2 < 0 by even
reflection imply

ξ2 ∂ξ2φ(ξ) ≥ 0 for all ξ ∈ Ωext. (8.2.41)

Moreover, equation (2.2.8) (considered as a linear equation with respect to φ)
is strictly elliptic near P3. Since φ ∈ C1(Ωext), the coefficients of (2.2.8) are in
C(Ωext), which implies that (2.2.8) is uniformly elliptic in a neighborhood of P3

in Ωext.
Now we prove (8.2.37). Recall that |Dφ(P3)| = 0. Suppose that there exists

P ∗ ∈ Γsym \ {P3} satisfying that ∂ξ1φ(P ∗) < 0.
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If ∂ξ1φ(P ) ≤ 0 for any P ∈ [P ∗, P3] (in this argument, [P ∗, P3] ⊂ Γsym

denotes the straight segment connecting P ∗ to P3), we then use (8.2.41) to
conclude that there exists r > 0 such that B̂r(P3) := Br(P3)∩{ξ1 < 0} ⊂ Ω and
φ(P3) ≤ φ(ξ) for any ξ ∈ B̂r(P3). Since Dφ(P3) = 0 and P3 = 0 ∈ ∂B̂r(P3), we
obtain a contradiction to Hopf’s lemma at P3 applied in domain B̂r(P3), where
we note that this domain satisfies the interior sphere condition at P3.

Therefore, there exists P ∗∗ ∈ (P ∗, P3) satisfying that ∂ξ1φ(P ∗∗) > 0. Then
the minimum of φ over [P ∗, P ∗∗] is attained at some point Q ∈ (P ∗, P ∗∗) with
φ(Q) < φ(P ∗) and φ(Q) < φ(P ∗∗). Using (8.2.41), we conclude that Q is a point
of local minimum of φ in Ωext, and φ is not constant on Γsym. This contradicts
the strong maximum principle, since Q is an interior point of Ωext and equation
(2.2.8) is uniformly elliptic near Γsym by Definition 8.1.1(iii). Therefore, (8.2.37)
is proved, which implies (8.2.36).

Now we prove the monotonicity property:

Proposition 8.2.19. Let ϕ be a regular reflection-diffraction solution in the
sense of Definition 8.1.1. Then

∂nw
(ϕ− ϕ2) ≥ 0 in Ω. (8.2.42)

Proof. We divide the proof into three steps.
1. By Definition 8.1.1(ii), Dϕ = Dϕ2 on Γsonic. Also, ∂nw

ϕ = ∂nw
ϕ2 = 0

on Γwedge by (2.2.20) and (7.1.3).
At P2, ∂ξ1φ(P2) ≥ 0 by (8.2.37), and ∂ξ2φ(P2) = 0 by the boundary condition

(2.2.20). Thus, using (8.2.35), we have

nw ·Dφ(P2) = ∂ξ1φ(P2) sin θw − ∂ξ2φ(P2) cos θw = ∂ξ1φ(P2) sin θw ≥ 0.

Since Dφ2(P ) = (u2, v2) =
√
u2

2 + v2
2 τw for any P ∈ R2, nw · Dφ2(P2) = 0.

Hence, we have

∂nw
(ϕ− ϕ2)(P2) = ∂nw

(φ− φ2)(P2) ≥ 0.

Then ∂nw(ϕ − ϕ2) ≥ 0 on Γsonic ∪ Γwedge ∪ {P2}. It remains to show that the
minimum of ∂nw(ϕ−ϕ2) over Ω cannot be attained within Ω\ (Γsonic∪Γwedge∪
{P2}).

2. Denote
w := ∂nw

φ.

Since ∂nw(ϕ − ϕ2) = ∂nw(φ − φ2), and ∂nwφ2 is constant in R2, it suffices to
show that the minimum of w over Ω cannot be attained within Ω \ (Γsonic ∪
Γwedge ∪ {P2}).

3. Since w satisfies equation (5.1.10), which is uniformly elliptic and has
continuous coefficients on any compact subset of Ω, and w is non-constant in Ω
by Lemma 8.2.1, it follows that the minimum of w over Ω cannot be attained
in the interior of Ω.
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Since θw ∈ (0, π2 ), nw is not orthogonal to Γsym ⊂ {ξ2 = 0}. Then Lemma
8.2.3(iii) implies that w cannot attain its minimum over Ω on Γsym.

Also, by assertion (8.2.19) in Lemma 8.2.11 and Proposition 8.2.16, the max-
imum of ∂−nw

φ over Ω cannot be attained on Γshock. In other words, the mini-
mum of w over Ω cannot be attained on Γshock.

Therefore, we have shown in Step 3 that w cannot attain its minimum over
Ω on Ω ∪ Γsym ∪ Γshock. Note that

Ω ∪ Γsym ∪ Γshock = Ω \ (Γsonic ∪ Γwedge ∪ {P2}).

This, combining with the conclusion of Step 2, completes the proof.

Combining Proposition 8.2.17 with Proposition 8.2.19, we have

Corollary 8.2.20 (Cone of monotonicity directions for ϕ − ϕ2). Let ϕ be an
admissible solution of Problem 2.6.1 in the sense of Definition 8.1.1. Then,
for all e ∈ Cone(eS1 ,nw),

∂e(ϕ− ϕ2) ≥ 0 in Ω, (8.2.43)

where Cone(eS1
,nw) is defined by (8.1.10).

8.3 APPENDIX: PROPERTIES OF SOLUTIONS OF PROBLEM
2.6.1 FOR LARGE-ANGLE WEDGES

In this section we show that, if θw is sufficiently close to π
2 depending only on

(ρ0, ρ1, γ), and a solution ϕ of Problem 2.6.1 is of supersonic reflection config-
uration as described in §2.4.2 and is sufficiently close to ϕ2 in Ω, then solution ϕ
satisfies conditions (iv)–(v) of Definition 8.1.1. This motivates Definition 8.1.1
for the class of admissible solutions.

The main result of this section is the following:

Proposition 8.3.1. There exists σ > 0 depending only on (ρ0, ρ1, γ) such that,
if ϕ is a solution of Problem 2.6.1 for θw ∈ (π2 − σ, π2 ), which satisfies condi-
tions (i)–(iii) of Definition 8.1.1 and

‖ϕ− ϕ(θw)
2 ‖C1(Ω) ≤ C0σ (8.3.1)

for some constant C0 > 0 independent of σ, then ϕ satisfies conditions (iv)–(v)
of Definition 8.1.1.

To prove Proposition 8.3.1, we first recall some facts proved earlier. Denote
by ϕ0

2 the pseudo-potential for state (2) for the normal reflection (i.e., θw = π
2 )

corresponding to (ρ0, ρ1, γ). Then ϕ0
2 is defined by (6.2.1), and the Rankine-

Hugoniot conditions (2.2.13) hold between states (1) and (2) along the flat
reflected shock S0

1 = {ϕ1 = ϕ0
2} ≡ {ξ1 = ξ̄1}.
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Denote by ρ̄2 and c̄2 the density and sonic speed of the normal reflection
solution, and denote by P̄1 the point in half-plane {ξ2 > 0} of intersection of the
sonic circle ∂Bc̄2 of the normal reflection solution with the flat reflected shock
{ξ1 = ξ̄1}. Let P̄2 = (ξ̄1, 0), and denote by Γnorm

shock the line segment P̄1P̄2 that is
the transonic part of the flat reflected shock S0

1 in half-plane {ξ2 > 0}. For r > 0,
denote by Nr(Γnorm

shock) the r–neighborhood of Γnorm
shock. Also, for θw ∈ (π2−σ, π2 ), let

ϕ2 be the pseudo-potential of state (2). Let Γflat
shock be the transonic part of shock

S1 = {ϕ1 = ϕ2}, i.e., the line segment between P1 and point P̂2 := S1∩{ξ2 = 0}.
Moreover, the normal to Γflat

shock in the direction to the region for state (2) is
νS1

= (u1−u2,−v2)√
(u1−u2)2+v2

2

. Then

−c̄2 < ξ̄1 < 0, ρ̄2 > ρ1, (8.3.2)

and there exists σ > 0 such that, for any θw ∈ (π2 − σ, π2 ),

state (2) exists and (u2, v2, ρ2) depends continuously on θw, (8.3.3)
|(u2, v2)|+ |(ρ̄2, c̄2)− (ρ2, c2)| ≤ Cσ, (8.3.4)

|P1 − P̄1|+ |P̂2 − P̄2| ≤ Cσ, (8.3.5)

where the universal constant C may be different at different occurrence, but
depends only on (ρ0, ρ1, γ).

Property (8.3.2) follows from Theorem 6.2.1. Properties (8.3.3)–(8.3.4) fol-
low from Theorem 7.1.1 (see also §3.1–§3.2 of [54]). Property (8.3.5) easily
follows from (8.3.2) and (8.3.4). Furthermore, it holds that

∂νϕ1 > ∂νϕ2 > 0 on Γflat
shock, (8.3.6)

which follows from (7.1.6).
In the rest of this section, we prove Proposition 8.3.1.

8.3.1 ϕ ≤ ϕ1 if ϕ is a smooth solution in Ω

Lemma 8.3.2. Let ϕ be a solution of Problem 2.6.1 for the wedge angle
θw ∈ (θs

w,
π
2 ), which satisfies conditions (i)–(iii) of Definition 8.1.1. Then

ϕ ≤ ϕ1 in Ω.

Proof. We use φ̄ := ϕ1 − ϕ. Since νw = (− sin θw, cos θw),

∂νw(ϕ1 − ϕ) = ∂νwφ1 = −u1 sin θw < 0 on Γwedge.

Since ϕ ∈ C1(Ω), the same holds at P3 = 0, which is an endpoint of Γwedge.
Also, at any point ξ ∈ Γwedge ∪ {P3}, νw = (− sin θw, cos θw) points into Ω, i.e.,
there exists ε0 > 0 such that ξ+ ενw ∈ Ω for ε ∈ (0, ε0). Then the minimum of
φ̄ over Ω cannot be achieved on Γwedge ∪ {P3}.

Furthermore, φ̄ satisfies:
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• The elliptic equation (2.2.11) in Ω (considered as a linear equation with
respect to D2φ) with D2φ replaced by D2φ̄, which can be done since
D2φ = −D2φ̄;

• ∂ν φ̄ = 0 on Γsym;

• ∂ν φ̄ = −u1 sin θw < 0 on Γwedge;

• φ̄ = 0 on Γshock;

• φ̄ = ϕ1 − ϕ = ϕ1 − ϕ2 > 0 on Γsonic.

Then, by the strong maximum principle and Hopf’s lemma, if the minimum of
φ̄ over Ω is achieved in Ω∪Γsym, φ̄ is a constant in Ω; in this case, the condition
on Γwedge is not satisfied. Thus, the minimum of φ̄ over Ω cannot be achieved in
Ω ∪ Γsym. Also, the minimum of φ̄ over Ω cannot be achieved on Γwedge ∪ {P3}
as we have shown above. Therefore, we have

min
Ω
φ̄ = min

Γshock∪Γsonic

φ̄ = 0.

8.3.2 ϕ ≥ ϕ2 if ϕ is a solution close to the normal reflection

Now we show that ϕ ≥ ϕ2 in Ω, if the conditions of Proposition 8.3.1 are satisfied
with small σ. For this, it is convenient to rewrite the potential flow equation in
Ω and the boundary conditions on ∂Ω in terms of ψ = ϕ− ϕ2.

8.3.2.1 Shifting coordinates

It is more convenient to change the coordinates in the self-similar plane by
shifting the origin to the center of sonic circle of state (2). We define

ξnew := ξ − (u2, v2).

For simplicity of notation, throughout the rest of this section, we always work
in the new coordinates without changing notation ξ.

Rewriting the background solutions (2.2.16)–(2.2.17) and (2.4.1) in the shifted
coordinates, we have

ϕ0(ξ) = −1

2
|ξ|2 − (u2, v2) · ξ − 1

2
q2
2 , (8.3.7)

ϕ1(ξ) = −1

2
|ξ|2 + (u1 − u2,−v2) · ξ − 1

2
q2
2 + u1(u2 − ξ0

1), (8.3.8)

ϕ2(ξ) = −1

2
|ξ|2 − 1

2
q2
2 + (u1 − u2)ξ̂1 + u1(u2 − ξ0

1), (8.3.9)

where q2
2 = u2

2 + v2
2 .
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We first note that, from (8.3.4),

u1 − u2 > 0 for θw ∈ (
π

2
− σ, π

2
)

if σ is small, depending only on the data. Since eξ1 = (1, 0) and D(ϕ1 − ϕ2) =
(u1−u2,−v2), it follows that ∂eξ1 (ϕ1−ϕ2) = u1−u2 > 0 in R2 for such θw. Then,
after possibly further reducing σ, it follows from (8.3.1) that ∂eξ1 (ϕ1 − ϕ) > 0

in Ω. Since ϕ = ϕ1 on Γshock by the Rankine-Hugoniot condition (5.1.12), and
ϕ ≥ ϕ1 in Ω by Lemma 8.3.2, it follows that there exists a function f ∈ C1(R)
such that

Γshock = {ξ1 = f(ξ2) : 0 < ξ2 < ξ2P1
}, Ω ⊂ {ξ1 > f(ξ2) : ξ2 ∈ R}.

‖f − l‖C1([ξ2P2
,ξ2P1

]) ≤ Cσ, (8.3.10)

where ξ1 = l(ξ2) is line S1 = {ϕ1 = ϕ2}. That is,

l(ξ2) = ξ2 cot θs + ξ̂1, (8.3.11)

and
ξ̂1 = ξ̃1 − u2 + v2 cot θsh < 0 (8.3.12)

if σ = π
2 − θw > 0 is sufficiently small, since |(u2, v2)| is small and ξ̃1 < 0 by

(6.2.2) in this case. Since u2 = v2 cot θw > 0, it follows from (7.2.13) that

ξ̂1 > ξ̃1. (8.3.13)

Another condition on f comes from the fact that, since ϕ satisfies Definition
8.1.1(i)–(ii), the curved part and straight part of the reflected-diffracted shock
should match at least up to the first-order at P1. From its definition, P1 = ξP1

is the intersection point of line ξ1 = l(ξ2) and the sonic circle |ξ|2 = c22 with
ξ2P1

> 0, i.e., ξP1
is the unique point for small σ > 0 satisfying

l(ξ2P1
)2 + ξ2

2P1
= c22, ξ1P1

= l(ξ2P1
), ξ2P1

> 0. (8.3.14)

The existence and uniqueness of such a point ξP1
follows from −c2 < ξ̃1 < 0,

which holds from (7.2.13), (7.2.16), (8.3.12), and the smallness of |(u2, v2)|.
Then f satisfies

f(ξ2P1
) = l(ξ2P1

), f ′(ξ2P1
) = l′(ξ2P1

) = cot θsh. (8.3.15)

Note also that, for small σ > 0, we obtain from (7.2.16), (8.3.12)–(8.3.13), and
l′(ξ2) = cot θsh > 0 that

−c2 < ξ̃1 < ξ̂1 < ξ1P1
< 0, c2 − |ξ̃1| ≥

c̄2 − |ξ̄1|
2

> 0. (8.3.16)

Thus, in the new shifted coordinates, domain Ω is expressed as

Ω = Bc2(0) ∩ {ξ2 > −v2} ∩ {f(ξ2) < ξ1 < ξ2 cot θw}. (8.3.17)
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Furthermore, equations (2.2.8)–(2.2.9) and the Rankine-Hugoniot conditions
(2.2.13)–(2.2.14) on Γshock do not change under the shift of coordinates. That is,
ϕ satisfies both (2.2.8)–(2.2.9) in Ω (so that the equation is elliptic on ϕ) and the
following boundary conditions on Γshock: The continuity of the pseudo-potential
function across the shock

ϕ = ϕ1 on Γshock, (8.3.18)

and the gradient jump condition

ρ(|Dϕ|2, ϕ)Dϕ · νsh = ρ1Dϕ1 · νsh on Γshock, (8.3.19)

where νsh is the interior unit normal to Γshock ⊂ ∂Ω.
The boundary conditions on the other parts of ∂Ω are:

ϕ = ϕ2 on Γsonic = ∂Ω ∩ ∂Bc2(0), (8.3.20)

ϕν = 0 on Γwedge = ∂Ω ∩ {ξ2 = ξ1 tan θw}, (8.3.21)

ϕν = 0 on Γsym = ∂Ω ∩ {ξ2 = −v2}. (8.3.22)

Moreover, substituting ξ̃1 in (8.3.12) into equation (7.2.8) and using (7.2.2)
and (7.2.5), we have

ρ2ξ̂1 = ρ1

(
ξ̂1 −

(u1 − u2)2 + v2
2

u1 − u2

)
, (8.3.23)

which expresses the Rankine-Hugoniot conditions on S1 in terms of ξ̂1. We use
this equality below.

1ξ

(2)

2ξ

Ω
wθ

4P

)2v,2u(3P)2v,2ξ(2P

)1, η1ξ(1P

O

(1)
(0)

Figure 8.1: Supersonic reflection configurations in the new coordinates
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8.3.2.2 The equations and boundary conditions in terms of
ψ = ϕ− ϕ2

We consider the function: ψ = ϕ− ϕ2. It follows from (2.2.8)–(2.2.9), (7.2.14),
and (8.3.9), by explicit calculation, that ψ satisfies the following equation in Ω:

(
c2(Dψ,ψ, ξ)− (ψξ1 − ξ1)2

)
ψξ1ξ1 +

(
c2(Dψ,ψ, ξ)− (ψξ2 − ξ2)2

)
ψξ2ξ2

−2(ψξ1 − ξ1)(ψξ2 − ξ2)ψξ1ξ2 = 0, (8.3.24)

and the expressions of the density and sonic speed in Ω in terms of ψ are

ρ(Dψ,ψ, ξ) =
(
ργ−1

2 + (γ − 1)
(
ξ ·Dψ − 1

2
|Dψ|2 − ψ

)) 1
γ−1

, (8.3.25)

c2(Dψ,ψ, ξ) = c22 + (γ − 1)
(
ξ ·Dψ − 1

2
|Dψ|2 − ψ

)
, (8.3.26)

where ρ2 is the density of state (2).
From (8.3.9) and (8.3.20)–(8.3.21), we obtain

ψ = 0 on Γsonic = ∂Ω ∩ ∂Bc2(0), (8.3.27)

ψν = 0 on Γwedge = ∂Ω ∩ {ξ2 = ξ1 tan θw}, (8.3.28)

ψξ2 = −v2 on Γsym = ∂Ω ∩ {ξ2 = −v2}. (8.3.29)

From (8.3.8)–(8.3.9), the Rankine-Hugoniot conditions in terms of ψ take the
following form: The continuity of the pseudo-potential function across (8.3.18)
is written as

ψ−1

2
q2
2+ξ̂1(u1−u2)+u1(u2−ξ0

1) = ξ1(u1−u2)−ξ2v2−
1

2
q2
2+u1(u2−ξ0

1) (8.3.30)

on Γshock, that is,

ξ1 =
ψ(ξ) + v2ξ2
u1 − u2

+ ξ̂1 on Γshock, (8.3.31)

where ξ̂1 is defined by (8.3.12). The gradient jump condition (8.3.19) is

ρ(Dψ,ψ) (Dψ − ξ) · νsh = ρ1 (u1 − u2 − ξ1,−v2 − ξ2) · νsh (8.3.32)

on Γshock, where ρ(Dψ,ψ) is defined by (8.3.25) and νsh is the interior unit
normal to Ω on Γshock. If |(u2, v2, Dψ)| < u1

50 , the unit normal νsh can be
expressed as

νsh =
D(ϕ1 − ϕ)

|D(ϕ1 − ϕ)| =
(u1 − u2 − ψξ1 ,−v2 − ψξ2)√

(u1 − u2 − ψξ1)2 + (v2 + ψξ2)2
, (8.3.33)

where we have used (8.3.8)–(8.3.9) and (6.3.1) to obtain the last expression.
Now we rewrite the jump condition (8.3.32) in a more convenient form for

ψ satisfying (8.3.18) when σ > 0 and ‖ψ‖C1(Ω̄) are sufficiently small.
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Lemma 8.3.3. There exists σ > 0 small, depending only on (ρ0, ρ1, γ), such
that, if θw and ϕ satisfy the conditions of Proposition 8.3.1, ϕ satisfies the
following condition on Γshock:

ρ′2(c22 − |ξ̂1|2)ψξ1 +
(ρ2 − ρ1

u1
− ρ′2ξ̂1

)
(ξ2ψξ2 − ψ)

+E1(Dψ,ψ, ξ2) ·Dψ + E2(Dψ,ψ, ξ2)ψ = 0, (8.3.34)

where functions E1 = (E11, E12)(p, z, ξ2) and E2(p, z, ξ2) are smooth on R2 ×
R× R and satisfy

|Ei(p, z, ξ2)| ≤ C (|p|+ |z|+ σ) , (8.3.35)

|(D(p,z,ξ2)Ei, D
2
(p,z,ξ2)Ei)| ≤ C, (8.3.36)

for i = 1, 2.

Proof. We use the notations introduced in §6.2. In particular, ρ̄2 and c̄2 denote
the density and sonic speed of the normal reflection.

We first discuss the smallness assumptions for σ > 0 and ‖ψ‖C1(Ω̄). By
(7.2.11) and (7.2.15), it follows that, if σ is small, depending only on the data,
then

5c̄2
6
≤ c2 ≤

6c̄2
5
,

5ρ̄2

6
≤ ρ2 ≤

6ρ̄2

5
,
√
u2

2 + v2
2 ≤

u1

50
. (8.3.37)

We also require that ‖ψ‖C1(Ω̄) be sufficiently small so that, if (8.3.37) holds,
expressions (8.3.25) and (8.3.33) are well-defined in Ω, and ξ1 defined by the
right-hand side of (8.3.31) satisfies |ξ1| ≤ 7c̄2

5 for ξ2 ∈ (−v2, c2), which is the
range of ξ2 on Γshock. Since (8.3.37) holds and Ω ⊂ Bc2(0) by (8.3.17), it suffices
to assume

‖ψ‖C1(Ω̄) ≤ min
{ ρ̄γ−1

2

50(1 + 4c̄2)
,min{1, c̄2}

u1

50

}
=: δ∗. (8.3.38)

For the rest of the proof, we assume that (8.3.37)–(8.3.38) hold. Under these
conditions, we can substitute the right-hand side of (8.3.33) for νsh into (8.3.32).
Thus, we rewrite (8.3.32) as

F (Dψ,ψ, u2, v2, ξ) = 0 on Γshock, (8.3.39)

where, denoting p = (p1, p2) ∈ R2 and z ∈ R,

F (p, z, u2, v2, ξ) =
(
ρ̃ (p− ξ)− ρ1 (u1 − u2 − ξ1,−v2 − ξ2)

)
· ν̂, (8.3.40)

with ρ̃ := ρ̃(p, z, ξ) and ν̂ := ν̂(p, u2, v2) defined by

ρ̃(p, z, ξ) =
(
ργ−1

2 + (γ − 1)
(
p · ξ − |p|

2

2
− z
)) 1

γ−1

, (8.3.41)

ν̂(p, u2, v2) =
(u1 − u2 − p1,−v2 − p2)√

(u1 − u2 − p1)2 + (v2 + p2)2
. (8.3.42)
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From the explicit definitions of ρ̃ and ν̂, it follows from (8.3.37) that

ρ̃ ∈ C∞(Bδ∗(0)× (−δ∗, δ∗)×B2c̄2(0)), ν̂ ∈ C∞(Bδ∗(0)×Bu1/50(0)),

where BR(0) denotes the ball in R2 with center 0 and radius R and, for k ∈ N
(the set of nonnegative integers), the Ck–norms of ρ̃ and ν̂ over the regions
specified above are bounded by the constants depending only on (u1, ρ̄2, c̄2, γ, k),
that is, the Ck–norms depend only on the data and k. Then

F ∈ C∞(Bδ∗(0)× (−δ∗, δ∗)×Bu1/50(0)×B2c̄2(0)) (8.3.43)

with its Ck–norm depending only on the data and k.
Furthermore, since ψ satisfies (8.3.18) so that (8.3.31) holds, we can substi-

tute the right-hand side of (8.3.31) for ξ1 into (8.3.39). Thus, we rewrite (8.3.32)
as

Ψ(Dψ,ψ, u2, v2, ξ2) = 0 on Γshock, (8.3.44)

where

Ψ(p, z, u2, v2, ξ2) = F (p, z, u2, v2,
z + v2ξ2
u1 − u2

+ ξ̂1, ξ2). (8.3.45)

If ξ2 ∈ (− 6c̄2
5 , 6c̄2

5 ) and |z| ≤ δ∗, it follows from (8.3.16) and (8.3.37)–(8.3.38)
that

∣∣ z+v2ξ2
u1−u2

+ ξ̂1
∣∣ ≤ 7c̄2

5 . That is, ( z+v2ξ2
u1−u2

+ ξ̂1, ξ2) ∈ B2c̄2(0) if ξ2 ∈ (− 6c̄2
5 , 6c̄2

5 )

and |z| ≤ δ∗. Thus, from (8.3.43) and (8.3.45), Ψ ∈ C∞(A) with ‖Ψ‖Ck(A) de-
pending only on the data and k ∈ N, where A = Bδ∗(0)×(−δ∗, δ∗)×Bu1/50(0)×
(− 6c̄2

5 , 6c̄2
5 ).

Using the explicit expression of Ψ given by (8.3.40)–(8.3.42) and (8.3.45), we
calculate

Ψ(0, 0, u2, v2, ξ2)

= − (u1 − u2)ρ2ξ̂1√
(u1 − u2)2 + v2

2

− ρ1

(√
(u1 − u2)2 + v2

2 −
(u1 − u2)ξ̂1√

(u1 − u2)2 + v2
2

)
.

Now, using (8.3.23), we have

Ψ(0, 0, u2, v2, ξ2) = 0 for any (u2, v2, ξ2) ∈ Bu1
50

(0)× (−6c̄2
5
,

6c̄2
5

).

Then, denoting p0 = z and X = (p, p0, u2, v2, ξ2) ∈ A, we have

Ψ(X ) =
2∑

i=0

piDpiΨ(0, 0, u2, v2, ξ2) +
2∑

i,j=0

pipjgij(X ), (8.3.46)

where gij(X ) =
∫ 1

0
(1 − t)DpipjΨ(tp, tp0, u2, v2, ξ2)dt for i, j = 0, 1, 2. Thus,

gij ∈ C∞(A) and ‖gij‖Ck(A) ≤ ‖Ψ‖Ck+2(A), depending only on the data and
k ∈ N.
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Next, denoting ρ′2 := ρ̂′(ργ−1
2 ) = ρ2

c22
> 0, we compute from the explicit

expression of Ψ given by (8.3.40)–(8.3.42) and (8.3.45) that

D(p,z)Ψ(0, 0, 0, 0, ξ2) =
(
ρ′2(c22 − ξ̂2

1),
(ρ2 − ρ1

u1
− ρ′2ξ̂1

)
ξ2, ρ

′
2ξ̂1 −

ρ2 − ρ1

u1

)
.

Note that, for i = 0, 1, 2,

∂piΨ(0, 0, u2, v2, ξ2) = ∂piΨ(0, 0, 0, 0, ξ2) + hi(u2, v2, ξ2)

with

‖hi‖Ck(Bu1/50(0)×(−6c̄2/5,6c̄2/5))
≤ ‖Ψ‖Ck+2(A) for k ∈ N,

|hi(u2, v2, ξ2)| ≤ ‖D2Ψ‖C(A)

(
|u2|+ |v2|

)
.

Then we obtain from (8.3.46) that, for any X = (p, z, u2, v2, ξ2) ∈ A,

Ψ(X ) = ρ′2(c22−ξ̂2
1)p1+

(ρ2 − ρ1

u1
−ρ′2ξ̂1

)
(ξ2p2−z)+Ê1(X )·p+Ê2(X )z, (8.3.47)

where Ê1 ∈ C∞(A; R2) and Ê2 ∈ C∞(A) with

‖Êi‖Ck(A) ≤ ‖Ψ‖Ck+2(A), i = 1, 2, k ∈ N,

|Êi(p, z, u2, v2, ξ2)| ≤ C(|p|+ |z|+ |u2|+ |v2|) for any (p, z, u2, v2, ξ2) ∈ A,

for C, depending only on ‖D2Ψ‖C(A).
From now on, we fix (u2, v2) to equal the velocity of state (2) and write

Ei(p, z, ξ2) for Êi(p, z, u2, v2, ξ2). We conclude that, if (8.3.37) holds and ψ ∈
C1(Ω) satisfies (8.3.38), then ψ = ϕ− ϕ2 satisfies (8.3.18)–(8.3.19) on Γshock if
and only if ψ satisfies conditions (8.3.31) on Γshock:

ρ′2(c22 − ξ̂2
1)ψξ1 +

(ρ2 − ρ1

u1
− ρ′2ξ̂1

)
(ξ2ψξ2 − ψ)

+E1(Dψ,ψ, ξ2) ·Dψ + E2(Dψ,ψ, ξ2)ψ = 0, (8.3.48)

and Ei(p, z, ξ2), i = 1, 2, are smooth on Bδ∗(0)× (−δ∗, δ∗)× (− 6c̄2
5 , 6c̄2

5 ) and
satisfy that, for any (p, z, ξ2) ∈ Bδ∗(0)× (−δ∗, δ∗)× (− 6c̄2

5 , 6c̄2
5 ),

|Ei(p, z, ξ2)| ≤ C (|p|+ |z|+ σ) , (8.3.49)

|(D(p,z,ξ2), D
2
(p,z,ξ2))Ei)| ≤ C, (8.3.50)

where we have used (7.2.15) in the derivation of (8.3.49), and C depends only
on the data.

Lemma 8.3.4. Let θw,Ω, and ϕ be as those in Lemma 8.3.3. Write (8.3.34) in
the form:

a1ψξ1 + a2ψξ2 + a3ψ = 0 on Γshock, (8.3.51)
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where

a1 = ρ′2(c22 − ξ̂2
1) + E11, a2 =

(ρ2 − ρ1

u1
− ρ′2ξ̂1

)
ξ2 + E12,

a3 = −
(ρ2 − ρ1

u1
− ρ′2ξ̂1

)
+ E2,

(8.3.52)

for (E1k, E2) = (E1k, E2)(Dψ(ξ), ψ(ξ), ξ2), where E1 = (E11, E12) and E2 are
from Lemma 8.3.3. Then, if σ is sufficiently small, depending only on (ρ0, ρ1, γ),
the linear homogeneous boundary condition (8.3.51) is oblique:

(a1, a2) · νsh ≥
1

2
ρ′2(c22 − ξ̂2

1) > 0, (8.3.53)

where νsh is the normal to Γshock, interior with respect to Ω. Moreover,

a1(P2) > 0, a2(P2) < 0, (8.3.54)

a3 ≤ −
1

2

(ρ2 − ρ1

u1
− ρ′2ξ̂1

)
< 0 on Γshock, (8.3.55)

where we have used that ξ̂1 < 0.

Proof. Denote by νS1
the unit normal to line S1 = {ϕ1 = ϕ2} towards the

region of state (2). Then νS1
= D(ϕ1−ϕ2)
|D(ϕ1−ϕ2) = (u1−u2,−v2)√

(u1−u2)2+v2
2

. We employ (7.2.15)
to compute

(
ρ′2(c22 − ξ̂2

1), (
ρ2 − ρ1

u1
− ρ′2ξ̂1)ξ2

)
· νS1

=
1√

(u1 − u2)2 + v2
2

(
ρ′2(c22 − ξ̂2

1)(u1 − u2) +
(ρ2 − ρ1

u1
− ρ′2ξ̂1

)
ξ2v2

)

≥ 3

4
ρ′2(c22 − ξ̂2

1) > 0,

if π2 − θw is small and ξ2 ∈ [ξ2P2
, ξ2P1

]. From (8.3.33), we have

‖νsh − νS1‖L∞(Γshock) ≤ C‖Dψ‖C(Ω).

Using this and (8.3.52) with (8.3.35), we conclude that, if σ > 0, (8.3.53) holds.
Similarly, using (8.3.52) with (8.3.35), noting that ξ̂1 < 0 and ξ2(P2) =

−v2 < 0, and choosing σ small, we obtain (8.3.54)–(8.3.55).

Lemma 8.3.5. Let ϕ be as that in Proposition 8.3.1. Then, if σ is sufficiently
small,

ϕ ≥ ϕ2 in Ω.
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Proof. We have shown that ψ = ϕ− ϕ2 satisfies equation (8.3.24) in Ω and the
boundary conditions (8.3.27)–(8.3.29) and (8.3.51).

Equation (8.3.24) is strictly elliptic in Ω, since its ellipticity constants for ψ
are equal to the ellipticity constants for ϕ, and ϕ satisfies Definition 8.1.1(iii).

Also, by Lemma 8.3.4, ψ satisfies the linear homogeneous condition (8.3.51)
on Γshock, and (8.3.53)–(8.3.55) hold.

Now we apply the comparison principle of Lemma 4.4.2 with Γ0 = Γsonic,
Γ1 = Γshock, Γ2 = Γsym, and Γ3 = Γwedge. We note that the obliqueness
condition at corners P2 and P3 is satisfied. Indeed, for corner P3, the Neumann
condition is prescribed at both straight sides Γwedge and Γsym, which meet at
angle π − θw ∈ (0, π), so that the obliqueness at P3 holds. At corner P2,
the Neumann condition is prescribed on Γsym ⊂ {ξ2 = −v2} with the interior
normal νsym = (0, 1), and condition (8.3.4) holds on Γshock, which is close to line
{ξ1 = ξ1(P2)} by (7.2.11), (7.2.15), and (8.3.10)–(8.3.12). Coefficients a1 and a2

are continuous near P2 by (8.3.52), Lemma 8.3.3, and Definition 8.1.1(ii). Also,
(8.3.53) implies that vector (a1, a2) on Γshock points into Ω. Then (8.3.54) and
νsym = (0, 1) imply that, if σ is small, (4.4.1) is satisfied with Σ as a straight line
through P2 parallel to vector (a1, 2a2)(P2). Now, by Lemma 4.4.2, we conclude
that ψ ≥ 0 in Ω.

Corollary 8.3.6. ϕ satisfies condition (iv) of Definition 8.1.1.

8.3.3 Cone of monotonicity for solutions close to the normal
reflection

In the next argument, we use vector h introduced in Lemma 5.1.1, specifically
form (5.1.24) of h. Denote by h̄ = (h̄1, h̄2) and P̄1 = (ξ̄1,

√
c̄22 − |ξ̄1|2) the

corresponding vector and point in the normal reflection case. Thus, Γnorm
shock =

{(ξ̄1, ξ2) : 0 < ξ2 <
√
c̄22 − |ξ̄1|2}, and ν = (1, 0) and τ = (0, 1) at any

P ∈ Γnorm
shock. Furthermore, ϕ = − |ξ|

2

2 +const. in Ω. Then, from (5.1.24), we have

h̄ = − ρ̄2 − ρ1

ρ1
(ĥ1, ĥ2) at P = (ξ̄1, ξ2) ∈ Γnorm

shock, (8.3.56)

where ĥ1 = ρ̄2(c̄22 − |ξ̄1|2)ξ̄1 and ĥ2 = −(ρ̄2|ξ̄1|2 + ρ1c̄
2
2)ξ2.

Lemma 8.3.7. Let ϕ be as in Proposition 8.3.1. Let e = (a1, a2) ∈ R2 \ {0}
with |e| = 1 be uniformly separated from ĥ = (ĥ1, ĥ2) on Γnorm

shock in the sense that
there exists µ > 0 such that

d := det

[
ĥ1(P ) ĥ2(P )
a1 a2

]
satisfies |d| ≥ µ for any P ∈ Γnorm

shock. (8.3.57)

Then there exists σ > 0 depending only on (ρ0, ρ1, γ, µ) such that w = ∂eφ for
φ = ϕ − ϕ0 in Ω satisfies that m < w < M on Γshock, where m = minΩ w and
M = maxΩ w.
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Proof. By Lemma 8.2.1, ∂eφ is not a constant in Ω. Then we need to show that
the extremum of w over Ω cannot be attained on Γshock. We divide the proof
into three steps.

1. Suppose that P ∗ = ξ∗ ∈ Γshock is a point of extremum of w over Ω. Then,
at P ∗, we have three equalities involving D2φ:

(i) Equation (2.2.11),

(ii) The tangential derivative of the Rankine-Hugoniot condition (5.1.22),

(iii) ∂τw=0,

where the last equality is true since P ∗ is a point of extremum. Also, (ii) has
been obtained by Lemma 5.1.1, which can be applied since condition (5.1.14) is
satisfied for small σ by (7.1.6) and (8.3.1).

Denoting e = (a1, a2), we then see that w = a1∂1φ + a2∂2φ. Also, denote
by τ (P ∗) = (τ1, τ2) the unit tangent vector to Γshock at P ∗. Thus, the three
equalities at P ∗ mentioned above are written as:

(c2 − ϕ2
ξ1)φξ1ξ1 − 2ϕξ1ϕξ2φξ1ξ2 + (c2 − ϕ2

ξ2)φξ2ξ2 = 0,

τ1h1φ11 + (τ1h2 + τ2h1)φ12 + τ2h2φ22 = 0,

τ1a1φ11 + (τ1a2 + τ2a1)φ12 + τ2a2φ22 = 0.

(8.3.58)

Regarding (8.3.58) as a linear algebraic system for φij , 1 ≤ i ≤ j ≤ 2, we
show that the only solution is D2φ = 0 if σ > 0 is sufficiently small, i.e., the
determinant of the linear system (8.3.58) is nonzero for small σ > 0.

2. For that, we compute first the determinant of the linear system (8.3.58)
in the normal reflection case. Then τ = (0, 1), ϕ = − |ξ|

2

2 + const., P̄1 =

(ξ̄1,
√
c̄22 − |ξ̄1|2), and Γnorm

shock = {(ξ̄1, ξ2) : 0 < ξ2 <
√
c̄22 − |ξ̄1|2}. Now, using

(8.3.56), we compute the determinant of (8.3.58) at P = (ξ̄1, ξ2) ∈ Γnorm
shock in the

normal reflection case and obtain

D0 := det



c̄22 − |ξ̄1|2 −2ξ̄1ξ2 c̄22 − ξ2

2

0 h̄1 h̄2

0 a1 a2




=
(
c̄22 − |ξ̄1|2

)( ρ̄2 − ρ1

ρ1

)2

det

[
ĥ1 ĥ2

a1 a2

]
.

From this, we employ (8.3.57) to obtain

|D0| ≥ (c̄22 − |ξ̄1|2)
( ρ̄2 − ρ1

ρ1

)2

µ for any P ∈ Γnorm
shock,

where, by (8.3.2), the right-hand side is a positive constant.
3. Now, if θw ∈ (π2 − σ), the coefficients of the linear algebraic system

(8.3.58) differ from the coefficients of the system for the normal reflection by
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no more than Cσ, which follows from (1.14), (8.3.1), and (8.3.4). Then, if σ is
sufficiently small, the determinant of (8.3.58) is positive. Thus, at point P̂ of
extremum of w, D2φ(P̂ ) = 0. Then, at P̂ ,

∂νw = D2φ[e,ν] = 0.

On the other hand, since w satisfies equation (5.1.10), which is uniformly elliptic
in Ω ∩ Br(P̂ ) for sufficiently small r > 0, and P̂ is a point of extremum of w
over Ω, Hopf’s lemma implies that ∂νw > 0 at P̂ , where we have used that, by
Lemma 8.2.1, w is not a constant in Ω. Therefore, we arrive at a contradiction,
which implies that a point of extremum of w cannot be on Γshock.

Lemma 8.3.8. Let ϕ be as that in Proposition 8.3.1. Then, if σ > 0 is suffi-
ciently small, depending on (ρ0, ρ1, γ),

∂eS1
(ϕ1 − ϕ) ≤ 0 in Ω, (8.3.59)

where eS1 is defined by (7.5.8).

Proof. Let w := ∂−eS1
φ. We need to show that w ≥ 0 in Ω. We divide the proof

into three steps.
1. We first show that condition (8.3.57) holds for (a1, a2) = eS1

. From
(7.5.8) and (8.3.4), |eS1

− (0,−1)| ≤ Cσ. Then

det

[
ĥ1(P ) ĥ2(P )
a1 a2

]
≥ −ĥ1 − Cσ.

Note that, by (8.3.2) and (8.3.56), −ĥ1 is a positive constant. Thus, if σ is small,
depending only on (ρ0, ρ1, γ), condition (8.3.57) is satisfied with µ = − ĥ1

2 > 0.
Then, further reducing σ if necessary, depending only on (ρ0, ρ1, γ), since

now µ depends on these constants, we see that the conclusion of Lemma 8.3.7
holds.

2. By Lemma 7.5.12, eS1
is not orthogonal to Γwedge ∪ Γsym. Then, by

Lemmas 8.2.3 and 8.3.7, and using that w is not constant in Ω, we conclude
that the extremum of w over Ω cannot be attained on Ω∪Γshock∪Γwedge∪Γsym.
Since ∂eS1

φ1 = ∂eS1
(u1ξ1) = const. and ϕ1 − ϕ = φ1 − φ, we conclude that the

extremum of ∂eS1
(ϕ1 − ϕ) over Ω cannot be attained on Ω ∪ Γshock ∪ Γwedge ∪

Γsym. That is, the extremum of ∂eS1
(ϕ1 − ϕ) over Ω can be attained only on

{P2, P3} ∪ Γsonic.
3. In the proof of Proposition 8.2.6, we have shown that ∂eS1

(ϕ1−ϕ) ≤ 0 at
P2 and P3. This argument works in the present case. Thus, it remains to show
that ∂eS1

(ϕ1 − ϕ) ≤ 0 on Γsonic.
Then Dϕ = Dϕ2 on Γsonic; see also Remark 8.1.2. Thus, on Γsonic,

∂eS1
(ϕ1 − ϕ) = ∂eS1

(φ1 − φ2) = ∂eS1

(
(u1 − u2)ξ1 − v2ξ2

)
= 0,

where we have used (7.5.8). This completes the proof.



318 CHAPTER 8

Lemma 8.3.9. Let ϕ be as that in Proposition 8.3.1. Then, if σ > 0 is suffi-
ciently small, depending on (ρ0, ρ1, γ),

∂ξ2(ϕ1 − ϕ) ≤ 0 in Ω. (8.3.60)

Proof. Note that ∂ξ2(ϕ1 − ϕ) = ∂eξ2 (ϕ1 − ϕ) for eξ2 = (0, 1). Then eξ2 is not
orthogonal to Γwedge. Arguing as in the proof of Lemma 8.3.8, and using that
∂ξ2(ϕ1 − ϕ) = −v2 < 0 on Γsonic as shown in the proof of Proposition 8.2.8, we
see that, for sufficiently small σ > 0, it suffices to check that ∂ξ2(ϕ1 − ϕ) ≤ 0
on Γsym. To show this, we notice that, since ∂ξ2ϕ = 0 on Γsym by the boundary
conditions, and ∂ξ2ϕ1 = ∂ξ2(− |ξ|

2

2 +u1ξ1) = 0 on Γsym ⊂ {ξ2 = 0}, we find that
∂ξ2(ϕ1 − ϕ) = 0 on Γsym.

Lemmas 8.3.8–8.3.9 imply that ϕ satisfies condition (v) of Definition 8.1.1.
This and Corollary 8.3.6 imply Proposition 8.3.1.



Chapter Nine

Uniform Estimates for Admissible Solutions

In this chapter, we always assume that ϕ is an admissible solution of Problem
2.6.1 in the sense of Definition 8.1.1. We make several key uniform estimates
for the admissible solution ϕ with respect to the wedge angle θw.

9.1 BOUNDS OF THE ELLIPTIC DOMAIN Ω AND
ADMISSIBLE SOLUTION ϕ IN Ω

In this section, we first make some basic uniform estimates for any admissible
solution ϕ for the wedge angle θw ∈ (θs

w,
π
2 ). The universal constant C in this

section depends only on the data, i.e., (ρ0, ρ1, γ), unless otherwise specified.

Lemma 9.1.1. For φ = ϕ+ 1
2 |ξ|2,

sup
Ω
|φ| = sup

Γsonic∪Γshock∪{P3}
|φ|.

Proof. Since ϕ is smooth in Ω, then ϕ satisfies equation (2.2.11) in Ω. Equation
(2.2.11) is strictly elliptic in Ω\Γsonic by Definition 8.1.1(iii). Then we conclude
that sup

Ω
|φ| = sup

∂Ω
|φ|, by writing (2.2.11) as a linear equation:

a11(ξ)φξ1ξ1 + a12(ξ)φξ1ξ2 + a22(ξ)φξ2ξ2 = 0 (9.1.1)

with strict ellipticity inside Ω, by considering the domains:

Ωε = {P ∈ Ω : dist(P, ∂Ω) > ε} for ε > 0,

in which (9.1.1) is uniformly elliptic, and then by sending ε → 0+ and using
that φ ∈ C(Ω).

Moreover, the boundary condition (2.2.20) implies that φ satisfies ∂νφ = 0 on
Γwedge∪Γsym. Also, for any P ∈ Γwedge∪Γsym (where the segments do not include
the endpoints), equation (9.1.1) is uniformly elliptic in some neighborhood of P
by Definition 8.1.1(iii). Thus, the extremum of φ over Ω cannot be attained on
Γwedge ∪ Γsym, unless φ is constant in Ω. However, for an admissible solution
ϕ for θw < π

2 , φ cannot be constant in Ω by Lemma 8.2.1. Therefore, the
extremum of φ over Ω cannot be attained on Γwedge ∪ Γsym.
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Now we prove the estimates on diam(Ω) and supΩ |ϕ|. The main difficulty
is that, if θw is sufficiently small, we cannot exclude the possibility that ray
S+

1 := {P0 + t(P1 − P0) : t > 0} does not intersect with the ξ1–axis. Thus, we
cannot obtain a uniform bound of diam(Ω) by the coordinates of the intersection
points of S+

1 with the ξ1–axis.

Proposition 9.1.2. There exists C > 0 such that

Ω ⊂ BC(0), (9.1.2)
|ϕ|+ |φ| ≤ C in Ω. (9.1.3)

Proof. We divide the proof into three steps.
1. In the first step, we show a lower bound for φ in Ω. By (8.2.36) in Lemma

8.2.18, it suffices to bound φ at P2. Moreover, we also obtain the bound of ξ1P2
.

We note that P2 = (ξ1P2
, 0) and ν(P2) = (1, 0). Then the Rankine-Hugoniot

condition (8.1.13) at P2 implies

ρ(∂ξ1φ− ξ1) = ρ1(u1 − ξ1) at ξ = (ξ1P2
, 0).

Since φ(P2) = minP∈Ω φ(P ) by (8.2.36),

∂ξ1φ(P2) = ∂νφ(P2) ≥ 0.

We also note that ρ > ρ1 > 0 on Γshock ∪ {P2} by (8.1.13) and (8.1.16). Com-
bining this with the last two facts implies

ρ1u1 − (ρ− ρ1)(−ξ1P2
) = ρ∂ξ1φ ≥ 0 at P2.

Since ξ1P2
< 0, we have

(ρ− ρ1)|ξ1P2
| ≤ ρ1u1. (9.1.4)

Now we recall that the sonic circle of state (1) is C1 = ∂Bc1(u1, 0). Since u1 > 0,
we find that either 0 > ξ1P2

> −c1 or dist(P2, C1) > u1.
In the first case, we have the bound that |ξ1P2

| ≤ c1.
In the second case, dist(P2, C1) > u1, and then Lemma 6.1.3 implies that

∂νϕ1(P2) − ∂νϕ(P2) ≥ 1
C . Combining this with the facts that ϕ(P2) = ϕ1(P2)

and ∂τϕ(P2) = ∂τϕ1(P2) = 0, and using the Bernoulli law (2.2.9), we conclude
that ρ(P2)− ρ1 >

1
C . Then (9.1.4) implies that |ξ1P2

| ≤ C.
Therefore, we obtain that |ξ1P2

| ≤ C in both cases. Now φ(P2) = φ1(P2) =
u1(ξ1P2

− ξ0
1) implies that |φ(P2)| ≤ C.

2. Prove (9.1.2). From Step 1, |φ| ≤ C at its minimum point. Thus, φ ≥ −C
in Ω. Then, on Γshock, u1(ξ1 − ξ0

1) = φ1(ξ) = φ(ξ) ≥ −C, which implies that
ξ1 ≥ −C by using (8.2.1). From this, using that ξ1 ≤ ξ1P1

on Γshock, we obtain
that |ξ1| ≤ C on Γshock. Thus, by Definition 8.1.1(i), we conclude that |ξ1| ≤ C
in Ω.

It remains to bound ξ2 in Ω. By Definition 8.1.1(i), ξ2 > 0 in Ω. Thus, we
only need to estimate ξ2 from above.
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Since u2 is a continuous function of θw ∈ [θs
w,

π
2 ] with u2|θw=π

2
= 0, we

conclude from (7.5.8) that there exists θ̂ ∈ [θs
w,

π
2 ) such that eS1

·(0, 1) ≤ 0 for any
θw ∈ [θ̂, π2 ). For such θw, we obtain that supΩ ξ2 ≤ supΓsonic

ξ2 ≤ u2 + c2 ≤ C.
Next, we estimate supΩ ξ2 for θw ∈ (θs

w, θ̂). By (8.1.22), Ω ⊂ {ϕ2 < ϕ1}.
Thus, by (2.2.17) and (2.4.1),

ξ2 <
(u1 − u2)(ξ1 − ξ0

1)

u2 tan θw
+ ξ0

1 tan θw in Ω.

From this, using that θs
w < θw < θ̂, with θs

w > 0 and θ̂ < π
2 , which depend only

on (ρ0, ρ1, γ), we conclude that |ξ2| ≤ C|ξ1|+ C in Ω so that (9.1.2) follows.
3. Now, supΩ |φ| = supΓsonic∪Γshock∪{P3} |φ| by Lemma 9.1.1. Since φ = φ1

on Γshock, φ = φ2 on Γsonic, and φ1 ≥ φ ≥ φ2 at P3, then (8.2.1) and (9.1.2)
imply that |φ| ≤ C in Ω. Thus, using (9.1.2) again, we see that |ϕ| ≤ C in Ω.
Now (9.1.3) is proved.

Corollary 9.1.3. There exists C > 0 such that

‖(ϕ, φ, ψ)‖C0,1(Ω) ≤ C. (9.1.5)

Proof. By Definition 8.1.1(iii), equation (2.2.8) is elliptic in Ω. Then (1.18)
holds, which implies (2.2.12). From (2.2.12), we use (9.1.3) to obtain that
|Dϕ| ≤ C in Ω. From this and (9.1.2), we find that |Dφ| = |Dϕ + ξ| ≤ C
in Ω. Combining these derivative estimates with (9.1.3), we obtain the estimate
of ‖ϕ‖C0,1(Ω) in (9.1.5). Also, using this estimate, we have

‖ψ‖C0,1(Ω) ≤ ‖ϕ‖C0,1(Ω) + ‖ϕ2‖C0,1(Ω) ≤ C,

where we have used (9.1.2) and Theorem 7.1.9(i).

Lemma 9.1.4. There exists C > 0 such that, for any admissible solution ϕ of
Problem 2.6.1,

( 2

γ + 1

) 1
γ−1

ρ1 ≤ ρ ≤ C in Ω,

ρ1 < ρ ≤ C on Γshock ∪ {P3}.
(9.1.6)

Proof. The upper bound in (9.1.6) follows from (2.2.9) and (9.1.5).
Now we prove the lower bounds. From the Bernoulli law in (2.2.7) applied

to ϕ in Ω and to ϕ1 in R2, and using ϕ ∈ C1(Ω) by (8.1.3), we have

ργ−1 +
γ − 1

2

(
|Dϕ|2 + ϕ

)
= ργ−1

1 +
γ − 1

2

(
|Dϕ1|2 + ϕ1

)
in Ω. (9.1.7)

Since ϕ ≤ ϕ1 in Ω by (8.1.5), we have

ργ−1 +
γ − 1

2
|Dϕ|2 ≥ ργ−1

1 +
γ − 1

2
|Dϕ1|2 in Ω. (9.1.8)



322 CHAPTER 9

Using (9.1.8) and the fact that |Dϕ|2 ≤ c2 = ργ−1 in Ω by (8.1.4), we have

ργ−1 +
γ − 1

2
ργ−1 ≥ ργ−1

1 ,

that is, ρ ≥
(

2
γ+1

) 1
γ−1 ρ1 in Ω.

On Γshock, |Dϕ|2 ≤ c2 = ργ−1 by (8.1.4) and |Dϕ1|2 > c21 = ργ−1
1 by (8.1.2).

Thus, (9.1.8) implies

ργ−1 +
γ − 1

2
ργ−1 > ργ−1

1 +
γ − 1

2
ργ−1

1 ,

that is, ρ > ρ1 on Γshock.
At P3, |Dϕ| = 0, by combining (2.2.20) on Γwedge ∪ Γsym with ϕ ∈ C1(Ω).

Also, |Dϕ1(P3)| = u1 > 0. Therefore, (9.1.8) implies that ρ > ρ1 at P3.

9.2 REGULARITY OF ADMISSIBLE SOLUTIONS AWAY
FROM Γshock ∪ Γsonic ∪ {P3}

9.2.1 An elliptic equation satisfied by the admissible solutions in Ω

Any admissible solution ϕ ofProblem 2.6.1 satisfies the potential flow equation
(2.2.8) in Λ. The equation is of mixed type and, by Definition 8.1.1(ii)–(iii), it
is uniformly elliptic for ϕ on any compact subset of Ω \ (Γshock ∪ Γsonic ∪ {P3}).
It is more convenient to show that ϕ satisfies a uniformly elliptic equation with
smooth ingredients on these subsets by making an appropriate modification of
the potential flow equation (2.2.8).

Write equation (2.2.8) in the form:

divA(Dϕ,ϕ) + B(Dϕ,ϕ) = 0, (9.2.1)

where
A(p, z) := ρ(|p|2, z)p, B(p, z) := 2ρ(|p|2, z) (9.2.2)

with function ρ(|p|2, z) defined by (2.2.9), for which we restrict to such (p, z)
that (2.2.9) is defined, i.e., satisfying ργ−1

0 − (γ−1)(z+ 1
2 |p|2) ≥ 0, p ∈ R2, and

z ∈ R.

Lemma 9.2.1. Let M ≥ 2. Denote

KM :=

{
(p, z) ∈ R2 × R :

|p|+ |z| ≤M, ρ(|p|2, z) ≥ 1
M

|p|2 ≤
(
1− 1

M

)
c2(|p|2, z)

}
,

where ρ(|p|2, z) is defined by (2.2.9):

ρ(s, z) =
(
ργ−1

0 − (γ − 1)(
1

2
s+ z)

) 1
γ−1 ,

and c2 = ργ−1. Then there exist Ã(p, z) and B̃(p, z) on R2 × R satisfying the
following properties:
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(i) If |(p, z)− (p̃, z̃)| < ε for some (p̃, z̃) ∈ KM ,

Ã(p, z) = A(p, z), B̃(p, z) = B(p, z); (9.2.3)

(ii) For any (p, z) ∈ R2 × R and κ = (κ1,κ2) ∈ R2,

2∑

i,j=1

Ãipj (p, z)κiκj ≥ λ|κ|2; (9.2.4)

(iii) For k = 1, . . . ,

|B̃| ≤ C0, |Dk
(p,z)(Ã, B̃)| ≤ Ck on R2 × R, (9.2.5)

where the positive constants ε, λ, and Ck with k = 0, 1, . . . depend only on
(ρ0, γ,M). In particular, if D ⊂ R2 is open, and ϕ ∈ C2(D) is a solution of
(2.2.8) in D such that

‖ϕ‖C0,1(D) ≤M, (9.2.6)

ρ(|Dϕ|2, ϕ) ≥ 1

M
, (9.2.7)

|Dϕ|2
c2(|Dϕ|2, ϕ)

≤ 1− 1

M
(9.2.8)

for M ≥ 2, then ϕ satisfies the equation:

divÃ(Dϕ,ϕ) + B̃(Dϕ,ϕ) = 0 in D, (9.2.9)

with functions Ã and B̃ introduced above.

Proof. In this proof, constants C, Ck, and δ are positive and depend only on
(ρ0, γ,M).

Let ρ̄(s, z) be a nonnegative smooth function on (s, z) ∈ R×R with ∂sρ̄ ≤ 0.
Then, by a simple explicit calculation, we find that the equation:

div
(
ρ̄(|Dϕ|2, ϕ)Dϕ

)
+ 2ρ̄(|Dϕ|2, ϕ) = 0, (9.2.10)

considered as (9.2.9), has

Ãipj (p, z) = ρ̄δij + 2pipj∂sρ̄ = ρ̄δij − 2pipj |∂sρ̄|

with (ρ̄, ∂sρ̄) = (ρ̄, ∂sρ̄)(|p|2, z). Thus, denoting Φ̄(s, z) = ρ̄(s2, z)s and noting
that

∂sΦ̄(s, z) = ρ̄(s2, z) + 2s2∂sρ̄(s2, z) = ρ̄(s2, z)− 2s2|∂sρ̄(s2, z)|,
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we have

2∑

i,j=1

Ãipj (p, z)κiκj =
(
ρ̄− 2

(p · κ)2

|κ|2 |∂sρ̄|
)
|κ|2

≥
(
ρ̄− 2|p|2|∂sρ̄|

)
|κ|2 = ∂sΦ̄(|p|, z)|κ|2,

where the inequality becomes an equality if κ = ap with a ∈ R. Therefore,
ellipticity (9.2.4) holds if there exists λ̃ > 0 such that

∂sΦ̄(s, z) ≥ λ̃ for all s ≥ 0, z ∈ R.

We note that (2.2.8) is of form (9.2.10) with

ρ̄∗(s, z) =
(
ργ−1

0 − (γ − 1)(z +
s

2
)
) 1
γ−1 .

We compute

∂sρ̄∗ = −1

2
ρ̄2−γ
∗ ,

∂sΦ̄∗(s, z) = ρ̄2−γ
∗ (s2, z)

(
ργ−1

0 − (γ − 1)z − γ + 1

2
s2
)
.

Denoting sso(z) :=
√

2
γ+1

(
ργ−1

0 − (γ − 1)z
)
as the sonic speed, we can rewrite

the last expression as

∂sΦ̄∗(s, z) =
γ + 1

2
ρ̄2−γ
∗ (s2, z)

(
s2

so(z)− s2
)
. (9.2.11)

Then ∂sΦ̄∗(s, z) > 0 for s ∈ [0, sso(z)). Denoting

K̃M := {(|p|, z) : (p, z) ∈ KM} ⊂ R2,

we find from the definition of KM and the fact that c2(s2, z) ≤ s2
so(z) for γ > 1

that, for all (s, z) ∈ K̃M ,

s2 ≤
(
1− 1

M

)
c2(s2, z) ≤

(
1− 1

M

)
s2

so(z),

1

M
≤ ρ̄∗(s2, z) ≤ C,

1

C
≤ c2(s2, z) ≤ s2

so(z) ≤ C.

The estimate of ρ̄∗ above and the explicit expression of ρ̄∗(s, z) imply that

−C1 ≤ z ≤
1

γ − 1
ργ−1

0 − δ if (s, z) ∈ K̃M .



UNIFORM ESTIMATES FOR ADMISSIBLE SOLUTIONS 325

Therefore, we have proved that

K̃M ⊂
{

(s, z) : −C1 < z <
1

γ − 1
ργ−1

0 − δ, s2 ≤
(
1− 1

M

)
s2

so(z)
}

=: SM .

Then we need to modify ρ̄∗(s, z) outside SM so that the corresponding function
ρ̄mod(s, z) is smooth and that Φmod(s, z) := ρ̄mod(s2, z)s satisfies

∂sΦmod(s, z) ≥ 1

C
for all s ≥ 0, z ∈ R.

We first define ρ̄mod(s, z) for all s ≥ 0 and z ∈ [−2C1,
1

γ−1ρ
γ−1
0 − δ

2 ]. In
fact, we first define ∂sρ̄mod(s, z) on this set.

Choose η ∈ C∞(R) satisfying 0 ≤ η ≤ 1 on R, η ≡ 1 on (−∞, 0), and η ≡ 0
on (1,∞).

Fix z ∈ [−2C1,
1

γ−1ρ
γ−1
0 − δ

2 ]. We define

∂sρ̄mod(s, z) := ∂sρ̄∗(s, z)η(
2M(s2 − (1− 1

M )s2
so(z))

s2
so(z)

),

ρ̄mod(s, z) := ρ̄∗(0, z) +

∫ s

0

∂sρ̄mod(t, z) dt,

Φmod(s, z) := ρ̄mod(s2, z)s

for all s ≥ 0.
Using that ∂sρ̄∗(s, z) < 0 for (s, z) ∈ SM , we obtain that, for each z ∈

[−2C1,
1

γ−1ρ
γ−1
0 − δ

2 ],

∂sρ̄∗(s, z) ≤ ∂sρ̄mod(s, z) ≤ 0 for all s ∈ [0,∞),

∂sρ̄mod(s, z) = ∂sρ̄∗(s, z) for all s2 ≤ (1− 1
M )s2

so(z),

∂sρ̄mod(s, z) = 0 for all s2 ≥ (1− 1
2M )s2

so(z).

(9.2.12)

From the definition of ρ̄mod(·) above, we find that, for each z as above,

ρ̄∗(s, z) ≤ ρ̄mod(s, z) ≤ ρ̄∗(0, z) for all s ∈ [0,∞),

ρ̄mod(s, z) = ρ̄∗(s, z) for all s2 ≤ (1− 1
M )s2

so(z),

ρ̄mod(s, z) = C2 ≥ ρ̄∗((1− 1
2M )s2

so(z), z) for all s2 ≥ (1− 1
2M )s2

so(z).

We also note from the explicit expression that

s2
so(z) ≥ δ

γ + 1
for all z ∈ (−∞, 1

γ − 1
ργ−1

0 − δ

2
],

which implies that, for such z,

ρ̄mod(s, z) ≥ ρ̄∗(s, z) ≥
(γ + 1

2
s2

so(z)
) 1
γ−1 ≥ 1

C
for all s ≥ 0.
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Now we show the ellipticity. Using the first estimate in (9.2.12), we see that,
for all z ∈ (−2C1,

1
γ−1ρ

γ−1
0 − δ

2 ] and s ∈ [0, (1− 1
2M )s2

so(z)],

∂sΦmod(s, z) = ρ̄mod(s2, z) + 2s2∂sρ̄mod(s2, z)

≥ ρ̄∗(s2, z) + 2s2∂sρ̄∗(s
2, z)

= ∂sΦ∗(s, z)

≥ γ + 1

2
ρ̄2−γ
∗ (s2, z)

1

M

≥ 1

C
,

where we have used (9.2.11). For z ∈ (−2C1,
1

γ−1ρ
γ−1
0 − δ

2 ] and s ≥ (1 −
1

2M )s2
so(z), ∂sρ̄mod = 0 so that

∂sΦmod(s, z) = ρ̄mod((1− 1

2M
)s2

so(z), z) ≥ 1

C
,

where we have used the positive lower bound of ρ̄mod obtained above.
Combining the last two estimates, we have

∂sΦmod ≥
1

C
on
{
− 2C1 ≤ z ≤

1

γ − 1
ργ−1

0 − δ

2
, s ≥ 0

}
.

Note also that ρ̄mod ∈ C∞([0,∞)× [−2C1,
1

γ−1ρ
γ−1
0 − δ

2 ]). Furthermore,

∂sΦmod = ρ̄mod((1− 1

2M
)s2

so(z), z)

for any (s2, z) ∈ ((1 − 1
2M )s2

so(z),∞) × [−2C1,
1

γ−1ρ
γ−1
0 − δ

2 ]. From this and
the estimates of ρ̄mod obtained above, it is easy to see that |ρ̄mod| ≤ C and
|Dk(Φmod, ρ̄mod)| ≤ Ck for any (s2, z) ∈ [0,∞) × [−2C1,

1
γ−1ρ

γ−1
0 − δ

2 ] for k =
1, 2, . . . .

Thus, it remains to extend ρ̄mod to all z, without modifying ρ̄mod for z ∈
[−2C1,

1
γ−1ρ

γ−1
0 − δ].

Let ζ ∈ C∞(R) satisfying −2C1 ≤ ζ ≤ 1
γ−1ρ

γ−1
0 − δ

2 on R, and let η(z) = z

on (−C1,
1

γ−1ρ
γ−1
0 − δ). Then we define

ρ̄new
mod(s, z) := ρ̄mod(s, ζ(z)).

The resulting function ρ̄new
mod is defined on s ∈ [0,∞) and z ∈ R, and equation

(9.2.10) with ρ̄ = ρ̄new
mod satisfies all of the asserted properties.

9.2.2 Regularity away from Γshock ∪ Γsonic ∪ {P3} and compactness

Lemma 9.2.2. For any α ∈ (0, 1) and r > 0, there exists C > 0 depending only
on (ρ0, ρ1, γ, α, r) such that, if ϕ is an admissible solution of Problem 2.6.1
for the wedge angle θw ∈ (θs

w,
π
2 ), then
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(i) If P ∈ Ω such that B4r(P ) ⊂ Ω,

‖ϕ‖
C2,α(Br(P ))

≤ C; (9.2.13)

(ii) If P ∈ Γsym such that B4r(P ) ∩ Ω is a half-ball B4r(P ) ∩ {ξ2 > 0},

‖ϕ‖
C2,α(B+

r (P ))
≤ C, (9.2.14)

where B+
r (P ) := Br(P ) ∩ {ξ2 > 0};

(iii) If P ∈ Γwedge such that B4r(P ) ∩ Ω is a half-ball,

‖ϕ‖
C2,α(Br(P )∩Ω)

≤ C. (9.2.15)

Proof. Let ϕ be an admissible solution. We divide the proof into two steps.
1. Let B4r(P ) ⊂ Ω. Equation (2.2.8) on ϕ is elliptic in Ω. We use the

ellipticity principle in Theorem 5.2.1 with the function:

b(ξ) = δ b̃(ξ),

where δ > 0 is a small constant to be fixed later, and b̃ ∈ C2(B4r(P )) such that

b̃(ξ) = 0 on ∂B4r(P ), b̃(ξ) ≥ r in B2r(P ), ‖b̃‖C2(B4r(P )) ≤
C

r2

for some constant C. The existence of such b̃ is easily obtained by first choosing
b̂(ξ) = max(3r − |ξ − P |, 0) and then smoothing it as b̃ = b̂ ∗ ηε, where ηε is
the standard mollifier, and ε = r

100 . Using the uniform bounds in (9.1.6), we
apply Theorem 5.2.1(ii) in ball B4r(P ) (i.e., d = 4r) with function b defined
above. Then, choosing δ small depending on (r, γ), the constants in (9.1.6), and
constant C0 in Theorem 5.2.1(ii) (hence δ = δ(ρ0, ρ1, γ)), we obtain the following
ellipticity estimate for equation (2.2.8) on ϕ in the smaller ball B2r(P ): There
exists M > 0 depending only on r and (ρ0, ρ1, γ) such that

|Dϕ|2
c2(Dϕ,ϕ)

≤ 1− 1

M
in B2r(P ). (9.2.16)

With this and (9.1.5)–(9.1.6), we use Lemma 9.2.1 to modify the coefficients
in (9.2.1), as (Ã, B̃)(p, z), so that they are defined for all (p, z) ∈ R2 × R and
satisfy (9.2.3)–(9.2.5) for D = B2r(P ), with constants λ and Ck, k = 0, 1, 2, . . . ,
depending only on (ρ0, ρ1, γ), and ϕ still satisfies equation (9.2.9) in B2r(P ).

Now write equation (9.2.9) in the non-divergence form with separation of
the nonhomogeneous part:

2∑

i,j=1

Ãipj (Dϕ,ϕ)Dijϕ+
(
B̂(Dϕ,ϕ)− B̃(0, 0)

)
= −B̃(0, 0), (9.2.17)
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where B̂(Dϕ,ϕ) = B̃(Dϕ,ϕ)+Ãϕ(Dϕ,ϕ) ·Dϕ. Then, using the properties of its
coefficients discussed above and estimate (9.1.5), we can apply Theorem 4.2.1
(rescaled from B1 to Br) to obtain (i).

2. Let P ∈ Γsym so that B4r(P )∩Ω is half-ball B+
4r(P ) = B4r(P )∩{ξ2 > 0}.

Then equation (2.2.8) on ϕ is elliptic in B+
4r(P ), and the boundary condition

ϕν = 0 holds on B4r(P ) ∩ ∂Λ = B4r(P ) ∩ {ξ2 = 0}. We use the ellipticity prin-
ciple with the slip boundary condition, Theorem 5.3.1. We note that function
b, constructed in Step 1, is radial, and has the structure: b(ξ) = f(|ξ−P |) with
f ∈ C2(R+). Thus, for P ∈ Γsym ⊂ {ξ2 = 0}, we find that ∂νb = 0 on seg-
ment B4r(P )∩{ξ2 = 0}. Applying Theorem 5.3.1(ii) in B+

4r(P ) with this b, and
the uniform bounds in (9.1.6), we obtain, as in Step 1, the uniform ellipticity
estimates (9.2.16) in B+

2r(P ) with M > 0 depending only on r and the data.
Then, arguing as in Step 1, we can modify coefficients (A,B) in equation (9.2.1)
so that ϕ satisfies equation (9.2.9) in B+

2r(P ) with the coefficients satisfying
(9.2.3)–(9.2.5) for D = B+

2r(P ) and the constants depending only on r and the
data for all (p, z, ξ) ∈ R2 × R×B+

2r(P ).
Then, writing equation (9.2.9) in the form of (9.2.17), recalling the boundary

condition that ∂νϕ = 0 on B2r(P ) ∩ {ξ2 = 0}, and using the uniform bounds
in (9.1.5), we can apply Theorem 4.2.10 to obtain (9.2.14) from (4.2.77) for any
α ∈ (0, 1). Now Case (ii) is proved.

The proof of Case (iii) is similar.

Now we need to define weak solutions of Problem 2.6.1.

Definition 9.2.3 (Weak solutions of Problem 2.6.1). Let θw ∈ [θs
w,

π
2 ], and let

P1, Γsonic, and Γwedge be from Definition 7.5.7 for θw. Let Γshock ⊂ Λ ∩ {ξ1 ≤
ξ1P1
} be a Lipschitz curve with endpoints P1 and P2 ∈ ∂Λ ∩ {ξ2 = 0}. Let Ω be

the interior of the region bounded by Γshock, Γsym, Γwedge, and Γsonic.
A function ϕ ∈ W 1,1

loc (Ω) is called a weak solution of Problem 2.6.1 if its
extension to Λ introduced in Definition 2.6.2 is a weak solution of Problem 2.2.3
in the sense of Definition 2.3.3.

This definition is motivated by the following fact (which follows directly from
the definitions): Let ϕ be an admissible solution of Problem 2.6.1, then ϕ is
a weak solution of Problem 2.6.1 in the sense of Definition 9.2.3.

We note the following features of Definition 9.2.3:

(a) The relative interior of Γshock may have common points with Γwedge and
Γsym;

(b) Set Ω is not necessarily connected;

(c) If θw = θs
w, then region P0P1P4 in (2.6.1) is one point;

(d) If θw = π
2 , then region P0P1P4 in (2.6.1) is the region between the vertical

lines {ξ1 ∈ (ξ1P1(π2 ), 0)} and above Γsonic, where we have used Lemma 7.5.9
to define P1(π2 ). Note that ξ1P1(π2 ) = ξ̄1 for ξ̄1 defined in Theorem 6.2.1.
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Remark 9.2.4. In some arguments below, we consider the limit of a sequence of
admissible solutions ϕ(i) of Problem 2.6.1 with the wedge angles θ(i)

w ∈ (θs
w,

π
2 ).

Then each solution ϕ(i) is defined in the corresponding domain Λ(i) as described
in Definition 2.6.2, which is different for each different i. We define the uniform
limit of such functions as follows:

First, we extend ϕ(i) to R2 in the following way: It suffices to extend φ(i) =

ϕ(i) + |ξ|2
2 . Note that φ(i) on Λ(i) \ Ω(i) is equal to one of the linear functions

φ
(i)
k , for k = 0, 1, 2, in the respective regions of the constant states (0), (1), and

(2) as in (8.1.3) and, by (9.1.3), φ(i) is Lipschitz in Ω(i) and continuous across
∂Ω(i) \ ∂Λ(i) so that φ(i) is Lipschitz in Λ(i). Then, by the standard results, we
can extend φ(i) to R2 as a Lipschitz function with the same Lipschitz constant
as in Λ(i). For each admissible solution, fix such an extension, which defines
an extension of ϕ(i). Note that, using (8.1.3), Corollary 9.1.3, and estimate
(9.1.2), and by the continuity (hence the boundedness) of the parameters of state
(2) on [θs

w,
π
2 ], we conclude that there exist C < ∞ and C(K) < ∞ for every

compact K ⊂ R2 such that, for any admissible solution ϕ of Problem 2.6.1
with θw ∈ (θs

w,
π
2 ), the extension of ϕ satisfies

‖Dφ‖L∞(R2) ≤ C, ‖ϕ‖C0,1(K) ≤ C(K). (9.2.18)

We will consider these extensions in the convergence statements below.
The equi-Lipschitz property (9.2.18) implies that the limit assertions below

are independent of the particular choice of the Lipschitz extension of ϕ(i) with
the properties described above, in the light of the following fact: Let compact sets
Ki ⊂ Λ(i) for i = 1, 2, . . . , and K∞ ⊂ Λ(∞) satisfy Ki → K∞ in the Hausdorff
metric. Let ‖ϕ(i)‖C0,1(Ki) ≤ C for all i, and let extensions ϕ(i)

ext of ϕ(i) satisfy
‖Dϕ(i)

ext‖L∞(BR) ≤ C, where R is such that ∪∞i=1Ki ⊂ BR (here we have used

that ∪∞i=1Ki is bounded since Ki → K∞). Then ϕ
(i)
ext → ϕ∞ uniformly on K∞

if and only if this convergence holds for any other such extensions ϕ̃(i)
ext of ϕ(i).

In a similar way, we define the uniform convergence of the equi-Lipschitz
functions fi defined on intervals [ai, bi] ⊂ R with ai → a and bi → b.

When taking the limits below, we allow the case that θ(i)
w → π

2−. In order to
include this case, we introduce the notion of weak solutions to Problem 2.6.1
for θw = π

2 . The only exception is that, in Definition 2.3.3, condition (2.2.21)
at infinity should be replaced by the condition of the convergence to the normal
reflection at infinity, that is,

ϕ→ ϕnorm =

{
ϕ1 for ξ1 < ξ̄1, ξ2 > 0,

ϕnorm
2 for 0 > ξ1 > ξ̄1, ξ2 > 0,

when |ξ| → ∞,

(9.2.19)
in the same sense as in Problem 2.6.1. We also note that line S1, points
{P1, P3, P4}, the boundary curves Γsonic ∪ Γwedge, and vector eS1 for θw = π

2
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have been introduced in Definition 7.5.7 and Remark 7.5.14 with

S1(
π

2
) = {ξ1 = ξ̄1}, eS1

(
π

2
) = −eξ2 = (0,−1). (9.2.20)

Then eS1
(θw) is continuous on [θs

w,
π
2 ]. Also, by (7.2.11) and (7.2.15), it follows

that, as θw → π
2−,

S1(θw)→ S1(
π

2
) (9.2.21)

in the Hausdorff metric on compact subsets of R2. Finally, we recall that
Cone0(eS1 , eξ2) for θw = π

2 is defined by (8.2.15), so that (8.2.16) holds.

Furthermore, in taking the limits below, we allow the case that θ(i)
w → θs

w.
Then, as in Definition 7.5.7, P1(θs

w) = P4(θs
w) = P0(θs

w).

Corollary 9.2.5. Let {ϕ(i)} be a sequence of admissible solutions of Problem
2.6.1 with the corresponding wedge angles θ(i)

w ∈ (θs
w,

π
2 ) such that

θ(i)
w → θ(∞)

w ∈ [θs
w,
π

2
].

Then there exists a subsequence {ϕ(ij)} converging uniformly to a function
ϕ(∞) ∈ C0,1

loc (Λ(∞)) in any compact subset of Λ(∞), which is a weak solution of
Problem 2.6.1 for the wedge angle θ(∞)

w , where Λ(∞) := Λ(θ
(∞)
w ). Moreover,

under the notations in Definition 7.5.7 and Corollary 8.2.14, with superscripts
i and ∞ indicating which of solutions ϕ(i) and ϕ(∞) these objects are related,
ϕ(∞) is of the following structure:

Let g ∈ Cone0(eS(∞)
1

, eξ2), let g⊥ be orthogonal to g and oriented so that
g⊥ · eS(∞)

1
< 0, let |g| = |g⊥| = 1, and let (S, T ) be the coordinates with basis

{g,g⊥}. Then

(i) Sequence {P2
(ij)} converges to a limit P2

(∞), so that P2
(∞) = (ξ1P2

(∞) , 0)
with ξ1P2

(∞) < ξ1P1
(∞) in the ξ–coordinates.

(ii) Let f (ij)
g,sh be the functions in Corollary 8.2.14 for ϕ(ij). Then functions

f
(ij)
g,sh are uniformly bounded in C0,1([TP2

(∞) , TP1
(∞) ]) and converge

uniformly on [TP2
(∞) , TP1

(∞) ] to a limit f (∞)
g,sh ∈ C0,1([TP2

(∞) , TP1
(∞) ]).

(iii) Let e = ν
(∞)
w , and let (S, T ) be the coordinates with basis {ν(∞)

w , τ
(∞)
w },

where ν(∞)
w and τ (∞)

w are defined by (8.2.14) and (8.2.17) with θ(∞)
w , and

Lemma 8.2.11 has also been used. Then

f
(∞)
e,sh (T ) ≥ max(0,−T tan θ(∞)

w ) for T ∈ (TP2
(∞) , TP1

(∞)).
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Denote

Ω̂(∞) =





(S, T ) :

TP2
(∞) ≤ T ≤ TP4

(∞) ,

−(T − TP3
) tan θ

(∞)
w ≤ S ≤ f (∞)

e,sh (T )

for T ∈ [TP2
(∞) , TP3

(∞) ],

0 ≤ S ≤ f (∞)
e,sh (T ) for T ∈ (TP3

(∞) , TP1
(∞) ],

0 ≤ S ≤ f (∞)
e,so (T ) for T ∈ (TP1

(∞) , TP4
(∞) ]





,

(9.2.22)
where TP1

(∞) = TP4
(∞) when θ(∞)

w = θs
w, i.e., the corresponding interval is

not present in (9.2.22).

Denote by Ω(∞) the interior of Ω̂(∞). Denote

Γ
(∞)
shock := {S = f (∞)

e (T ) : TP2
(∞) < T < TP1

(∞)}. (9.2.23)

Let Γ
(∞)
wedge be as defined in Definition 7.5.7 for θw = θ

(∞)
w , and let Γ

(∞)
sym =

{(ξ1, 0) : ξ1P2
(∞) < ξ1 < ξ1P3

(∞)} in the ξ–coordinates. Denote by Γ
(∞),0
wedge

(resp. Γ
(∞),0
sym ) the relative interior of Γ

(∞)
wedge \ Γ

(∞)
shock (resp. Γ

(∞)
sym \ Γ

(∞)
shock).

Then

ϕ(∞) ∈ C∞
(
Ω(∞) ∪ Γ(∞),0

sym ∪ Γ
(∞),0
wedge

)
, (9.2.24)

ϕ(∞) = ϕ1 on Γ
(∞)
shock, (9.2.25)

(2.2.8) is strictly elliptic for ϕ(∞) in Ω(∞) ∪ Γ(∞),0
sym ∪ Γ

(∞),0
wedge, (9.2.26)

ϕ(ij) → ϕ(∞) in C2 on compact subsets of Ω(∞), (9.2.27)

∂g(ϕ1 − ϕ(∞)) ≤ 0 in Ω(∞) for all g ∈ Cone0(eS(∞)
1

, eξ2), (9.2.28)

Bc1(O1) ∩ Λ(∞) ⊂ Ω(∞), (9.2.29)

where O1 is the center of sonic circle of state (1), i.e., O1 = (u1, 0) in the
ξ–coordinates.

(iv) ϕ(∞) and Γ
(∞)
wedge satisfy that

{ϕ1 > ϕ(∞)} ∩ Γ
(∞)
wedge is dense in Γ

(∞)
wedge. (9.2.30)

(v) If θ(∞)
w > θ

(s)
w , then ϕ(∞) is equal to the constant states ϕ0, ϕ1, and ϕ

(∞)
2

in their respective subdomains of Λ(∞) \Ω(∞), as in (8.1.3). If θ(∞)
w = θ

(s)
w ,

then ϕ(∞) is equal to the constant states in their respective domains as in
(2.6.4).

Proof. Let {ϕ(i)}∞i=1 be admissible solutions of Problem 2.6.1 with

θ(i)
w → θ(∞)

w ∈ [θs
w,
π

2
].
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From (9.2.18), there exist a subsequence (still denoted) {ϕ(i)}∞i=1 and a function
ϕ(∞) ∈ C0,1

loc (Λ(∞)) such that

ϕ(i) → ϕ(∞) uniformly in any compact subset of Λ(∞). (9.2.31)

We divide the remaining proof into four steps.
1. Prove assertions (i)–(ii). Fix a unit vector g ∈ Cone0(eS(∞)

1
, eξ2). Let

g⊥ be the orthogonal unit vector to g which is oriented so that

g⊥ · eS(∞)
1

< 0, eξ2 · g⊥ > 0. (9.2.32)

Such a vector g⊥ exists by (8.2.23). Using the smooth dependence of the pa-
rameters of state (2) from θw, we have

eS(i)
1
→ eS(∞)

1
as i→∞.

Thus, from (9.2.32), there existsN > 0 such that, for all i > N , g ∈ Cone0(eS(i)
1
, eξ2)

and
eS(i)

1
· g⊥ ≤ 1

2
eS(∞)

1
· g⊥ < 0. (9.2.33)

Let (S, T ) be the coordinates with basis {g,g⊥}. Then, by Corollary 8.2.14,
there exist TP2

(i) < TP1
(i) and functions f (i)

g such that

Γ
(i)
shock = {S = f (i)

g (T ) : TP2
(i) < T < TP1

(i)}, Ω(i) ⊂ {S < f (i)
g (T ) : T ∈ R},

and all the other properties in Corollary 8.2.14 are satisfied. Extend f (i)
g from

(TP2
(i) , TP1

(i)) to R by setting f (i)
g (T ) = f

(i)
g (TP2

(i)) for T < TP2
(i) , and f (i)

g (T ) =

f
(i)
g (TP1

(i)) for T > TP1
(i) . Now (8.2.24), (9.2.32)–(9.2.33), and |eS(i)

1
| = |eξ2 | =

|g| = 1 imply that
{f (i)

g } are equi-Lipschitz on R. (9.2.34)

Furthermore, using (9.1.2) applied to each ϕ(i) and the fact that f (i)
g is constant

outside (TP2
(i) , TP1

(i)), we obtain that

{f (i)
g } are uniformly bounded on R. (9.2.35)

Using (9.1.2), there exist subsequences (still denoted) TP1
(i) and TP2

(i) , and
corresponding limits TP1

(∞) and TP2
(∞) , such that

(TP1
(i) , TP2

(i))→ (TP1
(∞) , TP2

(∞)) with TP2
(∞) ≤ TP1

(∞) . (9.2.36)

Then, using (9.2.34)–(9.2.35) and passing to a further subsequence, we conclude
that there exists f (∞) ∈ C0,1([TP2

(∞) − 1, TP1
(∞) + 1]) such that

f (i)
g → f (∞)

g uniformly on [TP2
(∞) − 1, TP1

(∞) + 1]. (9.2.37)
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Denote
P2

(∞) := f (∞)
g (TP2

(∞))g + TP2
(∞)g⊥. (9.2.38)

Now we consider the case that θ∞w > θs
w and show that, as i→∞,

P
(i)
k → P

(∞)
k for k = 0, 1, 2, 3, 4,

Γ
(i)
sonic → Γ

(∞)
sonic in the Hausdorff metric,

(9.2.39)

where all the limiting objects, except P2
(∞), are from Definition 7.5.7 for θ(∞)

w ,
and point P2

(∞) is defined by (9.2.38). We work in the ξ–coordinates. Since
P0

(i) = (ξ0
1 , ξ

0
1 tan θ

(i)
w ) and P3

(i) = 0 for all i, the convergence of these points
follows. Furthermore, P1

(i) is a point of intersection of line

S1 = {ξ : (u1 − u(i)
2 )(ξ1 − ξ0

1)− v(i)
2 (ξ2 − ξ0

1 tan θ(i)
w ) = 0}

and the sonic circle C(i)
2 = ∂B

c
(i)
2

(u
(i)
2 , v

(i)
2 ) of state (2). Similarly, P4

(i) is a

point of intersection of the wedge boundary {ξ : ξ2 = ξ1 tan θ
(i)
w } and C(i)

2 .
Moreover, Γ

(i)
sonic is the smaller arc of C(i)

2 between points P4
(i) and P1

(i). Thus,
the convergence of P4

(i), P1
(i), and Γ

(i)
sonic follows from the smooth dependence

of the parameters of state (2) from θw.
If θ∞w = θs

w, a similar argument shows that P (i)
k → P

(∞)
k for k = 0, 2, 3. Also,

we now know that P (i)
k → P0

(∞) for k = 1, 4, by arguing as in the previous case
and using the definition of the sonic angle.

Finally, P2
(i) = f

(i)
g (TP2

(i))g+TP2
(i)g⊥, by Corollary 8.2.14(ii). Then (9.2.36)–

(9.2.38) imply that

P2
(i) → f (∞)

g (TP2
(∞))g + TP2

(∞)g⊥ = P2
(∞).

Now (9.2.39) is proved.
Next, we show that TP2

(∞) < TP1
(∞) strictly, i.e., that the limit of Γ

(i)
shock does

not degenerate to a point. We work in the ξ–coordinates. By Remark 7.5.8,
ξ2P1

(i) > v
(i)
2 . Passing to the limit, ξ2P1

(∞) ≥ v
(∞)
2 > 0. Since ξ2P2

(∞) = 0,
then P2

(∞) 6= P1
(∞). On the other hand, from (9.2.39) and Corollary 8.2.14(ii)

(applied to f (i)
g ), we find that P1

(∞) = f (∞)(TP1
(∞))g + TP1

(∞)g⊥. Also, from
its definition, P2

(∞) = f (∞)(TP2
(∞))g + TP2

(∞)g⊥. Thus, TP2
(∞) 6= TP1

(∞) , that
is, TP2

(∞) < TP1
(∞) .

Now assertions (i) and (ii) are proved.

2. Prove assertion (iii). In the following argument, when θ∞w = θs
w, we set

Γ
(∞)
sonic = ∅ and Γ

(∞)
sonic = {P0

(∞)}.
Let e and coordinates (S, T ) be as those defined in the statement of assertion

(iii). By Lemma 8.2.11, e = ν
(∞)
w ∈ Cone0(eS(∞)

1
, eξ2) with τ (∞)

w · e(∞)
S1

< 0.
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Then, using assertions (i)–(ii) as proved in Step 1, we obtain a function f (∞)
e,sh on

(TP2
(∞) , TP1

(∞)).
From (8.2.25) in Corollary 8.2.14 (under the notations introduced there and

in Remark 8.2.12), applied to ϕ(i) with e(i) = ν
(i)
w , using (9.2.37) and (9.2.39),

and noting that ν(i)
w → ν

(∞)
w as i→∞ by (8.2.14), we have

f
(∞)
e,sh (T ) ≥ max(0,−T tan θ(∞)

w ) for T ∈ (TP2 , TP1).

It follows that

∂Ω̂(∞) = Γ
(∞)
shock ∪ Γ

(∞)
sonic ∪ Γ

(∞)
wedge ∪ Γ

(∞)
sym,

Ω̂(∞) \ Ω(∞) = (Γ
(∞)
wedge \ Γ

(∞),0
wedge) ∪ (Γ(∞)

sym \ Γ
(∞),0
sym ), (9.2.40)

∂Ω(∞) ⊂ ∂Ω̂(∞), ∂Ω̂(∞) \ ∂Ω(∞) = Ω̂(∞) \ Ω(∞),

where sets ∂Ω̂(∞) and Ω(∞) are defined in (9.2.22). Since Γ
(∞)
shock is the graph

of a Lipschitz function, Γsonic
(∞)

is an arc of circle (which becomes a point if
θ∞w = θs

w), and Γ
(∞)
wedge and Γ

(∞)
sym are line segments, we have

|∂Ω(∞)| = |∂Ω̂(∞)| = 0. (9.2.41)

Let P be an interior point of Ω(∞). Then, from (9.2.37) and (9.2.39), there
exist r > 0 and N such that B4r(P ) ⊂ Ω(i) for all i > N . Fix some α ∈ (0, 1).
Then, from Lemma 9.2.2(i), estimate (9.2.13) holds for each ϕ(i) with i > N .
Combining these uniform C2,α(Br(P ))–estimates with (9.2.31), we have

ϕ(i) → ϕ(∞) in C2,α2 (Br(P )), (9.2.42)

and ϕ(∞) ∈ C2,α(Br(P )) is a solution of (2.2.8) in Br(P ). Also, since Theorem
5.2.1 and the bounds in (9.1.5)–(9.1.6) provide the uniform ellipticity estimates
with respect to i for equation (2.2.8) on ϕ(i) in B2r(P ), we conclude that equa-
tion (2.2.8) is uniformly elliptic on ϕ(∞) in Br(P ). Then the further regularity,
ϕ(∞) ∈ C∞(Br(P )), follows from the linear elliptic theory.

If P ∈ Γ
(∞),0
wedge, then, using the (S, T )–coordinates with basis {ν(∞)

w , τ
(∞)
w }, we

find that P = (SP , TP ) with SP = L
(∞)
e,w (TP ) < f

(∞)
e,sh (TP ). Using the continuity

of f (∞)
e,sh , there exists r > 0 such that B3r(P ) ∩Λ(∞) is a half-ball and B4r(P ) ∩

Λ(∞) ⊂ Ω(∞). Then there exists N such that, for each i > N , there is P (i) ∈
Γ

(i),0
wedge so that Br/2(P ) ⊂ Br(P

(i)) and B4r(P
(i)) ∩ Λ(i) ⊂ Ω(i) for all i > N ,

i.e., B4r(P
(i)) ∩Ω(i) is a half-ball. Fix some α ∈ (0, 1). From Lemma 9.2.2(iii),

estimate (9.2.15) holds for each ϕ(i) with i > N . Then, for any compact K ⊂
Br/2(P )∩Λ(∞), there exists NK such that K ⊂ Br(P (i)) for each i ≥ NK. Thus,
the uniform convergence ϕ(i) → ϕ(∞) on K, combined with estimates (9.2.15)
for ϕ(i) on Br(P (i)) ∩ Ω(i), implies

ϕ(i) → ϕ(∞) in C2,α2 (K),
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and
‖ϕ(∞)‖C2,α(K) ≤ ‖ϕ(i)‖C2,α(K) ≤ ‖ϕ(i)‖

C2,α(Br(P (i))∩Ω(i))
≤ C

with C independent of K, where we have used that B4r(P
(i))∩Ω(i) is a half-ball.

This implies that
‖ϕ(∞)‖

C2,α(Br/2(P )∩Ω(∞))
≤ C,

and that ϕ(∞) is a smooth solution of (2.2.8) in Br(P ) ∩ Λ(∞) and satisfies
∂νϕ

(∞) = 0 on Γ
(∞)
wedge ∩Br/2(P ).

Since Theorem 5.2.1 (also see [110, Theorem 3.1]) and the bounds in (9.1.5)–
(9.1.6) provide the uniform ellipticity estimates with respect to i for equa-
tion (2.2.8) on ϕ(i) in B2r(P

(i)) ∩ Ω(i), we conclude that equation (2.2.8) is
uniformly elliptic on ϕ(∞) in Br/2(P ) ∩ Ω(∞). Then the further regularity,
ϕ(∞) ∈ C∞(Br(P ) ∩ Λ), follows from the linear elliptic theory for the oblique
derivative problem.

Case P ∈ Γ
(∞),0
sym is similar. Now (9.2.24) and (9.2.26)–(9.2.27) are proved.

Furthermore, (9.2.25) follows from the uniform convergence of both ϕ(i) →
ϕ(∞) and f (i)

ν
(∞)
w ,sh

→ f
(∞)

ν
(∞)
w ,sh

, and the fact that ϕ(i) = ϕ1 on Γ
(i)
shock.

Now we prove property (9.2.28). Fix g ∈ Cone0(eS(∞)
1

, eξ2). First we note

that g ∈ Cone0(eS(ik)

1

, eξ2) for large k, since eS(ik)

1

→ eS(∞)
1

. Thus, ϕ1−ϕ(ik) is

monotonically non-increasing in direction g in Ω(ik) for such k. Then we see that
ϕ1−ϕ(∞) is monotonically non-increasing in direction g in Ω(∞), by employing
the uniform convergence of ϕ(ik) to ϕ(∞) on compact subsets of Λ(∞), the equi-
Lipschitz estimate and uniform convergence of f (ik)

g,sh to f (∞)
g,sh on [TP2

(∞) , TP1
(∞) ],

and the definition of Ω(∞) in part (iii). Combining this with (9.2.24), we con-
clude (9.2.28).

Property (9.2.29) follows from (8.1.12) of ϕ(i), (9.2.37), (9.2.39), and the
definition of Ω(∞) in (9.2.22).

3. Prove assertion (v) and show that ϕ(∞) is a weak solution of Problem
2.6.1. In this proof, in order to fix the notations, we focus on the case that
θ∞w > θs

w. The other case, θ∞w = θs
w, is similar and simpler.

We first prove assertion (v) for ϕ(∞) in Λ \Ω(∞). For that, we consider two
separate cases: θ(∞)

w < π
2 and θ(∞)

w = π
2 .

First consider Case θ(∞)
w < π

2 . Denote by S(∞)
P0P1

the segment between points
P0

(∞) and P1
(∞) on line S(∞)

1 = {ϕ1 = ϕ
(∞)
2 }. Let P ∈ Λ(∞) \ (Ω(∞) ∪ S(∞)

P0P1
∪

{ξ1 = ξ0
1}). By (9.2.40), it follows that P ∈ Λ(∞) \ (Ω̂(∞) ∪ S(∞)

P0P1
∪ {ξ1 = ξ0

1}).
Then, using (9.2.36)–(9.2.38), we find that there exist k ∈ {0, 1, 2}, large integer
N , and small r > 0 such that, for all i > N , B2r(P ) ⊂ Λ(i) and ϕ(i) ≡ ϕ

(i)
k in

B2r(P ), where we have used the convention that ϕk = ϕ
(i)
k = ϕ

(∞)
k for k = 0, 1.

Sending i→∞ and using (9.2.31), we arrive at assertion (v).
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Now we consider Case θ(∞)
w = π

2 . In this case, we denote S(∞)
P0P1

as half-line
{ξ ∈ S(∞)

1 : ξ2 > ξ2P1
(∞)}. Let P ∈ Λ(∞) \ (Ω(∞) ∪ S(∞)

P0P1
). Using (9.2.20)–

(9.2.21), we can follow the same argument as in the previous case (the only
difference is now that k ∈ {1, 2}).

Furthermore, in both cases with the choice of P and r as above, (9.2.42)
holds and B2r(P ) ⊂ Λ(∞). Combining this with the fact that the convergence in
(9.2.42) holds for a subsequence for any B4r(P ) ⊂ Ω(∞), considering a countable
collection of ballsB4r(P ) ⊂ Ω(∞) covering Ω(∞), and using a diagonal procedure,
we conclude that, for a subsequence,

(ϕ(i), Dϕ(i))→ (ϕ(∞), Dϕ(∞))

everywhere in Λ(∞) \ (∂Ω(∞) ∪ S(∞)
P0P1

∪ {ξ1 = ξ0
1}). Then, using (9.2.41),

(ϕ(i), Dϕ(i))→ (ϕ(∞), Dϕ(∞)) a.e. in Λ(∞). (9.2.43)

Each ϕ(i) is a weak solution of Problem 2.6.1 in the sense of Definition
9.2.3. Using (9.1.5)–(9.1.6), (9.2.43), and the dominated convergence theorem,
we can take the limit in the conditions of Definition 2.3.3 to conclude that ϕ(∞)

is a weak solution of Problem 2.6.1.
4. It remains to prove assertion (iv). Note that, on Γ

(∞)
sonic, ϕ

(∞) = ϕ
(∞)
2 <

ϕ1. Then, using (9.2.22) and (9.2.28) with g = ν
(∞)
w , we have

ϕ(∞) < ϕ1 on Γ
(∞)
wedge ∩ {TP1

(∞) < T ≤ TP4
(∞)}.

Thus, it remains to show (9.2.30) on Γ
(∞)
wedge ∩ {TP3

(∞) < T ≤ TP1
(∞)}.

On the contrary, if (9.2.30) is false on Γ
(∞)
wedge ∩ {TP3

(∞) < T ≤ TP1
(∞)}, then

there exist T1 and T2 satisfying

TP3
(∞) < T1 < T2 ≤ TP1

(∞) ,

such that

ϕ(∞) = ϕ1 on Γ
(∞)
wedge ∩ {(S, T ) : T1 < T < T2} ≡ {(0, T ) : T1 < T < T2}.

Using (9.2.22), (9.2.28) with g = ν
(∞)
w , and ϕ(∞) = ϕ1 on Γ

(∞)
shock, we have

ϕ(∞) = ϕ1 in {(S, T ) : T1 < T < T2, 0 < S < f
(∞)

ν
(∞)
w ,sh

(T )}.

Also, from part (v) as proved above,

ϕ(∞) = ϕ1 in {(S, T ) : TP3
(∞) < T < TP1

(∞) , S > f
(∞)

ν
(∞)
w ,sh

(T )}.

Since ϕ(∞) ∈ C0,1(Λ(∞)), it follows that

ϕ(∞) = ϕ1 in {(S, T ) : T1 < T < T2, S > 0}.
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This implies that ϕ(∞) is not a weak solution of Problem 2.6.1 in the sense
of Definition 9.2.3, since it does not satisfy the boundary condition that ϕν = 0

on Γ
(∞)
wedge ∩ {(S, T ) : T1 < T < T2}, even in the weak sense. Indeed, if

ζ ∈ C∞c (R2) with supp(ζ) ⊂ {(S, T ) : T1 < T < T2} in the (S, T )–coordinates,
then ϕ(∞) = ϕ1 on supp(ζ) so that, calculating the left-hand side of the equality
in Definition 2.3.3(iii) in the ξ–coordinates, we have

∫

Λ(∞)

(
ρ(|Dϕ(∞)|2, ϕ(∞))Dϕ(∞) ·Dζ − 2ρ(|Dϕ(∞)|2, ϕ(∞))ζ

)
dξ

=

∫

Λ(∞)

(
ρ(|Dϕ1|2, ϕ1)Dϕ1 ·Dζ − 2ρ(|Dϕ1|2, ϕ1)ζ

)
dξ

=

∫

Λ(∞)

(
ρ1Dϕ1 ·Dζ − 2ρ1ζ

)
dξ

= ρ1u1 sin θ(∞)
w

∫

Γ
(∞)
wedge

ζ dl > 0,

if ζ is chosen to be nonnegative in R2 and positive on some segment on Γ
(∞)
wedge∩

({0}× (T1, T2)). This is a contradiction, since ϕ(∞) is a weak solution of Prob-
lem 2.6.1 as we have proved in Step 3.

Lemma 9.2.6. Let {ϕ(i)} be a sequence of admissible solutions of Problem
2.6.1 with the wedge angles θ(i)

w ∈ (θs
w,

π
2 ) such that θ(i)

w → π
2 . Then

(i) {ϕ(i)} converges to the normal reflection solution, uniformly in compact
subsets of Λ(∞) ≡ Λ(π2 ) ≡ {ξ : ξ2 ≤ 0}, as θ(i)

w → π
2 ;

(ii) For sufficiently large N ,

Γ
(i)
shock = {(f (i)

−eξ1 ,sh
(ξ2), ξ2) : 0 < ξ2 < ξ2(P1

(i))} for all i ≥ N,

where f (i)
−eξ1 ,sh

are equi-Lipschitz on [0, ξ2(P1(π2 ))],

f
(i)
−eξ1 ,sh

→ f
(∞)
−eξ1 ,sh

uniformly on [0, ξ2(P1(
π

2
))],

and f (∞)
−eξ1 ,sh

is the constant function f
(∞)
−eξ1 ,sh

(·) ≡ ξ̄1 with ξ̄1 < 0 defined
by (6.2.2).

Proof. By Corollary 9.2.5, there exists a subsequence {ϕ(ij)} converging uni-
formly in compact subsets of Λ(∞) to a function ϕ(∞) ∈ C0,1

loc (Λ(∞)), which is
a weak solution of Problem 2.6.1 for the wedge angle θw = π

2 . Then, by

(8.2.15)–(8.2.16), it follows that −eξ1 ∈ Cone0(e
(θ

(ij)
w )
S1

, eξ2) for all j > N for
sufficiently large N . Expressing Γ

(ij)
shock = (f

(ij)
−eξ1 ,sh

(ξ2), ξ2) by Corollary 8.2.14,
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we find from Corollary 9.2.5 that f (ij)
−eξ1 ,sh

are equi-Lipschitz and converge uni-

formly on [0, ξ2(P1(π2 ))] to a function f (∞)
−eξ1 ,sh

. Using (8.2.15)–(8.2.16) and the

properties in Corollary 8.2.14(iii) for each f
(ij)
−eξ1 ,sh

, we find that f (∞)
−eξ1 ,sh

is a

constant function. Furthermore, since f (ij)
−eξ1 ,sh

(ξ2(P1(θ
(ij)
w ))) = ξ1(P1(θ

(ij)
w )),

we employ Remark 7.5.6 and the equi-Lipschitz property of f (ij)
−eξ1 ,sh

to conclude

f
(∞)
−eξ1 ,sh

(ξ2(P1(
π

2
))) = ξ1(P1(

π

2
)) = ξ̄1,

where ξ̄1 is defined by (6.2.2). Thus, f (∞)
−eξ1 ,sh

(ξ2) = ξ̄1 for all ξ2, and ξ̄1 < 0 by
(6.2.2). Then assertion (ii) is proved for a subsequence {ϕ(ij)}.

Now we prove assertion (i) for a subsequence {ϕ(ij)}. From Corollary 9.2.5(v),
it suffices to prove that ϕ(∞) = ϕ

(π2 )
2 in Ω(∞), below.

Since assertion (ii) has been proved, Corollary 9.2.5(iii), combined with
(8.2.15), implies that

Ω̂(∞) =



ξ ∈ R2 :

ξ̄1 ≤ ξ1 ≤ 0 for ξ2 ∈ [0, ξ2(P1(π2 ))],

f
(∞)
−eξ1 ,so

(ξ2) < ξ1 < 0

for ξ2 ∈ (ξ2(P1(π2 )), ξ2(P4(π2 ))]



 .

In particular, Ω(∞) coincides with the elliptic domain of the normal reflection,
i.e., Ω(∞) is the domain between the vertical lines ξ1 = ξ̄1 < 0 and ξ1 =
0, and is bounded by the horizontal line ξ2 = 0 from below and the sonic
arc ∂Bc̄2(0) ∩ {ξ2 > 0, ξ̄1 < ξ1 < 0} from above. Since each ϕ1 − ϕ(i) is
monotonically non-increasing in Ω(i) in the directions in Cone0(eS1

, eξ2)|
θw=θ

(i)
w
,

then, using (8.2.15)–(8.2.16) and the uniform convergence of ϕ(i) to ϕ(∞), we
obtain that ϕ1−ϕ(∞) is monotonically non-increasing in Ω(∞) in every direction
in Cone0(−eξ2 , eξ2)|θw=π

2
. Using (9.2.24), we conclude that ∂ξ2(ϕ1 − ϕ(∞)) ≡ 0

in Ω(∞), i.e., (ϕ1−ϕ(∞))(ξ) = g(ξ1) in Ω(∞) for some g ∈ C([ξ̄1, 0])∩C∞((ξ̄1, 0]),
where we have used (9.2.24) and the structure of Ω(∞) as shown above. Also,
by Corollary 9.2.5, ϕ(∞) is a solution of the potential flow equation (2.2.8) in
Ω(∞).

Since D2(ϕ − ϕ0) = D2(ϕ − ϕ1), equation (2.2.11) with g(ξ1) instead of
φ(ξ) holds in Ω(∞), and this equation, considered as a linear equation for g, is
strictly elliptic in Ω(∞) by (9.2.26). It follows that g′′ = 0 on (ξ̄1, 0). Thus,
ϕ1−ϕ(∞) in Ω is a linear function of form (ϕ1−ϕ(∞))(ξ) = aξ1 + b. Using that
ϕ1 = − |ξ|

2

2 + u1ξ1 + const., it follows that ϕ(∞) = − |ξ|
2

2 + âξ1 + b̂. Moreover,
from Corollary 9.2.5(v), it follows that ϕ(∞) = ϕ

(π2 )
2 on Γsonic. Since ϕ(π2 )

2 =

− |ξ|
2

2 +const., ϕ(∞)−ϕ(π2 )
2 is a linear function in Ω(∞), which vanishes on Γsonic.

Thus, ϕ(∞) − ϕ(π2 )
2 is identically zero in Ω(∞). Therefore, ϕ(∞) is the normal

reflection solution.
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Repeating the argument above, from any subsequence of ϕ(i), one can ex-
tract a further subsequence converging to the normal reflection solution in the
sense of assertions (i)–(ii), as shown above. Then, from the uniqueness of the
normal reflection solution, it follows that the whole sequence ϕ(i) converges to
the normal reflection solution in the sense of assertions (i)–(ii).

More generally, from (8.2.15)–(8.2.16), it follows that there exist σ∗ > 0

and C, depending on (ρ0, ρ1, γ), such that −eξ1 ∈ Cone0(e
(θw)
S1

, eξ2) for any
θw ∈ (π2−σ∗, π2 ). By Corollary 8.2.14, for any admissible solution ϕ of Problem
2.6.1 with the wedge angle θw ∈ (π2 − σ, π2 ),

Γshock = {(f−eξ1 ,sh(ξ2), ξ2) : 0 < ξ2 < ξ2(P1(θw))},

where ‖f−eξ1 ,sh‖C0,1((0,ξ2(P1))) ≤ C. Then we have

Corollary 9.2.7. For any ε > 0, there exists σ > 0 such that, for any θw ∈
(π2−σ, π2 ) and any admissible solution ϕ of Problem 2.6.1 with the wedge angle
θw,

|f−eξ1 ,sh(ξ2)− ξ̄1| ≤ ε on (0, ξ2(P1(θw))),

where ξ̄1 < 0 is defined by (6.2.2).

Proof. Noting that P1(θw)→ P1(π2 ) as θw → π
2 by Remark 7.5.5 and using the

equi-Lipschitz property of f−eξ1 ,sh for admissible solutions with θw ∈ (π2−σ∗, π2 ),
it follows that, if the assertion is false, there exists a sequence ϕ(i) of admissible
solutions of Problem 2.6.1 with the wedge angles θ(i)

w → π
2 , which does not

satisfy the convergence property as stated in Lemma 9.2.6(ii). This contradiction
yields Corollary 9.2.7.

9.3 SEPARATION OF Γshock FROM Γsym

In this section, we use the expression of Γshock as a graph in the vertical direction
given in Corollary 8.2.9 with the corresponding function fsh from (8.2.10).

Proposition 9.3.1. There exists µ > 0 depending only on the data such that

f ′sh(ξ1) ≥ µ for any ξ1 ∈ (ξ1P2
,min{ξ1P1

, 0}) ∩ {0 < fsh(ξ1) <
c1
2
}

for any admissible solution ϕ of Problem 2.6.1 with θw ∈ (θs
w,

π
2 ), where fsh

is defined in (8.2.10).

Proof. We use the C1–regularity of fsh shown in Corollary 8.2.9. Now we divide
the remaining proof into two steps.

1. Prove

f ′sh(ξ1) > 0 for any ξ1 ∈ (ξ1P2
,min{ξ1P1

, 0}) ∩ {0 < fsh(ξ1) <
c1
2
}. (9.3.1)
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For P = (ξ1P , ξ2P ) ∈ Γshock, denote by LP the tangent line to Γshock at P .
By (8.2.10), LP = {(ξ1P +s, fsh(ξ1P )+sf ′sh(ξ1P )) : s ∈ R}. Denote by G(ξ1P )
the ξ2–coordinate of the point of intersection of LP with line O1 + Reξ2 . Then

G(ξ1P ) = fsh(ξ1P ) + (u1 − ξ1P )f ′sh(ξ1P ). (9.3.2)

By Lemma 8.1.7 and (6.1.3) in Lemma 6.1.2 (applied with ϕ− = ϕ1), it follows
that LP does not intersect with Bc1(O1). This implies

|G(ξ1P )| > c1 for all ξ1P ∈ (ξ1P2
, ξ1P1

). (9.3.3)

By Definition 8.1.1(i), fsh(ξ1P2
) = ξ2P2

= 0 and fsh > 0 on (ξ1P2
, ξ1P1

),
where the last property follows from (8.1.2). Then there exists P̂ = ξ̂ ∈ Γshock

such that ξ̂1 ∈ (ξ1P2
,min{ξ1P1

, 0}) and f ′sh(ξ̂1) > 0. By (9.3.2), G(ξ̂1) > 0.
Thus, by (9.3.3),

G(ξ̂1) > c1.

Let P̄ = ξ̄ ∈ Γshock be such that ξ̄1 ∈ (ξ1P2
,min{ξ1P1

, 0}), ξ̄2 = fsh(ξ̄1) ≤ c1
2 ,

and f ′sh(ξ̄1) < 0. Then G(ξ̄1) < c1
2 by (9.3.2). Thus, by (9.3.3),

G(ξ̄1) < −c1.

Since fsh ∈ C1((ξ1P2
, ξ1P1

]), G(ξ1) depends continuously on ξ1 ∈ (ξ1P2
, ξ1P1

].
Therefore, there exists ξ∗1 ∈ (ξ1P2

, ξ1P1
] between ξ̄1 and ξ̂1 such that G(ξ∗1) = 0.

This contradicts (9.3.3). Now (9.3.1) is proved.

2. From (9.3.1)–(9.3.2), it follows that

G(ξ1) > 0 for any ξ1 ∈ (ξ1P2
,min{ξ1P1

, 0})

such that fsh(ξ1) ∈ (0, c12 ). By (9.3.3), G(ξ1) > c1 for all such ξ1. Also we recall
that, by (9.1.2), ξ1P2

≥ −C, depending only on the data. Then, from (9.3.2),

f ′sh(ξ1) =
G(ξ1)− fsh(ξ1)

u1 − ξ1
≥ c1 − c1

2

u1 + C
= µ.

This completes the proof.

Corollary 9.3.2. For any admissible solution ϕ of Problem 2.6.1 with θw ∈
(θs

w,
π
2 ),

fsh(ξ1) ≥ min(
c1
2
, µ(ξ1 − ξ1P2

)) for all ξ1 ∈ [ξ1P2
,min{ξ1P1

, 0}],

where µ > 0 is the constant in Proposition 9.3.1.
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9.4 LOWER BOUND FOR THE DISTANCE BETWEEN Γshock

AND Γwedge

In this section, we obtain the estimates of the lower bound for the distance
between Γshock and Γwedge in several cases.

We start by proving some preliminary facts.

Lemma 9.4.1. For every a > 0, there exists C > 0 depending only on (a, ρ0, ρ1, γ)
such that, if ϕ is an admissible solution of Problem 2.6.1 with the wedge angle
θw ∈ (θs

w,
π
2 ), and there are Q1 and Q2 ∈ Γshock so that

dist(Q1, Q2) ≥ a,
dist(Qj , LΓwedge

) ≥ a for j = 1, 2,

where LΓwedge
= {ξ : ξ1 = ξ2 cot θw}, then

dist(Γshock[Q1, Q2], Γwedge) ≥ 1

C
,

where Γshock[Q1, Q2] denotes the segment of curve Γshock between points Q1 and
Q2.

Proof. The proof is achieved by employing the maximum principle in the case
that Γshock[Q1, Q2] is very close to Γwedge in order to lead to a contradiction.

In this proof, the universal constants C and R depend only on the data and
a, i.e., on (ρ0, ρ1, γ, a). We divide the proof into three steps.

1. Choose a sequence of admissible solutions. If the claim in the proposition
is false, then there exist a sequence {θ(i)

w } ⊂ (θs
w,

π
2 ) and corresponding se-

quences of admissible solutions {ϕ(i)} of Problem 2.6.1 and points {Q(i)
1 , Q

(i)
2 }

⊂ Γ
(i)
shock and Q(i) ∈ Γ

(i)
shock[Q

(i)
1 , Q

(i)
2 ] such that

dist(Q(i)
1 , Q

(i)
2 ) ≥ a, dist(Q(i)

j , L
Γ

(i)
wedge

) ≥ a for j = 1, 2,

dist(Q(i), Γ
(i)
wedge)→ 0.

(9.4.1)

Passing to a subsequence (without change of the index), we have

θ(i)
w → θ(∞)

w ∈ [θs
w,
π

2
].

Denote Γ
(∞)
wedge := Γwedge(θ

(∞)
w ) and Λ(∞) := Λ(θ

(∞)
w ). Let

ν(∞) = ν(∞)
w

be the unit normal on Γ
(∞)
wedge, interior to Λ(∞). Thus, ν(∞)

w ∈ Cone0(eS(∞)
1

, eξ2)

by Lemma 8.2.11. Then ν(∞)
w ∈ Cone0(eS(i)

1
, eξ2) for all i > N , where N is
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large. From Corollary 8.2.14(i), it follows that, in the (S, T )–coordinates with
basis {ν(∞)

w , τ
(∞)
w }, we see that, for j = 1, 2,

Q
(i)
j = (f

(i)

ν(∞),sh
(T
Q

(i)
j

), T
Q

(i)
j

) with TP2
(i) ≤ T

Q
(i)
j
≤ TP1

(i) ,

Q(i) = (f
(i)

ν(∞),sh
(TQ(i)), TQ(i)) with T

Q
(i)
1
< TQ(i) < T

Q
(i)
2
,

(9.4.2)

where T
Q

(i)
1
< T

Q
(i)
2

by switching Q(i)
1 and Q(i)

2 if necessary.
By passing to a subsequence (without change of the index) and using (9.1.2),

we have
(Q

(i)
1 , Q

(i)
2 , Q(i))→ (Q

(∞)
1 , Q

(∞)
2 , Q(∞)).

It follows from (9.4.1) that

dist(Q(∞)
1 , Q

(∞)
2 ) ≥ a, dist(Q(∞)

j , L
Γ

(∞)
wedge

) ≥ a for j = 1, 2,

dist(Q(∞), Γ
(∞)
wedge) = 0.

(9.4.3)

2. Choose a solution, a domain, and coordinates for employing the maximum
principle. Using Corollary 9.2.5 and passing to a subsequence (without change
of the index), and employing the Lipschitz extensions of ϕ(i) as in Remark 9.2.4,
we have

ϕ(i) → ϕ(∞) uniformly on each compact subset of Λ(θ∞w ),

f
(i)

ν(∞),sh
→ f

(∞)

ν(∞),sh
uniformly on [TP2

(∞) , TP1
(∞) ],

where ϕ(∞) is a weak solution of Problem 2.6.1 in Λ(∞), and ϕ(∞) is of the
structure described in Corollary 9.2.5. In particular,

‖(f (i)

ν(∞),sh
, f

(∞)

ν(∞),sh
)‖C0,1([T

P2
(∞) ,TP1

(∞) ]) ≤ C. (9.4.4)

Passing to the limit in (9.4.2), we obtain that, in the (S, T )–coordinates with
basis {ν(∞)

w , τ
(∞)
w },

Q(∞) = (f
(∞)

ν(∞),sh
(TQ(∞)), TQ(∞)),

Q
(∞)
j = (f

(∞)

ν(∞),sh
(T
Q

(∞)
j

), T
Q

(∞)
j

) for j = 1, 2,

and, noting that Q(∞) 6= Q
(∞)
j for j = 1, 2, by (9.4.3),

TP2
(∞) ≤ T

Q
(∞)
1

< TQ(∞) < T
Q

(∞)
2
≤ TP1

(∞) . (9.4.5)

Now, by Corollary 9.2.5(iii),

Q(∞), Q
(∞)
j ∈ Γ

(∞)
shock.
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Also, by (9.2.22) and (9.4.3),

f
(∞)

ν(∞),sh
(T
Q

(∞)
j

) = dist(Q(∞)
j , L

Γ
(θ

(∞)
w )

wedge

) ≥ a for j = 1, 2,

f
(∞)

ν(∞),sh
(TQ(∞)) = dist(Q(∞), L

Γ
(θ

(∞)
w )

wedge

) = 0.
(9.4.6)

From this, using (9.2.22) and (9.4.5), we have

TQ(∞) ∈ [TP3
(∞) , TP1

(∞)). (9.4.7)

Next we show that
TQ(∞) ∈ (TP3

(∞) , TP1
(∞)). (9.4.8)

Indeed, assume that (9.4.8) is false. Then (9.4.7) implies that TQ(∞) = TP3
(∞) .

Thus, (9.4.4)–(9.4.6) imply

TP2
(∞) +

1

C
≤ T

Q
(∞)
1

+
1

C
≤ TP3

(∞) = TQ(∞) ≤ T
Q

(∞)
2
− 1

C
≤ TP1

(∞) − 1

C
.

Then, for all i ≥ N for sufficiently large N , we have

TP2
(i) +

1

2C
≤ TP3

(i) ≤ TP1
(i) − 1

2C
. (9.4.9)

Thus, |P3
(i) − P2

(i)| ≥ 1
2C . Since ξ2P3

(i) = ξ2P2
(i) = 0 in the ξ–coordinates, we

have
ξ1P3

(i) − ξ1P2
(i) = |P3

(i) − P2
(i)| ≥ 1

2C
.

Now (8.2.10) and Corollary 9.3.2 imply that there exists R > 0 such that

Γishock ∩
(
BR(P3

(i)) ∩ {ξ1 < 0}
)

= ∅ for all i ≥ N.

This and (8.2.25) imply that f (i)

ν(∞),sh
(TP3

(i)) ≥ R. Sending this to the limit as

i→∞ and using the uniform convergence of f (i)

ν(∞),sh
→ f

(∞)

ν(∞),sh
, we obtain that

f
(∞)

ν(∞),sh
(TP3

(∞)) ≥ R. That is, f (∞)

ν(∞),sh
(TQ(∞)) ≥ R. This contradicts (9.4.6).

Now (9.4.8) is proved.
From (9.4.6) and (9.4.8),

Q(∞) ∈ Γ
(∞)
wedge.

Then, by (9.2.30), (9.4.6), and the continuity of f (∞)

ν(∞),sh
(·), there exist T̂1 ∈

(TP3
(∞) , TQ(∞)) and T̂2 ∈ (TQ(∞) , TP1

(∞)) such that the points:

Bj = (0, T̂j) ∈ Γ∞wedge, Q̂
(∞)
j := (f

(∞)

ν(∞),sh
(T̂j), T̂j), j = 1, 2, (9.4.10)

satisfy
(ϕ1 − ϕ(∞))(Bj) > 0, f

(∞)

ν(∞),sh
(T̂j) > 0 for j = 1, 2.
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Denote

â := min
j=1,2

f
(∞)

ν(∞),sh
(T̂j), (9.4.11)

b := min
j=1,2

(ϕ1 − ϕ(∞))(Bj). (9.4.12)

Then â > 0 and b > 0.
Also, note that

TP2
(∞) ≤ T

Q
(∞)
1

< T̂1 < TQ(∞) < T̂2 < T
Q

(∞)
2
≤ TP1

(∞) ,

dist(Q̂(∞)
j , L

Γ
(∞)
wedge

) = f
(∞)

ν(∞),sh
(T̂j) ≥ â for j = 1, 2.

(9.4.13)

Denote
Q̂

(i)
j := (f

(i)

ν(∞),sh
(T̂j), T̂j) for j = 1, 2.

Then TQ(∞) , Tj ∈ (TP3
(i) , TP1

(i)) for all sufficiently large i, which implies

Q̂
(i)
j ∈ Γ

(i)
shock.

Moreover, from the uniform convergence f (i)

ν(∞),sh
→ f

(∞)

ν(∞),sh
, it follows that

(Q̂
(i)
1 , Q̂

(i)
2 )→ (Q̂

(∞)
1 , Q̂

(∞)
2 ) as i→∞.

This and (9.4.13) imply that

lim
i→∞

dist(Q̂(i)
j , L

Γ
(i)
wedge

) = dist(Q̂(∞)
j , L

Γ
(∞)
wedge

) ≥ â for j = 1, 2, (9.4.14)

where L
Γ

(i)
wedge

= {ξ : ξ1 = ξ2 cot θ
(i)
w }.

Now we write points Q(i) and Q̂(i)
j in the (s, t)–coordinates with basis {ν(i),

(ν(i))⊥} and the origin at P3, where

ν(i) = ν(i)
w = (− sin θ(i)

w , cos θ(i)
w ), (ν(i))⊥ = τ (i)

w = (cos θ(i)
w , sin θ(i)

w ).

In the coordinates, Λ(i) ⊂ {s > 0} and Γ
(i)
wedge ⊂ {s = 0}. Using (8.2.25), we

have

Ω(i) =





(s, t) ∈ R2 :

tP2
(i) < t < tP4

(i) ,

−(t− tP3
(i)) tan θ

(i)
w < s < f

(i)

ν(i),sh
(t)

for t ∈ (tP2
(i) , tP3

(i) ],

0 < s < f
(i)

ν(i),sh
(t) for t ∈ (tP3

(i) , tP1
(i) ],

0 < s < fν(i),so(t) for t ∈ (tP1
(i) , tP4

(i))





(9.4.15)

and
Γ

(i)
shock =

{
(f

(i)

ν(i),sh
(t), t) : tP2

(i) < t < tP1
(i)

}
(9.4.16)
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with f (i)

ν(i),sh
> 0 on (tP2

(i) , tP1
(i)), since ϕi is an admissible solution of Problem

2.6.1. From the definition and properties of points Q(i) and Q̂(i)
j expressed in

the (S, T )–coordinates with basis {ν(∞)
w , τ

(∞)
w } (cf. (9.4.2) and (9.4.13)), and

the convergence: ν(i)
w → ν

(∞)
w , it follows that

Q(i) = (f
(i)

ν(i),sh
(tQ(i)), tQ(i)), Q̂

(i)
j = (f

(i)

ν(i),sh
(t

(i)
j ), t

(i)
j ) for j = 1, 2,

where, restricting to i ≥ N for sufficiently large N , we have

tP2
(i) < t

(i)
1 < tQ(i) < t

(i)
2 < tP1

(i) ,

lim
i→∞

t
(i)
j = T̂j for j = 1, 2,

f
(i)

ν(i),sh
(tQ(i)) = dist(Q(i), L

Γ
(i)
wedge

)→ dist(Q(∞), L
Γ

(∞)
wedge

) = 0,

f
(i)

ν(i),sh
(t

(i)
j ) = dist(Q̂(i)

j , L
Γ

(i)
wedge

) ≥ â

2
for j = 1, 2.

(9.4.17)

Thus, for any sufficiently large i, there exists t(i) ∈ (t
(i)
1 , t

(i)
2 ) such that

f
(i)

ν(i),sh
(t(i)) = min

t∈[t
(i)
1 ,t

(i)
2 ]

f
(i)

ν(i),sh
(t) ≤ â

4
< min
j=1,2

f
(i)

ν(i),sh
(t

(i)
j ). (9.4.18)

Denote
s(i) := f

(i)

ν(i),sh
(t(i)), R(i) = (s(i), t(i)).

Then R(i) ∈ Γ
(i)
shock. By (8.2.25), s(i) > 0. Also, by (9.4.17) and 0 < s(i) ≤

f
(i)

ν(i),sh
(tQ(i)), we have

s(i) → 0. (9.4.19)

In the (s, t)–coordinates with basis {ν(i)
w , τ

(i)
w }, denoteD(i) := (0, s(i))×(t

(i)
1 , t

(i)
2 ).

Then it follows from (8.2.25) for ϕ(i) by using (9.4.18) that, for sufficiently large
i,

D(i) ⊂ Ω(i), R(i) ∈ ∂D(i) ∩ ∂Ω(i),

and ∂D(i) is smooth (flat) at and near R(i). Then, denoting by ν∂D(i) =
ν∂D(i)(R(i)) the interior unit normal with respect to D(i) at R(i), we have

ν∂D(i) = ν
Γ

(i)
shock

(R(i)) = −ν(i)
w . (9.4.20)

3. Application of the maximum principle in D(i) for sufficiently large i.
Consider the function:

φ̄(i) = ϕ1 − ϕ(i) in D(i).

Since D2φ̄(i) = −D2φ(i) for φ(i) = ϕ(i) + |ξ|2
2 , equation (2.2.11) (considered

as a linear equation for D2φ(i)) is satisfied with D2φ(i) replaced by D2φ̄(i),



346 CHAPTER 9

and is strictly elliptic in Ω(i) \ Γ
(i)
sonic. Also, from (9.4.17)–(9.4.19), we see that

D(i) ⊂ Ω(i) for all large i, so that dist(D(i),Γ
(i)
sonic) > 0. Thus, φ̄ satisfies the

linear equation:

a11Dssφ̄
(i) + 2a12Dstφ̄

(i) + a22Dttφ̄
(i) = 0 in D(i), (9.4.21)

with continuous coefficients in D(i), which is uniformly elliptic in D(i).
Next, we show the following properties of φ̄(i) on ∂D(i) for sufficiently large

i:

φ̄(i) ≥ 0 on {s(i)} × (t
(i)
1 , t

(i)
2 ), (9.4.22)

∂ν φ̄
(i) = −u1 sin θ(i)

w on {0} × (t
(i)
1 , t

(i)
2 ), (9.4.23)

φ̄(i) ≥ b

2
on (0, s(i))× {t(i)j } for j = 1, 2, (9.4.24)

where b is from (9.4.12).
Indeed, (9.4.22) holds because ϕ(i) is an admissible solution of Problem

2.6.1.
To show (9.4.23), we note that {0}×(t

(i)
1 , t

(i)
2 ) = Γ

(i)
wedge∩∂D(i), which implies

that ∂νϕ(i) = 0 on {0} × (t
(i)
1 , t

(i)
2 ). Then we calculate in the ξ–coordinates to

obtain that ∂ν φ̄(i) = ∂νϕ1 = −u1 sin θ
(i)
w on Γ

(i)
wedge, which implies (9.4.23).

Next we show (9.4.24). Denoting B(i)
j := (0, t

(i)
j ) for j = 1, 2 in the (s, t)–

coordinates with basis {ν(i)
w , τ

(i)
w }, we have

B
(i)
j ∈ Γ

(i)
wedge.

Using (9.4.17) and the convergence: ν(i)
w → ν

(∞)
w , we see that B(i)

j → Bj for Bj
defined in (9.4.10). From the uniform convergence that ϕ(i) → ϕ(∞), (9.4.4), and
(9.4.12), it follows that φ̄(B

(i)
j ) ≥ 2

3b for large i. Then, from the equi-Lipschitz
property of ϕ(i) and (9.4.19), we conclude (9.4.24) for large i.

Now, define the function:

v(s, t) = −u1 sin θ(i)
w (s− s(i)).

Note that v(R(i)) = v(s(i), t(i)) = 0. Also, for i sufficiently large, v satisfies

a11Dssv + 2a12Dstv + a22Dttv = 0 in D(i), (9.4.25)

v = 0 on {s(i)} × (t
(i)
1 , t

(i)
2 ), (9.4.26)

∂νv = −u1 sin θ(i)
w on {0} × (t

(i)
1 , t

(i)
2 ), (9.4.27)

0 < v <
b

2
on (0, s(i))× {t(i)j } for j = 1, 2, (9.4.28)

where we obtain (9.4.28) by noting that 0 < v(s, t) < u1s
(i) sin θ

(i)
w on (0, s(i))×

{t(i)j } and s(i) → 0.
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From (9.4.21)–(9.4.28), by the comparison principle,

φ̄(i) ≥ v in D(i). (9.4.29)

On the other hand, since R(i) ∈ Γ
(i)
shock, the Rankine-Hugoniot condition

(8.1.13), combined with (9.4.20), implies

ρDϕ(i) · ν∂D(i) = −ρ1Dϕ1 · ν(i)
w at R(i).

Since ϕ1 = − |ξ|
2

2 + u1ξ1 + const., we have

−(Dϕ1 · ν(i)
w )(R(i)) = s(i) + u1 sin θ(i)

w > 0,

by using s(i) > 0 and θ
(i)
w ∈ (θs

w,
π
2 ). Combining this with the bound of the

density in Lemma 9.1.4, we have

Dϕ(i) · ν∂D(i) =
ρ1

ρ
(−Dϕ1 · ν(i)

w ) ≥ 1

C
u1 sin θ(i)

w at R(i).

Thus, using (9.4.20) again, we compute at R(i):

Dφ̄(i)(R(i)) · ν∂D(i) = −Dϕ1(R(i)) · ν(i)
w −Dϕ(i)(R(i)) · ν∂D(i)

= s(i) + u1 sin θ(i)
w −Dϕ(i)(R(i)) · ν∂D(i)

≤ s(i) + u1 sin θ(i)
w −

1

C
u1 sin θ(i)

w .

Then, using (9.4.19), we obtain that Dφ̄(i)(R(i)) ·ν∂D(i) < u1 sin θ
(i)
w if i is large.

That is,
Dφ̄(i)(R(i)) · ν∂D(i) < Dv(R(i)) · ν∂D(i) .

Since R(i) ∈ Γ
(i)
shock ∩ {s = s(i)}, we see that φ̄(i)(R(i)) = v(R(i)) = 0. Then the

last inequality contradicts (9.4.29).

In order to state the next property, we note that, from the continuous de-
pendence of P3 = 0 and P4 on θw ∈ [θd

w,
π
2 ] by Lemma 7.5.9(ii), it follows that

r0 := min
θw∈[θs

w,
π
2 ]
|P3P4

(θw)| > 0. (9.4.30)

Moreover, if ϕ is an admissible solution for θw ∈ [θs
w,

π
2 ), then Γ

(θw)
wedge = P3P4

(θw).

Lemma 9.4.2. Let r ∈ (0, r0). There exists Cr > 0 depending only on (r, ρ0, ρ1, γ)
such that, for any admissible solution of Problem 2.6.1 with the wedge angle
θw ∈ (θs

w,
π
2 ),

sup
P∈Γshock∩Br(P3)

dist(P, LΓwedge
) >

1

Cr
if |P2 − P3| ≤

r

10
, (9.4.31)

and

sup
P∈Γshock∩Br(P4)

dist(P, LΓwedge
) >

1

Cr
if |P1 − P4| ≤

r

10
. (9.4.32)
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Proof. We first prove (9.4.32).
If the statement is false, then there exist a sequence {θ(i)

w } ⊂ (θs
w,

π
2 ) and a

corresponding admissible solution sequence {ϕ(i)} of Problem 2.6.1 such that

|P1
(i) − P4

(i)| ≤ r

10
, sup

P∈Γ
(i)
shock∩Br(P4

(i))

dist(P,L
Γ

(i)
wedge

) ≤ 1

i
.

Using Corollary 9.2.5 and passing to a subsequence (without change of the in-
dex), and employing the Lipschitz extensions of ϕ(i) as in Remark 9.2.4, we
conclude that

ϕ(i) → ϕ(∞) uniformly on each compact subset of Λ(θ∞w ),

and

|P1
(∞) − P4

(∞)| ≤ r

10
, sup

P∈Γ
(∞)
shock∩Br(P4

(∞))

dist(P,L
Γ

(∞)
wedge

) = 0, (9.4.33)

where ϕ(∞) is a weak solution of Problem 2.6.1 in Λ(∞), with the structure
described in Corollary 9.2.5. In particular, we obtain from (9.2.23) and (9.4.33)
that P1

(∞) ∈ L
Γ

(∞)
wedge

, which implies

P1
(∞) = P4

(∞). (9.4.34)

By Remark 8.2.12,

Γ
(∞)
wedge = {(0, T ) : TP3

(∞) < T < TP4
(∞)}.

Then, using (9.2.23) with e = ν
(∞)
w , we obtain from (9.4.33)–(9.4.34) that

Γ
(∞)
wedge ∩ {(0, T ) : TP4

(∞) − r < T < TP4
(∞)} ⊂ Γ

(∞)
shock.

From this, since ϕ(∞) = ϕ1 on Γ
(∞)
shock, we find that ϕ(∞) = ϕ1 on Γ

(∞)
wedge ∩

{(0, T ) : TP4
(∞) − r < T < TP4

(∞)}. This contradicts (9.2.30).
The proof of (9.4.31) is similar.

Corollary 9.4.3. Let r ∈ (0, r0). There exists Cr > 0 depending only on
(r, ρ0, ρ1, γ) such that, for any admissible solution of Problem 2.6.1 with the
wedge angle θw ∈ (θs

w,
π
2 ), there is Q ∈ Γshock so that, in the (S, T )–coordinates

with basis {νw, τw},

dist(Q, LΓwedge
) ≥ 1

Cr
, TQ ≤ TP3

+
r

2
, (9.4.35)

where C depends only on (ρ0, ρ1, γ, r).
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Proof. To prove (9.4.35), we first consider the case that |P3 − P2| ≥ r
20 . Then,

using (8.2.25), we estimate

fνw
(TP2

) ≥ r

20
sin θw ≥

r

20
sin θs

w > 0,

so that
dist(P2, LΓwedge

) = fνw(TP2) ≥ r

20
sin θs

w.

Moreover, TP2
≤ TP3

by Lemma 8.2.11. Then (9.4.35) is satisfied with Q = P2

in this case.
Otherwise, |P3 − P2| < r

20 . From Lemma 9.4.2 applied with r
2 instead

of r, there exists Q ∈ Γshock ∩Br/2(P3) with dist(Q, LΓwedge
) ≥ 1

C . Clearly,
Γshock ∩Br/2(P3) ⊂ Γshock ∩ {T ≤ TP3 + r

2}. Now (9.4.35) is proved.

9.4.1 Uniform positive lower bound for the distance between Γshock

and Γwedge when u1 < c1

We first prove the lower bound for the distance between Γshock and Γwedge

when (ρ0, ρ1, γ) satisfy u1 < c1. The bound is uniform for the wedge angles
θw ∈ [θ∗w,

π
2 ) where θ∗w ∈ (θs

w,
π
2 ). Note that, for the sonic angle, P1 = P4 = P0 ∈

Γwedge. For this reason, in order to have a uniform bound with respect to the
wedge angles up to the sonic angle, we would need to remove a neighborhood of
P0. We will do that in §9.4.4 and §15.4, in order to obtain the estimates for all
the wedge angles up to the sonic angle and the detachment angle, respectively.

Remark 9.4.4. When u1 = c1, the uniform positive lower bound will also be
obtained in §9.5 (Corollary 9.5.7) below. On the other hand, when u1 > c1,
experimental results suggest that Γshock may hit the wedge vertex P3 in cer-
tain cases, and hence the general positive lower bound for the distance between
Γshock and Γwedge does not seem to exist in this case. This is the reason for
the difference in the conclusions of Theorems 2.6.3 and 2.6.5. However, in the
next subsections, we will obtain the positive lower bound of the distance between
Γshock and Γwedge away from P3 for any (ρ0, ρ1, γ), including for Case u1 ≥ c1.
Proposition 9.4.5. Assume that u1 < c1. Let θ∗w ∈ (θs

w,
π
2 ). Then there exists

C > 0 depending only on (ρ0, ρ1, γ, θ
∗
w) such that, for any admissible solution of

Problem 2.6.1 with θw ∈ [θ∗w,
π
2 ),

dist(Γshock,Γwedge) >
1

C
.

Proof. Let ϕ be an admissible solution for a wedge angle θw ∈ [θ∗w,
π
2 ). Let

{νw, τw} be the unit normal and tangent vectors to Γwedge, defined by (8.2.14)
and (8.2.17), respectively. Let (S, T ) be the coordinates with basis {νw, τw}
and the origin at P3.

Let LΓwedge
= {ξ : ξ1 = ξ2 cot θw} as that defined in Lemma 9.4.1. Let

fνw = fνw,sh be the function from (8.2.25).
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Using (8.1.2) and the condition that u1 < c1, we obtain that ξ1P2
≤ −(c1 −

u1). Then, using that |P2P3| = |ξ1P2
|, changing ξ to the (S, T )–coordinates,

and using (8.2.25), we have

fνw
(TP2

) = |P2P3| sin θw ≥ (c1 − u1) sin θw > 0.

Using that θw ∈ [θ∗w,
π
2 ) ⊂ (θs

w,
π
2 ), we obtain

dist(P2, LΓwedge
) = fνw

(TP2
) ≥ (c1 − u1) sin θs

w > 0, (9.4.36)

i.e., the positive lower bound depends only on the data, i.e., (ρ0, ρ1, γ).
Next, by Lemma 7.5.9(ii), dist(P1, LΓwedge

) depends continuously on θw ∈
[θd

w,
π
2 ]. Also dist(P1, LΓwedge

) > 0 for each θw ∈ [θ∗w,
π
2 ). Then

min
θw∈[θ∗w,

π
2 ]
dist(P1, LΓwedge

)(θw) ≥ 1

C
, (9.4.37)

where C depends only on (ρ0, ρ1, γ, θ
∗
w).

Finally, using Corollary 8.2.14(i) and (8.2.25) with e = νw, we find that, in
the (S, T )–coordinates, Pk = (fνw(TPk), TPk) for k = 1, 2, and

|P1 − P2| ≥ TP1
− TP2

≥ TP1
− TP3

. (9.4.38)

Also, TP1 − TP3 is strictly positive and depends continuously on θw ∈ [θd
w,

π
2 ] by

Lemma 7.5.9(ii) and Lemma 8.2.11. Then

|P1 − P2| ≥ min
θw∈[θd

w,
π
2 ]

(TP1 − TP3) ≥ 1

C
, (9.4.39)

where C > 0 depends only on (ρ0, ρ1, γ).
Now we can apply Lemma 9.4.1 with Q1 = P1 and Q2 = P3, and with a > 0

being the smallest of the lower bounds in (9.4.36)–(9.4.37) and (9.4.39), so that
a depends only on (ρ0, ρ1, γ, θ

∗
w). Also, note that Γshock[P1, P2] = Γshock. Then,

applying Lemma 9.4.1, we conclude the proof.

Remark 9.4.6. In the proof of Proposition 9.4.5 (cf. equation (9.4.39)), we
have shown that

r̂0 := min
θw∈[θd

w,
π
2 ]

(T
P

(θw)
1
− TP3

) > 0,

where we use the coordinates (S, T ) with basis {νw
(θw), τw

(θw)} for each θw.

9.4.2 Lower bound for the distance between Γshock and Γwedge for
large-angle wedges

When the requirement that u1 < c1 is dropped, the lower bound for the distance
between Γshock and Γwedge cannot be established in general. In this and the next
subsections, we prove some partial results for this. We fix (ρ0, ρ1, γ) without
the condition on u1 < c1.
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Lemma 9.4.7. There exists σ1 > 0 such that, if ϕ is an admissible solution of
Problem 2.6.1 with the wedge angle θw,

Γshock ⊂ {ξ2 ≤
ξ̄1
2
} if θw ∈ [

π

2
− σ1,

π

2
),

where ξ̄1 < 0 is defined by (6.2.2). In particular, we have

dist(Γshock, Γwedge) ≥ |ξ̄1|
2

if θw ∈ [
π

2
− σ1,

π

2
).

Proof. Indeed, this follows from Corollary 9.2.7 with ε = |ξ̄1|
2 , and the fact that

Γwedge ⊂ {ξ2 ≥ 0}.

9.4.3 Lower bound for the distance between Γshock and Γwedge away
from P3.

In the next proposition, we use r0 defined by (9.4.30).

Proposition 9.4.8. Let θ∗w ∈ (θs
w,

π
2 ). For every r ∈ (0, r010 ), there exists Cr > 0

depending only on (ρ0, ρ1, γ, θ
∗
w, r) such that

dist(Γshock, Γwedge \Br(P3)) ≥ 1

Cr

for any admissible solution of Problem 2.6.1 with the wedge angle θw ∈ [θ∗w,
π
2 ).

Proof. In this proof, the universal constant C depends only on (ρ0, ρ1, γ, θ
∗
w, r),

unless otherwise specified. It suffices to consider r ∈ (0, r
∗

10 ] for r∗ = min{r0, r̂0},
where r̂0 is defined in Remark 9.4.6. Fix such a constant r.

Let ϕ be an admissible solution for a wedge angle θw ∈ [θ∗w,
π
2 ). We use

coordinates (S, T ) with basis {νw, τw} and the origin at P3, as in the proof of
Proposition 9.4.5.

First, we apply Corollary 9.4.3 to obtain Q ∈ Γshock such that (9.4.35) holds.
Next, we note that (9.4.37) holds in the present case, which can be seen from

its proof. Also, since r < r∗

10 ≤ r̂0
10 , we use Remark 9.4.6 and (9.4.35) to estimate

|P1 −Q| ≥ TP1
− TQ ≥ TP1

− TP3
− r

2
≥ r̂0

2
. (9.4.40)

Thus, we can apply Lemma 9.4.1 with Q1 = P1 and Q2 = Q, and with a > 0
being the smallest of the lower bounds in (9.4.35), (9.4.37), and (9.4.40), so that
a depends only on (ρ0, ρ1, γ, θ

∗
w, r). Then we obtain

dist(Γshock[Q,P1],Γwedge) ≥ 1

C
. (9.4.41)

Using Corollary 8.2.14(i), (8.2.25), and TQ < TP1
, we have

Γshock[Q,P1] = Γshock ∩ {T > TQ}.
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From (9.4.35), we see that Γshock ∩
{
T > TP3

+ r
2

}
⊂ Γshock[Q,P1]. Then, by

(9.4.41), we have

dist(Γshock ∩
{
T > TP3

+
r

2

}
, Γwedge) ≥ 1

C
. (9.4.42)

On the other hand,

Γwedge \Br(P3) = {(0, T ) : TP3
+ r ≤ T < TP4

}.

Thus
dist(Γshock ∩

{
T ≤ TP3

+
r

2

}
, Γwedge \Br(P3)) ≥ r

2
.

Combining this with (9.4.42), we conclude the proof.

9.4.4 Lower bound for the distance between Γshock and Γwedge away
from P0 and P3.

The lower bounds in Propositions 9.4.5 and 9.4.8 are obtained for admissible
solutions with the wedge angles θw ∈ [θ∗w,

π
2 ), and the bounds depend on θ∗w.

However, for some applications below, we need to obtain the lower bounds in-
dependent of θ∗w, which hold for admissible solutions with θw ∈ (θs

w,
π
2 ).

We do not assume that u1 < c1, which implies that our estimate has to be
made away from P3, as we have discussed earlier. Moreover, for θw = θs

w, Γshock

and Γwedge meet at P0, which implies that our estimate has to be made away
from P0. Then we obtain the following estimate:

Proposition 9.4.9. Fix ρ1 > ρ0 > 0 and γ > 1. For every r ∈ (0, r010 ), there
exists Cr > 0 depending only on (ρ0, ρ1, γ, r) such that

dist (Γshock, Γwedge \ (Br(P0) ∪Br(P3))) ≥ 1

Cr
(9.4.43)

for any admissible solution of Problem 2.6.1 with the wedge angle θw ∈ (θs
w,

π
2 ).

Proof. In this proof, the universal constants C and Ck are positive and depend
only on (ρ0, ρ1, γ, r). It suffices to consider r ∈ (0, r

∗

10 ] for r∗ = min{r0, r̂0},
where r̂0 is defined in Remark 9.4.6. Fix such a constant r.

Let ϕ be an admissible solution for a wedge angle θw ∈ (θs
w,

π
2 ). We use

coordinates (S, T ) with basis {νw, τw} and the origin at P3, as in the proof of
Proposition 9.4.5. The proof consists of four steps.

1. We show that there exist C,C1 > 0 such that, if dist(P1, LΓwedge
) ≤ 1

C1
,

then

|P0 − P4| ≤
r

20
,

∃ Q̂ ∈ Γshock with dist(Q̂, LΓwedge
) ≥ 1

C
and TQ̂ ≥ TP0

− 3r

4
.

(9.4.44)
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To prove (9.4.44), we first define the set:

A = {θw ∈ [θs
w,
π

2
) : |P0 − P4| ≥

r

20
} ∪ {π

2
}.

Then, using the continuous dependence of points P0 and P4 on θw ∈ [θd
w,

π
2 ),

which holds by Lemma 7.5.9(i)–(ii), we conclude that A is closed. Also, A
includes only the supersonic wedge angles (since P0 = P4 for the sonic angle),
so that dist(P1, LΓwedge

) > 0 for all θw ∈ A. Using the continuous dependence
of dist(P1, LΓwedge

) on θw ∈ [θd
w,

π
2 ], we have

dist(P1, LΓwedge
) ≥ 2

C1
for all θw ∈ A.

Also, define
B := {θw ∈ [θs

w,
π

2
] : |P1 − P4| ≥

r

20
}.

Using the continuous dependence of points P1 and P4 on θw ∈ [θd
w,

π
2 ], which

holds by Lemma 7.5.9(ii), we conclude that B is closed. Then, noting that
dist(P1, LΓwedge

) > 0 for any θw ∈ B and using the continuous dependence of
dist(P1, LΓwedge

) on θw ∈ [θd
w,

π
2 ], we obtain (possibly increasing C1):

dist(P1, LΓwedge
) ≥ 2

C1
for all θw ∈ B.

If θw /∈ A∪B, then |P1−P4| ≤ r
20 . We can apply Lemma 9.4.2 with r

2 instead
of r to obtain the existence of Q̂ ∈ Γshock ∩Br/2(P4) with dist(Q̂, LΓwedge

) ≥
1
C from (9.4.32). Moreover, using that |P0 − P4| ≤ r

20 , we see that Q̂ ∈
Γshock ∩B3r/4(P0), so that TQ̂ ≥ TP0

− 3r
4 . Thus, (9.4.44) holds in this case.

That is, we have shown that, if dist(P1, LΓwedge
) ≤ 1

C1
for some θw, then

θw /∈ A ∪ B so that (9.4.44) holds for such θw.
2. Next we apply Corollary 9.4.3 to obtain Q ∈ Γshock such that (9.4.35)

holds with Cr depending only on (ρ0, ρ1, γ, r).
3. If θw is such that

dist(P1, LΓwedge
) ≥ 1

C1
(9.4.45)

for C1 from (9.4.44), we argue as in the proof of Proposition 9.4.8 by using
(9.4.45) instead of (9.4.37). Note that, in this argument, we use the lower
bounds in (9.4.35), (9.4.40), and (9.4.45), which depend only on (ρ0, ρ1, γ, r),
where, for (9.4.39), 1

C = r̂0, from Remark 9.4.6 by (9.4.38). Thus, we obtain
the estimate of Proposition 9.4.8 with Cr depending only on (ρ0, ρ1, γ, r). This
implies (9.4.43).

4. If θw is such that

dist(P1, LΓwedge
) ≤ 1

C1
, (9.4.46)
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then (9.4.44) holds. Now we can apply Lemma 9.4.1 with Q1 = Q̂ from (9.4.44)
and Q2 = Q from (9.4.35), which holds, as we have shown in Step 2. Moreover,
since r < r∗

10 ≤ r̂0
10 , we use (9.4.35), (9.4.44), and Remark 9.4.6 to estimate

|Q̂−Q| ≥ TQ̂ − TQ ≥ TP0
− 3r

4
− TP3

− r

2
≥ r̂0 −

5r

4
≥ r̂0

2
. (9.4.47)

Thus, in the application of Lemma 9.4.1 with Q1 = Q̂ and Q2 = Q, we use
a > 0 that is the smallest of the lower bounds in (9.4.35), (9.4.44), and (9.4.47),
so that a depends only on (ρ0, ρ1, γ, r). We then obtain

dist(Γshock[Q, Q̂],Γwedge) ≥ 1

C
. (9.4.48)

Using Corollary 8.2.14(i) and noting that TQ < TQ̂ by (9.4.47), we have

Γshock[Q, Q̂] = Γshock ∩ {TQ < T < TQ̂}.

Then, from (9.4.35) and (9.4.44),

Γshock ∩
{
TP3 +

r

2
≤ T ≤ TP0 −

3r

4

}
⊂ Γshock[Q, Q̂],

which, by (9.4.48), implies

dist(Γshock ∩
{
TP3

+
r

2
≤ T ≤ TP0

− 3r

4

}
, Γwedge) ≥ 1

C
. (9.4.49)

On the other hand,

Γwedge \ (Br(P3) ∪Br(P4)) = {(0, T ) : TP3 + r ≤ T ≤ TP4 − r}.

Thus, using that TP0 ≥ TP4 ,

dist
(
Γshock \

{
TP3 +

r

2
≤ T ≤ TP0 −

3r

4

}
, Γwedge \ (Br(P3) ∪Br(P4))

)
≥ r

4
.

Combining this with (9.4.49), we conclude the proof.

9.5 UNIFORM POSITIVE LOWER BOUND FOR THE
DISTANCE BETWEEN Γshock AND THE SONIC CIRCLE OF
STATE (1)

In this section, we keep the notation that O1 = (u1, 0) as the center of the sonic
circle of state (1) and recall that P3 = 0. The universal constant C depends
only on the data, i.e., on (ρ0, ρ1, γ), unless otherwise specified. We first prove a
preliminary fact.
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Lemma 9.5.1. For every non-empty compact set K ⊂ Bc1(O1) \ {P3}, there
exists C = C(K) > 0 such that K ∩ Λ(θw) ⊂ Ω(ϕ) and

inf
K∩Λ(θw)

(ϕ1 − ϕ) ≥ 1

C(K)
, (9.5.1)

for any wedge angle θw ∈ (θs
w,

π
2 ) satisfying K ∩ Λ(θw) 6= ∅ and any admissible

solution ϕ of Problem 2.6.1 with the wedge angle θw.

Proof. Since K ⊂ Bc1(O1), the fact that K∩Λ(θw) ⊂ Ω(ϕ) follows directly from
(8.1.2). Thus, it suffices to prove (9.5.1).

On the contrary, if (9.5.1) does not hold, then, since ϕ ≤ ϕ1 in Ω by (8.1.5)
for any admissible solution, there exist a compact K ⊂ Bc1(u1, 0), a sequence
of admissible solutions {ϕ(i)} of Problem 2.6.1 for the wedge angles {θ(i)

w } ⊂
(θs

w,
π
2 ) extended to Λ(θ(i)

w ) as in Definition 2.6.2, and a corresponding sequence

of points {Q(i)} ⊂ K ∩ Λ(θ
(i)
w ) such that

(ϕ1 − ϕ(i))(Q(i))→ 0. (9.5.2)

Passing to a subsequence (without change of the index), we have

θ(i)
w → θ(∞)

w ∈ [θs
w,
π

2
], Q(i) → Q(∞) ∈ K ∩ Λ(∞).

For each i, choose and fix a Lipschitz extension of ϕ(i) from Λ(θ
(i)
w ) to R2 as

in Remark 9.2.4, i.e., satisfying (9.2.18) for any compact set K in R2 with the
constants independent of i. Passing to a further subsequence and using Corollary
9.2.5, we obtain that, for the extended functions ϕ(i),

ϕ(i) → ϕ(∞) uniformly on compact subsets of R2,

where ϕ(∞) is a weak solution of Problem 2.6.1 in Λ(∞). Moreover, ϕ(∞) in
Λ(∞) is of the structure described in Corollary 9.2.5. Using the uniform con-
vergence and equicontinuity of the extended function ϕ(i), we find from (9.5.2)
that

ϕ(∞)(Q(∞)) = ϕ1(Q(∞)). (9.5.3)

Since the compact set K ⊂ Bc1(u1, 0)\{0}, then K ⊂ Bc1−2ε(u1, 0)\B2ε(0)
for some ε > 0 satisfying c1 > 5ε. Denote

Dε :=
(
Bc1−ε(u1, 0) \Bε(0)

)
∩ Λ(∞).

Since Q(∞) ∈ K ∩ Λ(∞) ⊂
(
Bc1−2ε(u1, 0) \ B2ε(0)

)
∩ Λ(∞), it follows from the

form of Λ(∞) that
(
Bc1−2ε(u1, 0) \B2ε(0)

)
∩ Λ(∞) 6= ∅,
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which implies, after possibly reducing ε, that Dε 6= ∅. From this, we infer that
Γwedge(Dε) 6= ∅, where we have used and will hereafter use the notations in
(8.1.18). Indeed, since θw ∈ (0, π2 ), it follows from (7.5.6) that the nearest point
R to O1 = (u1, 0) on line {ξ2 = ξ1 tan θw} lies in the relative interior of P3O2 ⊂
Γwedge, where the last inclusion follows from Lemma 7.4.8 and the definition of
P4. Then, reducing ε, we conclude that R /∈ Bε(0) so that R ∈ Γwedge(Dε).

Note that (9.2.29) implies that Dε/4 ⊂ Ω(∞) ∪ Γ
(∞),0
sym ∪ Γ

(∞),0
wedge. Then, from

(9.2.24) and (9.2.26), we infer that ϕ(∞) ∈ C3
(
Dε/2

)
and that equation (2.2.8)

is strictly elliptic for ϕ(∞) in Dε/2. Since Γwedge(Dε) 6= ∅ (as shown above) and
Γwedge(Dε) ⊂ Γwedge(Dε/2), then Γwedge(Dε/2) 6= ∅. Now (8.1.19) in Lemma
8.1.9 implies that ϕ1 > ϕ(∞) on Dε/2∪Γwedge(Dε/2)∪Γsym(Dε/2). Since Q(∞) ∈
Dε ⊂ Dε/2∪Γwedge(Dε/2)∪Γsym(Dε/2), we arrive at a contradiction to (9.5.3).

Now we prove the main technical result of this section. In order to clarify the
conditions for this, we note that, if u1 < c1, then Bc1(O1) ∩ Λ(θw) 6= ∅ for any
θw ∈ (0, π2 ]. However, if u1 ≥ c1, Bc1(O1)∩Λ(θw) = ∅ for all θw ∈ [arcsin( c1u1

), π2 ],
and Bc1(O1)∩Λ(θw) 6= ∅ for any θw ∈ (0, arcsin( c1u1

)). Now we consider the case
that Bc1−ε0(O1) ∩ Λ(θw) 6= ∅ for some small ε0 > 0. Then, when c1 − ε0 ≤ u1,
we have

Bc1−ε0(O1) ∩ Λ(θw) 6= ∅ for all θw ∈ (0, arcsin(
c1 − ε0

u1
)),

Bc1−ε0(O1) ∩ Λ(θw) = ∅ for all θw ∈ [arcsin(
c1 − ε0

u1
),
π

2
].

We also recall that u1 and c1 are determined by (ρ0, ρ1, γ).

Lemma 9.5.2. For any ε0 ∈ (0, c12 ), there exists C > 0 such that, if θw ∈
(θs

w,
π
2 ) satisfies Bc1−ε0∩Λ(θw) 6= ∅, and ϕ is a corresponding admissible solution

of Problem 2.6.1 with the wedge angle θw, then

dist(Γshock, Bc1(O1)) ≥ 1

C
.

Proof. In this proof, C denotes a universal constant that depends only on
(ρ0, ρ1, γ, ε0). Denote

d := dist(Γshock, Bc1(O1)). (9.5.4)

Then d > 0 by (8.1.2); see also Remark 8.1.6. We now show that d has a positive
lower bound d ≥ 1

C for any admissible solution ϕ of Problem 2.6.1. We divide
the proof into five steps.

1. We first note that Bc1−ε0 ∩ Λ(θw) 6= ∅ implies

Bc1(O1) ∩ Γwedge 6= ∅. (9.5.5)

Indeed, from (7.5.6), we obtain that the nearest point to O1 on {ξ2 = ξ1 tan θw}
lies within segment P3O2. This and Bc1−ε0 ∩ Λ(θw) 6= ∅ imply (9.5.5).
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For ε ∈ (0, ε0) and δ > −c1, denote

Dε,δ :=
(
Bc1+δ(O1) \Bc1−ε(O1)

)
∩ Ω.

Using (8.1.12) and (9.5.5), we find that, if ε ∈ (0, ε0), and d is from (9.5.4),

Dε,d 6= ∅, ∂Dε,d ∩ Γwedge 6= ∅, ∂Dε,d ∩ Γshock 6= ∅. (9.5.6)

Furthermore, if ε ∈ (0, ε0) and δ ∈ (−ε, d), then

Dε,δ 6= ∅, ∂Dε,δ ∩ Γwedge 6= ∅, ∂Dε,δ ∩ Γshock = ∅, (9.5.7)

Dε,δ =
(
Bc1+δ(O1) \Bc1−ε(O1)

)
∩ Λ, (9.5.8)

where we have used (8.1.2) and (9.5.4) to obtain (9.5.8). Thus, ϕ ∈ C3(Dε,d) ∩
C1(Dε,d) by (8.1.3). Note also that O1 /∈ Λ implies that O1 /∈ Dε,d. Then we
can write equation (2.2.8) for ϕ in Dε,d as in §6.3, with respect to state (1).
That is, for (û, v̂) = (u1, 0), ϕun = ϕ1, and cun = c1, we define function (6.3.1),
coordinates (6.3.3) and (6.3.5), and rewrite equation (2.2.8) in Dε,d as (6.3.6)–
(6.3.7). Also, in the (x, y)–coordinates with (û, v̂) = (u1, 0) and cun = c1, we
use (9.5.8) to obtain

Dε,δ = Λ ∩ {−δ < x < ε} for ε ∈ (0, ε0) and δ ∈ (−ε, d]. (9.5.9)

Note that, by Corollary 8.1.10, function ψ defined by (6.3.1) with ϕun = ϕ1

satisfies that ψ < 0 in Dε,d. Since it is more convenient to work with a positive
function, define

w = −ψ = ϕ1 − ϕ.
Then equation (6.3.6) in terms of w takes the form:

N (w) = 0, (9.5.10)

where

N (w) :=
(
2x+ (γ + 1)wx +O−1

)
wxx +O−2 wxy

+ (
1

c1
+O−3 )wyy − (1 +O−4 )wx +O−5 wy

(9.5.11)

with O−k (Dw,w, x) := Ok(−Dw,−w, x) for k = 1, . . . , 5, where Ok are defined
by (6.3.7). Note that the plus sign (+) of term (γ + 1)wx in the coefficient of
wxx makes equation (9.5.10) very different from equation (6.3.6), as we will see
below. Furthermore, separating the zero-order terms, we have

O−1 (Dw,w, x) =
γ − 1

c1
w + Ô−1 (Dw, x),

O−4 (Dw,w, x) =
γ − 1

c1(c1 − x)
w + Ô−4 (Dw, x).

(9.5.12)
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Denote

N1(V ) :=
(
2x+ (γ + 1)Vx + Ô−1 +

γ − 1

c1
w
)
Vxx +O−2 Vxy

+ (
1

c1
+O−3 )Vyy − (1 +O−4 )Vx +O−5 Vy,

(9.5.13)

where Ô−1 = Ô−1 (DV, x) and O−k = O−k (DV, V, x) for k = 2, . . . , 5. The only
difference between N1(V ) and N (V ) is term γ−1

c1
w in the coefficient of Vxx in

N1(V ). By (9.5.12), the corresponding term in N (V ) is γ−1
c1
V .

2. Now we show the following fact:

Claim 9.5.3. Let ε ∈ (0, ε0) and δ ∈ [0, d], and let U ∈ C2(Dε,δ) be a subsolu-
tion of N1(U) ≥ 0 in Dε,δ. Assume that U is independent of y, i.e., U = U(x),
and that Ux > 0 and Uxx > 0 in Dε,δ. Then U − w cannot attain a positive
maximum in the interior of Dε,δ.

We first note that N (w) = N1(w) so that

N1(w) = 0 in Dε,δ.

For the sake of brevity, we write (9.5.13) as

N1(V ) =
2∑

i,j=1

aijDijV +
2∑

i=1

aiDiV,

where a12 = a21 and (D1, D2) = (∂x, ∂y). Note explicitly that

a11 = a11(DV, x, y) = 2x+ (γ + 1)Vx + Ô−1 (DV, x) +
γ − 1

c1
w(x, y),

a1 = a1(DV, V, x) = −1−O−1 (DV, V, x) = −1− γ − 1

c1(c1 − x)
V − Ô−4 (DV, x).

(9.5.14)

We now write aij(V ), representing aij(DV, V, x, y), and do the same for ai. Since
Dε,δ ⊂ Ω, equation (9.5.10) is elliptic on w in Dε,δ, which implies

[aij(w)]2i,j=1 is positive definite in Dε,δ.

Assume that U − w attains a positive maximum at Q ∈ Dε,δ. Then

Dw = DU, D2w ≥ D2U at Q.

Using the explicit form of a11 and a1 in (9.5.13), we have

a11(w) = a11(U), a1(w) = a1(U) +
γ − 1

c1(c1 − x)
(U − w) at Q,
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where we have used (9.5.14) to obtain the second equality. Also, since U = U(x),

Uy = Uxy = Uyy = 0.

Then we obtain that, at Q,

0 ≤ N1(U)−N1(w)

=
2∑

i,j=1

aij(w)Dij(U − w) +
2∑

i=1

ai(w)Di(U − w)− γ − 1

c1(c1 − x)
(U − w)Ux

=
2∑

i,j=1

aij(w)Dij(U − w)− γ − 1

c1(c1 − x)
(U − w)Ux

=: I1 − I2 < 0,

where the last inequality is proved as follows: I1 ≤ 0 because [aij(w)] > 0
(positive definite) and D2(w−U)(Q) ≥ 0, and I2 > 0 because (U −w)(Q) > 0,
Ux > 0, and x < ε < ε0 < c1 in Dε,δ. Therefore, we arrive at a contradiction,
which implies Claim 9.5.3.

3. Now we show a lower bound of w := ϕ1 − ϕ.
Claim 9.5.4. Fix α ∈ ( 1

2 , 1). There exist ε ∈ (0, ε0) and A > 0 depending only
on (ρ0, ρ1, γ, α) such that

(ϕ1 − ϕ)(x, y) ≥ Ax1+α in Dε,0.
First, we note that 0 < x < ε in Dε,0 by (9.5.9). Then the function:

U(x, y) = U(x) = Ax1+α

satisfies U ∈ C∞(Dε,0) ∩ C1,α(Dε,0). We divide the proof into four sub-steps.
3.1. We first show that there exists ε ∈ (0, ε0) depending only on (ρ0, ρ1, γ, α)

such that, for any A ∈ (0, 1), U is a subsolution of (9.5.13) in Dε,0.
Note that

Ux = (1 + α)Axα > 0, Uxx = α(1 + α)Axα−1 > 0 in Dε,0.
Also, w := ϕ1 − ϕ > 0 in Dε,0. Furthermore, Uy = Uxy = Uyy = 0. Then

N1(U) =
(

2x+ (γ + 1)Ux + Ô−1 (DU, x) +
γ − 1

c1
w
)
Uxx

−
(
1 +O−4 (DU,U, x)

)
Ux

≥
(
2x+ (γ + 1)Ux + Ô−1 (DU, x)

)
Uxx −

(
1 +O−4 (DU,U, x)

)
Ux

= (1 + α)Axα−1
(
x(2α− 1 +

Ô−1
x
−O−4 ) + (γ + 1)(1 + α)Axα

)

≥
(
1 + α)Axα

(
2α− 1 +

Ô−1
x
−O−4

)
.
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Using (6.3.7) and (9.5.12), and choosing ε < 1, we obtain that, in Dε,0,

|Ô−1 (DU, x)| ≤ C
(
|DU |2 + x2

)
, |O−4 (DU,U, x)| ≤ C

(
|DU |+ |U |+ x

)
.

Here and hereafter, C denotes a universal constant that depends on (ρ0, ρ1, γ, α)
only. Thus, from the explicit expressions of U and DU , and using α > 1

2 , we
conclude that, for any A ∈ (0, 1) and ε > 0 sufficiently small, depending only
on (ρ0, ρ1, γ, α), when x ∈ Dε,0,

|Ô−1 (DU, x)|
x

≤ C
(
x+A2x2α−1

)
≤ C

(
ε+ ε2α−1

)
≤ 2α− 1

4
,

|O−4 (DU,U, x)| ≤ CAxα ≤ 2α− 1

4
.

Thus, N1(U) > 0, i.e., U = Ax1+α is a subsolution of (9.5.13) in Dε,0.
Therefore, by Claim 9.5.3, Ax1+α − w cannot attain a positive maximum in
Dε,0.

3.2. Since Dε,0 ⊂ Bc1(u1, 0), we use (9.5.9) to obtain

∂Dε,0 = ∂Dε,0 ∩ Ω ∪ ∂Dε,0 ∩ Γwedge ∪ (∂Dε,0 ∩ Γsym)0, (9.5.15)

where (Γ)0 denotes the relative interior of Γ which is a subset of a line or smooth
curve. In order to obtain (9.5.15), we have used (7.5.7) in Lemma 7.5.10 to
obtain that ∂Dε,0 ∩ Γsonic = ∅.

Part (∂Dε,0 ∩ Γsym)0 of decomposition (9.5.15) may be empty: Specifically,
it is empty if u1 ≥ c1. On the other hand, the first two parts in decomposition
(9.5.15) are non-empty by (9.5.7).

We first consider ∂Dε,0 ∩ Γwedge in the ξ–coordinates. Since ∂νϕ1 = −u1 sin θw

and ∂νϕ = 0 on Γwedge for the interior unit normal ν on Γwedge to Ω, then

∂νw = −u1 sin θw on (∂Dε,0 ∩ Γwedge)0.

Writing U(x) = Ax1+α in the ξ–coordinates, we have

U(ξ) = A
(
c1 −

√
(ξ1 − u1)2 + ξ2

2
)1+α

.

Since θd
w > 0, there exists C such that dist((u1, 0),Λ(θw)) > 1

C for any θw ∈
[θd

w,
π
2 ]. Then there exists C1 depending only on the data and α such that

‖U‖
C1(Bc1 (O1)∩Λ(θw))

≤ C1A for all θw ∈ [θ∗w,
π

2
].

Thus, choosing A such that it satisfies 0 < A <
u1 sin θd

w

2C1
, and using θw ∈ [θd

w,
π
2 ],

we find that, on ∂Dε,0 ∩ Γwedge,

∂ν(U−w) ≥ −‖U‖
C1(Bc1 (O1))

+u1 sin θw ≥ u1

(
−1

2
sin θd

w+sin θw

)
> 0. (9.5.16)
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The strict inequality implies that the maximum of U −w cannot be attained on
∂Dε,0 ∩ Γwedge.

Next consider (∂Dε,0 ∩ Γsym)0 with the assumption that it is non-empty,
since this step can be skipped if it is empty. Since ∂νϕ = ∂νϕ1 = 0 on Γsym ⊂
{ξ2 = 0}, we can perform the reflection about the ξ1–axis as in Remark 8.1.3 to
obtain C2–functions ϕ and ϕ1 in the extended domain Ωext. SinceO1 = (u1, 0) ∈
{ξ2 = 0}, coordinates (6.3.3) and (6.3.5) with center (û, v̂) = (u1, 0) satisfy that,
if P+ = (ξ1, ξ2) is (x, y) in coordinates (6.3.5), P− := (ξ1,−ξ2) is (x, 2π − y) in
coordinates (6.3.5). Moreover, Ωext∩{ξ2 = 0} ⊂ {ξ1 < 0} ⊂ {y = π}. Thus, the
extended function w = ϕ1−ϕ is in C2(Ωext) in the (x, y)–coordinates. Moreover,
w(x, y) = w(x, 2π − y) in Ωext.

Now, from the explicit structure of equation (9.5.10) given by (6.3.6)–(6.3.7),
it follows that the extended function w satisfies (9.5.10) in Ωext expressed in the
(x, y)–coordinates. Furthermore, similar to (9.5.9), the extended domain Dε,δ is
Λext∩{−δ < x < ε}. Then Claim 9.5.3 and the assertion in Step 3.1 hold in the
extended domain Dε,δ. Now, the points of (∂Dε,0 ∩ Γsym)0 are interior points
of the extended domain Dε,δ. Therefore, the positive maximum of Ax1+α − w
cannot be attained on (∂Dε,0 ∩ Γsym)0.

Finally, we consider ∂Dε,0 ∩ Ω. From (9.5.9), we have

∂Dε,0 ∩ Ω = Ω ∩ {x = 0} ∪ Ω ∩ {x = ε}.

Since w = ϕ1 − ϕ ≥ 0 on Ω by (8.1.5), and U(x) = Ax1+α = 0 on {x = 0}, we
have

w ≥ U(x) on Ω ∩ {x = 0}.
Furthermore, Ω ∩ {x = ε} = Ω ∩ ∂Bc1−ε(u1, 0) ⊂ Bc1(u1, 0). Also, reducing ε
if necessary, depending only on (ρ0, ρ1, γ), we have 0 /∈ ∂Bc1−ε(u1, 0), where
we note that point 0 may be either inside Bc1−ε(u1, 0) or outside Bc1−ε(u1, 0),
depending on (ρ0, ρ1, γ). Thus, 0 /∈ {x = ε}. Then it follows from Lemma 9.5.1
that

w ≥ 1

C
on Ω ∩ {x = ε},

where C depends only on (ρ0, ρ1, γ, ε). Moreover, since the choice of ε above
depends only on (ρ0, ρ1, γ, α), then constant C depends only on (ρ0, ρ1, γ, α).
Since U = Aε1+α on {x = ε}, then reducing A, depending only on (C, ε, α), i.e.,
on (ρ0, ρ1, γ, α), we find that U ≤ 1

C on {x = ε}. That is,

w ≥ U(x) on Ω ∩ {x = ε}.

3.3. Therefore, we have discussed all the parts of decomposition (9.5.15).
It follows that w ≥ U(x) on ∂Dε,0 ∩ Ω, and the maximum of U − w cannot be
attained on (∂Dε,0 ∩ Γwedge)0 ∪ (∂Dε,0 ∩ Γsym)0. Also, by Step 3.1, the positive
maximum of U − w cannot be attained in Dε,0. Furthermore, ∂Dε,0 ∩ Ω 6= ∅.
Thus, w ≥ U = Ax1+α on Dε,0. Claim 9.5.4 is proved.

4. Now we further improve the lower bound of w := ϕ1 − ϕ.



362 CHAPTER 9

Claim 9.5.5. Let ε > 0 be the constant from Claim 9.5.4 for α = 3
4 (we choose

α = 3
4 from now on). Then there exist d0 ∈ (0, 1), σ ∈ (0, ε), and k ∈ (0, 1)

depending only on (ρ0, ρ1, γ, ε0) such that, if d defined by (9.5.4) satisfies d < d0,
the corresponding function w = ϕ1 − ϕ satisfies

w(x, y) ≥ (x+ d)2 + k(x+ d) in Dσ,d.

We prove Claim 9.5.5 by following a procedure similar to that of the proof
of Claim 9.5.4 and using the result of Claim 9.5.4. Since O1 /∈ Λ, Dσ,d ⊂ Λ, and
the (x, y)–coordinates are defined by (6.3.3) and (6.3.5) with (û, v̂) = O1, then
the function:

Ũ(x, y) = Ũ(x) = (x+ d)2 + k(x+ d)

satisfies Ũ ∈ C∞(Dσ,d). We divide the proof into two sub-steps.
4.1. We show first that, for sufficiently small d0, k > 0 and σ ∈ (0, ε)

depending only on (ρ0, ρ1, γ, ε0), Ũ is a subsolution of (9.5.13) in Dσ,d if d ≤ d0.
Notice that, in Dσ,d,

Ũx = 2(x+ d) + k > 0, Ũxx = 2 > 0.

Also, w > 0 in Dσ,d. Furthermore, Ũy = Ũxy = Ũyy = 0. Then

N1(Ũ) =
(

2x+ (γ + 1)Ũx + Ô−1 (DŨ, x) +
γ − 1

c1
w
)
Ũxx

−
(
1 +O−4 (DŨ, Ũ , x)

)
Ũx

≥
(

2x+ (γ + 1)Ũx + Ô−1 (DŨ, x)
)
Ũxx −

(
1 +O−4 (DŨ, Ũ , x)

)
Ũx

= 2
(
1 + 2(γ + 1)

)
(x+ d) + k

(
2(γ + 1)− 1

)
− 4d+ 2Ô−1

− (2(x+ d) + k
)
O−4 .

Using (6.3.7) and (9.5.12) and noting that k ∈ (0, 1) and |x| < 1 in Dσ,d, we
obtain that, in Dσ,d,

|Ô−1 (DŨ, x)| ≤ C(|DŨ |2 + x2) ≤ C
(
(x+ d)2 + k2

)
,

|(2(x+ d) + k)O−4 (DŨ, Ũ , x)| ≤ C(2(x+ d) + k)(|DŨ |+ |Ũ |+ x)

≤ C
(
(x+ d)2 + k2

)
,

where C denotes a universal constant that depends only on the data and ε0.
Then, using also γ ≥ 1, we have

N1(Ũ) ≥ 10(x+ d) + 3k − 4d− C
(
(x+ d)2 + k2

)
in Dσ,d.

We choose
k := 4d0, σ := d0. (9.5.17)
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Since −d < x < σ in Dσ,d and 0 ≤ x + d < 2d0, we have

N1(Ũ) ≥ (10− Cd0)(x+ d) + 4(2− Cd0)d0 in Dσ,d.

Choosing d0 small, depending on C above, i.e., on (ρ0, ρ1, γ), we conclude that
N1(Ũ) > 0, which implies that Ũ is a subsolution of (9.5.13) in Dσ,d. Therefore,
by Claim 9.5.3, Ũ − w cannot attain a positive maximum in Dσ,d.

4.2. It remains to estimate Ũ − w on ∂Dσ,d. Similar to (9.5.15), we have

∂Dσ,d = ∂Dσ,d ∩ Ω ∪ ∂Dσ,d ∩ Γwedge ∪ (∂Dσ,d ∩ Γsym)0, (9.5.18)

where we have used (7.5.7) in Lemma 7.5.10 and reduced σ if necessary depend-
ing only on the data to obtain Bc1+σ(O1)∩Γsonic = ∅, so that ∂Dσ,d∩Γsonic = ∅.

Now all the parts of this decomposition, except ∂Dσ,d ∩ Ω, are considered
similarly to the corresponding parts of (9.5.15) in Step 3.2 of the proof of Claim
9.5.4. We briefly comment on each part.

For (∂Dσ,d ∩ Γwedge)0, write Ũ in the ξ–coordinates as follows:

Ũ(ξ) =
(
c1 −

√
(ξ1 − u1)2 + ξ2

2

)2

+ k
(
c1 −

√
(ξ1 − u1)2 + ξ2

2

)
,

and use that dist((u1, 0),Λ(θw)) > 1
C for any θw ∈ [θd

w,
π
2 ]. Then we have

‖Ũ‖
C1(Dσ,d∩Λ(θw))

≤ C1

(
(σ + d)2 + σ + d+ k

)
for all θw ∈ [θd

w,
π

2
].

Thus, recalling (9.5.17) with d0 ∈ (0, 1), we have

‖Ũ‖
C1(Dσ,d∩Λ(θw))

≤ Cd0.

Choosing d0 small, we obtain that ∂ν(Ũ − w) > 0 on (∂Dσ,d ∩ Γwedge)0, by an
argument similar to (9.5.16). This implies that the maximum of Ũ − w cannot
be attained on (∂Dσ,d ∩ Γwedge)0. Points (∂Dσ,d ∩ Γsym)0 can be considered as
the interior points by even reflection with respect to the ξ1–axis expressed in the
(x, y)–coordinates. Thus, the positive maximum of Ũ − w cannot be attained
on (∂Dσ,d ∩ Γsym)0 by Step 4.1.

Then it remains to consider ∂Dσ,d ∩ Ω. From (9.5.9), we have

∂Dσ,d ∩ Ω = Λ ∩ {x = −d} ∪ Λ ∩ {x = σ}.

Since w = ϕ1 − ϕ ≥ 0 on Ω by (8.1.5), and Ũ(x) = 0 on {x = −d}, we have

w ≥ Ũ(x) on Ω ∩ {x = −d} = Λ ∩ {x = −d}.

Next, using Claim 9.5.4 (with α = 3
4 ) and (9.5.17), in which we choose d0

small, depending only on the data and ε0, we conclude that, on Ω ∩ {x = σ} =
Λ ∩ {x = σ},

w ≥ Aσ1+ 3
4 ≥ 5σ2 = σ2 + kσ = Ũ .



364 CHAPTER 9

Thus, we have considered all the parts of decomposition (9.5.18). Now repeating
the argument in Step 3.3 of the proof of Claim 9.5.4, we complete the proof of
Claim 9.5.5.

5. Now we conclude the proof of Lemma 9.5.2. By (9.5.4), Γshock ⊂ R2 \
Bc1+d(O1), and there exists Q ∈ Γshock such that Q ∈ ∂Bc1+d(O1). Also,
from (6.1.3) and the continuous dependence of the parameters of state (2) on
θw ∈ [θd

w,
π
2 ], it follows that there exists a > 0 depending only on the data such

that dist(S1, Bc1(O1)) ≥ a for any θw ∈ [θd
w,

π
2 ]. Thus, dist(P1, Bc1(O1)) ≥ a,

i.e., either d ≥ a (in which case the lemma is proved) or Q 6= P1. Point P2

can be considered as a relative interior point of Γshock by reflection across the
ξ1–axis, i.e., Q ∈ Γext

shock, by using the notations in Remark 8.1.3. Moreover,
since O1 ∈ {ξ2 = 0}, Γext

shock ⊂ R2 \Bc1+d(O1). Then

νΓshock
(Q) = ν∂Bc1+d(O1)(Q) =

QO1

|QO1|
.

Using the polar coordinates (6.3.3) with (û, v̂) = (u1, 0) = O1, we have

∂νw(Q) = − 1

c1 + d
∂rw(Q) =

1

c1 + d
∂xw(Q). (9.5.19)

Let k and d0 be the constants in Claim 9.5.5, and let d < d0 (otherwise,
the lemma is proved). Since Q ∈ Bc1+d(O1) ∩ Γext

shock, then Q ∈ {x = −d} and
w(Q) = ϕ1(Q) − ϕ(Q) = 0. Thus, w(Q) = Ũ(Q), where Ũ(x, y) = (x + d)2 +
k(x + d) in the (x, y)–coordinates. Using Claim 9.5.5 and the fact that Q is in
the relative interior of Γext

shock, i.e., Br(Q) ∩ {x > −d} ⊂ Dσ,d for some small
r > 0, we see that w ≥ Ũ in Br(Q) ∩ {x > −d}, so that

∂xw(Q) ≥ ∂xŨ(Q) = 2d+ k ≥ k,

which implies

∂ν(ϕ1 − ϕ)(Q) ≥ k

c1 + d0
,

on account of (9.5.19) and by recalling that w = ϕ1 − ϕ. Lemma 6.1.3 applied
with ϕ− = ϕ1 and ϕ+ = ϕ implies that

dist(Q,Bc1(O1)) ≥ d̂ := Ĥ−1(
k

c1 + d0
)− c1, (9.5.20)

where Ĥ−1(·) : [0,∞) 7→ [c−,∞) is the inverse function of Ĥ(·). Then, by
(6.1.17), d̂ > 0, since k > 0. Note that Ĥ(·) in Lemma 6.1.3, applied with
ϕ− = ϕ1 and ϕ+ = ϕ, depends only on (ρ0, ρ1, γ). By the dependence of (k, d0)

in Claim 9.5.5, it follows that d̂ depends only on (ρ0, ρ1, γ, ε0). Then (9.5.20)
leads to the expected result.

Now we show a uniform positive lower bound for the distance between Γshock

and the sonic circle of state (1).
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Proposition 9.5.6. There exists C > 0 such that

dist(Γshock, Bc1(O1)) ≥ 1

C

for any admissible solution of Problem 2.6.1 with θw ∈ (θs
w,

π
2 ).

Proof. Recall that u1 and c1 are determined by (ρ0, ρ1, γ). We consider three
separate cases: u1 < c1, u1 = c1, and u1 > c1.

Case 1: u1 < c1. Let ε0 = 1
2 (c1 − u1). Since O1 = (u1, 0), it follows that

Bc1−ε0(O1)∩Λ(θw) 6= ∅ for any θw ∈ (0, π2 ). Thus, the result in this case follows
directly from Lemma 9.5.2 applied with ε0 = 1

2 (c1 − u1).
Case 2: u1 = c1. Then Bc1(O1) ⊂ {ξ1 > 0} and 0 ∈ ∂Bc1(O1). From Corol-

lary 9.2.7 applied with ε = |ξ̄1|
2 , there exists σ > 0 depending only on (ρ0, ρ1, γ)

such that Γshock ⊂ {ξ1 < − |ξ̄1|2 } for any admissible solution for the wedge angle
θw ∈ (π2 − σ, π2 ). Thus, dist(Γshock, Bc1(O1)) ≥ |ξ̄1|2 for any admissible solution
with θw ∈ (π2 − σ, π2 ).

It remains to consider an admissible solution with the wedge angle θw ∈
(θs

w,
π
2 − σ]. Since u1 = c1, there exists ε0, depending only on the data, such

that Bc1−ε0(O1) ∩ Λ(θw) 6= ∅ for any θw ∈ (0, π2 − σ]. Thus, applying Lemma
9.5.2 with ε0 just determined, we conclude the proof in this case.

Case 3: u1 > c1. To motivate the ongoing argument, we note that

Bc1−σ(O1) ∩ Λ(θw) 6= ∅ for all θw ∈ (0, arcsin(
c1 − σ
u1

)),

Bc1−σ(O1) ∩ Λ(θw) = ∅ for all θw ∈ [arcsin(
c1 − σ
u1

),
π

2
]

for any small σ > 0. Thus, if θw ≥ arcsin( c1u1
), then Bc1−σ(O1) ∩ Λ(θw) = ∅ for

any σ ≥ 0. That is, we cannot apply Lemma 9.5.2 in this case. Then, for any
wedge angle θw ≥ arcsin( c1−σu1

) for σ > 0 determined below, we obtain the lower
bound of dist(Γshock, Bc1(O1)) by the argument which follows:

Let r(θw)
2 := |O(θw)

2 P4
(θw)|. Then r(θw)

2 > 0 for each θw ∈ [θs
w,

π
2 ] by Lemma

7.4.8 and the definition of P4
(θw) in Definition 7.5.7. Then minθw∈[θs

w,
π
2 ] r

(θw)
2 > 0

from the continuous dependence of points O2 = (u2, v2) and P4 on θw ∈ [θs
w,

π
2 ],

where we have used Theorem 7.1.1(i) and Lemma 7.5.9. Thus,

r̂ :=
1

10
min{

√
u2

1 − c21, r0, min
θw∈[θs

w,
π
2 ]
r

(θw)
2 } > 0

for r0 in (9.4.30). From Proposition 9.4.9 applied with r = r̂, there exists
δ > 0 depending only on the data such that, for any admissible solution with
θw ∈ (θs

w,
π
2 ),

dist (Γshock, Γwedge \ (Br̂(P3) ∪Br̂(P4))) ≥ δ.
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From this, working in the (S, T )–coordinates with basis {νw, τw} introduced in
Lemma 8.2.11, and using (8.2.25), we find that, for any admissible solution with
the wedge angle θw ∈ (θs

w,
π
2 ),

Γshock ⊂
{
S ≥ F (θw)(T ) : TP2 < T < T

(θw)
P1

}
, (9.5.21)

where F (θw)(·) is defined by noting that TP3 = 0 and r̂ ≤ 1
10 |T

(θw)
P4

− TP3
| by

(9.4.30) as follows:

F (θw)(T ) =





−T tan θw, −∞ < T ≤ 0,

0, 0 < T ≤ r̂,
δ
r̂ (T − r̂), r̂ < T ≤ 2r̂,

δ, 2r̂ < T ≤ T (θw)
P4
− 2r̂,

δ
r̂ (T

(θw)
P4
− r̂ − T ), T

(θw)
P4
− 2r̂ < T ≤ T (θw)

P4
− r̂,

0, T ≤ T (θw)
P4
− r̂ < T <∞.

The expression above defines F (θw)(T ) for all (T, θw) ∈ R× [θs
w,

π
2 ]. Note that,

using Lemma 7.5.9(ii) and the definition of the (S, T )–coordinates, we find that
T

(θw)
P4

depends continuously on θw ∈ [θs
w,

π
2 ]. If θs

w > 1
2 arcsin( c1u1

), we extend

the function: θw 7→ T
(θw)
P4

to domain [ 1
2 arcsin( c1u1

), π2 ] by defining T (θw)
P4

:= T
(θs

w)
P4

on θw ∈ [ 1
2 arcsin( c1u1

), θs
w]. Then θw 7→ T

(θw)
P4

is continuous on [ 1
2 arcsin( c1u1

), π2 ].
Now F (θw)(T ) is defined on (T, θw) ∈ R× [ 1

2 arcsin( c1u1
), π2 ].

Also, for each θw, O1 = (−u1 sin θw, u1 cos θw) in the (S, T )–coordinates,
which implies

Bc1(O1) ⊂
{
S < G(θw)(T ), |T − u1 cos θw| ≤ c1

}
, (9.5.22)

where

G(θw)(T ) =




−u1 sin θw +

√
c21 − (T − u1 cos θw)2 if |T − u1 cos θw| ≤ c1,

−u1 sin θw otherwise.

Note that F (T, θw) := F (θw)(T ) and G(T, θw) := G(θw)(T ) are continuous func-
tions of (T, θw) on R × [ 1

2 arcsin( c1u1
), π2 ], where we have used the continuous

dependence of T (θw)
P4

on θw ∈ [ 1
2 arcsin( c1u1

), π2 ], as discussed above.
From the explicit expressions,

F (T, θw) ≥ 0 ≥ G(T, θw) on R× [arcsin(
c1
u1

),
π

2
], (9.5.23)

and also

G < 0 on
(
R× [arcsin(

c1
u1

),
π

2
]
)
\ {(

√
u2

1 − c21, arcsin(
c1
u1

))},

G(
√
u2

1 − c21, arcsin(
c1
u1

)) = 0.
(9.5.24)
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Then we have

F > G on
(
R× [arcsin(

c1
u1

),
π

2
]
)
\ {(

√
u2

1 − c21, arcsin(
c1
u1

))}.

Now we show that F > G at (T, θw) = (
√
u2

1 − c21, arcsin( c1u1
)). For θw ∈ [θs

w,
π
2 ),

denote by Q̂ = Q̂(θw) the nearest point on line {ξ2 = ξ1 tan θw} to center O1

of the sonic circle of state (1). From (7.5.1) and (7.5.6), we obtain that Q̂ lies
within segment P3O2. Using (7.5.1)–(7.5.2), we have

|Q̂P4| > |O2P4| = r2 ≥ 10r̂. (9.5.25)

Since Q̂ = (0, u1 cos θw) in the (S, T )–coordinates, we obtain from the previous
inequality that

u1 cos θw = TQ̂(θw) < T
(θw)
P4
− 10r̂. (9.5.26)

If θs
w ≤ arcsin( c1u1

), we use (9.5.26) with θw = arcsin( c1u1
) to obtain

√
u2

1 − c21 = u1 cos(arcsin(
c1
u1

)) < T
(arcsin(

c1
u1

))

P4
− 10r̂.

If θs
w > arcsin( c1u1

), then, recalling that we have extended θw 7→ T
(θw)
P4

to θw ∈
[arcsin( c1u1

), π2 ] so that T
(arcsin(

c1
u1

))

P4
= T

(θs
w)

P4
in the definition of F , we obtain

similar estimates by using (9.5.26) with θw = θs
w:

√
u2

1 − c21 = u1 cos(arcsin(
c1
u1

)) < u1 cos θs
w < T

(θs
w)

P4
− 10r̂ = T

(arcsin(
c1
u1

))

P4
− 10r̂.

Thus, in both cases,
√
u2

1 − c21 < T
(arcsin(

c1
u1

))

P4
− 10r̂.

Using this and
√
u2

1 − c21 > 2r̂ from the choice of r̂, we employ the explicit
definition of F and (9.5.24) to obtain

F (
√
u2

1 − c21, arcsin(
c1
u1

)) = δ > 0 = G(
√
u2

1 − c21, arcsin(
c1
u1

)).

Combining this with (9.5.23)–(9.5.24), we have

F > G on R× [arcsin(
c1
u1

),
π

2
]. (9.5.27)

Also, using (9.1.2), there exists T̂ > 1 such that, for every admissible solution
ϕ with θw ∈ (θs

w,
π
2 ),

T
(θw)
P1

, T
(θw)
P2

, u1 cos θw ± c1 ∈ (−T̂ , T̂ )
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in the corresponding (S, T )–coordinates. Then, recalling that F and G are
continuous on R× [ 1

2 arcsin( c1u1
), π2 ], we obtain from (9.5.27) that there exists a

constant σ > 0 such that

F (T, θw) ≥ G(T, θw) + σ for all (T, θw) ∈ [−2T̂ , 2T̂ ]× [arcsin(
c1 − σ
u1

),
π

2
],

and σ depends only on F , G, and (u1, c1), i.e., on (ρ0, ρ1, γ). This, combined
with (9.5.21)–(9.5.22), implies that, for any admissible solution with the wedge
angle θw,

dist(Γshock, Bc1(O1)) ≥ σ if θw ∈ [arcsin(
c1 − σ
u1

),
π

2
].

If θs
w ≥ arcsin( c1−σu1

), the proof for Case 3 is completed.
If θs

w < arcsin( c1−σu1
), we notice that

Bc1−σ(O1) ∩ Λ(θw) 6= ∅ for all θw ∈ (0, arcsin(
c1 − σ
u1

)).

Therefore, for θw ∈ [θs
w, arcsin( c1−σu1

)), we apply Lemma 9.5.2 with ε0 = σ to
complete the proof for Case 3.

Now we extend the result of Proposition 9.4.5 to Case u1 = c1.

Corollary 9.5.7. Let γ > 1 and ρ1 > ρ0 > 0 be such that u1 = c1. Let
θ∗w ∈ (θs

w,
π
2 ). Then there exists C > 0 such that

dist(Γshock,Γwedge) ≥ 1

C

for any admissible solution of Problem 2.6.1 with θw ∈ [θ∗w,
π
2 ).

Proof. In this proof, the universal constant C > 0 depends only on (ρ0, ρ1, γ).
By Lemma 9.4.7, it suffices to consider only admissible solutions with the

wedge angles θw ∈ [θ∗w,
π
2 − σ1), where σ1 > 0 depends only on (ρ0, ρ1, γ).

Since u1 = c1, choosing r = 2c1 sinσ1, we obtain

Γwedge(θw) ∩Br(0) ⊂ Bc1(O1) ≡ Bc1(c1, 0) for all θw ∈ (0,
π

2
− σ1).

Then, using (8.1.2) and Proposition 9.5.6, we have

dist(Γshock,Γwedge ∩Br(0)) ≥ dist(Γshock, Bc1(O1)) ≥ 1

C
.

On the other hand, from Proposition 9.4.8 applied with r, as defined above, we
conclude

dist(Γshock,Γwedge \Br(0)) ≥ 1

C
.

This completes the proof.
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9.6 UNIFORM ESTIMATES OF THE ELLIPTICITY
CONSTANT IN Ω \ Γsonic

Set the Mach number

M2 =
|Dϕ|2
c2

= M2
1 +M2

2 with M2
1 =

ϕ2
ν

c2
and M2

2 =
ϕ2
τ

c2
.

Notice that, for an admissible solution of Problem 2.6.1, M,M1,M2 ∈ C(Ω)∩
C2(Ω \ (Γsonic ∪ {P2, P3})), by (8.1.3). Also, by (8.1.4),

M2 < 1 in Ω \ Γsonic. (9.6.1)

In this section, we improve estimate (9.6.1).
We now prove two preliminary lemmas. We first show that, for the hyperbolic-

elliptic shock, if the elliptic part is strictly elliptic, the gradient jump across
Γshock can be estimated in terms of the ellipticity.

Lemma 9.6.1. Fix γ > 1 and ρ− > 0. Then, for any δ ∈ (0, 1) and R > 0,
there exists κ > 0 such that the following holds: Let Ω ⊂ R2, S, ϕ, and ϕ± be
as in Lemma 6.1.3 (note, in particular, that ϕ− is a uniform state, and ϕ+ is
not assumed to be uniform). Let P ∈ S be such that

(i) |PO−| ≤ R, where O− = v− is the center of sonic circle of state ϕ−;

(ii) Dϕ− ·ν > Dϕ+ ·ν > 0 at P , where ν is a unit normal to S oriented from
Ω− to Ω+;

(iii) M2
+ ≤ 1− δ at P, where M2

+ is the Mach number of ϕ+.

Then
Dϕ− · ν −Dϕ+ · ν ≥ κ at P. (9.6.2)

Proof. In the proof, constants C and C1 below are positive and depend only on
(ρ−, γ, R). We use functions ρ̃ and Φ, as defined in (6.1.12), and constants q∗
and qmax, as defined in the line after (6.1.14).

First, assumption (ii), combined with (6.1.14), implies that (6.1.15).
Note that constant B0 in definition (6.1.12) of ρ̃ is determined by the second

equality in (6.1.11). Thus, using that |Dϕ−(P )|2 = |PO−|2 ≤ R2, we have

ργ−1
− ≤ B0 ≤ ργ−1

− +R2.

Now, by an explicit calculation, we find that ρ̃′(s) ≤ − 1
C for any s ∈ (0, q∗).

Also, B
1

γ−1

0 = ρ̃(0) > ρ̃(s) > ρ̃(q∗) = q
2

γ−1
∗ > 0 for any s ∈ (0, q∗). Then

M2
+ ≤ 1− δ and (6.1.16) yield

ϕ+
ν (P ) ≤ q∗ −

δ

C1
.

Combining this with (6.1.15) implies (9.6.2) with κ = δ
C1

.
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Next we show that, for the hyperbolic-elliptic shock, if the upstream state is
strictly hyperbolic, and the shock direction is almost orthogonal to the flow, the
downstream state is strictly elliptic with a quantitative estimate of the ellipticity.

Lemma 9.6.2. For any γ > 1, ρ− > 0, and δ ∈ (0, 1
2 ), there exist α, ζ > 0

such that the following holds: Let Ω ⊂ R2, S, ϕ, and ϕ± be as in Lemma 6.1.3
(again, ϕ− is a uniform state, and ϕ+ is not assumed to be uniform). Let P ∈ S
be such that

(i) Dϕ− ·ν > Dϕ+ ·ν > 0 at P , where ν is a unit normal to S oriented from
Ω− to Ω+;

(ii) |Dϕ−(P )|2 ≥ (1 + δ)c2− at P ;

(iii) |ϕ+
τ |2 ≤ α|ϕ+

ν |2 at P .

Let M2
+ be the Mach number of ϕ+. Then

M2
+ ≤ 1− ζ at P. (9.6.3)

Proof. In the proof, for simplicity, we write ϕ and ρ for ϕ+ and ρ+. Also, we
write M2, M2

1 , and M2
2 for M2

+, (M+)2
1, and (M+)2

2, respectively.
By assumption (i),

ρ ≥ ρ− at P.

Since ρϕν = ρ−ϕ
−
ν along Γshock, we have

|Dϕ−|2 − |ϕ−ν |2 ≤ αϕ2
ν = α

(ρ−
ρ

)2|ϕ−ν |2,

that is,
|Dϕ−|2 ≤

(
1 + α

(ρ−
ρ

)2
)
|ϕ−ν |2.

Then we have

|ϕ−ν |2 ≥
1

1 + α
(ρ−
ρ

)2 |Dϕ−|2 ≥
1 + δ

1 + α
(ρ−
ρ

)2 ρ
γ−1
− . (9.6.4)

The Bernoulli law in (2.2.7) and the Rankine-Hugoniot conditions (6.1.8)–
(6.1.9) imply

1

2

(
1−

(ρ−
ρ

)2)|ϕ−ν |2 =
1

γ − 1
(ργ−1 − ργ−1

− ) = ργ−2
∗ (ρ− ρ−)

for some ρ∗ ∈ (ρ−, ρ). That is,

|ϕ−ν |2 =
2ρ2ργ−2

∗

ρ+ ρ−
. (9.6.5)
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Set t = ρ−
ρ ∈ (0, 1). Combining (9.6.4) with (9.6.5), we have

(ρ−
ρ∗

)γ−2(t2 + t) ≤ 2(1 + αt2)

1 + δ
. (9.6.6)

We now consider two separate cases: 1 < γ ≤ 2 and γ > 2.
When 1 < γ ≤ 2, (ρ−ρ∗ )γ−2 ≥ 1, since ρ− < ρ∗. Thus, (9.6.6) implies

(1− 2α

1 + δ
)t2 + t− 2

1 + δ
≤ 0.

Set s = t− 1 < 0. Then
s2 + bs+ c ≤ 0,

where b = 3(1+δ)−4α
1+δ−2α and c = 2(δ−α)

1+δ−2α . Thus, we have

s ≤ −2c√
b2 − 4c+ b

≤ −c
b
≤ −1

3
(δ − α)

when 0 < α < δ ≤ 1
2 , which implies

ρ−
ρ
≤ 1− 1

3
(δ − α). (9.6.7)

By (6.1.7) and (9.6.5),

ϕ2
ν =

(ρ−
ρ

)2

|ϕ−ν |2 =
2ρ2
−ρ

γ−2
∗

ρ+ ρ−
= 2
(ρ∗
ρ

)γ−2

ργ−1 t2

t+ 1
.

Also, since γ − 2 ≤ 0 and ρ− ≤ ρ∗, it follows that (ρ∗ρ )γ−2 ≤ (ρ−ρ )γ−2 = tγ−2.
Then

M2
1 ≤

2tγ+1

t+ 1
=: g(t),

which implies

M2 = M2
1 +M2

2 ≤ (1 + α)M2
1 ≤ (1 + α)g(t).

Since t ∈ (0, 1− 1
3 (δ − α)) with δ and α small, and g′(t) > 0 for t > 0 with

mint∈[ 1
2 ,1] g

′(t) = B(γ) > 0, we have

g(t) ≤ g(1)− 1

3
(δ − α) min

t∈[ 1
2 ,1]

g′(t) = 1− B

3
(δ − α).

Therefore, we obtain

M2 ≤ (1 + α)
(
1− B

3
(δ − α)

)
≤ 1− ζ, (9.6.8)
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if ζ is chosen as

0 < ζ ≤ B

3
(δ − α)(1 + α)− α,

where the right-hand side is positive if α is chosen as

0 < α ≤ δ

4
min{B

3
, 1}.

Thus, with the choice of parameters (α, ζ) specified above, (9.6.3) is proved
when 1 < γ ≤ 2.

When γ > 2,

(ρ−
ρ∗

)γ−2

≥
(ρ−
ρ

)γ−2

for ρ− < ρ∗ ≤ ρ,

which, by (9.6.6) and t ∈ (0, 1), implies the inequality:

tγ−2(t2 + t) ≤ 2(1 + αt2)

1 + δ
≤ 2(1 + α)

1 + δ
. (9.6.9)

Denote

h(t) = tγ−2(t2 + t).

Then

h(1) = 2, h′(t) = γtγ−1 + (γ − 1)tγ−2 > 0 on (0, 1],

max
t∈[0,1]

h′(t) = h′(1) = 2γ − 1 > 1.

Now (9.6.9) is that h(t) ≤ 2(1+α)
1+δ < 2 if α < δ. Then 1 − K(δ − α) > 0 if

0 < α < δ ≤ 1
2 and K ∈ (0, 1). Thus, if t > 1−K(δ − α),

h(t) ≥ h(1)−K(δ − α) max
t∈[0,1]

h′(t) = 2−K(2γ − 1)(δ − α),

which contradicts (9.6.9) if K < 2
1+δ . Therefore, choosing K = 1

1+δ , we have

t ≤ 1−K(δ − α) ≤ 1− 1

2
(δ − α). (9.6.10)

By (6.1.7) and (9.6.5),

M2
1 =

(ρ∗
ρ

)γ−2 2t2

t+ 1
≤ 2t2

t+ 1
,
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where we have used γ > 2 and ρ∗ < ρ in the last inequality. Thus, assuming
that 0 < α ≤ δ

100 , we employ (9.6.10) and
(

2t2

t+1

)′
> 0 for t > 0 to obtain

M2 ≤ (1 + α)M2
1 ≤ (1 + α)

2t2

t+ 1

≤ 2(1 + α)(1− 1
2 (δ − α))2

2− 1
2 (δ − α)

≤ (1 + α)(1− (δ − α) + 1
2δ

2)

1− 1
4 (δ − α)

≤ 1− (δ − α) + 1
2δ

2(1 + α) + α

1− 1
4 (δ − α)

≤ 1− δ

2
.

Choose 0 < ζ ≤ δ
2 . Then

M2 ≤ 1− ζ.
Thus, with the choice of parameters (α, ζ) specified above, (9.6.3) is proved
when γ > 2.

Now we can prove the main technical result in this section.

Proposition 9.6.3. There exists µ > 0 depending only on (ρ0, ρ1, γ) such that,
if ϕ is an admissible solution of Problem 2.6.1 with θw ∈ (θs

w,
π
2 ), and g ∈

C1(Ω) with g(P1) = 0 and |Dg| ≤ 1 in Ω, then the maximum of M2 + µg over
Ω cannot be attained on Γshock ∪ {P2}.
Proof. In this proof, constants C, µ, α, ζ, and δ depend only on (ρ0, ρ1, γ). The
proof consists of three steps.

1. By Proposition 9.5.6,

dist(Γshock, Bc1(O1)) ≥ 1

C

for any admissible solution ofProblem 2.6.1 with θw ∈ (θs
w,

π
2 ). SinceDϕ1(ξ) =

(u1, 0)− ξ, then there exists δ > 0 such that, for all such solutions,

|Dϕ1|2 ≥ (1 + δ)c21 on Γshock. (9.6.11)

Let ϕ be an admissible solution of Problem 2.6.1 with θw ∈ (θs
w,

π
2 ). Note

that, from Lemma 9.1.4,

ρ ≥ aρ1 > 0 in Ω.

Let g ∈ C1(Ω) with g(P1) = 0 and |Dg| ≤ 1 in Ω. Denote

d(ξ) = µg(ξ)
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for µ > 0 to be chosen. Since diam(Ω) ≤ C by Proposition 9.1.2,

d(ξ) ≤ µ
(
g(P1) + ‖Dg‖L∞(Ω)diam(Ω)

)
≤ Cµ for all ξ ∈ Ω. (9.6.12)

Assume that the maximum of M2 + d over Ω is attained at Pmax ∈ Γshock ∪
{P2}. Note that M2 = 1 on Γsonic, since ϕ is C1 across Γsonic by (8.1.3). Thus,
we have

(M2 + d)(Pmax) ≥ (M2 + d)(P1) = 1.

Then, using (9.6.12),

M2(Pmax) ≥ 1− d(Pmax) ≥ 1− Cµ. (9.6.13)

Let α, ζ > 0 be the constants in Lemma 9.6.2 for δ defined by (9.6.11). Without
loss of generality, we may assume that α, ζ < 1

2 . From (9.6.13), choosing µ
sufficiently small, we have

M2(Pmax) ≥ 1− ζ

2
. (9.6.14)

This implies
M2

2 ≥ αM2
1 at Pmax (9.6.15)

by (8.1.16), (9.6.11), and Lemma 9.6.2. Equivalently,

ϕ2
τ ≥ αϕ2

ν at Pmax.

In particular, ϕτ 6= 0 by (8.1.16). This implies

Pmax 6= P2,

since τ sh(P2) = νsym(P2). Therefore, (Dϕ · τ sh)(P2) = (Dϕ · νsym)(P2) = 0 by
(2.2.20), where we have used that ϕ ∈ C1(Ω).

It remains to consider the case that Pmax ∈ Γshock. Since the maximum of
M2 + d over Ω is achieved at Pmax, it follows that, at Pmax,

(M2 + d)τ = 0, i.e., (M2)τ = −dτ , (9.6.16)

∂ν(M2 + d) ≤ 0. (9.6.17)

Now we compute the derivatives of the Mach number along Γshock and then
apply these calculations at (9.6.16)–(9.6.17) to arrive at a contradiction.

2. Derivatives of the Mach number along Γshock. Since

(|Dϕ|2)ξi = 2Dϕ ·D2ϕ ei = 2D2ϕ[ei, Dϕ],

we have

(|Dϕ|2)τ = 2D2ϕ[τ , Dϕ], (|Dϕ|2)ν = 2D2ϕ[ν, Dϕ].
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From (5.1.6),

(c2)τ = −(γ − 1)
(
D2ϕ[τ , Dϕ] + ϕτ

)
, (c2)ν = −(γ − 1)

(
D2ϕ[ν, Dϕ] + ϕν

)
.

Thus, we have

(M2)τ =
2c2D2ϕ[τ , Dϕ] + (γ − 1)|Dϕ|2

(
D2ϕ[τ , Dϕ] + ϕτ

)

c4
,

that is,

(M2)τ =

(
2 + (γ − 1)M2

)
D2ϕ[τ , Dϕ] + (γ − 1)M2ϕτ

c2
. (9.6.18)

Similarly, we have

(M2)ν =

(
2 + (γ − 1)M2

)
D2ϕ[ν, Dϕ] + (γ − 1)M2ϕν

c2
. (9.6.19)

3. The maximum point Pmax. From now on, all the functions are estimated
at Pmax. Then, from (9.6.16) and (9.6.18), we have

D2ϕ[τ , Dϕ] = − (γ − 1)M2ϕτ + c2dτ
2 + (γ − 1)M2

=: B1. (9.6.20)

Consider equation (5.1.21). Then the right-hand side of (5.1.21) is

ρ− ρ1

ρ1
ϕτ
(
ρ1 + ρM2

1

)
− ρ
(

1 +
ρ− ρ1

ρ1
M2

1

) (γ − 1)M2ϕτ + c2dτ
2 + (γ − 1)M2

= ϕτ

(ρ− ρ1

ρ1
(ρ1 + ρM2

1 )− (γ − 1)ρM2

2 + (γ − 1)M2

(
1 +

ρ− ρ1

ρ1
M2

1

))

−
c2ρ(1 + ρ−ρ1

ρ1
M2

1 )dτ

2 + (γ − 1)M2

= ϕτ

(
− (γ − 1)ρM2

2 + (γ − 1)M2
+
ρ− ρ1

ρ1

2ρM2
1

2 + (γ − 1)M2
+ ρ− ρ1

)

−
c2ρ
(
1 + ρ−ρ1

ρ1
M2

1

)
dτ

2 + (γ − 1)M2
.

Thus, (5.1.21) yields

D2ϕ[τ ,g] =

(
2(ρ− ρ1)(1 + ρ

ρ1
M2

1 )− (γ − 1)ρ1M
2
)
ϕτ − c2ρ

(
1 + ρ−ρ1

ρ1
M2

1

)
dτ

2 + (γ − 1)M2

=: B2. (9.6.21)

Note that, under the orthogonal transformation:

O : (e1, e2) 7→ (ν, τ ),
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the left-hand sides of equations (9.6.20)–(9.6.21) are invariant. Then (9.6.20)
implies

ϕντϕν + ϕττϕτ = B1, (9.6.22)

and (9.6.21) implies
ϕντ g1 + ϕττ g2 = B2, (9.6.23)

where

g1 := g · ν = ρ|ν̃|+ ρ1Dϕ1 · ν =
ρ

ρ1
(ρ− ρ1)ϕν + ρϕν =

ρ2

ρ1
ϕν ,

g2 = ρ1Dϕ1 · τ = ρ1ϕτ .

Then the Jacobian of system (9.6.22)–(9.6.23) is

J := ϕνg2 − ϕτ g1 =
ρ2

1 − ρ2

ρ1
ϕτϕν = (ρ1 − ρ)

(
1 +

ρ

ρ1

)
ϕνϕτ .

Recall that ϕν , ϕτ 6= 0, by (8.1.16) and (9.6.15). Also, ρ > ρ1 on Γshock, by
Lemma 9.1.4. Thus, J 6= 0. Then

ϕντ =
g2B1 − ϕτB2

J
=
ρ1(ρ1B1 −B2)

(ρ2
1 − ρ2)ϕν

,

ϕττ =
−g1B1 + ϕνB2

J
=

ρ1B2 − ρ2B1

(ρ1 − ρ)(ρ1 + ρ)ϕτ
.

Since

ρ1B1 −B2 =−
2(ρ− ρ1)(ρ1 + ρM2

1 )ϕτ + ρ1c
2dτ
(
ρ1 − ρ(1 + ρ−ρ1

ρ1
M2

1 )
)

ρ1(2 + (γ − 1)M2)

=− (ρ− ρ1)(ρ1 + ρM2
1 )

ρ1(2 + (γ − 1)M2)
(2ϕτ − c2dτ ),

we have

ϕντ =
(ρ1 + ρM2

1 )(2ϕτ − c2dτ )

(ρ+ ρ1)(2 + (γ − 1)M2)
. (9.6.24)

Similarly, we have

ρ1B2 − ρ2B1

=
(ρ− ρ1)

((
2(ρ1 + ρM2

1 ) + (γ − 1)M2(ρ+ ρ1)
)
ϕτ + c2ρ(1−M2

1 )dτ

)

2 + (γ − 1)M2

and

ϕττ = −
(
(γ − 1)(ρ+ ρ1)M2 + 2(ρ1 + ρM2

1 )
)
ϕτ + c2ρ(1−M2

1 )dτ

ϕτ (ρ+ ρ1)(2 + (γ − 1)M2)
. (9.6.25)
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Equation (2.2.8) is also invariant under the orthogonal transformation O so
that

(c2 − ϕ2
ν)ϕνν − 2ϕνϕτϕτν + (c2 − ϕ2

τ )ϕττ = |Dϕ|2 − 2c2. (9.6.26)

Then we have

ϕνν =
1

c2 − ϕ2
ν

(
2ϕνϕτϕτν − (c2 − ϕ2

τ )ϕττ + |Dϕ|2 − 2c2
)

=
1

1−M2
1

(
4M2

2 (ρ1 + ρM2
1 ) + (1−M2

2 )
(
(γ − 1)(ρ+ ρ1)M2 + 2(ρ1 + ρM2

1 )
)

(ρ+ ρ1)
(
2 + (γ − 1)M2

)

+M2 − 2− c2dτ
2M2

2 (ρ1 + ρM2
1 )− ρ(1−M2

2 )(1−M2
1 )

ϕτ (ρ+ ρ1)
(
2 + (γ − 1)M2

)
)
.

Therefore, we obtain

ϕνν =
(ρ+ ρ1)

(
2(M2 +M2

1 − 1) + (γ − 1)M2(M2
1 − 1)

)
+ 2ρ(M2

1M
2
2 − 1)

(ρ+ ρ1)(1−M2
1 )
(
2 + (γ − 1)M2

)

−
c2dτ

(
2M2

2 (ρ1 + ρM2
1 )− ρ(1−M2

2 )(1−M2
1 )
)

ϕτ (ρ+ ρ1)(1−M2
1 )
(
2 + (γ − 1)M2

) . (9.6.27)

Furthermore, using (9.6.19), inequality (9.6.17) can be written as
(
2 + (γ − 1)M2

)
D2ϕ[ν, Dϕ] + (γ − 1)M2ϕν ≤ −c2dν ,

or, equivalently,
(
2 + (γ − 1)M2

)
(ϕννM

2
1 + ϕντM1M − 2) + (γ − 1)M2M2

1 + c2ϕνdν ≤ 0.

The substitution of ϕνν and ϕντ into the above inequality yields

(ρ+ ρ1)M2
1

(
2(M2 +M2

1 − 1) + (γ − 1)M2(M2
1 − 1)

)
+ 2ρM2

1 (M2
1M

2
2 − 1)

(ρ+ ρ1)(1−M2
1 )

+
2M2

2 (ρ1 + ρM2
1 )

ρ+ ρ1
+ (γ − 1)M2M2

1 + c2ϕνdν

−c
2dτ
ϕτ

(M2
1

(
(2ρ2

1 − ρ2)M2
2 + ρ2

)

(ρ2
1 − ρ2)(1−M2

1 )
+

ρ2
1M

2
2

ρ2
1 − ρ2

)
≤ 0,

that is,

2ρM2
1

(
M2 +M2

1 +M2
1M

2
2 − 2

)
+ 2ρ1M

2
1

(
M2 +M2

2 − 1
)

+2M2
2 (1−M2

1 )(ρ1 + ρM2
1 ) + c2ϕν(ρ+ ρ1)(1−M2

1 )dν

− c2dτ
ϕτ (ρ1 + ρ)

(
M2

1

(
(ρ2

1 − ρ2)M2
2 + ρ2

)
+ ρ2

1M
2
2

)
≤ 0.
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Therefore, we have

∆ := 2(2ρ+ ρ1)M2
1 (M2 − 1) + 2ρ1M

2
2 + c2ϕν(ρ+ ρ1)(1−M2

1 )dν

−c
2
(
(ρ2

1 − ρ2)M2
1M

2
2 + ρ2M2

1 + ρ2
1M

2
2

)

ϕτ (ρ1 + ρ)
dτ ≤ 0. (9.6.28)

Property (9.6.15) implies that

M2
2 ≥ α(M2 −M2

2 ).

Thus, recalling that α ∈ (0, 1
2 ) and choosing µ > 0 small,

M2
2 ≥

α

2
M2 ≥ α

2
(1− Cµ) ≥ α

4
,

where we have used (9.6.13). Equivalently,

ϕ2
τ ≥

α

4
c2.

Therefore, (9.6.13) and (9.6.15) imply

M2 − 1 ≥ −Cµ, M2
1 ≤M2 ≤ 1 at Pmax,

where we have used that M2 ≤ 1 in Ω by (8.1.4). Then we find from (9.6.28)
that

∆ ≥ − 2(2ρ+ ρ1)Cµ+ 2ρ1
α

4
− Cµ− C µ√

α

≥ 1

2
ρ1

(
α− 4(2

ρ

ρ1
+ 1)Cµ

)
− C µ√

α

≥ 1

2
ρ1α

(
1− C µ

α

)
− C µ√

α

≥ 1

2
ρ1α

(
1− C µ

α
√
α

)
> 0,

if µ is chosen sufficiently small (recall that α > 0 has been chosen).
This contradicts (9.6.28), which implies that the maximum of M2 + d for

such a choice of µ > 0 cannot be achieved on Γshock.

Noting that ξ 7→ dist(ξ,Γsonic) is Lipschitz, but not smooth in Ω, we now
construct a function g(ξ) that is smooth and comparable with dist(ξ,Γsonic) in
Ω.

Lemma 9.6.4. There exist g ∈ C(R2× [θs
w,

π
2 ]) with g(·, θw) ∈ C∞(R2) for each

θw ∈ (θs
w,

π
2 ], and constants C0, C1 <∞ depending only on (ρ0, ρ1, γ) such that,

for any ξ ∈ Ω(ϕ),

1

C0
dist(ξ,Γsonic(θw)) ≤ g(ξ, θw) ≤ C0 dist(ξ,Γsonic(θw)),

|Dξg(ξ, θw)| ≤ 1, |D2
ξg(ξ, θw)| ≤ C1

(9.6.29)
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for any admissible solution ϕ of Problem 2.6.1 with θw ∈ (θs
w,

π
2 ). Further-

more, for any θw ∈ (θs
w,

π
2 ),

∂νg(·, θw) = 0 on {ξ2 = 0} ∪ {ξ2 = ξ1 tan θw}. (9.6.30)

Proof. Fix an admissible solution ϕ of Problem 2.6.1 with corresponding
wedge angle θw. In the following argument, we use the notations from Defi-
nition 7.5.7.

First, we note that Ω ⊂ {ϕ1 > ϕ2} ∩ Λ by Definition 8.1.1(iv). Let C2 =
∂Bc2(O2) be the sonic circle of state (2) with center O2 = (u2, v2). Line S1 =
{ϕ1 = ϕ2} intersects with C2 at point P1, and segment P0P1 lies outside C2,
as indicated in Remark 7.5.5. Moreover, S1 is not tangential to C2 as shown
in Remark 7.5.5. Denote by Q another point of intersection of S1 and C2. It
follows that P1 lies between P0 and Q on S1. Denote by Q′ := 1

2 (P1 + Q) and

let ĉ = |O2Q
′|. Then ĉ =

√
c22 − 1

4 |P1Q|2 < c2. Denote by Q′′ := O2 + ĉτw,
where τw is the unit tangent vector to Γwedge defined by (8.2.17). Then Q′′ ∈
Γwedge since Γwedge = P3P4 3 O2 and P4 = O2 + c2τw with ĉ < c2. Let
D = P1P4Q

′′Q′ be the domain bounded by arcs Γsonic = P1P4 and Q′′Q′ (the
smaller arc of ∂Bĉ(O2) with these endpoints), and segments P1Q

′ and P4Q
′′,

i.e., D ⊂ Bc2(O2) \Bĉ(O2). Using that Ω ⊂ {ϕ1 > ϕ2} ∩ Λ, it follows that

Ω ∩ {ξ : dist(ξ, C2) < c2 − ĉ} ⊂ D. (9.6.31)

Let P ∈ D, and let A ∈ C2 be the endpoint of the radius of Bc2(O2) passing
through P . Then either A ∈ Γsonic or A on arc P1Q̂, where Q̂ ∈ C2 is the
endpoint of the radius of Bc2(O2) passing through Q′, i.e., Q̂ is the midpoint of
arc P1Q.

When A ∈ Γsonic, dist(P,Γsonic) = dist(P, C2) = |AP |. In the case that A is
in arc P1Q̂, dist(P,Γsonic) = |P1P | and dist(P, C2) = |AP | < |P1P |. From the
elementary geometry,

|P1P |
sin(∠P1AP )

=
|AP |

sin(∠AP1P )
.

Also, 0 < β := ∠Q̂P1Q < ∠AP1Q < ∠AP1P < π
2 . Note that β = ∠Q̂P1Q is

independent of P . Thus, for any ξ ∈ D,

sinβ dist(ξ,Γsonic) ≤ dist(ξ, C2) ≤ dist(ξ,Γsonic). (9.6.32)

Let h ∈ C∞([0,∞)) satisfy

h(s) =

{
s if s ∈ [0, 1

2 ],

1 if s ≥ 1,
0 ≤ h′ ≤ 2 on [0,∞).

Then the function:

ĝθw(ξ) =
1

2
(c2 − ĉ)h(

dist(ξ, C2)

c2 − ĉ
) (9.6.33)
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depends only on the parameters of state (2) for the wedge angle θw, and satisfies
ĝθw(·) ∈ C∞(R2).

Since the parameters of state (2) depend smoothly on θw ∈ [θs
w,

π
2 ], g(ξ, θw) =

ĝθw(ξ) satisfies g ∈ C(R2× [θs
w,

π
2 ]) and g(·, θw) ∈ C∞(R2) for each θw ∈ [θs

w,
π
2 ].

Also, from (9.6.32) and the properties of h(·), it follows that, for any admissible
solution ϕ for the wedge angle θw, g satisfies the properties in (9.6.29) with the
constants:

C0 =
4 max{1, diam(Ω)}

sinβ
, C1 = C1(

1

ĉ
).

Furthermore, from the construction of ĝ, β > 0 depends smoothly on the param-
eters of state (2) for θw, and hence on θw ∈ [θs

w,
π
2 ]. Thus, β(θw) and ĉ(θw) have

positive lower bounds on [θs
w,

π
2 ]. Also, diam(Ω) has a uniform upper bound

by Proposition 9.1.2. Now (9.6.29) holds for every admissible solution ϕ for
θw ∈ (θs

w,
π
2 ) with the uniform constant C0.

Also, (9.6.30) is satisfied, since, for each θw ∈ [θs
w,

π
2 ), we see that

• Following from ξ2P0
> ξ2O2

= v2, ξ2Q′ > ξ2O2
in such a way that, from

the construction of D, dist(D, {ξ2 = 0}) ≥ δ > 0. Now, using (9.6.31) and
the definition of g, we find that g(·, θw) is constant in the δ–neighborhood
of {ξ2 = 0}, i.e., ∂νg(·, θw) = 0 on {ξ2 = 0}.

• Since O2 ∈ {ξ2 = ξ1 tan θw}, ∂ν
(
dist(·, C2)

)
= 0 on {ξ2 = ξ1 tan θw}, which

implies that ∂νg(·, θw) = 0 on {ξ2 = ξ1 tan θw}.

Proposition 9.6.5. There exists µ̃ > 0 depending only on (ρ0, ρ1, γ) such that,
for any admissible solution ϕ of Problem 2.6.1 with θw ∈ (θs

w,
π
2 ),

M2(ξ) ≤ 1− µ̃dist(ξ,Γsonic) for all ξ ∈ Ω(ϕ).

Proof. Let g = g(ξ, θw) be the function constructed in Lemma 9.6.4. Let ϕ be
an admissible solution of Problem 2.6.1 with θw ∈ (θs

w,
π
2 ). We now show that

the maximum of M2 + µg over Ω cannot be attained on Ω \ Γsonic if µ > 0 is
small, depending only on (ρ0, ρ1, γ).

Note also that, performing the even reflection as in Remark 8.1.3, ϕ satisfies
equation (2.2.8) in the extended domain Ωext and the Rankine-Hugoniot con-
ditions (8.1.13)–(8.1.14) on Γext

shock. Also, since ∂νg = 0 on Γsym ⊂ {ξ2 = 0}
by (9.6.30), then, for each θw, g(·, θw) extended by even reflection to Ωext is in
C2(Ωext).

Now, by Theorems 5.2.1 and 5.3.1 applied to the extended functions in Ωext,
the maximum of M2 + µg cannot be attained in Ωext and on Γext

wedge if µ is
sufficiently small depending only on the data, where we have used the uniform
bounds in (9.1.2), (9.1.6), and (9.6.29), and property (9.6.30) on Γwedge. Thus,
the maximum of M2 + µg cannot be attained in Ω ∪ Γsym ∪ Γwedge.
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By Proposition 9.6.3, reducing µ if necessary (depending only on the data),
we find that the maximum of M2 + µgθw cannot be attained on Γshock ∪ P2.

It remains to estimate M2 + µg at P3 = 0. Since ϕ ∈ C1(Ω) and ∂νϕ = 0
on Γsym ∪ Γwedge, then Dϕ(P3) = 0. Also, by (9.1.6),

c(P3) = ρ
γ−1

2 (P3) ≥
( 2

γ + 1
ρ1

) γ−1
2 > 0.

Thus, M2(P3) = 0. Moreover, we obtain that µg(P3) ≤ 1 by further reducing
µ, if necessary, with µ depending only on (ρ0, ρ1, γ), by (9.1.2) and (9.6.29).
Therefore, M2 + µg ≤ 1 at P3.

On the other hand,M2 +µg = 1 on Γsonic, sinceM2 = 1 on Γsonic by (8.1.3),
and g(·, θw) = 0 on Γsonic by (9.6.29).

Therefore, M2 + µg ≤ 1 in Ω. Combining this with (9.6.29), we complete
the proof with µ̃ = µ

C0
.

In Corollary 9.6.6 below, we use form (9.2.1)–(9.2.2) of equation (2.2.8).

Corollary 9.6.6. There exists C > 0 depending only on (ρ0, ρ1, γ) such that,
if ϕ is an admissible solution of Problem 2.6.1 with θw ∈ (θs

w,
π
2 ), equation

(2.2.8) for solution ϕ is elliptic in Ω \ Γsonic with degeneracy near Γsonic. More
precisely, for any ξ ∈ Ω and κ = (κ1, κ2) ∈ R2,

dist(ξ,Γsonic)

C
|κ|2 ≤

2∑

i,j=1

Aipj (Dϕ(ξ), ϕ(ξ))κiκj ≤ C|κ|2, (9.6.34)

where we have used the notations in (9.2.1)–(9.2.2).

Proof. From (9.2.2) and (2.2.9), we obtain that, for any ξ ∈ Ω and κ ∈ R2,

c2(|Dϕ|2, ϕ)
(

1− |Dϕ|2
c2(|Dϕ|2, ϕ)

)
|κ|2 ≤

2∑

i,j=1

Aipj (Dϕ,ϕ)κiκj ≤ c2(|Dϕ|2, ϕ)|κ|2,

where ϕ is evaluated at ξ. Furthermore, by Proposition 9.6.5,

|Dϕ|2
c2(|Dϕ|2, ϕ)

≤ 1− 1

2
µ̃dist(ξ,Γsonic) in Ω,

where µ̃ > 0 depends only on (ρ0, ρ1, γ). Combining these estimates with (9.1.6)
and c2 = ργ−1, we conclude (9.6.34).



Chapter Ten

Regularity of Admissible Solutions away from the

Sonic Arc

In this chapter, we focus on the regularity of admissible solutions away from the
sonic arc Γsonic.

Throughout this chapter, we always fix γ > 1 and ρ1 > ρ0 > 0, and use the
notations introduced in Definition 7.5.7. In order to obtain the regularity near
the symmetry line Γsym, it is convenient to extend solution ϕ to ϕext by even
reflection into {ξ2 < 0} as in Remark 8.1.3 and to use the extended sets Ωext,
Γext

shock, and Γext
sonic defined in Remark 8.1.3. We also define

Γext
wedge := Γwedge ∪ Γ−wedge ∪ {P3},

where Γ−wedge is the reflection of Γwedge with respect to the ξ1–axis.

10.1 Γshock AS A GRAPH IN THE RADIAL DIRECTIONS WITH
RESPECT TO STATE (1)

Let (r, θ) be the polar coordinates with respect to center O1 = (u1, 0) of the
sonic circle of state (1), i.e., (r, θ) are defined by (6.3.3) with (û, v̂) = (u1, 0).

Lemma 10.1.1. There exist ε, δ > 0 depending only on (ρ0, ρ1, γ) such that,
for any admissible solution ϕ with the wedge angle θw ∈ (θs

w,
π
2 ),

∂r(ϕ1 − ϕext) ≤ −δ in Nε(Γext
shock) ∩ Ωext,

where Nε(A) is the ε–neighborhood of set A in the ξ–coordinates, and ϕext, Ωext,
and Γext

shock are defined in Remark 8.1.3.

Proof. Since ϕext(ξ1,−ξ2) = ϕ(ξ1, ξ2) and ϕext
1 (ξ1,−ξ2) = ϕ1(ξ1, ξ2) for (ξ1, ξ2) ∈

Ω, and O1 lies on the ξ1–axis, it suffices to show that

∂r(ϕ1 − ϕ) ≤ −δ in Nε(Γshock) ∩ Ω.

From the Bernoulli law (2.2.7) applied to ϕ in Ω and to ϕ1 in R2, using
ϕ ∈ C1(Ω) by (8.1.3), we have

ργ−1 + (γ − 1)
(1

2
|Dϕ|2 + ϕ

)
= ργ−1

1 + (γ − 1)
(1

2
|Dϕ1|2 + ϕ1

)
in Ω. (10.1.1)
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Now, since ϕ ≤ ϕ1 in Ω by (8.1.5),

ργ−1 +
γ − 1

2
|Dϕ|2 ≥ ργ−1

1 +
γ − 1

2
|Dϕ1|2 in Ω. (10.1.2)

Next, choosing d̂ = 1
2C that depends only on (ρ0, ρ1, γ) for C from Proposi-

tion 9.5.6, we have

dist(Nd̂(Γshock), Bc1(O1)) ≥ 1

C
− d̂ = d̂.

Thus, for any P ∈ Nd̂(Γshock) ∩ Ω,

|Dϕ1(P )| = |PO1| ≥ c1 + d̂ in Nd̂(Γshock) ∩ Ω.

That is, choosing

δ =
d̂2

γ + 1
,

we have

|Dϕ1(P )|2 ≥ c21 + (γ + 1)δ = ργ−1
1 + (γ + 1)δ in Nd̂(Γshock) ∩ Ω.

Also, |Dϕ|2 ≤ c2 = ργ−1 in Ω by (8.1.4). Then, from (10.1.2), we obtain

ργ−1 ≥ ργ−1
1 + (γ − 1)δ in Nd̂(Γshock) ∩ Ω.

Combining this with (10.1.1), we have

|Dϕ1|2 − |Dϕ|2 ≥ 2δ − (ϕ1 − ϕ) in Nd̂(Γshock) ∩ Ω. (10.1.3)

Since ϕ = ϕ1 on Γshock, we employ Corollary 9.1.3 to find that, for any ε > 0,

|ϕ1 − ϕ| ≤ Cε in Nε(Γshock) ∩ Ω.

Combining this with (10.1.3), we obtain that, for any ε ∈ (0, d̂),

|Dϕ1|2 − |Dϕ|2 ≥ 2δ − Cε in Nε(Γshock) ∩ Ω.

Choosing ε = min{ δC , d̂}, we have

|Dϕ1|2 − |Dϕ|2 ≥ δ in Nε(Γshock) ∩ Ω.

From this, we use Corollary 9.1.3 to conclude

|Dϕ1| − |Dϕ| ≥
δ

C
in Nε(Γshock) ∩ Ω.

Since |Dϕ1| = −∂rϕ1, the last inequality implies the assertion (with δ
C instead

of δ).
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Corollary 10.1.2. There exist δ̂, δ̂1 > 0 depending only on (ρ0, ρ1, γ) such that,
if ϕ is an admissible solution with θw ∈ (θs

w,
π
2 ], then, on Γshock,

∂ν(ϕ1 − ϕ) ≥ δ̂, (10.1.4)

∂νϕ1 > ∂νϕ ≥ δ̂1. (10.1.5)

Proof. Since ϕ < ϕ1 in Ωext, ϕ = ϕ1 on Γext
shock ⊂ ∂Ωext, and ν is the interior

normal on Γext
shock to Ωext, then

∂ν(ϕ1 − ϕ) = |D(ϕ1 − ϕ)| on Γext
shock.

Now (10.1.4) follows from Lemma 10.1.1.
Next, we show (10.1.5). From the Rankine-Hugoniot condition (8.1.13) on

Γshock, we obtain that ∂νsh
ϕ1 = ρ

ρ1
∂νsh

ϕ. Then, from (10.1.4),

( ρ
ρ1
− 1
)
∂νsh

ϕ ≥ δ̂ on Γshock.

Lemma 9.1.4 implies that ρ
ρ1
> 1 on Γshock. Therefore, we employ the bound:

ρ < C in (9.1.6) to obtain (10.1.5).

Corollary 10.1.3 (Γshock is a graph in the radial directions with respect to
O1). For any admissible solution ϕ with θw ∈ (θs

w,
π
2 ), there exists a function

fO1,sh ∈ C1(R) such that

Ωext ∩ {(r, θ) : r > 0, θP1
< θ < θP1

−}
= Λ ∩ {(r, θ) : θP1

< θ < θP1
− , r < fO1,sh(θ)},

Γext
shock = {(r, θ) : θP1 < θ < θP1

− , r = fO1,sh(θ)},
(10.1.6)

where (rP , θP ) are the (r, θ)–coordinates of point P, and P1
− denotes the reflec-

tion of P1 with respect to the ξ1–axis in the ξ–coordinates with θP1
− = 2π−θP1

>
π.

Proof. The existence of fO1,sh follows from Lemma 10.1.1. The C1–regularity
follows from (10.1.1) and Lemma 10.1.1, since Γext

shock = {ϕext = ϕ1}, as shown
in Remark 8.1.3.

Lemma 10.1.4. There exists C > 0 such that the following holds: Let ϕ be
an admissible solution of Problem 2.6.1 with θw ∈ (θs

w,
π
2 ). Let fO1,sh be the

extended shock function of ϕ in the (r, θ)–coordinates; cf. (10.1.6). Then

|f ′O1,sh| ≤ C on (θP1
, θP1

−). (10.1.7)

Proof. In this proof, constants L and C depend only on (ρ0, ρ1, γ).
Let φ̄ = ϕ1 − ϕ in Ω. Since ϕ1 defined by (2.2.17) is an even function with

respect to ξ2, we extend φ̄ into Ωext by even reflection and employ Remark 8.1.3
to obtain

φ̄ext = ϕ1 − ϕext ∈ C2(Ωext \ (Γext
sonic ∪ {P2, P3})) ∩ C1(Ωext). (10.1.8)
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From (8.1.5) and (8.1.15), we have

φ̄ext > 0 in Ωext, φ̄ext = 0 on Γext
shock. (10.1.9)

Also, from (2.2.17), (9.1.2), and (9.1.5), we obtain

‖φ̄ext‖C0,1(Ωext) ≤ L. (10.1.10)

From (8.1.2), we have
dist(Γext

shock,O1) > c1.

Then, in the c1
2 –neighborhood of Γext

shock, denoted as N c1
2

(Γext
shock), the C1–norms

of the coordinate transform ξ 7→ (r, θ) and its inverse are bounded by a constant
C depending only on c1 = ργ−1

1 . Thus, from (10.1.10),

|∂(r,θ)φ̄
ext| ≤ CL in N c1

2
(Γext

shock) ∩ Ωext. (10.1.11)

Moreover, (10.1.9) and Lemma 10.1.1 imply

f ′O1,sh(θ) = −∂θφ̄
ext(fO1,sh(θ), θ)

∂rφ̄ext(fO1,sh(θ), θ)
on (θP1 , θP1

−).

Therefore, using (10.1.6), (10.1.11), and Lemma 10.1.1, we conclude (10.1.7).

10.2 BOUNDARY CONDITIONS ON Γshock FOR ADMISSIBLE
SOLUTIONS

Let ϕ be an admissible solution with θw ∈ [θs
w,

π
2 ). Then ϕ satisfies (8.1.13)–

(8.1.15) on Γshock. From (8.1.14),

νsh =
D(ϕ1 − ϕ)

|D(ϕ1 − ϕ)| .

Thus, (8.1.13) can be written as

gsh(Dϕ,ϕ, ξ) = 0 on Γshock, (10.2.1)

where gsh(p, z, ξ) is defined by (7.1.9). We now regularize gsh(p, z, ξ) in such
a way that admissible solutions satisfy (10.2.1) with the modified/regularized
function g(sh)

mod(p, z, ξ).
From Proposition 9.6.5 and Lemma 10.1.1,

|Dϕ|
c(|Dϕ|2, ϕ)

≤ 1− δ on Ω \ Nε(Γsonic),

|D(ϕ1 − ϕext)| ≥ δ on Nε(Γext
shock) ∩ Ωext
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for ε, δ > 0 depending only on (ρ0, ρ1, γ, θ
∗
w). In particular, choosing

η ∈ C∞(R) with η(t) =





δ
2 on (−∞, δ2 ],

t on [ 3δ
4 ,∞),

η′(t) ≥ 0 on R,
(10.2.2)

so that η(t) ≥ δ
2 on R, we find that, for any admissible solution ϕ,

νsh =
D(ϕ1 − ϕ)

η (|D(ϕ1 − ϕ)|) .

Motivated by these properties, we now modify gsh(p, z, ξ).

Lemma 10.2.1. Let M ≥ 2, and let KM and Ã(p, z) be the set and function
defined in Lemma 9.2.1, respectively. Let δ > 0, and let η(·) be the function in
(10.2.2). Let

g
(sh)
mod(p, z, ξ) =

(
Ã(p, z)− ρ1Dϕ1(ξ)

)
· Dϕ1(ξ)− p

η (|Dϕ1(ξ)− p|) . (10.2.3)

Then there exist positive constants ε, δbc, and Ck with k = 1, 2, . . . , depending
only on (M, δ, ρ0, ρ1, γ), such that

(i) For any ξ ∈ R2 and any (p̃, z̃) ∈ KM with |p̃−Dϕ1(ξ)| ≥ δ,

g
(sh)
mod(p, z, ξ) = gsh(p, z, ξ) if |(p, z)− (p̃, z̃)| < ε; (10.2.4)

(ii) For RM = {(p, z, ξ) : |p| ≤ 2M, |z| ≤ 2M, |ξ| ≤ 2M},

‖g(sh)
mod‖Ck(RM ) ≤ Ck for k = 1, 2, . . . ; (10.2.5)

(iii) For any (p, z) ∈ KM with |p−Dϕ1(ξ)| ≥ δ,

Dpg
(sh)
mod(p, z, ξ) · Dϕ1(ξ)− p

|Dϕ1(ξ)− p| ≥ δbc. (10.2.6)

Proof. Property (10.2.4) follows from (9.2.3) and (9.2.5). Estimate (10.2.5)
follows from (9.2.5). Thus, it remains to show (10.2.6).

Fix (p̃, z̃, ξ̃) satisfying the conditions in (iii). Then, from (10.2.2),

Dϕ1(ξ̃)− p

η(|Dϕ1(ξ̃)− p|)
=

Dϕ1(ξ̃)− p

|Dϕ1(ξ̃)− p|
for all p ∈ B δ

8
(p̃),

which implies that |Dϕ1(ξ̃)−p|
η(|Dϕ1(ξ̃)−p|) = 1 for any p ∈ Bδ/8(p̃). Denoting e :=

Dϕ1(ξ̃)−p̃
η(|Dϕ1(ξ̃)−p̃|) , then |e| = 1 and

(e ·Dp)
( Dϕ1(ξ̃)− p

η(|Dϕ1(ξ̃)− p|)
)∣∣∣∣

p=p̃

=
1

2
Dp

(∣∣∣ Dϕ1(ξ̃)− p

η(|Dϕ1(ξ̃)− p|)

∣∣∣
2)∣∣∣∣

p=p̃

= 0.
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From this, we use (10.2.3) and calculate at (p, z, ξ) = (p̃, z̃, ξ̃) to obtain

Dpg
(sh)
mod(p̃, z̃, ξ̃) · e =

2∑

i,j=1

Ãipj (p̃, z̃)
( Dϕ1(ξ̃)− p̃

η(|Dϕ1(ξ̃)− p̃|)
)
i
ej

=
2∑

i,j=1

Ãipj (p̃, z̃)eiej ≥ λ > 0,

where we have used ellipticity (9.2.4). This implies (10.2.6) with δbc = λ from
(9.2.4).

10.3 LOCAL ESTIMATES NEAR Γshock

We continue to consider the solutions extended by reflection into {ξ2 < 0}.
Again, in this section, (r, θ) still denotes the polar coordinates with respect to
center O1 = (u1, 0) of the sonic circle of state (1).

Proposition 10.3.1. For each d > 0, there exist s > 0 and Ck, Ĉk < ∞ for
k = 2, 3, . . . , such that the following holds: Let ϕ be an admissible solution of
Problem 2.6.1 with the wedge angle θw ∈ (θs

w,
π
2 ). Let fO1,sh be the extended

shock function of ϕ in the (r, θ)–coordinates (cf. (10.1.6)). If P = (rP , θP ) ∈
Γext

shock satisfies

dist(P,Γext
sonic) ≥ d, dist(P,Γext

wedge) ≥ d,
then

|DkfO1,sh(θP )| ≤ Ck(d) for k = 2, 3, . . . , (10.3.1)

|Dk
ξϕ| ≤ Ĉk(d) on Bs(P ) ∩ Ωext for k = 2, 3, . . . , (10.3.2)

where Bs(P ) is the ball with radius s and center at P in the ξ–coordinates.

Proof. In this proof, constants C, M , ε, δ, β, λ, and Λ are positive and depend
only on (ρ0, ρ1, γ, d). Furthermore, from Remark 8.1.3, equation (2.2.8) holds in
Ωext for ϕ = ϕext, and the Rankine-Hugoniot condition (8.1.13) holds on Γext

shock.
We divide the proof into three steps.

1. Let ε and δ be from Lemma 10.1.1. If we choose

R := min{d
2
, ε,

c1
2
} > 0,

then R depends only on (ρ0, ρ1, γ, d), and ball BR(P ) in the ξ–coordinates sat-
isfies

BR(P ) ∩ Γext
wedge = ∅, (10.3.3)

dist(BR(P ),Γext
sonic) ≥ d

2
, (10.3.4)

dist(BR(P ),O1) ≥ c1
2
, (10.3.5)

∂r(ϕ1 − ϕ) ≤ −δ in BR(P ) ∩ Ωext, (10.3.6)
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where, by the choice of R, property (10.3.3) follows from dist(P,Γext
wedge) ≥ d,

property (10.3.4) follows from dist(P,Γext
sonic) ≥ d, property (10.3.5) follows from

(8.1.2), and property (10.3.6) follows from Lemma 10.1.1.
Our first step is to employ Theorem 4.3.2 to establish the C1,α–regularity,

so that we need to verify its assumptions. We work in the (r, θ)–coordinates.
For P = (rp, θP ), by Corollary 10.1.3, after shifting the (r, θ)–coordinates

and inverting the r–direction, i.e., changing (r, θ) to (r̃, θ̃) = (rp − r, θ − θp),
domain BR(P )∩Ωext is of the form as in Theorem 4.3.2, and (4.3.1) holds with
λ depending only on (ρ0, ρ1, γ) by Lemma 10.1.4.

To verify the other assumptions in Theorem 4.3.2, we first work in the ξ–
coordinates.

By (10.3.4) and Proposition 9.6.5, there exists δ > 0 such that

|Dϕ|2
c2(Dϕ|2, ϕ)

≤ 1− δ in BR(P ) ∩ Ωext.

Using this and (9.1.5)–(9.1.6), we see that there exists a sufficiently large M
such that ϕ satisfies (9.2.6)–(9.2.8) in D = BR(P ) ∩ Ωext. Thus, by Lemma
9.2.1, we can modify coefficients A and B in (9.2.1) so that they are defined for
all (p, z) ∈ R2 ×R and satisfy (9.2.3)–(9.2.5) with λ and Ck depending only on
(ρ0, ρ1, γ, d), and ϕ satisfies the modified equation (9.2.9) in Ωext ∩BR(P ).

From (10.3.6),

|D(ϕ1 − ϕ)| ≥ δ in Ωext ∩BR(P ). (10.3.7)

Then, applying Lemma 10.2.1 with M as above and δ from (10.3.7) to obtain
the corresponding function g(sh)

mod(p, z, ξ), we find from (10.2.4) that ϕ satisfies

g
(sh)
mod(Dϕ,ϕ, ξ) = 0 on Γext

shock ∩BR(P ). (10.3.8)

Furthermore, since
D(ϕ1 − ϕ)

|D(ϕ1 − ϕ)| is a unit vector, then, from (10.2.6), we have

|Dpg
(sh)
mod(Dϕ,ϕ, ξ)| ≥ δbc > 0 in Ωext ∩BR(P ). (10.3.9)

Using the regularity in (9.2.5) and (10.2.5) of the modified equation and
the boundary condition, and writing the equation in the non-divergence form
(4.2.1) with f ≡ 0, we obtain that conditions (4.3.5)–(4.3.6) and (4.3.8) are
satisfied. Furthermore, ellipticity (4.3.4) holds by (9.2.4). The nondegeneracy
of the boundary condition (4.3.7) holds by (10.3.9). Finally, (4.3.9) holds by
(9.1.5).

Now we change to the polar coordinates (r, θ) with respect to O1 = (u1, 0).
By (10.3.5), this change is smooth and nondegenerate, with the norms con-
trolled in terms of the data. Thus, conditions (4.3.4)–(4.3.9) hold in the (r, θ)–
coordinates, with the constants depending only on (ρ0, ρ1, γ, d).



REGULARITY OF ADMISSIBLE SOLUTIONS AWAY FROM THE SONIC ARC 389

2. We can now apply Theorem 4.3.2 to obtain β ∈ (0, 1) and C > 0 depend-
ing only on (ρ0, ρ1, γ, d) such that

‖ϕ‖
C1,β(Ωext∩BR/2(P ))

≤ C

in the (r, θ)–coordinates, and hence also in the ξ–coordinates, by (10.3.5). From
this, we use (10.3.6) and the smoothness of ϕ1 to obtain

‖fO1,sh‖C1,β(I1) ≤ C,

where I1 ⊂ R is an open interval such that

Γext
shock ∩BR/2(P ) = {r = fO1,sh(θ) : θ ∈ I1}.

3. Now we use Corollary 4.3.5 inductively, for the open intervals Ik ⊂ R,
k = 1, 2, . . . , such that Γext

shock ∩ BR/2k(P ) = {r = fO1,sh(θ) : θ ∈ Ik}. Then
θP ∈ Ik+1 ⊂ Ik for k = 1, 2, . . . . Note that condition (4.3.40) is satisfied in
Ωext ∩BR for each k by (9.2.5) and (10.2.5), where we recall that the equation
is written in the non-divergence form. Therefore, the induction goes as follows:
Suppose that, for some k,

‖fO1,sh‖Ck,β(Ik) ≤ C.

This estimate for k = 1 has been obtained in Step 2, which verifies condition
(4.3.39) for domain Ωext ∩BR/2k . Thus, by Corollary 4.3.5,

‖ϕ‖
Ck+1,β(Ωext∩B

R/2k+1 (P ))
≤ C.

From this, we apply (10.3.6) and the smoothness of ϕ1 to conclude

‖fO1,sh‖Ck+1,β(Ik+1) ≤ C.

This completes the proof.

10.4 THE CRITICAL ANGLE AND THE DISTANCE
BETWEEN Γshock AND Γwedge

From Proposition 9.4.5 and Corollary 9.5.7, we see that, when u1 ≤ c1, there
is a uniform positive lower bound for the distance between Γshock and Γwedge

for admissible solutions with θw ∈ [θ∗w,
π
2 ) for any θ∗w ∈ (θs

w,
π
2 ). However, when

u1 > c1, we only know from Lemma 9.4.7 that Γshock cannot hit Γwedge for the
wedge angles sufficiently close to π

2 , so that we cannot rule out the possibility
that, for a limit of a sequence of admissible solutions, the limiting shock may
hit Γwedge. Moreover, from Proposition 9.4.8, it follows that, if Γshock does hit
Γwedge for the limiting solution described in Corollary 9.2.5, then the contact
point is only the wedge vertex P3. These issues lead to the difference in the
results in our main theorems, Theorems 2.6.3 and 2.6.5.



390 CHAPTER 10

We also note that, while we have not known yet whether there exists a case
that Γshock of its solution is attached to Γwedge, the experimental results [263,
Fig. 238, Page 144] suggest that such attached solutions may indeed exist.

Thus, we expect the existence of admissible solutions only for the wedge
angles θw ∈ (θc

w,
π
2 ), where the critical angle θc

w is defined as follows:

Definition 10.4.1. Fix γ > 1 and ρ1 > ρ0 > 0. Define the set:

A :=



θ
∗
w ∈ (θs

w,
π

2
] :
∃ ε > 0 such that dist(Γshock,Γwedge) ≥ ε
for any admissible solution with θw ∈ [θ∗w,

π

2
]



 ,

for which the normal reflection solution as the unique admissible solution for
θw = π

2 is included. Since dist(Γshock,Γwedge) > 0 for the normal reflection,
π
2 ∈ A, i.e. A 6= ∅. Now we define the critical angle

θc
w = inf A.

Directly from Definition 10.4.1, θc
w ∈ [θs

w,
π
2 ]. Furthermore, we have

Lemma 10.4.2. Fix γ > 1 and ρ1 > ρ0 > 0. Then the critical angle θc
w satisfies

the following properties:

(i) θc
w < π

2 , i.e., θ
c
w ∈ [θs

w,
π
2 );

(ii) If u1 ≤ c1, θc
w = θs

w;

(iii) If θc
w > θs

w, there exists a sequence of admissible solutions ϕ(i) with the
wedge angles θ(i)

w ∈ [θc
w,

π
2 ] such that

lim
i→∞

θ(i)
w = θc

w, lim
i→∞

dist(Γ(i)
shock,Γ

(i)
wedge) = 0;

(iv) For any θ∗w ∈ (θc
w,

π
2 ), there exists C > 0 such that, for any admissible

solution ϕ with θw ∈ [θ∗w,
π
2 ),

dist(Γshock,Γwedge) ≥ 1

C
.

Proof. Assertion (i) follows from Lemma 9.4.7. Assertion (ii) follows from
Proposition 9.4.5 and Corollary 9.5.7. Assertions (iii)–(iv) follow directly from
Definition 10.4.1.

10.5 REGULARITY OF ADMISSIBLE SOLUTIONS AWAY
FROM Γsonic

In this section, we consider admissible solutions for the wedge angles up to the
critical angle θc

w introduced in Definition 10.4.1. In particular, we establish the
estimates for admissible solutions with the wedge angles θw ∈ (θc

w,
π
2 ).

First we show the regularity of Γshock including endpoint P2, and the regu-
larity of solutions near Γshock.
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Proposition 10.5.1. Fix θ∗w ∈ (θc
w,

π
2 ). Then, for each d > 0, there exist s > 0

and Ck, Ĉk < ∞ for k = 2, 3, . . . , such that the following holds: Let ϕ be an
admissible solution of Problem 2.6.1 with the wedge angle θw ∈ [θ∗w,

π
2 ). Let

fO1,sh be the extended shock function of ϕ in the (r, θ)–coordinates (cf. (10.1.6)).
If d > 0 and P = (rP , θP ) ∈ Γext

shock satisfy dist(P,Γext
sonic) ≥ d, then

|DkfO1,sh(θP )| ≤ Ck(d) for k = 2, 3, . . . , (10.5.1)

|Dk
ξϕ| ≤ Ĉk(d) in Bs(P ) ∩ Ωext for k = 2, 3, . . . , (10.5.2)

where Bs(P ) is the ball in the ξ–coordinates.

Proof. By Lemma 10.4.2(iv), dist(Γext
shock,Γ

ext
wedge) ≥ 1

C , where C depends only on
the data and θ∗w. In particular, dist(P,Γext

wedge) ≥ 1
C . Now, applying Proposition

10.3.1 with d̂ = min{d, 1
C } instead of d, we complete the proof.

Next, we show the regularity near the wedge vertex.

Lemma 10.5.2. There exists α ∈ (0, 1) such that, for any θ∗w ∈ (θc
w,

π
2 ), there

are s > 0 and C <∞ so that, for any admissible solution ϕ of Problem 2.6.1
with the wedge angle θw ∈ [θ∗w,

π
2 ),

‖ϕ‖
C1,α(Bs(P3)∩Ω)

≤ C. (10.5.3)

Proof. In this proof, α depends only on (ρ0, ρ1, γ). The universal constant C
depends only on (ρ0, ρ1, γ, θ

∗
w).

Since P2 and O2 lie on Γwedge, dist(P2,Γsonic) = |P2 − P1| = |Γwedge|. Thus,
for any θw ∈ (θs

w,
π
2 ), we have

dist(P2,Γsonic) ≥ r0, (10.5.4)

where r0 > 0 is from (9.4.30) and depends only on (ρ0, ρ1, γ).
Fix θ∗w ∈ (θc

w,
π
2 ). Let ϕ be an admissible solution with θw ∈ [θ∗w,

π
2 ). Then,

by Lemma 10.4.2(iv), there exists s > 0 depending only on (ρ0, ρ1, γ, θ
∗
w) such

that dist(Γshock,Γwedge) > 4s. Further reducing s if necessary, depending on the
same parameters, we see that s ≤ r0

4 , so that 4s ≤ dist(P2,Γsonic). Now, from
the properties of Ω in Definition 8.1.1(i), we have

Ω ∩B3s(P3) = Λ ∩B3s(P3),

which implies that Ω ∩ B3s(P3) is the sector of B3s(P3) with angle π − θw ∈
(π2 , π − θ∗w).

Since dist(Ω∩B2s(P3),Γsonic) ≥ r0
4 by (10.5.4), Corollary 9.6.6 implies that

equation (2.2.8) is uniformly elliptic on solution ϕ in domain Ω ∩ B2s(P3) =
Λ∩B3s(P3), with the ellipticity constants depending only on (ρ0, ρ1, γ, r0), i.e.,
on (ρ0, ρ1, γ). Moreover, the C0,1(Ω)–bound of ϕ is given in Corollary 9.1.5.
In particular, writing equation (2.2.8) in the form of (9.2.1) and arguing as
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in Step 1 of the proof of Lemma 9.2.2, we conclude that ϕ satisfies equation
(9.2.9) in Λ ∩ B2s(P3), for which properties (9.2.3)–(9.2.5) hold with constants
λ, C0, C1, . . . , depending only on (ρ0, ρ1, γ). Thus, the requirements of Theorem
4.3.13 hold for the equation with the constants depending on (ρ0, ρ1, γ).

On the sides of sector Λ ∩ B3s(P3), i.e., on Γwedge ∩ B3s(P3) and Γsym ∩
B3s(P3), the boundary condition: ∂ϕ

∂ν = 0 is satisfied. The requirements of
Theorem 4.3.13 for the boundary conditions clearly hold for these boundary
conditions; specifically, (4.3.88) and (4.3.106) hold with λ = 1, and (4.3.107)
holds with λ = sin θw ≥ sin θd

w. Thus, the constants for the boundary conditions
depend also on (ρ0, ρ1, γ).

Now (10.5.3) follows from Theorem 4.3.13 applied in domain Λ ∩ B3s(P3).
Then the Hölder exponent α in (10.5.3) depends on (ρ0, ρ1, γ) , and C depends
on θ∗w in addition to (ρ0, ρ1, γ), since s depends on these parameters.

Now we have the following estimate away from Γsonic:

Corollary 10.5.3. There exists α ∈ (0, 1) such that, for any θ∗w ∈ (θc
w,

π
2 ) and

d > 0, there is C <∞ so that, for any admissible solution ϕ of Problem 2.6.1
with θw ∈ [θ∗w,

π
2 ),

‖ϕ‖(−1−α),{P3}
2,α,Ω\Nd(Γsonic) ≤ C. (10.5.5)

Proof. By Lemma 10.4.2(iv), estimate (10.5.5) follows directly from Lemma
9.2.2, Proposition 10.5.1, and Lemma 10.5.2, as well as a covering argument,
combined with the standard rescaling technique for obtaining the weighted es-
timates near P3.

10.6 REGULARITY OF THE LIMIT OF ADMISSIBLE
SOLUTIONS AWAY FROM Γsonic

In this section, we use the notations introduced in Corollary 9.2.5. Also, re-
call that Γshock, Γsonic, Γwedge, and Γsym denote the relative interiors of these
segments, i.e., without endpoints.

Proposition 10.6.1. Fix θ∗w ∈ (θc
w,

π
2 ). Let {ϕ(i)} be a sequence of admissible

solutions of Problem 2.6.1 with the wedge angles θ(i)
w ∈ [θ∗w,

π
2 ) such that

θ(i)
w → θ(∞)

w ∈ [θ∗w,
π

2
).

Let ϕ(i) → ϕ(∞) ∈ C0,1
loc (Λ(∞)) uniformly in compact subsets of Λ(∞), where

ϕ(∞) is a weak solution of Problem 2.6.1, and let the convergence properties
in Corollary 9.2.5(i)–(iii) hold for the whole sequence. Fix a unit vector g ∈
Cone0(eS(∞)

1
, eξ2), use the (S, T )–coordinates as in Corollary 9.2.5, let f (∞)

g,sh be

the corresponding shock function, and let Γ
(∞)
shock be defined by (9.2.23). Then
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(i) Γ
(∞)
shock is disjoint with Γ

(∞)
sym ∪Γ

(∞)
wedge∪Γ

(∞)
sonic. In particular, Γ

(∞),0
wedge, Γ

(∞),0
sym ,

Ω̂(∞), and Ω(∞) introduced in Corollary 9.2.5(iii) satisfy that Γ
(∞),0
wedge =

Γ
(∞)
wedge, Γ

(∞),0
sym = Γ

(∞)
sym, and Ω̂(∞) = Ω(∞), and that Ω(∞) is connected;

(ii) In the (S, T ) coordinates with basis {ν(∞)
w , τ

(∞)
w },

f
(∞)

ν
(∞)
w ,sh

(T ) > max(0,−T tan θ(∞)
w ) for T ∈ (TP2

(∞) , TP1
(∞)),

and Ω(∞) is of the form:

Ω(∞) =





(S, T ) ∈ R2 :

TP2
(∞) ≤ T ≤ TP4

(∞) ,

− (T − TP3
) tan θ(∞)

w < S < f
(∞)

ν
(∞)
w ,sh

(T )

for T ∈ [TP2
(∞) , TP3

(∞) ],

0 < S < f
(∞)

ν
(∞)
w ,sh

(T ) for T ∈ (TP3
(∞) , TP1

(∞) ],

0 < S < f
(∞)

ν
(∞)
w ,so

(T ) for T ∈ (TP1
(∞) , TP4

(∞) ]





,

(10.6.1)
where f (∞)

ν
(∞)
w ,so

is defined in Remark 8.2.12;

(iii) There exists a function f (∞)
O1,sh

∈ C∞((θP1
(∞) , θ(P1

−)(∞))) such that, in polar
coordinates,

Γ
(∞)
shock = {r = f

(∞)
O1,sh

(θ) : θP1
(∞) < θ < θ(P1

−)(∞)}, (10.6.2)

where we have used the notation from Remark 8.1.3 and Corollary 10.1.3;

(iv) ϕ(∞) ∈ C∞(Ω(∞) \ (Γ
(∞)
sonic ∪ {P3

(∞)}));

(v) ϕ(∞) ∈ C1,α(Ω(∞) \ Γ
(∞)
sonic) with α ∈ (0, 1) depending only on (ρ0, ρ1, γ),

but independent of θ∗w.

Proof. We divide the proof into five steps.

1. Proof of (i). By Lemma 10.4.2(iv), dist(Γ(i)
shock,Γ

(i)
wedge) ≥ 1

C for all i. Also,

P3
(i) = 0, P4

(i) → P4
(∞) since θ(i)

w → θ
(∞)
w , and Γ

(i)
wedge is segment P3

(i)P4
(i).

Thus, Γ
(i)
wedge → Γ

(∞)
wedge in the Hausdorff metric. Moreover, f (i)

g,sh → f
(∞)
g,sh uni-

formly by Corollary 9.2.5(ii). Therefore, Γ
(i)
shock → Γ

(∞)
shock in the Hausdorff met-

ric. Then it follows that dist(Γ(∞)
shock,Γ

(∞)
wedge) ≥ 1

C .

Similarly, Γ
(∞)
shock does not intersect with Γ

(∞)
sym, which is known by using

Corollary 9.3.2 applied to each ϕ(i) and the convergence: P2
(i) → P2

(∞) that
holds by Corollary 9.2.5 (i).
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Finally, Γ
(∞)
shock does not intersect with Γ

(∞)
sonic, since Γ

(i)
shock ⊂ {ξ1P2

≤ ξ1 ≤
ξ1P1
} by (8.1.2), Γ

(i)
sonic ⊂ {ξ1 ≥ ξ1P1

} from the definition of Γsonic in Definition
7.5.7, and the same properties hold for the limiting solution.

Also, the properties proved above imply that Ω̂(∞) = Ω(∞), and Ω(∞) is
connected. Now (i) is proved.

2. Now (ii) follows directly from (i) and Corollary 9.2.5(iii).
3. Proof of (iii). We note that

(Γext
shock)(i) = {r = f

(i)
O1,sh

(θ) : θP1
(i) < θ < θ(P1

−)(i)} (10.6.3)

in the (r, θ)–coordinates by (10.1.6). Also, P1
(i) → P1(θ

(∞)
w ) =: P1

(∞), (P1
−)(i) →

(P1
−)(θ

(∞)
w ) =: (P1

−)(∞), and O(i)
1 → O1(θ

(∞)
w ) as i → ∞. Moreover, (10.1.7)

and (10.5.1) hold for every f (i)
O1,sh

, i = 1, 2, . . . . Then there exists a subsequence

of {f (i)
O1,sh

} converging uniformly on compact subsets of (θP1
(∞) , θ(P1

−)(∞)), whose

limit is denoted by f
(∞)
O1,sh

. Therefore, f (∞)
O1,sh

satisfies (10.1.7) and (10.5.1)
on (θP1

(∞) , θ(P1
−)(∞)) so that

f
(∞)
O1,sh

∈ C∞((θP1
(∞) , θ(P1

−)(∞))).

On the other hand, denoting ν(∞)
w := νw(θ

(∞)
w ), we obtain that ν(∞)

w ∈
Cone0(eS(∞)

1
, eξ2) by Lemma 8.2.11. Then ν(∞)

w ∈ Cone0(eS(i)
1
, eξ2) for suffi-

ciently large i so that, for such i, we have

(Γext
shock)(i) = {S = f

(i)

ν
(∞)
w

(T ) : T
(i)
P1

< T < T
(i)
P1
},

by Corollary 8.2.14(i). Also, (Γext
shock)(∞) is defined by (9.2.23) with f

(∞)
e =

f
(∞)

ν
(∞)
w

. Then Corollary 9.2.5(ii) implies that

Γ
(i)
shock → Γ

(∞)
shock in the Hausdorff metric as i→∞.

Then (10.6.3) and the uniform convergence, {f (i)
O1,sh

} → {f (∞)
O1,sh

}, on compact
subsets of (θP1

(∞) , θ(P1
−)(∞)) imply that (10.6.2) holds. Also, we have shown

that f (∞)
O1,sh

∈ C∞((θP1
(∞) , θ(P1

−)(∞))). Now (iii) is proved.

4. Proof of (iv). Let P ∈ Γ
(∞)
shock ∪ {P2} (extended as in Remark 8.1.3) and

dist(P,Γsonic) = 2d > 0. Let s > 0 be the constant from Proposition 10.5.1 for
distance d from Γsonic. We can also assume without loss of generality that s < d

2 .
Then the convergence, Γ

(i)
sonic → Γ

(∞)
sonic and Γ

(i)
shock → Γ

(∞)
shock, in the Hausdorff

metric implies that there exists N such that Bs/2(P ) ⊂ Bs(P (i)) for some P (i) ∈
Γ

(i)
shock, and dist(P (i),Γ

(i)
sonic) > d. For every compact K ⊂ Bs/2(P )∩Ω(∞), there

exists NK such that K ⊂ Bs(P
(i)) ∩ Ω(i) for each i ≥ NK. Then the uniform
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convergence ϕ(i) → ϕ(∞) on K, combined with estimates (10.5.2), for ϕ(i) on
Bs(P

(i))∩Ω(i), implies the same estimates for ϕ(∞) on K: For each j = 1, 2, . . . ,

‖ϕ(∞)‖Cj(K) ≤ lim sup
i→∞

‖ϕ(i)‖Cj(K) ≤ lim sup
i→∞

‖ϕ(i)‖
Cj(Bs(P (i))∩Ω(i))

≤ Cj ,

independent of K, where we have used that dist(P (i),Γ
(i)
sonic) > d and s = s(d).

This implies
‖ϕ(∞)‖

Cj(Bs/2(P )∩Ω(∞))
≤ Cj .

That is, (10.5.2) holds for the extended function ϕ(∞). Combining this with
(9.2.24) and the structure of Ω(∞) described in assertion (i) shown above, we
obtain (iv).

5. Proof of (v). By Lemma 10.4.2(iv), dist(Γ(i)
shock,Γ

(i)
wedge) ≥ 1

C for all i. Let
s = 1

4C . Then, from the argument in the proof of Lemma 10.5.2, it follows that
Λ(i) ∩ B3s(P3) ⊂ Ω(i) for each i. Combining this with the uniform convergence
Γ

(i)
wedge → Γ

(∞)
wedge implies that, for every compactK ⊂ Bs(P3)∩Ω(∞), there exists

N such that K ⊂ Bs(P3) ∩ Ω(i) for each i ≥ N . By (9.2.27) in Corollary 9.2.5,
ϕ(i) → ϕ(∞) holds in C1,α(K), where α ∈ (0, 1) is from Lemma 10.5.2. Then
(10.5.3) in Lemma 10.5.2 for ϕ(i) implies that there exists C > 0 independent
of K such that

‖ϕ(∞)‖C1,α(K) ≤ lim
i→∞

‖ϕ(i)‖C1,α(K) ≤ lim
i→∞

‖ϕ(i)‖
C1,α(Bs(P3)∩Ω(i))

≤ C.

This implies
‖ϕ(∞)‖

C1,α(Bs(P3)∩Ω(∞))
≤ C.

Combining this with (iv) yields (v).



Chapter Eleven

Regularity of Admissible Solutions near the

Sonic Arc

In this chapter, we establish the regularity of admissible solutions of Problem
2.6.1 near the sonic arc Γsonic. To achieve this, it is more convenient to consider
the function:

ψ = ϕ− ϕ2 in Ω.

From (8.1.3) and (8.1.5),

ψ ∈ C1(Ω), (11.0.1)
ψ ≥ 0 in Ω, (11.0.2)
ψ = 0 on Γsonic. (11.0.3)

We always fix ρ1 > ρ0 > 0, γ > 1, and θ∗w ∈ (θs
w,

π
2 ) for the sonic angle

θs
w = θs

w(ρ0, ρ1, γ) throughout this chapter.

11.1 THE EQUATION NEAR THE SONIC ARC AND
STRUCTURE OF ELLIPTIC DEGENERACY

Fix θw ∈ (θs
w,

π
2 ]. From §6.1 applied with ϕun = ϕ2, (û, v̂) = (u2, v2), and

cun = c2, we have the following: Let (r, θ) be the polar coordinates with respect
to O2 = (u2, v2):

(ξ1 − u2, ξ2 − v2) = (r cos θ, r sin θ). (11.1.1)

Let (x, y) be the coordinates in Ω defined by

(x, y) = (c2 − r, θ). (11.1.2)

Then, in the (x, y)–coordinates, for sufficiently small ε > 0,

Ω ∩Nε(Γsonic) ⊂ {x > 0}, Γsonic = {(0, y) : yP4
< y < yP1

}, (11.1.3)

as shown in Proposition 11.2.3 below. Furthermore, ψ in the (x, y)–coordinates
satisfies (6.3.6)–(6.3.7), which now takes the form in Ω ∩ {x < c2

2 }:

(
2x−(γ+1)ψx+O1

)
ψxx+O2ψxy+(

1

c2
+O3)ψyy−(1+O4)ψx+O5ψy = 0 (11.1.4)
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with Ok = Ok(Dψ,ψ, x), where Ok(p, z, x) with p = (p1, p2) ∈ R2 and z, x ∈ R
are defined by

O1(p, z, x) = −x
2

c2
+
γ + 1

2c2
(2x− p1)p1 −

γ − 1

c2

(
z +

p2
2

2(c2 − x)2

)
,

O2(p, z, x) = −2(p1 + c2 − x)p2

c2(c2 − x)2
,

O3(p, z, x) =
1

c2(c2 − x)2

(
x(2c2 − x)− (γ − 1)(z + (c2 − x)p1 +

p2
1

2
)

− (γ + 1)p2
2

2(c2 − x)2

)
,

O4(p, z, x) =
1

c2 − x
(
x− γ − 1

c2

(
z + (c2 − x)p1 +

p2
1

2
+

(γ + 1)p2
2

2(γ − 1)(c2 − x)2

))
,

O5(p, z, x) = − (p1 + 2c2 − 2x
)
p2

c2(c2 − x)3
.

(11.1.5)

Equation (11.1.4) with (11.1.5) can be rewritten as

2∑

i,j=1

Âij(Dψ,ψ, x)Dijψ +

2∑

i=1

Âi(Dψ,ψ, x)Diψ = 0, (11.1.6)

where (D1, D2) = (Dx, Dy), Dij = DiDj , and Â12 = Â21. Note that (Âij , Âi) =

(Âij , Âi)(p, z, x), independent of y, with p = (p1, p2) ∈ R2 and x, y, z ∈ R.

Lemma 11.1.1. Let L > 1 be fixed. Then, for any δ ∈ (0, 1) and M > 0, there
exists ε > 0 such that, when

1

L
≤ c2 ≤ L,

equation (11.1.4)–(11.1.5), written as (11.1.6), satisfies

δ

2
|κ|2 ≤

2∑

i,j=1

Âij(p, z, x)
κiκj

x2− i+j2

≤ 2

δ
|κ|2 (11.1.7)

for any κ = (κ1, κ2) ∈ R2 and (p, z, x) ∈ R2×R×R satisfying 0 < x < ε, |p1| ≤
2−δ
1+γx, |p2| ≤Mx, and |z| ≤Mx2.

Proof. From the explicit expressions (11.1.5) and the restrictions on (p, z, x),
we estimate

|O1| ≤ C1x
2, |Ok| ≤ C1x for k = 2, . . . , 5. (11.1.8)

Then, combining this with (11.1.4), using once again the restriction on p1, and
choosing ε > 0 small depending only on (c2, γ), we obtain (11.1.7).
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11.2 STRUCTURE OF THE NEIGHBORHOOD OF Γsonic IN Ω

AND ESTIMATES OF (ψ,Dψ)

In order to obtain the estimates near Γsonic, we need to analyze the structure
of the neighborhood of Ω near Γsonic. We continue using the polar coordinates
(11.1.1). Also, for a point P , we denote by (rP , θP ) its polar coordinates with
θP ∈ [0, 2π).

Let θw ∈ (θs
w,

π
2 ]. By Remark 7.5.5 and Definition 7.5.7, P1 is a point of

intersection of line S1 with circle ∂Bc2(O2) such that segment P0P1 is away
from Bc2(O2). Note that S1 is not orthogonal to Γwedge, since S1 ⊥ O1O2,
O1 /∈ {ξ2 = ξ1 tan θw}, and O2 ∈ {ξ2 = ξ1 tan θw}. Then it follows that S1

intersects with ∂B|O2P0|(O2) at two points. One of the points of intersection is
P1 as noted above.

Definition 11.2.1. Define the following points:

• Denote by P̄1 the second point of intersection of S1 with ∂Bc2(O2). Then
|P0P̄1| > |P0P1|. Also, by (6.1.4)–(6.1.5) of Lemma 6.1.2 applied with
ϕ− = ϕ1 and ϕ+ = ϕ2, it follows that the smaller arc P1P̄1 of ∂Bc2(O2)
lies within {ϕ2 > ϕ1}.

• Denote by Q the midpoint of the smaller arc P1P̄1 of ∂Bc2(O2). Then
Q ∈ {ϕ2 > ϕ1}.

• Denote by Q′ the midpoint of the line segment (chord) P1P̄1.

From the definition of P̄1 and the fact that |P0P̄1| > |P0P1|,

θP̄1
> θP1 , θP̄1

− θP1 < π.

From the definition of Q, we have

rQ = c2, θQ =
θP̄1

+ θP1

2
.

Furthermore, the tangent line to ∂Bc2(O2) at Q is parallel to S1, which
implies that eS1

= ±ey(Q). To determine the sign, we notice that |P0P̄1| >
|P0P1| and rP1

= rP̄1
= c2 imply that θP̄1

− θP1
∈ (0, π) so that, by using

(7.5.9),

eS1 =
P̄1 − P1

|P̄1 − P1|
= ey(Q),

which is
eS1

= (− sin θQ, cos θQ). (11.2.1)

Note that, from the definition of Q,

θw = θP4
< θP1

< θQ < π.
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Introduce the function:
φ̄0 := ϕ1 − ϕ2,

and note that, in both the polar coordinates (11.1.1) and the (x, y)–coordinates
(11.1.2), this function has the expression:

φ̄0 := ϕ1 − ϕ2 = (u1 − u2)r cos θ − v2r sin θ + Ĉ

= (u1 − u2)(c2 − x) cos y − v2(c2 − x) sin y + Ĉ,
(11.2.2)

where Ĉ = (ϕ1−ϕ2)(O2) = −
(
(u1− u2) cos θw − v2 sin θw

)
|O2P0|, and distance

|O2P0| is in the Euclidean coordinates.
Furthermore, we have

Lemma 11.2.2. There exist ε1 > ε0 > 0, δ > 0, ω > 0, C > 0, M ≥ 2, and a
continuous function m(·) on [0,∞) satisfying m(0) = 0 and m(t) > 0 for t > 0,
depending only on (ρ0, ρ1, γ), such that, for any θw ∈ [θs

w,
π
2 ],

(i) The following inclusions hold:

Λ ∩Nε1(Γsonic) ⊂ {θw < θ < θQ − δ}, (11.2.3)

{ϕ2 < ϕ1} ∩ Nε1(Γsonic) ∩ {θ > θP1
} ⊂ {x > 0}; (11.2.4)

(ii) In {θw < θ < θQ − δ} ∩ {−ε1 < x < ε1},
2

M
(θ − θw) +m(

π

2
− θw) ≤ ∂x(ϕ1 − ϕ2) ≤ M

2
,

2

M
≤ −∂y(ϕ1 − ϕ2) ≤ M

2
;

(11.2.5)

(iii) In {−ε1 < x < ε1},

|(D2
(x,y), D

3
(x,y))(ϕ1 − ϕ2)| ≤ C; (11.2.6)

(iv) φ1(ξ) = ϕ1(ξ) + 1
2 |ξ|2 = u1ξ1 + const. satisfies

2

M
≤ −∂yφ1 ≤

M

2
in {θw < θ < θQ −

δ

2
} ∩ {−ε1 < x < ε1}; (11.2.7)

(v) There exists f̂0 ∈ C∞([−ε0, ε0]) such that, for each ε′, ε′′ ∈ [−ε0, ε0] with
ε′ ≤ ε′′,

{ϕ2 < ϕ1} ∩ Λ ∩Nε1(Γsonic) ∩ {ε′ ≤ x ≤ ε′′}
= {(x, y) : ε′ ≤ x ≤ ε′′, θw < y < f̂0(x)}, (11.2.8)

S1 ∩Nε1(Γsonic) ∩ {ε′ ≤ x ≤ ε′′}
= {(x, y) : ε′ ≤ x ≤ ε′′, y = f̂0(x)}, (11.2.9)

2ω ≤ f̂ ′0 ≤ C on (−ε0, ε0); (11.2.10)
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(vi) For any θw ∈ [θs
w,

π
2 ],

δ ≤ θQ − θP4
=
π

2
− m̃(

π

2
− θw), (11.2.11)

where m̃(·) has the same properties as m(·) above.

Proof. In this proof, we use the polar coordinates (r, θ) centered atO2 = (u2, v2).
Also, when θw = θs

w, P0 = P1 = P4, which do not cause any changes in the
argument. We divide the proof into five steps.

1. We note that θP1
< θQ. Also, θ ∈ [θw, θP1

] on Γsonic, and θ ≥ θw on Λ.
Then, since P1 and Q depend continuously on θw ∈ [θs

w,
π
2 ], there exist ε1 > 0

and δ > 0 such that (11.2.3) holds.
Furthermore, since θQ = θQ′ , and points P1 and Q′ lie on line S1 = {ϕ1 =

ϕ2}, then (11.2.3) implies that

{ϕ2 < ϕ1} ∩ Nε1(Γsonic) ∩ {θ > θP1
} ⊂ O2P1Q

′ ⊂ Bc2(O2) = {x > 0}.

This shows (11.2.4).
2. Note that, for any θw ∈ [θs

w,
π
2 ), point P0 is well-defined. Then, from

triangle P0O2Q
′ in which ∠P0Q

′O2 = π
2 and ∠P0O2Q

′ = θQ − θP4
, we have

0 < θQ − θP4
<
π

2
for any θw ∈ [θs

w,
π

2
). (11.2.12)

Furthermore, since θQ > θP1 for each θw, then, using the continuous dependence
of Q and P4 on θw and reducing δ > 0 if necessary, we see that, for any θw ∈
[θs

w,
π
2 ],

θQ − θP4
≥ δ.

Also, θQ = π and θP4
= π

2 when θw = π
2 . Thus, we define

m̃(
π

2
− θw) :=

π

2
− (θQ − θP4

) for θw ∈ [θs
w,
π

2
],

so that m̃(·) is defined and continuous on [0, π2 − θs
w] with

m̃(0) = 0, 0 < m̃(t) ≤ π

2
− δ for t > 0. (11.2.13)

We can arbitrarily extend m̃ to a continuous function on [0,∞), satisfying the
inequalities given above for all t > 0. Then (11.2.11) holds.

3. Note that
√

(u1 − u2)2 + v2
2 is a continuous function of θw ∈ [θs

w,
π
2 ] and

is positive for every such θw, since u2 = v2 = 0 in the normal reflection case
θw = π

2 , and v2 > 0 for θw ∈ [θs
w,

π
2 ). Then there exists C̃ > 0 such that

1

C̃
≤
√

(u1 − u2)2 + v2
2 ≤ C̃ for any θw ∈ [θs

w,
π

2
]. (11.2.14)
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Using expression (11.2.2) and noting that (7.5.8) and (11.2.1) imply

(sin θQ, cos θQ) =
(v2, u2 − u1)√
(u1 − u2)2 + v2

2

,

we compute to see

∂r(ϕ1 − ϕ2)

= (u1 − u2) cos θ − v2 sin θ = −
√

(u1 − u2)2 + v2
2 cos(θQ − θ)

= −
√

(u1 − u2)2 + v2
2

(
cos(θQ − θw) cos(θ − θw) + sin(θQ − θw) sin(θ − θw)

)
.

Since ∂x = −∂r by (11.1.2), we note that θw = θP4
, and employ (11.2.11) and

(11.2.14) to obtain (11.2.5) for ∂x(ϕ1 −ϕ2) with large C > 0, small ε1 > 0, and
m(·) = 1

C̃
sin δ sin(m̃(·)). The properties of m̃(·) in (11.2.13) imply that m(·)

satisfies the properties asserted.
4. Similarly, from (11.2.2),

1

r
∂θ(ϕ1 − ϕ2) = −(u1 − u2) sin θ − v2 cos θ = −

√
(u1 − u2)2 + v2

2 sin(θQ − θ).

Since c2(θw) ≥ 2
C for some large C and any θw ∈ [θs

w,
π
2 ], then r ∈ (c2 − ε, c2)

implies that r ≥ 1
C for any θw ∈ [θs

w,
π
2 ] if ε > 0 is sufficiently small. Then, from

(11.1.2), (11.2.11), and (11.2.14), we obtain (11.2.5) for ∂y(ϕ1 − ϕ2).
Taking the derivatives of ϕ1−ϕ2 with respect to (r, θ) up to the third order,

we obtain (11.2.6).
Now, from (11.2.3) and (11.2.5), there exist ε0 > 0, f̂0 ∈ C∞([−ε0, ε0]), and

C,ω > 0 such that (11.2.8)–(11.2.10) hold for any θw ∈ [θs
w,

π
2 ].

5. To show (11.2.7), we note that, since φ1(ξ) = u1ξ1 + const.,

1

r
∂θφ1 = −u1 sin θ.

Also, θQ ∈ (θs
w, π) for all θw ∈ [θs

w,
π
2 ]. Thus, for every such θw, we have

0 < u1 min(sin θs
w, sin δ) ≤ −1

r
∂θφ1 ≤ u1 in {θw < θ < θQ −

δ

2
}. (11.2.15)

Moreover, the continuous dependence of c2 > 0 on θw ∈ [θs
w,

π
2 ] implies that

there exists δ̂ > 0 depending only on the data such that c2 ∈ [δ̂, 1
δ̂
] for all such

θw, so that δ̂ ≤ c2
2 ≤ r(P ) ≤ 2c2 ≤ 1

δ̂
in {−ε1 < x < ε1}. Combining with

(11.2.15), we conclude (11.2.7).

Proposition 11.2.3. Let ε0 and ε1 be the constants defined in Lemma 11.2.2.
Let ϕ be an admissible solution with θw ∈ (θs

w,
π
2 ] and Ω = Ω(ϕ). For ε ∈ (0, ε0),

denote
Ωε := Ω ∩Nε1(Γsonic) ∩ {x < ε}. (11.2.16)



402 CHAPTER 11

Then, for each ε ∈ (0, ε0),

Ω ∩Nε(Γsonic) ⊂ Ωε, (11.2.17)

Ωε = Ωε ∩ {x > 0}, (11.2.18)

Ωε ⊂ {ϕ2 < ϕ1} ∩ Λ ∩Nε1(Γsonic) ∩ {0 < x < ε}. (11.2.19)

Proof. For any ε < ε0 < ε1, Γsonic ⊂ ∂Bc2(O2) implies that

Nε(Γsonic) ⊂ Nε(∂Bc2(O2)) = {|x| < ε} ⊂ {x < ε}.

Then (11.2.17) follows from (11.2.16).
Note that Ω ⊂ {ϕ2 < ϕ1} ∩ Λ by conditions (i) and (iv) of Definition 8.1.1,

and Λ ⊂ {θ > θw}. Then it follows from Definition 8.1.1(i) that

Ω ∩ {θw < θ ≤ θP1
} ⊆ Bc2(O2) ∩ {θw < θ ≤ θP1

} ⊂ {x > 0}.

Combining this with (11.2.4) and noting that Ω ∩ Nε1(Γsonic) ∩ {θ > θP1} is a
subset of the left-hand side of (11.2.4), we obtain (11.2.18).

Furthermore, we combine the fact that Ω ⊂ {ϕ2 < ϕ1} ∩ Λ with (11.2.16)
and (11.2.18) to conclude (11.2.19).

Lemma 11.2.4. Let ε0 and ε1 be the constants defined in Lemma 11.2.2. Then
there exists C such that, for any admissible solution with θw ∈ (θs

w,
π
2 ] and any

ε ∈ (0, ε0),
Γshock ∩ ∂Ωε ⊂ BCε(P1).

Proof. Let {νw, τw} be the unit normal and tangent vectors to Γwedge defined in
(8.2.14) and (8.2.17). Let (S, T ) be the coordinates with basis {νw, τw}. Then,
by Corollary 8.2.14 and Lemma 8.2.11, Γshock is a graph in the S–direction:
There exists fνw ∈ C1,α(R) such that

Γshock = {S = fνw
(T ) : TP2

< T < TP1
}, Ω ⊂ {S < fνw

(T ) : T ∈ R},

and fνw
satisfies all the other properties in Corollary 8.2.14. In particular, it

follows from (8.2.24) that
Lip[fνw

] ≤ L,
where L is a continuous function of θw on [θs

w,
π
2 ] and the parameters of states

(1) and (2), all of which are continuous functions of (ρ0, ρ1, γ). Thus, we can
choose L depending only on (ρ0, ρ1, γ), but independent of θw ∈ (θs

w,
π
2 ].

Set Qε := P1 + εeS1
, where we have used (7.5.8). Then (11.2.19) implies

that
TP ≥ TQε for all P ∈ Ωε.

It follows that

Γshock ∩ ∂Ωε ⊂ {S = fνw
(T ) : TQε < T < TP1

}. (11.2.20)
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From the definition of Qε, we have

|TP1
− TQε | ≤ ε.

From (11.2.20) and the uniform Lipschitz bound Lip[fνw(·)] ≤ L by (8.2.24), we
conclude that, for any P ∈ Γshock ∩ ∂Ωε,

|PP1| ≤
√

1 + L2 ε.

In the next two lemmas, we estimate the gradient of ψ = ϕ−ϕ2 near Γsonic,
specifically in Ωε for sufficiently small ε > 0.

Lemma 11.2.5. There exist ε ∈ (0, ε0) and δ > 0 depending only on (ρ0, ρ1, γ)
such that, if ϕ is an admissible solution with θw ∈ (θs

w,
π
2 ), then

ψx ≤
2− δ
γ + 1

x in Ωε. (11.2.21)

Proof. In this proof, all constants δ, ε, and C depend only on (ρ0, ρ1, γ). Let ϕ
be an admissible solution of Problem 2.6.1 with θw ∈ [θs

w,
π
2 ).

Using the smooth dependence of the parameters of state (2) on θw ∈ [θs
w,

π
2 ],

the coordinate transform: ξ 7→ (x, y) is bi-Lipschitz in Bc2(O2) \B c2
2

(O2) with
the constants depending only on (ρ0, ρ1, γ). Thus, using Corollary 9.6.6, there
exists δ > 0 such that, for any (x, y) ∈ Ω(ϕ)∩ {0 < x < c2

2 } and κ = (κ1,κ2) ∈
R2,

2δx|κ|2 ≤
2∑

i,j=1

Âij(Dψ(x, y), ψ(x, y), x)κiκj ≤
1

δ
|κ|2,

by employing form (11.1.6) of equation (11.1.4). Then

Â11(Dψ(x, y), ψ(x, y), x) ≥ 2δx,

which is
2x− (γ + 1)ψx +O1(Dψ,ψ, x) ≥ 2δx.

Using the expression of O1 in (11.1.5) and employing (11.0.2), (11.1.3), and
x < c2, we have

O1 ≤
γ + 1

c2
xψx,

so that
2x− (γ + 1)ψx +

γ + 1

c2
xψx ≥ 2δx. (11.2.22)

Since c2 is positive and depends continuously on θw ∈ [θs
w,

π
2 ], there exists C > 0

such that c2(θw) ≥ 1
C for all θw ∈ [θs

w,
π
2 ]. Then there exists ε ∈ (0, ε0) such

that (11.2.22) implies (11.2.21) with δ given in (11.2.22).
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Lemma 11.2.6. There exist ε ∈ (0, ε0), δ > 0, and C > 0 depending only on
(ρ0, ρ1, γ) such that, if ϕ is an admissible solution with θw ∈ (θs

w,
π
2 ), then, in

Ωε,

0 ≤ ψx ≤
2− δ
γ + 1

x, (11.2.23)

|ψy| ≤ Cx. (11.2.24)

Proof. In the proof, we use that ∂nw
ψ ≥ 0 and ∂eS1

ψ ≥ 0 in Ω by Corollary
8.2.20, and then express these differentiations in terms of the (x, y)–differentiations.
We divide the proof into four steps.

1. At point P 6= O2 in the ξ–plane, let {ex, ey} = {ex(P ), ey(P )} be unit
vectors in the (x, y)–directions, respectively. Using the polar coordinates (r, θ)
with respect to O2 = (u2, v2) defined by (11.1.1), we have

ex = −er = −(cos θ, sin θ), ey =
1

r
eθ = (− sin θ, cos θ).

Using (11.2.1), we have

eS1
= (− sin θQ, cos θQ) = ey(Q).

From (8.2.35) and θP4
= θw, we have

nw = (sin θP4
,− cos θP4

) = −ey(P4).

Now, for point P = r(cos θ, sin θ), we employ the expressions obtained above to
compute:

eS1 · ex = sin(θQ − θ), eS1 · ey = cos(θQ − θ),
nw · ex = sin(θ − θP4

), nw · ey = − cos(θ − θP4
).

(11.2.25)

From (11.2.3) and (11.2.19), we have

Ωε ⊂ {θP4
< θ < θQ − δ}. (11.2.26)

Now we use that ∂nw
ψ ≥ 0 and ∂eS1

ψ ≥ 0 in Ω by Corollary 8.2.20. Thus,
using that ∂x = ∂ex and ∂y = 1

c2−x∂ey , we find that, in Ω,

(nw · ex)ψx + (nw · ey)
ψy

c2 − x
≥ 0,

(eS1 · ex)ψx + (eS1 · ey)
ψy

c2 − x
≥ 0.

(11.2.27)

Then, using (11.2.11) and (11.2.25)–(11.2.26), we have
(

sin(θ − θP4
) cos(θQ − θ) + cos(θ − θP4

) sin(θQ − θ)
)
ψx ≥ 0 in Ωε,
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that is, sin(θQ − θP4
)ψx ≥ 0. Now, using (11.2.11), we conclude that ψx ≥ 0,

which implies
|ψx| ≤ Cx,

by using (11.2.21).
2. In Ωε, from (11.2.11) and (11.2.25)–(11.2.27), we have

− tan(θQ − θ)ψx ≤
ψy

c2 − x
≤ tan(θ − θP4

)ψx. (11.2.28)

However, this does not immediately imply (11.2.24) for θw near π
2 , since θQ = π

when θw = π
2 (i.e., in the normal reflection case), which implies that θQ−θ → π

2
when θw = π

2 and θ → θw. Then, to prove (11.2.24), we consider the following
two cases:

Case 1: θw ∈ (θs
w,

π+2θs
w

4 ). In this case, for each θw ∈ [θs
w,

π+2θs
w

4 ],

0 < θQ − θP4
=
π

2
− ∠QP0P3 <

π

2
.

Thus, we use the continuous dependence of Q and P1 on θw ∈ [θs
w,

π+2θs
w

4 ] to
conclude that there exists δ̂ > 0 depending only on the data so that

δ̂ ≤ θQ − θP4
≤ π

2
− δ̂ for all θw ∈ [θs

w,
π + 2θs

w

4
].

Then (11.2.24) follows from (11.2.28).

Case 2: θw ∈ [θ̂∗w,
π
2 ) for θ̂∗w =

π+2θs
w

4 . By (8.1.3),

ψ ∈ C1(Λ \ P0P1P2) ∩ C1(Ω) ∩ C3(Ω),

and ψ = 0 in P0P1P4. Thus, we have

ψy ∈ C(Ωε) ∩ C2(Ωε)

and ψy = 0 on Γsonic. Note that Γsonic ⊂ ∂Ωε, by (11.2.16).
We first show (11.2.24) on ∂Ωε \ Γsonic. After reducing ε if necessary, Ωε ∩

Γsym = ∅. By using Definition 8.1.1(i), it follows from (11.2.16) that

∂Ωε = Γsonic ∪ (Γwedge ∩ ∂Ωε) ∪ (Γshock ∩ ∂Ωε) ∪ (Ω ∩ {x = ε}).

Lemma 11.2.4 and the fact that infθw∈[θ̂∗w,
π
2 ](θP1

−θw) > 0 imply that there exist
ε, δ > 0, depending only on the data, such that

Γshock ∩ ∂Ωε ⊂ {θ ≥ θw + δ}.

Also, using (11.2.3) and recalling that θw = θP4 , we obtain that θP4 + δ ≤ θ ≤
θQ − δ on Γshock ∩ ∂Ωε. Combining these facts with (11.2.11), we have

δ ≤ θQ − θ ≤
π

2
− δ, δ ≤ θ − θP4

≤ π

2
− δ on Γshock ∩ ∂Ωε,
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where δ > 0 depends only on the data. Now, using (11.2.23), (11.2.28), and the
boundedness of c2(θ) on [θ̂∗w,

π
2 ], and reducing ε if necessary so that (11.2.21)

can be used, we obtain (11.2.24) on Γshock ∩ ∂Ωε.
Notice that the Lipschitz estimates in Corollary 9.1.3 and the uniform bound

c2(θw) ≥ δ > 0 for all θw ∈ [θ̂∗w,
π
2 ] lead to the uniform bounds of the coordinate

transform: ξ 7→ (x, y) on Ωε and its inverse transform with respect to θw in
the Ck–norms, k = 0, 1, 2 . . . . Then we conclude that |ψy| ≤ C in Ω2ε, which
implies that |ψy| ≤ C̃x on Ω ∩ {x = ε} with C̃ = C

ε .
Also, ∂ν = 1

c2−x∂y on Γwedge∩∂Ωε. Thus, by the boundary condition, ψy = 0
on Γwedge ∩ ∂Ωε.

Therefore, we have shown that, for some M > 0 depending only on the data
and ε,

|ψy| ≤Mx on ∂Ωε. (11.2.29)

We do not fix ε at this point, since we will further reduce ε in the forthcoming
argument. Then, after ε is fixed, depending only on the data, M > 0 will be
determined, depending only on the data.

3. It remains to show that ±ψy −Mx cannot attain the maximum in the
interior of Ωε. We denote

w = ψy

and derive a PDE for w in Ωε by differentiating equation (11.1.4)–(11.1.5) with
respect to y. Note that there is no explicit dependence on y in the coeffi-
cients of this equation. We use notation D = (D1, D2) = (Dx, Dy), and denote
by aij(x, y) the coefficients of Dijψ with i ≤ j in (11.1.4)–(11.1.5), i.e., with
(ψ,Dψ)(x, y) substituted into the coefficients. Then functions aij(x, y) are
smooth in the interior of Ωε. Noting that ψxy = wx and ψyy = wy, we obtain
the following equation:

a11wxx + a12wxy + a22wyy −
(
1 +O4 − (O2)y

)
wx +

(
O5 + (O3)y

)
wy

−
(
(γ + 1)ψx −O1

)
y
ψxx − (O4)yψx + (O5)yw = 0,

(11.2.30)

whereOk := Ok(Dψ(x, y), ψ(x, y), x) with functionsOk(p, z, x) defined in (11.1.5).
We will rewrite this equation as a linear second-order equation for w by com-

puting the (Ok)y–terms and redistributing some sub-terms among the terms. In
this calculation, we will compute the exact expressions of the resulting coeffi-
cients of wx and w, but will not emphasize the precise form of the coefficient of
wy. All the coefficients will be smooth in the interior of Ωε.

First, we do the following preliminary estimates. Note that

0 < a11 = 2x− (γ + 1)ψx +O1

= 2x− (γ + 1)ψx −
x2

c2
+
γ + 1

2c2
(2x− ψx)ψx

− γ − 1

c2

(
ψ +

ψ2
y

2(c2 − x)2

)
.

(11.2.31)



REGULARITY OF ADMISSIBLE SOLUTIONS NEAR THE SONIC ARC 407

Then, in Ωε, we employ ψ ≥ 0 and 0 ≤ ψx ≤ 2−δ
γ+1x to obtain

0 < a11 ≤ 2x− (γ + 1)ψx −
x2

c2
+
γ + 1

2c2
(2x− ψx)ψx ≤ Cx. (11.2.32)

Next, using (11.2.31) and recalling that ψ ≥ 0, 0 ≤ ψx ≤ Cx, and x ∈ (0, ε)
in Ωε, we have

|ψy|2 ≤ C(x+ xψx + ψ2
x) ≤ Cx,

which implies
|ψy| ≤ C

√
x. (11.2.33)

Now we rewrite the terms of equation (11.2.30) in a convenient form. We
use the expressions in (11.1.5) for the Ok–terms, and note that ∂y(ψx, ψy) =
(wx, wy). Then we rewrite the terms of the equation as in (a)–(e) below:

(a) The first term is

−
(
1 +O4 − (O2)y

)
wx = −(1 +O4)wx −

2

c2(c2 − x)2
w2
xψy + b

(y)
1 wy,

where b(y)
1 = − 2(ψx+c2−x)

c2(c2−x)2 . Since ψy = w, we can rewrite the last expression as

−
(
1 +O4 − (O2)y

)
wx = −(1 +O4)wx + b

(y)
1 wy −

2w2
x

c2(c2 − x)2
w

= b
(x)
1 wx + b

(y)
1 wy + d1w.

Note that |O4| ≤ Cx by |ψx| ≤ Cx and (11.2.33). Then, reducing ε if necessary,
we have

b
(x)
1 ≤ 0, d1 ≤ 0 in Ωε.

(b) The next term of (11.2.30) is

(
O5 + (O3)y

)
wy = b

(y)
2 wy.

(c) For the further term of (11.2.30), using the expression of O1, we have

−
(
(γ + 1)ψx −O1

)
y
ψxx

= −γ + 1

c2

(
c2 − x+ ψx

)
wxψxx −

γ − 1

c2

(
w +

1

(c2 − x)2
ψywy

)
ψxx.

(11.2.34)

In order to rewrite further this term, we note that a11 > 0 in Ωε. Thus, we
express ψxx from equation (11.1.4). Using ψxy = wx and ψyy = wy, we obtain

ψxx =
1

a11

(
−O2wx − (

1

c2
+O3)wy + (1 +O4)ψx −O5w

)
.
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Note that 1
a11

is smooth in the interior of Ωε (even though it becomes unbounded
as x→ 0+). Substituting this expression of ψxx into (11.2.34), we compute its
terms:

−wxψxx =
1

a11

(
O2w

2
x + (

1

c2
+O3)wxwy − (1 +O4)ψxwx +O5wwx

)
.

Using the expressions of the Ok–terms, we have

O2w
2
x = −2(c2 + ψx − x)w2

x

c2(c2 − x)2
w = d3,1w,

O5wwx = − (2c2 + ψx − 2x)w2

c2(c2 − x)3
wx = b

(x)
3,1wx,

where d3,1 ≤ 0 and b(x)
3,1 ≤ 0 in Ωε if ε is chosen small.

Furthermore, another term of (11.2.34) is

−wψxx =
1

a11

(
O2wxw + (

1

c2
+O3)wwy − (1 +O4)ψxw +O5w

2
)

with

O2wxw = −2(c2 + ψx − x)w2

c2(c2 − x)2
wx = b

(x)
3,2wx,

O5w
2 = − (2c2 + ψx − 2x)w2

c2(c2 − x)3
w = d3,2w,

where d3,2 ≤ 0 and b(x)
3,2 ≤ 0 in Ωε if ε is chosen small.

We have shown above that |O4| ≤ Cx in Ωε. Then, using that ψx ≥ 0 as
shown above, we conclude that −(1 +O4)ψx ≤ − 1

2ψx in Ωε if ε is chosen small.
Therefore, the substitution of the expressions of the terms into (11.2.34)

leads to
−
(
(γ + 1)ψx −O1

)
y
ψxx = b

(x)
3 wx + b

(y)
3 wy + d3w,

where

b
(x)
3 =

1

a11

(
γ + 1

c2

(
c2 − x+ ψx

)(
b
(x)
3,1 − (1 +O4)ψx

)
+
γ − 1

c2
b
(x)
3,2

)
≤ − 1

Cx
ψx,

d3 =
1

a11

(
γ + 1

c2

(
c2 − x+ ψx

)
d3,1 +

γ − 1

c2

(
d3,2 − (1 +O4)ψx

))
≤ − 1

Cx
ψx,

by using (11.2.32) and the fact that d3,k, b
(x)
3,k ≤ 0 for k = 1, 2.

(d) Another term of (11.2.30) is

−(O4)yψx =
(γ − 1)ψx
c2(c2 − x)

w +
γ − 1

c2

(
1 +

1

c2 − x
ψx
)
ψxwx +

(γ + 1)ψxψy
c2(c2 − x)3

wy

= d4w + b
(x)
4 wx + b

(y)
4 wy.
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Then the estimate that 0 ≤ ψx ≤ Cx implies

|d4| ≤ Cψx, |b(x)
4 | ≤ Cψx in Ωε. (11.2.35)

(e) The last term of (11.2.30) is

(O5)yw = − w2

c2(c2 − x)3
wx −

(2c2 + ψx − 2x)w

c2(c2 − x)3
wy = b

(x)
5 wx + b

(y)
5 wy,

where b(x)
5 ≤ 0.

Now, we combine all the terms in (a)–(e) to rewrite equation (11.2.30) as

a11wxx + a12wxy + a22wyy + b(x)wx + b(y)wy + dw = 0, (11.2.36)

where, in Ωε with sufficiently small ε > 0,

b(x) = b
(x)
1 + b

(x)
3 + b

(x)
4 + b

(x)
5 ≤ (− 1

Cx
+ C)ψx ≤ 0,

d = d1 + d3 + d4 ≤ (− 1

Cx
+ C)ψx ≤ 0.

From now on, we fix such a constant ε, which also fixes M in (11.2.29), as
we have discussed above.

4. We now consider equation (11.2.36) as a linear equation, i.e., the co-
efficients are fixed by substituting ψ(x, y), w(x, y), and their first derivatives.
Denote by L the operator of this equation. Then L is linear, and

L(±w) = 0.

The coefficients of this operator are smooth in the interior of Ωε. Also, the
coefficients of the second-order terms of this operator are the same as those for
the potential flow equation (11.1.4) for solution ψ. Thus, L is strictly elliptic
in the interior of Ωε. Since the coefficients are smooth there, it follows that L
is uniformly elliptic on each compact subset of the open set Ωε. Since d ≤ 0, it
follows that L satisfies the strong maximum principle on every compact subset
of Ωε.

Now, we show that Mx is a supersolution of L. Indeed,

L(Mx) = M(b(x) + dx) ≤ 0 in Ωε,

since Ωε ⊂ {0 < x < ε} and b(x), d ≤ 0.
Thus, L(±w−Mx) ≥ 0 in Ωε. Since L satisfies the strong maximum principle

on every compact subset of Ωε, it follows that, if a positive maximum of±w−Mx
is attained in the interior of Ωε, then ±w−Mx = const. in Ωε. From this, since
±w −Mx ∈ C(Ωε), and ±w −Mx ≤ 0 on ∂Ωε, we find that ±w −Mx ≤ 0
in Ωε. This contradicts the assumption that the maximum of ±w − Mx is
positive. Thus, the positive maximum of ±w−Mx is attained in the interior of
Ωε. Combining this with (11.2.29) yields (11.2.24).
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Lemma 11.2.7. There exists ε ∈ (0, ε0) depending only on (ρ0, ρ1, γ) such that,
for any admissible solution ϕ with θw ∈ (θs

w,
π
2 ),

2

M
(θ − θw) +m(

π

2
− θw)− Cx ≤ ∂x(ϕ1 − ϕ) ≤M,

1

M
≤ −∂y(ϕ1 − ϕ) ≤M

(11.2.37)

in Ωε, where M and m(·) are from (11.2.5).

Proof. Since ϕ1 − ϕ = ϕ1 − ϕ2 − ψ, estimates (11.2.37) follow from (11.2.3),
(11.2.5), (11.2.19), and (11.2.23)–(11.2.24) if ε > 0 is chosen sufficiently small.

Now we can describe more precisely the structure of set Ωε defined in Propo-
sition 11.2.3 for sufficiently small ε.

Proposition 11.2.8. Choose ε0 to be the smallest of ε determined in Lemmas
11.2.5–11.2.7. Then there exist ω,C > 0 depending only on (ρ0, ρ1, γ) such
that, for any admissible solution ϕ with θw ∈ (θs

w,
π
2 ), there is a function f̂ ∈

C1([0, ε0]) so that, for every ε ∈ (0, ε0], region Ωε defined by (11.2.16) satisfies

Ωε = {(x, y) : 0 < x < ε, θw < y < f̂(x)},

Γshock ∩ ∂Ωε = {(x, y) : 0 < x < ε, y = f̂(x)},
Γwedge ∩ ∂Ωε = {(x, y) : 0 < x < ε, y = θw},

Γsonic = Γsonic ∩ ∂Ωε = {(0, y) : θw < y < f̂(0)},

(11.2.38)

and

f̂(0) = yP1
> yP4

= θw, (11.2.39)

0 < ω ≤ df̂

dx
≤ C for all x ∈ (0, ε0). (11.2.40)

Proof. In this proof, all the constants depend on (ρ0, ρ1, γ).
We continue to use the polar coordinates with the center at O2. Then, from

Lemma 9.4.7, we see that there exists µ > 0 such that Γshock ⊂ {θ > θw +µ} for
any admissible solution with θw ∈ [π2 −σ1,

π
2 ). From Lemma 11.2.7, there exists

M̃ > 0 such that, for any admissible solution ϕ with θw ∈ (θs
w,

π
2 ), we find that,

on Γshock,

2

M̃
≤ ∂x(ϕ1 − ϕ) ≤ M

2
,

2

M
≤ −∂y(ϕ1 − ϕ) ≤ M

2
.

(11.2.41)

Also, ϕ1 > ϕ2 = ϕ on Γsonic, where the inequality follows from the definition of
Γsonic (see Definition 7.5.7), and the equality follows from Definition 8.1.1(ii).
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With these properties and the fact that ϕ1 > ϕ in Ω and ϕ1 = ϕ on Γshock, we
employ (11.2.8), (11.2.19), Lemma 11.2.6, and the structure of Ω in Definition
8.1.1(i) to conclude that there exists f̂ ∈ C1([0, ε0]) such that (11.2.38) holds
for each ε ∈ (0, ε0]. Then f̂ satisfies (11.2.39) and df̂

dx (x) = −∂x(ϕ1−ϕ)
∂y(ϕ1−ϕ) (x, f̂(x)).

Using the expression of df̂
dx (x) given above and Lemma 11.2.7, we conclude

(11.2.40).

Corollary 11.2.9. Let ε0 be as in Proposition 11.2.8. There exists C > 0
depending only on (ρ0, ρ1, γ) such that, for any admissible solution ϕ with θw ∈
(θs

w,
π
2 ),

0 < ψ ≤ Cx2 in Ωε0 . (11.2.42)

Proof. Since ψ = 0 on ∂Ωε0 ∩ {x = 0} ≡ Γsonic, and (11.2.23) holds in Ωε0 for
ε0 defined in Proposition 11.2.8, we employ structure (11.2.38) and (11.2.40) of
Ωε0 to obtain (11.2.42).

Corollary 11.2.10. There exist ε, λ > 0 depending only on (ρ0, ρ1, γ) such
that, if ϕ is an admissible solution with θw ∈ (θs

w,
π
2 ), then equation (11.1.4)

with (11.1.5), written as (11.1.6), satisfies the following scaled ellipticity with
respect to solution ψ = ϕ− ϕ2 in Ωε:

λ|κ|2 ≤
2∑

i,j=1

Âij(Dψ(x, y), ψ(x, y), x)
κiκj

x2− i+j2

≤ 1

λ
|κ|2, (11.2.43)

for any (x, y) ∈ Ωε and κ = (κ1, κ2) ∈ R2.

Proof. Note that 1
C ≤ c2 ≤ C for c2 in (11.1.4) for θw ∈ [θs

w,
π
2 ], where C

depends only on (ρ0, ρ1, γ).
Let ε > 0 be smaller than the small constant ε in Lemmas 11.2.5–11.2.6 and

Proposition 11.2.8. Then, employing (11.2.23)–(11.2.24), (11.2.42), and Lemma
11.1.1, and reducing ε further if necessary, we conclude the proof.

From (11.2.23)–(11.2.24) and (11.2.42), it follows that there exist ε ∈ (0, ε0),
δ > 0, and L <∞ depending only on (ρ0, ρ1, γ) such that, if ϕ is an admissible
solution with θw ∈ (θs

w,
π
2 ), and ψ = ϕ− ϕ2, then

0 ≤ ∂xψ(x, y) ≤ 2− δ
1 + γ

x, |Dψ(x, y)| ≤ Lx, |ψ(x, y)| ≤ Lx2 (11.2.44)

for any (x, y) ∈ Ωε.

Lemma 11.2.11. For any constant M > 0, there exist ε ∈ (0, ε02 ) and C de-
pending only on (ρ0, ρ1, γ,M) such that, for any θw ∈ (θs

w,
π
2 ), the corresponding

equation (11.1.4) with (11.1.5), written as (11.1.6), satisfies

|(Â11, Â12, Â2)(p, z, x)| ≤ Cx,
|(Â22, Â1)|+ |D(p,z,x)(Âij , Âi)| ≤ C

(11.2.45)
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on {(p, z, x) : |p| ≤Mx, |z| ≤Mx2, x ∈ (0, ε)}.

Proof. Since c∗2 := infθw∈[θs
w,
π
2 ] c2(θw) > 0, then, choosing ε < c∗2

10 , the results
follow directly from the explicit expressions (11.1.4)–(11.1.5) of (Âij , Âi).

From (11.2.44) and Lemma 11.2.11, we can modify (Âij , Âi)(p, z, x) outside
set {|p| ≤ Lx, |z| ≤ Lx2, x ∈ (0, ε)} in such a way that (11.2.45) holds for
all (p, z, x) ∈ R2 × R × (0, ε) and the admissible solutions satisfy the resulting
equation.

Corollary 11.2.12. There exist ε ∈ (0, ε02 ) and C depending only on (ρ0, ρ1, γ)
such that any admissible solution ψ = ϕ − ϕ2 with θw ∈ (θs

w,
π
2 ) satisfies the

equation of form (11.1.6) whose coefficients (A
(mod)
ij , A

(mod)
i ) satisfy

(A
(mod)
ij , A

(mod)
i ) = (Âij , Âi) (11.2.46)

on {(p, z, x) : |p| ≤ Lx, |z| ≤ Lx2, 0 < x < ε}, where (Aij , Ai)(p, z, x) are
from Lemma 11.2.11, L is the constant in (11.2.44), and

|(A(mod)
11 , A

(mod)
12 , A

(mod)
2 )(p, z, x)| ≤ Cx on R2 × R× (0, ε),

‖(A(mod)
22 , A

(mod)
1 )‖L∞(R2×R×(0,ε)) ≤ C,

‖D(p,z,x)(A
(mod)
ij , A

(mod)
i )‖L∞(R2×R×(0,ε)) ≤ C.

(11.2.47)

Proof. In this proof, the universal constant C > 0 depends only on (ρ0, ρ1, γ).
Without loss of generality, we may assume that L ≥ 1.

Let η ∈ C∞(R) so that 0 ≤ η ≤ 1 on R with η(t) = t for all |t| ≤ L,
|η(t)| ≤ 2L on R, and η(t) = 0 for all |t| ≥ 2L. We note that |η′(t)| ≤ C and
|tη′(t)| ≤ C on R, where C depends only on L, and hence on (ρ0, ρ1, γ). From
this, f(t, x) := xη( tx ) satisfies that f ∈ C∞(R× (0, ε)) with

f(t, x) = t if |t| ≤ Lx, f(t, x) = 0 if |t| ≥ 2Lx,

|f(t, x)| ≤ 2Lx for all (t, x) ∈ R× (0, ε),

‖f‖L∞(R×(0,ε)) ≤ C,
‖D(t,x)f‖L∞(R×(0,ε)) ≤ C,

where the last estimate follows from |Dtf(t, x)| = |η′( tx )| and |Dxf(t, x)| =
| txη′( tx )|. Similar facts hold for f1(t, x) := x2η( t

x2 ).
Then, using Lemma 11.2.11 with M = 10L, we find that the functions:

(A
(mod)
ij , A

(mod)
i )(p, z, x) := (Âij , Âi)(x(η(

p1

x
), η(

p2

x
)), x2η(

z

x2
), x)

satisfy all the assertions.
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11.3 PROPERTIES OF THE RANKINE-HUGONIOT
CONDITION ON Γshock NEAR Γsonic

Next we write the Rankine-Hugoniot condition (8.1.13) with (8.1.14) as an
oblique condition on Γshock, analyze its properties near Γsonic, and then write it
in the (x, y)–coordinates (11.1.1)–(11.1.2) in terms of ψ = ϕ− ϕ2.

We first work in the ξ–coordinates. Let ϕ be an admissible solution with
θw ∈ (θs

w,
π
2 ). Then ϕ satisfies (8.1.13)–(8.1.14) on Γshock. From (8.1.14), it

follows that νsh = D(ϕ1−ϕ)
|D(ϕ1−ϕ)| , so that (8.1.13) can be written as

M0(Dψ,ψ, ξ) = 0 on Γshock, (11.3.1)

where
M0(p, z, ξ) = gsh(Dϕ2(ξ) + p, ϕ2(ξ) + z, ξ) (11.3.2)

and gsh(p, z, ξ) is defined by (7.1.9).
We note that gsh(p, z, ξ) is not defined for all (p, z, ξ) ∈ R2 × R × R2, and

its domain is clear from its explicit expression in (7.1.9). This determines the
domain ofM0(p, z, ξ) by (11.3.2). In the ξ–coordinates with the origin shifted
to center O2 of the sonic center of state (2), the domain ofM0(p, z, ξ) is

D(M0) :=

{
(p, z, ξ) :

ργ−1
2 + (γ − 1)(ξ · p− |p|

2

2 − z) > 0

|p− (u1 − u2,−v2)| > 0

}
. (11.3.3)

From (7.1.5)–(7.1.6) at P0, it follows that these properties hold at every point
of S1 = {ϕ1 = ϕ2}, especially at P1. Also, ρ(|Dϕ2(0, 0, P1)|2, ϕ2(0, 0, P1)) =
ρ2 > 0, where ρ(|p|2, z) is defined by (2.2.9). Then, from Theorem 7.1.1(i), it
follows that there exist δ > 0 and C depending only on (ρ0, ρ1, γ) such that, for
any θw ∈ [θs

w,
π
2 ],

Bδ(0, 0, P1) ⊂ D(M0),

|DkM0(p, z, ξ)| ≤ C for all (p, z, ξ) ∈ Bδ(0, 0, P1), k = 1, 2, 3.
(11.3.4)

We first show the following properties of gsh(p, z, ξ) andM0(p, z, ξ):

Lemma 11.3.1. There exists δ > 0 depending only on (ρ0, ρ1, γ) such that, for
any θw ∈ [θs

w,
π
2 ],

Dpg
sh(Dϕ2(P1), ϕ2(P1), P1) ·Dϕ2(P1) ≤ −δ, (11.3.5)

Dpg
sh(Dϕ2(P1), ϕ2(P1), P1) ·D⊥ϕ2(P1) ≤ −δ, (11.3.6)

where D⊥ϕ2(P1) = (∂ξ2 ,−∂ξ1)ϕ2(P1).

Proof. By definition, P1 ∈ ∂Bc2(O2) so that

|Dϕ2(P1)| = c2.
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Now, (11.3.5) follows from Corollary 7.4.7, applied at ξ = P1, by using the
continuous dependence of the parameters of state (2) and the coordinates of
point P1 on the wedge angle θw ∈ [θs

w,
π
2 ].

To prove (11.3.6), we apply Theorem 7.1.1(viii) with P1 ∈ S1. The only
thing we need to check is that the orientation of D⊥ϕ2(P1) coincides with the
one given in Theorem 7.1.1(viii), that is,

Dϕ1(P1) · (∂ξ2ϕ2(P1),−∂ξ1ϕ2(P1)) < 0. (11.3.7)

Recall that
Dϕk(P1) = Ok − P1, k = 1, 2.

Thus, (∂ξ2 ,−∂ξ1)ϕ2(P1) is the clockwise rotation of P1O2 by π
2 . Using the

notations in Definition 11.2.1, it follows from O2 ∈ Γwedge and property (6.1.6)
in Lemma 6.1.2 that, in triangle P1O1Q

′, angle ∠P1Q
′O1 is π

2 , and O2 lies on
segment O1Q

′ so that ∠O1P1O2 ∈ (0, π2 ). Let β ∈ (0, π2 ) be the angle between
vector O1 −O2 and the positive direction of the ξ1–axis. Rotate the coordinate
axes by angle β clockwise, and denote by (S, T ) the rotated coordinates that
have basis {ê1, ê2} with ê1 = O2O1

|O2O1| = (cosβ,− sinβ) and ê2 = (sinβ, cosβ)

in the original coordinates. From the above argument, taking into account the
locations of the points as described in Definition 7.5.7 and denoting ak := |Q′Ok|
for k = 1, 2, and b := |P1Q

′|, we find that, in the (S, T )–coordinates,

Ok − P1 = (ak,−b) = akê1 − bê2 for k = 1, 2, a1 > a2 > 0, b > 0.

Thus, denoting {ê1, ê2} the basis in the original (non-rotated) ξ–coordinates,
we have

Dϕk(P1) = Ok−P1 = akê1− bê2 = (ak cosβ− b sinβ)e1− (ak sinβ+ b cosβ)e2.

Now we calculate

Dϕ1(P1) · (∂ξ2ϕ2,−∂ξ1ϕ2)(P1)

= − (a1 cosβ − b sinβ)(a2 sinβ + b cosβ)

+ (a1 sinβ + b cosβ)(a2 cosβ − b sinβ)

= b(a2 − a1) < 0.

Then (11.3.7) is proved, which implies (11.3.6).

To state the next properties, we define the unit normal and tangent vectors
to S1:

νS1
=

D(ϕ1 − ϕ2)

|D(ϕ1 − ϕ2)| =
(u1 − u2, −v2)√
(u1 − u2)2 + v2

2

,

τS1
= ν⊥S1

= − (v2, u1 − u2)√
(u1 − u2)2 + v2

2

.

(11.3.8)
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Note that τS1
= eS1

, as defined by (7.5.8). Also we have

τS1
·Dϕ1(P0) > 0. (11.3.9)

Indeed, P0 = (ξ0
1 , ξ

0
1 tan θw) and O1 = (u1, 0) so that Dϕ1(P0) = P0O1 =

(u1 − ξ0
1 ,−ξ0

1 tan θw). Thus, using (11.3.8) and v2 = u2 tan θw, we have

τS1
·Dϕ1(P0) =

u1 tan θw√
(u1 − u2)2 + v2

2

(ξ0
1 − u2) > 0,

where the last inequality follows, since ξ0
1 > u2 by Lemma 7.4.8, and u1 > 0.

Lemma 11.3.2. There exists δ > 0 depending only on (ρ0, ρ1, γ) such that, for
any θw ∈ (θs

w,
π
2 ],

Dzg
sh(Dϕ2(P1), ϕ2(P1), P1) = −ρ2−γ

2 Dϕ2(P1) · νS1
≤ −δ. (11.3.10)

Proof. The expression of Dzg
sh(Dϕ2(P1), ϕ2(P1), P1) given in (11.3.10) follows

from (7.1.9) through an explicit calculation by using (2.2.9) and c2 = ργ−1.
To obtain the estimate, we note that P0, P1 ∈ S1 so that Dϕ2(P1) · νS1 =

Dϕ2(P0) · νS1 by Lemma 6.1.1. It remains to show that Dϕ2(P0) · νS1 ≤ −δ
for some δ(ρ0, ρ1, γ) > 0. We use (7.1.6), in which ν = νS1

by (7.1.5). Since
νS1

depends continuously on the parameters of state (2), we conclude that
ρ2−γ

2 Dϕ2(P1) · νS1
depends continuously on the wedge angle θw ∈ [θs

w,
π
2 ]. This

completes the proof.

Lemma 11.3.3. There exists δ > 0 depending only on (ρ0, ρ1, γ) such that, for
any θw ∈ [θs

w,
π
2 ],

Dpg
sh(Dϕ2(P1), ϕ2(P1), P1) · νS1

≥ δ. (11.3.11)

Proof. From (2.2.9) and c2 = ργ−1,

Dpρ(|p|2, z) = − ρ

c2
(|p|2, z)p. (11.3.12)

Since ϕ1 and ϕ2 satisfy the Rankine-Hugoniot conditions (7.1.5) for all ξ ∈ S1,
then, at P1,

D(ϕ1−ϕ2)
|D(ϕ1−ϕ2)| = νS1

and

ρ2Dϕ2(P1)− ρ1Dϕ1(P1) = (ρ2 − ρ1)(Dϕ2(P1) · τS1)τS1 .

Combining this with the calculation at (p, z, ξ) = (Dϕ2(P1), ϕ2(P1), P1):

(νS1 ·Dp)
Dϕ1 − p

|Dϕ1 − p| = − 1

|Dϕ1 − p|νS1 −
(νS1

·Dp)|Dϕ1 − p|
|Dϕ1 − p| νS1 ,

we conclude, again at (p, z, ξ) = (Dϕ2(P1), ϕ2(P1), P1), that

(ρ2Dϕ2 − ρ1Dϕ1)(νS1
·Dp)

Dϕ1 − p

|Dϕ1 − p| = 0.
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With this, we calculate that, at (p, z, ξ) = (Dϕ2(P1), ϕ2(P1), P1),

(νS1
·Dp)gsh =

(
νS1
·Dpρ(|p|2, z)

)
Dϕ2 · νS1

+ ρ2νS1
· νS1

= −ρ2

c22
(Dϕ2 · νS1

)2 + ρ2,
(11.3.13)

by using (7.1.9) and (11.3.12). Since P1 lies on the sonic circle of state (2),
we find that Dϕ2(P1) = c2eP1 for eP1 := Dϕ2(P1)

|Dϕ2(P1)| = O2−P1

|O2−P1| . We note that
vectors νS1

and eP1
are not parallel to each other, since eP1

is in the radial
direction for ∂Bc2(0) at P1, and line S1 passes through point P1 and is also
non-tangential to ∂Bc2(0) at P1 by (6.1.4), where Lemma 6.1.2 is applied with
(ϕ−, ϕ+) = (ϕ1, ϕ2). Then

(
νS1
· eP1

)2
< 1, since |νS1

| = |eP1
| = 1. Using this

and Dϕ2(P1) = c2eP1 , we obtain

(νS1 ·Dp)gsh(Dϕ2(P1), ϕ2(P1), P1) = ρ2

(
1− (νS1 · eP1)2

)
> 0. (11.3.14)

Moreover, expression ρ2

(
1 − (νS1

· eP1
)2
)
depends only on the parameters of

state (2), and the dependence is continuous on θw ∈ [θs
w,

π
2 ]. Now (11.3.11) is

proved.

Corollary 11.3.4. There exists δ > 0 depending only on (ρ0, ρ1, γ) such that,
for any θw ∈ [θs

w,
π
2 ],

DpM0(0, 0, P1) ·Dϕ2(P1) ≤ −δ, (11.3.15)

DpM0(0, 0, P1) ·D⊥ϕ2(P1) ≤ −δ, (11.3.16)

DzM0(0, 0, P1) = −ρ2−γ
2 Dϕ2(P1) · νS1

≤ −δ, (11.3.17)

DpM0(0, 0, P1) · νS1 ≥ δ, (11.3.18)

where D⊥ϕ2(P1) = (∂ξ2 ,−∂ξ1)ϕ2(P1).

These results follow directly from Lemmas 11.3.1–11.3.3.
However, the boundary condition (11.3.1)–(11.3.2) is not convenient for our

purposes because it is nonhomogeneous; M0(0, 0, ξ) 6= 0 in general. Now we
defineM1(p, z, ξ) so that bothM1(0, 0, ξ) ≡ 0 and (11.3.1) hold withM1 for
admissible solutions.

Since S1 = {ϕ1 = ϕ2} and P1 ∈ S1, it follows that

(ϕ1 − ϕ2)(ξ) = |(u1 − u2, −v2)|νS1 · (ξ − ξP1
) for all ξ ∈ R2,

where we have used that D(ϕ1 − ϕ2) = (u1 − u2, −v2) and (11.3.8). We write
this as

ξ · νS1
= ξP1

· νS1
+

(ϕ1 − ϕ2)(ξ)√
(u1 − u2)2 + v2

2

on Γshock. (11.3.19)
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If ϕ is a solution of Problem 2.6.1 with regular reflection-diffraction con-
figuration, then, in addition to (11.3.1), it satisfies that ϕ = ϕ1 on Γshock, that
is,

ϕ1 − ϕ2 = ψ on Γshock.

Using (11.3.19), we have

ξ · νS1 = ξP1
· νS1 +

ψ(ξ)√
(u1 − u2)2 + v2

2

on Γshock.

Then we modifyM0(p, z, ξ) given by (11.3.2) via replacing ξ = (ξ · νS1)νS1 +
(ξ · τS1)τS1 by the following expression:

F (z, ξ) :=
(
ξP1
· νS1 +

z√
(u1 − u2)2 + v2

2

)
νS1 + (ξ · τS1)τS1 . (11.3.20)

Note that |D(ϕ1 − ϕ2)| = |(u1 − u2,−v2)| ≥ 1
C and (11.3.19) imply that, for

each θw ∈ [θs
w,

π
2 ],

F (z, ξ) = ξ if and only if z = (ϕ1 − ϕ2)(ξ), (11.3.21)

|DkF (z, ξ)| ≤ C for k = 1, 2, 3, (11.3.22)

for all (ξ, z) ∈ R2 × R, where C depends only on (ρ0, ρ1, γ).
Now we can define

M1(p, z, ξ) :=M0(p, z, F (z, ξ)) (11.3.23)

for all (p, z, ξ) ∈ R2×R×R2 satisfying (p, z, F (z, ξ)) ∈ D(M0). From (11.3.4),
(11.3.22), and F (0, P1) = P1, there exist δ > 0 and C depending only on
(ρ0, ρ1, γ) such that, for any θw ∈ [θs

w,
π
2 ],

(p, z, F (z, ξ)) ∈ D(M0), |(D,D2, D3)M1(p, z, ξ)| ≤ C (11.3.24)

for all (p, z, ξ) ∈ Bδ(0, 0, P1).
From (11.3.20)–(11.3.21),

M1(p, z, ξ) =M0(p, z, ξ) (11.3.25)

for all (p, z, ξ) ∈ D(M0) with z = (ϕ1 − ϕ2)(ξ).
From this, since D(M0) is an open set, we have

DpM1(p, z, ξ) = DpM0(p, z, ξ) (11.3.26)

for all (p, z, ξ) ∈ D(M0) with z = (ϕ1 − ϕ2)(ξ).

Lemma 11.3.5. For any ξ ∈ R2 such that (0, 0, F (0, ξ)) ∈ D(M0),

M1(0, 0, ξ) = 0. (11.3.27)
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Proof. Since P1 ∈ S1, (ξP1
· νS1

)νS1
∈ S1 so that (ξP1

· νS1
)νS1

+ aτS1
∈ S1

for any a ∈ R. With this, for any ξ ∈ R2,

F (0, ξ) = (ξP1
· νS1

)νS1
+ (ξ · τS1

)τS1
∈ S1.

Thus, using the explicit expressions ofM0 andM1,

M1(0, 0, ξ) =M0(0, 0, F (0, ξ))

=
(
ρ2Dϕ2(F (0, ξ))− ρ1Dϕ1(F (0, ξ))

)
· νS1

= 0,

where the last equality holds since states (1) and (2) satisfy the Rankine-
Hugoniot conditions (8.1.13)–(8.1.14) across S1 at point F (0, ξ) ∈ S1.

Lemma 11.3.6. There exists δ > 0 depending only on (ρ0, ρ1, γ) such that, for
any θw ∈ [θs

w,
π
2 ],

DpM1(0, 0, P1) ·Dϕ2(P1) ≤ −δ, (11.3.28)

DpM1(0, 0, P1) ·D⊥ϕ2(P1) ≤ −δ, (11.3.29)

DpM1(0, 0, P1) · νS1
≥ δ, (11.3.30)

DzM1(0, 0, ξ) ≤ −δ for any ξ ∈ R2, (11.3.31)

so that (0, 0, F (0, ξ)) ∈ D(M0), where D⊥ϕ2(P1) = (∂ξ2 ,−∂ξ1)ϕ2(P1). In par-
ticular, (11.3.31) holds for ξ = P1.

Proof. Properties (11.3.28)–(11.3.30) follow from (11.3.26) and Corollary 11.3.4,
where we have used that (ϕ1 − ϕ2)(P1) = 0. Now we prove (11.3.31).

From (11.3.20),

∂zF (z, ξ) =
1√

(u1 − u2)2 + v2
2

νS1 for all (z, ξ) ∈ R× R2.

Also, from (7.1.9), via an explicit calculation by using (2.2.9), c2 = ργ−1, and
D(ϕ1−ϕ2)
|D(ϕ1−ϕ2)| = νS1 , we have

∂zM0(0, 0, ξ) = −ρ2−γ
2 Dϕ2(ξ) · νS1 .

Furthermore, since F (0, ξ) ∈ S1 for any ξ ∈ R2 and P1 ∈ S1, then

Dϕ2(F (0, ξ))−Dϕ2(P1) = P1 − F (0, ξ)

= ((P1 − F (0, ξ)) · τ s1)τS1 = ((P1 − ξ) · τ s1)τS1 .

It follows that

∂zM0(0, 0, F (0, ξ)) = −ρ2−γ
2 Dϕ2(P1) · νS1 for all ξ ∈ R2.
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Also, using (7.1.9), (11.3.2), and νS1 = D(ϕ1−ϕ2)
|D(ϕ1−ϕ2)| , we have

M0(0, 0, ξ) =
(
ρ2Dϕ2(ξ)− ρ1Dϕ1(ξ)

)
· νS1

,

which implies
DξM0(0, 0, ξ) = −(ρ2 − ρ1)νS1

,

since Dϕ2(ξ) = (u2, v2)−ξ. From these expressions and (11.3.23), we find that,
for any ξ ∈ R2,

DzM1(0, 0, ξ) = DzM0(0, 0, F (0, ξ)) +DξM0(0, 0, F (0, ξ)) · ∂zF (0, ξ)

= −ρ2−γ
2 Dϕ2(P1) · νS1

− (ρ2 − ρ1)νS1
· ∂zF (0, ξ)

= −ρ2−γ
2 Dϕ2(P1) · νS1

− ρ2 − ρ1√
(u1 − u2)2 + v2

2

< −δ

for some δ > 0 depending only on (ρ0, ρ1, γ). In the last inequality above,
we have used that Dϕ2(P1) · νS1

> 0 by (7.1.6), and ρ2(θw) > ρ1 for each
θw ∈ [θs

w,
π
2 ] by Theorem 7.1.1, and that ρ2 depends continuously on θw on

[θs
w,

π
2 ]. Now (11.3.31) is proved.

From (11.3.1), we employ (8.1.14) and (11.3.25) to obtain

M1(Dψ,ψ, ξ) = 0 on Γshock. (11.3.32)

Finally, we write the boundary condition (11.3.32) in the (x, y)–coordinates.
Changing the variables in (11.3.32), we find that ψ(x, y) satisfies

B1(Dψ,ψ, x, y) = 0 on Γshock ∩ ∂Ωε0 , (11.3.33)

where ε0 is from Proposition 11.2.8, and

B1(p, z, x, y) =M1((P1,P2), z, (c2 − x) cos y, (c2 − x) sin y),

(P1,P2) = −p1(cos y, sin y) +
p2

c2 − x
(− sin y, cos y).

(11.3.34)

Then we obtain the homogeneity of B1. Indeed, by (11.3.27) and (11.3.34),

B1(0, 0, x, y) = 0 (11.3.35)

for any (x, y) ∈ R2 such that (0, 0, x, y) is in the domain of B1.
Furthermore, from (11.3.24) and since c2 ≥ (ρmin)

γ−1
2 > 0 for any θw ∈

[θs
w,

π
2 ], there exist δbc > 0 and C depending only on (ρ0, ρ1, γ) such that, for

any θw ∈ [θs
w,

π
2 ], B(·) is well-defined for (p, z, x, y) ∈ Bδbc

(0, 0, 0, yP1
), and

|(D,D2, D3)B1(p, z, x, y)| ≤ C (11.3.36)

if |(p, z, x)| ≤ δbc and |y − yP1 | ≤ δbc.
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Lemma 11.3.7. There exist δ̂bc > 0 and C depending only on (ρ0, ρ1, γ) such
that, for each θw ∈ [θs

w,
π
2 ],

Dp1B1(p, z, x, y) ≤ − 1

C
, (11.3.37)

Dp2B1(p, z, x, y) ≤ − 1

C
, (11.3.38)

DzB1(p, z, x, y) ≤ − 1

C
(11.3.39)

for all (p, z, x, y) ∈ R2 × R× R× R with |(p, z, x)| ≤ δ̂bc and |y − yP1
| ≤ δ̂bc.

Proof. Using the polar coordinates (r, θ) with center O2 as in (11.1.1) and re-
calling that |O2P1| = c2, we have

Dϕ2(P1) = O2 − P1 = −c2(cos θP1
, sin θP1

),

D⊥ϕ2(P1) = (∂ξ2 ,−∂ξ1)ϕ2(P1) = c2(− sin θP1
, cos θP1

).

Then, using (11.3.34), definition (11.1.2) of the (x, y)–coordinates, and xP1
= 0,

we have

Dp1
B1(0, 0, 0, yP1

) =
1

c2
DpM1(0, 0, P1) ·Dϕ2(P1),

Dp2
B1(0, 0, 0, yP1

) =
1

c22
DpM1(0, 0, P1) ·D⊥ϕ2(P1).

Then (11.3.37)–(11.3.38) follow from (11.3.28)–(11.3.29) and (11.3.36), and
(11.3.39) directly follows from (11.3.31), (11.3.34), and (11.3.36).

Furthermore, we note the following uniform obliqueness of the boundary
condition (11.3.33) for any admissible solution of Problem 2.6.1.

Lemma 11.3.8. There exist ε > 0 and C depending only on (ρ0, ρ1, γ) such
that the following holds: Let ϕ be an admissible solution for the wedge angle
θw ∈ [θs

w,
π
2 ). Express Ω and Γshock in the (x, y)–coordinates. Denote by ν(xy)

sh

the unit normal on Γshock pointing into Ω in the (x, y)–coordinates. Then

DpB1(Dψ,ψ, x, y) · ν(xy)
sh ≥ 1

C
for (x, y) ∈ Γshock ∩ ∂Ωε.

Proof. The assertion follows from (11.3.30) in Lemma 11.3.6, and smooth and
smoothly invertible change of variables: ξ 7→ (x, y) with bounds in the Ck–
norms independent of θw ∈ [θs

w,
π
2 ], where we have used c2(θw) ≥ 1

C for any
θw ∈ [θs

w,
π
2 ] and Lemma 11.2.6.

Lemma 11.3.9. There exist ε and C depending only on (ρ0, ρ1, γ) such that
any admissible solution ψ satisfies

∂xψ = b(∂yψ,ψ, x, y) on Γshock ∩ ∂Ωε, (11.3.40)
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where b(p2, z, x, y) is defined on R× R× R2 and satisfies

|(D,D2, D3)b(p2, z, x, y)| ≤ C on R× R× R2, (11.3.41)
b(0, 0, x, y) = 0 for all (x, y) ∈ R2. (11.3.42)

Proof. Recall that any admissible solution ψ satisfies (11.3.33). We obtain b(·)
first by solving (11.3.33) for p1 for each (p2, z, x, y) in an s–neighborhood of
(0, 0, xP1

, yP1
) with s > 0 uniform with respect to θw via using (11.3.35)–

(11.3.37). Then b(·) is defined on ball Bs((0, 0, xP1
, yP1

)) for each θw ∈ [θs
w,

π
2 ],

and satisfies (11.3.41)–(11.3.42) on its domain. Also, from Lemma 11.2.6, Propo-
sition 11.2.8, and Corollary 11.2.9, we obtain the existence of ε ∈ (0, ε0) such
that every admissible solution satisfies

(ψy(x, y), ψ(x, y), x, y) ∈ Bs((0, 0, xP1
, yP1

)) for all (x, y) ∈ Γshock ∩ ∂Ωε.

This shows that (11.3.40) holds. Finally, for each θw ∈ [θs
w,

π
2 ], we choose the

extension of b(·) to R × R × R2 satisfying (11.3.41)–(11.3.42) with C uniform
with respect to θw.

11.4 C2,α–ESTIMATES IN THE SCALED HÖLDER NORMS
NEAR Γsonic

In this section, we obtain the main estimates of this chapter – the regularity
estimates of both ψ = ϕ− ϕ2 and the shock curve {y = f̂(x)} near Γsonic.

To achieve these estimates, we will use the norms introduced in §4.6 by
(4.6.2). Moreover, we will use the following simplified notations:

‖u‖(par)
m,α,D := ‖u‖(2),(par)

m,α,D , Cm,α(par)(D) := Cm,α2,(par)(D).

Remark 11.4.1. From (4.6.2) with σ = 2, ‖u‖(par)
2,0,Ωε

<∞ implies ‖u‖C1,1(Ωε) <

∞. Thus, the estimates in the ‖ · ‖(par)
2,0,Ωε

–norm imply the C1,1–estimates.

Furthermore, for a function f ∈ C2((0, ε)), considered as f(x), norm ‖f‖(par)
2,α,(0,ε)

is defined as in (4.6.2) for σ = 2, with only the x–variable. Then δ
(par)
α (x, x̃)

becomes |x− x̃|α and, for I := (a, b) ⊂ (0, ε), norm ‖f‖(par)
2,α,I is defined as

‖f‖(par)
2,0,I :=

2∑

k=0

sup
x∈I

(
xk−2|∂kxf(x)|

)
,

[f ]
(par)
2,α,I := sup

x,x̃∈I,x6=x̃

((
min(x, x̃)

)α |∂2
xf(x)− ∂2

xf(x̃)|
|x− x̃|α

)
,

‖f‖(par)
2,α,I := ‖f‖(par)

2,0,I + [f ]
(par)
2,α,I .

(11.4.1)
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Remark 11.4.2. Note that, for I = (0, ε), estimate ‖f‖(par)
2,α,(0,ε) ≤ C implies the

estimate in the standard weighted Hölder norm ‖f‖(−2),{0}
2,α,(0,ε) ≤ C and the property

that f(0) = f ′(0) = 0. This follows directly from (11.4.1).

Now we make the main estimates. First we recall that f̂0 from (11.2.8) is
such that {y = f̂0(x)} is line S1 written in the (x, y)–coordinates near Γsonic.

From Proposition 11.2.8, for any θw ∈ (θs
w,

π
2 ], we have

Γ
(θw)
sonic = {(0, y) : θw < y < y

(θw)
P1
}, (11.4.2)

where y(θw)
P1
− θw > 0 for any θw ∈ (θs

w,
π
2 ], and y(θw)

P1
− θw → 0 as θw → θs

w+.

Proposition 11.4.3. There exists σ ∈ (0, ε02 ) depending only on (ρ0, ρ1, γ) and,
for any α ∈ (0, 1), there exists C > 0 depending only on (ρ0, ρ1, γ, α) such that
the following estimates hold: Let lso > 0. Define

ε = min{σ, l2so}. (11.4.3)

If θw ∈ [θs
w,

π
2 ) satisfies

y
(θw)
P1
− θw ≥ lso,

and ϕ is an admissible solution with the wedge angle θw, then ψ = ϕ − ϕ(θw)
2

satisfies
‖ψ‖(par)

2,α,Ωε
≤ C, (11.4.4)

and the shock function f̂(x) from (11.2.38) satisfies

‖f̂ − f̂ (θw)
0 ‖(par)

2,α,(0,ε) ≤ C, (11.4.5)

where f̂ (θw)
0 is the function from (11.2.8), and we have used norm (11.4.1).

Proof. Since we have obtained estimates (11.2.21), (11.2.23)–(11.2.24), and
(11.2.42) of (D(x,y)ψ,ψ), and estimate (11.2.43) for the ellipticity of equation
(11.1.4) with (11.1.5), the proof is similar to the one of Theorem 4.7.4, except for
the argument near Γshock, where the regularity is initially known only Lipschitz,
but on which the two Rankine-Hugoniot conditions (8.1.13)–(8.1.14) hold.

In the argument below, all constants σ, C, Ci, L, and λ are positive and
depend only on (ρ0, ρ1, γ). In some estimates, C depends on α ∈ (0, 1) in
addition to (ρ0, ρ1, γ), which is written as C(α). Also, from Lemma 9.2.2 and
Proposition 10.3.1, we have

ϕ, ψ ∈ C∞(Ωε \ Γsonic), f̂ ∈ C∞((0, ε]), (11.4.6)

where ε > 0 is from Proposition 11.2.8. We divide the proof into five steps.
1. We choose σ ∈ (0, ε02 ) so small that the results in §11.2, quoted below,

hold in Ω2σ defined by (11.2.16). Then σ depends only on (ρ0, ρ1, γ). We reduce
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σ below, if necessary, depending only on the same data. Let ε be defined by
(11.4.3).

For z := (x, y) ∈ Ωε and ρ ∈ (0, 1), define

R̃z,ρ :=
{

(s, t) : |s− x| < ρ

4
x, |t− y| < ρ

4

√
x
}
,

Rz,ρ := R̃z,ρ ∩ Ω2ε.
(11.4.7)

Then
Rz,ρ ⊂ Ω ∩ {(s, t) :

3

4
x < s <

5

4
x} ⊂ Ω2ε. (11.4.8)

In particular,
Rz,ρ ∩ Γsonic = ∅ for all z ∈ Ω2ε.

If σ is small, depending only on C in (11.2.40) (i.e., on (ρ0, ρ1, γ)), we con-
clude from Proposition 11.2.8 that, if ε is defined by (11.4.3), then, for any
z ∈ Ωε, at least one of the following three cases holds:

(i) z ∈ Rẑ,1/20 for Rẑ,1/10 = R̃ẑ,1/10;

(ii) z ∈ Rzw,1/4 for zw = (x, 0) ∈ Γwedge ∩ {0 < x < ε};

(iii) z ∈ Rzs,1/4 for zs = (x, f̂(x)) ∈ Γshock ∩ {0 < x < ε}.

Thus, it suffices to make the local and semi-local estimates of Dψ and D2ψ (i.e.,
up to the part of boundary) in the following rectangles with z0 := (x0, y0):

(i) Rz0,1/10 for z0 ∈ Ωε satisfying Rz0,1/10 = R̃z0,1/10;

(ii) Rz0,1 for z0 ∈ Γwedge ∩ {x < ε};

(iii) Rz0,1 for z0 ∈ Γshock ∩ {x < ε}.

Using Proposition 11.2.8, we see from (11.2.40) that

f̂(x) ≥ f̂(0) = yP1
≥ lso + θw for all x ∈ (0, ε).

Since ε ≤ l2so by (11.4.3), we obtain from (11.2.40) and (11.4.7) with ρ = 1 that

Rzw,1 ∩ Γshock = ∅ for all zw = (x, 0) ∈ Γwedge ∩ {x < ε},
Rzs,1 ∩ Γwedge = ∅ for all zs = (x, f̂(x)) ∈ Γshock ∩ {x < ε}.

(11.4.9)

Remark 11.4.4. The only place in the proof where the restriction that ε ≤ l2so
is used is for obtaining (11.4.9). However, this is a crucial restriction that does
not allow one to obtain the uniform estimates in Ωε with uniform ε > 0 up to
θs

w by using the method for proving Proposition 11.4.3.
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Furthermore, denoting
Qρ := (−ρ, ρ)2

and introducing variables (S, T ) by the invertible change of variables:

(x, y) = (x0 +
x0

4
S, y0 +

√
x0

4
T ), (11.4.10)

we find that there exists Q(z0)
ρ ⊂ Qρ such that rectangle Rz0,ρ in (11.4.7) is

expressed as

Rz0,ρ =

{
(x0 +

x0

4
S, ŷ0 +

√
x0

4
T ) : (S, T ) ∈ Q(z0)

ρ

}
. (11.4.11)

2. We first consider Case (i) in Step 1. Then

Q(z0)
ρ = Qρ for all ρ ∈ (0,

1

10
]

in (11.4.11). That is, for any ρ ∈ (0, 1
10 ],

Rz0,ρ =
{

(x0 +
x0

4
S, y0 +

√
x0

4
T ) : (S, T ) ∈ Qρ

}
. (11.4.12)

Rescale ψ in Rz0,1/10 by defining

ψ(z0)(S, T ) :=
1

x2
0

ψ(x0 +
x0

4
S, y0 +

√
x0

4
T ) for (S, T ) ∈ Q1/10. (11.4.13)

Then, by (11.2.44), we have
|ψ(z0)| ≤ L. (11.4.14)

Remark 11.4.5. By (11.2.44), we have

|ψ(z0)
S | ≤ L

2
, |ψ(z0)

T | ≤ L

2
√
x0

in Q1/10.

Note that we do not have the uniform Lipschitz bound for the rescaled function;
see the estimate of ψ(z0)

T above. Thus, unlike in the argument for Proposition
10.5.1, we will use the regularity estimates under the only assumption of the
L∞–bound of the solution below.

By Corollary 11.2.12, ψ satisfies the equation of form (11.1.6) in Rz0,1/10,
with coefficients (A

(mod)
ij , A

(mod)
i )(p, z, x) satisfying (11.2.46)–(11.2.47). Chang-

ing the variables to (S, T ) and dividing by 16x0, we see that ψ(z0) satisfies

2∑

i,j=1

A
(z0)
ij (Dψ(z0), ψ(z0), S, T )Dijψ

(z0)

+
2∑

i=1

A
(z0)
i (Dψ(z0), ψ(z0), S, T )Diψ

(z0) = 0 in Q1/10,

(11.4.15)
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where (D1, D2) = (DS , DT ), and

A
(z0)
ij (p1, p2, z, S, T ) := x

i+j
2 −2

0 A
(mod)
ij (4x0p1, 4x

3
2
0 p2, x

2
0z, x),

A
(z0)
i (p1, p2, z, S, T ) :=

1

4
x
i−1

2
0 A

(mod)
i (4x0p1, 4x

3
2
0 p2, x

2
0z, x),

(11.4.16)

where (x, y) = (x0(1 + S
4 ), y0 +

√
x0

4 T ), and (A
(z0)
ij , A

(z0)
i ) are independent of T .

From definitions (11.4.13) and (11.4.16), using Corollary 11.2.10 and prop-
erty (11.2.46), we have

λ

4
|κ|2 ≤

2∑

i,j=1

A
(z0)
ij (Dψ(z0)(S, T ), ψ(z0)(S, T ), S, T )κiκj ≤

4

λ
|κ|2 (11.4.17)

for all κ = (κ1, κ2) ∈ R2 and (S, T ) ∈ Q(z0)
1/10, where λ is from (11.2.43).

Furthermore, using (11.4.16) and (11.2.47), we have

‖(A(z0)
ij , A

(z0)
i )‖

L∞(R2×R×Q(z0)

1/10
)
≤ C,

‖D(p,z,S,T )(A
(z0)
ij , A

(z0)
i )‖

L∞(R2×R×Q(z0)

1/10
)
≤ C,

(11.4.18)

where C depends only on (ρ0, ρ1, γ), and we have used that ε depends also on
these parameters. Indeed, let (p, z, S, T ) ∈ R2 × R × Q(z0)

1/10. Then, using that

(x, y) = (x0(1 + S
4 ), y0 +

√
x0

4 T ) with |S| ≤ 1
10 in (11.4.16) so that x satisfies

0 ≤ x = x0(1 +
S

4
) ≤ x0(1 + x0) ≤ 2x0,

which especially implies that (x, y) ∈ Ω2ε if (S, T ) ∈ Q(z0)
1/10 with z0 = (x0, y0) ∈

Ωε, we find from (11.2.47) that

|A(z0)
11 (p, z, S, T )| = x−1

0 |A
(mod)
11 (4x0p1, 4x

3
2
0 p2, x

2
0z, x0(1 +

S

4
))| ≤ C,

|Dp1
A

(z0)
11 (p, z, S, T )| = 4|(Dp1

A
(mod)
11 )(4x0p1, 4x

3
2
0 p2, x

2
0z, x0(1 +

S

4
))| ≤ C,

DTA
(z0)
ij (p, z, S, T ) = 0.

The other estimates in (11.4.18) are also obtained similarly.

Moreover, ψ(z0) ∈ C∞(Q
(z0)
1/10) by (11.4.6).

Recalling that Q(z0)
1/10 = Q1/10 in the present case, we obtain, by (11.4.17)–

(11.4.18), that equation (11.4.15) and solution ψ(z0) satisfy the conditions of
Theorem 4.2.1 in Q1/10, where (4.2.4) is satisfied with any α ∈ (0, 1) in our
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case, since ‖DS(A
(z0)
ij , A

(z0)
i )‖L∞(R2×R×Q1/10) ≤ C. Then, using Theorem 4.2.1

and (11.4.14), we see that, for each α ∈ (0, 1),

‖ψ(z0)‖
C2,α(Q

(z0)

1/20
)

= ‖ψ(z0)‖C2,α(Q1/20) ≤ C(α). (11.4.19)

3. We then consider Case (ii) in Step 1. Let z0 = (x0, 0) ∈ Γwedge ∩{x < ε}.
Using Proposition 11.2.8 and (11.4.9), and assuming that ε is sufficiently small,
depending only on the data, we obtain that Rz0,1 ∩ ∂Ω ⊂ Γwedge so that, in
(11.4.11),

Q(z0)
ρ = Qρ ∩ {T > 0} for all ρ ∈ (0, 1],

i.e., for any ρ ∈ (0, 1],

Rz0,ρ =

{
(x0 +

x0

4
S, y0 +

√
x0

4
T ) : (S, T ) ∈ Qρ ∩ {T > 0}

}
. (11.4.20)

Define ψ(z0)(S, T ) by (11.4.13) for (S, T ) ∈ Q(z0)
1 = Q1 ∩ {T > 0}. Then, as

in Step 2, (11.4.14) holds in Q1 ∩ {T ≥ 0}. Moreover, by an argument similar
to Step 2, ψ(z0) satisfies equation (11.4.15) in Q1∩{T > 0} with the coefficients
in (11.4.16). Since ∂νψ = 0 on Γwedge, it follows that

∂Tψ
(z0) = 0 on {T = 0} ∩Q1.

Then, similarly to the arguments in Step 2, we obtain from Theorem 4.2.10 that,
for each α ∈ (0, 1),

‖ψ(z0)‖C2,α(Q1/2∩{T≥0}) ≤ C(α),

that is,
‖ψ(z0)‖

C2,α(Q
(z0)

1/2
)
≤ C(α). (11.4.21)

4. We now consider Case (iii). Using Proposition 11.2.8, we obtain that, for
each ρ ∈ (0, 1], domain Q(z0)

ρ from (11.4.11) in the present case is of the form:

Q(z0)
ρ =

{
(S, T ) ∈ Qρ : T < F (z0)(S)

}
, (11.4.22)

where F (z0)(S) = 4√
x0

(
f̂(x0 + x0

4 S) − f̂(x0)
)
. Then, using (11.2.40), we see

that, for any ρ ∈ (0, 1],

‖F (z0)‖C0,1([−ρ,ρ]) ≤ C
√
x0 ≤

1

10
, (11.4.23)

where the last inequality is obtained by choosing ε1 sufficiently small and re-
calling that ε ∈ (0, ε1].

From (11.4.23) and F (z0)(0) = 0, we obtain that, for any ρ ∈ (0, 1],

F (z0)(S) > −ρ
2

for all S ∈ (−ρ, ρ).



REGULARITY OF ADMISSIBLE SOLUTIONS NEAR THE SONIC ARC 427

This implies from (11.4.7) and (11.4.22) with a further reduction of ε1 if neces-
sary that

Q
(z0)
1 =

{
(S, T ) : −1 < S < 1, −1 < T < F (z0)(S)

}
(11.4.24)

and

Γ
(z0)
shock :=

{
(S, T ) : −1 < S < 1, T = F (z0)(S)

}
⊂ ∂Q(z0)

1 (11.4.25)

satisfy

dist(Γ(z0)
shock, ∂Q

(z0)
1 ∩ {T = −1}) ≥ 1

2
. (11.4.26)

As in Steps 2–3, in the present case, ψ(z0)(S, T ) defined by (11.4.13) satisfies
(11.4.14) in Q(z0)

1 . Moreover, similar to Step 2, ψ(z0) satisfies equation (11.4.15)
in Q(z0)

1 with the coefficients in (11.4.16).
By Lemma 11.3.9, ψ satisfies the boundary condition (11.3.40) with proper-

ties (11.3.41)–(11.3.42). Now it follows that ψ(z0) satisfies the following condi-
tion on the boundary part Γ

(z0)
shock defined in (11.4.25):

∂Sψ
(z0) =

√
x0b

(z0)(∂Tψ
(z0), ψ(z0), S, T ) on Γ

(z0)
shock, (11.4.27)

where
b(z0)(p2, z, S, T ) =

1

4x
3
2
0

b(4x
3
2
0 p2, x

2
0z, x, y) on Γ

(z0)
shock

for (x, y) = (x0(1 + S
4 ), y0 +

√
x0

4 T ).
From (11.3.41)–(11.3.42) on Ω2ε, it follows that b(z0) on Γ

(z0)
shock satisfies

‖b(z0)‖
C3(R×R×Γ

(z0)

shock)
≤ C. (11.4.28)

Thus, the right-hand side of (11.4.27):

B(z0)(∂Tψ
(z0), ψ(z0), S, T ) :=

√
x0 b

(z0)(∂Tψ
(z0), ψ(z0), S, T )

satisfies (4.2.15)–(4.2.17), where the small parameter in (4.2.16) in our case is√
x0, which is from the fact that B(z0)(·) =

√
x0 b(·) and (11.4.28). With this,

using structure (11.4.24) with (11.4.23) and (11.4.26) of domainQ(z0)
1 , employing

that (Âij , Âi) satisfy (11.4.18) in Q(z0)
1 , choosing σ in (11.4.3) sufficiently small,

and using 0 < x0 ≤ σ in (11.4.27), we can apply Theorem 4.2.4. Thus, from
(4.2.20), using also that ψ(z0) satisfies (11.4.14) onQ(z0)

1 which leads to a uniform
L∞(Q

(z0)
1 )–bound, we find from (4.2.20) that

‖ψ(z0)‖
C1,β(Q

(z0)

1/2
)
≤ C, (11.4.29)
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where β ∈ (0, 1) and C depend only on the bounds in the conditions of Theorem
4.2.4, i.e., on (ρ0, ρ1, γ).

This estimate allows us to improve the regularity of the free boundary Γ
(z0)
shock.

We note that, in Case (iii), definition (11.4.7) of Rz,ρ, combined with the prop-
erties that ϕ1 > ϕ in Ω (by Corollary 8.1.10) and ϕ = ϕ1 on Γshock, implies
that

φ̄ > 0 in Rz0,ρ, φ̄ = 0 on ∂Rz0,ρ ∩ Γshock, (11.4.30)

where φ̄ = ϕ1 − ϕ.
Define φ̄(z0)(S, T ) onQ(z0)

1 by (11.4.13) with φ̄ on the right-hand side (instead
of ψ). Then we obtain from (11.4.11), (11.4.24)–(11.4.25), and (11.4.30) that

φ̄(z0) > 0 in Q(z0)
1 ,

φ̄(z0) = 0 on Γ
(z0)
shock.

(11.4.31)

From Lemma 11.2.7, we have

|DT φ̄
(z0)| ≥ C−1x

− 3
2

0 , |Dφ̄(z0)| ≤ Cx−
3
2

0 on Q(z0)
1 . (11.4.32)

Now, from (11.4.31)–(11.4.32) and (11.4.24)–(11.4.25), we obtain

DSF
(z0)(S) = −DSφ̄

(z0)

DT φ̄(z0)
(S, F (z0)(S)) for S ∈ [−1, 1]. (11.4.33)

Note that φ̄ = φ̄0 −ψ, where function φ̄0(x, y) is defined by (11.2.2). Define
φ̄

(z0)
0 (S, T ) by (11.4.13) with φ̄0 on the right-hand side (instead of ψ). Then
φ̄(z0) = φ̄

(z0)
0 − ψ(z0). Since

|(D,D2, D3)φ̄0| ≤ C on Rz0,q,

where we have used the uniform bounds for the parameters of state (2) for
θw ∈ [θs

w,
π
2 ], and ε < c2

2 for each θw ∈ [θs
w,

π
2 ], then we have

[Dφ̄
(z0)
0 ]

0,β,Q
(z0)
1

≤ x
β−3

2
0 [Dφ̄0]0,β,Rz0,q ≤ Cx

β−3
2

0 .

Here we have assumed without loss of generality that ε < 1. Combining this
with (11.4.29), and using (11.4.32)–(11.4.33), we have

[DSF
(z0)]0,β,[− 1

2 ,
1
2 ] ≤

[DSφ̄
(z0)]

0,β,Q
(z0)
1

inf
Q

(z0)
1

|DT φ̄(z0)| +
‖DSφ̄

(z0)‖
L∞(Q

(z0)
1 )

(inf
Q

(z0)
1

|DT φ̄(z0)|)2
[DT φ̄

(z0)]
0,β,Q

(z0)
1

≤ Cx
3
2
0 [Dφ̄

(z0)
0 −Dψ(z0)]

0,β,Q
(z0)
1

≤ Cx
3
2
0 (x

β−3
2

0 + 1) ≤ C,

and, using (11.4.23),
‖DSF

(z0)‖C1,β([− 1
2 ,

1
2 ]) ≤ C. (11.4.34)
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Now we can apply Theorem 4.2.8, where the required regularity of the ingre-
dients of the equation and boundary conditions holds by (11.4.18) and (11.3.41),
and σ in (11.4.3) is reduced if necessary. Then, using (4.2.57) and the L∞(Q

(z0)
1 )–

bound of ψ(z0) which holds by (11.4.14) on Q(z0)
1 , we have

‖ψ(z0)‖
C2,β(Q

(z0)

1/3
)
≤ C. (11.4.35)

In particular, ‖ψ(z0)‖
C1,α(Q

(z0)

1/3
)
≤ C. Now, fixing α ∈ (0, 1), we can repeat the

argument for obtaining (11.4.35) from (11.4.29) with α instead of β to obtain

‖ψ(z0)‖
C2,α(Q

(z0)

1/4
)
≤ C(α). (11.4.36)

5. Combining estimates (11.4.19), (11.4.21), and (11.4.36) together, we ob-
tain

‖ψ(z0)‖
C2,α(Q

(z0)

1/100
)
≤ C(α) for all z0 ∈ Ωε \ Γsonic. (11.4.37)

Then Lemma 4.6.1 implies (11.4.4).
Since φ̄0(x, f̂0(x)) = 0 on (0, ε0) by (11.2.8), and (φ̄0 − ψ)(x, f̂(x)) = (ϕ1 −

ϕ)(x, f̂(x)) = 0 for all x ∈ (0, ε) by (11.2.38), then (11.4.5) holds by (11.4.4)
and the fact that |∂yφ̄0| ≥ 1

C on (0, ε0), which holds by (11.2.5). This completes
the proof.

Now Proposition 11.4.3 implies:

Proposition 11.4.6. Let θ∗w ∈ (θs
w,

π
2 ). There exists ε ∈ (0, ε02 ) depending only

on (ρ0, ρ1, γ, θ
∗
w) such that, for any α ∈ (0, 1), there exists C > 0 depending

only on (ρ0, ρ1, γ, α) so that, if ϕ is an admissible solution with the wedge angle
θw ∈ [θ∗w,

π
2 ), then ψ = ϕ − ϕ2 satisfies (11.4.4) and the shock function f̂(x)

from (11.2.38) satisfies (11.4.5).

Proof. Since y(θw)
P1

> θw for each θw ∈ [θ∗w,
π
2 ) and y

(θw)
P1

depends continuously
on θw ∈ [θ∗w,

π
2 ), then l∗ := minθw∈[θ∗w,

π
2 )(y

(θw)
P1
− θw) > 0. Therefore, we apply

Proposition 11.4.3 with lso = l∗ to conclude the proof.

For the wedge angles θw ∈ (θc
w,

π
2 ), where θc

w is the critical angle introduced
in Definition 10.4.1, we obtain the following global estimate:

Corollary 11.4.7. Let θ∗w ∈ (θc
w,

π
2 ). Let α be the constant determined in

Lemma 10.5.2, and ε0 in Proposition 11.2.8. Let ε ∈ (0, ε0]. Then there exists
C depending only on (ρ0, ρ1, γ, θ

∗
w, ε) such that, for any admissible solution ϕ

with θw ∈ [θ∗w,
π
2 ],

ϕext ∈ C1,α(Ω
ext

) ∩ C1,1(Ωext \ {P3}) ∩ C∞(Ωext \ (Γext
sonic ∪ {P3})),

‖ϕ‖(−1−α),{P3}
2,α,Ω\Ωε/10

+ ‖ϕ− ϕ2‖(par)
2,α,Ωε

≤ C,
(11.4.38)
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where we have used the notation introduced in Remark 8.1.3. Furthermore, the
shock function fO1,sh for Γext

shock, introduced in Corollary 10.1.3, satisfies

fO1,sh ∈ C1,1([θP1 , θP1
− ]) ∩ C∞((θP1 , θP1

−)),

‖fO1,sh‖C1,1([θP1
,θP1

− ]) ≤ Ĉ,
(11.4.39)

where Ĉ depends only on (ρ0, ρ1, γ, θ
∗
w).

Proof. We denote by ε∗ the small constant ε determined in Proposition 11.4.6.
Then ε∗ depends only on the data and θ∗w.

If ε ∈ (0, ε∗], then the estimate in (11.4.38) follows directly from Corollary
10.5.3 (applied with d = ε

2 ) and Proposition 11.4.6, by using (11.2.17).
Now let ε ∈ (ε∗, ε0]. Note that, for any function v,

‖v‖(par)
2,α,Ωε

≤ C
(
‖v‖(par)

2,α,Ωε∗
+ ‖v‖2,α,Ωε\Ωε∗/2

)
,

where constant C depends only on ε and ε∗. Combining this with (11.4.38) for
ε∗, we obtain (11.4.38) for ε, with C depending on ε, in addition to the data and
θ∗w. Then we conclude the estimate in (11.4.38) for all ε ∈ (0, ε0]. To conclude
the proof of (11.4.38), it remains to show that ϕext ∈ C∞(Ωext \ (Γext

sonic∪{P3})).
Near Γext

shock, this is shown in (10.5.2) of Proposition 10.5.1. Away from the
shock, this is obtained via a similar argument, by using the standard interior
estimates (recalling that ϕext satisfies the potential flow equation in Ωext, i.e.,
across Γsym; see Remark 8.1.3), and the estimates for the oblique derivative
problem near the flat boundary Γext

wedge away from P3.
Now we prove (11.4.39). We work in domain Ωext. We first show that there

exists r > 0 depending on the data such that

|Dk
ξϕ| ≤ Ĉ on Nr(Γext

shock) ∩ Ωext, k = 0, 1, 2, (11.4.40)

where C depends only on the data and θ∗w. For k = 0, 1, the estimates follow
from (9.1.5). Thus, it suffices to prove (11.4.40) for k = 2.

We apply (10.5.2) with d = ε∗

10 , and set r to be equal to constant s in
Proposition 10.5.1, which corresponds to d = ε∗

10 . This proves (11.4.40) for the
points that are ε∗

10–away from Γsonic. Then we employ (11.4.4) with ε = ε∗ to
complete the proof of (11.4.40), where we have used the fact that (11.4.4) implies
that ‖ψ‖C1,1(Ω∗ε) ≤ C in the (x, y)–coordinates, and hence in the ξ–coordinates,
since the norms of the coordinate transformation depend only on the parameters
of state (2), i.e., on the data.

Now the estimate in (11.4.39) follows from (11.4.40), combined with Lemma
10.1.1, and by using that Γext

shock = {ϕ1 − ϕ = 0} as shown in Remark 8.1.3 and
that ϕ1 is a smooth fixed function.
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11.5 THE REFLECTED-DIFFRACTED SHOCK IS C2,α NEAR P1

In this section, we fix θ∗w ∈ (θs
w,

π
2 ) and use ε from Proposition 11.4.6 corre-

sponding to θ∗w.
We note that the reflected-diffracted shock P0P1P2 has a flat segment P0P1,

which lies on line S1. In the (x, y)–coordinates (11.1.1)–(11.1.2) near Γsonic (from
both sides of it), S1 is a graph of a smooth function y = f̂0(x) on −ε < x < ε;
see (11.2.8) for a more precise statement. Also, by (11.2.8), Γshock = {(0, y) :

θw < y < f̂0(x)} and P1 = (0, f̂0(x)) in the (x, y)–coordinates.
On the other hand, Γshock∩∂Ωε is a graph of a function f̂ near Γsonic, which

is contained within {0 < x < ε}, as shown in Proposition 11.2.8. Moreover,

f̂0(0) = f̂(0), f̂ ′0(0) = f̂ ′(0), (11.5.1)

by Proposition 11.4.6.
Thus, the C2,α–regularity of P0P1P2 at and near P1 with α ∈ (0, 1

2 ) follows
from the following:

Proposition 11.5.1. Extend f̂ to (−ε, ε) by defining f̂(x) = f̂0(x) for x ∈
(−ε, 0]. For any θ∗w ∈ (θs

w,
π
2 ), there exists ε > 0 and, for each α ∈ (0, 1

2 ), there
exists C = C(θ∗w, α) such that, for any admissible solution ϕ with θw ∈ [θ∗w,

π
2 ),

the extended function f̂ satisfies that f̂ ∈ C2,α([−ε, ε]) and

‖f̂‖C2,α([−ε,ε]) ≤ C for any α ∈ (0, 1
2 ). (11.5.2)

Proof. Fix θ∗w ∈ (θs
w,

π
2 ). In this proof, constants C and ε depend on the data

and θ∗w. We use the same notations (ϕ1, ϕ2) for these functions expressed in the
(x, y)–coordinates. Choose some ε ∈ (0, ε0) to be adjusted later. We divide the
proof into three steps.

1. First, we show that f̂ is twice differentiable at x = 0. From Proposition
11.4.6, it follows that f̂ ∈ C1,1([0, ε])∩C2((0, ε]), and (11.5.1) holds. Moreover,

(ϕ1 − ϕ2)(x, f̂0(x)) = 0, (ϕ1 − ϕ)(x, f̂(x)) = 0 for all x ∈ (0, ε), (11.5.3)

and

|∂y(ϕ1 − ϕ2)| ≥ 1

C
in {θw < θ < θQ − δ} ∩ {−ε < x < ε},

|(ϕ− ϕ2)(x, y)| ≤ Cx2 in Ωε,

|Dx(ϕ− ϕ2)(x, y)|+ x−
1
2 |Dy(ϕ− ϕ2)(x, y)| ≤ Cx in Ωε,

|Dxy(ϕ− ϕ2)(x, y)|+ x−
1
2 |Dyy(ϕ− ϕ2)(x, y)| ≤ C√x in Ωε,

‖f̂‖C1,1([0,ε]) ≤ C,

(11.5.4)

by (11.2.5) and (11.4.4). Then we subtract the two equalities in (11.5.3) to
obtain that, for all x ∈ (0, ε),

(ϕ1 − ϕ2)(x, f̂0(x))− (ϕ1 − ϕ2)(x, f̂(x)) = (ϕ2 − ϕ)(x, f̂(x)), (11.5.5)
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which implies
|f̂0(x)− f̂(x)| ≤ Cx2 on x ∈ [0, ε) (11.5.6)

if ε is small, by employing the first and second estimates in (11.5.4). Now, dif-
ferentiating (11.5.5) and performing estimates similar to the previous argument
by using (11.5.4) and (11.5.6), we have

|f̂ ′0(x)− f̂ ′(x)| ≤ Cx 3
2 + C|∂x(ϕ− ϕ2)(x, f̂(x))| on x ∈ [0, ε). (11.5.7)

Since ϕ is an admissible solution, it follows that ψ = ϕ−ϕ2 satisfies the boundary
condition (11.3.33). Also, from (11.3.35),

B1(0, 0, x, y) = 0 for all (x, y) ∈ Bε(P1). (11.5.8)

Then, applying Lemma 11.3.7, noting that estimate (11.4.4) holds for small ε
depending on the data and θ∗w by Proposition 11.4.6, and using (11.3.36) and
reducing ε if necessary, we have

a1(x, y)ψx + a2(x, y)ψy + a0(x, y)ψ = 0 on Γshock ∩ {0 < x < ε},

where ai ∈ C0,1(Ωε) with ‖ai‖C0,1(Ωε)
≤ C for i = 0, 1, 2, and a1 ≤ − 1

C on
{0 < x < ε}. Thus, on Γshock ∩ {0 < x < ε},

|ψx| ≤ C
(
|ψy|+ |ψ|

)
≤ Cx 3

2 .

Therefore, from (11.5.7),

|f̂ ′0(x)− f̂ ′(x)| ≤ Cx 3
2 on x ∈ [0, ε). (11.5.9)

This implies that f̂ ′0(x)− f̂ ′(x) has the (right) derivative at x = 0, which is zero.
Since f̂0 is smooth on (−ε0, ε0), it follows that f̂ , extended as described above,
is twice differentiable at x = 0, and

f̂ ′′(0) = f̂ ′′0 (0). (11.5.10)

2. We now show f̂ ∈ C2([−ε, ε]). For this, using (11.5.10) and the smooth-
ness f̂0 ∈ C∞(−ε, ε) and f̂ ∈ C∞(0, ε), it suffices to show that

lim
x→0+

(
f̂ ′′(x)− f̂ ′′0 (x)

)
= 0.

Differentiating (11.5.5) twice and performing the estimates as in the proof of
(11.5.7), by using (11.5.4) and (11.5.6)–(11.5.7), we have

|f̂ ′′0 (x)− f̂ ′′(x)| ≤ C√x+ C|D2(ϕ− ϕ2)(x, f̂(x))| on x ∈ [0, ε). (11.5.11)

We now show that
|D2ψ(x, f̂(x))| ≤ C√x.
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From (11.4.4), this estimate holds for ψxy and ψyy. Thus, it remains to consider
ψxx. Differentiating (11.5.8), we have

D(x,y)B1(0, 0, x, y) = 0 for all (x, y) ∈ Bε(P1).

Then, writing (11.3.33) as

B1(D(x,y)ψ,ψ, x, f̂(x))−B1(0, 0, x, f̂(x)) = 0 on {0 < x < ε}

with (D(x,y)ψ,ψ) = (D(x,y)ψ,ψ)(x, f̂(x)), differentiating with respect to x, and
employing (11.3.36) and (11.4.4)–(11.4.5) for small ε, we have

2∑

i,j=1

bij(x)Dijψ +
2∑

i=1

bi(x)Diψ + b0(x)ψ = 0 on Γshock ∩ {0 < x < ε0},

(11.5.12)
where (D1, D2) = (Dx, Dy), (bij , bi) ∈ C0,1([0, ε]) with

‖(bij , bi)‖C0,1([0,ε]) ≤ C,

and b11(x) = Dp1M̂(D(x,y)ψ(x, f̂(x)), ψ(x, f̂(x)), x, f̂(x)). Using (11.4.4), we
see that |(D(x,y)ψ,ψ)(x, f̂(x))| ≤ Cx. Thus, reducing ε if necessary and using
Lemma 11.3.7, we obtain that b11(x) ≤ − 1

C . Then we have

|ψxx| ≤ C(|D(ψy, ψ)|+ |ψ|) ≤ C√x at (x, f̂(x)).

Thus, by (11.5.11), |f̂ ′′0 (x) − f̂ ′′(x)| ≤ C
√
x. This implies that f̂ ∈ C2([−ε, ε]),

as shown above.
3. Now we show that f̂ ∈ C2,α([−ε, ε]) for each α ∈ (0, 1

2 ). For that, it
suffices to prove that f̂ ∈ C2,α([0, ε]), since f̂ ∈ C2([−ε, ε]) and f̂ = f̂0 ∈
C∞([−ε, 0]).

Differentiating (11.5.5) twice, we see that f̂ ∈ C2,α([0, ε]) follows, provided
that the function:

x 7→ (Dψ,D2ψ)(x, f̂(x)) is in C0,α([0, ε]). (11.5.13)

Now we prove (11.5.13). From Proposition 11.4.6, it follows that (Dψ,Dψy) ∈
C0,α(Ωε) for each α ∈ (0, 1

2 ), with the estimates in these spaces by the constants
depending only on (ρ0, ρ1, γ, α, θ

∗
w). Since f̂ ∈ C2([0, ε]), we conclude that the

functions:

x 7→ (Dψ(x, f̂(x)), Dψy(x, f̂(x))) are in C0,α([0, ε]).

Then we express ψxx(x, f̂(x)) from equation (11.5.12) with

‖(bij , bi)‖C0,1([0,ε]) ≤ C(ρ0, ρ1, γ, α, θ
∗
w), b11(x) ≤ −λ,

where λ = λ(ρ0, ρ1, γ) > 0. Then the C0,α([0, ε])–regularity of ψxx(x, f̂(x))
follows, with the uniform estimate in this space. Now (11.5.13) is proved. This
completes the proof.
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Remark 11.5.2. From the proof above, it follows that the dependence of con-
stants (ε, C) on θ∗w in (11.5.2) is only from the dependence of estimate (11.4.4)
on θ∗w, obtained by an application of Proposition 11.4.6.

11.6 COMPACTNESS OF THE SET OF ADMISSIBLE
SOLUTIONS

In Corollary 9.2.5, it has been shown that, from every sequence of admissible
solutions of Problem 2.6.1, we can extract a subsequence converging uniformly
on compact subsets of R2 to a weak solution of Problem 2.6.1. In this section,
we show that the limit is still an admissible solution of Problem 2.6.1. For
this purpose, we always fix θ∗w ∈ (θc

w,
π
2 ) for θc

w defined in Definition 10.4.1.
We use the a priori estimates for admissible solutions of Problem 2.6.1,

collected in Corollary 11.4.7.

Proposition 11.6.1. Let {ϕ(i)} be a sequence of admissible solutions with the
wedge angles θ(i)

w ∈ [θ∗w,
π
2 ) satisfying θ(i)

w → θ
(∞)
w ∈ [θ∗w,

π
2 ]. Then

(i) There exists a subsequence {ϕ(ij)} converging uniformly on compact sub-
sets of Λ(∞) to a function ϕ(∞) ∈ C0,1

loc (Λ(∞)), where the convergence is
understood in the sense of Remark 9.2.4. Moreover, ϕ(∞) is an admissible
solution of Problem 2.6.1 for the wedge angle θ(∞)

w if θ(∞)
w ∈ [θ∗w,

π
2 ), and

the normal reflection solution if θ(∞)
w = π

2 .

(ii) Ω(ϕ(ij))→ Ω(ϕ(∞)) in the Hausdorff metric.

(iii) If ξij ∈ Ω(ϕ(ij)) and ξij → ξ∞, then ξ∞ ∈ Ω(ϕ(∞)) and

ϕ(ij)(ξij )→ ϕ(∞)(ξ∞), Dϕ(ij)(ξij )→ Dϕ(∞)(ξ∞),

where Dϕ(ij)(ξij ) := lim
ξ∈Ω(ij),ξ→ξij

Dϕ(ij)(ξ) for ξij ∈ Γ
(ij)
shock, and

Dϕ(∞)(ξ∞) for ξ∞ ∈ Γ∞shock is defined similarly.

Proof. We use the notations that Ω(i) := Ω(ϕ(i)) and Ω(∞) := Ω(ϕ(∞)), and
divide the proof into three steps.

1. The convergence: Ω(ij) → Ω(∞) in the Hausdorff metric follows from
Corollary 9.2.5(i)–(ii) and the continuity of the parameters of state (2) in θw.
This implies assertion (ii). Next, we prove assertion (i).

By Corollary 9.2.5, there exists a subsequence {ϕ(ij)} converging uniformly
on any compact subset of Λ(∞) to a function ϕ(∞) ∈ C0,1

loc (Λ(∞)) that is a weak
solution of Problem 2.6.1 for the wedge angle θ(∞)

w .
Estimate (11.4.4) in Proposition 11.4.6 implies that ψ(∞) ∈ C1,1(Ω

(∞)
ε ) with

Dψ(∞) = 0 on Γsonic. Then ϕ(∞) ∈ C1,1(Ω
(∞)
ε ) and Dϕ(∞) = Dϕ

(∞)
2 on Γ

(∞)
sonic,



REGULARITY OF ADMISSIBLE SOLUTIONS NEAR THE SONIC ARC 435

which is arc P1P4 (here and below, points P0, P1, . . . are for angle θ(∞)
w ). We

also note that the parameters of state (2), as well as points {P1, P4}, depend
continuously on θw ∈ [θs

w,
π
2 ].

When θ
(∞)
w ∈ [θ∗w,

π
2 ), we use the continuous dependence of P0 on θw ∈

[θs
w,

π
2 ) to conclude that ϕ(∞) = ϕ

(∞)
2 on P0P1P4.

When θ(∞)
w = π

2 , from the continuous dependence of the parameters of state
(2) and point P1 on θw ∈ (θs

w,
π
2 ], it follows that lines Sij1 converge to the

vertical line through P1|θw=π
2
, so that Sij1 converge to the reflected shock of

the normal reflection. It follows from the argument above that, when θ(∞)
w = π

2 ,
ϕ(∞) = ϕ

(∞)
2 in the unbounded domain Ω

(∞)
(2) between the two vertical lines: The

vertical wall ξ1 = 0 and the reflected shock in the normal reflection, bounded
from below by the sonic arc Γ

(∞)
sonic of the normal reflection.

Also, for any θ(∞)
w ∈ [θ∗w,

π
2 ], it follows from the above argument that ϕ(∞)

is C1,1 across Γ
(∞)
sonic.

Combining this with the other properties stated in Corollary 9.2.5 and Propo-
sition 10.6.1, we conclude that ϕ(∞) satisfies conditions (i)–(ii) of Definition
8.1.1.

Condition (iii) of Definition 8.1.1 for ϕ(∞) follows from the uniform ellipticity
estimates of Corollary 9.6.6 for {ϕ(ij)}, combined with (9.2.27) and the fact that
Ω(ij) → Ω(∞) in the Hausdorff metric.

When θ(∞)
w ∈ [θ∗w,

π
2 ), conditions (iv)–(v) of Definition 8.1.1 for ϕ(∞) follow

from the fact that these conditions are satisfied by each ϕ(ij), combined with
the uniform convergence ϕ(ij) → ϕ(∞) and eS1

(θ
(ij)
w )→ eS1

(θ
(∞)
w ). This proves

that ϕ(∞) is an admissible solution when θ(∞)
w ∈ [θ∗w,

π
2 ).

When θ(∞)
w = π

2 , the equality:

eS1 = − (v2, u1 − u2)√
(u1 − u2)2 + v2

2

in (7.5.8), the continuous dependence of the parameters of state (2) on θw ∈
(θs

w,
π
2 ], and the fact that u2 = v2 = 0 for θw = π

2 together imply that

eS1(θ(ij)
w )→ −eξ2 .

Thus, from the monotonicity properties of ϕ(ij) stated in Definition 8.1.1(v)
and the uniform convergence ϕ(ij) → ϕ(∞) on any compact subset of Ω(∞) \
Γ

(∞)
wedge (which follows from the convergence in Remark 9.2.4), it follows that the

continuous function ϕ1 − ϕ(∞) in Ω(∞) is monotonically non-increasing in any
direction e = (a, b) with a < 0. This implies that ϕ1 − ϕ(∞) is a function of ξ1
in any ball Br(ξ0) ⊂ Ω(∞):

(ϕ1 − ϕ(∞))(ξ1, ξ2) = η(ξ1) in Br(ξ0).
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Let φ(∞) = ϕ(∞) + |ξ|2
2 . Using (2.2.17), we have

(ϕ(∞) − ϕ1)− φ(∞) =
|ξ|2
2
− ϕ1 = −u1ξ1 + const.

It follows that equation (2.2.11) for ϕ(∞) still holds when φ(∞) is replaced by
ϕ(∞) − ϕ1. Then

(
c2 − (ϕ

(∞)
ξ1

)2
)
η′′(ξ1) = 0 in Br(ξ0),

where c2 = c2(|Dϕ(∞)|2, ϕ(∞), ργ−1
0 ), and we have used function (1.14). Since

we have proved above that ϕ(∞) satisfies Definition 8.1.1(iii), then

η′′(ξ1) = 0 in Br(ξ0).

Also, Ω∞ is open and connected, since ϕ(∞) satisfies Definition 8.1.1(i), as shown
above. We conclude that

ϕ1 − ϕ(∞) = A+Bξ1 in Ω(∞).

Thus, ϕ(∞) is a uniform state in Ω(∞). In particular, ϕ(∞) − ϕ(norm)
2 is a linear

function of ξ in Ω(∞). Since ϕ(∞) is C1,1 across arc Γ
(∞)
sonic as shown above, and

ϕ(∞) = ϕ
(norm)
2 in Ω

(∞)
(2) , it follows that the linear function ζ := ϕ(∞) − ϕ(norm)

2

satisfies
(ζ,Dζ) = (0,0) on Γ

(∞)
sonic.

From this and the fact that Γsonic is an arc, we obtain that ζ ≡ 0, so that
ϕ(∞) = ϕ

(norm)
2 in Ω(∞). Combining this with ϕ(∞) = ϕ

(norm)
2 in Ω

(∞)
(2) implies

that ϕ(∞) is the normal reflection solution. This completes the proof of assertion
(i).

2. It remains to prove assertion (iii). We note that, from Corollary 11.4.7,

‖ϕ(ij)‖
C1,α(Ω(ij))

≤ C.

Let points ξij and ξ∞ be as in (iii). Then ξ∞ ∈ Ω(∞) by assertion (ii).
Consider first Case ξ∞ ∈ Ω(∞). Then, using (ii) above, we conclude that

there exists R > 0 such that BR(ξ∞) ⊂ Ω(∞) and BR(ξij ) ⊂ Ω(ij) for all
sufficiently large j. Then, defining Ψ(ij)(ξ) = ϕ(ij)(ξ − ξij ), we have

‖Ψ(ij)‖
C1,α(BR(0))

≤ C.

Using that ξij → ξ∞, and ϕ(ij) → ϕ∞ uniformly on compact subsets of Λ∞,
we see that Ψ(ij) → Ψ∞ in C1,α2 (BR/2(0)). Then Ψ(ij)(0) → Ψ(∞)(0) and
DΨ(ij)(0)→ DΨ(∞)(0) which imply

(ϕ(ij), Dϕ(ij))(ξij )→ (ϕ(∞), Dϕ(∞))(ξ∞).
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Next, consider Case ξ∞ ∈ Γ
(∞)
wedge. Then there exists R > 0 such that

B2R(ξij ) ∩ ∂Ω(∞) ⊂ Γ
(ij)
wedge and dist(ξij ,Γ

(ij)
wedge) < R

100 for all j > N , where

N is sufficiently large. Using that Γ
(ij)
wedge is a straight line, there exists C > 0

such that ϕ(ij) can be extended from Ω(ij) ∩ BR(ξij ) to BR(ξij ) so that the

extended function ϕ(ij)
ext satisfies

‖ϕ(ij)
ext ‖C1,α(BR(ξij ))

≤ C‖ϕ(ij)‖
C1,α(Ω(ij)∩BR(ξij ))

≤ Ĉ (11.6.1)

for all j > N . By possibly selecting a further subsequence (without change of
notations), we conclude that ϕ(ij)

ext converges in C1,α2 on the compact subsets of
BR(ξ∞). Denote the limit as ϕ(∞)

ext . Then ‖ϕ(ij)
ext ‖C1,α(BR(ξij ))

≤ Ĉ, by (11.6.1).

Note that, from the uniform convergence ϕ(ij) → ϕ(∞) on compact subsets of
Λ(∞), ϕ(∞)

ext = ϕ(∞) on Ω(∞) ∩ BR(ξ∞). Then we can argue as in the previous
case.

Cases ξ∞ ∈ Γ
(∞)
sym and ξ∞ ∈ Γ

(∞)
sonic are treated similarly. In the latter case,

we use that Γ
(ij)
sonic is an arc with radius c(ij)2 ≥ 1

Ĉ
for all ij by the continuous

dependence of the parameters of state (2) on θw, and that we may assume
without loss of generality that R ≤ 1

100Ĉ
. Case ξ∞ ∈ Γ

(∞)
shock is considered

similarly by employing estimate (11.4.39) for each Γ
(ij)
shock.

3. It remains to consider the case that ξ∞ is a corner point of Ω(∞).
When ξ∞ = P2

(∞), Γ
(∞)
shock and Γ

(∞)
sym meet at ξ∞. Thus, there exists R > 0

such that ξij ⊂ BR/10(P2
(ij)) and B2R(P2

(ij))∩∂Ω(ij) ⊂ Γ
(ij)
shock∪{P2

(ij)}∪Γ
(ij)
sym

for all j > N , where N is sufficiently large. Extending ϕ(ij) in (Ωext)(ij) by even
reflection as in Remark 8.1.3 and using Proposition 10.5.1, we can extend ϕ(ij)

from (Ωext)(ij) ∩BR(P2
(ij)) to BR(P2

(ij)) so that

‖ϕ(ij)
ext ‖C1,α(BR(P2

(ij)))
≤ C‖ϕ(ij)

ext ‖C1,α((Ωext)(ij)∩BR(P2
(ij)))

= C‖ϕ(ij)‖
C1,α(Ω(ij)∩BR(P2

(ij)))
≤ Ĉ

for all j > N . Then we can argue as in the previous cases.
When ξ∞ = P3

(∞), Γ
(∞)
wedge and Γ

(∞)
sym meet at ξ∞. Thus, there exists R > 0

such that ξij ⊂ BR/10(P3
(ij)) and B2R(P3

(ij))∩∂Ω(ij) ⊂ Γ
(ij)
wedge∪{P3

(ij)}∪Γ
(ij)
sym

for all ij > N , where N is sufficiently large. Since Γ
(ij)
sym is a segment on {ξ2 = 0}

and Γ
(ij)
wedge is a segment of the straight line that meets Γ

(ij)
sym at angle π− θ(ij)

w ∈
[π2 , π − θ∗w] and θ∗w > 0, we can extend ϕ(ij) from Ω(ij) ∩BR(P3

(ij)) to half-disc
BR(P3

(ij)) ∩ {ξ2 > 0}, and then to BR(P3
(ij)), so that

‖ϕ(ij)
ext ‖C1,α(BR(P3

(ij)))
≤ C‖ϕ(ij)

ext ‖C1,α(BR(P3
(ij))∩{ξ2>0})

≤ CC1‖ϕ(ij)‖
C1,α(Ω(ij)∩BR(P3

(ij)))
≤ Ĉ
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for all ij > N . Then we can argue as in the previous cases.
When ξ∞ = P1

(∞) and ξ∞ = P4
(∞), we use the (x, y)–coordinates near

Γsonic, introduced in §11.1, where we note that the C3–norms of the coordinate
transform and its inverse depend only on the parameters of state (2) and hence
are uniformly bounded for all θ(i)

w . Also, in the (x, y)–coordinates, Γ
(ij)
sonic is a

segment of line {x = 0} and Ω(ij) ⊂ {x > 0}. Then there exists R > 0 such
that B2R(P1

(ij))∩ ∂Ω(ij) ⊂ Γ
(ij)
shock ∪{P1

(ij)}∪Γ
(ij)
sonic and B2R(P4

(ij))∩ ∂Ω(ij) ⊂
Γ

(ij)
wedge ∪{P4

(ij)}∪Γ
(ij)
sonic for all j > N , where N is sufficiently large. Let ε be as

in Proposition 11.2.8. For each j > N , we extend the shock function f̂ = f̂ (ij)

defined in Proposition 11.2.8 to (−ε, ε) by setting f̂ (ij)
ext = f̂

(ij)
0 on [−ε, 0), where

f̂0 = f̂
(ij)
0 is the function from (11.2.8). Define

(Ωext
ε )(ij) = {(x, y) : −ε < x < ε, θw < y < f̂

(ij)
ext (x)}.

By Proposition 11.2.8,

Ω(ij)
ε = (Ωext

ε )(ij) ∩ {x > 0}.
Also, extend ϕ(ij) into (Ωext

ε )(ij) by even reflection in the (x, y)–coordinates, i.e.,
by setting ϕ(ij)

ext (x, y) = ϕ
(ij)
2 (−x, y) on (Ωext

ε )(ij) ∩ {x < 0}. From Proposition
11.4.6, we find that ϕ(ij)

ext ∈ C1,1((Ωext
ε )(ij)), f (ij)

ext ∈ C1,1((−ε, ε)), and there
exists C > 0 such that, for each j > N ,

‖ϕ(ij)
ext ‖C1,1((Ωext

ε )(ij))
+ ‖f (ij)

ext ‖C1,1((−ε, ε)) ≤ C.

Also, P1
(ij) = (0, f̂

(ij)
0 (0)) ∈ ∂(Ωext

ε )(ij) and P4
(ij) = (0, θ̂

(ij)
w ) ∈ ∂(Ωext

ε )(ij).
Thus, choosing R < ε

2 , we have

B2R(P1
(ij)) ∩ ∂(Ωext

ε )(ij) = {−2R < x < 2R, y = f
(ij)
ext (x)},

B2R(P4
(ij)) ∩ ∂(Ωext

ε )(ij) = {−2R < x < 2R, y = θw}.

Then we can further extend ϕ
(ij)
ext into B2R(P1

(ij)) and B2R(P4
(ij)) with the

uniform estimate:

‖ϕ(ij)
ext ‖C1,1(B2R(P1

(ij)))
+ ‖ϕ(ij)

ext ‖C1,1(B2R(P4
(ij)))

≤ Ĉ for each j > N.

Now Cases ξ∞ = P1
(∞) and ξ∞ = P4

(∞) can be considered similar to the
previous cases.

Corollary 11.6.2. Fix (ρ0, ρ1, γ) and θ∗w ∈ (θc
w,

π
2 ). For any ε, σ > 0, there

exists δ̂ > 0 such that, for any admissible solution ϕ with θw ∈ [θ∗w,
π
2 − σ],

(ϕ− ϕ2) ≥ δ̂ in Ω \ Nε(Γsonic), (11.6.2)

∂eS1
(ϕ1 − ϕ) ≤ −δ̂ in Ω \ Nε(Γsonic), (11.6.3)

∂ξ2(ϕ1 − ϕ) ≤ −δ̂ in Ω \ Nε(Γsym). (11.6.4)
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Proof. In fact, (11.6.2) follows from Proposition 11.6.1, property (9.1.2), and
Corollary 8.2.7(ii); (11.6.3) follows from Proposition 11.6.1, property (9.1.2),
and Proposition 8.2.6; and (11.6.4) follows from Proposition 11.6.1, property
(9.1.2), and Proposition 8.2.8.

We focus on the proof of (11.6.3), since the arguments for the other assertions
are similar. Let (11.6.3) be false for some σ, ε > 0. Then, for each i = 1, 2, . . . ,
there exists an admissible solution ϕ(i) with the wedge angle θ(i)

w ∈ [θ∗w,
π
2 − σ]

such that

∂eS1
(ϕ1 − ϕ(i))(ξi) ≥ −

1

i
for some ξi ∈ Ω(ϕi) \ Nε(Γ(i)

sonic).

From (9.1.2) and Proposition 11.6.1, there exists a subsequence ij such that
θ

(ij)
w → θ

(∞)
w ∈ [θ∗w,

π
2 − σ], functions ϕ(ij) converge as in Proposition 11.6.1(i)

to an admissible solution ϕ(∞) for the wedge angle θ(∞)
w , properties (ii)–(iii)

in Proposition 11.6.1 hold, and ξij → ξ∞ ∈ Ω(ϕ(∞)) \ Nε(Γ(∞)
sonic). Then, by

Proposition 11.6.1(iii), ∂eS1
(ϕ1−ϕ(∞))(ξ∞) ≥ 0, which contradicts Proposition

8.2.6.



Chapter Twelve

Iteration Set and Solvability of the

Iteration Problem

In this chapter, we develop an iteration procedure and solve the iteration prob-
lem which, combined with the arguments in the next chapter, leads to the
existence of an admissible solution for Problem 2.6.1.

12.1 STATEMENT OF THE EXISTENCE RESULTS

In this and the next chapter, we give a proof of the following existence assertion:

Proposition 12.1.1. Let γ > 1 and ρ1 > ρ0 > 0. Let θc
w be the corresponding

critical wedge angle as defined in Definition 10.4.1. Then, for any θw ∈ (θc
w,

π
2 ),

there exists an admissible solution of Problem 2.6.1.

In order to prove Proposition 12.1.1, it suffices to prove the existence of
admissible solutions with the wedge angles θw ∈ [θ∗w,

π
2 ) for each θ∗w ∈ (θc

w,
π
2 ).

Thus, for the rest of this and the next chapter, we always fix θ∗w ∈ (θc
w,

π
2 ).

12.2 MAPPING TO THE ITERATION REGION

We first discuss the procedure of the mapping of an admissible solution ϕ for
the wedge angle θw ∈ (θ∗w,

π
2 ) in the subsonic domain Ω to a function u on a unit

square Qiter. This procedure is invertible in the sense that, given θw ∈ (θ∗w,
π
2 )

and a function u on the unit square Qiter, which satisfy the conditions that
(u, θw) ∈ S where S ⊂ C1,α(Qiter) × [θ∗w,

π
2 ] is introduced in Definition 12.2.6,

we are able to recover both domain Ω and the corresponding function ϕ in Ω.
We later define the iteration set as a subset of S.

For a given (ϕ, θw), define u := (ϕ− ϕ̃2) ◦ F, where ϕ̃2 = ϕ̃
(θw)
2 is the appro-

priately modified version of ϕ(θw)
2 , and F : Qiter → Ω is a C1,α–diffeomorphism.

We will define F in two steps through F−1 = F(2,gsh) ◦ F1. Here F1 is a C∞–
mapping, independent of the particular admissible solution but depending on
θw, so that F1 is defined on a set Qbd(θw) ⊂ Λ(θw) such that Ω ⊂ Qbd(θw) for
any admissible solution ϕ for the wedge angle θw. Moreover, for any admissible
solution ϕ with angle θw,

F1(Ω) = {(s, t) : 0 < s < ŝ(θw), 0 < t < gsh(s)}



ITERATION SET AND SOLVABILITY OF THE ITERATION PROBLEM 441

with F1(Γsonic) = ∂F1(Ω) ∩ {s = 0} and F1(Γshock) = ∂F1(Ω) ∩ {t = gsh(s)},
among other properties. This mapping F(2,gsh) depends on ϕ and is of the
C1,α–regularity.

Now we define the mappings and functions, discussed above, and show their
properties.

12.2.1 Definition and properties of F1

From Definition 8.1.1, the elliptic region Ω of any admissible solution ϕ lies
within the subregion in Λ, whose boundary consists of lines Γwedge, S1, and
Γsym, and arc Γsonic. In principle, we need to define an appropriate coordinate
mapping in this region. However, in fact, it is more convenient to define it in a
slightly larger region. In the definition above, we replace line S1 = {ϕ1−ϕ2 = 0}
by the line:

S1,δ∗ = {ϕ1 − ϕ2 = −δ∗} (12.2.1)

for small δ∗ > 0 chosen below. The precise construction is as follows:
Fix a wedge angle θw ∈ (θs

w,
π
2 ]. Let Q be the point defined in Definition

11.2.1. Since the parameters of state (2) depend smoothly on θw ∈ [θs
w,

π
2 ], and

(11.2.3) holds for any θw ∈ [θs
w,

π
2 ], there exists δ∗ > 0 such that

{ϕ2 < ϕ1 + 2δ∗} ∩Λ∩Nε1(Γsonic)∩ {0 < x < ε} ⊂ {θw < θ < θQ− δ} (12.2.2)

for any θw ∈ (θs
w,

π
2 ], where ε and ε1 are the same as those in Lemma 11.2.2,

and we have used the same polar and (x, y)–coordinates as in §11.2.
Note that, from the definition of Q, it follows that (ϕ1 −ϕ2)(Q) < 0. Then,

with the choice of δ∗ as above, for each θw ∈ (θs
w,

π
2 ], line S1,δ∗ = S1,δ∗(θw) is

parallel to S1(θw) and intersects with the sonic circle of state (2) at two points.
Let P̂1 be the point of intersection that is the nearest to P1, which lies between
P1 and Q:

P̂1 is the unique intersection point of S1,δ∗(θw) with ∂Bc2(O2)

satisfying 0 < θw = θP4 < θP1 < θP̂1
< θQ − δ.

(12.2.3)

Denote by Γ
(δ∗)
sonic the smaller arc P̂1P4, i.e., Γ

(δ∗)
sonic = ∂Bc2(O2)∩{θP4

< θ < θP̂1
}.

Note that
Γsonic ⊂ Γ

(δ∗)
sonic.

Definition 12.2.1. Q = Q(δ∗) denotes the subset of Λ, whose boundary consists
of lines Γwedge, S1,δ∗ , and Γsym, and arc Γ

(δ∗)
sonic.

Note that
Q ⊂ {ϕ2 < ϕ1 + δ∗} ∩ Λ. (12.2.4)

Then the corner points of ∂Q include {P̂1, P3, P4}.
Note also that Q may be unbounded, which happens when eS1

·eξ2 ≥ 0. We
then restrict Q to

Qbd := Q∩ {ξ1 > −10C}, (12.2.5)
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where C is from (9.1.2). In fact, it is possible that Q ⊂ {ξ1 > −10C}, in which
case, Qbd = Q.

The main reason to restrict Q to Qbd is the fact that sets Qbd ≡ Q(θw)
bd are

uniformly bounded with respect to θw ∈ [θs
w,

π
2 ]. Specifically, there exists C1 > 0

depending only on the data so that

Q(θw)
bd ⊂ [−10C, ξ0

1 ]× [0, C1] for all θw ∈ [θs
w,
π

2
], (12.2.6)

where ξ0
1 is the location of the incident shock, defined in (2.2.18), and C is from

(12.2.5).
To show (12.2.6), we first note that Λ ⊂ {ξ1 < ξ0

1 , ξ2 > 0} for any θw, so
that

Q(θw)
bd ⊂ [−10C, ξ0

1 ] ∩ {ξ2 > 0}.
Next, we consider θw ∈ [θd

w,
π
2 ). Then, using (7.1.4), (7.5.8), and v2 = u2 tan θw,

we have
eS1
· νw =

1√
(u1 − u2)2 + v2

2

( u2

cos θw
− u1 cos θw

)
.

We show that the last expression is positive. From (7.5.6), noting that |P3O1| =
u1 and ∠O1P3O2 = θw ∈ (θ∗w,

π
2 ), we obtain that |P3O2| > u1 cos θw. Also,

O2 = (u2, u2 tan θw) and P3 = (0, 0), so that |P3O2| = u2

cos θw
. Thus, u2

cos θw
−

u1 cos θw > 0, which implies that eS1
· νw > 0. From this and the fact that νw

is the interior normal on Γwedge to Λ, we have

S1,δ∗ ∩ Λ = {P0,δ∗ + τeS1 : τ > 0}, (12.2.7)

where P0,δ∗ is the point of intersection of S1,δ∗ with line {ξ2 = ξ1 tan θw}. It
follows from (7.5.8) that, if u1 ≥ u2, then

Q(θw)
bd ⊂ [−10C, ξ0

1 ]× [0, max
P∈Γ

(δ∗)
sonic

ξ2(P )].

Since the parameters of state (2) depend continuously on θw ∈ [θs
w,

π
2 ], then

there exists C1 such that

max
P∈Γ

(δ∗)
sonic

ξ2(P ) ≤ v2 + c2 ≤ C1 for any θw ∈ [θs
w,

π
2 ].

From (7.2.15), there exists σ > 0 depending only on the data, so that u1 > u2

for θw ∈ [π2 − σ, π2 ]. Since u2, v2 > 0 for θw ∈ [θs
w,

π
2 ) and depend continuously

on θw, there exists δ > 0 such that v2 ≥ δ for θw ∈ [θs
w,

π
2 − σ]. Now, using the

explicit form of eS1 in (7.5.8) and the fact that point P̂0
(θw)

= (ξ0
1 , ξ

0
1 cot θw + δ∗

v2
)

lies on S1,δ∗ , we find that, for θw ∈ [θs
w,

π
2 − σ] such that u2(θw) > u1,

Q(θw)
bd ⊂ [−10C, ξ0

1 ]× [0, ξ0
1 cot θw +

δ∗

v2
+ (10C + ξ0

1)
u2 − u1

v2
].
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From the discussion above, we conclude that

ξ0
1 cot θw +

δ∗

v
(θw)
2

+ (10C + ξ0
1)
u

(θw)
2 − u1

v
(θw)
2

is bounded on θw ∈ [θs
w,

π
2 − σ]. This completes the proof of (12.2.6) for θw ∈

[θs
w,

π
2 ). Next, the continuity of the parameters of state (2) and point (ξ̃1, 0) up

to θw = π
2 in Lemma 7.2.1 allows us to extend (12.2.6) to all θw ∈ (θs

w,
π
2 ].

From Definition 8.1.1(iv) and Proposition 9.1.2, we find that, for any admis-
sible solution,

Ω ⊂ Q ∩BC(0) ⊂ Qbd.

We use the (x, y)–coordinates near Γ
(δ∗)
sonic as in §11.1, constant ε1 from

Lemma 11.2.2, and constant ε0 from Proposition 11.2.8. For ε ∈ (0, ε0], de-
note

D(θw)
δ∗,ε

:= {ϕ2 < ϕ1 + δ∗} ∩ Λ ∩Nε1(Γ
(δ∗)
sonic) ∩ {0 < x < ε}

≡ Q ∩Nε1(Γ
(δ∗)
sonic) ∩ {0 < x < ε},

(12.2.8)

where ϕ2 and Γ
(δ∗)
sonic correspond to the wedge angle θw. Using (12.2.2) and

following the proof of (11.2.8) in Lemma 11.2.2, we obtain that there exists
f̂0,δ∗ ∈ C∞([0, ε0]) such that Dδ∗,ε0 is of the form:

Dδ∗,ε0 = {(x, y) : 0 < x < ε0, θw < y < f̂0,δ∗(x)},
S1,δ∗ ∩Nε1(Γ

(δ∗)
sonic) ∩ {0 < x < ε0}

= {(x, y) : 0 < x < ε0, y = f̂0,δ∗(x)}.
(12.2.9)

Now we introduce the following change of coordinates:

Lemma 12.2.2. There exist δ > 0, C > 0, a smooth and strictly positive
function ŝ : (θs

w,
π
2 ] 7→ R (defined explicitly by ŝ(θw) := |P3P4| ≡

√
u2

2 + v2
2 +c2),

a one-to-one map

F1 ≡ F (θw)
1 : Qbd

(θw) 7→ [0, ŝ(θw)]× [0,∞) for each θw ∈ (θs
w,

π
2 ],

and a smooth function g : R × R 7→ R such that, reducing ε0 depending only
on the data, we obtain that, for each θw ∈ (θs

w,
π
2 ], the following holds with

(F1,Qbd) = (F
(θw)
1 ,Q(θw)

bd ):

(i) F1(Qbd) is open, F1(∂Qbd) = ∂F1(Qbd), and there exists a continuous
function η ≡ η(θw) : [0, ŝ(θw)] 7→ R+ such that

F1(Qbd) =
{

(s, t) : 0 < s < ŝ(θw), 0 < t < η(s)
}
, (12.2.10)

and the rescaled functions: t 7→ η(θw)( s
ŝ(θw) ) depend on θw ∈ [θs

w,
π
2 ] con-

tinuously in the C([0, 1])–norm.
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(ii) ‖F1‖C3(Qbd) + ‖F−1
1 ‖C3(F1(Qbd)) ≤ C, and |detD(F−1

1 )| ≥ 1
C in F1(Qbd)

for each θw ∈ [θs
w,

π
2 ].

(iii) Smooth dependence on θw: Set Q∪bd := ∪θw∈(θs
w,
π
2 ]Q(θw)

bd ×{θw} is open and
bounded in R2× (θs

w,
π
2 ], and the map: (ξ, θw) 7→ F

(θw)
1 (ξ) is in C∞(Q∪bd).

Set F1(Q∪bd) := ∪θw∈(θs
w,
π
2 ]F

(θw)
1 (Q(θw)

bd )×{θw} is open and bounded in R2×
(θs

w,
π
2 ], and the map: ((s, t), θw) 7→ (F

(θw)
1 )−1(s, t) is in C∞(F1(Q∪bd)).

(iv) F1(P ) = (xP , yP−yP4
) for all P ∈ D(θw)

δ∗, 3ε0/4
, where we have used notation

(12.2.8). In particular,

F1(P1) = (0, yP1
− yP4

), F1(P4) = (0, 0),

F1(Γsonic) = {s = 0, 0 < t < yP1 − yP4}.

Also, F1(Qbd \ D(θw)
δ∗, 3ε0/4

) = F1(Qbd) ∩ {s ≥ 3ε0
4 }.

(v) F1(P3) = (ŝ(θw), 0). Moreover, for any P = (ξ1P , 0) ∈ ∂Qbd ∩ {ξ2 = 0}
with ξ1P ≤ 0, F1(P ) = (ŝ(θw), g(θw)(ξ1P )) and g satisfies that g ∈ C3(R×
R), g(θw)(0) = 0, and (g(θw))′ ≤ −δ on R for each θw.

(vi) F1(P ) = |P − P1| for all P ∈ Γwedge, and F1(Γwedge) = {(s, 0) : s ∈
(0, ŝ(θw))}. Moreover, et ·νw ≥ δ on Γwedge, where we have used notation
(12.2.11).

(vii) ∂φ1(F−1
1 (s,t))
∂t ≤ −δ for any (s, t) ∈ F1(Qbd).

(viii) et · νsh ≤ −δ on Γshock(ϕ) for any admissible solution ϕ.

(ix) νw = as(P )es(P ) + at(P )et(P ) with as(P ) ≤ 0 and at(P ) > 0 for any
P ∈ Γwedge.

Here φ1 = ϕ1 + |ξ|2
2 ≡ ϕ1 − ϕ0, and (s, t) denote the coordinates of points in

F1(Qbd) ⊂ (0, ŝ(θw))× (0,∞). Also, we have defined

es(F
−1
1 (s, t)) =

∂sF
−1
1∣∣∂sF−1
1

∣∣ (s, t), et(F
−1
1 (s, t)) =

∂tF
−1
1∣∣∂tF−1
1

∣∣ (s, t) (12.2.11)

for all (s, t) ∈ F1(Qbd). Then, by (i)–(ii), the C2 vector fields {es, et} in Qbd

are defined.

Proof. Note that, since φ1 = u1ξ1 + const., property (vii) is equivalent to:

∂F−1
1 (s, t)

∂t
· eξ1 ≤ −δ̂ for any (s, t) ∈ F1(Qbd). (12.2.12)

Now we divide the proof into two steps.
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1. In this step, we show that, to construct such a transformation in Qbd, it
suffices to construct two unit vector fields {es(·), et(·)} in the larger domain Q
defined above, for each θw, such that

‖(es, et)‖C3(Q) ≤ N, (12.2.13)

es and et are C∞ functions of (ξ, θw) ∈ ∪θw∈(θs
w,
π
2 ]Q(θw) × {θw}, (12.2.14)

|es · e⊥t | ≥ δ in Q, (12.2.15)

es ≡ ex, et ≡ ey in D(θw)
δ∗, 3ε0/4

, (12.2.16)

es = −τw, et · νw ≥ δ on Γwedge = P3P4, (12.2.17)
(es, et) = −(τw, eξ1) on ∂Q∩ {ξ2 = 0}, (12.2.18)

es(ξ) · νS1 ≥ δ
(
dist(ξ,Γwedge) +m(

π

2
− θw)

)
, es · eξ2 ≤ −δ in Q,

(12.2.19)

et · νS1
< 0 on S1,δ∗ ∩Q, (12.2.20)

et(P ) · eξ1(P ) ≤ −δ̂ for all P ∈ Q, (12.2.21)
{es, et} satisfy assertions (viii)–(ix). (12.2.22)

Here N , δ, and δ̂ are positive constants, {ex(·), ey(·)} is the basis for the (x, y)–
coordinates in Nε1(Γ

(δ∗)
sonic) (i.e., the unit vectors in the negative-radial and angu-

lar directions with respect to O2), m(·) is from Lemma 11.2.2, νw is the interior
unit normal on Γwedge to Λ defined by (7.1.4), and τw is the unit vector along
Γwedge in the direction from P3 to P4, i.e., (8.2.17). Also, νS1 = D(ϕ1−ϕ2)

|D(ϕ1−ϕ2)| .
Indeed, assume that the vector fields {es, et} satisfying (12.2.13)–(12.2.22)

are constructed. Then, from the properties of es in (12.2.16)–(12.2.17) and
(12.2.19), it follows that the integral curves of the vector field es can exit Q
only through ∂Q∩{ξ2 = 0}. Using Q ⊂ {ξ2 > 0} and, once again, the property
that es · eξ2 ≤ −δ in Q in (12.2.19), we conclude that every integral curve of
es passing through any point P ∈ Q necessarily exits Q at a finite point. This
implies that the integral curves of es passing through the points in ∂Q∩{ξ2 = 0}
cover Q. In particular, since Γwedge is an integral curve of es by (12.2.18), there
exists ξ0

1 < 0 such that the integral curves of es originating in the points in
{(ξ1, 0) : ξ0

1 < ξ1 < 0} coverQbd. Let Q̂ be the union of all these integral curves
within Q. Then Q̂ is a bounded domain by (12.2.19) and the boundedness of
Qbd. Also, Qbd ⊂ Q̂, and ∂Q̂ consists of Γwedge, Γ

(δ∗)
sonic, {(ξ1, 0) : ξ0

1 < ξ1 < 0},
and a segment P̂1P̂ of S1,δ∗ , where P̂ ∈ S1,δ∗ is such that either P̂ = (ξ0

1 , 0) or
ξ2P̂ > 0 in which case ∂Q̂ also contains a segment of integral curve of es with
one endpoint at (ξ0

1 , 0) and another endpoint P̂ . We denote this segment by Γg.
Then, denoting νΓg the unit normal to Γg, interior for Q̂, we obtain that, from
(12.2.15) and (12.2.18),

et · νΓg ≤ −δ < 0 on Γg. (12.2.23)
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Now we consider the integral curves of et. By (12.2.16)–(12.2.18), (12.2.20),
(12.2.23), and the structure of ∂Q̂, it follows that these integral curves can enter
Q̂ only through Γwedge = P3P4. Also, since region Q̂ is bounded, it follows from
(12.2.21) that, for every P ∈ Q̂, the integral curve of et passing through P must
enter Q̂ at some point of ∂Q̂, and hence at some point of P3P4. It follows that
the connected segments of integral curves of et originating at all points Z ∈ P3P4

cover Q̂ . Then, for each Z ∈ P3P4, we set s := |ZP4| on the integral curve
originating at Z. Since et is non-characteristic on Γwedge by (12.2.17), then,
using the standard properties of ODEs and the smooth dependence of solutions
on the initial data and parameters which hold by (12.2.13)–(12.2.14), we obtain
that ‖s(θw)(·)‖

C3(Q̂(θw))
≤ C, and the function: (P, θw) 7→ s(θw)(P ) is C∞ on

Q∪bd, where C depends on the data, N , and δ.
Next, we assign the value of t to the integral curves of es originating at the

points in Z ∈ {(ξ1, 0) : ξ0
1 < ξ1 < 0} and lying within Q̂. From the discussion

above and the definition of domain Q̂, these curves cover Q̂. Combining this
with (12.2.16), using that vectors ex are orthogonal to arc Γ

(δ∗)
sonic so that this arc

is non-characteristic for es, and employing the fact that line {ξ2 = 0} is non-
characteristic for es uniformly with respect to θw which is seen by combining
(12.2.18) with

τw · eξ2 = sin θw ≥ sin θd
w =: δ1 > 0,

we conclude that there exists ξ̂1 ∈ (ξ0
1 , 0) such that, for each ξ∗1 ∈ (ξ̂1, 0), the

integral curve of es originating at P = (ξ∗1 , 0) intersects arc Γ
(δ∗)
sonic at a point P ∗

and that, defining g(ξ∗1) = θP∗ − θw so that g(ξ∗1) + θw = g(ξ∗1) + yP4 is the y–
coordinate of P ∗, it follows that g ∈ C∞([ξ̂1, 0]) and satisfies g(0) = 0 and g′ ≤
−δ2 < 0 for some δ2 > 0 that depends smoothly on θw ∈ [θs

w,
π
2 ] and hence can be

chosen independently of θw ∈ [θs
w,

π
2 ] by taking the minimum. Moreover, using

that the vector field es depends smoothly on (ξ, θw) by (12.2.14) and employing
the non-characteristic properties of Γ

(δ∗)
sonic and line {ξ2 = 0} with respect to

es discussed above, we conclude that the function: (ξ1, θw) 7→ g(θw)(ξ1) is in
C∞(∪θw∈[θs

w,
π
2 ][ξ̂

(θw)
1 , 0]×{θw}). Then, extending g(·)(·) to a function in C∞(R×

R) satisfying (g(θw))′(·) ≤ − δ2 on R for each θw ∈ [θs
w,

π
2 ], we set t = g(θw)(ξ1)

on the integral curve originating at (ξ1, 0) with ξ0
1 < ξ1 < 0, which determines a

smooth function t(θw)(P ) on Q̂(θw) satisfying that ‖t(θw)(·)‖
C3(Q̂(θw))

≤ C, and
function (P, θw) 7→ t(θw)(P ) is C∞ on Q∪bd, where we have again used (12.2.13)–
(12.2.14) and the non-characteristic properties of line {ξ2 = 0} with respect to
es.

Now we define

F1(P ) = (s(P ), t(P )) for P ∈ Qbd.

Since Q̂ is covered by both the connected segments of et–integral curves
originating on Γwedge = P3P4 (which are non-characteristic for et) and the
connected segments of es–integral curves exiting Q̂ through {(ξ1, 0) : ξ0

1 <
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ξ1 < 0} (which are non-characteristic for es), it follows from (12.2.15) that
each es–integral curve intersects with any et–integral curve at most once in
Q̂. Indeed, if an s–curve and a t–curve have two intersection points Z1 and
Z2 within Q̂, then, from the property of the s–curves and t–curves mentioned
above, it follows that the whole segment between Z1 and Z2 of the s–curve lies
within Q̂ and that there exists a point Ẑ on this segment at which some t–curve
is tangential to this s–curve. Then (12.2.15) is violated at Ẑ.

Thus, F1 is one-to-one on Q̂. Then, from (12.2.13)–(12.2.15) and the prop-
erties of the s– and t–integral curves discussed above, it follows that assertions
(ii)–(iii) hold and that (12.2.11) holds for the vector fields {es, et} given in this
step and map F defined above. Assertions (iv)–(vii) follow directly from the
corresponding properties of {es, et} and function g(θw)(·), as well as the rules of
assigning values of s and t to the corresponding integral curves of es and et as
described above. Specifically, (iv) follows from (12.2.16); (v) follows from the
properties of g(θw)(·) shown above; (vi) follows from (12.2.17); (vii) is equivalent
to (12.2.12), which follows from (12.2.21).

It remains to show that (i) holds. Using that Qbd ⊂ Q̂ and Γwedge ⊂ ∂Qbd,
it follows that Qbd is covered by the integral curves of et entering through
Γwedge. Moreover, from (12.2.5), it follows that ∂Qbd consists of Γ

(δ∗)
sonic, Γwedge,

{(ξ1, 0) : a < ξ1 < 0} for some a ∈ [−10C, 0), and curve Γexit in Λ connecting P̂1

and point (a, 0). To describe curve Γexit, we note that the point of intersection
of line S1,δ∗ with the vertical line ξ1 = −10C has coordinates (−10C, ξ∗2) for
some ξ∗2 ∈ R. If ξ∗2 ≤ 0, then line S1,δ∗ intersects line {ξ2 = 0} within {(ξ1, 0) :
ξ1 ∈ [−10C, 0)}, i.e., at a point (a, 0) with a ∈ [−10C, 0) and, in this case, curve
Γexit is the segment of line S1,δ∗ between points P̂1 and (a, 0). If ξ∗2 > 0, then
a = −10C, and Γexit consists of the segment of line S1,δ∗ between points P̂1

and (−10C, ξ∗2), and the segment of line {ξ1 = −10C} between points (−10C, 0)
and (−10C, ξ∗2). Then, from assertions (iv)–(vi), combined with (12.2.17) and
(12.2.20)–(12.2.21), it follows that each integral curve of et inQbd enters through
Γwedge, exists through Γexit, and intersects each of these boundary curves only
once, and that these intersections are transversal. This and assertion (iii) imply
(i).

2. It remains to construct {es, et} satisfying (12.2.13)–(12.2.22). We con-
struct these vector fields separately near Γ

(δ∗)
sonic (denoted by {e(1)

s , e
(1)
t }) and away

from Γ
(δ∗)
sonic (denoted by {e(2)

s , e
(2)
t }), and then glue {e(1)

s , e
(1)
t } with {e(2)

s , e
(2)
t }

by a smooth interpolation.
Let Q be the point introduced in Definition 11.2.1. Then we note that

the vector fields {e(1)
s , e

(1)
t } = {ex, ey} in domain {θw < θ < θQ} ∩ {0 <

x < ε0} satisfy (12.2.13)–(12.2.17) from their definitions, the first inequal-
ity in (12.2.19), (12.2.20) by (11.2.5), and (12.2.21) by (11.2.7). The sec-
ond inequality in (12.2.19) follows from (12.2.21) by rotating both vectors in
(12.2.21) by π

2 clockwise, where we use the explicit form of {e(1)
s , e

(1)
t }. Also,

from the second estimate of (11.2.37), property (viii) holds for e
(1)
t = ey in
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{θw < θ < θQ} ∩ {0 < x < ε0} after reducing ε0 if necessary. Also, prop-
erty (ix) holds since νw = ey = e

(1)
t . Thus, {e(1)

s , e
(1)
t } = {ex, ey} in do-

main {θw < θ < θQ} ∩ {0 < x < ε0} satisfy (12.2.13)–(12.2.17) and (12.2.19)–
(12.2.22).

Now we construct {e(2)
s , e

(2)
t }. We note that νw ∈ Cone0(eS1

, eξ2) by Lemma
8.2.11, so that {e(2,1)

s , e
(2,1)
t } := {−τw,νw} satisfy properties (viii) and (ix) of

map F1, where we have used Corollary 8.2.10, (8.2.19), and the compactness
argument by using Proposition 11.6.1 to obtain (viii). It is easy to see that
{e(2,1)
s , e

(2,1)
t } also satisfy (12.2.13)–(12.2.15), (12.2.17), and (12.2.19)–(12.2.21),

but do not satisfy (12.2.18).
On the other hand, {e(2,2)

s , e
(2,2)
t } := {−τw,−eξ1} satisfy (12.2.13)–(12.2.15),

(12.2.17)–(12.2.19), (12.2.21), and (ix), but do not necessarily satisfy (12.2.20)
and property (viii) of map F1. Indeed, if (12.2.20) holds for e

(2,2)
t = −eξ1 , then

rotating vectors νS1
and −eξ1 by π

2 clockwise, we obtain that eS1
· eξ2 < 0. It

is possible that eS1
· eξ2 ≥ 0 for sufficiently small θw. In such a case, rotat-

ing vectors eS1 and eξ2 by π
2 counterclockwise, we obtain that −eξ1 · νS1 ≥ 0,

i.e., (12.2.20) does not hold. However, in this case, we see from (12.2.7) that
S1,δ∗ ∩ Q ⊂ {ξ2 > ξ2P0

}. Thus, (12.2.20) holds on S1,δ∗ ∩ Q ⊂ {ξ2 ≤ ξ2P0
} for

all θw. Also, if eS1 · eξ2 ≥ 0, then −eξ1 /∈ Cone0(eS1 , eξ2), so that it is not clear
whether property (viii) of map F1 holds. On the other hand, for any admissible
solution, since Γext

shock ∩ {ξ2 = 0} = {P2} and νsh(P2) = (1, 0) = eξ1 , we employ
the uniform estimates (10.5.1) to conclude that there exists δ > 0 such that, for
every admissible solution, e(2,2)

t · νsh = (−eξ1) · νsh ≤ − 1
2 in {0 ≤ ξ2 < δ}. We

also note that e(2,2)
t · τw = (−eξ1) · τw = − cos θw < 0.

Thus, we have shown that {e(2,1)
s , e

(2,1)
t } satisfy all the required properties in

{ξ2 > δ
2}, and {e

(2,2)
s , e

(2,2)
t } satisfy all the required properties in {0 ≤ ξ2 < δ}.

Now we employ the cutoff function η ∈ C∞(R) satisfying 0 ≤ η ≤ 1 on R,
η ≡ 1 on ( 3δ

4 ,∞), and η ≡ 0 on (−∞, δ4 ), and define that, for all ξ1 ∈ R, ξ2 > 0,

(e(2)
s , e

(2)
t )(ξ) = η(ξ2)(e(2,1)

s , e
(2,1)
t ) + (1− η(ξ2))(e(2,2)

s , e
(2,2)
t ).

Then {e(2)
s , e

(2)
t } satisfy (12.2.13)–(12.2.15) and (12.2.17)–(12.2.21), as well as

properties (viii) and (ix) of map F1, where we have used that e(2,1)
s = e

(2,2)
s in

the proof of (12.2.15).
Using (12.2.9), we can combine {e(1)

s , e
(1)
t } with {e(2)

s , e
(2)
t } by interpolation

within domainQ∩Nε1(Γ
(δ∗)
sonic)∩{ ε02 < x < ε0}, working in the (x, y)–coordinates,

in the following way:
Let ζ ∈ C∞(R) satisfy 0 ≤ ζ ≤ 1 on R, ζ ≡ 0 on ( 8ε0

9 ,∞), and ζ ≡ 1 on
(−∞, 7ε0

9 ). We define that, for any (x, y) ∈ Q ∩Nε1(Γ
(δ∗)
sonic) ∩ {0 < x < ε0},

(es, et)(x, y) := ζ(x)(e(1)
s , e

(1)
t )(x, y) + (1− ζ(x))(e(2)

s , e
(2)
t )(x, y);
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otherwise,
(es, et)(ξ) := (e(2)

s , e
(2)
t )(ξ).

These vector fields satisfy (12.2.13)–(12.2.21) and properties (viii) and (ix) of
map F1. This follows directly from the properties of {e(1)

s , e
(1)
t } and {e(2)

s , e
(2)
t },

so that we need only to comment on the proof of (12.2.15).
On Γ

(δ∗)
sonic, the unit vectors e

(1)
s = ex are in Cone(ex(P̂1), ex(P4)), which is

convex. We note that ex(P4) = −τw. Since e
(2)
s = −τw, then es on Γ

(δ∗)
sonic

also varies within Cone(ex(P̂1), ex(P4)). On the other hand, since e
(1)
t = ey

are the unit vectors in the counterclockwise tangential to the Γ
(δ∗)
sonic–directions

(with ey(P4) = νw) and e
(2)
t = νw on Γ

(δ∗)
sonic, it follows that et on Γ

(δ∗)
sonic varies

within the convex cone Cone(ey(P̂1), ey(P4)). It is easy to see that, for any
e ∈ Cone(ex(P̂1), ex(P4)) and g ∈ Cone(ey(P̂1), ey(P4)), |e · g⊥| ≥ δ|e| |g|
holds for δ = cos(∠P4O2P̂1) > 0. Then (12.2.15) follows on Γ

(δ∗)
sonic with constant

δ = cos(∠P4O2P̂1). Thus, for sufficiently small ε0, property (12.2.15) holds with
δ = 1

2 cos(∠P4O2P̂1) in Q ∩ Nε1(Γ
(δ∗)
sonic) ∩ {0 < x < ε0}. Since cos(∠P4O2P̂1)

and ε0 chosen above depend smoothly on θw ∈ [θs
w,

π
2 ], we can choose δ > 0

such that property (12.2.15) holds in Q ∩ Nε1(Γ
(δ∗)
sonic) ∩ {0 < x < ε0} for each

θw ∈ (θs
w,

π
2 ]. Outside this region, {es, et} = {e(2)

s , e
(2)
t }, so (12.2.15) holds.

Lemma 12.2.3. Let ε1 be as in Lemma 11.2.2 and ε0 as in Proposition 11.2.8.
Let ϕ be an admissible solution for the wedge angle θw ∈ (θ∗w,

π
2 ), or the normal

reflection solution for θw = π
2 . Then

Ω̃ := F1(Ω) = {(s, t) : 0 < s < ŝ(θw), 0 < t < gsh(s)},
F1(Γshock) = {(s, t) : 0 < s < ŝ(θw), t = gsh(s)},

(12.2.24)

with

‖gsh‖C0,1([0,ŝ(θw)]) ≤ C, (12.2.25)

‖gsh‖C3([ε̂,ŝ(θw)]) ≤ C(ε̂) for all ε̂ ∈ (0, ε0]. (12.2.26)

Moreover, denote Dε0 := {ϕ2 < ϕ1} ∩ Λ ∩Nε1(Γsonic) ∩ {0 < x < ε0}. Then

F1(Dε0) = {(s, t) : 0 < s < ε0, 0 < t < gS1
(s)}, (12.2.27)

‖gS1‖C3([0,ε0]) ≤ C, (12.2.28)

C−1 ≤ g′S1
≤ C on [0, ε0), (12.2.29)

and
‖gsh − gS1

‖(par)
2,α,(0,ε0) ≤ C(α) for any α ∈ [0, 1). (12.2.30)

Furthermore,

C−1 ≤ gsh(s) ≤ η(θw)(s)− C−1 on (0, ŝ(θw)), (12.2.31)
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where η(θw)(·) is from (12.2.10). Here the universal constant C depends only on
the data and θ∗w, and constant C(ε̂) (resp. C(α)) also depends on ε̂ (resp. α).

Proof. From properties (iv)–(viii) of F1 in Lemma 12.2.2, it follows that each
curve {s = const.} in Ω intersects with Γwedge∪Γshock only once. Then, for each
P ∈ Γwedge, we denote P̂ as the point of intersection of curve {s = s(P )} with
Γshock and define gsh(s(P )) := t(P̂ ). This defines gsh(·) on [0, ŝ(θw)] so that
F1(Ω) is of form (12.2.24). Also, (ii), (vi), and (viii) of Lemma 12.2.2 imply
that gsh ∈ C1((0, ŝ(θw))).

Since Γshock = {ϕ = ϕ1}, we differentiate the following equality in s:

(ϕ1 − ϕ)(F−1
1 (s, gsh(s))) = 0 on s ∈ (0, ŝ(θw)) (12.2.32)

to obtain

g′sh(s) = −|∂sF
−1
1 | (es · νsh) ◦ F−1

1

|∂tF−1
1 | (et · νsh) ◦ F−1

1

(s, gsh(s)).

From Lemma 12.2.2(ii), we have

|∂tF−1
1 | ≥

1

C2
, |∂sF−1

1 | ≤ C in F1(Qbd).

Then, using Lemma 12.2.2(viii), we obtain (12.2.25). Taking further derivatives
of (12.2.32), and using (10.5.2) and the higher derivative estimates in Lemma
12.2.2(ii), in addition to the estimates discussed above, we conclude (12.2.26).

Properties (12.2.27)–(12.2.29) follow directly from (11.2.8) and (11.2.10) of
Lemma 11.2.2, and Lemma 12.2.2(iv). In fact, we obtain

gS1(·) = f̂0(·)− θw,

where f̂0 is defined in (11.2.8).
Moreover, again using Lemma 12.2.2(iv), we see that

gsh(·) = f̂(·)− θw on (0, ε0),

where f̂ is defined in (11.2.38) in Proposition 11.2.8. Then (12.2.30) follows
directly from Proposition 11.4.6.

Finally, the lower bound in (12.2.31) follows from Lemma 10.4.2(iv) and
Lemma 12.2.2(ii).

The upper bound in (12.2.31) can be seen as follows: Since Ω ⊂ Qbd, then
it follows from (12.2.10) and (12.2.24) that

gsh(s) ≤ η(s) on (0, ŝ(θw)).

It remains to show that these two functions are separated. We first note that,
in terms of Definition 12.2.1,

Ω ⊂ Q(0) ∩ {ξ1 > −C}, (12.2.33)
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where C is from (9.1.2), i.e., the same constant C as in (12.2.5). We also note
that, using notation (12.2.1), we have

dist(S1,δ∗ , S1,0) =
δ∗√

(u1 − u2)2 + v2
2

≥ 1

C̃
for any θw ∈ [θs

w,
π
2 ],

where C̃ depends only on the data. Now the upper bound in (12.2.31) follows
from (12.2.5), (12.2.33), and Lemma 12.2.2(ii).

12.2.2 Definition and properties of F(2,gsh) and u

In order to define an iteration set, we need to take into account estimate (11.4.4)
for ψ = ϕ − ϕ2 near Γsonic, and perform an iteration in terms of ψ. This is
convenient because ϕ is close to ϕ2 near Γsonic. Also, for any wedge angle close
to π

2 , solution ϕ is close to ϕ2 in the whole region Ω := Ω(ϕ), as shown in [54].
Thus, for such wedge angles, it is convenient to consider ψ in the whole region Ω.
However, ϕ is not close to ϕ2 away from Γsonic when the wedge angles are away
from π

2 , so it is not convenient to consider ψ away from Γsonic, since it does not
have certain monotonicity properties. Specifically, it does not satisfy property
(12.2.37) below. Then it is more convenient to consider φ = ϕ + |ξ|2

2 ≡ ϕ − ϕ0

away from Γsonic for the wedge angles away from π
2 . This motivates us to define

a function ϕ̃2 below and employ the new function ϕ− ϕ̃2 to define the iteration
set.

Now we define ϕ̃2. In the following lemma, for each θw ∈ (θs
w,

π
2 ], we use the

(x, y)–coordinates near Γsonic and Dδ∗,ε := D(θw)
δ∗,ε

for each ε ∈ (0, ε0], introduced
in (12.2.8).

Lemma 12.2.4. For each θw ∈ (θs
w,

π
2 ], there exists a function ϕ̃2(ξ) ≡ ϕ̃(θw)

2 (ξ)
on Qbd such that

ϕ̃
(θw)
2 = ϕ

(θw)
2 in Qbd for all θw ∈ [

π

2
− µ, π

2
], (12.2.34)

ϕ̃
(θw)
2 = ϕ

(θw)
2 in Dδ∗,ε0/2 for all θw ∈ [θs

w,
π

2
], (12.2.35)

∂νw ϕ̃2 = 0 on Γwedge, (12.2.36)

∂((ϕ1 − ϕ̃2) ◦ F−1
1 )(s, t)

∂t
≤ −δ for all (s, t) ∈ F1(Qbd), (12.2.37)

and ϕ̃
(θw)
2 (·) depends smoothly on θw in the sense that function ϕ̃2(θw, ξ) :=

ϕ̃
(θw)
2 (ξ) satisfies

‖ϕ̃2‖C3(B) ≤ C, (12.2.38)

where B = ∪θw∈[θs
w,
π
2 ]{θw} × Q(θw)

bd , and constants µ, δ > 0 and C depend only
on the data.
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Proof. We divide the proof into two steps.

1. For each θw ∈ [θs
w,

π
2 ], we express ϕ0 and ϕ2 in the (x, y)–coordinates in

the neighborhood Dδ∗,ε0 of Γsonic to introduce the following function on Qbd:

{
ϕ̃20(x, y) := ζ1(x)ϕ0(x, y) + (1− ζ1(x))ϕ2(x, y) for (x, y) ∈ Dδ∗,ε0 ,
ϕ̃20 = ϕ0 otherwise,

(12.2.39)
where ζ1 ∈ C∞(R) with 0 ≤ ζ1 ≤ 1 on R, ζ1 ≡ 0 on (−∞, ε02 ), and ζ1 ≡ 1 on
( 3ε0

4 ,∞).
From (12.2.8), it follows that coordinates (x, y) are smooth in Dδ∗,ε0 . Since

ϕ0 and ϕ2 are polynomial functions in the ξ–coordinates, then we employ the
C∞–smooth dependence of parameters (u2, v2) of the weak state (2) on θw ∈
(θd

w,
π
2 ] in Theorem 7.1.1(i) to conclude that ϕ̃20 satisfies (12.2.38). Also, from

its definition, ϕ̃20 satisfies (12.2.35).
Furthermore, since ∂νwϕ0 = 0 on Γwedge by (2.2.16), ∂νwϕ2 = 0 on Γwedge

from its construction in Chapter 7, and ∂νwϕk = 1
c2−x∂yϕk on Γwedge ∩ ∂Dδ∗,ε0

for k = 0, 2, it follows from (12.2.39) that (12.2.36) holds for ϕ̃20.
Now we show that ϕ̃20 satisfies (12.2.37). From (12.2.39), it follows that

ϕ1 − ϕ̃20 = ϕ1 − ϕ0 = φ1 in Qbd \ Dδ∗, 3ε0/4 so that, from Lemma 12.2.2(iv),

(ϕ1 − ϕ̃20)(F−1
1 (s, t)) = φ1(F−1

1 (s, t)) in F1(Qbd) ∩ {s > 3ε0

4
}.

Then, from Lemma 12.2.2(vii), it follows that (12.2.37) holds in F1(Qbd)∩{s >
3ε0
4 }.
It remains to show (12.2.37) in F1(Qbd) ∩ {s < 3ε0

4 }. From (12.2.39) and
Lemma 12.2.2(i)–(ii) and (iv), i.e., using that the (s, t)–coordinates coincide
with the (x, y)–coordinates in that domain, we see that, in F1(Qbd)∩{s < 3ε0

4 },

(ϕ1 − ϕ̃20)(F−1
1 (s, t))

= ζ1(s)φ1(F−1
1 (s, t)) + (1− ζ1(s))(ϕ1 − ϕ2)|(x,y)=(s,t+θw)

=: I1 + I2.

(12.2.40)

Since 0 ≤ ζ1 ≤ 1, then ∂I1
∂t (s, t) ≤ −ζ1(s)δ by Lemma 12.2.2(vii), and

∂I2
∂t

(s, t) = (1− ζ1(s)) ∂y(ϕ1 − ϕ2)|(x,y)=(s,t+θw) ≤ −(1− ζ1(s))δ

by (11.2.5). Thus, ϕ̃20 satisfies (12.2.37).
Therefore, ϕ̃20 satisfies (12.2.35)–(12.2.38), but has not satisfied (12.2.34).

2. Since (u2, v2) = (0, 0) at θw = π
2 , i.e.,

ϕ
(π2 )
2 = −|ξ|

2

2
+ const. = ϕ0 + const.,



ITERATION SET AND SOLVABILITY OF THE ITERATION PROBLEM 453

we have
ϕ1 − ϕ(π2 )

2 = φ1 + const.,

so that, for any (s, t) ∈ F1(Qbd),

∂((ϕ1 − ϕ(π2 )
2 ) ◦ F−1

1 )(s, t)

∂t
=
∂(φ1 ◦ F−1

1 )(s, t)

∂t
≤ −δ

by Lemma 12.2.2(vii). The continuous dependence of the parameters of state
(2) on θw and Lemma 12.2.2(iii) imply the existence of µ > 0 such that

∂((ϕ1 − ϕ(θw)
2 ) ◦ F−1

1 )(s, t)

∂t
≤ −δ

2

for any θw ∈ [π2 − 2µ, π2 ] and (s, t) ∈ F (θw)
1 (Qbd).

Let ζ2 ∈ C∞(R) satisfy 0 ≤ ζ2 ≤ 1 on R with ζ2 ≡ 0 on (−∞, π2 − 2µ) and
ζ2 ≡ 1 on (π2 − µ,∞). Then the function:

ϕ̃
(θw)
2 (ξ) = ζ2(θw)ϕ

(θw)
2 (ξ) + (1− ζ2(θw))ϕ̃

(θw)
20 (ξ)

satisfies all the properties required. This completes the proof.

Now, for θw ∈ [θ∗w,
π
2 ] and region Ω̃∞ = (0, ŝ(θw))×(0,∞), if (12.2.31) holds,

we define a map F(2,gsh,θw) ≡ F(2,gsh) : Ω̃∞ 7→ R2 by

F(2,gsh)(s, t) = (
s

ŝ(θw)
,

t

gsh(s)
) for (s, t) ∈ Ω̃∞. (12.2.41)

Then, for Ω̃ defined by (12.2.24),

F(2,gsh)(Ω̃) = (0, 1)2 =: Qiter, (12.2.42)

and F(2,gsh) on Ω̃ is invertible with F−1
(2,gsh) : Qiter 7→ Ω̃ given by

F−1
(2,gsh)(s, t) = (ŝ(θw) s, gsh(ŝ(θw) s) t). (12.2.43)

Clearly, the regularity of F(2,gsh) and F−1
(2,gsh) is determined by the regularity of

gsh(·).
Therefore, given an admissible solution ϕ related to a wedge angle θw, we

obtain a function

u = (ϕ− ϕ̃2) ◦ F−1
1 ◦ F−1

(2,gsh) on Qiter, (12.2.44)

where function gsh is defined in Lemma 12.2.3, and function ϕ̃2 and maps F−1
1

and F−1
(2,gsh) correspond to θw.

Define
ε′0 :=

ε0

maxθw∈[θs
w,
π
2 ] ŝ(θw)

, (12.2.45)

where ε0 is from Lemma 12.2.2, and the continuity of ŝ(·) on [θs
w,

π
2 ] has been

applied. Then ε′0 ∈ (0, 1
2 ) depends only on the data.
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Proposition 12.2.5. There exists M > 0 depending only on the data and θ∗w
such that the following holds: Let ᾱ be constant α in Lemma 10.5.2, and let ϕ
be an admissible solution for θw ∈ [θ∗w,

π
2 ]. Then function u defined by (12.2.44)

satisfies that, for any α ∈ [0, ᾱ],

‖u‖(−1−α),{(1,0)}
2,α,Qiter∩{s>ε′0/10} + ‖u‖(par)

2,α,Qiter∩{s<ε′0}
≤M, (12.2.46)

where ε′0 is from (12.2.45), norms ‖·‖(par)
2,α,A are with respect to {s = 0}, i.e., (s, t)

replace x in (4.6.2) in our case here, and (0, 1) = F(2,gsh) ◦ F1(P3) by Lemma
12.2.2(v) and (12.2.41).

Proof. For α = ᾱ, (12.2.46) directly follows from Corollary 11.4.7, combined
with the C3–regularity of map F−1

1 and the explicit form (12.2.43) of map
F−1

(2,gsh), in which gsh(·) has the properties proved in Lemma 12.2.3.
With this, using Lemmas 4.1.2 and 4.6.4, we obtain (12.2.46) for all α ∈ [0, ᾱ],

with a modified constant depending on the same parameters.

12.2.3 Inverting the mapping: (ϕ, θw) 7→ u

Now we invert the mapping: (ϕ, θw) 7→ u in the sense that, given θw and a
function u on Qiter satisfying certain properties, we recover gsh, Ω, and ϕ on Ω
so that (12.2.44) holds.

Fix θw ∈ [θ∗w,
π
2 ). From Lemma 12.2.2(iv), it follows that

Γ
(δ∗)
sonic = ∂Q(θw)

bd ∩ F−1
1 ({s = 0}).

Since, for point P̂1 in (12.2.3),

P̂1 = F−1
1 (0, θP̂1

− θw), P4 = F−1
1 (0),

we find from (12.2.1), (12.2.3), and Lemma 12.2.4 that

ϕ̃
(θw)
2 = ϕ

(θw)
2 on Γ

(δ∗)
sonic,

so that

−δ∗ = (ϕ1 − ϕ̃(θw)
2 )(P̂1)

= inf
∂Q(θw)

bd ∩F−1
1 ({s=0})

(ϕ1 − ϕ̃(θw)
2 )

< 0

= (ϕ1 − ϕ̃(θw)
2 )(P1)

< (ϕ1 − ϕ̃(θw)
2 )(P4)

= sup
∂Q(θw)

bd ∩F−1
1 ({s=0})

(ϕ1 − ϕ̃(θw)
2 ),
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that is,

inf
∂Q(θw)

bd ∩F−1
1 ({s=0})

(ϕ1 − ϕ̃(θw)
2 ) < 0 < sup

∂Q(θw)
bd ∩F−1

1 ({s=0})
(ϕ1 − ϕ̃(θw)

2 ). (12.2.47)

Definition 12.2.6. For θw ∈ [θ∗w,
π
2 ] and s∗ ∈ (0, ŝ(θw)), denote

Q(θw)
bd (s∗) := Q(θw)

bd ∩ F−1
1 ({s = s∗}). (12.2.48)

Let u ∈ C1(Qiter) and θw ∈ [θ∗w,
π
2 ] satisfy that, for any s∗ ∈ (0, ŝ(θw)],

inf
Q(θw)

bd (s∗)

(ϕ1 − ϕ̃(θw)
2 ) < u(

s∗

ŝ(θw)
, 1) < sup

Q(θw)
bd (s∗)

(ϕ1 − ϕ̃(θw)
2 ). (12.2.49)

Let α ∈ [0, 1). Consider the set:

S ≡ S(α) :=

{
(u, θw) ∈ C1,α(Qiter)× [θ∗w,

π

2
] :

(u, θw) satisfy (12.2.49)

(u,Du)(0, ·) = (0,0)

}
.

(12.2.50)
Furthermore, for each θw ∈ [θ∗w,

π
2 ], we define

S(θw) := {u ∈ C1,α(Qiter) : (u, θw) ∈ S}. (12.2.51)

Note that S(θw) is non-empty for any θw ∈ [θ∗w,
π
2 ] on account of (12.2.37),

(12.2.47), and Lemma 12.2.2(i).
For every (u, θw) ∈ S, we define:

(i) A function hsh : (0, 1) 7→ R+ by setting hsh(s∗) = t∗, where (ŝ(θw)s∗, t∗) is
the unique point on F1(Q(θw)

bd ) ∩ {s = ŝ(θw)s∗} such that

(ϕ1 − ϕ̃(θw)
2 )(F−1

1 (ŝ(θw)s∗, t∗)) = u(s∗, 1).

Note that such a point exists by (12.2.49) and is unique by (12.2.10) and
Lemma 12.2.4.

(ii) A function gsh : (0, ŝ(θw)) 7→ R+ by setting gsh(s) = hsh( s
ŝ(θw) ).

(iii) A map F : Qiter 7→ Λ(θw) defined by

F = F−1
1 ◦ F−1

(2,gsh). (12.2.52)

(iv) Two sets:

Γshock := F−1
1 ({(s, gsh(s)) : 0 < s < ŝ(θw)}) ≡ F((0, 1)× {1}),

Ω := F−1
1 ({(s, t) : 0 < s < ŝ(θw), 0 < t < gsh(s)}) ≡ F(Qiter).
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(v) A function ϕ in Ω by setting

ϕ(ξ) = u(F(2,gsh) ◦ F1(ξ)) + ϕ̃
(θw)
2 (ξ)

≡ u(F−1(ξ)) + ϕ̃
(θw)
2 (ξ) for all ξ ∈ Ω(u).

(vi) Let b,M > 0. Consider (u, θw) ∈ S(α) satisfying

b < g
(u,θw)
sh (·) < 1

b
on (0, ŝ(θw)), (12.2.53)

‖u‖
C1,α(Qiter)

< M, (12.2.54)

and define

S
(α)
b,M =

{
(u, θw) ∈ S : (12.2.53)–(12.2.54) hold

}
. (12.2.55)

We will write ϕ̃2 for ϕ̃(θw)
2 when θw is fixed.

Lemma 12.2.7. Let α ∈ [0, 1) and S = S(α). Then, for all (u, θw) ∈ S, the
following properties hold:

(i) Let (u, θw) ∈ S. Then hsh ∈ C1,α([0, 1]) and gsh ∈ C1,α([0, ŝ(θw)]).

(ii) Let (u, θw) ∈ S. Then Γshock(u, θw) and Ω(u, θw) introduced in Definition
12.2.6(iv) satisfy:

(a). Ω ∪ Γshock ⊂ Q(θw)
bd ⊂ Λ(θw), and Γshock is a C1,α–curve up to its

endpoints P1
(θw) and P2, for P1

(θw) introduced in Definition 7.5.7 and P2 ∈
{ξ2 = 0};
(b). P1 = F−1

1 (0, gsh(ŝ(θw))) and P2 = F−1
1 (ŝ(θw), gsh(ŝ(θw)));

(c). Curve Γshock is tangential to line S1 at P1 so that

g
(u,θw)
sh (0) = yP1

− yP4
≡ yP1

− θw, (g
(u,θw)
sh )′(0) = f̂ ′0(0), (12.2.56)

where f̂0 ≡ f̂ (θw)
0 is defined in (11.2.8).

In particular, g
(u,θw)
sh (0) and (g

(u,θw)
sh )′(0) are uniquely defined by θw and

independent of u.

(iii) ∂Ω(u, θw) consists of the line segments and curves Γwedge, Γsonic, Γshock(u, θw),
and Γsym(u, θw) := {(ξ1, 0) : ξ1P2

< ξ1 < 0} so that

Γshock = F((0, 1)× {1}), Γsonic = F({0} × (0, 1)),

Γwedge = F((0, 1)× {0}), Γsym = F({1} × (0, 1)).
(12.2.57)

These segments do not intersect at the points of their relative interiors.
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(iv) For ε0 defined in Lemma 12.2.2, region Ω∩D(θw)
δ∗,ε

in the (x, y)–coordinates

is of structure (11.2.38)–(11.2.39) with f̂ = g
(u,θw)
sh +θw, where region D(θw)

δ∗,ε

is defined by (12.2.8) for δ∗ chosen in (12.2.2).

(v) For any (u, θw) ∈ S(α), the corresponding function ψ = ϕ− ϕ2 satisfies

ψ = 0 on Γsonic.

(vi) Let M > 0. There exists C depending only on the data and (M,α) such
that, for any (u, θw) and (ũ, θ̃w) ∈ S(α) with ‖(u, ũ)‖

C1,α(Qiter)
< M , the

following estimates hold:

‖hsh‖C1,α([0,1]) + ‖gsh‖C1,α([0,ŝ(θw)]) ≤ C, (12.2.58)

‖h(u,θw)
sh − h

(ũ,θ̃w)
sh ‖C1,α([0,1])

≤ C
(
‖(u− ũ)(·, 1)‖C1,α([0,1]) + |θw − θ̃w|

)
,

(12.2.59)

‖F(u,θw)‖C1,α(Qiter)
≤ C, (12.2.60)

‖F(u,θw) − F(ũ,θ̃w)‖C1,α(Qiter)

≤ C
(
‖(u− ũ)(·, 1)‖C1,α([0,1]) + |θw − θ̃w|

)
,

(12.2.61)

‖(ϕ ◦ F)(u,θw) − (ϕ ◦ F)(ũ,θ̃w)‖C1,α(Qiter)

≤ C
(
‖u− ũ‖

C1,α(Qiter)
+ |θw − θ̃w|

)
,

(12.2.62)

‖(ψ ◦ F)(u,θw) − (ψ ◦ F)(ũ,θ̃w)‖C1,α(Qiter)

≤ C
(
‖u− ũ‖

C1,α(Qiter)
+ |θw − θ̃w|

)
.

(12.2.63)

(vii) Let α ∈ [0, 1), σ ∈ (1, 2], and M > 0. There exist C depending only on the
data and (α, σ), and C0 depending only on the data, such that the following
hold: Let (u, θw) ∈ S with θw ∈ [θ∗w,

π
2 ]. Assume that u satisfies

‖u‖(−1−α),{1}×(0,1)
2,α,Qiter∩{s>ε′0/10} + ‖u‖(σ),(par)

2,α,Qiter∩{s<ε′0}
≤M, (12.2.64)

where we have used norm (4.6.2) with respect to {s = 0}, and ε′0 is from
(12.2.45). Then, denoting

ε̂ ≡ ε̂(θw) := ε′0ŝ(θw) for θw ∈ [θ∗w,
π

2
), (12.2.65)

we have

‖gsh‖(−1−α),{ŝ(θw)}
2,α,[ε̂/10, ŝ(θw)] + ‖gsh − gS1‖(σ),(par)

2,α,(0, ε̂) ≤ CM. (12.2.66)

Furthermore, define F(0,θw) on (0, ε′0) × (0,∞) by (12.2.52) with function
gsh = gS1

in (12.2.43), where gS1
is defined in (12.2.27). Note that this
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corresponds to u ≡ 0 on Qiter ∩ {s < ε′0}. Then

‖F(0,θw)‖C3(Qiter∩{s≤ε′0})
≤ C0, (12.2.67)

‖F(u,θw)‖(−1−α),{1}×(0,1)
2,α,Qiter∩{s>ε′0/10}

+‖F(u,θw) − F(0,θw)‖(σ),(par)
2,α,Qiter∩{s<ε′0}

≤ C. (12.2.68)

(viii) Let M , α, and σ be as in (vii), and b > 0. There exist Ĉ depending on the
data and (θ∗w, α, σ, b), and Ĉ0 depending only on the data and b, such that
the following hold: Let (u, θw) ∈ S with θw ∈ [θ∗w,

π
2 ] satisfy (12.2.53) and

(12.2.64). Then

‖F−1
(0,θw)‖C3(Qbd∩Dε̂) ≤ Ĉ0, (12.2.69)

‖F−1
(u,θw)‖

(−1−α),Γsym

2,α,Ω(u)\Dε̂/10
+ ‖F−1

(u,θw) − F−1
(0,θw)‖

(σ),(par)
2,α,Ω(u)∩Dε̂ ≤ Ĉ. (12.2.70)

Furthermore, let ϕ be the function from Definition 12.2.6(v) corresponding
to (u, θw). Then

‖ϕ− ϕ̃(θw)
2 ‖(−1−α),Γsym

2,α,Ω\Dε̂/10
+ ‖ϕ− ϕ̃(θw)

2 ‖(σ),(par)
2,α,Ω∩Dε̂ ≤ ĈM, (12.2.71)

where Dδ := {ϕ2 < ϕ1} ∩ Λ ∩ Nε1(Γsonic) ∩ {0 < x < δ}, and ϕ̃
(θw)
2 is

defined in Lemma 12.2.4.

(ix) The reversion of assertions (vii) and (viii): Let θw ∈ [θ∗w,
π
2 ], and let

function gsh : (0, ŝ(θw)) 7→ R+ satisfy (12.2.66) with M on the right-hand
side. Let Ω be defined by θw and gsh as in Definition 12.2.6(iv). Let
u : Qiter 7→ R and ϕ : Ω 7→ R be related as in Definition 12.2.6(v). Assume
that ϕ satisfies (12.2.71) with M on the right-hand side. Then u satisfies
(12.2.64) with CM on the right-hand side, where C depends only on the
data and (α, σ).

(x) Let (u, θw) and (ũ, θ̃w) be as in (vii). Then, for any open K b Qiter

satisfying K ⊂ (δ, 1− δ)× (0, 1) for some δ > 0,

‖F(u,θw) − F(ũ,θ̃w)‖C2,α(K)

≤ C(δ)
(
‖(u− ũ)(·, 1)‖C2,α([δ,1−δ]) + |θw − θ̃w|

)
,

(12.2.72)

‖(ϕ ◦ F)(u,θw) − (ϕ ◦ F)(ũ,θ̃w)‖C2,α(K)

≤ C(K)
(
‖u− ũ‖C2,α(K) + |θw − θ̃w|

)
,

(12.2.73)

‖(ψ ◦ F)(u,θw) − (ψ ◦ F)(ũ,θ̃w)‖C2,α(K)

≤ C(K)
(
‖u− ũ‖C2,α(K) + |θw − θ̃w|

)
,

(12.2.74)

where C(δ) (resp. C(K)) depends on the data, (α, σ), and δ (resp. K).
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Proof. Let (u, θw) ∈ S. Using (12.2.37) and the regularity that u ∈ C1,α(Qiter)
and F−1

1 ∈ C3(F1(Qbd)), we see that hsh ∈ C1,α([0, 1]). This also implies that
gsh ∈ C1,α([0, ŝ(θw)]). We conclude (i).

Then (ii) also follows: From condition (12.2.49) and Definition 12.2.6(i), it
follows that

(Ω ∪ Γshock)(u, θw) ⊂ Q(θw)
bd ⊂ Λ(θw).

Also, the C1,α–regularity of Γshock follows from (i), the asserted properties at
P1 follow from Definition 12.2.6(i)–(iv) and (u,Du)(0, ·) = (0,0), and (12.2.56)
follows also from Lemma 12.2.2(iv).

Now the structure of ∂Ω(u, θw) in assertion (iii) follows from Lemma 12.2.2(iv)–
(vi).

Assertion (iv) follows from Definition 12.2.6(iv) and Lemma 12.2.2(iv), since
yP4

= θw.
Assertion (v) follows from u(0, ·) = 0 which holds by (12.2.50), by using

Definition 12.2.6(v), (12.2.35), and the fact that Γsonic = F({0} × (0, 1)) from
(12.2.57).

Now we prove (vi). Denote

G(θw)(s, t) = (ϕ1 − ϕ̃(θw)
2 ) ◦ F−1

1 (ŝ(θw)s, t)

on S := {(θw, s, t) : θs
w < θw < π

2 , (ŝ(θw)s, t) ∈ F (θw)
1 (Q(θw)

bd )}. Then, from
Lemma 12.2.2(ii)–(iii) and (12.2.37)–(12.2.38) of Lemma 12.2.4, we have

‖G(·)(·, ·)‖C3(S) ≤ C,
∂tG

(θw)(s, t) ≤ −δ for all (θw, s, t) ∈ S.
(12.2.75)

From Definition 12.2.6(i),

G(θw)(s, hsh(s)) = u(s, 1) for all s ∈ [0, 1]. (12.2.76)

Differentiating (12.2.76) with respect to s, we have

h′sh(s)∂tG
(θw)(s, hsh(s)) = ∂su(s, 1)− ∂sG(θw)(s, hsh(s)). (12.2.77)

Then, from (12.2.54) and (12.2.75), we obtain

[h′sh]C1,α([0,1]) ≤ C.

Using (12.2.53), we conclude the proof of (12.2.58) for hsh. Then Definition
12.2.6(ii) implies (12.2.58) for gsh. Furthermore, subtracting (12.2.76)–(12.2.77)
for (u, θw) and using the same identities for (ũ, θ̃w) ∈ S

(α)
b,M , we obtain (12.2.59)

via a standard argument by using (12.2.53)–(12.2.54) and (12.2.75) for (u, θw)
and (ũ, θ̃w).

Now (12.2.60) (resp. (12.2.61)) follows directly from the definition of F in
(12.2.43) and (12.2.52), and from (12.2.58) (resp. (12.2.59)) by using Lemma
12.2.2(ii)–(iii).
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To show (12.2.62), we note that, from Definition 12.2.6(v),

(ϕ ◦ F(u,θw))(s, t) = u(s, t) + (ϕ̃
(θw)
2 ◦ F(u,θw))(s, t) for all (s, t) ∈ Qiter.

(12.2.78)

Now (12.2.62) follows directly from (12.2.38) and (12.2.61).
Estimate (12.2.63) follows from (12.2.61)–(12.2.62) and the smooth depen-

dence of the parameters of the weak state (2) with respect to θw ∈ (θd
w,

π
2 ] in

Theorem 7.1.1(i)–(ii).
Next we prove (vii). The estimate of the first term on the left in (12.2.66) is

obtained by an argument similar to the proof of (12.2.58) by using (12.2.64). To
estimate the second term on the left in (12.2.66), we note the fact that function
gS1

on (0, ε0), defined by (12.2.27), coincides with the function in Definition
12.2.6(i) for u ≡ 0 with the same angle θw, considered on Qiter ∩ {s < ε0},
where it is well-defined by (12.2.47) if ε0 is small, depending on the data. Then
the estimate of the second term on the left in (12.2.66) can be obtained by
subtracting (12.2.76) for (u, θw) from the same identity for (ũ = 0, θw), as well
as by using (12.2.53), (12.2.64), and (12.2.75).

Estimate (12.2.67) is obtained from (12.2.28) by an argument similar to the
proof of (12.2.60). Now (12.2.68) follows from (12.2.64) and (12.2.66)–(12.2.67)
by an argument similar to the proof of (12.2.60)–(12.2.61).

Next we show (viii). By using (12.2.41) and condition (vi), the proof of
(12.2.69) (resp. (12.2.70)) is similar to the proof of (12.2.67) (resp. (12.2.68)).
Finally, (12.2.71) follows directly from Definition 12.2.6(v) by using (12.2.64)
and (12.2.70).

To show (ix), we note that map F(u,θw) depends only on θw and gsh used in
the definition of F(2,gsh) by (12.2.41), and constant C in (12.2.68) depends only
on θw and the constant in (12.2.66). Now (ix) follows by expressing u(s, t) from
(12.2.78), and by using (12.2.68) and (12.2.71).

It remains to show (x). Let δ ∈ (0, 1
2 ). From (12.2.66),

‖gsh‖C2,α([δ,1−δ]) ≤ CM, (12.2.79)

where C depends only on the data and (α, σ, δ). Then, using (12.2.75) and
(12.2.77) and arguing as in the proof of (12.2.59), we have

‖h(u,θw)
sh − h

(ũ,θ̃w)
sh ‖C2,α([δ,1−δ])

≤ C
(
‖(u− ũ)(·, 1)‖C2,α([δ,1−δ]) + |θw − θ̃w|

)
,

(12.2.80)

where C depends only on the data and (α, σ, δ).
Now let K b Qiter so that K ⊂ (δ, 1 − δ)2 for some δ ∈ (0, 1

2 ). Then,
using (12.2.80) and repeating the proof of (12.2.61), we obtain (12.2.72) with C
depending only on the data and (α, σ,K) since δ = δ(K). Now (12.2.73) follows
directly from (12.2.78) by using (12.2.38). Similarly, (12.2.74) follows directly
from

(ψ ◦ F(u,θw))(s, t) = u(s, t) + (ϕ̃
(θw)
2 −ϕ(θw)

2 ) ◦ F(u,θw)(s, t) in Qiter (12.2.81)
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by using (12.2.38) and Theorem 7.1.1(i) for the weak states (2).

12.3 DEFINITION OF THE ITERATION SET

12.3.1 Iteration set

Let Qiter = (0, 1)2. An iteration set K ⊂ C1,α(Q)× [θ∗w,
π
2 ] is defined below for

some appropriate α ∈ (0, 1). For θw ∈ [θ∗w,
π
2 ], denote

Kθw := {u ∈ C1,α(Q) : (u, θw) ∈ K}.

We intend to obtain admissible solutions for all the wedge angles θ ∈ [θ∗w,
π
2 ],

which include the normal reflection solution for θw = π
2 as a starting point.

For θw away from π
2 , the admissible solutions are not close to the normal

reflection solution, and then we use the strict monotonicity of ϕ1 − ϕ in the
directions {eS1 , eξ2}; see §8.2.

At θw = π
2 , the unique admissible solution is the normal reflection solution,

so that ∂eS1
(ϕ1 − ϕ) ≡ 0, ∂eξ2 (ϕ1 − ϕ) ≡ 0, and the shock is flat. Thus, we do

not have the strict monotonicity, as in §8.2, with the uniform estimates up to
θw = π

2 . Then, for θw near π
2 , we use the closeness of admissible solutions to

the normal reflection solution in C1,α.
Therefore, the definition of Kθw will be different for θw near π

2 , or away from
π
2 . This requires us to connect these definitions continuously in θw in order to
have set K open in an appropriate norm. This motivates our definition below,
especially parts (i) and (iv) of Definition 12.3.2.

We first introduce some notations. Below we use constant ε0 from Proposi-
tion 11.2.8, which depends only on the data.

Definition 12.3.1. (i) Denote by u(norm) ∈ C∞(Qiter) the function in the
iteration region, corresponding to the normal reflection solution, so that
u(norm) is defined by (12.2.44) for θw = π

2 and ϕ = ϕ
(π2 )
2 . In fact, u(norm) ≡

0 by (12.2.34).

(ii) For integer k ≥ 0, real σ > 0 and α ∈ (0, 1), we use norm (4.6.13) for
S = Qiter with ε = ε′0:

‖u‖∗,(σ)
k,α,Qiter = ‖u‖(−k+1−α),{1}×(0,1)

k,α,Qiter∩{s>ε′0/10} + ‖u‖(σ),(par)
k,α,Qiter∩{s<ε′0}

,

where norm ‖·‖(σ),(par)
k,α,Qiter∩{s<ε′0}

is defined by (4.6.2), and ε′0 is from (12.2.45).

Denote by Ck,α∗,σ (Qiter) the space defined by (4.6.14) for S = Qiter.

(iii) For θw ∈ (θs
w,

π
2 ] and σ ∈ (0, ε0], we write Dσ ≡ D(θw)

σ for D(θw)
δ∗,σ

introduced
in (12.2.8) with δ∗ chosen and fixed above so that (12.2.2) holds for any
θw ∈ [θs

w,
π
2 ].
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(iv) Let (u, θw) ∈ S as defined in (12.2.50), and let Ω = Ω(u) and Γshock =
Γshock(u) be from Definition 12.2.6. Let ε̂ be defined by (12.2.65). For a
set S ⊂ {Ω,Γshock,Γwedge}, integer k ≥ 0, and real σ > 0 and α ∈ (0, 1),
we define

‖v‖∗,(σ)
k,α,S = ‖v‖(−k+1−α),Γsym

k,α,S\Dε̂/10
+ ‖v‖(σ),(par)

k,α,S∩Dε̂ ,

Ck,α∗,σ (S) is the closure of {v ∈ C∞(S) : ‖v‖∗,(σ)
k,α,S <∞} under the

norm of ‖ · ‖∗,(σ)
k,α,S .

We note that, from Proposition 11.2.3, specifically from (11.2.16) and (11.2.18)–
(11.2.19), it follows that, for any admissible solution with θw ∈ (θs

w,
π
2 ),

Ωσ = Ω ∩ Dσ for all σ ∈ (0, ε0). (12.3.1)

Now we define the iteration set.
Let α ∈ (0, 1), the small constants δ1, δ2, δ3, ε, λ > 0, and large constants

Nk ≥ 1, k = 0, 1, . . . , 5, be chosen and fixed below. We always assume that

α ≤ min{δ∗, ᾱ
2
}, ε <

ε0

2
, (12.3.2)

where ᾱ is from Lemma 10.5.2 and δ∗ = 1
8 .

Definition 12.3.2. The iteration set K ⊂ C2,α
∗,1+δ∗(Q

iter)× [θ∗w,
π
2 ] is the set of

all (u, θw) satisfying the following properties:

(i) (u, θw) satisfies the estimates:

‖u‖∗,(1+δ∗)
2,α,Qiter < η1(θw), (12.3.3)

where η1 ∈ C(R) is defined by

η1(θw) =





δ1 if π2 − θw ≤ δ1
N1
,

N0 if π2 − θw ≥ 2δ1
N1
,

linear if π2 − θw ∈ ( δ1N1
, 2δ1
N1

),

with N0 = max{10M, 1} for constant M from (12.2.46).

(ii) (u, θw) ∈ S, as defined in (12.2.50). Then gsh, Ω, Γshock, and ϕ are
defined for (u, θw) in Definition 12.2.6, and Γsym = Γsym(u, θw) is defined
in Lemma 12.2.7(iii).

(iii) Γshock satisfies the estimate:

dist(Γshock, Bc1(O1)) >
1

N5
, (12.3.4)
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with N5 = 2C for C from Proposition 9.5.6;

1

N2
< gsh < η(θw)(s)− 1

N2
on (0, ŝ(θw)), (12.3.5)

where N2 = 2C for C from (12.2.31), and we have used η(θw)(·) from
(12.2.10).

(iv) ϕ and ψ = ϕ− ϕ(θw)
2 satisfy

ψ > η2(θw) in Ω \ Dε/10, (12.3.6)

|∂xψ(x, y)| < 2− µ0

1 + γ
x in Ω ∩ (Dε0 \ Dε/10), (12.3.7)

|∂yψ(x, y)| < N3x in Ω ∩ (Dε0 \ Dε/10), (12.3.8)

|(∂x, ∂y)ψ| < N3ε in Ω ∩ Dε, (12.3.9)

‖ψ‖C0,1(Ω) < N4, (12.3.10)

∂eS1
(ϕ1 − ϕ) < −η2(θw) in Ω \ Dε/10, (12.3.11)

∂ξ2(ϕ1 − ϕ) < −η2(θw) in Ω \ Nε/10(Γsym), (12.3.12)

∂ν(ϕ1 − ϕ) > µ1 on Γshock, (12.3.13)

∂νϕ > µ1 on Γshock, (12.3.14)

where Dε is from Definition 12.3.1(iii),

η2(θw) = δ2 min
{π

2
− θw −

δ1
N2

1

,
δ1
N2

1

}
,

and constants ε0, µk, N3, and N4 are chosen as follows:

(a) ε0 is from Proposition 11.2.8,
(b) µ0 = δ

2 , where δ is from Lemma 11.2.5,

(c) µ1 = min{δ̂,δ̂1}
2 , where δ̂ and δ̂1 are the constants from Corollary 10.1.2,

(d) N3 = 10 max{C, 1}, where C is the constant from estimate (11.2.24)
in Lemma 11.2.6,

(e) N4 = 10C, where C is from Corollary 9.1.3.

In (12.3.7)–(12.3.8), we have used ϕ and ϕ2 expressed in the (x, y)–coordinates
(11.1.1)–(11.1.2).

(v) Uniform ellipticity in Ω \ Dε/10:

|Dϕ|2
c2(|Dϕ|2, ϕ)

(ξ) < 1− λ dist(ξ,Γsonic) for all ξ ∈ Ω \ Dε/10,

with λ = µ̃
2 , where µ̃ is from Proposition 9.6.5.
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(vi) Bounds on the density:

ρmin < ρ(|Dϕ|2, ϕ) < ρmax in Ω,

with ρmax > ρmin > 0 defined by ρmin = a
2ρ1 and ρmax = 2C, where

a =
(

2
γ+1

) 1
γ−1

and C are the constants from Lemma 9.1.4.

(vii) The boundary value problem (12.3.25)–(12.3.29) determined by (u, θw), as
defined below in §12.3.3, has a solution ψ̂ ∈ C2(Ω(u, θw)) ∩ C1(Ω(u, θw))
such that, if

ϕ̂ := ψ̂ + ϕ2 in Ω(u, θw),

and function û is defined by (12.2.44) from function ϕ̂, where map F(2,gsh)

is determined by function gsh = g
(u,θw)
sh which corresponds to (u, θw) as in

Definition 12.2.6(i)–(ii), i.e.,

û := (ϕ̂− ϕ̃(θw)
2 ) ◦ (F

(θw)
1 )−1 ◦ F−1

(2,gsh) on Qiter, (12.3.15)

then û satisfies

‖û− u‖∗,(1+δ∗)
2,α/2,Qiter < δ3. (12.3.16)

Remark 12.3.3. The choice of constants (δ∗, µ0, µ1, α, ε, λ), δk for k = 1, 2, 3,
and Nk for k = 0, . . . , 5, below, will keep only the following dependence: δ∗ = 1

8 ;
constants (µ0, µ1, λ,N3, N4, N5) are fixed above depending on the data; constants
(N0, N2) are fixed above depending on the data and θ∗w; constant α will be fixed
later depending only on the data and θ∗w; and, for the other constants, in addition
to the dependence on the data and θ∗w, small ε depends on α, small δ1 depends
on (α, ε), large N1 depends on δ1, small δ2 depends on (δ1, N1, ε), and then
δ3 > 0 is chosen as small as needed, depending on all the other constants.

Remark 12.3.4. Let (u, θw) ∈ C2,α
∗,1+δ∗(Q

iter) × [θ∗w,
π
2 ] satisfy the properties

in Definition 12.3.2(i)–(iii), let Ω = Ω(u, θw), Γshock = Γshock(u, θw), and ϕ =
ϕ(u,θw) be as in Definition 12.2.6, and let gsh be the function determined by
(u, θw) in Definition 12.2.6(i)–(ii). Then, from (12.3.3) and Lemma 12.2.7(vii),
gsh satisfies (12.2.66) with σ = 1 + δ∗ and M = Cη1(θw), where C depends
only on the data and (α, δ∗). In particular, since F1 and F−1

1 are C3 maps, we
conclude that Γshock is a C1,α–curve up to its endpoints. Furthermore, using
Lemma 12.2.2(iv), we have

Γshock ∩ Dε0/10 = {(x, fsh(x)) : 0 < x <
ε0

10
}

in the (x, y)–coordinate system, and

‖fsh − f̂0‖(1+δ∗),(par)
2,α,(0,ε0) < Cη1(θw), (12.3.17)
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where f̂0 is from (11.2.8). Also, since (u, θw) ∈ K implies that (u, θw) ∈ S,
it follows from the construction of Ω = Ω(u, θw) in Definition 12.2.6 that Ω ⊂
Q(θw)

bd . Then, from (12.2.6), there exists Mdom such that

Ω(u, θw) ⊂ BMdom
(0) for all (u, θw) ∈ K, (12.3.18)

and Mdom depends only on the data, but is independent of the parameters in the
definition of K.
Remark 12.3.5. Let (u, θw), Ω, Γshock, and ϕ be as in Remark 12.3.4. Below,
we use the norm introduced in Definition 12.3.1(iv). Using (12.3.3), (12.3.5),
Lemma 12.2.7(viii), and Lemma 12.2.4, choosing δ1 ≤ µ with µ from (12.2.34),
recalling that N0, N1 ≥ 1, and using (12.3.18), we obtain from (12.2.71) that
ψ = ϕ− ϕ2 ∈ C2,α

∗,1+δ∗(Ω) with

‖ψ‖∗,(1+δ∗)
2,α,Ω < Cη1(θw) ≤ N∗0 , (12.3.19)

where N∗0 = CN0, and C and N∗0 depend only on the data and (θ∗w, α).
Also, from the previous argument, we apply (12.2.71) with α = 0 to obtain

‖ψ‖∗,(1+δ∗)
2,0,Ω < C̃η1(θw) ≤ Ñ∗0 , (12.3.20)

where Ñ∗0 = CN0, and C̃ and Ñ∗0 depend only on the data and θ∗w.
Furthermore, from (12.3.19),

‖ψ‖1,α,Ω ≤ N̂0, (ψ,Dψ)|Γsonic = (0,0), (12.3.21)

where N̂0 depends on the data and (θ∗w, α). Also, from now on, we always assume
that δ1 ≤ µ as above, where we note that µ in Lemma 12.2.4 depends only on
the data.

Remark 12.3.6. If (u, θw) ∈ C1(Qiter)× [θ∗w,
π
2 ] satisfies the properties in Defi-

nition 12.3.2(ii), and the corresponding ψ satisfies (12.3.21), then, as in Remark
12.3.4, we have

Γshock ∩ Dε0/10 = {(x, fsh(x)) : 0 < x <
ε0

10
}.

Then, using that |D(ϕ1 − ϕ2)| =
√

(u1 − u2)2 + v2
2 ≥ 1

C for any θw ∈ [θs
w,

π
2 ],

we obtain that, in the (x, y)–coordinates,

‖fsh − f̂0‖1,α,(0,ε0) ≤ CN̂0,

(fsh − f̂0)(0) = (fsh − f̂0)′(0) = 0,
(12.3.22)

where C depends on the data, and fsh and f̂0 are as in Remark 12.3.4. Also,
using the property that |D(ϕ1 − ϕ2)| ≥ 1

C with (12.3.9) and the second property
in (12.3.22), we have

|(fsh − f̂0)(x)|+ |x(fsh − f̂0)′(x)| ≤ εCx for all x ∈ (0, ε), (12.3.23)

where C depends only on the data.
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Remark 12.3.7. Since ϕ = ϕ1 on Γshock, i.e., |Dν(ϕ1 − ϕ)| = |D(ϕ1 − ϕ)|,
then (12.3.13) is equivalent to

|D(ϕ1 − ϕ)| > µ1 on Γshock.

Moreover, since (ϕ−ϕ2, D(ϕ−ϕ2))(P1) = (0,0) for any admissible solution ϕ,
we obtain

|(u1 − u2,−v2)| = |D(ϕ1 − ϕ2)| > µ1.

Remark 12.3.8. From the definition of constants ρmin and ρmax in Definition
12.3.2(vi), using Lemma 9.1.4 and ρ(|Dϕ|2, ϕ) = ρ2 on Γsonic for any admissible
solution ϕ, we have

2ρmin ≤ ρ2 ≤
ρmax

2
.

12.3.2 Closure of the iteration set

We first introduce the following notation:

Definition 12.3.9. (i) Kext is the set of all (u, θw) ∈ C2,α
∗,1+δ∗(Q

iter)× [θ∗w,
π
2 ]

that satisfy conditions (i)–(vi) of Definition 12.3.2.

(ii) K and Kext are the closures of K and Kext in C2,α
∗,1+δ∗(Q

iter) × [θ∗w,
π
2 ],

respectively.

(iii) For each C ∈ {K, Kext, K, Kext} and each θw ∈ [θ∗w,
π
2 ],

C(θw) := {u : (u, θw) ∈ C}.

Note that C(θw) ⊂ C2,α
∗,1+δ∗(Q

iter).

From its definition,
K ⊂ Kext.

Lemma 12.3.10. The sets introduced in Definition 12.3.9 have the following
properties:

(i) Kext ⊆ S: If (u, θw) ∈ Kext, then (u, θw) satisfies condition (ii) of Defini-
tion 12.3.2.

(ii) If (u, θw) ∈ Kext, then (u, θw) satisfies conditions (i) and (iii)–(vi) of Def-
inition 12.3.2 with the nonstrict inequalities in the estimates.

(iii) The properties in Remarks 12.3.4–12.3.8 hold with the nonstrict inequalities
for all (u, θw) ∈ Kext.

Proof. We divide the proof into three steps.
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1. Fix θw ∈ [θ∗w,
π
2 ]. It follows from (12.2.10) and (12.2.37) that, for any

s ∈ (0, ŝ(θ∗w)),

sup
Q(θw)

bd (s)

(ϕ1 − ϕ̃(θw)
2 ) = (ϕ1 − ϕ̃2) ◦ F−1

1 (s, 0),

inf
Q(θw)

bd (s)

(ϕ1 − ϕ̃(θw)
2 ) = (ϕ1 − ϕ̃2) ◦ F−1

1 (s, η(s)).

Then, from (12.3.5), employing (12.2.37) with constant δ from there, and using
Definition 12.2.6(i)–(ii), we obtain that, for each (u, θw) ∈ Kext,

inf
Q(θw)

bd (s)

(ϕ1 − ϕ̃(θw)
2 ) +

δ

N2
≤ u(

s

ŝ(θw)
, 1) ≤ sup

Q(θw)
bd (s)

(ϕ1 − ϕ̃(θw)
2 )− δ

N2
(12.3.24)

for any s ∈ (0, ŝ(θw)).
Now let (u, θw) ∈ Kext. Then there exists a sequence (u(i), θ

(i)
w ) ∈ Kext

such that (u(i), θ
(i)
w ) → (u, θw) in C2,α

∗,1+δ∗(Q
iter) × [θ∗w,

π
2 ]. From (12.2.59) in

Lemma 12.2.7(vi), it follows that h(u(i),θ(i)
w )

sh → h
(u,θw)
sh in C1,α([0, 1]). Since each

(u(i), θ
(i)
w ) with g

(u(i),θ(i)
w )

sh (s) = h
(u(i),θ(i)

w )
sh (ŝ(θ

(i)
w )s) satisfies (12.3.24), then the

same inequality holds for (u, θw) ∈ Kext with

g
(u(s),θw)
sh = h

(u(s),θw)
sh (ŝ(θw)s).

Then (12.2.49) (with strict inequalities) holds for any (u, θw) ∈ Kext, i.e.,
(u, θw) ∈ S. This shows that assertion (i) holds.

2. Now we show (ii). Let (u, θw) ∈ Kext. Then there exists a sequence
(u(i), θ

(i)
w ) ∈ Kext such that (u(i), θ

(i)
w )→ (u, θw) in C2,α

∗,1+δ∗(Q
iter)× [θ∗w,

π
2 ]. This

implies that (u, θw) satisfies (12.3.3) with the nonstrict inequality, where we
have used the continuity of η1(·).

Next, from Lemma 12.2.7(vi), it follows that

h
(u(i),θ(i)

w )
sh → h

(u,θw)
sh in C1,α([0, 1]), F

(u(i),θ
(i)
w )
→ F(u,θw) in C1,α(Qiter).

Then, using the expression of Γshock in Definition 12.2.6(iv), we conclude that
Definition 12.3.2(iii) holds for (u, θw) with the nonstrict inequalities in (12.3.4)–
(12.3.5).

Also, from the convergence shown above and Definition 12.2.6(v), we have

(ϕ ◦ F)
(u(i),θ

(i)
w )
→ (ϕ ◦ F)(u,θw), (ψ ◦ F)

(u(i),θ
(i)
w )
→ (ψ ◦ F)(u,θw)

in C1,α(Qiter). Furthermore, using (12.2.70) for each (u(i), θ
(i)
w ) and for (u, θw),

which is obtained by applying Lemma 12.2.7(viii) with b = 1
N2

for N2 from
Definition 12.3.2(iii), we have

(Dϕ ◦ F)
(u(i),θ

(i)
w )
→ (Dϕ ◦ F)(u,θw), (Dψ ◦ F)

(u(i),θ
(i)
w )
→ (Dψ ◦ F)(u,θw)
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in Cα(Qiter).
From this, using the expression of Γshock in Definition 12.2.6(iv) and (12.2.59),

we obtain

(νsh ◦ F)
(u(i),θ

(i)
w )
→ (νsh ◦ F)(u,θw) in Cα([0, 1]).

Finally, we have

Ω \ Dr = F(Qiter ∩ {(s, t) ∈ [0, 1]2 : s ≥ r}).

From all the convergence and mapping properties discussed above, we use
the continuity of η2(·) to obtain that (u, θw) satisfies the nonstrict inequalities
in the remaining estimates in assertion (ii).

3. Assertion (iii) follows directly from (i)–(ii).

In Lemma 12.3.10, we have characterized Kext. The similar characterization
of K includes condition (vii) of Definition 12.3.2 with the nonstrict inequality
in (12.3.16). We will prove this, after we define the equation and the condition
on Γshock in the iteration problem (12.3.25)–(12.3.29) below and study their
properties in the next section.

Remark 12.3.11. For the rest of Chapter 12 (except §12.8), we will mostly
consider (u, θw) ∈ Kext. Then, based on Lemma 12.3.10(ii)–(iii), we use the
following notational convention: We consider the nonstrict inequalities in the
estimates given in Definition 12.3.2 and Remarks 12.3.4–12.3.8, unless otherwise
specified (as in §12.8).

12.3.3 The boundary value problem for the iteration

In order to complete Definition 12.3.2, we need to define the boundary value
problem for the iteration, as indicated in Definition 12.3.2(vii). We define it
below.

Fix (u, θw) ∈ Kext. For such (u, θw), we obtain Ω, Γshock, Γsonic, and ϕ as in
Definition 12.3.2(ii).

We then set up a boundary value problem for a new potential ϕ̂ in Ω. We
express the problem in terms of functions ψ = ϕ − ϕ2 and ψ̂ = ϕ̂ − ϕ2 in the
ξ–coordinates shifted to center O2 of state (2), without change of the notation.
Then the problem is:

N (ψ̂) :=
2∑

i,j=1

AijDijψ̂ +
2∑

i,j=1

AiDiψ̂ = 0 in Ω, (12.3.25)

M(u,θw)(Dψ̂, ψ̂, ξ) = 0 on Γshock, (12.3.26)

ψ̂ = 0 on Γsonic, (12.3.27)

ψ̂ν = 0 on Γwedge, (12.3.28)

ψ̂ν = −v2 on Γsym, (12.3.29)
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where, in the shifted coordinates, Γsym = ∂Ω ∩ {ξ2 = −v2} and (Aij , Ai) =

(Aij , Ai)(Dψ̂, ξ) with A12 = A21. The nonlinear differential operators N and
M in (12.3.25) and (12.3.26) are defined below.

We also note that condition (12.3.29) is that ϕ̂ν = 0 on Γsym, expressed in
terms of ψ̂ = ϕ̂− ϕ2.

It remains to define the iteration equation (12.3.25) and the boundary con-
dition (12.3.26) on Γshock. We will do this over the course of the next two
sections.

12.4 THE EQUATION FOR THE ITERATION

In this subsection, we fix (u, θw) ∈ C2,α
∗,1+δ∗(Q

iter)× [θ∗w,
π
2 ] satisfying conditions

(i)–(ii) and (v)–(vi) of Definition 12.3.2 with the nonstrict inequalities in the
estimates, and define equation (12.3.25) such that

(i) It is strictly elliptic in Ω \ Γsonic with elliptic degeneracy at the sonic arc
Γsonic;

(ii) For a fixed point ψ̂ = ψ, equation (12.3.25) coincides with the original
equation (2.2.11) written in terms of ψ: In the ξ–coordinates with the
origin shifted to the center of the sonic circle of state (2), equation (12.3.25)
for a fixed point ψ̂ = ψ coincides with equation (8.3.24) for the density
and sonic speed given by (8.3.25) and (8.3.26), respectively;

(iii) It depends continuously on θw in a sense specified below,

where Ω,Γshock,Γsonic, ϕ, and ψ correspond to (u, θw).
In this subsection, we work in the ξ–coordinates, with the origin shifted to

the center of the sonic circle of state (2). Thus, the potential flow equation
(2.2.11) takes form (8.3.24) with (8.3.25)–(8.3.26).

We define equation (12.3.25) in Ω∩Dεeq and Ω\Dεeq/10 separately, and then
combine them over region Dεeq

\ Dεeq/10 by using the cutoff function, where
εeq ∈ (0, ε02 ) will be determined in Lemma 12.4.2, depending only on the data,
for constant ε0 from Proposition 11.2.8.

Also, from now on, we always assume that ε in Definition 12.3.2 satisfies

ε <
εeq

2
. (12.4.1)

It will be convenient to write the potential flow equation (2.2.11) in terms
of ψ:

2∑

i,j=1

Apotn
ij (Dψ,ψ, ξ)Dijψ = 0, (12.4.2)

where

Apotn
ij (p, z, ξ) = c2(|Dϕ2(ξ) + p|2, ϕ2(ξ) + z, ργ−1

0 )δij

− (Diϕ2(ξ) + pi)(Djϕ2(ξ) + pj)
(12.4.3)
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with c = c(|Dϕ|2, ϕ, ργ−1
0 ) determined by (1.14). From these explicit expres-

sions, we find that, for any R > 0 and k = 1, . . . ,

|Apotn
ij (p, z, ξ)| ≤ CR, |DkApotn

ij (p, z, ξ)| ≤ CR,k (12.4.4)

for any |(p, z, ξ)| ≤ R, where CR and CR,k depend on the data and (R, k).

12.4.1 The iteration equation in Ω away from Γsonic

In Ω \ Dεeq/10, we employ equation (2.2.11) for ϕ̂, via replacing D2φ̂ by D2ψ̂

(since D2φ̂ = D2ψ̂) and substituting the given function ϕ into the coefficients,
to obtain

(c2 − ϕ2
ξ1)ψ̂ξ1ξ1 − 2ϕξ1ϕξ2 ψ̂ξ1ξ2 + (c2 − ϕ2

ξ2)ψ̂ξ2ξ2 = 0, (12.4.5)

where
c2 = c2(|Dϕ|2, ϕ, ξ) = ργ−1

0 − (γ − 1)(
1

2
|Dϕ|2 + ϕ).

This defines coefficients (A1
ij , A

1
i ) = (A1

ij , A
1
i )(ξ) in Ω \ Dεeq/10 with A1

12 = A1
21

and A1
i ≡ 0. In terms of equation (12.4.2), we have

A1
ij(ξ) = Apotn

ij (Dψ(ξ), ψ(ξ), ξ).

Condition (v) of Definition 12.3.2 and (12.4.1) together imply that the equa-
tion is uniformly elliptic in Ω \ Dεeq/10. Also, from Remark 12.3.5, coefficients
(A1

ij , A
1
i ) are in C(−α),Γsym

1,α,Ω\Dεeq/10
with

‖(A1
ij , A

1
i )‖C(−α),Γsym

1,α,Ω\Dεeq/10

≤ C, (12.4.6)

where C depends only on the data, N̂0 from (12.3.21), and α from the definition
of the iteration set, that is, C depends only on the data and (α, θ∗w).

12.4.2 The iteration equation in Ω near Γsonic

Now we define the equation in region Ω∩Dεeq , i.e., near Γsonic. We work in the
(x, y)–coordinates (11.1.1)–(11.1.2).

The construction is given below. We use equation (11.1.4) with (11.1.5) for
ψ̂, written in the form of (11.1.6). We will make cutoffs and substitutions in
coefficients (Âij , Âi)(p, z, x, y) in (11.1.6) so that:

(a) Any fixed point ψ̂ = ψ satisfies the original equation;

(b) In the modified equation, coefficients (Âij , Âi) are independent of z, i.e.,
(Âij , Âi) = (Âij , Âi)(p, x, y);

(c) The modified equation has degenerate ellipticity structure (11.1.7) for all
(p, x, y) ∈ R2 × (Ω ∩ Dεeq

);



ITERATION SET AND SOLVABILITY OF THE ITERATION PROBLEM 471

(d) Â1(p, x, y) ≈ −1 for all (p, x, y);

(e) ‖(Âij , Âi)‖C0,1(R2×(Ω∩Dεeq )) ≤ C.
In particular, we cannot substitute the known function ψ instead of the unknown
function ψ̂ into all the terms of coefficients Âij in (11.1.4), because the properties
of ψ from Definition 12.3.2 of the iteration set and Remark 12.3.5 do not imply
that the resulting equation is elliptic. Indeed, estimate (12.3.19) implies only
that |ψx| ≤ Cxδ

∗
, so that Â11 (the coefficient of ψxx) in (11.1.4) can be negative

if we substitute such ψ.
The leading nonlinear term in Â11 is (γ + 1)ψ̂x. Then we do not substitute

ψ into term (γ + 1)ψ̂x in the coefficient of ψ̂xx in (11.1.4). Instead we make a
cutoff of the form:

xζ1(
ψ̂x
x

),

where ζ1(·) is a cutoff function such that ζ1(s) = s within the expected range
of values of ψ̂x at the fixed point ψ̂ = ψ (i.e., for (γ + 1)|s| ≤ 2 − σ for some
small σ > 0) and (γ + 1) sup ζ1 < 2 to have the positivity of Â11. In fact, this
nonlinearity will allow us to make the key estimates of ψ̂, so that (11.4.38) will
be obtained for ϕ̂, which implies

|ψ̂x| ≤ Cx, |ψ̂y| ≤ Cx
3
2 in Ω ∩ Dεeq

. (12.4.7)

However, these estimates are not sufficient to remove the cutoff described above,
for which we need to have a more precise estimate: |ψ̂x| ≤ 2−σ

γ+1x. Then we
remove the cutoff for a fixed point ψ = ψ̂ by an additional argument, which
imposes an extra requirement:

(f) The modified equation for a fixed point ψ = ψ̂, written in the ξ–coordinates
in the form of (12.3.25), has Ai ≡ 0 in Ω for i = 1, 2.

Note that the cutoff of term (γ + 1)ψ̂x, described above, satisfies this require-
ment, since the modification is only for the coefficient of ψ̂xx. Using the polar
coordinates (11.1.1), we have

ψ̂xx = ψ̂rr =
1

r2

(
ξ2
1ψ̂ξ1ξ1 + 2ξ1ξ2ψ̂ξ1ξ2 + ξ2

2ψ̂ξ2ξ2
)
, (12.4.8)

so that the change of the coefficient of ψ̂xx, written in the ξ–coordinates, does
not produce lower-order terms in the potential flow equation (12.4.2).

Now we need to make some substitutions and cutoffs in the terms of Ok, k =
1, . . . , 5, in (11.1.4)–(11.1.5).

First, we substitute ψ for ψ̂ in the zero-order terms in Ok, i.e., remove the
z–dependence from (Âij , Âi).

We keep the nonlinearity of the first-order terms in Ok and make a cutoff;
otherwise, by substituting ψ̂, we would obtain a lower regularity of the ingredi-
ents of the equation. To define the cutoff, we note that estimates (12.4.7) and
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expressions (11.1.5) imply that Ok, k = 1, . . . , 5, are small, at least in compari-
son with the main terms in the coefficients of (11.1.4). This will allow us to use
a milder cutoff for terms Ok, which will readily be removed after establishing
estimates (12.4.7) by using conditions (12.3.7)–(12.3.8) of Definition 12.3.2(iv).
More specifically, in order to satisfy requirements (c)–(d) listed above, we need
the following estimates for all (p, x, y) ∈ R2 × Ωεeq

:

|O1| ≤ σx, |O2| ≤ σ
√
x, |Ok| ≤ σ for k = 3, 4, 5, (12.4.9)

for sufficiently small σ > 0 depending only on the data.
Furthermore, for deriving the estimates near Γsonic in the iteration, we need

to rescale the equation in a similar way, as (4.7.7) has been rescaled to obtain
(4.7.30). This puts some extra requirements on (A11, A12), since they are mul-
tiplied by xβ0 with β < 0 in (4.7.31) to define the corresponding coefficients in
(4.7.30). To satisfy these and the other requirements (see Lemma 12.4.2 for the
full description of the required properties of the iteration equation near Γsonic),
we modify Ok, k = 1, . . . , 5, as follows: Choosing an appropriate cutoff function
ζ1, we replace p1 by x

3
4 ζ1(

p1

x3/4
), p2 by (γ + 1)N3xζ1(

p2

(γ + 1)N3x
) for N3 from

Definition 12.3.2(iv), and z by ψ.
Now we write these cutoffs explicitly. In the definition below, the cutoff

level for ψ̂x from above is based on estimates (11.2.21) and (11.2.23), as well as
condition (12.3.7) for µ0 = δ

2 ∈ (0, 1
2 ), where δ is from (11.2.21). Let ζ1 ∈ C∞(R)

satisfy

ζ1(s) =





s if |s| < 2− µ0

5

1 + γ
,

2− µ0

10

1 + γ
sign(s) if |s| > 2

γ + 1
,

(12.4.10)

and the following properties:

ζ ′1(s) ≥ 0 on R, (12.4.11)

ζ1(−s) = −ζ1(s) on R, (12.4.12)

ζ ′′1 (s) ≤ 0 on {s ≥ 0}. (12.4.13)

Clearly, such a smooth function ζ1 ∈ C∞(R) exists. Property (12.4.13) will be
used only in Proposition 13.4.10.

Then we define the modified equation described above in the (x, y)–coordinates:

(
2x− (γ + 1)xζ1(

ψ̂x
x

) + Õm1

)
ψ̂xx + Õm2 ψ̂xy

+
( 1

c2
+ Õm3

)
ψ̂yy − (1 + Õm4 )ψ̂x + Õm5 ψ̂y = 0

(12.4.14)
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with Õmk = Õmk (Dψ̂(x, y), x, y), where Õmk (p, x, y) is defined by

Õmk (p, x, y)

= Ok(x
3
4 ζ1(

p1

x3/4
), (γ + 1)N3xζ1(

p2

(γ + 1)N3x
), ψ(x, y), x)

(12.4.15)

for k = 1, . . . , 5, Ok(p, z, x) are given by (11.1.5), and N3 is from Definition
12.3.2(iv).

Lemma 12.4.1. Let εeq ∈ (0, ε0), and let (12.4.1) hold. If (u, θw) ∈ S, and the
corresponding ψ = ϕ − ϕ2 satisfies (12.3.7)–(12.3.9) with constants µ0 and N3

depending only on the data, then

|ψ(x, y)| ≤ Cεeqx for all (x, y) ∈ Ω ∩ Dεeq , (12.4.16)

and

|Õm1 (p, x, y)| ≤ C(εeq +
√
x)x, |(Õm2 , Õm5 )(p, x, y)| ≤ Cx,

|(Õm3 , Õm4 )(p, x, y)| ≤ Cx 3
4

(12.4.17)

for all p ∈ R2 and (x, y) ∈ Ω ∩ Dεeq
, with C depending only on the data.

Proof. In this proof, constant C depends only on the data.
By (12.3.7)–(12.3.9) and (12.4.1), we obtain

|Dψ(x, y)| ≤ Cεeq in Ω ∩ Dεeq .

Also, combining the property that |D(ϕ1−ϕ2)| ≥ 1
C with (12.3.7)–(12.3.9), and

arguing similarly to Remark 12.3.4, we have

|f ′sh| ≤ C for all x ∈ (0, ε0).

Using these estimates and the fact that |ψ(0, y)| = 0 on Γsonic, by Lemma
12.2.7(v), we obtain (12.4.16). With this, then (11.1.5), (12.4.10), and (12.4.15)
imply (12.4.17).

We write equation (12.4.14)–(12.4.15) in the form:

N̂ 2(ψ̂) = 0, (12.4.18)

with

N̂ 2(ψ̂) := Â11ψ̂xx + 2Â12ψ̂xy + Â22ψ̂yy + Â1ψ̂x + Â2ψ̂y, (12.4.19)

where Âij = Âij(Dψ̂, x, y), Âi = Âi(Dψ̂, x, y), and Â21 = Â12. Then coefficients
(Âij , Âi)(p, x, y) are defined for p = (p1, p2) ∈ R2 and (x, y) ∈ Ω ∩ Dεeq

. We
also write this equation in the ξ–coordinates in the form:

N 2(ψ̂) = 0 in Ω ∩ Dεeq
, (12.4.20)
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with

N 2(ψ̂) := A2
11ψ̂ξ1ξ1 + 2A2

12ψ̂ξ1ξ2 +A2
22ψ̂ξ2ξ2 +A2

1ψ̂ξ1 +A2
2ψ̂ξ2 , (12.4.21)

where (A2
ij , A

2
i ) = (A2

ij , A
2
i )(Dψ̂, ξ) and A2

21 = A2
12, in which (A2

ij , A
2
i )(p, ξ) are

defined on p ∈ R2 and ξ ∈ Ω ∩ Dεeq
.

Lemma 12.4.2. There exist λ1 > 0, εeq ∈ (0, ε02 ), and Neq ≥ 1 depending only
on the data such that the following holds: Let (u, θw) ∈ C1(Qiter)×[θ∗w,

π
2 ] satisfy

the properties in Definition 12.3.2(ii), and let the corresponding ψ := ϕ− ϕ(θw)
2

satisfy (12.3.7)–(12.3.9) with µ0 and N3 depending only on the data. Write
equation (12.4.14)–(12.4.15) in the form of (12.4.18). Then (Âij , Âi)(p, x, y)
have the following properties:

(i) For any (x, y) ∈ Ω ∩ Dεeq
and p,κ ∈ R2,

λ1|κ|2 ≤
2∑

i,j=1

Âij(p, x, y)
κiκj

x2− i+j2

≤ 1

λ1
|κ|2. (12.4.22)

(ii) (Âij , Âi, DpÂij , DpÂi)(p, ·, ·) ∈ C1,α(Ω ∩ Dεeq
\ Γsonic), and

‖(Â11, Â12, Â2)‖C0,1(R2×Ω∩Dεeq ) ≤ Neq,

‖(Â22, Â1)‖L∞(R2×Ω∩Dεeq ) + ‖D(p,y)(Â22, Â1)‖L∞(R2×Ω∩Dεeq ) ≤ Neq,

sup
p∈R2,(x,y)∈Ω∩Dεeq

(
x

1
4

∣∣Dx(Â22, Â2)(p, x, y)
∣∣
)
≤ Neq,

with Â21 = Â12.

(iii) supp∈R2 ‖(Âij , Âi)(p, ·, ·)‖C3/4(Ω∩Dεeq ) ≤ Neq for i, j = 1, 2.

(iv) (Âij , Âi) ∈ C1,α(R2 × (Ω ∩ Dεeq
\ Γsonic)) and, for each s ∈ (0,

εeq

2 ),

sup
p∈R2

‖Dk
p(Âij , Âi)(p, ·, ·)‖C1,α(R2×(Ω∩Dεeq\Ns(Γsonic))) ≤ Neqs

−5

for k = 1, 2.

(v) Let |Dyψ(x, y)| ≤ M
√
x in Ω ∩ Dεeq

, in addition to the previous assump-
tions. Then, for all p ∈ R2 and (x, y) ∈ Ω ∩ Dεeq

,

|Dy(Â11, Â12)(p, x, y)| ≤ Ĉ√x,

where Ĉ depends only on the data and M .
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(vi) For any p, functions (Âij , Âi)(p, ·, ·) can be extended from Ω ∩ Dεeq
to

Γsonic = {x = 0} ∩ ∂(Ω ∩ Dεeq
), by fixing p and taking a limit in (x, y)

from Ω ∩ Dεeq ⊂ {x > 0}. Moreover, (Âij , Âi)|x=0 are independent of p.
Explicitly, for any p ∈ R2 and (0, y) ∈ Γsonic,

Âij(p, 0, y) = 0 for (i, j) = (1, 1), (1, 2), (2, 1),

Â22(p, 0, y) =
1

c2
, Â1(p, 0, y) = −1, Â2(p, 0, y) = 0.

(vii) For every (p, x, y) ∈ R2 × Ω ∩ Dεeq ,

(Â11, Â22, Â1)((p1,−p2), x, y) = (Â11, Â22, Â1)((p1, p2), x, y), (12.4.23)

|Âii(p, x, y)− Âii(0, 0, y)| ≤ Neq|x|
3
4 for i = 1, 2, (12.4.24)

|Â12(p, x, y)| ≤ Neqx, (12.4.25)

Â1(p, x, y) ≤ −1

2
. (12.4.26)

(viii) Assume also that (12.4.7) holds for ψ. Then, if ε ∈ (0,
εeq

2 ) small, depend-
ing on the data and the constants in (12.4.7), N̂ 2(ψ̂) from (12.4.20) for
ψ̂ = ψ has the expression:

N̂ 2(ψ) =
(

2x− (γ + 1)xζ1(
ψx
x

) +O1

)
ψxx +O2ψxy

+
( 1

c2
+O3

)
ψyy − (1 +O4)ψx +O5ψy,

(12.4.27)

where Ok = Ok(Dψ,ψ, x), with Ok(p, z, x) given by (11.1.5). That is, the
cutoff is removed in these terms Oj , j = 1, . . . , 5.
Moreover, if ψ satisfies

|∂xψ(x, y)| ≤ 2− µ0

1 + γ
x, |∂yψ(x, y)| ≤ N3x in Ω ∩ Dε/10, (12.4.28)

then, for ψ̂ = ψ, we obtain that, in Ω ∩ Dεeq
,

N̂ 2(ψ) =

2∑

i,j=1

Âpotn
ij (Dψ,ψ, x)Dijψ +

2∑

i=1

Âpotn
i (Dψ,ψ, x)Diψ, (12.4.29)

where (Âpotn
ij , Âpotn

i ) are from (11.1.6). That is, if (12.4.28) holds, N̂ (ψ)
coincides in Ω ∩ Dεeq with the left-hand side of equation (11.1.4) with
(11.1.5).
Furthermore, if N̂ 2(ψ) in the (x, y)–coordinates is of the form of either
(12.4.27) or (12.4.29), then its expression of N 2(ψ) in (12.4.20) in the
ξ–coordinates has only the second-order terms, i.e.,

A2
i (Dψ, ξ) = 0 in Ω ∩ Dεeq

for i = 1, 2. (12.4.30)
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(ix) Let ψ be a fixed point, i.e., ψ̂ = ψ satisfies equation (12.4.18) in Ω∩Dεeq
.

Let (12.4.7) hold for ψ̂ = ψ. Then, if ε ∈ (0,
εeq

2 ) is small in Definition
12.3.2, depending on the data and the constants in (12.4.7), then equation
(12.4.14) for ψ in Ω ∩ Dεeq

is of the form:

(
2x− (γ + 1)xζ1(

ψx
x

) +O1

)
ψxx +O2ψxy

+
( 1

c2
+O3

)
ψyy − (1 +O4)ψx +O5ψy = 0,

(12.4.31)

where Ok = Ok(Dψ,ψ, x), with Ok(p, z, x) given by (11.1.5). That is, ψ
satisfies equation (12.4.14) in Ω ∩ Dεeq

without the cutoff in these terms
Oj , j = 1, . . . , 5. Furthermore, equation (12.4.20) for ψ in the ξ–coordinates
has only the second-order terms, i.e., ψ satisfies

A2
11ψξ1ξ1 + 2A2

12ψξ1ξ2 +A2
22ψξ2ξ2 = 0 in Ω ∩ Dεeq , (12.4.32)

where A2
ij = A2

ij(Dψ, ξ).

Proof. The universal constant C in this proof depends only on the data. We
divide the proof into three steps.

1. The estimates in (12.4.17) and the explicit form (12.4.14) of the equation
imply that, if εeq is chosen sufficiently small, depending only on the data, then
(12.4.22) holds with

λ1 =
1

2
min

{µ0

10
, min
θw∈[θs

w,
π
2 ]

1

c2(θw)

}
,

where µ0 ∈ (0, 1) is from Definition 12.3.2(iv).
2. In this step, we prove (ii)–(iv).
We first prove (ii). The regularity:

(Âij , Âi, DpÂij , DpÂi)(p, ·, ·) ∈ C1,α(Ω ∩ Dεeq
\ Γsonic)

follows directly from (12.4.14)–(12.4.15) and (12.3.21). Then we show the esti-
mates in (ii).

In the estimates below, we use the fact that, for εeq small depending on the
data, Ok(p, z, x) given by (11.1.5) for each θw ∈ [θs

w,
π
2 ] are smooth functions

of their arguments, with C3–norms on any compact subset of R2 ×R× [0, 2εeq]
independent of θw, since c2(θw) ∈ [ 1

C , C].
We first estimate ‖Â11‖C0,1(R2×Ω∩Dεeq ). For this, we estimate the two terms,

xζ1(p1

x ) and Õm1 (p, x, y), separately. In the estimates, we use that, for each
k ≥ 0, there exists Ck such that

|s|k|ζ ′1(s)| ≤ Ck for all s ∈ R, (12.4.33)
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which holds since ζ ′1 ∈ Cc(R). From this (with k = 1), for any p1 ∈ R and x > 0,
we have

∣∣xζ1(
p1

x
)
∣∣ ≤ Cx,

∣∣Dx

(
xζ1(

p1

x
)
)∣∣ =

∣∣ζ1(
p1

x
)− p1

x
ζ ′1(

p1

x
)
∣∣ ≤ C,

∣∣Dp1

(
xζ1(

p1

x
)
)∣∣ =

∣∣ζ ′1(
p1

x
)
∣∣ ≤ C.

(12.4.34)

To estimate Õm1 (p, x, y), we first note that, for O1(p, z, x) defined by (11.1.5),

|DxO1(p, z, x)| ≤ C(x+ |p1|+ |p2|2), |DzO1(p, z, x)| ≤ C,
|Dp1O1(p, z, x)| ≤ C(x+ |p1|), |Dp2O1(p, z, x)| ≤ C|p2|.

Then, denoting

X := (x
3
4 ζ1(

p1

x3/4
), N̂xζ1(

p2

N̂x
), ψ(x, y), x) (12.4.35)

with N̂ = (γ + 1)N3, we obtain that, for (p, (x, y)) ∈ R2 × (Ω ∩ Dεeq
),

|DxO1(X )| ≤ Cx 3
4 , |DzO1(X )| ≤ C,

|Dp1O1(X )| ≤ Cx 3
4 , |Dp2O1(X )| ≤ Cx.

From this, using (12.3.7)–(12.3.9), (12.4.15), and (12.4.33), we have

|DxÕ
m
1 (p, x, y)|

≤
∣∣∣DxO1(X ) +Dx

(
x

3
4 ζ1(

p1

x3/4
)
)
Dp1

O1(X )
∣∣∣

+
∣∣∣Dx

(
N̂xζ1(

p2

N̂x
)
)
Dp2O1(X ) +Dxψ(x, y)DzO1(X )

∣∣∣

≤ Cx 3
4 + C

(∣∣∣x− 1
4 ζ1(x−

1
4
p1

x3/4
)
∣∣∣+
∣∣∣x− 1

4
p1

x3/4
ζ ′1(

p1

x3/4
)
∣∣∣
)
x

3
4

+ C
∣∣∣ζ1(

p2

N̂x
) +

p2

N̂x
ζ ′1(

p2

N̂x
)
∣∣∣x+ Cεeq

≤ C1(
√
x+ εeq) ≤ 2C1

√
εeq ≤ 2C1,

where we have used εeq ∈ (0, 1). Similarly,

|DyÕ
m
1 (p, x, y)| = |DzO1(X )Dyψ(x, y)| ≤ Cεeq ≤ C,

|Dp1
Õm1 (p, x, y)| = |Dp1

O1(X )ζ ′1(
p1

x3/4
)| ≤ Cx 3

4 ≤ C,

|Dp2
Õm1 (p, x, y)| = |Dp2

O1(X )ζ ′1(
p2

N̂x
)| ≤ Cx ≤ C.

Combining all of this with (12.4.17) and (12.4.34) and using the explicit expres-
sion of Â11 in (12.4.14), we obtain that ‖Â11‖C0,1(R2×(Ω∩Dεeq ))

≤ C.
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The estimates for (Â12, Â2) are obtained similarly, especially by using that
|Dp1

Ok(p, z, x)| ≤ C|p2| to see that |DxÕ
m
k (p, x, y)| ≤ C for k = 2, 5.

In the estimates for (Â22, Â1), we find that |Dp1Ok(p, z, x)| ≤ C for k = 3, 4,
so that, estimating as above, we conclude that |DxÕ

m
k (p, x, y)| ≤ Cx−

1
4 for

k = 3, 4. Then, following the calculations as above, we obtain the estimates for
(Â22, Â1) in (ii). Now (ii) is proved.

Moreover, (iii) directly follows from (ii).
Finally, (iv) follows from the explicit expressions of (Âij , Âi) in (12.4.14)–

(12.4.15). Specifically, we only need to estimate the C1,α–norms of the cutoff
terms. We obtain them by extending the calculation in the proof of (ii). Con-
tinuing the calculation in (12.4.34), and using (12.4.33) with k = 1, 2, we have

∣∣D2
(p1,x)

(
xζ1(

p1

x
)
)∣∣ ≤ Cx−1.

Similarly, ∣∣D2
(p1,x)

(
x

3
4 ζ1(

p1

x3/4
)
)∣∣ ≤ Cx− 5

4 .

By these and similar calculations, there exists C depending on the data such
that, for each s ∈ (0,

εeq

2 ),

‖Dk
(p,x)(Âij , Âi)‖L∞(R2×(Ω∩Dεeq\Ns(Γsonic))) ≤ Css−5 for k = 1, 2, 3, 4.

This implies (iv).
3. In this step, we prove properties (v)–(ix).
To show property (v) for A11, we use the assumption that |Dyψ(x, y)| ≤

M
√
x on Ω ∩ Dεeq

with (12.4.14)–(12.4.15) and (11.1.5) to calculate:

|DyA11(p, x, y)| = |DyÕ
m
1 (p, x, y)|

=
∣∣∣DzO1(x

3
4 ζ1(

p1

x3/4
), (γ + 1)N3xζ1(

p2

(γ + 1)N3x
), ψ(x, y), x)

∣∣∣|Dyψ(x, y)|

≤ Ĉ√x.

Also, by a similar calculation, DyA12 ≡ 0, since DzO2 ≡ 0 by (11.1.5).
Property (vi) follows from (12.4.14)–(12.4.16), since ζ1(·) is bounded so that

lim
x→0+

xζ1(
p1

x
) = 0 to obtain that, for any (0, y0) ∈ Γsonic, p ∈ R2, and k =

1, . . . , 5,

lim
Ω3(x,y)→(0,y0)

Õmk (p, x, y) = Ok(0, 0, 0) = 0,

where we have used (11.1.5) in the last equality.
Now we prove assertion (vii). Property (12.4.23) follows from the explicit

expressions (12.4.14)–(12.4.15) by using (11.1.5) and (12.4.12).
Next we show (12.4.24). From (11.1.5) and (12.4.14)–(12.4.15), we employ

(12.4.16) to conclude that Â11(0, 0, y) = 0. Also, our assumptions imply that
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(12.4.17) holds, so that |Õm1 (p, x, y)| ≤ Cεeqx, and then (12.4.24) follows for
i = 1. Similarly, for i = 2, we have

Â22(p, x, y)− Â22(0, 0, y) = Õ3
k(p, x, y),

and using (12.4.17) again,

|Õm3 (p, x, y)| ≤ Cx 3
4 ,

which shows (12.4.24) for i = 2.
To show (12.4.25), we first note that, from (12.4.14) and (12.4.18), it fol-

lows that A12(p, x, y) = 1
2O

m
2 (p, x, y). Now (12.4.25) follows from (11.1.5) and

(12.4.15).
By choosing sufficiently small εeq, property (12.4.26) follows from Â1(p, x, y) =

−
(
1 + Ôm4 (p, x, y)

)
and (12.4.17). Now assertion (vii) is proved.

To show (viii) and (ix), we choose ε so small that (12.4.7) for ψ̂ = ψ implies
that, for each (x, y) ∈ Ω ∩ Dε,

|ψx(x, y)| ≤ 1

2(γ + 1)
x

3
4 , |ψy(x, y)| ≤ N3

2
x.

Then, from (12.4.10), it follows that, in Ω ∩ Dε,

x
3
4 ζ1(

ψx(x, y)

x3/4
) = ψx(x, y),

(γ + 1)N3xζ1(
ψy(x, y)

(γ + 1)N3x
) = ψy(x, y).

(12.4.36)

From (12.3.7)–(12.3.8), it follows that (12.4.36) holds in Ω ∩ (Dεeq \ Dε/10) by
using that εeq ≤ 1. Thus, (12.4.36) holds in Ω ∩ Dεeq

. Then, by (12.4.15),

Omk (Dψ, x, y) = Ok(Dψ,ψ, x) in Ω ∩ Dεeq
for k = 1, . . . , 5.

Therefore, (12.4.27) holds, and equation (12.4.18) for ψ coincides with (12.4.31),
so that ψ satisfies (12.4.31) in Ω ∩ Dεeq

.
Furthermore, expression (12.4.27) (equivalently, the left-hand side of equa-

tion (12.4.31)) differs from the left-hand side of equation (11.1.4) only in the
coefficient of ψxx. Equation (11.1.4) is the potential flow equation (divided by
c2) and is of form (12.4.2) in the ξ–coordinates. Equation (12.4.2) has only the
second-order terms. Then, from (12.4.8), it follows that (12.4.30) holds, and
equation (12.4.31), written in the ξ–coordinates, also has only the second-order
terms, i.e., is of form (12.4.32).

Finally, if ψ satisfies (12.4.28), then, using (12.3.7)–(12.3.8), we see that

(12.4.36) also holds, and xζ1(
ψx(x, y)

x
) = ψx(x, y) in Ω ∩ Dεeq

. This implies
that (12.4.29) holds.
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Note that (12.3.20) implies that the condition of Lemma 12.4.2(v) holds with
the constant depending only on Ñ∗0 and εeq. Then, from Lemma 12.4.2, recalling
Remark 12.3.11, we have

Corollary 12.4.3. There exists εeq ∈ (0, ε02 ) depending only on the data such
that, if ε ∈ (0,

εeq

2 ) in Definition 12.3.2, then, for any (u, θw) ∈ Kext, assertions
(i)–(vii) of Lemma 12.4.2 hold with λ1 > 0 and Neq depending only on the data,
and with Ĉ depending only on the data and θ∗w. Also, assertions (viii)–(ix) of
Lemma 12.4.2 hold if ε ∈ (0,

εeq

2 ) is small, depending only on the data and the
constants in (12.4.7).

Next, we combine the equations introduced above by defining the coefficients
of (12.3.25) in Ω as follows:

First, we define the cutoff function: Let, for each τ > 0, ζ2 ≡ ζ(τ)
2 ∈ C∞(R)

satisfy

ζ2(s) =

{
0 if s ≤ τ

2
,

1 if s ≥ τ,
and 0 ≤ ζ ′2(s) ≤ 10

τ
on R. (12.4.37)

Then, using the mapping in Lemma 12.2.2, we define that, for each θw ∈ [θs
w,

π
2 ]

and τ ∈ (0, ε02 ),

ζ̂
(τ,θw)
2 (ξ) := ζ

(τ)
2 (F

(θw)
1 (ξ)) for all ξ ∈ Q(θw)

bd . (12.4.38)

Using Lemma 12.2.2(i)–(iv), Definition 12.2.6(iv), and setQ∪bd defined in Lemma
12.2.2(iii), we note the following properties of ζ̂(τ,θw)

2 for each τ ∈ (0, ε02 ):

Function (ξ, θw) 7→ ζ̂
(τ,θw)
2 (ξ) is in C∞(Q∪bd), (12.4.39)

‖ζ(τ,θw)
2 (·)‖C3(Qbd) ≤ C for all θw ∈ [θs

w,
π

2
], (12.4.40)

ζ
(τ,θw)
2 (·) ≡

{
0 in Ω(u,θw) ∩ Dτ/2,
1 in Ω(u,θw) \ Dτ

for all (u, θw) ∈ S. (12.4.41)

Now we define the iteration equation in Ω. Fix (u, θw) ∈ S. Then, possibly
reducing εeq depending only on the data (which will be fixed in Lemma 12.4.5),
and writing ζ̂(εeq)

2 for ζ̂(εeq,θw)
2 , we define that, for each p ∈ R2 and ξ ∈ Ω,

Aij(p, ξ) = ζ̂
(εeq)
2 (ξ)A1

ij(ξ) +
(
1− ζ̂(εeq)

2 (ξ)
)
c2A

2
ij(p, ξ),

Ai(p, ξ) =
(
1− ζ̂(εeq)

2 (ξ)
)
c2A

2
i (p, ξ),

(12.4.42)

where A1
ij(ξ) are defined by (12.4.5).

Remark 12.4.4. Note that (A2
ij , A

2
i ) have been multiplied by c2, since equation

(11.1.4)–(11.1.5) is the potential flow equation divided by c2 = c
(θw)
2 . Thus, with

our definition, equation (12.3.25) with coefficients (12.4.42), taken at a fixed
point ψ = ψ̂ and without the cutoff, is the potential flow equation (12.4.2).
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We state the properties of (Aij , Ai) in the following lemma.

Lemma 12.4.5. Let α ∈ (0, 1
8 ) and M > 0. Then there exist εeq ∈ (0, ε02 ),

λ0 > 0, Neq ≥ 1 (depending only on the data), and C (depending only on the
data, M , and α) such that the following hold:

Let ε ∈ (0,
εeq

2 ) be used in Definition 12.3.2. Let (u, θw) ∈ C1(Qiter)× [θ∗w,
π
2 ]

satisfy conditions (ii) and (v)–(vi) of Definition 12.3.2 with (λ, ρmin, ρmax)
fixed there depending only on the data, and let the corresponding function ψ =

ϕ(u,θw) − ϕ(θw)
2 satisfy (12.3.7)–(12.3.9) for µ0 and N3 depending only on the

data, and

‖ψ‖(−1−α),Γsym

2,α,Ω\Dεeq/2
≤M, (12.4.43)

with M fixed above. Then the coefficient functions (Aij , Ai)(p, ξ) defined by
(12.4.42) for p ∈ R2 and ξ ∈ Ω, i, j = 1, 2, satisfy the following:

(i) For any ξ ∈ Ω and p, µ ∈ R2,

λ0 dist(ξ,Γsonic)|µ|2 ≤
2∑

i,j=1

Aij(p, ξ)µiµj ≤ λ−1
0 |µ|2.

(ii) A12 = A21 and
‖(Aij , Ai)‖L∞(R2×Ω) ≤ Neq.

(iii) Aij(p, ξ) = A1
ij(ξ) and Ai(p, ξ) = 0 for any ξ ∈ Ω \ Dεeq and p ∈ R2,

where A1
ij(ξ) are defined by (12.4.5). In particular,

‖Aij‖C(−α),Γsym

1,α,Ω\Dεeq

≤ C.

(iv) Functions (Aij , Ai)(p, ξ) satisfy that, for each p ∈ R2,

(Aij , Ai)(p, ·), Dp(Aij , Ai)(p, ·) ∈ C1,α(Ω \ (Γsonic ∪ Γsym)).

Moreover, for each p ∈ R2,

‖(Aij , Ai)(p, ·)‖(−α),Γsym

0,3/4,Ω + ‖Dp(Aij , Ai)(p, ·)‖L∞(Ω) ≤ C.

(v) Aij , Ai, Dk
p(Aij , Ai) ∈ C1,α(R2 × (Ω \ (Γsonic ∪ Γsym))) for k = 1, 2, and,

for any s ∈ (0, ε02 ),

‖(Aij , Ai)‖C1,α(R2×(Ω\Ns(Γsonic∪Γsym))) ≤ Cs−5.

(vi) (Aij , Ai)(p, ξ) = (A2
ij , A

2
i )(p, ξ) for any (p, ξ) ∈ R2 × (Ω ∩ Dεeq/2). In

particular, equation (12.3.25), written in the (x, y)–coordinates in domain
Ω ∩ Dεeq/2, is (12.4.14).
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(vii) Coefficients Aij(p, ξ) can be extended by continuity to all ξ ∈ Ω for each
p ∈ R2. In particular, for ξ ∈ Γsonic, the coefficients are of the following
explicit form:

A11(p, ξ) = c22 − ξ2
1 , A22(p, ξ) = c22 − ξ2

2 ,

A12(p, ξ) = A21(p, ξ) = −ξ1ξ2,
(12.4.44)

where we have worked in the shifted coordinates ξ with the origin at O2.

(viii) Let Apotn
ij (Dψ,ψ, ξ) be the coefficients of equation (12.4.2).

(a) If equation (12.3.25) is determined by (u, θw) ∈ Kext, then, for the
corresponding Ω and ψ,

Aij(Dψ, ξ) = Apotn
ij (Dψ,ψ, ξ), Ai(Dψ, ξ) = 0 in Ω \ Dε/10.

In particular, if ψ is a fixed point, i.e., ψ̂ = ψ satisfies equation
(12.3.25) in Ω, then ψ is a solution of (12.4.2) in Ω \ Dε/10.

Suppose also that (12.4.7) holds for the fixed point ψ̂ = ψ. Then, if ε is
small, depending on the data and the constants in (12.4.7), then

(b) Ai(Dψ, ξ) ≡ 0 in Ω for equation (12.3.25). Thus, ψ in the ξ–
coordinates satisfies the equation that has only the second-order terms:

A11ψξ1ξ1 + 2A12ψξ1ξ2 +A22ψξ2ξ2 = 0 in Ω, (12.4.45)

where Aij(Dψ, ξ) are from (12.3.25).

(c) Equation (12.4.45) for ψ is (12.4.31) written in the (x, y)–coordinates
in Ω ∩ Dεeq/2.

Proof. Let εeq be as in Lemma 12.4.2. We will reduce it as necessary, depending
on the data.

Lemma 12.4.2(i) implies the following ellipticity in the ξ–coordinates: By
(8.3.37), the change of coordinates ξ to (x, y) in Ω ∩ Dεeq

and its inverse
have C1–norms bounded by a constant depending only on the data if εeq <
1
10 minθw∈[θs

w,
π
2 ] c2(θw). Then, from (12.4.22), using (12.3.23) to obtain that

x

dist((x,y),Γsonic)
∈ ( 1

C , C) in the (x, y)–coordinates in Ω ∩ Dεeq
for C depending

on the data, we find that there exists λ̃ > 0 depending only on the data such
that, for any (p, ξ) ∈ R2 × (Ω ∩ Dεeq

) and µ = (µ1, µ2) ∈ R2,

λ̃ dist(ξ,Γsonic)|µ|2 ≤
2∑

i,j=1

A2
ij(p, ξ)µiµj ≤ λ̃−1|µ|2, (12.4.46)

where A2
ij(p, ξ), i, j = 1, 2, are from (12.4.32).
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Also, conditions (v)–(vi) of Definition 12.3.2 imply that coefficients A1
ij sat-

isfy the ellipticity condition in Ω \ Dεeq/10 as asserted in (i), with λ̃0 depending
only on (λ, ρmax, ρmin), hence on the data. Combining this with (12.4.46) and
using (12.4.42), we obtain (i).

Property (ii) can be seen as follows: Since Ak12 = Ak21 for k = 1, 2, then
A12 = A21 by (12.4.42). By the symmetry of the coefficients, the ellipticity in
assertion (i) implies that ‖Aij‖L∞(R2×Ω) ≤ λ−1

0 . Also, since A1
i ≡ 0, Lemma

12.4.2(ii) implies that ‖Ai‖L∞(R2×Ω) ≤ Neq. Now (ii) is proved.
To prove the other properties, we note first that (12.4.43) implies that

(12.4.6) holds.
Now property (iii) follows from (12.4.42) and estimate (12.4.6).
Property (iv) follows from (12.4.6), Lemma 12.4.2(ii)–(iii), and the fact that

A1
ij are independent of p.
Property (v) follows by using (12.4.43) in the explicit definition (12.4.5) of

(A1
ij , A

1
i )(ξ), combined with (12.4.42) and Lemma 12.4.2(iv).

Property (vi) follows directly from (12.4.42).
Property (vii) follows from property (vi) and Lemma 12.4.2(vi) by changing

the variables and noting that |ξ| = c2 on Γsonic (in the shifted coordinates).
Now we show property (viii). Assertion (iii) implies that equation (12.3.25) is

the potential flow equation in Ω \Dεeq
so that it is of form (12.4.45) in Ω \Dεeq

.
Furthermore, using properties (12.3.7)–(12.3.8) and εeq ≤ ε0 ≤ 1, we obtain
that, in Ω ∩ (Dεeq

\ Dε/10),

xζ1(
ψx(x, y)

x
) = ψx(x, y), x

3
4 ζ1(

ψx(x, y)

x3/4
) = ψx(x, y),

(γ + 1)N3xζ1(
ψy(x, y)

(γ + 1)N3x
) = ψy(x, y).

(12.4.47)

From this, we conclude that coefficients (Âij , Âi)(Dψ, x, y) of (12.4.14) in Ω ∩
(Dεeq

\ Dε/10) coincide with the coefficients of (11.1.4)–(11.1.5), that is, they
are the coefficients of the potential flow equation (divided by c2) in the (x, y)–
coordinates. Thus, the coefficients of equation (12.4.20) in the ξ–coordinates
coincide with the coefficients of (12.4.2) in Ω∩ (Dεeq

\Dε/10), especially A2
k = 0

for k = 1, 2, in that region. Then, using (12.4.42) and the fact that equation
(12.4.5) is the potential flow equation (12.4.2) for the fixed point, we conclude
that equation (12.3.25) is the potential flow equation (12.4.2) for the fixed point
ψ = ψ̂ in Ω∩ (Dεeq

\ Dε/10). Finally, from assertion (vi) and Lemma 12.4.2(ix),
choosing ε small depending only on the data and the constants in (12.4.7), we
conclude that equation (12.3.25) is of form (12.4.31) in the (x, y)–coordinates
and form (12.4.45) in the ξ–coordinates in Ω ∩ Dεeq/2. Now property (viii) is
proved.

Combining Lemma 12.4.5 with (12.3.19), (12.3.21), and Definition 12.3.2
where we note that (12.3.19) implies (12.4.43), and recalling Remark 12.3.11,
we obtain
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Corollary 12.4.6. There exists εeq ∈ (0, ε02 ) depending only on the data such
that, if ε ∈ (0,

εeq

2 ) in Definition 12.3.2, then, for any (u, θw) ∈ Kext, assertions
(i)–(vii) of Lemma 12.4.5 hold with λ0 > 0 depending only on the data, and C
depending only on the data and (θ∗w, α). Moreover, assertion (viii) of Lemma
12.4.5 holds if ε ∈ (0,

εeq

2 ) is small, depending only on the data and the constants
in (12.4.7).

Next, we show

Lemma 12.4.7. Let εeq ∈ (0, ε02 ) be as in Corollary 12.4.6 so that it depends
only on the data. If ε ∈ (0,

εeq

2 ) in Definition 12.3.2, then the following hold:
Let (u, θw) ∈ K satisfy ψ̂ = ψ in Ω for function ψ̂ introduced in Definition
12.3.2(vii). Assume also that, in the (x, y)–coordinates,

∣∣ψ̂x
∣∣ ≤ 2− µ0

5

1 + γ
x,

∣∣ψ̂y
∣∣ ≤ N3x

hold in Ω ∩ Dε/10. Then ψ satisfies the potential flow equation (12.4.2) in Ω.
Moreover, equation (12.4.2) is strictly elliptic for ψ in Ω \ Γsonic.

Proof. From Lemma 12.3.10, for (u, θw) ∈ K, the corresponding ψ satisfies the
nonstrict inequalities in (12.3.7)–(12.3.8). Then equation (12.4.14)–(12.4.15)
for ψ̂ = ψ coincides in Ω ∩ Dε0 with equation (11.1.4)–(11.1.5). Thus, writ-
ing equation (12.4.14) in the ξ–coordinates as (12.4.20) and using coefficients
Apotn
ij (Dψ,ψ, ξ) of the potential flow equation (12.4.2), we have

c2A
2
ij(Dψ, ξ) = Apotn

ij (Dψ,ψ, ξ), A2
i (Dψ, ξ) = 0 in Ω ∩ Dε0 ;

see Remark 12.4.4 regarding coefficient c2. Furthermore, from (12.4.5), we have

A1
ij(ξ) = Apotn

ij (Dψ,ψ, ξ) in Ω \ Dεeq/10.

Therefore, by (12.4.42), the coefficients of equation (12.3.25) for ψ̂ = ψ (satis-
fying the conditions of this lemma) satisfy that, in Ω,

Aij(Dψ, ξ) = ζ̂
(εeq)
2 (ξ)A1

ij(ξ) +
(
1− ζ̂(εeq)

2 (ξ)
)
c2A

2
ij(Dψ, ξ)

= Apotn
ij (Dψ,ψ, ξ),

Ai(Dψ, ξ) =
(
1− ζ̂(εeq)

2 (ξ)
)
c2A

2
i (Dψ, ξ) = 0,

(12.4.48)

where we have used that εeq ≤ ε0. Then, from equation (12.3.25), we find that
ψ is a solution of the potential flow equation (8.3.24) in Ω.

Furthermore, equation (12.3.25) is strictly elliptic for ψ in Ω \ Γsonic, by
Lemma 12.4.5(i). Then the same property holds for the potential flow equation
for ψ by (12.4.48).
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12.5 ASSIGNING A BOUNDARY CONDITION ON THE
SHOCK FOR THE ITERATION

In this section, we work in the ξ–coordinates with the origin shifted to center O2

of the sonic center of state (2). These coordinates have been defined in §8.3.2.1,
and the background states in these coordinates are of form (8.3.7)–(8.3.9). Also,
we continue to follow the notational convention in Remark 12.3.11.

We introduce the following notations: For a subset B ⊂ R2 and a function
ϕ ∈ C1(B), denote

E(ϕ,B) := {(p, z, ξ) : p = Dϕ(ξ), z = ϕ(ξ), ξ ∈ B}. (12.5.1)

Fix (u, θw) ∈ C2,α
∗,1+δ∗(Q

iter) × [θ∗w,
π
2 ] satisfying conditions (i)–(ii) and (vi)

of Definition 12.3.2. Then the corresponding Ω, Γshock, ϕ, and ψ = ϕ2 − ϕ are
defined. We assume that (12.3.10) and (12.3.13) hold.

For a given function ψ, we use the notation defined in (12.5.1) and define
(E(ψ,Γshock))σ to be a σ–neighborhood of E(ψ,Γshock) in the (p, z, ξ)–space
within set {ξ : ϕ2(ξ) < ϕ1(ξ)}, that is,

(E(ψ,Γshock))σ =

{
(p, z, ξ) ∈ R2 × R× R2 :

dist(ξ,Γshock) < σ

|(p, z)− (Dψ(ξ), ψ(ξ))| < σ

}
.

(12.5.2)
We define a boundary condition on Γshock in (12.3.26) for this (u, θw) such

that
(i) M(p, z, ξ) is C3–smooth as a function of (p, z, ξ) in (E(ψ,Γshock))σ for

sufficiently small σ > 0. The key point here is that the smoothness of M is
independent of the smoothness of Γshock.

(ii)M(p, z, ξ) is homogeneous in the sense thatM(0, 0, ξ) = 0.
(iii) For a fixed point ψ̂ = ψ, the boundary condition (12.3.26) coincides

with the Rankine-Hugoniot condition: (ρDϕ− ρ1Dϕ1) · νsh = 0 on Γshock.
In §11.3, we have shown that, if ϕ is an admissible solution, then ψ = ϕ−ϕ2

satisfies the boundary condition (11.3.1) on Γshock with function M0(p, z, ξ)
defined by (11.3.2), and condition (11.3.32) on Γshock with functionM1 defined
by (11.3.23), which satisfies the homogeneity property (11.3.27).

FunctionM1 has some convenient properties when (p, z) are small. Other-
wise, it is more convenient to use functionM0. Thus, below we combine these
two conditions and define the corresponding functionM(p, z, ξ).

Furthermore, in view of (12.3.18)–(12.3.19), it suffices to define function
M(p, z, ξ) only for (p, z, ξ) ∈ BM̂ × [−2M̂, 2M̂ ]×B2Mdom

.
Now we define the boundary condition for the iteration.
Recall that, if ϕ is a solution of regular reflection-diffraction configuration,

then it satisfies the Rankine-Hugoniot conditions:
(
ρ(|Dϕ|2, ϕ)Dϕ− ρ1Dϕ1

)
· νsh = 0 on Γshock, (12.5.3)
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where
νsh =

D(ϕ1 − ϕ)

|D(ϕ1 − ϕ)| =
D(ϕ1 − ϕ2)−Dψ
|D(ϕ1 − ϕ2)−Dψ| . (12.5.4)

Thus, any solution ϕ of regular reflection-diffraction configuration satisfies the
Rankine-Hugoniot condition on Γshock with νsh replaced by the right-hand side
of (12.5.4). Expressing this condition in terms of ψ, we obtain the boundary
condition (11.3.1)–(11.3.2).

To define the iteration condition (12.3.13), for (u, θw) ∈ C2,α
∗,1+δ∗(Q

iter) ×
[θ∗w,

π
2 ] satisfying (12.3.13) and conditions (i)–(ii) and (vi) of Definition 12.3.2,

we note that the corresponding function ϕ satisfies that ϕ = ϕ1 on Γshock =
Γshock(u, θw). Thus, if we prescribe

M0(Dψ̂, ψ̂, ξ) = 0 on Γshock, (12.5.5)

where M0 is defined by (11.3.2), then the fixed point ψ = ψ̂ satisfies the
Rankine-Hugoniot conditions. We later modify the boundary condition (12.5.5)
to make it homogeneous. Now let us first discuss some of its properties.

Explicitly, the form of M0(p, z, ξ) in the ξ–coordinates with the origin
shifted to center O2 of state (2) is

M0(p, z, ξ)

=
(
ρ(p, z, ξ)

(
p +Dϕ2(ξ)

)
− ρ1Dϕ1(ξ)

)
· D(ϕ1 − ϕ2)− p

|D(ϕ1 − ϕ2)− p| ,
(12.5.6)

where

ρ(p, z, ξ) =
(
ργ−1

2 + (γ − 1)(ξ · p− |p|
2

2
− z)

) 1
γ−1

, (12.5.7)

andD(ϕ1−ϕ2) = (u1−u2,−v2) is independent of ξ. We note that this expression
definesM0(p, z, ξ) on D(M0) in (11.3.3). For the iteration argument, it suffices
to restrict the domain ofM0(p, z, ξ) to the set:

AM0 :=





(p, z, ξ) :

p ∈ B4M̂ , z ∈ (−4M̂, 4M̂), ξ ∈ B4Mdom

ργ−1
min

2
< ργ−1

2 + (γ − 1)(ξ · p− |p|
2

2
− z) < 2ργ−1

max

|p− (u1 − u2,−v2)| > µ1

2





(12.5.8)
with M̂ = N4, where (N4, µ1,Mdom) are from (12.3.10), (12.3.13), and (12.3.18)
respectively, Mdom is adjusted for the shifted coordinates but still depends
only on the data, and (ρmin, ρmax) are from Definition 12.3.2(vi). Indeed, if
(u, θw) ∈ C2,α

∗,1+δ∗(Q
iter) × [θ∗w,

π
2 ] satisfies (12.3.13) and conditions (i)–(ii) and

(vi) of Definition 12.3.2, and if ϕ,ψ, and Γshock are defined by (u, θw), then,
from the bounds in (12.3.10), (12.3.13), and (12.3.18), we have

(E(ψ,Γshock))σ ⊂ AM0
∩ {|ξ| ≤ 3

2
Mdom}, (12.5.9)
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where we have used the notation in (12.5.2), and σ > 0 depends only on the
data, since the constants in the properties cited above are determined by the
data. Also, from the definitions, it directly follows that, if Γshock = Γshock(ψ),
and (12.5.5) holds for ψ̂ = ψ, then ϕ = ψ + ϕ2 satisfies (12.5.3).

From the explicit expression ofM0 in (12.5.6), we have

‖M0‖Ck(AM0
) ≤ Ck for k = 1, 2, . . . , (12.5.10)

where each Ck depends only on the data and µ1, since constants M̂ = N4,
Mdom, ρmin, and ρmax depend only on the data.

Also, from Remarks 12.3.7–12.3.8, for small σ > 0 depending only on the
data,

Aσ := {(p, z, ξ) : |(p, z)| < σ, |ξ| < 4Mdom} ⊂ AM0
. (12.5.11)

The boundary condition (12.5.6) is not homogeneous, i.e., M0(0, 0, ξ) 6= 0
in general. Thus, we modify it by defining M1 from (11.3.23), with F (z, ξ)
defined by (11.3.20). The boundary condition M1 is homogeneous, since it
satisfies (11.3.27).

From (11.3.20), using that ξP1
= (ξP1

· νS1
)νS1

+ (ξP1
· τS1

)τS1
, we have

F (0, ξ) = ξP1
+ ((ξ − ξP1

) · τS1
)τS1

.

Also, from (11.3.20),

|F (z, ξ)− F (0, ξ)| ≤ |z|√
(u1 − u2)2 + v2

2

≤ |z|
µ1
,

where the last estimate follows from the choice of µ1 in (12.3.13), sinceDϕ(P1) =
Dϕ2(P1) for any admissible solution. Combining the last two estimates, we have

|F (z, ξ)| ≤ |ξP1
|+ |ξ − ξP1

|+ |z|
µ1
.

Using this and (12.5.11), noting that |ξP1
| < Mdom for any θw ∈ [θ∗w,

π
2 ], by

(12.3.18), and using the continuous dependence of ξP1
on θw and Remark 12.3.8,

we obtain (after possibly reducing σ)

(p, z, F (z, ξ)) ∈ AM0
for any (p, z, ξ) ∈ AM1

, (12.5.12)

where
AM1

:= {(p, z, ξ) : |(p, z)| < σ, |ξ| < 2Mdom}. (12.5.13)

Thus,M1(·) is defined on AM1
.

Also, using the explicit form of F (z, ξ) and (12.5.10), we have

‖M1‖Ck(AM1
) ≤ Ck for k = 1, 2, . . . , (12.5.14)
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where each Ck depends only on the data and µ1.
We also note that the dependence of (M0,M1) on θw is through (u2, v2, ξP1

),
and these quantities depend on θw continuously.

Now we define the operator on the left-hand side of (12.3.26) by combining
M0 andM1 as follows: Let σ1 ∈ (0, σ) be chosen later. Let η ∈ C∞(R) satisfy
η ≡ 1 on (−∞, σ1

2 ), η ≡ 0 on (σ1,∞), and η′ ≤ 0 on R. Define

M(p, z, ξ) = (1− η(|(p, z)|))M0(p, z, ξ) + η(|(p, z)|)M1(p, z, ξ) (12.5.15)

for any (p, z, ξ) ∈ AM, where

AM = AM0
∩ {(p, z, ξ) : |ξ| < 2Mdom}. (12.5.16)

Note that the coefficient of M1 on the right-hand side of (12.5.15) is nonzero
only for (p, z, ξ) ∈ AM1

. Then (12.5.15) is well-defined on AM.
Now, from the properties of (M0,M1) as proved above and in §11.3, we

obtain the following properties ofM:

Lemma 12.5.1. There exists σ > 0 depending only on the data such that the
following hold: Let σ1 ∈ (0, σ). Define functions M0, M1, and M by (12.5.6),
(11.3.23), and (12.5.15) on (AM0

,AM1
,AM), respectively. Then

‖M‖C4(AM) ≤ C, (12.5.17)

where C depends only on the data and (µ1, σ1).
Furthermore, the following properties hold: Let (u, θw) ∈ C2,α

∗,1+δ∗(Q
iter) ×

[θ∗w,
π
2 ] satisfy (12.3.13) and conditions (i)–(ii) and (vi) of Definition 12.3.2,

and let ϕ,ψ, and Γshock be defined by (u, θw). Then

(i) For such ψ,
(E(ψ,Γshock))σ ⊂ AM ⊂ AM0

; (12.5.18)

(ii) Mapping θw 7→ M is in C([θ∗w,
π
2 ];C4(AM));

(iii) M(Dψ,ψ, ξ) =M0(Dψ,ψ, ξ) and ∂pM(Dψ,ψ, ξ) = ∂pM0(Dψ,ψ, ξ) on
Γshock;

(iv) Condition M(Dψ̂, ψ̂, ξ) = 0 on Γshock is satisfied by ψ̂ = ψ if and only if
ϕ = ϕ2+ψ satisfies the Rankine-Hugoniot condition (12.5.3) on Γshock(ϕ) =
{ϕ = ϕ1};

(v) M(0, 0, ξ) = 0 for all ξ ∈ B2Mdom
(0).

Proof. Using (12.5.15), the assertions are proved as follows:
(12.5.17) follows from (12.5.9) which is proved in the lines preceding it;
(i) follows from (12.5.11)–(12.5.12);
(ii) follows from the explicit expressions of (M0,M1,M) and the continuous

dependence of the parameters of state (2) on θw ∈ [θs
w,

π
2 ];
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(iii) follows from (11.3.25)–(11.3.26) since ϕ = ϕ1 on Γshock, i.e., ψ = ϕ1−ϕ2

on Γshock;
(iv) follows for M0 (instead of M) from its definition, because ϕ = ϕ1 on

Γshock; (iv) forM follows from assertion (iii) as proved above;
(v) follows from Lemma 11.3.5 and (12.5.12).

We choose constant σ1 ∈ (0, σ) in Lemma 12.5.2 below.
In order to define the operator in (12.3.26), for each (u, θw) ∈ Kext, we extend

M, defined in Lemma 12.5.1, to all (p, z, ξ) ∈ R2 ×R× Γshock(u, θw), in such a
way that it satisfies some properties (obliqueness, etc.). We do this in the rest
of this section.

We first prove some properties of the boundary condition: M(Dψ,ψ, ξ) = 0
on Γshock = Γshock(u, θw) for (u, θw) satisfying some subsets of the assumptions
in Kext. In view of further applications in Chapter 17, we do not assume that
(u, θw) ∈ Kext; instead, we give the specific conditions needed for each property
to hold. In particular, we use those constants in Definition 12.3.2 depending only
on the data, i.e., (µ0, µ1, λ,N3, N4, N5), according to Remark 12.3.3, and specify
the explicit dependence on the other constants. Also, we use the nonstrict
inequalities in the conditions of Definition 12.3.2 as described in Remark 12.3.11.

Lemma 12.5.2. Let σ be the constant defined in Lemma 12.5.1. There exist
σ1 ∈ (0, σ) and ε̃0 > 0 depending only on the data such that, if σ1 is used in
the definition of η in (12.5.15), and ε ∈ (0, ε̃0) in Definition 12.3.2, then the
following holds:

Let (u, θw) ∈ C1(Qiter)× [θ∗w,
π
2 ] satisfy conditions (ii) and (v)–(vi) of Defi-

nition 12.3.2 with (λ, ρmin, ρmax) fixed there depending only on the data, and let
the corresponding function ϕ(u,θw) satisfy (12.3.9) and (12.3.13)–(12.3.14) with
(µ1, N3) depending only on the data. Then, for any ξ ∈ Γshock,

δbc ≤ DpM(Dψ(ξ), ψ(ξ), ξ) · νsh(ξ) ≤ δ−1
bc , (12.5.19)

DzM(Dψ(ξ), ψ(ξ), ξ) ≤ −δbc, (12.5.20)

where δbc > 0 depends only on the data, and νsh is the interior normal to Γshock

with respect to Ω.

Proof. From Lemma 12.5.1(iii), it suffices to show (12.5.19) with M0, instead
ofM. We show (12.5.19) withM0 near Γsonic and away from Γsonic, separately.
We divide the proof into three steps.

1. We first show (12.5.19) at point P1 ∈ Γshock, i.e., show that

DpM0(Dψ(P1), ψ(P1), ξP1
) · νsh(P1)

is uniformly bounded away from zero and bounded from above.
The uniform upper bound: |DpM0(Dψ(P1), ψ(P1), ξP1

) · νsh(P1)| ≤ C for
any θw ∈ [θs

w,
π
2 ], with C depending on the data, follows from (11.3.4) and

Theorem 7.1.1(i)–(ii).



490 CHAPTER 12

Now we show the positive lower bound. For this, we find that, from (12.3.21),
(ψ,Dψ)(P1) = (0,0) so that νsh(P1) = νS1

. Then, from (11.3.30) in Lemma
11.3.6, we obtain that δ(1)

bc > 0 depending only on the data such that

DpM0(Dψ(P1), ψ(P1), ξP1
) · νsh(P1) ≥ δ(1)

bc > 0.

Since (ψ,Dψ)(P1) = (0,0), we use (12.3.9) and (12.5.10) and choose ε̃0 ∈ (0, ε0)
small, depending on the data, to obtain

DpM0(Dψ(ξ), ψ(ξ), ξ) · νsh(ξ) ≥ δ
(1)
bc

2
for all ξ ∈ Γshock ∩ Dε̃0 .

2. Now we establish the obliqueness ofM0 on E(ψ,Γshock \ Dε̃0).
Since ϕ,ψ, and Γshock are determined by (u, θw) (cf. Definition 12.2.6), it

follows that, for any ξ ∈ Γshock,

νsh =
Dϕ1 −Dϕ
|Dϕ1 −Dϕ|

=
D(ϕ1 − ϕ2)−Dψ
|D(ϕ1 − ϕ2)−Dψ| .

We recall thatM0 in (12.5.5) is defined by (11.3.2) with gsh(p, z, ξ) defined
by (7.1.9). Now, using the properties in Definition 12.3.2(v)–(vi) and (12.3.13)
with the constants depending only on the data, we can apply Lemma 10.2.1 to
obtain from (10.2.5)–(10.2.6) that

δ
(2)
bc ≤ DpM0(Dψ(ξ), ψ(ξ), ξ) · νsh(ξ) ≤ (δ

(2)
bc )−1 for all ξ ∈ Γshock \ Dε̃0 ,

where δ(2)
bc > 0 depends only on the data, and we have used that ε̃0 depends

only on the data. Combining this with Step 1, we obtain (12.5.19) on Γshock for
M0, and hence forM.

3. Now we show (12.5.20). We use (12.5.15) with σ1 to be chosen below.
We first show that (12.5.20) holds for M0 on the whole shock Γshock. We

employ (12.5.6) and recall that Dψ +Dϕ2 = Dϕ to compute

DzM0(Dψ(ξ), ψ(ξ), ξ) = −ρ2−γDϕ · νsh ≤ −δ(3)
bc for all ξ ∈ Γshock

(12.5.21)
with δ(3)

bc > 0 depending only on the data, where the last inequality follows from
(12.3.14) and Definition 12.3.2(vi), and we have used the fact that ρ̃′ = ρ̃2−γ .

Also, from (12.5.14) and Lemma 11.3.6, we obtain that, for sufficiently small
σ̂, δ

(3)
bc > 0 depending only on the data,

DzM1(p, z, ξ) ≤ −δ(3)
bc for all |ξ| ≤Mdom and |(p, z)| ≤ σ̂. (12.5.22)

From its definition (12.5.15),

DzM(p, z, ξ) =
(
1− η(|(p, z)|)

)
∂zM0(p, z, ξ) + η(|(p, z)|)∂zM1(p, z, ξ)

+
z

|(p, z)|η
′(|(p, z)|)

(
M1(p, z, ξ)−M0(p, z, ξ)

)
.

(12.5.23)
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Consider this last expression at (p, z, ξ) = (Dψ(ξ), ψ(ξ), ξ) with ξ ∈ Γshock.
Then, from Lemma 12.5.1(iii), the last term vanishes. Furthermore, let σ̂ be
from (12.5.22). Since Γshock = {ϕ = ϕ1} so that νsh = D(ϕ1−ϕ2)−Dψ

|D(ϕ1−ϕ2)−Dψ| , then,
using that |D(ϕ1 − ϕ2)| > µ1 by Remark 12.3.8, there exist σ̃1 ∈ (0, 1) and
C̃ > 0, depending only on µ1, and hence on the data, such that the following
property holds: If σ1 ∈ (0, σ̃1) and |Dψ(ξP )| ≤ σ1 for some P ∈ Γshock, then

|νsh(P )− νS1
| ≤ C̃σ1.

We choose σ1 ∈ (0, σ̃1) small, depending only on the data, such that C̃σ1 ≤ σ̂.
We use this σ1 in the definition of η for (12.5.15). Then, using (12.5.21)–(12.5.22)
and the fact that η ≡ 0 on (σ,∞), we obtain from (12.5.23) (for which the last
term vanishes as shown above) that

∂zM(p, z, ξ) ≤ −min{δ(2)
bc , δ

(3)
bc }.

From now on, we fix σ1 in (12.5.15) as in Lemma 12.5.2, depending only on
the data.

Next we show that, when (u, θw) ∈ C1(Qiter)× [θ∗w,
π
2 ] is sufficiently close to

K, the direction of the oblique derivative condition of Γshock at P1 is sufficiently
different from the direction of the oblique condition on Γsym at the same point,
i.e., from νsym = (1, 0).

Before we state the next lemma, we note the following fact: Let (u, θw) ∈
C1(Qiter)× [θ∗w,

π
2 ] satisfy the conditions given in Lemma 12.5.2 and

‖u‖
C1(Qiter)∩{s≥1/2} ≤ N0. (12.5.24)

Let Ω, Γshock, Γsym, P2, P3, and ψ correspond to (u, θw), and let

ψ̂ ∈ C2(Ω(u, θw)) ∩ C1(Ω(u, θw))

be such that û defined by (12.3.15) satisfies (12.3.16) with δ3 ∈ (0, 1) and, if
|P2 − P3| ≥ b for some b > 0, then

|(ψ̂ − ψ,D(ψ̂ − ψ))|(P2) ≤ C̃δ3, (12.5.25)

where C̃ depends only on the data and (N0, b). The proof is directly from Lemma
12.2.2(ii) and the explicit expressions in (12.2.41) and Lemma 12.2.6(v).

Lemma 12.5.3. Let N0 ≥ 1 and b ∈ (0, 1). Let σ1 and ε̃0 be as in Lemma
12.5.2, depending only on the data. Then there exists δ3 > 0 small, depending
only on the data and (N0, b), such that the following holds:

Let ε ∈ (0, ε̃0). Let (u, θw) ∈ C1(Qiter) × [θ∗w,
π
2 ] satisfy (12.5.24) and the

conditions in Lemma 12.5.2. Let Ω, Γshock, Γsym, P2, P3, and ψ correspond to
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(u, θw), and let |P2 − P3| ≥ b. Assume that there exists ψ̂ ∈ C2(Ω) ∩ C1(Ω)
satisfying (12.3.29) and

M(Dψ̂, ψ̂, ξ) = 0 on Γshock

such that function û defined by (12.3.15) satisfies the nonstrict inequality in
(12.3.16) with α = 0, whereM(Dψ̂, ψ̂, ξ) is well-defined by Lemma 12.5.1(i) with
σ1 chosen in Lemma 12.5.2, if δ3 in (12.5.25) is sufficiently small, depending
only on the data and b. Then

∣∣∣∣
DpM
|DpM|

(Dψ(P2), ψ(P2), P2)± νsym

∣∣∣∣ ≥ 1. (12.5.26)

Proof. Since ψ̂ = ϕ̂− ϕ(θw)
2 satisfies (12.3.29), and νsym = (0, 1), we have

Dϕ̂ · (0, 1) = 0 on Γsym.

Owing to ϕ̂ ∈ C1(Ω), we have

|Dϕ̂(P2) · (0, 1)| = 0. (12.5.27)

Recall thatM0 in (12.5.5) is defined by (11.3.2) with gsh(p, z, ξ) defined by
(7.1.9) and that we work in the ξ–coordinates with the origin shifted from P3

to O2. Since P2 = (ξ1P2
, 0) with ξ1P2

< 0, and Dϕ1(ξ) = (u1 − ξ1,−ξ2) in the
non-shifted ξ–coordinates, it follows that

Dϕ1(P2)

|Dϕ1(P2)| = (1, 0) =
Dϕ̂(P2)

|Dϕ̂(P2)| ,

where we have used (12.5.27) in the second equality. Then, by explicit calcula-
tion via (7.1.9), i.e., computing Dpg

sh(Dϕ̂(P2), ϕ̂(P2), P2), we have

DpM0 = (|DpM0|, 0) at (p, z, ξ) = (Dψ̂(P2), ψ̂(P2), P2) =: X1. (12.5.28)

Using the fact that ϕ = ϕ1 at P2, we obtain that, from (11.3.26),

DpM0 = DpM1 at (p, z, ξ) = (Dψ̂(P2), ψ(P2), P2) =: X2.

Thus, using (12.5.10) and (12.5.14),

|DpM1(X1)−DpM0(X1)|
=
∣∣(DpM1(X1)−DpM1(X2)

)
+
(
DpM0(X2)−DpM0(X1)

)∣∣

≤ C|X2 −X1| = C|ψ(P2)− ψ̂(P2)| ≤ Cδ3,

where C depends only on the data and (µ1, N0, b), and we have used (12.5.25)
in the last inequality. From this, combined with (12.5.15) and (12.5.28),

|DpM− (|DpM|, 0)| ≤ Cδ3 at (p, z, ξ) = (Dψ̂(P2), ψ̂(P2), P2). (12.5.29)
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Moreover, using (12.3.13) and conditions (v)–(vi) of Definition 12.3.2 for
(u, θw), we can apply Lemma 10.2.1 to obtain that, from (10.2.6),

|DpM(Dψ̂(P2), ψ̂(P2), P2)| ≥ 1

C
, (12.5.30)

where C depends only on the data. Thus, using νsym = (0, 1), we have
∣∣∣∣
DpM
|DpM|

(Dψ̂(P2), ψ̂(P2), P2)± νsym

∣∣∣∣ ≥ |(1, 0)± (0, 1)| − Cδ3,

where C depends only on (N0, b) and the data. From this, using (12.5.17) and
(12.5.25), we obtain

∣∣∣∣
DpM
|DpM|

(Dψ(P2), ψ(P2), P2)± νsym

∣∣∣∣ ≥
√

2− C(N0, b)δ3.

Choosing δ3 small, we obtain (12.5.26).

Corollary 12.5.4. Let N0 ≥ 1 and b ∈ (0, 1). Let σ1 and ε > 0 be as in Lemma
12.5.2. Then there exist small δK, δ3 > 0 depending only on the data and (N0, b)
such that the following holds:

Let (u, θw), (u#, θ#
w ) ∈ C1(Qiter)× [θ∗w,

π
2 ] satisfy

‖u# − u‖
C1(Qiter∩{s≥1/2}) + |θ#

w − θw| ≤ δK, (12.5.31)

let (u, θw) satisfy condition (ii) of Definition 12.3.2, and let (u#, θ#
w ) satisfy the

conditions in Lemma 12.5.3 (with the constants fixed above). Then ψ and P2

corresponding to (u, θw) satisfy
∣∣∣∣
DpM
|DpM|

(Dψ(P2), ψ(P2), P2)± νsym

∣∣∣∣ ≥
3

4
. (12.5.32)

Proof. Let Ω#, P2
#, ψ#, and ϕ# be defined by (u#, θ#

w ). Since P2 = F(u,θw)(1, 1)

and P2
# = F(u#,θ#

w )(1, 1), then, using (12.2.61)–(12.2.62) in Lemma 12.2.7 (with
α = 0), we find that there exists CK > 0 depending only on the data and N0

such that

|P2 − P2
#|+ |Dψ(P2)−Dψ#(P2

#)| ≤ CKδK. (12.5.33)

Since (u#, θ#
w ) satisfies the conditions in Lemma 12.5.3, then ψ# and P2

# sat-
isfy (12.5.26). With this, using (12.5.17) and choosing δK small, we conclude
(12.5.32).

Next, we study the boundary conditionM near P1 in the (x, y)–coordinates.
From the change of coordinates, it is of the form:

M̂(ψx, ψy, ψ, x, y) = 0 on Γshock ∩ {0 < x < ε0}, (12.5.34)
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where

M̂(p, z, x, y)

=M
(
− p1(cos y, sin y)− p2

c2 − x
(sin y, cos y), z, (c2 − x)(cos y, sin y)

)
.

(12.5.35)

Lemma 12.5.5. There exist εbc, δbc, C > 0 depending only on the data such
that, for any θw ∈ [θ∗w,

π
2 ] and all (p, z, x, y) satisfying |(p, z)| ≤ δbc, 0 < x −

xP1
≤ εbc, and |y − yP1

| ≤ δbc,

DpiM̂(p, z, x, y) ≤ − 1

C
for i = 1, 2, (12.5.36)

DzM̂(p, z, x, y) ≤ − 1

C
. (12.5.37)

Proof. We first note that, from (12.5.15) with σ1 chosen in Lemma 12.5.2 de-
pending on the data and µ1, as well as (12.5.17) and (11.3.34), it follows that
M̂ ≡ B1 in a uniform neighborhood of (0, 0, xP1 , yP1) with xP1 = 0. Then the
assertion follows from Lemma 11.3.7.

Finally, we extend functionM defined in Lemma 12.5.1 to all (p, z) ∈ R2×R
so that the resulting boundary condition is oblique and has the C3–regularity
and the other structural properties as in Lemma 12.5.1.

We now define the extension of M: Let (u, θw) ∈ Kext. Let Ω,Γ, ϕ, and ψ
correspond to (u, θw). We first note that, from (12.5.17) with σ1 from Lemma
12.5.2, combined with (12.5.9) and (12.5.16), there exist C and σ > 0 depending
only on the data such that, for k = 1, . . . , 4,

|(M, DkM)(p, z, ξ)| ≤ C (12.5.38)

for all (p, z, ξ) ∈ R2 × R× Ω satisfying |(p, z)− (Dψ(ξ), ψ(ξ))| ≤ 2σ.
We first consider ψ satisfying (12.3.21) and regularize it as follows:

Lemma 12.5.6. Let N̂0 > 0, N2 > 0, and α ∈ (0, 1
8 ). Let (u, θw) ∈ C1(Qiter)×

[θ∗w,
π
2 ] satisfy condition (ii) of Definition 12.3.2, let the corresponding g

(u,θw)
sh

and ϕ(u,θw) satisfy (12.3.5) and (12.3.21) with N̂0 and N2 fixed above, and let
‖g(u,θw)

sh ‖C1([0,ŝ(θw)]) ≤ N̂0. Then, for any σ̃1 ∈ (0, 1), there exists v ≡ v(u,θw) ∈
C4(Ω

(u,θw)
) such that

(i) v(u,θw) satisfies

‖v − ψ‖C1(Ω) ≤ σ̃2
1 , (12.5.39)

‖v‖C4(Ω) ≤ C(σ̃1), (12.5.40)

where C(σ̃1) depends only on the data and (N̂0, N2, α);
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(ii) v(u,θw) depends continuously on (u, θw) in the sense that, if (u(j), θ
(j)
w ) ∈

C1(Qiter)× [θ∗w,
π
2 ] satisfy the conditions above, and if (u(j), θ

(j)
w )→ (u, θw)

in C1,α(Qiter)× [θ∗w,
π
2 ] as j →∞, then

v(u(j),θ(j)
w ) ◦ F

(u(j),θ
(j)
w )
→ v(u,θw) ◦ F(u,θw) in C1,α(Qiter) as j →∞.

In particular, for a fixed σ̃1 ∈ (0, 1), if the map: (u, θw) 7→ v ≡ v(u,θw)

is restricted to (u, θw) ∈ Kext, then assertions (i)–(ii) are true, and C(σ̃1) in
(12.5.40) depends only on the data and (θ∗w, α) in Definition 12.3.2.

Proof. In this proof, the universal constant C depends only on the data and
(N̂0, N2, α), and constant C(σ̃1) depends only on the data and (N̂0, N2, α, σ̃1).

Let (u, θw) satisfy the properties given in Definition 12.3.2(ii), and let (Ω, ϕ)

be determined by (u, θw) as in Definition 12.2.6(iii)–(v), and ψ = ϕ − ϕ
(θw)
2 .

Then, by Lemma 12.2.2(i), w̃ := ψ ◦ F−1
1 is defined on

F1(Ω) = {(s, t) : 0 < s < ŝ(θw), 0 < t < gsh(s)}.
In order to obtain (12.5.39), we will define v by mollifying a function that

is close to w̃ in C1,α(F1(Ω)) and C1,α–smooth in a neighborhood of F1(Ω) to
obtain the approximation in C1,α up to ∂F1(Ω), and then by mapping back to
Ω via F1. Thus, we construct the approximate function in a larger region, and
do this in such a way that allows us to obtain the continuity with respect to
(u, θw), which yields assertion (ii).

Let the large number K be fixed below. Let δ ∈ (0, 1). Define

w̃
(1)
δ (s, t) := w̃(

s+ δ
2K ŝ

1 + δ
K

,
t+ δ

2N2

1 + δ
) (12.5.41)

on

Aδ :=





(s, t) :

− δ

2K
ŝ < s < (1 +

δ

2K
)ŝ

− δ

2N2
< t < (1 + δ)gsh(

s+ δ
2K ŝ

1 + δ
K

)− δ

2N2




,

where we have used that (s, t) 7→ (
s+ δ

2K ŝ

1+ δ
K

,
t+ δ

2N2

1+δ ) is a one-to-one map of Aδ
onto F1(Ω) = {(s, t) : 0 < s < ŝ(θw), 0 < t < gsh(s)} and have written ŝ for
ŝ(θw).

Using (12.3.21), we obtain

‖w̃(1)
δ ‖C1,α(Aδ) ≤ C, ‖w̃(1)

δ − w̃‖C1(F1(Ω))
≤ Cδ. (12.5.42)

Now we prove that, if K is sufficiently large depending on (N̂0, N2) and the
data, then there exists Ĉ > 0, depending only on min[θ∗w,

π
2 ] ŝ(·) (hence on the

data) and (N̂0, N2), such that

N δ
Ĉ

(F1(Ω)) ⊂ Aδ for all δ ∈ (0, 1). (12.5.43)
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To show (12.5.43), we fix δ ∈ (0, 1) and compare the upper ends of t–intervals
in the expressions of both Aδ and F1(Ω) above. We first note that, for each
s ∈ (0, ŝ),

∣∣∣gsh(
s+ δ

2K ŝ

1 + δ
K

)− gsh(s)
∣∣∣ ≤ Cδ

K
,

where we have used the bound that ‖g(u,θw)
sh ‖C1([0,ŝ(θw)]) ≤ N̂0. Then condition

(12.3.5) implies that, for each s ∈ (0, ŝ),

(
(1 + δ)gsh(

s+ δ
2K ŝ

1 + δ
K

)− δ

2N2

)
− gsh(s) ≥ δ

2N2
− Cδ

K
≥ δ

4N2
, (12.5.44)

where the last inequality is obtained by choosing K large.
Now it follows that F1(Ω) ⊂ Aδ. Then we need to estimate the distance

between ∂F1(Ω) and ∂Aδ. Both boundaries consist of three flat segments and
one curved part. From the explicit expressions of the sets, it is easy to see that
the flat part of ∂Aδ is on the distance at least δmin{min[θ∗w,

π
2

] ŝ(·)
2K , 1

2N2
} (i.e.,

δ
C ) from ∂F1(Ω).

Using once again the explicit form of ∂F1(Ω) and ∂Aδ, we see that, to com-
plete the proof of (12.5.43), it remains to estimate the distance between the
curved parts of boundaries ∂F1(Ω) and ∂Aδ. By (12.5.44), for each s ∈ (0, ŝ),
the distance in the t–direction between the curved parts of ∂Aδ and ∂F1(Ω)
is at least δ

4N2
. Then, employing again the bound of the C1–norm of gsh, we

obtain that the distance between the curved parts of the boundaries is at least
δ
C . Therefore, (12.5.43) is proved.

Now, we can define

w = w̃
(1)
δ ∗ ζδ/Ĉ in F1(Ω) (12.5.45)

with ζδ̂(ξ) := 1
δ̂2
ζ(ξ
δ̂
), where ζ(·) is a standard mollifier, that is, ζ ∈ C∞0 (R2) is

a nonnegative function with supp(ζ) ⊂ B1(0) and
∫

R2 ζ(ξ) dξ = 1. Then, using
the first estimate in (12.5.42), we find that ‖w̃(1)

δ − w‖C1(F1(Ω))
≤ Cαδ

α. From
this, using the second estimate in (12.5.42), we obtain

‖w̃ − w‖
C1(F1(Ω))

≤ Cαδα. (12.5.46)

Defining v := w ◦F1 and recalling that w̃ = ψ ◦F−1
1 , we apply Lemma 12.2.2(ii)

to obtain
‖ψ − v‖C1(Ω) ≤ Cαδα.

Then, for any σ̃1, we can choose δ so that (12.5.39) holds. This fixes the choice
of δ in (12.5.41), depending only on the data and (N̂0, N2, α, σ̃1). Then (12.5.45)
implies that ‖w‖

C4(F1(Ω))
≤ C(σ̃1). Since v = w ◦ F1, Lemma 12.2.2(ii) implies

(12.5.40). This concludes assertion (i).
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For each σ̃1, constant δ is fixed, depending only on the data and (N̂0, N2, α, σ̃1),
and hence is independent of (u, θw), satisfying the conditions of this lemma.
Then assertion (ii) follows from the explicit construction of v, Lemma 12.2.2(iii),
and Lemma 12.2.7(vi).

Let η ∈ C∞(R) be a cutoff function such that η ≡ 1 on (−∞, 1), η ≡ 0 on
(2,∞), and 0 ≤ η ≤ 1 on R. Fix σ̃1 ∈ (0, 1) and denote

ησ̃1
(t) = η(

t

σ̃1
).

Let σ̃1 ∈ (0, 1) be defined later, depending only on the data and θ∗w. Then we
defineM(u,θw)(p, z, ξ) for (p, z, ξ) ∈ R2 × R× Ω by

M(u,θw)(p, z, ξ) = ησ̃1
M(p, z, ξ)+(1−ησ̃1

)L(p−Dv(ξ), z−v(ξ), ξ), (12.5.47)

where ησ̃1 = ησ̃1(|(p, z)− (Dv(ξ), v(ξ))|) and

L(p, z, ξ) =M(Dv(ξ), v(ξ), ξ) +DpM(Dv(ξ), v(ξ), ξ) · p
+DzM(Dv(ξ), v(ξ), ξ)z

with v(ξ) defined in Lemma 12.5.6 for (u, θw) and σ̃1.

Lemma 12.5.7. Let N0, N̂0, N2 > 0, b ∈ (0, 1), and α ∈ (0, 1
8 ). There exist

positive constants:
(N1, εbc, δbc, δ1, C) depending only on the data,
(δK, δ3) depending on the data and (N0, b),
Cα depending only on the data and (N̂0, N2, α),

such that the following hold: Let ε ∈ (0, εbc

2 ) and δ3 ∈ (0, δK2 ). Let (u, θw) ∈
C1(Qiter) × [θ∗w,

π
2 ] satisfy the conditions required in Lemmas 12.5.2 and 12.5.6

with the constants fixed above. Moreover, assume that there exists (u#, θ#
w ) ∈

C1(Qiter) × [θ∗w,
π
2 ] satisfying the conditions of Lemma 12.5.3 such that (u, θw)

and (u#, θ#
w ) satisfy (12.5.31). ThenM(u,θw)(p, z, ξ) in (12.5.47) with σ̃1 =

√
δ1

satisfies the following properties:

(i) M(u,θw) ∈ C3(R2 × R× Ω) and, for all (p, z) ∈ R2 × R,

‖(M(u,θw)(0, 0, ·), Dk
(p,z)M(u,θw)(p, z, ·))‖C3(Ω) ≤ Cα, k = 1, 2, 3.

(ii) M(u,θw)(p, z, ξ) = M(p, z, ξ) for all (p, z, ξ) ∈ R2 × R × Ω satisfying

|p−Dψ(ξ)|+ |z − ψ(ξ)| <
√
δ1
2

.

(iii) For all (p, z, ξ) ∈ R2 × R× Ω,
∣∣D(p,z)M(u,θw)(p, z, ξ)−D(p,z)M(Dψ(ξ), ψ(ξ), ξ)

∣∣ ≤ C
√
δ1. (12.5.48)
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(iv) The uniform obliqueness:

δbc ≤ DpM(u,θw)(p, z, ξ) · νsh ≤ δ−1
bc for all (p, z, ξ) ∈ R2 × R× Γshock.

(v) DzM(u,θw)(p, z, ξ) ≤ −δbc for all (p, z, ξ) ∈ R2 × R× Γshock.

(vi) Let v ∈ C4(Ω), and let L(·) be defined in (12.5.47). Denote

B(sh)
(u,θw)(p, z, ξ) := L(p−Dv(ξ), z − v(ξ), ξ). (12.5.49)

Then
B(sh)

(u,θw)(p, z, ξ) = b(sh)(ξ) · p + b
(sh)
0 (ξ)z + h(sh)(ξ),

and
‖(v,b(sh), h(sh))‖C3(Ω) ≤ Cα. (12.5.50)

Moreover, for all (p, z, ξ) ∈ R2 × R× Ω,
∣∣∣M(u,θw)(p, z, ξ)− B(sh)

(u,θw)(p, z, ξ)
∣∣∣

≤ C
√
δ1
(
|p−Dv(ξ)|+ |z − v(ξ)|

)
,∣∣∣D(p,z)M(u,θw)(p, z, ξ)−D(p,z)B(sh)

(u,θw)(p, z, ξ)
∣∣∣ ≤ C

√
δ1.

(12.5.51)

(vii) The homogeneity properties: If, in addition to the previous assumptions,
(u, θw) satisfy Definition 12.3.2(i) with constants (N0, δ1) fixed above, then

M(u,θw)(0, 0, ξ) = 0 for all ξ ∈ Γshock if θw ∈ [
π

2
− δ1
N1

,
π

2
],

M(u,θw)(0, 0, ξ) = 0 if ξ ∈ Γshock ∩ Dεbc
for all θw ∈ [θ∗w,

π

2
],

where Dεbc
is from Definition 12.3.1(iii), and (δ1, N1) are from Definition

12.3.2.

(viii) At corner P2 = Γshock ∩ Γsym, for all (p, z) ∈ R2 × R,
∣∣∣∣
DpM(u,θw)

|DpM(u,θw)|
(p, z, P2)± νsym

∣∣∣∣ ≥
1

2
, (12.5.52)

and ∣∣∣∣
b(sh)

|b(sh)| (P2)± νsym

∣∣∣∣ ≥
1

2
. (12.5.53)

(ix) The 1
2–obliqueness holds at corner P2 in the sense of Definition 4.4.3 for

the boundary conditionsM(u,θw)(Dψ̂, ψ̂, ξ) = 0 on Γshock and (12.3.29) on
Γsym.
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(x) Write operatorM(u,θw)(Dψ̂, ψ̂, ξ) in the (x, y)–coordinates on Γshock∩Dεbc

as M̂(u,θw)(D(x,y)ψ̂, ψ̂, x, y). Then function M̂(u,θw)(p, z, x, y) satisfies

‖M̂(u,θw)‖C3(R2×R×Γshock∩Dεbc
) ≤ Cα,

M̂(u,θw)(p, z, x, y) = M̂(p, z, x, y)
(12.5.54)

for |(p, z)| ≤ δbc

C and (x, y) ∈ Γshock∩Dε0 , where M̂ is defined by (12.5.35).
Moreover, for all (p, z, x, y) ∈ R2 × R× (Γshock ∩ Dεbc

) and k = 1, 2, 3,

Dp1
M̂(u,θw)(p, z, x, y) ≤ −δbc,

DzM̂(u,θw)(p, z, x, y) ≤ −δbc.
(12.5.55)

Furthermore, M̂(u,θw) satisfies the homogeneity property: For any (x, y) ∈
Γshock ∩ Dεbc

and θw ∈ [θ∗w,
π
2 ],

M̂(u,θw)(0, 0, x, y) = 0. (12.5.56)

Proof. In this proof, all the constants below are positive and depend only on the
parameters specified in the formulation of this lemma above, unless otherwise
specified.

Fix (u, θw) satisfying the required conditions. We use (12.5.47) to extendM
to a functionM(u,θw) defined on R2 × R × Γshock. In the rest of the proof, we
show that this extension satisfies all the properties asserted in this lemma. We
divide the proof into five steps.

1. Let σ be the constant in (12.5.38). Then, with the choice of σ̃1 <
σ
2 <

1
2 ,

assertion (i) follows directly from (12.5.38)–(12.5.40) and (12.5.47). Also we
note that, from (12.5.39) and (12.5.47) with σ̃1 =

√
δ1, it follows that assertion

(ii) holds if δ1 ≤ 1
4 .

2. Now we prove assertion (vi), and then employ it to prove assertions
(iii)–(v) and (viii).

Estimate (12.5.50) follows directly from (12.5.38), (12.5.40), and (12.5.49).
In the remaining part of the proof of (vi), constants (σ̃1, C) depend only on

the data.
We now show estimates (12.5.51). Writing B = B(sh)

(u,θw), we obtain from
(12.5.47) that
∣∣(M(u,θw) − B

)
(p, z, ξ)

∣∣ =
∣∣ησ̃1

(
M(p, z, ξ)− L(p−Dv(ξ), z − v(ξ), ξ)

)∣∣ .

The right-hand side above is zero outside the set:

Aσ1
:=
{

(p, z, ξ) : |(p, z)− (Dv(ξ), v(ξ))| < 2σ̃1, ξ ∈ Ω
}
,

since ησ̃1
≡ ησ̃1

(|(p, z)− (Dv(ξ), v(ξ))|). Thus, it suffices to consider (p, z, ξ) ∈
Aσ̃1 .
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If σ̃1 is sufficiently small, then we employ (12.5.39) to see that (p, z, ξ) ∈ Aσ̃1

satisfy the conditions in (12.5.38). Then, for (p, z, ξ) ∈ Aσ̃1
, we use (12.5.38) to

obtain
∣∣(M(u,θw) − B

)
(p, z, ξ)

∣∣ = |ησ̃1(M(p, z, ξ)− L(p−Dv(ξ), z − v(ξ), ξ))|
≤ Cησ̃1

|(p, z)− (Dv(ξ), v(ξ))|2
≤ Cσ̃1|(p, z)− (Dv(ξ), v(ξ))|.

Thus, we have shown that
∣∣(M(u,θw) − B

)
(p, z, ξ)

∣∣ ≤ Cσ̃1|(p, z)− (Dv(ξ), v(ξ))|

for any (p, z, ξ) ∈ R2 × R× Ω. Since σ̃1 =
√
δ1, we obtain the first estimate in

(12.5.51).
Furthermore,

DpiM(u,θw)(p, z, ξ)−DpiB(p, z, ξ) = J1 + J2,

where

J1 = ησ̃1
(DpiM(p, z, ξ)−DpiM(Dv(ξ), v(ξ), ξ)),

J2 =
pi −Div

|(p, z)− (Dv(ξ), v(ξ))|η
′
σ̃1

(M(p, z, ξ)− L(p−Dv(ξ), z − v(ξ), ξ)) .

Then, again using that (ησ̃1
, η′σ̃1

)(|(p, z)−(Dv(ξ), v(ξ))|) ≡ 0 outside set {(p, z) :
|(p, z) − (Dv(ξ), v(ξ))| < 2σ̃1}, employing (12.5.38)–(12.5.39), and choosing
σ̃1 ≤ 1

8 min{σ, 1}, we have

|J1| ≤ Cησ̃1
|(p, z)− (Dv(ξ), v(ξ))| ≤ Cσ̃1,

|J2| ≤ Cη′σ̃1
|(p, z)− (Dv(ξ), v(ξ))|2 ≤ C

σ̃1
σ̃2

1 ≤ Cσ̃1.

Thus,
∣∣Dpi

(
M(u,θw)−B

)∣∣ ≤ Cσ̃1. The estimate for
∣∣Dz

(
M(u,θw)−B

)∣∣ is similar,
which leads to the second estimate in (12.5.51). Now (vi) is proved.

To prove assertion (iii), we note that, from (12.5.49),

|D(p,z)(B −M)(Dψ(ξ), ψ(ξ), ξ)|
= |D(p,z)M(Dv(ξ), v(ξ), ξ)−D(p,z)M(Dψ(ξ), ψ(ξ), ξ)| ≤ Cσ̃2

1 ,

where we have used (12.5.38)–(12.5.39) for σ̃1 <
σ
2 . Now (12.5.48) follows from

the second estimate in (12.5.51), by using the conditions that σ̃1 =
√
δ1, and

B(p, z, ξ) is independent of (p, z).
Assertions (iv)–(v) follow from assertion (iii) and Lemma 12.5.2 by choosing

δ1 and ε̃0 small, depending on the data.
Next we show assertion (viii). We choose constants δK, δ3 > 0 that sat-

isfy the smallness conditions of Corollary 12.5.4, and hence depend only on the
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data and (N0, b). Now we can apply Corollary 12.5.4. Then (12.5.52) follows
from (12.5.32), combined with assertions (iii)–(iv) for estimating the denom-
inator from below, and choosing δ1 (and hence σ̃1 =

√
δ1) sufficiently small.

Furthermore, using (12.5.47) and (12.5.49), we obtain (12.5.53) from (12.5.52)
by choosing (p, z) = (Dv(ξ), v(ξ)).

Therefore,M(u,θw) satisfies properties (i)–(vi) and (viii) as asserted.

3. Now we prove assertion (vii). In this step, constants (C,N1, δ1, εbc)
depend only on the data.

Let (u, θw) satisfy conditions (i)–(ii) of Definition 12.3.2. Consider first Case
θw ∈ [π2 − δ1

N1
, π2 ]. Then, from Definition 12.3.2(i),

‖u‖∗,(1+δ∗)
2,0,Qiter ≤ δ1 in Qiter.

Let u0 be the zero function on Qiter: u0 ≡ 0. From (12.2.34) in Lemma 12.2.4,
Case (u, θw) = (u0,

π
2 ) is the normal reflection. From (12.2.47)–(12.2.50), it fol-

lows that (u0,
π
2 ) ∈ S. Denote by g

(norm)
sh the function from Definition 12.2.6(ii)

corresponding to the normal reflection (u0,
π
2 ). Then, from the definition of gsh,

it follows that

{(s, g(norm)
sh (s)) : 0 < s < ŝ(

π

2
)} = F

(π2 )
1 (Γ

(norm)
shock ),

where Γ
(norm)
shock is the straight shock P1P2 of the normal reflection. Since

dist(Γ(norm)
shock ,Γ

(norm)
wedge ) > 0,

it follows from Lemma 12.2.2(ii) and (12.2.57) that

g
(norm)
sh ≥ b0 > 0 on (0, ŝ(π2 )),

where b0 depends only on the data. Now, applying (12.2.59) for (u, θw) and
(u0,

π
2 ), and choosing N1 large, we have

gsh ≥
b0
2

for (u, θw).

Then, choosing N1 large so that 1
N1
≤ µ for µ from Lemma 12.2.4, and using

(12.2.34) and Lemma 12.2.7(viii) with (M, b, α) = (δ1,
b0
2 , 0), we have

|ψ|+ |Dψ| ≤ Cδ1.

Thus, choosing δ1 ∈ (0, 1
8 ) small, we have

|ψ|+ |Dψ| ≤
√
δ1

2
=
σ̃1

8
in Ω if θw ∈ [

π

2
− δ1
N1

,
π

2
].
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At this point, we fix δ1 > 0 satisfying all the smallness requirements above
and in Steps 1–2, and hence depending only on the data. This also fixes σ̃1 =√
δ1.
On the other hand, for any θw ∈ [θ∗w,

π
2 ), we employ (12.3.7)–(12.3.9) and

note that, under our assumptions, (12.4.16) holds with εbc instead of εeq. From
this,

|ψ|+ |Dψ| ≤ C(x+ ε) ≤ 2Cεbc ≤
σ̃1

8
in Ω ∩ Dεbc

for all θw ∈ [θ∗w,
π

2
],

for sufficiently small εbc. Then, from (12.5.47), using (12.2.71), (12.5.39), and
Definition 12.2.6(v), we have

M(u,θw)(p, z, ξ) =M(p, z, ξ) (12.5.57)

on {|(p, z)| ≤ σ̃1

2 , ξ ∈ Γshock} if θw ∈ [π2 − δ1
N1
, π2 ], and on {|(p, z)| ≤ σ̃1

2 , ξ ∈
Γshock ∩ Dεbc

} for any θw ∈ [θ∗w,
π
2 ].

Now assertion (vii) follows from Lemma 12.5.1(v).
4. Now we prove assertion (ix). In this step, the universal constant C

depends only on the data and (N0, b).
In the proof of Lemma 12.5.3, we have shown that, under the conditions

of Lemma 12.5.3 (which are satisfied in the present case for (u#, θ#
w )), properties

(12.5.29)–(12.5.30) hold for (ψ#, P#
2 ). It follows that

∣∣∣∣
DpM
|DpM|

(Dψ̂#(P#
2 ), ψ̂#(P#

2 ), P#
2 )− (1, 0)

∣∣∣∣ ≤ Cδ3.

Then, using (12.5.17) and (12.5.25), we have
∣∣∣∣
DpM
|DpM|

(Dψ#(P#
2 ), ψ#(P#

2 ), P#
2 )− (1, 0)

∣∣∣∣ ≤ Cδ3.

Also, as in the proof of Corollary 12.5.4, we obtain that (12.5.33) holds for (u, θw)
and (u#, θ#

w ). Using this and (12.5.17), we find that, from the last estimate,
∣∣∣∣
DpM
|DpM|

(Dψ(P2), ψ(P2), P2)− (1, 0)

∣∣∣∣ ≤ C(δK + δ3).

Finally, using (12.5.48) (shown above), we obtain that, for each (p, z) ∈ R2×R,
∣∣∣∣
DpM(u,θw)

|DpM(u,θw)|
(p, z, P2)− (1, 0)

∣∣∣∣ ≤ C(δK + δ3 +
√
δ1).

Then, using that νsym = eξ2 = (0, 1), choosing small δK depending only on
the data and (N0, b), and reducing δ1 and δ3 so that δ2

1 +δ3 < δK, we can employ
line t 7→ P2 + (−1, 1)t as curve Σ in Definition 4.4.3 to obtain the 1

2 -obliqueness
at P2.
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5. It remains to prove assertion (x). First, (12.5.54) follows from assertions
(i)–(ii), since the change of variables ξ 7→ (x, y) and its inverse have C2–bounds
in Dε0 depending only on the lower bound of c2(θw), which can be chosen uni-
formly for any θw ∈ [θd

w,
π
2 ].

Also, using these bounds, (12.5.55) follows from (12.5.38) and Lemma 12.5.5,
if we choose sufficiently small εbc and σ̃1 in (12.5.39) and (12.5.47), where the
smallness of σ̃1 is achieved by the choice of small δ1.

Finally, (12.5.56) follows from the second equality in assertion (vii) by the
change of variables. This completes the proof.

Lemma 12.5.7(ii), combined with Lemma 12.5.1(iv), implies

Corollary 12.5.8. Let the parameters and (u, θw) ∈ C1(Qiter)× [θ∗w,
π
2 ] satisfy

all the conditions required in Lemma 12.5.7. Let Ω, Γshock, and ψ be determined
by (u, θw), and letM(u,θw) be the corresponding function (12.5.47). Then ψ̂ = ψ
satisfies the boundary condition:

M(u,θw)(Dψ,ψ, ξ) = 0 on Γshock, (12.5.58)

if and only if ϕ = ϕ2 + ψ satisfies the Rankine-Hugoniot condition (12.5.3) on
Γshock(ϕ) = {ϕ = ϕ1}.
Corollary 12.5.9. If parameters (ε, δ1, δ3,

1
N1

) of the iteration set in Definition
12.3.2 and δK > 0 are small, depending only on the data and θ∗w, then the fol-
lowing holds: Let (u, θw) ∈ Kext be such that there exists (u#, θ#

w ) ∈ K satisfying
(12.5.31) with (u, θw). Define function M(u,θw)(·) by (12.5.47) with σ̃1 =

√
δ1.

Then all the assertions of Lemma 12.5.7 hold for M(u,θw)(·), with C and δbc

depending only on the data, and Cα depending only on the data and (θ∗w, α).

Proof. Let (N0, N2) be the constants fixed in Definition 12.3.2, depending only
on the data and θ∗w, and let b = 1

N2
. Let α ∈ (0, 1

8 ), and let N̂0 be the constant
from (12.3.21), depending only on the data and (θ∗w, α).

Let parameters (ε, δ1, δ3,
1
N1

) of the iteration set in Definition 12.3.2 and
the positive constant δK satisfy the smallness conditions of Lemma 12.5.7 with
constants (N0, N̂0, N2, b) fixed above. Then (ε, δ1, δ3,

1
N1

) are small, depending
only on the data and θ∗w (where we note that there is no dependence on α, since
N̂0 affects only Cα in Lemma 12.5.7).

Fix (u, θw) ∈ Kext satisfying our assumptions. Then there exists (u#, θ#
w ) ∈

K satisfying estimate (12.5.31) with (u, θw) and constant δK
2 . It follows that

there exists (ũ#, θ̃#
w ) ∈ K that satisfies estimate (12.5.31) with (u, θw) and con-

stant δK.
Then (u, θw) satisfies all the conditions of Lemma 12.5.7. Now the result as

claimed follows from Lemma 12.5.7 by taking into account the dependence of
constants (N0, N̂0, N2) described above.

Corollaries 12.5.8–12.5.9 motivate that, for each (u, θw) ∈ Kext, we use oper-
atorM(u,θw) defined by (12.5.47) in (12.3.26). This completes Definition 12.3.2
of the iteration set.
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12.6 NORMAL REFLECTION, ITERATION SET, AND
ADMISSIBLE SOLUTIONS

In this section, we show that the normal reflection solution is included in the
iteration set and that admissible solutions converge to the normal reflection
solution as θ → π

2 .

Lemma 12.6.1. The normal reflection solution u = u(norm) ≡ 0 is included in
the iteration set for the wedge angle θw = π

2 , i.e., (u(norm), π2 ) ∈ K. Moreover,
for (u(norm), π2 ),

Γ
(norm)
shock =

{
ξ : ξ1 = ξ̄1, 0 < ξ2 <

√
c̄22 − ξ̄2

1

}
,

where c̄22 = ρ̄γ−1
2 and ξ̄1 are from Theorem 6.2.1; see also Fig. 3.1. This deter-

mines Ω = Ω(norm). Also, ϕ(norm) = ϕ
(π2 )
2 and ψ(norm) = 0.

Proof. We check that (u(norm), π2 ) satisfies the conditions of Definition 12.3.2.
Conditions (i)–(ii) and (v)–(vi) of Definition 12.3.2 and the structure of

Ω(norm), Γ
(norm)
shock , ϕ(norm), and ψ(norm) follow for (u(norm), π2 ) from Definition

12.2.6 and Lemma 12.2.4, where we have used (12.2.34) for θw = π
2 .

For condition (iii), Γshock ⊂ Λ(θw)\Bc1(O1) for the normal reflection solution
by (6.1.3) in Lemma 6.1.2. Condition (12.3.5) for the normal reflection solution
is shown in Lemma 12.2.3.

To check condition (iv) of Definition 12.3.2 for (u(norm), π2 ), we note that
ψ(norm) = 0 so that the left-hand sides of (12.3.6)–(12.3.10) vanish. Also, the
left-hand side of (12.3.11) vanishes, since S1 = {ϕ1 = ϕ2}. Since eS1

= −eξ2
for θw = π

2 , the left-hand side of (12.3.12) also vanishes. Furthermore, η2(π2 ) =

− δ1
N2

1
< 0 so that the right-hand sides of (12.3.6)–(12.3.12) are positive. Then the

strict inequalities hold in (12.3.6)–(12.3.12). The strict inequalities in (12.3.13)–
(12.3.14) for the normal reflection solution follow from the definition of µ1.

Condition (vii) holds, since ϕ = ϕ̂, so that u = û in this case.

Now we show the convergence of admissible solutions to the normal reflection
solution as θ → π

2 .

Lemma 12.6.2. If α in the definition of K satisfies that α < ᾱ for ᾱ determined
in Proposition 12.2.5, then, for any µ > 0, there exists δ > 0 such that, if
θw ∈ (π2−δ, π2 ), ϕ is any admissible solution for θw, and u is defined by (12.2.44),
then

‖u− u(norm)‖∗,(1+δ∗)
2,α,Qiter < µ. (12.6.1)

Proof. Let (ϕ(i), θ
(i)
w ) be a sequence of admissible solutions and wedge angles,

and let (u(i), θ
(i)
w ) be the corresponding sequence pulled back toQiter by (12.2.44).

Assume that θ(i)
w → π

2 . Estimate (12.2.46) in Proposition 12.2.5 for u(i) implies
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that ‖u(i)‖∗,2
2,ᾱ,Qiter ≤ M . With this, we combine Lemma 4.6.3 with the stan-

dard results on the compact embedding of the Hölder spaces to conclude that
there exists a subsequence (still denoted) u(i) converging in the weaker norm
C2,α
∗,1+δ∗(Q

iter) to a function u(∞) ∈ C2,ᾱ
∗,2 (Qiter).

Combining with (12.2.59), we conclude that

h
(u(i),θ(i)

w )
sh → h

(u(∞),π2 )

sh in C1,α2 ([0, 1]).

Then, from Lemma 9.2.6(ii), Lemma 12.2.2(iii), and (12.2.24), it follows that

h
(u(∞),π2 )

sh = h
(norm)
sh with h

(norm)
sh (s) = g

(norm)
sh (ŝ(π2 )s) for function g

(norm)
sh from

Lemma 12.2.3 for the normal reflection with θw = π
2 , where we have used Lemma

12.6.1 to apply Lemma 12.2.3 to the normal reflection. Then, using Lemma
9.2.6(i) and (12.2.44) with (12.2.43), and recalling Lemma 12.2.2(iii), we obtain
that u(i) → u(norm) pointwise on Qiter. Thus, u(∞) = u(norm) in Qiter, which
implies that u(i) → u(norm) in C2,α

∗,1+δ∗(Q
iter).

Therefore, from every subsequence of u(i), we can extract further subse-
quence converging to u(norm) in the ‖ · ‖∗,(1+δ∗)

2,α,Qiter–norm. Since the subsequential
limit is unique, it follows that the whole sequence converges to u(norm). This
completes the proof.

12.7 SOLVABILITY OF THE ITERATION PROBLEM AND
ESTIMATES OF SOLUTIONS

In this section, we solve the iteration problem (12.3.25)–(12.3.29). In fact, we
solve the iteration problem for each (u, θw) ∈ Kext that is sufficiently close to
some (u#, θ#

w ) ∈ K. This is needed in order to show that the iteration set is
open (cf. §12.8) and to define the iteration map on K (cf. Chapter 4).

12.7.1 A boundary value problem in the iteration region Qiter

We rewrite Problem (12.3.25)–(12.3.29) as a boundary value problem in Qiter.
Based on (12.2.57), denote the parts of ∂Qiter by

∂shockQ
iter := (0, 1)× {1}, ∂sonicQ

iter := {0} × (0, 1),

∂wedgeQ
iter := (0, 1)× {0}, ∂symQ

iter := {1} × (0, 1).
(12.7.1)

Fix (u, θw) ∈ Kext and write the boundary value problem (12.3.25)–(12.3.29)
with the condition on Γshock given by Corollary 12.5.8 in the (s, t)–coordinates
on Qiter. Then the problem is of the form:
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Ñ(u,θw)(D
2û, Dû, û, s, t) = 0 in Qiter, (12.7.2)

M̃(u,θw)(Dû, û, s) = 0 on ∂shockQ
iter, (12.7.3)

û = 0 on ∂sonicQ
iter, (12.7.4)

B(w)
(u,θw)(Dû, s) := b

(w)
1 (s)∂sû+ b

(w)
2 (s)∂tû = 0 on ∂wedgeQ

iter, (12.7.5)

B(sym)
(u,θw)(Dû, t) := b

(sym)
1 (t)∂sû+ b

(sym)
2 (t)∂tû = g(sym)(t) on ∂symQ

iter,

(12.7.6)

where the structure and properties of the equation and boundary conditions
are described in the following lemmas. We note that coefficients (b(w),b(sym)),
function g(sym), and operators (Ñ(u,θw),M̃(u,θw)) depend on (u, θw). Further-
more, the right-hand side of (12.7.5) is zero by using (12.2.44) with (12.2.36)
and ∂νϕ2 = 0 on Γwedge.

This can be seen as follows: Let (u, θw) ∈ Kext. We now change the variables
in (12.3.25)–(12.3.29) to write them in the (s, t)–variables in terms of function
(12.3.15). Using (12.3.15), the notation in (12.2.52), and map F = F(u,θw), we
have

ψ̂(ξ) = û(F−1(ξ)) + (ϕ̃2 − ϕ2)(ξ),

Diψ̂(ξ) =
2∑

k=1

Dkû(F−1)Di

(
(F−1)k

)
+Di(ϕ̃2 − ϕ2)(ξ),

Dijψ̂(ξ) =
2∑

k,l=1

Dklû(F−1)Di

(
(F−1)k

)
Dj

(
(F−1)l

)

+
2∑

k=1

Dkû(F−1)Dij

(
(F−1)k

)
+Dij(ϕ̃2 − ϕ2)(ξ),

(12.7.7)

where i, j = 1, 2, and functions (F−1, DF−1, D2F−1) are evaluated at ξ =

(ξ1, ξ2). If ξ = F(s, t), then we substitute the right-hand sides for ψ̂ and its
derivatives into (12.3.25)–(12.3.29) with (12.3.26) given by (12.5.58), make the
change of variables ξ = F(s, t), and express (DF−1, D2F−1) at F(s, t) in terms
of (DF, D2F) at (s, t) ∈ Qiter by using the formulas:

DF−1(F(s, t)) = (DF(s, t))−1,

(∂iDF−1)(F(s, t)) = −(DF(s, t))−1(∂iDF)(s, t)(DF(s, t))−2.
(12.7.8)

Therefore, we obtain (12.7.2)–(12.7.6), where we have used that ϕ̃2 = ϕ2 on
Γsonic by (12.2.35) in order to obtain (12.7.4).

Lemma 12.7.1. Let α ∈ (0, 1). Let (u, θw) ∈ S∩(C2,α
∗,1+δ∗(Q

iter)× [θ∗w,
π
2 ]), and

let Ω and ψ correspond to (u, θw) as in Definition 12.2.6. Then equation (12.7.2),
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obtained by substituting expressions (12.7.7)–(12.7.8) into equation (12.3.25), is
of the form:

2∑

i,j=1

Aij(Dû, s, t)Dij û+
2∑

i=1

Ai(Dû, s, t)Diû = f in Qiter, (12.7.9)

with the following properties:

(i) Functions (Aij ,Ai)(p, s, t) and f(s, t) satisfy (Aij ,Ai) ∈ C(R2 × Qiter)
and f ∈ C(Qiter).

(ii) Let ψ̂ ∈ C2(Ω), and let û be determined by (12.3.15). Then û ∈ C2(Qiter),
and ψ̂ is a solution of (12.3.25) in Ω if and only if û is a solution of
(12.7.2) in Qiter.

(iii) If (u(k), θ
(k)
w ), (u, θw) ∈ S∩(C2,α

∗,1+δ∗(Q
iter)×[θ∗w,

π
2 ]) satisfy that (u(k), θ

(k)
w )→

(u, θw) in C2,α
∗,1+δ∗(Q

iter)× [θ∗w,
π
2 ], then

(A(u(k),θ(k)
w )

ij ,A(u(k),θ(k)
w )

i )→ (A(u,θw)
ij ,A(u,θw)

i )

uniformly on any compact subset of R2 ×Qiter, and

f (u(k),θ(k)
w ) → f (u,θw)

uniformly on any compact subset of Qiter.

Proof. We divide the proof into two steps.
1. In this step, we describe more precisely the structure of the coefficients and

the right-hand side (A(u,θw)
ij , A(u,θw)

i , f (u,θw)) of (12.7.9) to show the smoothness
of their dependence on (u, θw) and, to avoid unnecessary complicated calcula-
tions, we do this without writing the explicit formulas.

From the explicit definition of equation (12.3.25) by (12.4.5), (12.4.14),
(12.4.20), and (12.4.42), we conclude that functions (Aij , Ai) in equation (12.3.25)
are obtained as follows:

(A
(u,θw)
ij , A

(u,θw)
i )(p, ξ)

= (Gij , Gi)(p, Dϕ
(u,θw)(ξ), ϕ(u,θw)(ξ), Dψ(u,θw)(ξ), ψ(u,θw)(ξ), ξ, θw)

for any (u, θw) ∈ Kext, where the dependence on (ϕ,Dϕ) is from (12.4.14),
the dependence on (ψ,Dψ) is from (12.4.5), and the dependence on θw is
from the term of c(θw)

2 in (11.1.5) and (12.4.14), through (12.4.15), by using
(11.1.5) and (12.4.14) in the (x, y)–coordinates defined by (11.1.1)–(11.1.2) via
(u2, v2, c2)(θw). Functions (Gij , Gi)(p,q, z, q̂, ẑ, ξ, θw) are defined on the set:

S = R2 × R2 × R× R2 × R×Q∪bd,
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where set Q∪bd ⊂ R2 × (θs
w,
π

2
) is defined in Lemma 12.2.2(iii), in which it has

shown that Q∪bd is open. Thus, S is open.
Now we show that (Gij , Gi) are C1 on S. From the explicit expressions

of the ingredients in (12.4.5), the dependence of (Aij , Ai) on (u2, v2, c2)(θw) is
C1, and the dependence of (u2, v2, c2)(θw) on θw ∈ [θd

w,
π
2 ] is C∞, by Theorem

7.1.1(i) for the weak reflection. Thus, (Gij , Gi) depend smoothly on θw ∈ [θd
w,

π
2 ].

The smooth dependence of (Gij , Gi) on the other arguments follows from their
explicit expressions obtained from (12.4.5), (12.4.14), (12.4.20), and (12.4.42).

To obtain (A(u,θw)
ij ,A(u,θw)

i )(p, s, t), we substitute expressions (12.7.7) into
the equation:

G11ψ̂ξ1ξ1 + 2G12ψ̂ξ1ξ2 +G22ψ̂ξ2ξ2 +G1ψ̂ξ1 +G2ψ̂ξ2 = 0, (12.7.10)

where (Gij , Gi) are

(Gij , Gi)(Dψ̂(ξ), Dϕ(u,θw)(ξ), ϕ(u,θw)(ξ), Dψ(u,θw)(ξ), ψ(u,θw)(ξ), ξ, θw).

We do this by changing the variables ξ = F(s, t) and expressing (DF−1, D2F−1)
at F(s, t) in terms of (DF, D2F) at (s, t) ∈ Qiter via formulas (12.7.8). We also
use the expressions similar to (12.7.7)–(12.7.8) in order to express

(Dψ(u,θw), ψ(u,θw))(F(s, t))

in the arguments of (Gij , Gi)(·) in terms of

(Du, u)(s, t) and (Dϕ2, Dϕ̃2, ϕ2, ϕ̃2)(F(s, t)),

and similarly express (Dϕ(u,θw), ϕ(u,θw))(F(s, t)) in the arguments of (Gij , Gi)(·)
by using that ϕ = ψ + ϕ2. Moreover, we obtain the nonhomogeneity coming
from the term of ϕ̃2 − ϕ2 and its derivatives, when we substitute expressions
(12.7.7) into equation (12.7.10). Then, since the coefficients of the equation
depend only on p, the separation of the nonhomogeneous part yields

f(s, t) = −
2∑

i,j=1

(GijDij(ϕ̃2 − ϕ2)) (F(s, t))−
2∑

i=1

(GiDi(ϕ̃2 − ϕ2)) (F(s, t)),

where (Gij , Gi) are

(Gij , Gi)(0, Dϕ
(u,θw)(ξ), ϕ(u,θw)(ξ), Dψ(u,θw)(ξ), ψ(u,θw)(ξ), ξ, θw).

Combining all these calculations, we have

(A(u,θw)
ij ,A(u,θw)

i )(p, (s, t)) = (G̃ij , G̃i)(p, u,Du,F, DF, D2F, (s, t), θw),

f (u,θw)(s, t) = F (u,Du,F, DF, D2F, (s, t), θw),

(12.7.11)
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where F = F(u,θw), and functions (u,F) and their derivatives are taken at point
(s, t). The functions:

(G̃ij , G̃i)(p, z̃, p̃, R,P,B, (s, t), θw) and F = F (z̃, p̃, R,P,B, (s, t), θw)

are C1 on the set:

S̃ = {(p, z̃, p̃, R,P,B, (s, t), θw) ∈ R2 × R× R2 × R2 × R2×2

× R2×2×2 ×Qiter × [θs
w,
π

2
] : detR 6= 0}.

(12.7.12)

Here and hereafter, we formally add variable p to the arguments of F (·) to
simplify the argument. The smoothness of (G̃ij , G̃i, F ) on S̃ follows from the
smoothness of (Gij , Gi) of S and the property that F(Qiter) ⊂ Q(θw)

bd holds by
Definition 12.2.6(iv) and Lemma 12.2.7(ii).

2. Now we prove the assertions.
Assertion (i) follows from (12.7.11)–(12.7.12) with (G̃ij , G̃i, F ) ∈ C∞(S̃) by

using (12.2.67)–(12.2.68).
In assertion (ii), property û ∈ C2(Qiter) follows from (12.3.15) by using

(12.2.68) and the fact that F(u,θw)(Q
iter) = Ω (i.e., open sets). Now the property

that ψ̂ is a solution of (12.3.25) in Ω if and only if u is a solution of (12.7.2)
in Qiter follows from the explicit definition of equation (12.7.2) in the form of
(12.7.9).

Assertion (iii) follows from (12.7.11) with (G̃ij , G̃i, F ) ∈ C∞(S̃) by using
(12.2.73)–(12.2.74), where S̃ is defined by (12.7.12).

Next, we discuss the properties of the boundary conditions (12.7.3) and
(12.7.5)–(12.7.6).

Lemma 12.7.2. Let α ∈ (0, 1). Let (u, θw) ∈ S∩(C2,α
∗,1+δ∗(Q

iter)× [θ∗w,
π
2 ]), and

let Ω and ψ correspond to (u, θw) as in Definition 12.2.6. Then the boundary
conditions (12.7.3) and (12.7.5)–(12.7.6), obtained by substituting expressions
(12.7.7)–(12.7.8) into the boundary conditions (12.3.26) and (12.3.28)–(12.3.29),
satisfy the following properties:

(i) M(u,θw) ∈ C(R2×R×∂shockQ
iter), B(w)

(u,θw) ∈ C(R2×∂wedgeQ
iter), B(sym)

(u,θw) ∈
C(R2 × ∂symQ

iter), and g(sym) ∈ C(∂symQ
iter).

(ii) Let ψ̂ ∈ C1(Ω), and let û be determined by (12.3.15). Then û ∈ C1(Qiter),
and ψ̂ satisfies (12.3.26) (resp. (12.3.28) and (12.3.29)) if and only if û
satisfies (12.7.3) (resp. (12.7.5) and (12.7.6)).

(iii) If (u(j), θ
(j)
w ), (u, θw) ∈ S ∩ (C2,α

∗,1+δ∗(Q
iter) × [θ∗w,

π
2 ]) and (u(j), θ

(j)
w ) →

(u, θw) in C2,α
∗,1+δ∗(Q

iter)× [θ∗w,
π
2 ], then

M̃
(u(j),θ

(j)
w )
→ M̃(u,θw) uniformly on compact subsets of R2×R×∂shockQ

iter,
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(b
(w)
k )

(u(j),θ
(j)
w )
→ (b

(w)
k )(u,θw) uniformly on compact subsets of R2×∂wedgeQ

iter,

(b
(sym)
k )

(u(j),θ
(j)
w )
→ (b

(sym)
k )(u,θw) and (g(sym))

(u(j),θ
(j)
w )
→ (g(sym))(u,θw)

uniformly on compact subsets of R2 × ∂symQ
iter,

where k = 1, 2, and segments ∂shockQ
iter, ∂wedgeQ

iter, and ∂symQ
iter do not

include their endpoints, respectively.

The proof of Lemma 12.7.2 is obtained in the same way as the proof of
Lemma 12.7.1.

12.7.2 Solutions of the iteration problem

In this section, we show that Problem (12.7.2)–(12.7.6) has a unique solution,
and study some properties of this solution.

We consider (u, θw) ∈ Kext. Thus, when the conditions of Definition 12.3.2
are used, we always assume the nonstrict inequalities as described in Remark
12.3.11.

In the next proposition, we use ᾱ from Proposition 12.2.5.

Proposition 12.7.3. Let parameters (ε, δ3,
1
N1

) of the iteration set in Definition
12.3.2 and δK > 0 be small, depending only on the data and θ∗w. Let δ1 be small,
depending on the data and (θ∗w, α), where (δ1, α) are from Definition 12.3.2.
Then there exist:

(i) α̂ ∈ (0, min{ᾱ, δ∗}) depending only on the data,

(ii) C ≥ 1 depending only on the data and (θ∗w, α),

(iii) Cs ≥ 1 depending only on the data, (θ∗w, α), and s ∈ (0, ε0)

such that, for each (u, θw) ∈ Kext satisfying

‖u# − u‖
C1(Qiter)

+ |θ#
w − θw| ≤ δK (12.7.13)

with some (u#, θ#
w ) ∈ K, there is a unique solution ψ̂ ∈ C2(Ω)∩C1(Ω\Γsonic)∩

C(Ω) of Problem (12.3.25)–(12.3.29) determined by (u, θw).
Moreover, ψ̂ satisfies

‖ψ̂‖L∞(Ω) ≤ C, (12.7.14)

|ψ̂(x, y)| ≤ Cx in Ω ∩ Dε0 , (12.7.15)

and, for each s ∈ (0, ε0),

‖ψ̂‖(−1−α̂), ∂symQiter

2,α̂,Ω\Ds ≤ Cs. (12.7.16)
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Proof. We assume that constants ε, δ1, δ3, 1
N1
, δK > 0 satisfy the smallness as-

sumptions of Corollaries 12.4.3, 12.4.6, and 12.5.9, hence depending only on the
data and θ∗w. We divide the proof into four steps.

1. We make the change of coordinates (s, t) = F1(ξ), where F1(·) is defined
in Lemma 12.2.2 for each θw ∈ [θs

w,
π
2 ]. Then we consider Problem (12.3.25)–

(12.3.29) rewritten in the (s, t)–coordinates in domain F1(Ω) and its boundary.
By Lemma 12.2.2(ii), transform F1(·) is C3 with C3–inverse, with uniform esti-
mates in these norms for θw ∈ [θs

w,
π
2 ]. We employ Proposition 4.7.2 to establish

the existence and estimates of solutions of this problem.
We check that the conditions of Proposition 4.7.2 are satisfied in the present

case with coordinates (x, y) = (s, t).
2. Since (u, θw) ∈ S from Definition 12.3.2(ii), then, using Definition

12.2.6(iv), we have

F1(Ω) =
{

(s, t) : 0 < s < ŝ(θw), 0 < t < gsh(s)
}
. (12.7.17)

Then, using (12.3.5), we see that F1(Ω) is of structure (4.5.1)–(4.5.3) with h =
ŝ(θw), fbd = gsh, t0 = gsh(0) ≥ 1

N2
, t2 = 1

N2
, and any positive number t1. We

may fix t1 = 1. Indeed, for any s ∈ (0, ŝ(θw)), we obtain that min(t1s+ t0, t2) =
1
N2
≤ gsh(s).
In order to estimate Mbd in (4.5.2) in the present case, we now estimate

‖gsh‖C1([0,ŝ(θw)]). From (12.3.3), we obtain that ‖u‖
C1(Qiter)

≤ N0. Then, by
(12.2.58) with α = 0, we see that Mbd ≤ ‖gsh‖C1([0,ŝ(θw)]) ≤ C(N0), where
C(N0) depends only on the data and N0.

We also note from (4.5.3) in the present case that Γ0 = Γsonic, Γ1 = Γshock,
Γ3 = Γsym, and Γ4 = Γwedge.

Then it follows that Problem (12.3.25)–(12.3.29), rewritten in the (s, t)–
coordinates in domain F1(Ω) and its boundary, is a problem of structure (4.5.84)–
(4.5.88) for u(s, t) := ψ̂(ξ), where ξ = F−1

1 (s, t).
3. In this step we show that Problem (12.3.25)–(12.3.29) satisfies properties

(4.5.89)–(4.5.111) and discuss the dependence of the constants in these proper-
ties on the parameters of the iteration set in the present case.

Since the C3–norms of (F1, F
−1
1 ) depend only on the data, both equa-

tion (4.5.84) in F1(Ω) and the boundary condition (4.5.85) on Γ1, obtained
from (12.3.25)–(12.3.26), satisfy the properties in Lemma 12.4.5 and Lemma
12.5.7(i)–(ix) with the dependence of the constants specified in Corollaries 12.4.6
and 12.5.9. This implies that conditions (4.5.89), (4.5.91), (4.5.93), (4.5.98)–
(4.5.101), and (4.5.103)–(4.5.104) hold, and that (4.5.108)–(4.5.109) hold at P2.

Furthermore, from Lemma 12.2.2(iv), (s, t) = (x, y − yP4) for all (s, t) ∈
F1(Ω) ∩ {s < ε0}. Then, from Lemma 12.4.2 and Lemma 12.5.7(x) with the
dependence of the constants as in Corollaries 12.4.3 and 12.5.9, it follows that
the equation in F1(Ω)∩{s < εeq

2 } and the boundary condition on Γ1∩{s < εbc

2 }
satisfy properties (4.5.90), (4.5.92), (4.5.94)–(4.5.97), (4.5.102), and (4.5.111).

Using again that the C3–norms of (F1, F
−1
1 ) depend only on the data, and

employing the explicit form of (12.3.28)–(12.3.29) and the fact that θw ∈ [θs
w,

π
2 )
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with θs
w > 0, we find that the boundary conditions (4.5.86)–(4.5.87) on Γ2 and

Γ3 satisfy (4.5.105), (4.5.107), and (4.5.110), and that (4.5.108)–(4.5.109) hold
at P3. The constants in all these estimates depend only on θs

w and the C3–norms
of (F1, F

−1
1 ), and hence on the data.

Moreover, the property in Lemma 12.2.2(ix) and the property that (s, t) =
(x, y−yP4

) for all (s, t) ∈ F1(Ω)∩{s < ε0} in Lemma 12.2.2(iv) imply (4.5.106).
Therefore, we have shown that properties (4.5.89)–(4.5.111) hold in the

present case with (κ, ε, λ,M, β, σ) depending only on the data and the following
constants in Lemmas 12.4.2, 12.4.5, and 12.5.7:

• Constant ε in (4.5.89)–(4.5.111) is 1
2 min{εeq, εbc}, and hence depends only

on the data;

• Constant κ depends only on the data. Indeed, we first show (4.5.109)
at P2 and P3 in the ξ–coordinates. Then (4.5.109) at P2 follows from
(12.5.53). Also, (4.5.109) at P3 follows from a similar inequality for the
Neumann conditions (12.3.28)–(12.3.29) at corner P3 with angle π− θw ∈
(π2 , π − θs

w], hence with constant
√

2(1− cos θs
w) on the right-hand side.

Now, to obtain (4.5.109) at P2 and P3 in the (s, t)–coordinates, we rewrite
these estimates in the (s, t)–variables. Since the change of coordinates
is nondegenerate, we obtain similar estimates with the right-hand sides
multiplied by a nonzero constant depending on the data.

• Similarly, matching the other conditions in (4.5.89)–(4.5.111) with the
properties in Lemmas 12.4.2, 12.4.5, and 12.5.7, we have

β =
3

4
, λ = λ(λ0, λ1, δbc, ρ0, ρ1, γ), σ = C0

√
δ1, (12.7.18)

where C0 > 0 depends only on the data. Also, we obtain that M in
(4.5.89)–(4.5.111) in the present case depends on the data and constants
(λ1, εeq, Neq,M, α,N0, N̂0, N2, b) in Lemmas 12.4.2, 12.4.5, and 12.5.7.

Thus, from Corollaries 12.4.3, 12.4.6, and 12.5.9, we obtain the following
dependence of the constants in (4.5.89)–(4.5.111) on the parameters of the iter-
ation set:

δ = 0;
α is the same as α in the iteration set;
κ and λ depend only on the data;
ε depends only on the data and θ∗w;
β = 3

4 ;
σ = C0

√
δ1 with C0 > 0 depending on the data;

M depends only on the data and (θ∗w, α).
We also note that the parameters in structure (4.5.1) of domain F1(Ω) discussed
above satisfy h, t1, t2,∈ ( 1

C , C) andMbd ≤ C, where C depends only on the data
and θ∗w, since the positive constantsN0 andN2 depend only on these parameters.
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4. Now we can apply Proposition 4.7.2 with δ = 0. It follows that, if
δ1 = σ2

C2
0
> 0 is small, depending on the data and (θ∗w, α) (where δ1 is a parameter

in the definition of iteration set K), we obtain the existence and uniqueness of
the solution and the asserted estimates in the (s, t)–coordinates in F1(Ω), for
which α̂ is equal to α1 = α1(κ, λ) from Proposition 4.7.2, and hence depends
only on the data; the dependence of κ and λ is discussed above. We reduce α̂ if
necessary to obtain α̂ ∈ (0,min{ᾱ, δ∗}], so that the resulting α̂ still depends only
on the data and θ∗w, since ᾱ in Proposition 12.2.5 depends on these parameters.
Finally, by the change of variables ξ = F−1

1 (s, t), we conclude the proof.

We also note the following:

Lemma 12.7.4. (i) Let (u, θw) ∈ Kext and ψ̂ ∈ C2(Ω) ∩ C1(Ω \ Γsonic) ∩
C(Ω). Then the corresponding û obtained from ψ̂ by (12.3.15) satisfies
û ∈ C2(Qiter)∩C1(Qiter \∂sonicQ

iter)∩C(Qiter). Moreover, ψ̂ is a solution
of Problem (12.3.25)–(12.3.29) determined by (u, θw) if and only if û is a
solution of Problem (12.7.2)–(12.7.6).

(ii) In particular, if (u, θw) and the parameters in Definition 12.3.2 are as in
Proposition 12.7.3, there exists a unique solution û ∈ C2(Qiter)∩C1(Qiter\
∂sonicQ

iter) ∩ C(Qiter) of Problem (12.7.2)–(12.7.6) determined by (u, θw).
Furthermore,

|û(s, t)| ≤ Cs in Qiter, (12.7.19)

‖û‖(−1−α), Γsym

2,α,Qiter∩{s>s∗} ≤ Cs∗ for all s∗ ∈ (0,
1

2
), (12.7.20)

where α is from Definition 12.3.2, and (C,Cs∗) for each s∗ ∈ (0, 1
2 ) depend

only on the data and (θ∗w, α).

Proof. Rewrite (12.3.15) as

û := (ψ̂ + ϕ
(θw)
2 − ϕ̃(θw)

2 ) ◦ F(u,θw) in Qiter. (12.7.21)

Now the regularity of û asserted in (i) follows from the regularity of ψ̂, Lemma
12.2.4, and (12.2.68). Problem (12.7.2)–(12.7.6) has been defined by expressing
Problem (12.3.25)–(12.3.29) in terms of û defined by (12.3.15). This proves (i).

Under the conditions in (ii), the existence and uniqueness of a solution
ψ̂ ∈ C2(Ω) ∩ C1(Ω \ Γsonic) ∩ C(Ω) of Problem (12.3.25)–(12.3.29) follow from
Proposition 12.7.3. Now the existence and uniqueness of û asserted in (ii) fol-
low from (i). Estimate (12.7.19) follows from (12.7.14)–(12.7.15), and estimate
(12.7.20) follows from (12.7.16) by the change of variables (12.7.21) and by using
(12.2.68) and Lemma 12.2.4.

Lemma 12.7.5. Let the parameters in Definition 12.3.2 and (u(i), θ
(i)
w ) ∈ Kext

for i = 1, 2, . . . , satisfy the conditions of Proposition 12.7.3, and let û(i) be the
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solution of Problem (12.7.2)–(12.7.6) determined by (u(i), θ
(i)
w ). Let (u(i), θ

(i)
w )

converge in C1(Qiter) to (u, θw) ∈ Kext. Then there exists a unique solution
û ∈ C2(Qiter) ∩ C1(Qiter \ ∂sonicQ

iter) ∩ C(Qiter) of Problem (12.7.2)–(12.7.6)
determined by (u, θw). Moreover, û(i) → û in the following norms:

(i) uniformly in Qiter;

(ii) in C1,β(K) for each compact K ⊂ Qiter \ ∂sonicQ
iter and each β ∈ [0, α);

(iii) in C2,β(K) for each compact K ⊂ Qiter and each β ∈ [0, α),

where α is from Definition 12.3.2.

Proof. Fix β ∈ [0, α) and s̄ ∈ (0, 1
10 ). From (12.7.20) applied for each û(ij), there

exists a subsequence converging in C(−1−β), ∂symQiter

2,β,Qiter∩{s≥s̄} . Then there exists a further

subsequence converging in C(−1−β), ∂symQiter

2,β,Qiter∩{s≥s̄/10} and a yet further subsequence con-

verging in C(−1−β), ∂symQiter

2,β,Qiter∩{s≥s̄/100}, etc. By the diagonal procedure, we can select a

subsequence û(ik) converging to a function û ∈ C2(Qiter)∩C1(Qiter \∂sonicQ
iter)

in the sense of (ii)–(iii) for the fixed β. Applying (12.7.19) to each û(i), we
conclude that û satisfies (12.7.19) and û(ik) converges to û uniformly in Qiter so
that û ∈ C2(Qiter) ∩ C1(Qiter \ ∂sonicQ

iter) ∩ C(Qiter). Now, since each û(i) is a
solution of Problem (12.7.2)–(12.7.6) determined by (u(i), θ

(i)
w ), we use the prop-

erties of Lemma 12.7.1(iii) and Lemma 12.7.2(ii) to conclude that û is a solution
of Problem (12.7.2)–(12.7.6) determined by (u, θw). From the uniqueness of so-
lution û ∈ C2(Qiter) ∩ C1(Qiter \ ∂sonicQ

iter) ∩ C(Qiter) for the problem, shown
in Lemma 12.7.4(ii), we conclude that the whole sequence û(i) converges to û in
the sense of (i)–(iii) for any fixed β ∈ [0, α). This completes the proof.

Corollary 12.7.6. Let the parameters in Definition 12.3.2 be as in Proposition
12.7.3. If (u, θw) ∈ K, then (u, θw) satisfies condition (vii) of Definition 12.3.2
with the nonstrict inequality in (12.3.16).

Proof. If (u, θw) ∈ K, there exists a sequence (u(i), θ
(i)
w ) ∈ K such that

(u(i), θ(i)
w )→ (u, θw) in C2,α

∗,1+δ∗(Q
iter)× [θ∗w,

π
2 ].

Then each (u(i), θ
(i)
w ) satisfies (12.7.13) with (u#, θ#

w ) = (u(i), θ
(i)
w ). Now, from

Lemma 12.7.5, there exists a unique solution û ∈ C2(Qiter)∩C1(Qiter\∂sonicQ
iter)

∩C(Qiter) of Problem (12.7.2)–(12.7.6) determined by (u, θw) such that û(i) →
û uniformly in Qiter. Thus, û(i) − u(i) → û − u uniformly in Qiter. Since
each û(i) − u(i) satisfies (12.3.16), the limit satisfies the nonstrict inequality in
(12.3.16).

We now study some properties of ψ̂.
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Lemma 12.7.7. If the parameters in Definition 12.3.2 and δK are as in Propo-
sition 12.7.3, and if δ3 is further reduced, depending on the data and (θ∗w, δ2),
then, for any (u#, θ#

w ) ∈ K, there exists δu#,θ#
w
∈ (0, δK) such that, for any

(u, θw) ∈ Kext satisfying

‖u# − u‖
C1(Qiter)

+ |θ#
w − θw| ≤ δu#,θ#

w
, (12.7.22)

solution ψ̂ ∈ C2(Ω) ∩ C1(Ω \ Γsonic) ∩ C(Ω) of Problem (12.3.25)–(12.3.29)
determined by (u, θw) satisfies

ψ̂ ≥ 0 in Ω. (12.7.23)

Proof. Fix (u#, θ#
w ) ∈ K. We will use (12.3.6). Then, from the form of the

right-hand side of that inequality, we consider two cases: θ#
w ∈ [θ∗w,

π
2 − 2δ1

N2
1

) and

θ#
w ∈ [π2 − 2δ1

N2
1
, π2 ).

1. Let θ#
w ∈ [θ∗w,

π
2 − 2δ1

N2
1

). Denote Ω#,Γ#
shock, ϕ

#, etc. as the objects from
Definition 12.2.6 corresponding to (u#, θ#

w ). Then, from (12.3.6), we have

(ϕ# − ϕ2) ≥ δ1δ2
N2

1

in Ω \ Dε/10.

Using (12.2.35) and (12.2.44) for ϕ# and u#, and the properties of map F(u#,θ#
w )

in Lemma 12.2.2(iv) and (12.2.41), we have

u# ≥ δ1δ2
N2

1

in Qiter ∩ {s ≥ ε̃#

10
} for ε̃# :=

ε

ŝ(θ#
w )
.

Since (u#, θ#
w ) ∈ K, then u# and the corresponding function û# from (12.3.15)

satisfy (12.3.16) with possibly nonstrict inequality. Thus, if δ3 ≤ δ1δ2
2N2

1
,

û# ≥ δ1δ2
2N2

1

in Qiter ∩ {s ≥ ε̃#

10
}. (12.7.24)

Next we show that, if δu#,θ#
w
∈ (0, δK) is small, and (u, θw) ∈ Kext satisfies

(12.7.22), then

‖û− û#‖
C(Qiter∩{s≥ε̃#/10}) ≤

δ1δ2
4N2

1

. (12.7.25)

Otherwise, there exists a sequence Kext 3 (u(i), θ
(i)
w )→ (u#, θ#

w ) in C1(Qiter)×
[θ∗w,

π
2 ] such that, for the corresponding functions û(i) (which exist for all suffi-

ciently large i by Proposition 12.7.3 and Lemma 12.7.4),

‖û(i) − û#‖
C(Qiter∩{s≥ε̃#/10}) >

δ1δ2
4N2

1

.
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By Lemma 12.7.5, we can pass to the limit as i→∞ to obtain

0 = ‖û# − û#‖
C(Qiter∩{s≥ε̃#/10}) ≥

δ1δ2
4N2

1

,

which is a contradiction. Thus, (12.7.25) holds if δu#,θ#
w
> 0 is small.

From (12.7.24)–(12.7.25), using the continuity of ŝ(·), and reducing δu#,θ#
w

if necessary, we obtain that, for each (u, θw) ∈ Kext satisfying (12.7.22),

û ≥ δ1δ2
4N2

1

in Qiter ∩ {s ≥ ε̃

5
} for ε̃ :=

ε

ŝ(θw)
.

Inverting (12.3.15) yields

ψ̂(ξ) = û(u(F−1(ξ))) + (ϕ̃
(θw)
2 − ϕ(θw)

2 )(ξ) for all ξ ∈ Ω(u).

Then, using (12.2.35), we have

ψ̂ ≥ δ1δ2
4N2

1

in Ω \ Dε/5. (12.7.26)

Recall that ε ≤ εp := 1
2 min{εeq, εbc}. From Lemma 12.4.5(vi), ψ̂ on Ω ∩ Dεp

satisfies equation (12.4.14). Also, ψ̂ satisfies the boundary conditions (12.3.26)
on Γshock ∩ Dεp withM(·) given by (12.5.47), and (12.3.28) on Γwedge ∩ ∂Dεp .
Condition (12.3.26) is homogeneous on Γshock ∩ Dεp by the second equality in
Lemma 12.5.7(vii). Also, equation (12.4.14) is strictly elliptic in Ω ∩ Dεp , and
the boundary conditions (12.3.26) and (12.3.28) are oblique. Using that ψ̂ = 0

on Γsonic and ψ̂ > 0 on Ω∩ ∂Dεp , by (12.7.26), we obtain that ψ̂ > 0 in Ω∩Dεp
by the comparison principle. Then, using (12.7.26) again, we obtain (12.7.23).

2. Let θ#
w ∈ [π2 − 2δ1

N2
1
, π2 ]. Since N1 ≥ 8, it follows that θ#

w ≥ π
2 − δ1

4N1
in that

interval.
Consider (u, θw) ∈ Kext satisfying (12.7.22). Reducing δu#,θ#

w
if necessary,

we find that θw ∈ [π2 − δ1
2N1

, π2 ]. Then the first equality in Lemma 12.5.7(vii)
shows that the boundary condition (12.3.26) is homogeneous on Γshock. Thus,
ψ̂ satisfies the strictly elliptic homogeneous equation (12.4.14) in Ω, and the
oblique homogeneous boundary conditions (12.3.26) and (12.3.28) on Γshock and
Γwedge respectively, and the oblique condition (12.3.29) on Γsym with right-hand
side −v2 ≤ 0. Moreover, the obliqueness at points P2 and P3 is shown as in
Step 3 of the proof of Proposition 12.7.3. Then, from the comparison principle
in Lemma 4.4.2, we obtain that ψ̂ ≥ 0 in Ω.

Lemma 12.7.8. If the parameters in Definition 12.3.2 are chosen as in Lemma
12.7.7, and ε > 0 is further reduced if necessary depending on the data, then,
for any (u, θw) ∈ Kext,

ψ̂ ≤ Cx2 in Ω ∩ Dε0 , (12.7.27)
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where C depends only on the data and the constant in (12.7.14), and hence on
the data and (θ∗w, α).

Proof. We first show (12.7.27) in Ω ∩ Dε/2 for ε ≤ εp := 1
2 min{εeq, εbc}.

From Lemma 12.4.5(vi), ψ̂ on Ω ∩ Dεp satisfies equation (12.4.14), which is
strictly (but non-uniformly) elliptic. Also, ψ̂ satisfies the boundary conditions
(12.3.26) on Γshock ∩ Dεp and (12.3.28) on Γwedge ∩ ∂Dεp , where the boundary
conditions are oblique and homogeneous by using the first equality in Lemma
12.5.7(vii). Therefore, all these properties hold with εp replaced by ε.

Let

v(x, y) =
1

2
Ax2

for A ≥ 2−µ0
10

1+γ > 0, whose specific value will be chosen below. We show that v is
a supersolution of Problem (12.3.25)–(12.3.28) in Ω∩Dε, if ε is small, depending
only on the data, and the Dirichlet condition is added on the remaining boundary
part ∂(Ω ∩ Dε) ∩ {x = ε}.

From Lemma 12.4.5(vi), equation (12.3.25), written in the (x, y)–coordinates
on Ω ∩ Dε, is of form (12.4.14). Thus, we substitute v into equation (12.4.14).
Using (12.4.10) and A ≥ 2−µ0

10

1+γ , we obtain

ζ1(
vx
x

) = ζ(A) =
2− µ0

10

1 + γ
on {x > 0}

for µ0 ∈ (0, 1). Then, using estimate (12.4.17) for Õm1 and Õm4 and notation
O(x) for a quantity estimated by |O(x)| ≤ C|x|, and denoting by N(u,θw) the
left-hand side of (12.4.14), we obtain that, in Ω ∩ Dε in which x ∈ (0, ε),

N(u,θw)(D
2v,Dv, v, x, y)

=
(

2x− (2− µ0

10
)x+O((ε+

√
x)x)

)
A−

(
1 +O(x

3
4 )
)
Ax

≤ A
(
−(1− µ0

10
)x+ C

√
εx
)

< 0 in Ω ∩ Dε

if ε is small, depending only on the data.

Now we substitute v into (12.3.26) on Γshock∩Dε. We employ the properties
in (12.3.26) in the (x, y)–coordinates given in Lemma 12.5.7(x). Using (12.5.54)–
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(12.5.56), we find that, for each x ∈ (0, ε),

M(u,θw)(Dv, v, x, y)

=M(u,θw)((Ax, 0),
1

2
Ax2, x, 0)−M(u,θw)((0, 0), 0, x, 0)

=

(∫ 1

0

(∂p1
, ∂z)M(u,θw)((Axr, 0),

1

2
Ax2r, x, 0)dr

)
· (Ax, 1

2
Ax2)

≤ −δbcAx(1 +
1

2
x)

< 0.

Next we substitute v into (12.3.28) on Γwedge ∩ Dε to obtain

∂νv =
1

c2 − x
∂y(

1

2
Ax2) = 0 on Γwedge ∩ Dε ⊂ {y = 0}.

Finally, using (12.7.14) (with constant Ĉ) and choosingA = max{2Ĉ
ε2 ,

2−µ0
10

1+γ },
we have

v ≥ ψ̂ on ∂(Ω ∩ Dε) ∩ {x = ε}.
Now, applying the comparison principle in Ω∩Dε, we obtain that ψ̂ ≤ v in that
region, which implies (12.7.27) in Ω ∩ Dε. From this, we extend (12.7.27) to
Ω ∩ Dε0 by using (12.3.7)–(12.3.8).

Proposition 12.7.9. If the parameters in Definition 12.3.2 are chosen as in
Lemma 12.7.8, then, for any σ ∈ (0, 1), there exist ε̂p ∈ (0,

εp
2 ] (for εp :=

1
2 min{εeq, εbc}) and C, depending only on the data and (θ∗w, α, σ) such that the
following holds: For any (u#, θ#

w ) ∈ K, there is δu#,θ#
w
> 0 small so that, for any

(u, θw) ∈ Kext satisfying (12.7.22), solution ψ̂ ∈ C2(Ω) ∩ C1(Ω \ Γsonic) ∩ C(Ω)
of Problem (12.3.25)–(12.3.29) determined by (u, θw) satisfies

‖ψ̂‖2,(par)
2,σ,Ω∩Dε̂p

≤ C. (12.7.28)

Proof. We assume that the parameters are chosen such that the previous results
hold in this section.

As we have shown in Step 1 of the proof of Lemma 12.7.7, ψ̂ on Ω ∩ Dεp
satisfies equation (12.4.14), the boundary conditions (12.3.26) on Γshock ∩ Dεp
withM(·) given by (12.5.47), and (12.3.28) on Γwedge ∩ ∂Dεp .

We check that the conditions of Theorem 4.7.4 are satisfied in domain Ω∩Dεp
in the present case.

Since εp < ε0
2 , then domain Ω ∩ Dεp in the (x, y)–coordinates with shift

y 7→ y − θw is of form (4.7.6) with f = g
(u,θw)
sh , by Lemma 12.2.7(iv). Then

the regularity condition (4.7.12) of f with β = α follows from (12.3.17), where
δ∗ ≥ α, and f̂0 is C∞–smooth with Ck–norms depending only on the data. The
lower bound of f = g

(u,θw)
sh on (0, εp) in condition (4.7.12) is 1

N2
by (12.3.5).
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Thus, l = 1
N2

in Theorem 4.7.4 in the present case. We note that N2 in (12.3.5)
depends only on the data and θ∗w.

The conditions of Theorem 4.7.4 for the equation, i.e., (4.7.11) and (4.7.13)–
(4.7.16), are satisfied by equation (12.4.14) in Ω∩Dεp , which follows from Lemma
12.4.2(i)–(ii), where we recall that, using form (12.4.18) of equation (12.4.14),
(Âij , Âi) = (Âij , Âi)(p, x, y), i.e., independent of z. The constants in these
estimates depend on the data.

The boundary condition (12.3.26) on Γshock ∩ Dεp , written in the (x, y)–
coordinates in Lemma 12.7.2(x), satisfies conditions (4.7.17)–(4.7.19), which fol-
lows from (12.5.54)–(12.5.56). The constants in these estimates depend on the
data and (θ∗w, α). Note that this is the only place in this proof, which makes C
in (12.7.28) depend on α.

The boundary condition (12.3.28) on Γwedge ∩ ∂Dεp is of form (4.7.9) in the
(x, y)–coordinates, since Γwedge ∩ ∂Dεp ⊂ {y = θw}.

Also, |ψ̂(x, y)| ≤ Cx2 in Ω ∩ Dεp , by Lemmas 12.7.7–12.7.8.
We note that the ellipticity, obliqueness, and other constants in the estimates

of the ingredients of the equation, the boundary condition, and boundary Γf,ε =
Γshock ∩Dε, discussed above, as well as the constants in Lemmas 12.7.7–12.7.8,
depend only on the data and θ∗w.

Let σ ∈ (0, 1). Then r0, determined in Theorem 4.7.4 with α = σ by the
constants discussed above, depends only on the data and (θ∗w, σ). Now, we
choose ε̂p = min{r0,

εp
2 ,

1
N2

2
}. Then, from Theorem 4.7.4 in Ω ∩ Dεp applied

with α = σ, we obtain (12.7.28).

Proposition 12.7.10. If parameters ε and 1
N1

of the iteration set in Definition
12.3.2 are small – depending only on the data and θ∗w, if δ1 is small – depending
only on the data and (θ∗w, α), and if δ3 is small – depending only on the data and
(θ∗w, δ2), then, for any (u#, θ#

w ) ∈ K, there exists δu#,θ#
w
> 0 so that, for any

(u, θw) ∈ Kext satisfying (12.7.22), solution ψ̂ of (12.3.25)–(12.3.29) determined
by (u, θw) satisfies ψ̂ ∈ C2,α̂

∗,2 (Ω) with

‖ψ̂‖∗,(2)
2,α̂,Ω ≤ C, (12.7.29)

where α̂ ∈ (0, 1
8 ) is the constant determined in Proposition 12.7.3 (depending

only on the data and θ∗w), and C depends only on the data and (θ∗w, α).

Proof. Let the parameters satisfy the conditions in Propositions 12.7.3 and
12.7.9. Let ε̂p be the constant determined in Proposition 12.7.9 for σ = α̂.
Then estimate (12.7.29) follows from estimate (12.7.16) for s =

ε̂p
2 , combined

with (12.7.28) for σ = α̂. We have used that ε̂p depends only on the data and
(θ∗w, α).

Corollary 12.7.11. Under the conditions of Proposition 12.7.10, choosing α
in the definition of the iteration set K to be α = α̂

2 for α̂ determined in Propo-
sition 12.7.10, then, for any (u#, θ#

w ) ∈ K, there exists δu#,θ#
w
> 0 so that, for
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any (u, θw) ∈ Kext satisfying (12.7.22), solution û of Problem (12.7.2)–(12.7.6)
determined by (u, θw) satisfies

‖û‖∗,(2)
2,α,Qiter ≤ C, (12.7.30)

where C depends only on the data and θ∗w.

Proof. From Lemma 12.7.4, the unique solution û ∈ C2(Qiter) ∩ C1(Qiter \
∂sonicQ

iter) ∩ C(Qiter) of Problem (12.7.2)–(12.7.6) and the unique solution
ψ̂ ∈ C2(Ω)∩C1(Ω\Γsonic)∩C(Ω) of (12.3.25)–(12.3.29) are related by (12.3.15)
with ϕ̂ = ψ̂ + ϕ2.

Since (u, θw) ∈ Kext satisfies (12.3.3), we apply Lemma 12.2.7(vii) to (u, θw)

to obtain (12.2.66) for g
(u,θw)
sh with α from the iteration set, i.e., α = α̂

2 . Also,
(12.7.29) and Lemma 12.2.4 imply that ϕ̂ = ψ̂ + ϕ2 satisfies (12.2.71) with
σ = 1 + δ∗ and α̂ instead of α, and with a constant on the right-hand side
depending only on the data and θ∗w (since α̂ depends only on these constants).
Then estimate (12.7.30) follows from (12.3.15) and Lemma 12.2.7(ix).

We fix α = α̂
2 (as in Corollary 12.7.11) as the parameter of the iteration

set from now on. This also makes the conditions on the smallness of δ1, given
above, depend only on the data and θ∗w.

12.8 OPENNESS OF THE ITERATION SET

In this section, we assume that the parameters of the iteration set satisfy the
requirements of Proposition 12.7.10 and α = α̂

2 . We show that K is relatively
open in C2,α

∗,1+δ∗(Q
iter)× [θ∗w,

π
2 ].

We note that this section is focused on the iteration set K, rather than its
closure, so that we do not follow the notational convention in Remark 12.3.11.
Instead, we consider the strict inequalities in the estimates as specified in Defi-
nition 12.3.2 and Remarks 12.3.4–12.3.8.

We first show that set Kext, introduced in Definition 12.3.9, is open.

Lemma 12.8.1. Set Kext is relatively open in C2,α
∗,1+δ∗(Q

iter)× [θ∗w,
π
2 ].

Proof. It suffices to show that each of conditions (i)–(vi) in Definition 12.3.2
determines an open subset of C2,α

∗,1+δ∗(Q
iter) × [θ∗w,

π
2 ]. This can be seen as

follows:

• Condition (i) defines a relatively open set, since function η1(θw) is contin-
uous.

• Condition (ii) uses set S defined by (12.2.50), that is, by the inequali-
ties in (12.2.49). We first note that all the three terms in the inequalities
in (12.2.49) are continuous functions of (s∗, θw). For the middle term
u( s∗

ŝ(θw) , 1), this continuity follows from the inclusion: u ∈ C2,α
∗,1+δ∗(Q

iter)
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and from the continuity and positive lower bound of ŝ(·). For the right
and left terms, such a continuity follows from the fact that the param-
eters of state (2) depend continuously on θw. Also, since u(0, ·) = 0 by
(12.2.50), then (12.2.47) implies that the strict inequalities in (12.2.49)
hold for all s∗ ∈ [0, ŝ(θw)]. Since the C2,α

∗,1+δ∗(Q
iter)–norm is stronger than

the C(Qiter)–norm, the assertion follows.

• Condition (iii) defines a relatively open set. Indeed, if (u, θw) ∈ Kext,
then, as we have shown above, if (ũ, θ̃w) is sufficiently close to (u, θw) in
C2,α
∗,1+δ∗(Q

iter), then (ũ, θ̃w) ∈ S, so that Γ̃shock and g̃sh are defined. Then
it follows from (12.2.59) and the continuity of ŝ(·) that (12.3.5) holds for
g̃sh, if (ũ, θ̃w) is even closer to (u, θw) in C2,α

∗,1+δ∗(Q
iter). Also, combining

this with Definition 12.2.6(iv) and Lemma 12.2.2(ii), we obtain (12.3.4)
for (ũ, θ̃w) sufficiently close to (u, θw).

• Conditions (iv)–(vi) define a relatively open set. Indeed, if (u, θw) ∈ Kext,
then, as we have shown above, if (ũ, θ̃w) is sufficiently close to (u, θw)

in the norm of C2,α
∗,1+δ∗(Q

iter), then (ũ, θ̃w) ∈ S so that Ω(ũ,θ̃w), Γ
(ũ,θ̃w)
shock ,

ϕ̃ = ϕ(ũ,θ̃w), and ψ̃ = ψ(ũ,θ̃w) are well-defined. Also, we note that condition
(iii) of Definition 12.3.2 for (u, θw) implies that b = 1

N2
can be used in the

conditions of Lemma 12.2.7(viii). Then (12.2.60)–(12.2.62) and (12.2.69)–
(12.2.70) imply that, in addition to (12.2.62), the following holds:

‖(Dϕ ◦ F)(u,θw) − (Dϕ ◦ F)(ũ,θ̃w)‖L∞(Qiter)

+ ‖(Dψ ◦ F)(u,θw) − (Dψ ◦ F)(ũ,θ̃w)‖L∞(Qiter)

≤ C
(
‖u− ũ‖

C1(Qiter)
+ |θw − θ̃w|

)
,

(12.8.1)

where C depends only on the data and θ∗w. Similar properties for ψ and
ψ̃ are also obtained by using (12.2.63).

Combining these properties with (12.2.61), and assuming that |θw− θ̃w|+
‖u − ũ‖

C1(Qiter)
is sufficiently small, we obtain the strict inequalities in

(iv)–(vi) for ψ̃, ϕ̃, and Ω̃ corresponding to (ũ, θ̃w), by using the following
features:

(a) η2(·) is continuous;

(b) In the proofs for conditions (12.3.7)–(12.3.8), we use that ε
10 ≤ x < ε0

in Ωε0 \ Ωε/10;

(c) For conditions (12.3.13)–(12.3.14), since Γshock(u, θw) is defined by
Definition 12.2.6(iv), using (12.2.59) and Lemma 12.2.2(ii) yields

‖(νsh ◦ F)(u,θw) − (νsh ◦ F)(ũ,θ̃w)‖Cα([0,1])

≤ C
(
‖(u− ũ)(·, 1)‖C1,α([0,1]) + |θw − θ̃w|

)
.

(12.8.2)
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Now we are ready to prove the main result of this section.

Proposition 12.8.2. If parameters (ε, δ1,
1
N1

) of the iteration set in Definition
12.3.2 are small (depending only on the data and θ∗w), if δ3 is small (depending
only on the data and (θ∗w, δ2)), and if α = α̂

2 for α̂ determined in Proposition
12.7.10, then the iteration set K is relatively open in C2,α

∗,1+δ∗(Q
iter)× [θ∗w,

π
2 ].

Proof. We choose parameters (ε, δ1,
1
N1

) of the iteration set in Definition 12.3.2,
and choose δK that satisfies the conditions of Propositions 12.7.3 and 12.7.9–
12.7.10.

Let (u#, θ#
w ) ∈ K. By Lemma 12.8.1, there exists δ# > 0 so that, if (u, θw) ∈

C2,α
∗,1+δ∗(Q

iter)× [θ∗w,
π
2 ] satisfies

‖u# − u‖∗,(1+δ∗)
2,α,Qiter + |θ#

w − θw| ≤ δ#, (12.8.3)

then (u, θw) ∈ Kext. It remains to show that condition (vii) of Definition 12.3.2
holds for (u, θw) if the parameters are chosen properly.

By Proposition 12.7.3 and Corollary 12.7.11, if the parameters of the iter-
ation set are appropriately chosen, possibly reducing δ#, then there exists a
unique solution û of Problem (12.7.2)–(12.7.6) determined by (u, θw) satisfying

‖û‖∗,(2)
2,α,Qiter ≤ C.

Since (u#, θ#
w ) ∈ K, then there exists a solution û# of Problem (12.7.2)–

(12.7.6) determined by (u#, θ#
w ) so that (12.3.16) holds for (u#, û#). Denote

δ̂ =
δ3 − ‖û# − u#‖∗,(1+δ∗)

2,α/2,Qiter

10
.

Then δ̂ > 0 by (12.3.16).
We show that, if δ# in (12.8.3) is sufficiently small, then

‖û# − û‖∗,(1+δ∗)
2,α/2,Qiter ≤ δ̂. (12.8.4)

Indeed, if this is not true, then there exists a sequence (u(i), θ
(i)
w ), converging

in C2,α
∗,1+δ∗(Q

iter) × [θ∗w,
π
2 ] to (u#, θ#

w ), such that the corresponding solutions
û(i) of (12.7.2)–(12.7.6) (which exist and are unique by Lemma 12.7.4, and
û(i) ∈ C2,α

∗,2 (Qiter) by Corollary 12.7.11) satisfy

‖û# − û(i)‖∗,(1+δ∗)
2,α/2,Qiter ≥ δ̂ for all i. (12.8.5)

Since sequence û(i) is bounded in C2,α
∗,2 (Qiter) by Corollary 12.7.11, then there

exists a subsequence ûij converging to a limit û∞ in C2,α2
∗,1+δ∗(Q

iter). By Lemma
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12.7.5, û∞ is a solution of (12.7.2)–(12.7.6) determined by (u#, θ#
w ). By unique-

ness in Lemma 12.7.4, this implies that û∞ = û#. This contradicts (12.8.5).
Thus, (12.8.4) holds if δ# is small. We can assume that δ# ≤ δ̂. Then

‖û− u‖∗,(1+δ∗)
2,α/2,Qiter

≤ ‖û− û#‖∗,(1+δ∗)
2,α/2,Qiter + ‖û# − u#‖∗,(1+δ∗)

2,α/2,Qiter + ‖u# − u‖∗,(1+δ∗)
2,α/2,Qiter

≤ δ̂ + (δ3 − 10δ̂) + δ̂

= δ3 − 8δ̂ < δ3.

Now, let ψ̂ ∈ C2(Ω) ∩ C1(Ω \ Γsonic) ∩ C(Ω) be the unique solution of Prob-
lem (12.3.25)–(12.3.29) determined by (u, θw), as ensured in Proposition 12.7.3.
Then, by Lemma 12.7.4(i), and by the uniqueness for Problem (12.7.2)–(12.7.6)
held by Lemma 12.7.4(ii), it follows that ψ̂ and û are related by (12.3.15). This,
combined with the last estimate, shows that condition (vii) of Definition 12.3.2
holds for (u, θw). Therefore, (u, θw) ∈ K.



Chapter Thirteen

Iteration Map, Fixed Points, and Existence of

Admissible Solutions up to the Sonic Angle

In this chapter, we define an iteration map on the closure of the iteration set,
show that its fixed points are admissible solutions, and prove the existence
of fixed points (hence admissible solutions) in the iteration set for each θw ∈
[θ∗w,

π
2 ). Since this can be done for any θ∗w ∈ (θc

w,
π
2 ), we obtain the existence of

admissible solutions up to the sonic angle, or the critical angle.

13.1 ITERATION MAP

In this section, we define an iteration map on the closure, K, of the iteration set
K in the norm of C2,α

∗,1+δ∗(Q
iter)× [θ∗w,

π
2 ]; cf. §12.3.2.

We now describe our heuristics for the construction. One possible definition
of the iteration map would be K 3 (u, θw) 7→ û, where û is the solution of the
iteration problem in Definition 12.3.2(vii) from Corollary 12.7.6. However, it
is not clear how the compactness of such an iteration map can be obtained.
In fact, the estimate in Proposition 12.7.10 has shown that, if α = α̂

2 in the
iteration set, function ϕ̂ corresponding to û via (12.3.15) has a gain-in-regularity
in comparison with ϕ. However, as the estimate in Corollary 12.7.11 (where
α = α̂

2 so that the same estimate with α̂ cannot be obtained) has shown, the
gain-in-regularity for ϕ̂ does not hold for û, which makes the compactness of
map (u, θw) 7→ û unclear. The reason for this is that, in (12.3.15), we use map
F−1

(2,gsh) for gsh determined by (u, θw) in (12.2.24). Thus, F−1
(2,gsh) has the same

regularity as u, i.e., as ϕ.
In order to fix this, we need to define an iteration map by using map F−1

(2,ĝsh)

in (12.3.15), which corresponds to Γshock(ϕ̂) instead of Γshock(ϕ). Thus, we need
to define the new location of the shock by {ϕ̂ = ϕ1}. On the other hand, ϕ̂
is defined only in Ω = Ω(ϕ), while some part of the modified shock may lie
outside Ω. Therefore, we need to extend ϕ̂ through Γshock before we define the
modified shock location. Moreover, this extension must have the same regularity
as ϕ̂, i.e., a higher regularity than Γshock. Furthermore, we need the continuity
properties of this extension with respect to curve Γshock in order to have the
continuity of the iteration map. We show the existence of such an extension in
Theorem 13.9.5 in Appendix 13.9. This motivates the construction that follows:
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In the argument below, the universal constant C depends only on the data
and θ∗w.

Let (u, θw) ∈ K, let (Ω, ϕ) be defined as in Definition 12.3.2(ii), and let
(ϕ̂, û) be determined by (u, θw) as in Definition 12.3.2(vii), where we have used
Corollary 12.7.6.

Define the functions on F1(Ω) as

v := (ϕ− ϕ̃2) ◦ F−1
1 , v̂ := (ϕ̂− ϕ̃2) ◦ F−1

1 , v1 := (ϕ1 − ϕ̃2) ◦ F−1
1 . (13.1.1)

Using Definition 12.2.6(v), we have

v = u ◦ F(2,gsh) on F1(Ω),

and, by (12.3.15),
v̂ = û ◦ F(2,gsh) on F1(Ω).

Note also that (12.3.3) and the choice of α made above imply that the corre-
sponding gsh satisfies (12.2.66) with C and M depending only on the data and
θ∗w. Then, using (12.2.41), (12.3.5), and F1(Ω) = F−1

(2,gsh)(Q
iter), we have

‖v − v̂‖∗,(1+δ∗)
2,α/2,F1(Ω) = ‖(u− û) ◦ F(2,gsh)‖∗,(1+δ∗)

2,α/2,F−1
(2,gsh)

(Qiter)

≤ C‖u− û‖∗,(1+δ∗)
2,α/2,Qiter

< Cδ3,

(13.1.2)

where the last inequality follows from (12.3.16).
From Definition 12.2.6(iv) and Lemma 12.2.7(iii),

F1(Ω) = {(s, t) : 0 < s < ŝ(θw), 0 < t < gsh(s)},
F1(Γshock) = {(s, gsh(s)) : 0 < t < ŝ(θw)},
F1(Γsonic) = {(0, t) : 0 ≤ t ≤ gsh(0)},
F1(Γsym) = {(ŝ(θw), t) : 0 < t < gsh(ŝ(θw))}.

(13.1.3)

Also, since ϕ = ϕ1 on Γshock by Definition 12.2.6, (12.3.13) implies that ϕ < ϕ1

in Ω near Γshock. By (13.1.1),

v1 − v = (ϕ1 − ϕ) ◦ F−1
1 on F1(Ω), (13.1.4)

so that v = v1 on F1(Γshock) and v < v1 in F1(Ω) near F1(Γshock). Thus, (13.1.3)
implies that, on F1(Γshock),

D(v1 − v)

|D(v1 − v)| (s, gsh(s)) =
(g′sh(s),−1)√
(g′sh(s))2 + 1

.

Then

∂(v1 − v)

∂t
= D(v1 − v) · (0, 1) = − |D(v1 − v)|√

(g′sh)2 + 1
on F1(Γshock).
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From this, we estimate ∂(v1−v)
∂t . First, using (12.3.13), (13.1.4), and Lemma

12.2.2(ii), we have

|D(v1 − v)| ≥ µ1

C
on F1(Γshock).

Using this and (12.2.66) for gsh, we obtain

∂(v1 − v)

∂t
≤ −µ1

C
on F1(Γshock).

Then, using (13.1.2) and choosing δ3 sufficiently small, depending only on the
data and (µ1,M) (hence only on the data and θ∗w), we have

∂(v1 − v̂)

∂t
≤ − 1

C
on F1(Γshock). (13.1.5)

The definition of v̂ in (13.1.1) can be written as v̂ = (ψ̂ + ϕ2 − ϕ̃2) ◦ F−1
1 .

Then, using Lemma 12.2.2(ii), (12.2.35), and (12.2.38), it follows from (12.7.29)
that v̂ satisfies

‖v̂‖∗,(2)
2,α̂,F1(Ω) ≤ C. (13.1.6)

Also, gsh satisfies (12.2.66) with σ = 1 + δ∗ and the right-hand side depending
only on the data and θ∗w by (12.3.3), since α is now fixed in the iteration set. In
particular, ‖gsh‖C0,1([0,ŝ(θw)]) ≤ C.

Then the structure of domain F1(Ω) as indicated in (13.1.3) allows us to
apply Theorem 13.9.5 to extend v̂ defined on F1(Ω) to a function E(ŝ(θw))

gsh
(v̂) ∈

C2,α
∗,2 (Dext), where

Dext = {(s, t) : 0 < s < ŝ(θw), 0 < t < (1 + σ)gsh(s)} (13.1.7)

with σ > 0 depending only on Lip[gsh], and hence only on the data. Now, from
(13.1.6) and Theorem 13.9.5, we have

‖E(ŝ(θw))
gsh

(v̂)‖∗,(2)
2,α̂,Dext ≤ C, (13.1.8)

where Dext is from (13.1.7).
From (12.3.5) and (13.1.7), it follows that

{(s, t) : 0 < s < ŝ(θw), 0 < t < gsh(s) + σ̂} ⊂ Dext, (13.1.9)

where σ̂ > 0 depends only on the data and θ∗w. From (13.1.5) and (13.1.8), there
exists ζ ∈ (0, σ̂2 ), depending only on the data and θ∗w, so that

∂(v1 − E(ŝ(θw))
gsh

(v̂))

∂t
≤ − 1

2C
on Rζ(F (θw)

1 (Γshock)), (13.1.10)

where

Rζ(F (θw)
1 (Γshock)) := {(s, t) : 0 < s < ŝ(θw), |t− gsh(s)| ≤ ζ},
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and E(ŝ(θw))
gsh

(v̂) is defined inRζ(F (θw)
1 (Γshock)) by (13.1.9). Also,Rζ(F (θw)

1 (Γshock))
is an open set, since gsh ∈ C([0, ŝ(θw)]). Then, further reducing δ3 if necessary
and using (13.1.10), combined with (13.1.2), (12.3.5), and the fact that v = v1

on {(s, t) : 0 < s < ŝ(θw), t = gsh(s)}, we conclude that there exists a unique
function ĝsh(s) on (0, ŝ(θw)) such that

Rζ(F (θw)
1 (Γshock)) ∩ {E(ŝ(θw))

gsh
(v̂) = v1}

= {(s, ĝsh(s)) : 0 < s < ŝ(θw)} ⊂ F (θw)
1 (Q(θw)

bd ),
(13.1.11)

where

‖ĝsh − gsh‖C([0,ŝ(θw)]) < Cδ3 < ζ. (13.1.12)

Now we define
ũ = E(ŝ(θw))

gsh
(v̂) ◦ F−1

(2,ĝsh). (13.1.13)

Lemma 13.1.1. For all (u, θw) ∈ K, ũ defined by (13.1.13) satisfies

‖ũ‖∗,(2)
2,α̂,Qiter ≤ C. (13.1.14)

Proof. Using (13.1.8), (13.1.10), and the definition of the modified shock func-
tion ĝsh(s) in (13.1.11) with ‖v1‖

C3(F
(θw)
1 (Q(θw)

bd ))
≤ C, we have

‖ĝsh‖(−1−α̂),{ŝ(θw)}
2,α̂,[ε̂/10, ŝ(θw)] + ‖ĝsh − gS1‖(1+δ∗),(par)

2,α̂,(0, ε̂) ≤ C, (13.1.15)

where ε̂ is from Definition 12.3.1(iv). Now, from (13.1.8), (13.1.15), and ex-
pression (13.1.13), we use the explicit form (12.2.43) to obtain (13.1.14) by a
straightforward calculation.

From Lemma 13.1.1, using α = α̂
2 and the notation from Definition 12.3.9(iii),

we define the following iteration map:

Definition 13.1.2. The iteration map I : K 7→ C2,α
∗,1+δ∗(Q

iter) is defined by

I(u, θw) = ũ (13.1.16)

for ũ defined in (13.1.13). For each θw ∈ [θ∗w,
π
2 ], we define the map:

I(θw) : K(θw) 7→ C2,α
∗,1+δ∗(Q

iter),

by I(θw)(u) = I(u, θw).

Lemma 13.1.3. Let θw ∈ [θ∗w,
π
2 ]. Let I(θw) be the iteration map from Definition

13.1.2. Let I(θw)
1 : K(θw) 7→ C2,α

∗,1+δ∗(Q
iter) be defined by I(θw)

1 (u) = û with û
given in Definition 12.3.2(vii) for (u, θw) ∈ K, where we have used Corollary
12.7.6. Then u ∈ K(θw) is a fixed point of I(θw) if and only if u is a fixed point
of I(θw)

1 .
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Proof. Fix θw ∈ [θ∗w,
π
2 ]. Set ũ := I(θw)(u) and û := I(θw)

1 (u) for each u ∈ K(θw).
We divide the proof into two steps.

1. We first assume that u ∈ K(θw) is a fixed point of I(θw). Denote

v := (ϕ− ϕ̃2) ◦ F−1
1 .

Then v = u ◦ F(2,gsh). From the definitions of F(2,gsh) and gsh, we have

u(
s

ŝ(θw)
, 1) = v(s, gsh(s)) = v1(s, gsh(s)) for all s ∈ (0, ŝ(θw)).

Similarly, from the definition of the iteration map through (13.1.13),

ũ(
s

ŝ(θw)
, 1) = E(ŝ(θw))

gsh
(v̂)(s, ĝsh(s)) = v1(s, ĝsh(s)) for all s ∈ (0, ŝ(θw)).

Since u = ũ on Qiter, we obtain that v1(s, gsh(s)) = v1(s, ĝsh(s)) for all s. Using
(12.2.37) and (13.1.1), we have

gsh ≡ ĝsh on (0, ŝ(θw)).

Now, since v̂ defined by (13.1.1) satisfies v̂ = û ◦ F(2,gsh), we conclude from
(13.1.13) that ũ = û on Qiter. Thus, u = û, so that u is a fixed point of I(θw)

1 .

2. Now we assume that u ∈ K(θw) is a fixed point of I(θw)
1 . Then u = û so

that
gsh ≡ ĝsh on (0, ŝ(θw)).

Since v̂ defined by (13.1.1) satisfies v̂ = û ◦ F(2,gsh), we conclude from (13.1.13)
that ũ = û on Qiter. Thus, u = ũ, so that u is a fixed point of I(θw).

13.2 CONTINUITY AND COMPACTNESS OF THE
ITERATION MAP

Below we use α̂ defined in Proposition 12.7.10 and α = α̂
2 defined in Corollary

12.7.11, both depending only on the data and θ∗w. Then

α′ := α̂− α =
α̂

2
> 0.

Lemma 13.2.1. C2,α+α′

∗,2 (Qiter) is compactly embedded into C2,α
∗,1+δ∗(Q

iter).

Proof. The assertion follows from Lemma 4.6.3, combined with the standard
results on the Hölder spaces, where we recall that 1 + δ∗ < 2.

Lemma 13.2.2. The iteration map

I : K ⊂ C2,α
∗,1+δ∗(Q

iter)× [θ∗w,
π

2
] 7→ C2,α

∗,1+δ∗(Q
iter)

is continuous.
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Proof. Let (u(j), θ
(j)
w ) ∈ K converge in the norm of C2,α

∗,1+δ∗(Q
iter) × [θ∗w,

π
2 ] to

(u, θw) ∈ K. In particular, θ(j)
w → θw, which implies

lim
j→∞

ŝ(θ(j)
w ) = ŝ(θw). (13.2.1)

Denote by h
(j)
sh and g

(j)
sh the functions in Definition 12.2.6(i)–(ii) for (u(j), θ

(j)
w ),

and denote by hsh and gsh the corresponding functions for (u, θw). From (12.2.59)
in Lemma 12.2.7(vi),

h
(j)
sh → hsh in C1,α2 ([0, 1]). (13.2.2)

Fix a compact set K b F
(θw)
1 (Ω). From the explicit form of F (θw)

1 (Ω) given by
Definition 12.2.6(iv), we have

K ⊂ {(s, t) : a < s < b, 0 < t < ζgsh(s)}

for some 0 < a < b < ŝ(θw) and ζ ∈ (0, 1). Then, using (12.2.41), (12.3.5),
(13.2.2), and the continuity of ŝ(·), we obtain the existence of K̂ b Qiter such
that F

(2,g
(j)
sh )

(K) ⊂ K̂ for all j. Then, using that v̂ = û ◦ F(2,gsh), v̂(j) =

û(j) ◦F
(2,g

(j)
sh )

, and û(j) → û in C2 on compact subsets of Qiter by Lemma 12.7.5,
we have

v̂(j) → v̂ in C1,α2 (K) for all compact K b F1(Ω). (13.2.3)

Next we consider functions (ĥ
(j)
sh , ĥsh), determined by functions (ĝ

(j)
sh , ĝsh) in

(13.1.11) by the formula in Definition 12.2.6(ii), and show that

ĥ
(j)
sh → ĥsh in C2,α

∗,1+δ∗([0, 1]). (13.2.4)

For this, using (13.1.6) for each j, as well as (13.2.1)–(13.2.3), we can apply
Theorem 13.9.5(iii) to conclude

wj → E(ŝ(θw))
gsh

(v̂) in C2,α
∗,1+δ∗(Dext

σ/2) (13.2.5)

for

wj(s, t) := E(ŝ(θ(j)
w ))

g
(j)
sh

(v̂(j))(
ŝ(θ

(j)
w )

ŝ(θw)
s, t),

where
Dext
σ/2 := {(s, t) : 0 < s < ŝ(θw), 0 < t < (1 +

σ

2
)gsh(s)}

with σ > 0 from (13.1.7). From (13.1.9), (13.1.12), and (13.2.2), applied for
each j and the limiting function, it follows that, reducing δ3, we obtain that

{(s, ĝ(j)
sh (

ŝ(θ
(j)
w )

ŝ(θw)
s)) : 0 < s < ŝ(θw)} ⊂ Dext

σ/2 for large j,
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and the same holds for {(s, ĝsh(s)) : 0 < s < ŝ(θw)}. Then, from (13.1.10) ap-
plied for each j and the limiting function, the convergence that wj → E(ŝ(θw))

gsh
(v)

in C2,α
∗,1+δ∗(Dext

σ/2), combined with (13.2.1), implies (13.2.4).

Defining ũ(j) and ũ by (13.1.13) for (v̂(j), g
(j)
sh , ĝ

(j)
sh ) and (v̂, gsh, ĝsh) respec-

tively, and using (13.2.1) and (13.2.4)–(13.2.5), we obtain that ũ(j) → ũ point-
wise in the open region Qiter. Then, from (13.1.14) for each ũ(j), using the
compactness of C2,α̂

∗,2 (Qiter) in C2,α
∗,1+δ∗(Q

iter) shown in Lemma 13.2.1, we con-
clude that ũ(j) → ũ in C2,α

∗,1+δ∗(Q
iter). This shows the continuity of the iteration

map.

Corollary 13.2.3. The iteration map

I : K ⊂ C2,α
∗,1+δ∗(Q

iter)× [θ∗w,
π

2
] 7→ C2,α

∗,1+δ∗(Q
iter)

is compact. Moreover, there exists C > 0 depending only on the data and θ∗w
such that, for each (u, θw) ∈ K,

‖I(θw)(u)‖∗,(2)
2,α+α′,Qiter ≤ C. (13.2.6)

Proof. Lemma 13.1.1 and Definition 13.1.2 imply (13.2.6). Combining this with
the property shown in Lemma 13.2.1 and the continuity of I shown in Lemma
13.2.2, we conclude the compactness of I.

13.3 NORMAL REFLECTION AND THE ITERATION MAP
FOR θw = π

2

In this section, we show that function u(norm) on Qiter, which corresponds to
the normal reflection ϕ = ϕ

(π2 )
2 in Ω for θw = π

2 , is the unique value of I(π2 )(·)
on K(π2 ).

Recall that, by (12.2.34) and (12.2.44),

u(norm) ≡ 0 on Qiter.

Proposition 13.3.1. For any u ∈ K(π2 ),

I(π2 )(u) = u(norm) ≡ 0.

Proof. Let u ∈ K(π2 ). Then the corresponding function ψ̂ is a solution of Prob-
lem (12.3.25)–(12.3.29). This problem, in Case θw = π

2 , satisfies the following
properties:

Equation (12.3.25) is homogeneous and strictly elliptic in Ω by (i) and (viii)
of Lemma 12.4.5.

By Lemma 12.5.7(ii), ψ̂ satisfies the boundary condition (12.3.26) with func-
tion M(u,θw)(p, z, ξ) constructed in Lemma 12.5.7. By Lemma 12.5.7(iv), this
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boundary condition is oblique. Furthermore, by Lemma 12.5.7(vii) with θw = π
2 ,

it follows thatM(u,θw)(0, 0, ξ) = 0 for any ξ ∈ Γshock. That is, (12.3.26) is ho-
mogeneous.

Since v2 = 0 for θw = π
2 , the boundary condition (12.3.29) is homogeneous.

Also the Neumann boundary conditions (12.3.28)–(12.3.29) are oblique. Fur-
thermore, the obliqueness at points {P2, P3} is verified as in Step 3 of the proof
of Proposition 12.7.3.

Therefore, ψ̂ ≡ 0 is a solution of (12.3.25)–(12.3.29). By the comparison
principle in Lemma 4.4.2, this solution is unique.

Next, we note that Theorem 13.9.5(i) implies that E(ŝ(θw))
gsh

(0) = 0 for any
shock location gsh. Now, from the definition of the iteration map by using
(12.2.34), we conclude that I(π2 )(u) = 0 = u(norm).

13.4 FIXED POINTS OF THE ITERATION MAP FOR θw < π
2

ARE ADMISSIBLE SOLUTIONS

In this section, we always assume that the parameters of the iteration set satisfy
the requirements of Propositions 12.7.10 and 12.8.2. The main result in this
section is the following:

Proposition 13.4.1. If the parameters in Definition 12.3.2 are chosen so that
(δ1, ε,

1
N1

) are small, depending on the data and θ∗w, then the following holds:
Let (u, θw) ∈ K with θw ∈ [θ∗w,

π
2 ), and let u(·) be a fixed point of map I(θw). Let

ϕ be determined by (u, θw) as in Definition 12.2.6(v). Then ϕ is an admissible
solution of Problem 2.6.1 in the sense of Definition 8.1.1.

We recall that α = α̂
2 has been fixed as defined in Corollary 12.7.11, where

α̂ is defined in Proposition 12.7.10. Thus, α depends on the data and θ∗w.
Since (u, θw) ∈ K in this section, we follow the notational convention from

Remark 12.3.11.
We note that, in order to prove Proposition 13.4.1, it suffices to show the

following properties of ϕ:

ϕ2 ≤ ϕ ≤ ϕ1 in Ω, (13.4.1)

∂eS1
(ϕ1 − ϕ) ≤ 0, ∂ξ2(ϕ1 − ϕ) ≤ 0 in Ω, (13.4.2)

|ψx| ≤
2− µ0

5

1 + γ
x in Ω ∩ Dε/4. (13.4.3)

Indeed, if (13.4.1)–(13.4.3) are proved, the following argument shows that ϕ
is an admissible solution in the sense of Definition 8.1.1, provided that ε > 0 is
chosen small in the definition of K:
(a) By Lemma 13.1.3, u = û. Thus, using Definition 12.2.6(v) and (12.3.15),

ϕ = ϕ̂ and ψ = ψ̂.
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(b) Domain Ω satisfies the requirements of Definition 8.1.1(i). This follows
from Definition 12.3.2(ii)–(iii) and Lemma 12.2.7(iii). Furthermore, the last
requirement in (8.1.2) is satisfied by (8.1.21) in Ω and (13.4.2), where we
can apply Lemma 8.1.9 since ϕ satisfies equation (2.2.8) as shown in (c)
below.

(c) ϕ satisfies the potential flow equation (2.2.8) in Ω if ε is small. Indeed,
using Proposition 12.7.9 with σ = α̂, we find from (12.7.28) for ψ̂ = ψ

that |ψy| ≤ Cx
3
2 in Ω ∩ Dε̂p , with C depending only on the data and θ∗w.

Thus, choosing ε small, we obtain that |ψy| ≤ N3x in Ω∩Dε/4. Combining
this with (13.4.3) and applying Lemma 12.4.7, we conclude that ϕ satisfies
equation (2.2.8) in Ω and that (2.2.8) is elliptic for ϕ in Ω \ Γsonic.

(d) ϕ satisfies the Rankine-Hugoniot conditions on Γshock. Indeed, by Lemma
13.1.3, the fixed point u = I(θw)(u) of map I(θw) satisfies u = I(θw)

1 (u) in
Definition 12.3.2(vii). This implies that ϕ = ϕ̂ and ψ = ϕ − ϕ2 = ψ̂, that
is, ψ̂ = ψ is a solution of Problem (12.3.25)–(12.3.29) for (u, θw). Then
ϕ = ϕ1 on Γshock from the definition of Ω in Definition 12.2.6(iv), and
the gradient jump condition (12.5.3) is satisfied by Lemma 12.5.1(iv) and
Lemma 12.5.7(ii).

(e) Extending ϕ by ϕ2 = ϕ
(θw)
2 into P0P1P4, we see that ϕ ∈ C1,α(P0P2P3),

where the C1,α–matching across Γsonic follows from the fact that ϕ− ϕ2 ∈
C2,α
∗,1+δ∗(Ω) by Remark 12.3.5. Furthermore, ϕν = 0 on Γwedge ∪Γsym, since

(12.3.28)–(12.3.29) hold for ψ̂ = ψ, where we have used the coordinates with
the origin shifted to center O2 of the sonic center of state (2). Extending
ϕ by ϕ1 into (Λ ∩ {ξ1 < ξ1P0

}) \ P0P2P3 and recalling that ϕ satisfies the
two Rankine-Hugoniot conditions with ϕ1 on Γshock, and ϕ2 satisfies the
Rankine-Hugoniot conditions with ϕ1 on P0P1 ⊂ S1, it follows that the
extended function ϕ satisfies (8.1.3) and is a weak solution of the potential
flow equation (2.2.8) in Λ with ∂νϕ = 0 on ∂Λ. That is, ϕ is a weak solution
of Problem 2.6.1 and satisfies the requirements of Definition 8.1.1(ii).

(f) The requirement of Definition 8.1.1(iii) holds, that is, the potential flow
equation (2.2.8) for ϕ is strictly elliptic in Ω \Γsonic, as shown in (c) above.

(g) The requirement of Definition 8.1.1(iv) follows from (13.4.1).

(h) The requirement of Definition 8.1.1(v) follows from (13.4.2).

Therefore, in the remaining part of §13.4, we focus on proving (13.4.1)–
(13.4.3).

Lemma 13.4.2. If ε > 0 in the definition of K is sufficiently small, depending
only on the data and θ∗w, then, for any (u, θw) ∈ K such that u is a fixed point
of map I(θw), the corresponding equation (12.3.25) satisfies assertions (a)–(c)
of Lemma 12.4.5(viii).
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Proof. Fix (u, θw) ∈ K which is a fixed point. Let ψ̂ be the unique solution of
(12.3.25)–(12.3.29) defined by (u, θw).

By Lemma 13.1.3, u = û. Using (12.3.15) and Definition 12.2.6(v), we
obtain that ϕ = ϕ̂, so that ψ = ψ̂. Therefore, by Proposition 12.7.10, ψ satisfies
(12.4.7). Now the assertion follows from Lemma 12.4.5(viii).

Lemma 13.4.3. Let (u, θw) ∈ K be such that u is a fixed point of map I(θw).
Then the corresponding function ψ satisfies

ψ ∈ C1,α(Ω) ∩ C2,α(Ω \ (Γsonic ∪ {P2, P3})) ∩ C3,α(Ω). (13.4.4)

Proof. Since ψ ∈ C2,α
∗,1+δ∗(Ω), ψ ∈ C1,α(Ω) ∩ C2,α(Ω \ (Γsonic ∪ Γsym)). Fur-

thermore, ψ̂ = ψ satisfies equation (12.4.45) by Lemma 13.4.2, which is strictly
elliptic in Ω \ Γsonic and can be considered as a linear equation for ψ with co-
efficients Aij(ξ) = Aij(Dψ(ξ), ξ) so that Aij ∈ C1,α(Ω) ∩ Cα(Ω), where we
have used Lemma 12.4.5. The equation is strictly elliptic in Ω \ Γsonic from
Lemma 12.4.5. Then, from the standard interior estimates for linear elliptic
equations and the local estimates for linear oblique derivative problems which
are applied near the points of the relative interior of Γsym, it follows that ψ
satisfies (13.4.4).

13.4.1 ϕ ≥ ϕ2 for fixed points

Lemma 13.4.4. If the parameters in Definition 12.3.2 are chosen such that
(δ1, ε,

1
N1

) are small, depending on the data and θ∗w, then, for every (u, θw) ∈ K
such that u is a fixed point of map I(θw), the corresponding function ϕ satisfies

ϕ ≥ ϕ(θw)
2 in Ω(u, θw).

Proof. Recall that, for the fixed points, u = I(θw)
1 (u), by Lemma 13.1.3. That

is, u = û in Definition 12.3.2(vii). This implies that

(ϕ,ψ) = (ϕ̂, ψ̂) in Ω.

Then, from Lemma 12.7.7, we have

ϕ− ϕ2 = ψ = ψ̂ ≥ 0 in Ω.

13.4.2 Directional monotonicity of ϕ1 − ϕ for fixed points

In this section, we prove (13.4.2). We first prove a lemma which will also be
used in this section to show that the directional derivatives of ϕ1 −ϕ satisfy an
oblique derivative condition on a part of Γshock.

Let ϕ+ and ϕ− be uniform states defined by (6.1.1), and let ρ0 > 0 be a
constant such that the inequality in (6.1.2) holds, and densities ρ± of ϕ± are
given by (6.1.2). In particular, ϕ± satisfy equation (2.2.8) with (2.2.9).
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Lemma 13.4.5. Let ρ0 > 0 be fixed. For any δ ∈ (0, 1), there exists µ > 0 with
the following property: Let ϕ± be the uniform states introduced above such that

δ ≤ ρ− < ρ+ ≤
1

δ
, |(u+ − u−, v+ − v−)| ≥ δ. (13.4.5)

Then S := {ξ : ϕ+(ξ) = ϕ−(ξ)} is a line. Assume that ϕ± satisfy the
Rankine-Hugoniot conditions on S:

ρ+Dϕ
+ · ν = ρ−Dϕ

− · ν on S.

Noting that dist(S, (u+, v+)) < c+ by (6.1.4), we assume that

c+ − dist(S, (u+, v+)) ≥ δ. (13.4.6)

Let D ⊂ R2 be an open set, and let Γ ⊂ ∂D be a relatively open segment of
curve. Assume that Γ is locally C2 and

Γ ⊂ B1/δ(O+), (13.4.7)

where O+ = (u+, v+) is the center of the sonic circle of state ϕ+. Let ϕ ∈
C2(D ∪ Γ) satisfy

‖ϕ− ϕ+‖C1(Γ) ≤ µ. (13.4.8)

Moreover, assume that function φ = ϕ+ |ξ|2
2 satisfies the equation:

2∑

i,j=1

aijDijφ = 0 in D, (13.4.9)

where aij ∈ C(D) and

|aij | ≤
1

δ
,

2∑

i,j=1

aijν
S
i ν

S
j ≥ δ on Γ (13.4.10)

with a unit normal νS = (νS1 , ν
S
2 ) to line S. Assume that ϕ and ϕ− satisfy the

Rankine-Hugoniot conditions on Γ, i.e.,

ϕ = ϕ−, ρ(|Dϕ|2, ϕ)Dϕ · ν = ρ−Dϕ
− · ν on Γ, (13.4.11)

where ρ(|Dϕ|2, ϕ) is given by (2.2.9). Let eS be a unit vector along line S, and
let w = ∂eS (ϕ−−ϕ). Then w satisfies the following oblique derivative condition:

a1wξ1 + a2wξ2 = 0 on Γ, (13.4.12)

where ak are continuous functions on Γ such that

(a1, a2) · ν 6= 0 on Γ. (13.4.13)
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Proof. In this proof, the universal constant C is positive and depends only
on δ, and O(µ) denotes a universal continuous function g(ξ) on Γ satisfying
|g(ξ)| ≤ Cµ for any ξ ∈ Γ. We divide the proof into four steps.

1. We note that, since ρ± are determined by (6.1.2), then (13.4.5) implies

ρ+ − ρ− ≥
1

C
. (13.4.14)

We shift the coordinates so that center O+ of state ϕ+ becomes the origin
as in §8.3.2.1. Then we rotate the coordinates so that the new ξ1–axis is per-
pendicular to line S and the new ξ2–axis is parallel to line S. Now ξ = (ξ1, ξ2)
denotes these new (shifted and rotated) coordinates. Since the potential flow
equation (2.2.8) is invariant with respect to the shift and rotation, functions ϕ
and ϕ± written in the new coordinates satisfy equation (2.2.8) with the same
ρ0, and the Rankine-Hugoniot conditions (13.4.11) and property (13.4.14) hold
on Γ.

In the new coordinates, functions ϕ± have the expressions:

ϕ+(ξ) = −|ξ|
2

2
+ const., ϕ−(ξ) = −|ξ|

2

2
+ (ũ−, 0) · ξ + const.,

where ũ− ∈ R is a constant satisfying

|ũ−| = |(u− − u+, v− − v+)|.

In particular, ũ− 6= 0 by (13.4.5). Thus, in the new coordinates, we have

ϕ− − ϕ = −(ϕ+
|ξ|2
2

) + ũ−ξ1 + const. = −φ+ ũ−ξ1 + const., (13.4.15)

where we have used function φ defined in (5.1.1). Note that this form of φ =

ϕ + |ξ|2
2 is not invariant with respect to the coordinate shift in the sense that

function φ in the new coordinates is not the original function φ calculated in
the original coordinates. In the rest of this proof, we use function φ = ϕ+ |ξ|2

2
defined in the new coordinates.

From the definition of the new ξ–coordinates, we find that S = {ξ1 = ξ1S},
where ξ1S is a constant. Denoting {nS , eS} the unit normal and tangent vectors
to line S, we have

eS = (0, 1), nS = (1, 0), (13.4.16)

where the orientation of {eS ,nS} has been chosen arbitrarily and will be fixed
from now on.

2. By (13.4.11),

ξ1S = − ρ−ũ−
ρ+ − ρ−

6= 0,

since ρ+ > ρ− > 0 and ũ− 6= 0. Then, by (13.4.5)–(13.4.6) and (13.4.14),

|ξ1S | ≥
1

C
, c+ − |ξ1S | ≥ δ. (13.4.17)
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Also,
|∂ξ1(ϕ− − ϕ+)| = |ũ−| ≥ δ, ∂ξ2(ϕ− − ϕ+) = 0 in R2.

Then our assumptions and the implicit function theorem imply that, choosing
µ ≤ δ

2 , we have
Γ ⊂ {ξ1 = f(ξ2) : ξ2 ∈ R}, (13.4.18)

where ‖f − ξ1S‖C1(R) ≤ 2
δµ. Using that

(τ ,ν) = (
(f ′, 1)√
1 + (f ′)2

,
(1,−f ′)√
1 + (f ′)2

),

for which the choice of the orientation of {τ ,ν} is consistent with the orientation
of {eS ,nS} chosen above, we find that, if µ ≤ δ

2 ,

|ν − nS | ≤
4

δ
µ, |τ − eS | ≤

4

δ
µ on Γ. (13.4.19)

From (13.4.15) and ∂eS = ∂ξ2 ,

w = ∂eS (ϕ− − ϕ) = −∂ξ2φ.

Since, in the new coordinates, ϕ satisfies the Rankine-Hugoniot conditions given
in (13.4.11), then, by Lemma 5.1.1, the corresponding function φ = ϕ+ |ξ|

2

2 sat-
isfies (5.1.22) and (5.1.24) with ρ− instead of ρ1. Combining this with (13.4.14)
and (13.4.16), we have

D2φ[τ , h̃] = 0 on Γ, (13.4.20)

where

h̃ ≡ h̃(|Dϕ|2, ϕ,ν, τ )

=
(
− ρ(c2 − ϕ2

ν)ϕνν1 + (ρϕ2
ν + ρ−c

2)ϕτ τ1
)
nS

+
(
− ρ(c2 − ϕ2

ν)ϕνν2 + (ρϕ2
ν + ρ−c

2)ϕτ τ2
)
eS ,

(13.4.21)

where ρ = ρ(|Dϕ|2, ϕ), c = c(|Dϕ|2, ϕ), and {τ ,ν} are the unit tangent and
normal vectors to Γ.

Note that, in the new coordinates, (13.4.7) becomes Γ ⊂ B1/δ(0). This,
combined with (13.4.8) (with the choice of µ ≤ δ), implies that |Dϕ| ≤ C on Γ.
Then, using (13.4.5), we have

|h̃| ≤ C on Γ.

3. Now, since τΓ = O(µ)nS +
(
1 +O(µ)

)
eS by (13.4.19), equality (13.4.20)

becomes
(
h̃1 +O(µ)

)
φξ1ξ2 +

(
h̃2 +O(µ)

)
φξ2ξ2 +O(µ)φξ1ξ1 = 0 on Γ, (13.4.22)
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where h̃ = h̃1nS + h̃2eS with (h̃1, h̃2) determined by (13.4.21).
Since we are deriving an equation for w = φξ2 , we express φξ1ξ1 from equation

(13.4.9). Since the coordinate changes have been in the shift and rotation only,
then, in the new coordinates, equation (13.4.9) is of the same form, for which
new coefficients âij satisfy condition (13.4.10) with unchanged constants on the
right-hand sides and with νS written in the new coordinates. Then (13.4.10)
becomes

|âij | ≤
1

δ
, â11 ≥ δ on Γ.

Thus, we have

φξ1ξ1 = − â12

â11
φξ1ξ2 −

â22

â11
φξ2ξ2 ,

where
∣∣∣ âi2â11

∣∣∣ ≤ 1
δ2 for i = 1, 2. Then (13.4.22) becomes
(
h̃1 +O(µ)

)
φξ1ξ2 +

(
h̃2 +O(µ)

)
φξ2ξ2 = 0 on Γ,

that is,
(
h̃1 +O(µ)

)
wξ1 +

(
h̃2 +O(µ)

)
wξ2 = 0 on Γ, (13.4.23)

where h̃ = h̃(|Dϕ|2, ϕ,ν, τ ). Equation (13.4.23) is in the form of (13.4.12),
whose coefficients are continuous on Γ.

4. It remains to prove the obliqueness property (13.4.13) of form (13.4.12).
Definition (13.4.21), combined with (13.4.8) and (13.4.19), implies

∣∣h̃(|Dϕ|2, ϕ,ν, τ )− h̃(|Dϕ+|2, ϕ+,nS , eS)
∣∣ ≤ Cµ on Γ.

We compute explicitly from (13.4.21) with Dϕ+ = −ξ = −(f(ξ2), ξ2) on Γ:

h̃(|Dϕ+|2, ϕ+,nS , eS)

=
(
ρ+(c2+ − f2(ξ2))f(ξ2)

)
nS −

(
(ρ+f

2(ξ2) + ρ−c
2
+)ξ2

)
eS

=
(
ρ+(c2+ − ξ12

S)ξ1S +O(µ)
)
nS −

(
(ρ+ξ1

2
S + ρ−c

2
+)ξ2 +O(µ)

)
eS ,

where we have used (13.4.18) to obtain the last expression.
Also, recall that, in the new coordinates, (13.4.7) becomes Γ ⊂ B1/δ(0).

This, combined with (13.4.5) and (13.4.17), implies

|ρ+(c2+ − ξ12
S)ξ1S | ≥

1

C
, |(ρ+ξ1

2
S + ρ−c

2
+)ξ2| ≤ C on Γ.

Then, recalling that νΓ =
(
1 +O(µ)

)
nS +O(µ)eS for nS = (1, 0) and denoting

by (a1, a2) the coefficients of (13.4.23), we have

|(a1, a2) · νΓ| = |(h̃1, h̃2) · nS |+O(µ) = |h̃1|+O(µ)

= |ρ+(c2+ − ξ12
S)ξ1S |+O(µ) ≥ 1

C
+O(µ) > 0

if µ is small.
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Now we prove the monotonicity of ϕ1 − ϕ. From (12.3.19), we have a more
precise version of estimate (12.3.21) that, for any (u, θw) ∈ K,

‖ψ‖1,α,Ω < Cη1(θw), (ψ,Dψ) = (0,0) on Γsonic, (13.4.24)

where C depends only on the data and (θ∗w, α).

Lemma 13.4.6. If the parameters in Definition 12.3.2 are chosen so that δ1 and
ε are small, depending only on the data, α, and constants (C, N̂0) in (12.3.22)
and (13.4.24) (hence δ1 and ε are small, depending only on the data and θ∗w),
and if N1 is large, depending on the data and θ∗w, then, for every (u, θw) ∈ K
such that θw ∈ [θ∗w,

π
2 ) and u is a fixed point of map I(θw), the corresponding

function ϕ satisfies
∂eS1

(ϕ1 − ϕ) ≤ 0 in Ω.

Proof. In this proof, the universal constant C depends only on the data, α, and
constants (C, N̂0) in (12.3.22) and (13.4.24) (hence only on the data and θ∗w).
Denote

φ̄ := ϕ1 − ϕ, w = ∂eS1
φ̄.

We now show that w ≤ 0 in Ω through four steps.
1. We work in the ξ–coordinates with the origin shifted to center O2 of state

(2).
Since w = −∂eS1

ψ+ ∂eS1
(ϕ1−ϕ2), and ∂eS1

(ϕ1−ϕ2) is constant, it follows
from (13.4.4) that

w ∈ Cα(Ω) ∩ C1,α(Ω \ (Γsonic ∪ {P2, P3})) ∩ C2,α(Ω). (13.4.25)

Now we show that w is a solution of a mixed boundary value problem for an
elliptic equation in Ω.

We first derive an elliptic equation for w in Ω. Since ψ = ϕ − ϕ2 satisfies
equation (12.4.45) by Lemma 13.4.2, and D2(ϕ1 − ϕ2) = 0, it follows that
φ̄ := ϕ− ϕ0 is governed by

A11φ̄ξ1ξ1 + 2A12φ̄ξ1ξ2 +A22φ̄ξ2ξ2 = 0 in Ω (13.4.26)

with
Aij(ξ) = Aij(Dψ(ξ), ξ), (13.4.27)

where Aij(p, ξ) are from (12.4.45).
The regularity ofAij is as follows: We first note that, using (12.4.5), (12.4.42),

and the improved regularity of ψ near Γsym in (13.4.4), we improve the estimate
in Lemma 12.4.5(iii) to

A1
ij ∈ C1,α(Ω \ (Dε ∪ {P2, P3})).

Combining this with Lemma 12.4.5(iii)–(v) and (13.4.4), and using (13.4.24),
we have

Aij ∈ C1,α(Ω \ (Γsonic ∪ {P2, P3})), ‖Aij‖Cα2 (Ω) ≤ C. (13.4.28)
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Also, equation (13.4.26) is strictly elliptic in Ω \ Γsonic.
Now we derive the equation for w by differentiating equation (13.4.26) in

the direction of eS1
. It is convenient to rotate the coordinates. Denote by

(X,Y ) the coordinates with basis {eS1
,νS1

}, where νS1
= Dφ̄0

|Dφ̄0|
is a unit vector

orthogonal to S1. Then ∂eS1
φ = ∂Xφ. Equation (13.4.26) is of the same form

in the (X,Y )–coordinates:

Â11φ̄XX + 2Â12φ̄XY + Â22φ̄Y Y = 0 in Ω,

where Âij ∈ C(Ω) and the equation is strictly elliptic in Ω \ Γsonic by (13.4.27)
and Lemma 12.4.5(i). In particular, Â22 > 0 in Ω \ Γsonic. Also, w = φ̄X . Now,
differentiating the equation with respect to X, substituting the right-hand side
of expression φ̄Y Y = − 1

Â22

(
Â11φ̄XX + 2Â12φ̄XY

)
for φ̄Y Y into the resulting

equation, and then writing the resulting equation in terms of w, we have

Â11wXX + 2Â12wXY + Â22wY Y + (∂XÂ11)wX + 2(∂XÂ12)wY

− ∂XÂ22

Â22

(Â11wX + 2Â12wY ) = 0 in Ω.

Writing this equation in the ξ–coordinates, we obtain

A11wξ1ξ1 + 2A12wξ1ξ2 +A22wξ2ξ2 +A1wξ1 +A2wξ2 = 0 in Ω, (13.4.29)

where Aij are from (13.4.26) and, by (13.4.28),

Ai ∈ Cα(Ω \ (Γsonic ∪ {P2, P3})). (13.4.30)

This equation is strictly elliptic in Ω \Γsonic from a similar property of equation
(13.4.26).

Next we derive the boundary condition for w on Γwedge. Let {nw, τw} be
the unit normal and tangent vectors to Γwedge defined by (8.2.35) and (8.2.17),
respectively, and νw = −nw. Using (12.3.28) and

Dϕ1 · νw = u1e1 · νw, Dϕ2 · νw = 0 on Γwedge,

we find that, on Γwedge,

∂νw φ̄ = −∂νwψ + ∂νw(ϕ1 − ϕ2) = u1e1 · νw = −u1 sin θw.

Differentiating this equality in direction τw, we have

∂νw
∂τw

φ̄ = 0 on Γwedge,

that is, in the (S, T )–coordinates with basis {νw, τw},

φ̄ST = 0 on Γwedge. (13.4.31)
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Equation (13.4.26) in the (S, T )–coordinates is of the same form:

Ã11φ̄SS + 2Ã12φ̄ST + Ã22φ̄TT = 0 in Ω,

where Ãij , i, j = 1, 2, satisfy (13.4.28), and the equation is strictly elliptic in
Ω \ Γsonic. In particular, Ã11 > 0 in Ω \ Γsonic. Since ϕ (hence φ̄) is C2 up to
Γwedge, the last equation holds on Γwedge. Combining this with (13.4.31), we
have

φ̄SS = −Ã22

Ã11

φ̄TT on Γwedge.

Also, since eS1
is not orthogonal to Γwedge by Lemma 7.5.12,

eS1 = a1νw + a2τw with a2 6= 0.

Then
w = ∂eS1

φ̄ = a1φ̄S + a2φ̄T .

Now we employ (13.4.31) to compute that, on Γwedge,

∂Sw = a1∂SSφ̄+ a2∂ST φ̄ = a1∂SSφ̄ = −a1
Ã22

Ã11

∂TT φ̄

= −a1Ã22

a2Ã11

(
a1∂ST φ̄+ a2∂TT φ̄

)
= −a1Ã22

a2Ã11

∂Tw =: b1∂Tw,

where b1 ∈ C(Γwedge \ {P4}). Therefore, w satisfies the oblique condition on
Γwedge:

∂νw
w − b1∂τw

w = 0 on Γwedge. (13.4.32)

Next we derive the condition on Γsym for w. Since eS1 is not orthogonal to
Γsym by Lemma 7.5.12, then we repeat the argument for Γwedge to obtain that
w satisfies the oblique condition on Γsym:

∂νsymw − b2∂τ symw = 0 on Γsym, (13.4.33)

with b2 ∈ C(Γsym).
Furthermore, since S1 = {ϕ1 = ϕ2}, ∂eS1

ϕ1 = ∂eS1
ϕ2 so that ∂eS1

φ̄ =

−∂eS1
ψ. Since ψ ∈ C2,α

∗,1+δ∗(Ω) by Remark 12.3.5, it follows that Dψ = 0 on
Γsonic so that ∂eS1

φ̄ = −∂eS1
ψ = 0 on Γsonic. Then the condition on Γsonic for

w is
w = 0 on Γsonic. (13.4.34)

In Steps 2–4 below, we derive the boundary condition on Γshock for w. Specif-
ically, we show that Lemma 13.4.5 can be applied in the following setting:
(ϕ−, ϕ+) = (ϕ1, ϕ2), D = Ω, and Γ = Γshock. Then S in Lemma 13.4.5 is
line S1. Now we prove that the assumptions of Lemma 13.4.5 are satisfied.

2. First, the Rankine-Hugoniot conditions (13.4.11) are satisfied, since u is
a fixed point of Iθw , as we discussed at the beginning of this chapter.
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From the properties of state (2), (13.4.5) is satisfied with δ > 0. Similarly,
(13.4.6) is satisfied with

δ = min
θw∈[θd

w,
π
2 ]

(
c
(θw)
2 − dist(S(θw)

1 , (u
(θw)
2 , v

(θw)
2 ))

)
> 0,

where the last inequality holds by using (6.1.4) and the continuous dependence
of the parameters of the weak state (2) on θw ∈ [θd

w,
π
2 ].

Condition (13.4.7) is satisfied by (12.3.18) after possibly further reducing
δ. Here we note that (12.3.18) is in the non-shifted coordinates, i.e., when the
origin is at center O0 of state (0). Now we work in the coordinates with the
origin shifted to O2. However, since

|O2 −O0| = |D(ϕ2 − ϕ0)| = |(u2, v2)| ≤ C
with C depending only on the data and θ∗w, we obtain (12.3.18) and hence
(13.4.7) in the shifted coordinates, with a modified constant.

Next, we show that conditions (13.4.9)–(13.4.10) are satisfied. Since ψ =

ϕ−ϕ2 is a solution of (12.4.45) by Lemma 13.4.2, and D2(ϕ2+ |ξ|
2

2 ) = D2(u2ξ1+

v2ξ2) = 0, it follows that φ = ϕ+ |ξ|2
2 satisfies the equation:

A11φξ1ξ1 + 2A12φξ1ξ2 +A22φξ2ξ2 = 0 in Ω, (13.4.35)

where Aij are from (13.4.26). This verifies (13.4.9).
We now prove (13.4.10), where νS = νS1 in the present case. We use notation

νS1 = (νS1
1 , νS1

2 ) below. Let ε̃ > 0 be fixed below. By (13.4.27) and Lemma
12.4.5(i),

2∑

i,j=1

AijνS1
i νS1

j ≥ λ0
ε̃

2
on Γshock \ Dε̃/2, (13.4.36)

with λ0 > 0 depending only on the data.
In order to check (13.4.10) on Γshock ∩ Dε̃/2, we first check it at point P1.

Coefficients Aij(ξ) = Aij(Dψ(ξ), ξ) at P1 = Γshock∩Γsonic are of form (12.4.44),
where the ξ–coordinates are shifted so that the origin is at center O2 of the sonic
center of state (2), i.e., ξP1

= −P1O2. Then we have

2∑

i,j=1

AijνS1
i νS1

j = c22 − (P1O2 · νS1)2 at P1.

Since P1 ∈ Γsonic, it follows that |P1O2| = c2. Also, vectors P1O2 and νS1
are

not parallel to each other, since P1O2 is the radial vector for the sonic circle
∂Bc2(O2) at P1, i.e., it is orthogonal to the tangent line to ∂Bc2(O2) at P1, and
S1 intersects with ∂Bc2(O2) at P1, by property (6.1.4) in Lemma 6.1.2, applied
with (ϕ−, ϕ+) = (ϕ1, ϕ2). Then

∣∣∣∣
P1O2

|P1O2|
· νS1

∣∣∣∣ < 1,
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where the left-hand side depends continuously on the parameters of state (2).
Thus, there exists σ > 0 depending only on the data such that, for any θw ∈
[θs

w,
π
2 ], ( P1O2

|P1O2|
· νS1

)2

≤ 1− σ.

Then
2∑

i,j=1

AijνS1
i νS1

j = c22 − c22
( P1O2

|P1O2|
· νS1

)2

≥ c22σ at P1.

To obtain such an estimate for all ξ ∈ Γshock ∩ Dε̃, we obtain from (12.3.22)
that, for each ξ ∈ Γshock ∩ Dε̃,

|ξ − P1| ≤ Cε̃,

and, combining this with (13.4.28),

|Aij(ξ)−Aij(P1)| ≤ C|ξ − P1|α
2 ≤ Cε̃α2

for all ξ ∈ Γshock ∩ Dε̃.

Choosing ε̃ small, depending only on the data, α, and constants (C, N̂0) in
(12.3.22) (hence only on the data and θ∗w), we have

2∑

i,j=1

Aij(ξ)νS1
i νS1

j ≥
σ

2
min

θw∈[θs
w,
π
2 ]
c22(θw) for all ξ ∈ Γshock ∩ Dε̃.

Combining this with (13.4.36) for fixed ε̃ now, we obtain (13.4.10) on Γshock

with δ depending on the data, α, and constants (C, N̂0) in (12.3.22).
Therefore, we have proved the following claim:

Claim 13.4.7. There exists δ > 0 depending only on the data and θ∗w such that
properties (13.4.5)–(13.4.7) and (13.4.9)–(13.4.11) are satisfied, where (ϕ−, ϕ+) =
(ϕ1, ϕ2), (D,Γ, S) = (Ω,Γshock, S1), and (13.4.9) is (13.4.35).

The remaining assumption of Lemma 13.4.5 is (13.4.8). To verify this as-
sumption and complete the proof of Lemma 13.4.6, we consider two separate
cases: θw ∈ [π2 − 2δ1

N2
1
, π2 ) and θw ∈ [θ∗w,

π
2 − 2δ1

N2
1

).

3. The case that the wedge angles are close to π
2 , specifically θw ∈ [π2− 2δ1

N2
1
, π2 ).

Assuming N1 > 2, then θw ∈ [π2 − δ1
N1
, π2 ). It follows, by (13.4.24) where η1(·) is

introduced in Definition 12.3.2(i), that

‖ϕ− ϕ2‖C1,α(Ω) < Cη1(θw) ≤ Cδ1. (13.4.37)

Let µ = µ(δ) be the constant in Lemma 13.4.5 for δ from Claim 13.4.7. Thus,
from (13.4.37), by choosing δ1 small, we see that (13.4.8) holds on Γshock,
where (ϕ+,D) = (ϕ2,Ω). Then, applying Lemma 13.4.5, we conclude that
w = ∂eS1

(ϕ1 − ϕ) satisfies an oblique derivative condition:

â1wξ1 + â2wξ2 = 0 on Γshock, (13.4.38)
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where âi ∈ C(Γshock).
Thus, w is a solution of the following mixed problem in Ω: w satisfies equa-

tion (13.4.29) which is strictly elliptic in Ω \ Γsonic with the coefficients satisfy-
ing (13.4.28) and (13.4.30), the oblique boundary conditions (13.4.32)–(13.4.33)
and (13.4.38) with the coefficients that are continuous in the relative interiors
of the corresponding boundary segments, and the Dirichlet condition (13.4.34)
on Γsonic.

Remark 13.4.8. The comparison principle (Lemma 4.4.2) cannot be applied
directly here, since Ai, i = 1, 2, satisfy only (13.4.30) so that they are possibly
unbounded near P2 and P3, and the rate of their blowup is determined by the
elliptic estimates near the corner, i.e., it cannot be controlled. Therefore, we
cannot conclude that w ≡ 0 directly from the homogeneous problem for w.

From the equation and the boundary conditions for w discussed above, using
(13.4.25), the strong maximum principle in the interior of Ω, and Hopf’s lemma
at the points of relative interior of Γshock, Γwedge, and Γsym, we obtain that
either w = const. in Ω or the maximum of w over Ω cannot occur in Ω\ (Γsonic∪
{P2, P3}).

If w = const. in Ω, then w ≡ 0 by (13.4.34). Otherwise, the maximum of w
may occur in Γsonic ∪ {P2, P3}. We know that w = 0 on Γsonic by (13.4.34).

It remains to estimate w at {P2, P3}.
First consider P3. From (13.4.4) with the fixed point property ψ̂ = ψ, it

follows that ψ satisfies (12.3.28)–(12.3.29) at P3 = Γwedge ∩ Γsym. We also
note that, in the coordinates with the origin shifted to O2, P3 = −(u2, v2) and
ϕ2(ξ) = − 1

2 |ξ|2 + const. Thus, for any P ∈ R2, we have

Dϕ2(P ) = −ξP = PO2.

Since O2, P3 ∈ Γwedge, we find that P3O2 ⊥ νw. Then, using (12.3.28),

∂νw
ϕ(P3) = ∂νw

ψ(P3) + ∂νw
ϕ2(P3) = P3O2 · νw = 0.

Also, since P3 = −(u2, v2) and νsym = (0, 1) on Γsym = ∂Ω ∩ {ξ2 = −v2}, then
∂ξ2ϕ2(P3) = v2. Using (12.3.29),

∂νsym
ϕ(P3) = ∂νsym

ψ(P3) + ∂νsym
ϕ2(P3) = −v2 + v2 = 0.

Moreover, νw is not parallel to eξ2 , since θw < π
2 . Then

Dϕ(P3) = 0.
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Using expression (7.5.8) of eS1
and that (ϕ1−ϕ2)(ξ) = (u1−u2,−v2)·ξ+const.,

we find that, at P3,

w = ∂eS1
(ϕ1 − ϕ)

= ∂eS1
(ϕ1 − ϕ2) + ∂eS1

ϕ2 − ∂eS1
ϕ

=
(
(u1 − u2,−v2) + (u2, v2)

)
· eS1

= − u1v2√
(u1 − u2)2 + v2

2

.

Since u1, v2 > 0, we have
w(P3) < 0.

Now we consider point P2. Since P2 = Γsym∩Γshock, ψ = ψ̂ satisfies (12.3.29)
at P2. Then, using that νsym = (0, 1), we find that, on Γsym (including point
P2),

∂ξ2(ϕ1 − ϕ) = ∂ξ2(ϕ1 − ϕ2)− ∂ξ2ψ
= (u1 − u2,−v2) · (0, 1) + v2

= 0.

(13.4.39)

From Definition 12.2.6, it follows that ϕ = ϕ1 on Γshock = Γshock(u, θw). Then,
using (12.3.13), we have

νsh =
D(ϕ1 − ϕ)

|D(ϕ1 − ϕ)| on Γshock.

Thus, ∂ξ2(ϕ1 − ϕ)(P2) = 0 implies

νsh(P2) = (1, 0).

Then (12.3.13) at P2 becomes

∂ξ1(ϕ1 − ϕ)(P2) > µ1 > 0.

Now, using (7.5.8), we find that, at P2,

w = ∂eS1
(ϕ1 − ϕ)

= − v2∂ξ1(ϕ1 − ϕ) + (u1 − u2)∂ξ2(ϕ1 − ϕ)√
(u1 − u2)2 + v2

2

=
−v2∂ξ1(ϕ1 − ϕ)√

(u1 − u2)2 + v2
2

<
−v2µ1√

(u1 − u2)2 + v2
2

< 0.
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Thus, w ≤ 0 in Ω. This completes the proof of the expected result for Case
θw ∈ [π2 − 2δ1

N2
1
, π2 ).

4. The case that the wedge angles are away from π
2 , specifically θw ∈ [θ∗w,

π
2−

2δ1
N2

1
). In this case, from Definition 12.3.2(iv),

η2(θw) ≥ δ1
N2

1

> 0.

Thus, by (12.3.11),

w = ∂eS1
(ϕ1 − ϕ) < − δ1

N2
1

< 0 in Ω \ Dε/10. (13.4.40)

It remains to consider w = ∂eS1
(ϕ1−ϕ) on Ω∩Dε. From (13.4.24), it follows

that
‖ϕ− ϕ2‖C1(Ω∩Dε) < Cεα. (13.4.41)

Let µ = µ(δ) be the constant in Lemma 13.4.5, where δ is from Claim 13.4.7.
Then µ depends only on the data, α, and constants (C, N̂0) in (12.3.22). From
(13.4.41), by choosing ε small, depending only on the data, α, and constants
(C, N̂0) in (12.3.22) and (13.4.24), we obtain that (13.4.8) is satisfied on Γshock∩
Dε, where (ϕ+,D) = (ϕ2,Ω ∩ Dε). Then, applying Lemma 13.4.5, we conclude
that w = ∂eS1

(ϕ1 − ϕ) satisfies an oblique derivative condition:

â1wξ1 + â2wξ2 = 0 on Γshock ∩ Dε, (13.4.42)

where âi ∈ C(Γshock ∩ Dε).
Therefore, w is a solution of the following problem in Ω∩Dε: w satisfies equa-

tion (13.4.29) which is strictly elliptic in Ω ∩ Dε \ Γsonic, the oblique boundary
conditions (13.4.32) and (13.4.42) with continuous coefficients on Γwedge ∩ Dε
and Γshock ∩ Dε respectively, and the Dirichlet condition (13.4.34) on Γsonic.
Furthermore, (13.4.40) implies that w < 0 on ∂(Ω ∩ Dε) ∩ {x = ε}. Then, by
the maximum principle, w ≤ 0 in Ω ∩ Dε.

Combining this with (13.4.40), we conclude that w ≤ 0 in Ω.

Lemma 13.4.9. If the parameters in Definition 12.3.2 are chosen so that (δ1,ε,
1
N1

)

are small, depending on the data and θ∗w, then, for every (u, θw) ∈ K such that
θw ∈ [θ∗w,

π
2 ) and u is a fixed point of map I(θw), the corresponding function ϕ

satisfies
∂ξ2(ϕ1 − ϕ) ≤ 0 in Ω.

Proof. We follow the proof of Lemma 13.4.6, so that we only sketch the argument
and describe the differences in more detail. The universal constant C in this
proof depends only on the data, α, constants (C, N̂0) in (12.3.22) and (13.4.24),
and λ in Definition 12.3.2(v) (and hence only on the data and θ∗w). Denote

φ̄ := ϕ1 − ϕ, w̃ = ∂ξ2 φ̄.
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We show that w̃ ≤ 0 in Ω through four steps.
1. Recall that φ̄ satisfies (13.4.4) and is a solution of equation (13.4.26)

that is strictly elliptic in Ω \ Γsonic with the coefficients satisfying (13.4.28).
This implies that w̃ satisfies (13.4.25). Also, repeating the argument in Lemma
13.4.6, we conclude the following:

• w̃ satisfies an equation of form (13.4.29) in Ω, where Aij , i, j = 1, 2, are
from (13.4.26) and Ai, i = 1, 2, satisfy (13.4.30) (however, Ai, i = 1, 2, are
different in the present case from the corresponding coefficients in Lemma
13.4.6);

• w̃ satisfies an oblique boundary condition of form (13.4.32) on Γwedge,
where b1 is continuous on Γwedge (hence again, b1 is different in the present
case from the corresponding coefficient in Lemma 13.4.6).

Moreover, since (13.4.39) holds on Γsym, we have

w̃ = 0 on Γsym. (13.4.43)

Furthermore, (12.3.19) implies that Dϕ = Dϕ2 on Γsonic. Then, on Γsonic,

w̃ = ∂ξ2(ϕ1 − ϕ) = ∂ξ2(ϕ1 − ϕ2) = (u1 − u2, v2) · (0, 1) = −v2.

Therefore, the boundary condition for w on Γsonic is

w̃ = −v2 on Γsonic. (13.4.44)

2. Next we derive the boundary condition on Γshock for w̃. By an argu-
ment similar to that in Step 2 of the proof of Lemma 13.4.6, we apply Lemma
13.4.5. However, we need to change the setting in the present case. To motivate
the forthcoming argument, we note the following: Since we derive a boundary
condition on Γshock = {ϕ = ϕ1}, we need to take ϕ− = ϕ1 in Lemma 13.4.5.
Since we derive the condition for function w̃ = ∂ξ2(ϕ1 − ϕ), we need to choose
a uniform state ϕ+ for which {ϕ1 = ϕ+} is a vertical line {ξ1 = const.}. Fur-
thermore, the boundary condition needs to hold on the whole Γshock for large
wedge angles and on Γshock near P2 for all the angles, which can be seen from
(12.3.12) (where the original non-shifted coordinates have been used, in which
{P2, P3} lie on ξ2 = 0) such that ‖ϕ+ − ϕ‖Γshock∩Bε(P2) is small. This leads to
the following definition for ϕ+:

φ+(ξ) = φ(P2) +Dφ(P2) · (ξ − ξP2
),

ϕ+(ξ) = φ+(ξ)− |ξ|
2

2
,

(13.4.45)

where function φ = ϕ+ |ξ|2
2 .

From this definition, we have

(ϕ+, Dϕ+)(P2) = (ϕ,Dϕ)(P2). (13.4.46)
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Then, using (12.3.13) and (13.4.4), we see that, for any ξ ∈ R2,

∂ν(ϕ1 − ϕ+)(ξ) = ∂ν(ϕ1 − ϕ)(P2) > µ1 > 0. (13.4.47)

In particular, S := {ϕ1 = ϕ+} is a line. Using (13.4.46) and ϕ(P2) = ϕ1(P2)
(which holds since u is a fixed point of I(θw)), we find that P2 ∈ S. Furthermore,
it follows from (13.4.39) and (13.4.47) that S is a vertical line {ξ1 = const.}.
Thus, we have

S = {ξ1 = ξ1P2
}, eS = (0, 1).

Also, from (12.3.13) and (13.4.39), it follows that νsh(P2) = (1, 0). That is,

νS = νsh(P2).

Then, since ϕ and ϕ1 satisfy the Rankine-Hugoniot conditions at P2 (again from
the fixed point property), it follows that ϕ and ϕ1 satisfy the Rankine-Hugoniot
condition along line S:

ρ+∂ξ1ϕ
+ = ρ1∂ξ1ϕ1 on S,

where density ρ+ of the uniform state ϕ+ is defined by ρ+ = ρ(|Dϕ+|2, ϕ+) > 0
from (2.2.9). Also, from (12.3.14) applied at P2 and (13.4.46), we have

∂ξ1ϕ1 > ∂ξ1ϕ
+ > 0 on S.

Then, using (13.4.47) and the Lipschitz estimate |Dϕ| ≤ C in Ω which follows
from (12.3.18) and (13.4.24), we obtain from the Rankine-Hugoniot condition
on S that

ρ+ − ρ1 = ρ1
∂ξ1ϕ1 − ∂ξ1ϕ+

∂ξ1ϕ
+

≥ ρ1
µ1

C
=: δ.

Combining this with (13.4.47), we conclude that (13.4.5) holds for ϕ+ and ϕ− =
ϕ1.

From (13.4.46), it follows that ρ+ = ρ(|Dϕ(P2)|2, ϕ(P2)). Then, from Defi-
nition 12.3.2(vi),

ρmin < ρ+ < ρmax. (13.4.48)

Furthermore, by Definition 12.3.2(v) and (13.4.46), it follows that

|Dϕ+(P2)| < c(|Dϕ+(P2)|2, ϕ+(P2))
(
1− λ dist(P2,Γsonic)

)

= c+
(
1− λ dist(P2,Γsonic)

)
,

where c+ = (ρ+)γ−1 is the sonic speed of the uniform state ϕ+. From this,
denoting by O+ := Dφ(P2) which is the center of the sonic circle of the uniform
state ϕ+, noting that |Dϕ+(P2)| = |P2O+|, and using (13.4.48), we have

c+ − |P2O+| ≥ −λ(ρmin)(γ−1)/2dist(Γsonic, {ξ2 = 0}) ≥ δ,



548 CHAPTER 13

where δ > 0 depends only on the data and λ. Then, using that P2 ∈ S, we have

c+ − dist(S,O+) ≥ c+ − |P2O+| ≥ δ.

Therefore, (13.4.6) holds.
We note that, in the coordinates centered at O2,

ϕ2(ξ) = −|ξ|
2

2
+ const.,

so that φ = ϕ− ϕ2 + const. Thus, |O+| = |Dφ(P2)| = |D(ϕ− ϕ2)(P2)| ≤ C by
(13.4.24). Now (13.4.7) follows from (12.3.18) with an argument as in Step 2 of
the proof of Lemma 13.4.6.

Next we show that conditions (13.4.9)–(13.4.10) are satisfied. We have shown
in Step 2 of the proof of Lemma 13.4.6 that φ = |ξ|2

2 + ϕ satisfies equation
(13.4.35) with Aij from (12.4.45). This verifies (13.4.9).

In (13.4.10), vector νS in the present case is νξ1 = (1, 0). To prove (13.4.10),
we follow the corresponding argument in Step 2 of the proof of Lemma 13.4.6,
with the only difference that we now need to show that (13.4.10) holds at point
P1 with νS = (1, 0).

This can be seen as follows: Coefficients Aij(ξ) = Aij(Dψ(ξ), ξ) at P1 =
Γshock ∩Γsonic are of form (12.4.44), where the ξ–coordinates are shifted so that
the origin is at O2. Thus, we see that, at P1 for νS = (1, 0),

2∑

i,j=1

AijνSi νSj = A11 = c22 − ξ2
1P1

= c22 − (P1O2 · (1, 0))2

= c22

(
1− P1O2

|P1O2|
· (1, 0)

)
,

where |P1O2| = c2 has been used, since P1 ∈ Γsonic. Then, as in Step 2 of the
proof of Lemma 13.4.6, in order to complete the proof of (13.4.10) at P1, we
need to show that

1− P1O2

|P1O2|
· (1, 0) ≥ σ > 0 for all θw ∈ [θs

w,
π

2
], (13.4.49)

where σ depends only on the data.
In order to prove (13.4.49), it suffices to show that (1, 0) is not parallel to

P1O2 for all the wedge angles θw ∈ [θ∗w,
π
2 ]. Indeed, from the continuity of the

parameters of state (2), including the positions of P1 and O2, with respect to
θw ∈ [θs

w,
π
2 ], (13.4.49) holds then with some σ > 0.

We now show that (1, 0) is not parallel to P1O2. First let θw = π
2 . Then

ξ2P1
> 0 by (6.2.4), so that P1O2

|P1O2| · (1, 0) < 1.
Let θw ∈ (0, π2 ). Then, in the shifted coordinates, O2 = 0 and P0 =

|P0O2|(cos θw, sin θw). Suppose, contrary to our claim, that P1O2

|P1O2| · (1, 0) = 1.
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Then P1 is a point of intersection of S1 with line {ξ2 = ξ2O2
} ≡ {ξ2 = 0}. Using

that eS1
= − (v2, u1−u2)√

(u1−u2)2+v2
2

is a unit vector along S1, we obtain that such a point

of intersection does not exist if u1 = u2. Otherwise, we have

P1 = |P0O2|(cos θw −
v2

u1 − u2
sin θw, 0).

Recall that v2 > 0. Then, if u1 < u2, we find that ξ1P1
> ξ1P0

and ξ2P1
> ξ2P0

,
from which P1 /∈ Λ, which is a contradiction. The remaining case is u1 > u2. In
that case, in triangle P0P1O2, ∠P0O2P1 = π−θw > π

2 , so that |P0P1| > |P0O2|.
Then we obtain a contradiction from the elementary geometry, since segment
P0P1 is outside the sonic circle Bc2(O2), by Remark 7.5.5 and P1 ∈ ∂Bc2(O2).

Thus, we have shown that (1, 0) is not parallel to P1O2. This implies
(13.4.49) so that (13.4.10) holds on Γshock.

Combining the properties proved above, we conclude that Claim 13.4.7 holds
in the present case, with constant δ depending only on the data, α, constants
(C, N̂0) in (12.3.22) and (13.4.24), and λ in Definition 12.3.2(v), and hence
depending only on the data and θ∗w.

Fix µ = µ(δ) to be the constant in Lemma 13.4.5, where δ is from the present
version of Claim 13.4.7.

In Steps 3–4, we verify the remaining assumption (13.4.8) of Lemma 13.4.5
to complete the proof of Lemma 13.4.9.

3. The case that the wedge angles are close to π
2 , specifically θw ∈ [π2− 2δ1

N2
1
, π2 ).

In this case, (13.4.37) holds with constant C from (13.4.24). Then we estimate

‖ϕ− ϕ+‖C1(Ω) ≤ ‖ϕ− ϕ2‖C1(Ω) + ‖ϕ+ − ϕ2‖C1(Ω) ≤ Cδ1 + ‖ϕ+ − ϕ2‖C1(Ω).

Since (ϕ+, ϕ2) are uniform states, D(ϕ+−ϕ2) is a constant vector so that, using
(13.4.46),

‖D(ϕ+ − ϕ2)‖L∞(Ω) = |D(ϕ+ − ϕ2)(P2)| = |D(ϕ− ϕ2)(P2)| ≤ Cδ1,

where the last inequality follows from (13.4.37). Thus, we have

‖D(ϕ− ϕ+)‖C(Ω) ≤ Cδ1.

Then, using that ϕ(P2) = ϕ+(P2) and (12.3.18), we see that ‖ϕ − ϕ+‖C(Ω) ≤
Cδ1, which implies

‖ϕ− ϕ+‖C1(Ω) ≤ Cδ1.
With this, we repeat the argument in Step 3 of the proof of Lemma 13.4.6 to see
that (13.4.8) is satisfied on Γshock, if δ1 is small. Then, applying Lemma 13.4.5,
we conclude that w̃ = ∂ξ2(ϕ1 − ϕ) satisfies an oblique derivative condition of
form (13.4.38) on Γshock, where âi ∈ C(Γshock).

Therefore, w̃ is a solution of the following mixed problem in Ω: w̃ satisfies
an equation of form (13.4.29) which is strictly elliptic in region Ω \ Γsonic with
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coefficients satisfying (13.4.28) and (13.4.30), the oblique boundary conditions
of form (13.4.32) and (13.4.38) with the coefficients that are continuous in the
relative interiors of the corresponding boundary segments, and the Dirichlet
conditions (13.4.43)–(13.4.44). Thus, the maximum of w̃ cannot occur in the
interior of Ω and relative interiors of Γshock and Γwedge. Then the Dirichlet
conditions (13.4.43)–(13.4.44) and regularity w̃ ∈ C(Ω) imply that

w̃ ≤ 0 in Ω.

4. The case that the wedge angles are away from π
2 , specifically θw ∈ [θ∗w,

π
2−

2δ1
N2

1
). In this case, from Definition 12.3.2(iv),

η2(θw) ≥ δ1
N2

1

> 0.

Thus, by (12.3.12),

w̃ = ∂ξ2(ϕ1 − ϕ) < − δ1
N2

1

in Ω \ Nε/10({ξ2 = ξ2P2
}). (13.4.50)

It remains to consider w = ∂eξ2 (ϕ1 − ϕ) on Ω ∩ Nε({ξ2 = ξ2P2
}). From

(13.4.39) and (13.4.47),
νsh(P2) = (0, 1).

Using (12.2.66) which holds by Remark 12.3.4, and choosing ε small, depending
only on the data and θ∗w, we have

Γεshock := Γshock ∩Nε({ξ2 = ξ2P2
}) = {ξ1 = f(ξ2) : ξ2P2

< ξ2 < ξ2P2
+ ε},

where ‖f‖C1,α([ξ2P2
,ξ2P2

+ε]) ≤ CN̂0. Then

|ξ − P2| ≤ Cε for all ξ ∈ Γεshock.

Using (13.4.24) and (13.4.46), we have

‖Dϕ−Dϕ+‖C(Γεshock) ≤ ‖Dϕ−Dϕ(P2)‖C(Γεshock) ≤ Cεα.

Using that ϕ(P2) = ϕ+(P2), we obtain that ‖ϕ− ϕ+‖C(Γεshock) ≤ Cε1+α so that

‖ϕ− ϕ+‖C1(Γεshock) ≤ Cεα.

Then, choosing ε small and following the argument for deriving (13.4.42), we
obtain that w̃ = ∂ξ2(ϕ1 − ϕ) satisfies the oblique derivative condition:

â1w̃ξ1 + â2w̃ξ2 = 0 on Γεshock, (13.4.51)

where âi ∈ C(Γshock ∩ Dε).
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Therefore, w̃ is a solution of the following problem in Ω ∩Nε({ξ2 = ξ2P2
}):

w̃ satisfies an equation of form (13.4.29) which is strictly elliptic in
Ω ∩Nε({ξ2 = ξ2P2

}), the oblique boundary conditions (13.4.32) and (13.4.51)
with continuous coefficients on Γwedge ∩ Nε({ξ2 = ξ2P2

}) and Γεshock, and the
Dirichlet condition (13.4.43) on Γsym. Furthermore, (12.3.12) implies that w̃ < 0
on Ω∩{ξ2 = ξ2P2

+ε}. Then, by the maximum principle, w̃ ≤ 0 in Ω∩Nε({ξ2 =
ξ2P2
}).
Combining this with (12.3.12), we conclude that w̃ ≤ 0 in Ω.

13.4.3 Removing the cutoff in the equation for fixed points

In this section, we show that the fixed point satisfies the non-modified potential
flow equation (1.5). As we discussed above, it suffices to prove (13.4.3), which
will be done in the next two lemmas.

First, we bound ψx from above. We work in the (x, y)–coordinates in Ω∩D2ε.
By Lemma 12.2.7(iv),

Ω ∩ Dε = {0 < x < ε, 0 < y < fsh(x)} for all ε ∈ (0, ε0), (13.4.52)

where fsh satisfies (12.3.17), and ε0 is determined in Lemma 12.2.2.

Lemma 13.4.10. If the parameters in Definition 12.3.2 are chosen so that
the conditions of Proposition 12.7.10 are satisfied, and if ε is further reduced
depending only on the data and constant C in (12.7.29) (hence depending only
on the data and θ∗w), then, for every (u, θw) ∈ K such that θw ∈ [θ∗w,

π
2 ) and u

is a fixed point of map I(θw), the corresponding function ψ = ϕ− ϕ2 satisfies

ψx ≤
2− µ0

5

1 + γ
x in Ω ∩ {x ≤ ε

4
}. (13.4.53)

Proof. In this proof, the universal constants C and ε are positive and depend
only on the data and constant C in (12.7.29) (hence on the data and θ∗w). We
divide the proof into three steps.

1. To simplify notation, we denote

A =
2− µ0

5

1 + γ
, Ωs := Ω ∩ {x ≤ s} for s > 0.

Define a function

v(x, y) := Ax− ψx(x, y) on Ωε/4. (13.4.54)

From (13.4.4) and since ψ = ψ̂ satisfies (12.7.29), it follows that

v ∈ C0,1
(
Ωε/4

)
∩ C1

(
Ωε/4 \ {x = 0}

)
∩ C2(Ωε/4). (13.4.55)
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Moreover, it follows from (12.7.29) for ψ = ψ̂ that, in Ωε/4,

|ψ(x, y)| ≤ Cx2, |ψx(x, y)| ≤ Cx, |ψy(x, y)| ≤ Cx 3
2 ,

|ψxx(x, y)| ≤ C, |ψxy(x, y)| ≤ C√x, |ψyy(x, y)| ≤ Cx.
(13.4.56)

This implies that
v = 0 on ∂Ωε/4 ∩ {x = 0}. (13.4.57)

We now use the fact that ψ satisfies (12.3.26), which can be written as (12.5.34)
in the (x, y)–coordinates, where M̂ is of the form of M̂(u,θw) from Lemma
12.5.7(x). Then, from (12.5.55)–(12.5.56) and (13.4.56),

|ψx| ≤ C(|ψy|+ |ψ|) ≤ Cx
3
2 on Γshock ∩ {x <

ε

4
},

so that, choosing ε small,

|ψx| < Ax on Γshock ∩ {0 < x <
ε

4
}.

Thus, we have
v ≥ 0 on Γshock ∩ {0 < x <

ε

4
}. (13.4.58)

Furthermore, condition (12.3.28) on Γwedge in the (x, y)–coordinates is

ψy = 0 on {0 < x <
ε

4
, y = 0}.

Since (13.4.4) implies that ψ is C2 up to Γwedge, we differentiate the condition
on Γwedge with respect to x, i.e., in the tangential direction to Γwedge, find that
ψxy = 0 on {0 < x < ε

4 , y = 0}, which implies that

vy = 0 on Γwedge ∩ {0 < x <
ε

4
}. (13.4.59)

Furthermore, from (12.3.7) and recalling that A =
2−µ0

5

1+γ , we obtain that, on
∂Ωε/4 ∩ {x = ε

4},

v =
Aε

4
− ψx ≥

Aε

4
− 2− µ0

1 + γ

ε

4
=

µ0

5(1 + γ)
ε > 0,

which implies
v > 0 on ∂Ωε/4 ∩ {x =

ε

4
}. (13.4.60)

2. Now we show that, if ε is small, v is a supersolution of a linear homo-
geneous elliptic equation on Ωε/2. Since, by Lemma 13.4.2, ψ satisfies equation
(12.4.31) in Ωε/4, where Ok = Ok(Dψ,ψ, x) with Ok(p, z, x) given by (11.1.5),
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we differentiate the equation with respect to x and use the regularity of ψ in
(13.4.4) and the definition of v in (13.4.54) to obtain

a11vxx + a12vxy + a22vyy

+ (A− vx)
(
− 1 + (γ + 1)

(
ζ1(A− v

x
) + ζ ′1(A− v

x
)(
v

x
− vx)

))

= E(x, y),

(13.4.61)

where

a11 = 2x− (γ + 1)xζ1
(ψx
x

)
+ Ô1, a12 = Ô2, a22 =

1

c2
+ Ô3, (13.4.62)

E(x, y) = ψxx∂xÔ1 + ψxy∂xÔ2 + ψyy∂xÔ3 − ψxxÔ4 − ψx∂xÔ4 (13.4.63)

+ ψxyÔ5 + ψy∂xÔ5,

with

Ôk(x, y) = Ok(Dψ(x, y), ψ(x, y), x) for k = 1, . . . , 5, (13.4.64)

for Ok(p, z, x) given by (11.1.5). From these explicit expressions, we employ
(13.4.56) to obtain

|Ô1(x, y)| ≤ Cx2, |Ôk(x, y)| ≤ Cx for k = 2, . . . , 5. (13.4.65)

From (12.4.10), we have
ζ1 (A) = A.

Thus, we can rewrite (13.4.61) in the form:

a11vxx + a12vxy + a22vyy + bvx + cv = −A
(
(γ + 1)A− 1

)
+ E(x, y), (13.4.66)

with

b(x, y) = 1− (γ + 1)
(
ζ1(A− v

x
) + ζ ′1(A− v

x
)(
v

x
− vx +A)

)
, (13.4.67)

c(x, y) = (γ + 1)
A

x

(
ζ ′1(A− v

x
)−

∫ 1

0

ζ ′1(A− s v
x

)ds
)
, (13.4.68)

where v and vx are evaluated at point (x, y).
Since ψ satisfies (13.4.4) and v is defined by (13.4.54), we have

aij , b, c ∈ C
(
Ωε/4 \ {x = 0}

)
.

Combining (13.4.62) with (12.4.10) and (13.4.65), we obtain that, for suffi-
ciently small ε depending only on the data and θ∗w,

a11 ≥
1

6
x, a22 ≥

1

2c2
, |a12| ≤

1

3
√
c2

√
x on Ωε/4.
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Therefore, 4a11a22− (a12)2 ≥ 2
9c2
x on Ωε, which implies that equation (13.4.66)

is elliptic on Ωε and uniformly elliptic on every compact subset of Ωε/4\{x = 0}.
Furthermore, using (12.4.13) and (13.4.68), and noting that A > 0 and x > 0,

we have

c(x, y) ≤ 0 for every (x, y) ∈ Ωε such that v(x, y) ≤ 0. (13.4.69)

Now we estimate E(x, y). Using (13.4.64) with (11.1.5) and (12.7.29) for
ψ = ψ̂, we find that, on Ωε,

|∂xÔ1| ≤ C
(
x+ |Dψ|+ x|ψxx|+ |ψxψxx|+ |ψyψxy|+ |Dψ|2) ≤ Cx,

|∂xÔ2,5| ≤ C
(
|Dψ|+ |Dψ|2 + |ψyψxx|+ (1 + |ψx|)|ψxy|

)
≤ C√x,

|∂xÔ3,4| ≤ C
(
1 + |ψ|+ |Dψ|+ (1 + |Dψ|)|D2ψ|+ |Dψ|2

)
≤ C.

Combining these estimates with (13.4.56) and (13.4.65), we obtain from (13.4.63)
that

|E(x, y)| ≤ Cx on Ωε/4.

From this and (γ+ 1)A > 1, we conclude that the right-hand side of (13.4.66) is
strictly negative in Ωε if ε is sufficiently small, depending only on the data and
θ∗w.

We fix ε satisfying all the requirements above. Then

a11vxx + a12vxx + a22vyy + bvx + cv < 0 on Ωε/4, (13.4.70)

the equation is elliptic in Ωε/4 and uniformly elliptic on compact subsets of
Ωε/4 \ {x = 0}, and (13.4.69) holds.

3. Moreover, v satisfies (13.4.55) and the boundary conditions (13.4.57)–
(13.4.60). Then it follows that

v ≥ 0 on Ωε/4.

Indeed, let z0 := (x0, y0) ∈ Ωε/4 be a minimum point of v over Ωε/4 and v(z0) <
0. Then, by (13.4.57)–(13.4.58) and (13.4.60), either z0 is an interior point of
Ωε/4 or z0 ∈ Γwedge ∩{0 < x < ε

4}. If z0 is an interior point of Ωε/4, (13.4.70) is
violated since (13.4.70) is elliptic, v(z0) < 0, and c(z0) ≤ 0 by (13.4.69). Thus,
the only possibility is z0 ∈ Γwedge ∩ {0 < x < ε

4}, i.e., z0 = (x0, 0) with x0 > 0.
Then, by (13.4.52), there exists ρ > 0 such that Bρ(z0)∩Ωε/4 = Bρ(z0)∩{y > 0}.
Equation (13.4.70) is uniformly elliptic in Bρ/2(z0) ∩ {y ≥ 0}, with coefficients
aij , b, c ∈ C(Bρ/2(z0) ∩ {y ≥ 0}). Since v(z0) < 0 and v satisfies (13.4.55), then,
reducing ρ > 0 if necessary, we see that v < 0 in Bρ(z0) ∩ {y > 0}. Then, by
(13.4.69),

c ≤ 0 on Bρ(z0) ∩ {y > 0}.
Moreover, v(x, y) is not a constant in Bx0/2(x0) ∩ {y ≥ 0}, since its negative
minimum is achieved at (x0, 0) and cannot be achieved in any interior point, as
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shown above. Thus, ∂yv(z0) > 0 by Hopf’s lemma, which contradicts (13.4.59).
Therefore, v ≥ 0 on Ωε/4 so that (13.4.53) holds on Ωε/4.

Then, using (12.3.7), we obtain (13.4.53) on Ωε/4.

Now we prove the bound of ψx from below.

Lemma 13.4.11. If the parameters in Definition 12.3.2 are chosen so that the
conditions of Proposition 12.7.10 and Lemma 13.4.6 are satisfied, and if ε is
further reduced depending only on the data and constant C in (12.7.29) (hence
depending only on the data and θ∗w), then, for every (u, θw) ∈ K such that
θw ∈ [θ∗w,

π
2 ) and u is a fixed point of map I(θw), the corresponding function

ψ = ϕ− ϕ2 satisfies

ψx ≥ −
2− µ0

5

1 + γ
x in Ω ∩ Dε/4. (13.4.71)

Proof. Since S1 = {ϕ1 = ϕ2}, then ∂eS1
ϕ1 = ∂eS1

ϕ2 so that ∂eS1
(ϕ − ϕ2) =

−∂eS1
(ϕ1 − ϕ). Thus, using Lemma 13.4.6,

∂eS1
ψ ≥ 0 in Ω. (13.4.72)

At point P 6= O2 in the ξ–plane, let {ex, ey} = {ex(P ), ey(P )} be unit vec-
tors in the x– and y–directions, respectively. Then, using the polar coordinates
(r, θ) with respect to O2, defined by (11.1.1), we have

ex = −er = −(cos θ, sin θ), ey = eθ = (− sin θ, cos θ).

In particular, ex(P ) and ey(P ) are orthogonal to each other so that

∂eS1
ψ = (eS1

· ex)ψx + (eS1
· ey)ψy in Ω ∩ Dε/4.

From (11.2.5),
2

M
≤ −∂y(ϕ1 − ϕ2) ≤ M

2
,

where M depends only on the data. Then, denoting

a := |D(ϕ1 − ϕ2)| =
√

(u1 − u2)2 + v2
2 > 0,

and noting that D(ϕ1 − ϕ2) = (u1 − u2,−v2) = aνS1 , we have

0 <
2

M
≤ −aνS1

· ey ≤
M

2
.

Rotating vectors {νS1 , ey} by π
2 clockwise, we obtain {eS1 ,−ex}, where we have

used the definition of eS1 in (7.5.8). Then we have

0 <
2

M
≤ aeS1

· ex ≤
M

2
in Ω ∩ Dε/4.
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Thus, using (13.4.72) and (12.7.29) for ψ = ψ̂ (where constant C is independent
of ε), we calculate in Ω ∩ Dε/4:

ψx =
∂eS1

ψ

eS1
· ex
− eS1

· ey
eS1
· ex

ψy ≥ −
eS1
· ey

eS1
· ex

ψy ≥ −
aM

2
Cx

3
2 ≥ −2− µ0

5

1 + γ
x,

if ε > 0 is small, where we have used that x ∈ (0, ε4 ).

Then the following corollary follows directly from Lemmas 13.4.10–13.4.11.

Corollary 13.4.12. Under the conditions of Lemmas 13.4.10–13.4.11, estimate
(13.4.3) holds.

Now we prove

Corollary 13.4.13. Under the conditions of Lemmas 13.4.10–13.4.11, for every
(u, θw) ∈ K such that u is a fixed point of map I(θw), the corresponding function
ϕ satisfies

ϕ ≤ ϕ1 in Ω.

Proof. Recall that, as the fixed point solution, ϕ satisfies the two Rankine-
Hugoniot conditions with ϕ1 on Γshock: (12.5.3) and ϕ = ϕ1 on Γshock.

By Corollary 13.4.12 and Lemma 12.4.7, ϕ is a solution of the potential flow
equation (2.2.8) with (2.2.9) in Ω.

Moreover, ϕν = 0 on Γwedge ∪ Γsym, since (12.3.28) holds for ψ̂ = ψ. Also,
ϕ ∈ C1,α(Ω) ∩ C2(Ω) by (12.3.19).

Now the corollary follows by repeating the proof of Lemma 8.3.2.

13.4.4 Completing the proof of Proposition 13.4.1

Note that

• (13.4.1) follows from Lemma 13.4.4 and Corollary 13.4.13;

• (13.4.2) follows from Lemmas 13.4.6 and 13.4.9;

• (13.4.3) follows from Corollary 13.4.12.

Then, from the argument after (13.4.3), the proof of Proposition 13.4.1 is
completed.

Remark 13.4.14. At this point, all the parameters in the iteration set, ex-
cept (N1, δ2, δ3), are fixed. Also, as we stated at the beginning of this section,
we assume that the parameters of the iteration set satisfy the requirements of
Proposition 12.7.10. In particular, δ3 is chosen small, depending on the data
and (θ∗w, δ2). In Lemma 13.5.1 below, we will choose (N1, δ2) depending only on
the data and θ∗w. From the argument above, this will also fix the choice of δ3,
so that the choice of all the parameters of the iteration set will be completed,
depending only on the data and θ∗w.
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13.5 FIXED POINTS CANNOT LIE ON THE BOUNDARY OF
THE ITERATION SET

We assume that the parameters of the iteration set satisfy the conditions of
Propositions 12.7.10, 12.8.2, and 13.4.1 with α = α̂

2 . Then we show that the
fixed points of the iteration map are admissible solutions of Problem 2.6.1 in
the sense of Definition 8.1.1.

In the following lemma, ∂K denotes the boundary of K relative to space
C2,α
∗,1+δ∗(Q

iter)× [θ∗w,
π
2 ]. In particular, (u(norm), π2 ) lies in the interior of K, and

the same for (u, θ∗w) ∈ K.

Lemma 13.5.1. If the parameters in Definition 12.3.2 are chosen to satisfy
the conditions of Proposition 13.4.1, and if N1 is further increased – depending
only on the data and δ1, and if δ2 is chosen sufficiently small – depending only
on (ε, δ1, N1) (hence (N1, δ2) depend only on the data and θ∗w), then, for any
θw ∈ [θ∗w,

π
2 ],

I(u, θw) 6= u for all (u, θw) ∈ ∂K.

Proof. We divide the proof into three steps.

1. Since K is relatively open in C2,α
∗,1+δ∗(Q

iter) × [θ∗w,
π
2 ], it suffices to prove

that, if u ∈ K(θw) is a fixed point of I(θw) : K(θw) 7→ C2,α
∗,1+δ∗(Q

iter), then
(u, θw) ∈ K.

Fix (u, θw) ∈ K such that u is a fixed point of I(θw). By Lemma 12.3.10(i),
(u, θw) ∈ S. Let (Ω, ϕ, ψ) be determined by (u, θw). By Proposition 13.4.1, ϕ
is an admissible solution of Problem 2.6.1 with the wedge angle θw.

Thus, we need to show that all the conditions of Definition 12.3.2 are satisfied
(with the strict inequalities in the estimates) for (u, θw).

By Lemma 12.3.10(i), (u, θw) satisfies Definition 12.3.2(ii). Also, combining
Corollary 12.7.6 with Lemma 13.1.3, we find that u = û for û from (12.3.15),
so that the left-hand side of (12.3.16) vanishes, which implies that Definition
12.3.2(vii) is satisfied with the strict inequality in (12.3.16).

With this, it remains to show that conditions (i) and (iii)–(vi) of Definition
12.3.2 are satisfied (with the strict inequalities in the estimates) for (u, θw) and
the corresponding (Ω, ϕ, ψ), if the parameters of the iteration set are chosen as
stated. We do this in what remains of the proof.

2. By Lemma 12.6.2, there exists a large N1 such that, for any (u, θw)
corresponding to an admissible solution ϕ with 0 < π

2 − θw < 3δ1
N1

,

‖u− u(norm)‖∗,(1+δ∗)
2,α,Qiter <

δ1
2
.

Then, from the definition of η1(·) in Definition 12.3.2(i), it follows that (12.3.3)
holds strictly for any (u, θw) corresponding to an admissible solution ϕ, for
θw ∈ (π2 − 3δ1

N1
, π2 ].
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On the other hand, for θw ≤ π
2 − 2δ1

N1
, η1(θw) = 10M so that (12.3.3) holds

strictly for each (u, θw) corresponding to an admissible solution. This follows
from the choice of M in Definition 12.3.2(i).

Therefore, condition (i) of Definition 12.3.2 holds strictly for (u, θw).
Now we also fix N1 determined in the argument above. Then N1 depends

only on the data and δ1.
Condition (iii) of Definition 12.3.2 holds strictly for admissible solutions from

Proposition 9.5.6 and estimate (12.2.31) in Lemma 12.2.3, where we have used
the choice of the constants in (12.3.4)–(12.3.5).

Now we consider condition (iv) of Definition 12.3.2. We first show that
(12.3.6) holds strictly for admissible solutions if δ2 in the definition of η2(·) is
chosen small, depending on the data and (δ1, N1) (which are already fixed).
Note that

η2(θw) < 0 if θw >
π

2
− δ1
N2

1

.

From this, since ϕ ≥ ϕ2 in Ω for admissible solutions, we obtain that (12.3.6)
holds strictly for admissible solutions with θw > π

2 − δ1
N2

1
. Now, from (11.6.2)

of Corollary 11.6.2 (applied with ε equal to ε
10 for parameter ε in the iteration

set, and with σ = δ1
N2

1
), it follows that there exists δ2 ∈ (0, 1) such that, if

θw ∈ [θ∗w,
π
2 − δ1

N2
1

],

ϕ− ϕ2 ≥
2δ1δ2
N2

1

in Ω \ Dε/10.

Then, noting that η2(θw) ≤ δ1δ2
N2

1
for all θw, we find that the strict inequality in

(12.3.6) holds for any admissible solution.
3. In the proofs of the next inequalities, we employ (12.3.1).
The strict inequality (12.3.7) follows from estimates (11.2.21) in Lemma

11.2.5 and the choice of µ0 = δ
2 .

The strict inequalities (12.3.8)–(12.3.9) follow from estimates (11.2.23)–(11.2.24)
in Lemma 11.2.6 with constant C and the choice of N3 = 10 max{C, 1}.

The strict inequality in (12.3.10) follows from Corollary 9.1.3.
The strict inequalities (12.3.11)–(12.3.12) are proved similarly to (12.3.6),

by using (11.6.3)–(11.6.4) in Corollary 11.6.2, and possibly further reducing δ2
depending only on (ε, δ1).

The strict inequalities in (12.3.13)–(12.3.14) hold for admissible solutions
from the choice of constant µ1 in Definition 12.3.2(iv). Now the strict inequali-
ties in all the conditions of Definition 12.3.2(iv) are proved.

The strict inequalities in conditions (v)–(vi) of Definition 12.3.2 for admis-
sible solutions follow from the choice of constants (λ, a, C) described there.

Therefore, we have proved that all the conditions of Definition 12.3.2 are
satisfied (with the strict inequalities in the estimates). This completes the proof.
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13.6 PROOF OF THE EXISTENCE OF SOLUTIONS UP TO
THE SONIC ANGLE OR THE CRITICAL ANGLE

We note, by Remark 13.4.14, that all the parameters of the iteration set are now
fixed.

From Proposition 13.3.1 and Theorem 3.4.7(i), it follows that the fixed point
index of map I(π2 ) on set K(π2 ) is nonzero, more precisely,

Ind(I(π2 ),K(
π

2
)) = 1.

From Lemma 12.8.2, Corollary 13.2.3, and Lemmas 13.2.2 and 13.5.1, we see
that the conditions of Theorem 3.4.8 are satisfied so that

Ind(I(θw),K(θw)) = 1 for any θw ∈ [θ∗w,
π

2
].

Then, from Theorem 3.4.7(ii), a fixed point of map I(θw) on domain K(θw) exists
for any θw ∈ [θ∗w,

π
2 ]. By Proposition 13.4.1, the fixed points are admissible

solutions. Thus, the admissible solutions exist for all θw ∈ [θ∗w,
π
2 ]. This holds

for any θ∗w ∈ (max{θs
w, θ

c
w}, π2 ). Then Proposition 12.1.1 is proved.

13.7 PROOF OF THEOREM 2.6.2: EXISTENCE OF GLOBAL
SOLUTIONS UP TO THE SONIC ANGLE WHEN u1 ≤ c1

The existence of solution ϕ of Problem 2.6.1 in Theorem 2.6.3 follows from
Proposition 12.1.1 and Lemma 10.4.2(ii). The regularity of these solutions as-
serted follows from Corollary 11.4.7 and Proposition 11.5.1.

It remains to show that (ρ,Φ)(t,x) defined in Theorem 2.6.3 is a weak solu-
tion of Problem 2.2.1 in the sense of Definition 2.3.1.

We first note that, since ϕ is an admissible solution, it follows from conditions
(i)–(ii) of Definition 8.1.1 that ϕ is a weak solution of Problem 2.2.3 in the
sense of Definition 2.3.3 and that, defining φ(ξ) = ϕ(ξ) + |ξ|2

2 and extending it
by even reflection across the ξ1–axis to R2 \W , we have

‖Dφ‖L∞(R2\W ) ≤ C,

φ =

{
φ0 for ξ1 > ξ0

1 ,

φ1 for ξ1 < ξ0
1

in R2 \ (W ∪BR(0))
(13.7.1)

for some R,C > 0, where φk(ξ) = ϕk(ξ) + |ξ|2
2 for k = 0, 1, and ϕk defined by

(2.2.16)–(2.2.17). Expressing (2.2.9) in terms of φ, we have

ρ(Dφ, φ, ξ) =
(
ργ−1

0 − (γ − 1)(φ− ξ ·Dφ+
1

2
|Dφ|2)

) 1
γ−1 . (13.7.2)

Furthermore, expressing the weak form of equation in Definition 2.3.3(iii) in
terms of φ, and recalling that φ is extended by even reflection across the ξ1–axis
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to R2 \W , we see that, for every ζ ∈ C∞c (R2),
∫

R2\W
ρ(Dφ, φ, ξ)

(
(Dφ− ξ) ·Dζ − 2ζ

)
dξ = 0. (13.7.3)

Now expressing Φ(t,x) defined in Theorem 2.6.3 in terms of φ, we have

Φ(t,x) = tφ(
x

t
). (13.7.4)

Then we calculate

∇xΦ(t,x) = Dφ(ξ), ∂tΦ(t,x) = φ(ξ)− ξ ·Dφ(ξ) for ξ =
x

t
. (13.7.5)

Then, from (13.7.1),
‖∇xΦ‖L∞([0,∞)×(R2\W )) ≤ C. (13.7.6)

Also, using (13.7.5) and comparing ρ(t,x) defined in Theorem 2.6.3 with (13.7.2),
we see that they coincide. Then

ρ(t,x) = ρ(
x

t
),

1

C
≤ ρ(t,x) ≤ C on [0,∞)× (R2 \W ), (13.7.7)

where the last property follows, since ϕ has been obtained from a fixed point of
the iteration map so that condition (vi) of Definition 12.3.2 holds.

Since ϕ(ξ) = φ(ξ)− |ξ|
2

2 satisfies condition (i) of Definition 2.3.3, then we use

(13.7.5) and recall (1.2) and B0 =
ργ−1

0 −1
γ−1 to see that condition (i) of Definition

2.3.1 holds for Φ. From (13.7.6)–(13.7.7), we find that condition (ii) of Definition
2.3.1 holds.

It remains to show that condition (iii) of Definition 2.3.1 holds. Let ζ ∈
C∞c (R+×R2). Then supp ζ ∈ [0, S]×BS for some S > 0, where BS = BS(0) ⊂
R2. We calculate

∫ ∞

0

∫

R2\W
ρ(∂tΦ, |∇xΦ|2)

(
∂tζ +∇xΦ · ∇xζ

)
dxdt

=
( ∫ ε

0

+

∫ S

ε

) ∫

BS\W
ρ(∂tΦ, |∇xΦ|2)

(
∂tζ +∇xΦ · ∇xζ

)
dxdt

=: Iε1 + Iε2

(13.7.8)

for small ε > 0. Using (13.7.6)–(13.7.7),

Iε1 → 0 as ε→ 0 + .

Furthermore, for t > 0, define

g(t, ξ) = ζ(t, tξ) ≡ ζ(t, x) for ξ =
x

t
.



ITERATION MAP, FIXED POINTS, AND EXISTENCE OF ADMISSIBLE SOLUTIONS 561

Then, for each t > 0, g(t, ·) ∈ C∞c (R2) with supp(g(t, ·)) ⊂ BS/t. Also,

∇xζ(t, x) =
1

t
∇ξg(t, ξ), ∂tζ(t, x) = ∂tg(t, ξ)− 1

t
ξ · ∇ξg(t, ξ) for ξ = x

t .

Then making the change of variables: (t,x) 7→ (t, ξ) = (t, xt ) in the term Iε2 in
(13.7.8) and using (13.7.5) and (13.7.7), we have

Iε2 =

∫ ∞

ε

∫

R2\W
ρ(ξ)

(
∂tg(t, ξ)− 1

t
ξ · ∇ξg(t, ξ) +

1

t
Dφ(ξ)∇ξg(t, ξ)

)
t2dξ dt.

Integrating by parts with respect to t in the term,
∫∞
ε

∫
R2\W ρ(ξ)∂tg(t, ξ)t2dξ dt,

we obtain
Iε2 = Jε1 + Jε2 ,

where

Jε1 =

∫ ∞

ε

t

∫

R2\W
ρ(ξ)

(
(Dφ(ξ)− ξ) · ∇ξg(t, ξ)− 2g(t, ξ)

)
dξ dt,

Jε2 = −
∫

R2\W
ρ(ξ)g(ε, ξ)ε2dξ.

Then Jε1 = 0 by (13.7.3). For Jε2 , changing variables x = εξ, we have

Jε2 = −
∫

R2\W
ρ(

x

ε
)ζ(ε, x)dx = −

∫

BS\W
ρ(

x

ε
)ζ(ε, x)dx.

From (13.7.1),

ρ(ξ) =

{
ρ0 for ξ1 > ξ0

1 ,

ρ1 for ξ1 < ξ0
1

in R2 \ (W ∪BR(0)). (13.7.9)

Then we find that, as ε→ 0+,

ρ(
x

ε
)→ ρ̄(x) =

{
ρ0 for x1 > 0,

ρ1 for x1 < 0
for all x ∈ R2 \ (W ∪ {x1 = 0}).

Then, using the density bounds in (13.7.7), we obtain from the dominated con-
vergence theorem that

lim
ε→0+

Jε2 = −
∫

R2\W
ρ̄(x)ζ(0, x)dx.

Thus, we have proved that the left-hand side of (13.7.8) is equal to the right-hand
side of the last equality. This proves condition (iii) of Definition 2.3.1. Thus,
(ρ,Φ)(t,x) is a weak solution of Problem 2.2.1 in the sense of Definition 2.3.3.

Furthermore, this solution satisfies the entropy condition. Indeed, we can
see the following:
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(i) The entropy condition on the incident shock follows from u1 > 0 and
ρ1 > ρ0;

(ii) The entropy condition on the straight part S1 of the reflected shock is
satisfied, because ρ2 > ρ1 and (7.1.6) holds at every point of S1;

(iii) The entropy condition on the curved part Γshock of the reflected-diffracted
shock holds by Lemma 8.1.7.

Then the proof of Theorem 2.6.3 is complete.

13.8 PROOF OF THEOREM 2.6.4: EXISTENCE OF GLOBAL
SOLUTIONS WHEN u1 > c1

We prove Theorem 2.6.5.
It follows from Lemma 10.4.2(i) that θc

w ∈ [θs
w,

π
2 ). The existence of admissi-

ble solutions with θw ∈ (θc
w,

π
2 ) follows from Proposition 12.1.1. The regularity of

these solutions as asserted follows from Corollary 11.4.7 and Proposition 11.5.1.
Furthermore, if θc

w > θs
w, then, by Lemma 10.4.2(iii), there exists a sequence

θ
(i)
w ∈ [θc

w,
π
2 ) with limi→∞ θ

(i)
w = θc

w and a corresponding admissible solution
ϕ(i) with the wedge angle θ(i)

w such that

lim
i→∞

dist(Γ(i)
shock,Γ

(i)
wedge) = 0. (13.8.1)

By Corollary 9.2.5, a subsequence (still denoted) ϕ(i) converges to a weak
solution of ϕ(∞) of Problem 2.6.1 for the wedge angle θc

w, with the structure
described in Corollary 9.2.5(iii), and Γ

(i)
shock → Γ

(∞)
shock in the sense of the uni-

form convergence of the shock functions f (ij)
e,sh → f

(∞)
e,sh as described in Corollary

9.2.5(ii) for e = ν
(∞)
w . From this,

dist(Γ(∞)
shock,Γ

(∞)
wedge) = 0.

By Corollary 9.2.5(i),

lim
i→∞

P2
(i) = P2

(∞) = (ξ1P2
(∞) , 0),

where ξ1P2
(∞) ≤ 0, since P2

(i) = (ξ1P2
(i) , 0) with ξ1P2

(i) < 0 for each i. Now we
show that

P2
(∞) = P3 ≡ 0. (13.8.2)

Indeed, on the contrary, suppose that P2
(∞) 6= 0. Then ξ1P2

(∞) < 0. It follows
that ξ1P2

(i) ≤ 1
2ξ1P2

(∞) for all i ≥ N for some large N . Then, using that
Γ

(i)
shock ⊂ {ξ1

(i)
P2
≤ ξ1 ≤ ξ1

(i)
P1
} by (8.1.2) in Definition 8.1.1, we conclude from
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Corollary 9.3.2 that there exists R > 0 such that dist(Γ(i)
shock,0) ≥ 2R for all

i ≥ N . Then
dist(Γ(i)

shock, Γ
(i)
wedge ∩BR(0)) ≥ R.

Also, using that θ(i)
w ∈ [θc

w,
π
2 ) with θc

w > θs
w, we apply Proposition 9.4.8 with

θ∗w = θc
w to obtain

dist(Γ(i)
shock, Γ

(i)
wedge \BR(P3)) ≥ 1

CR
for all i ≥ N.

Combining the last two estimates, we see that dist(Γ(i)
shock, Γ

(i)
wedge) ≥ 1

C > 0 for
all i > N , which contradicts (13.8.1). This proves (13.8.2).

Also, again using Proposition 9.4.8 with θ∗w = θc
w, we find that, for each i,

dist(Γ(i)
shock, Γ

(i)
wedge \Br(0)) ≥ 1

Cr
for any r ∈ (0, |Γ(i)

wedge|),

where Cr depends only on the data and (θ∗w, r). Then

dist(Γ(∞)
shock, Γ

(∞)
wedge \Br(0)) ≥ 1

Cr
for any r ∈ (0, |Γ(∞)

wedge|).

Combining this with (9.2.22)–(9.2.23) and (13.8.2), we have

Γ
(∞)
shock ∩ Γ

(∞)
wedge = {P3},

f
(∞)
e,sh (T ) > 0 for T ∈ (TP2

(∞) , TP1
(∞) ],

and

Ω(∞) =





(S, T ) :

TP2
(∞) < T < TP4

(∞)

0 < S < f
(∞)
e,sh (T ) for T ∈ (TP2

(∞) , TP1
(∞) ]

0 < S < f
(∞)
e,so (T ) for T ∈ (TP1

(∞) , TP4
(∞))




,

where we recall that Ω∞ is the interior of Ω̂(∞) defined by (9.2.22). Thus, Ω∞ is
of form (8.2.25) of domain Ω for an admissible solution, with P2

(∞) = P3
(∞) = 0.

Moreover, it follows that, for each P ∈ Γ
(∞)
shock, there exists r > 0 such

that dist(Br(P ),Γ
(∞)
wedge ∪ Γ

(∞)
sonic) > r. Then, from the uniform convergence:

f
(i)
e,sh → f

(∞)
e,sh , there exists a largeN so that, for each i > N , there is P (i) ∈ Γ

(i)
shock

such that dist(Br(P (i)),Γ
(i)
wedge ∪ Γ

(∞)
sonic) > r

2 . Applying Proposition 10.3.1 in
Br(P

(i)), we obtain that, for each i ≥ N ,

|Dkf
(i)
O1,sh

(θP (i))| ≤ Ck(d̂) for k = 2, 3, . . . ,

|Dk
ξϕ

(i)| ≤ Ĉk(d̂) on Bs(P (i)) ∩ Ωext for k = 2, 3, . . . ,

where constants s and Ck are independent of i. Passing to the limit, we obtain
similar estimates for (f

(∞)
O1,sh

, ϕ(∞)). This shows that Γ
(∞)
shock (without endpoints)
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is a C∞–curve and that ϕ(∞) is C∞ up to Γ
(∞)
shock. Similarly, the C∞–regularity

of ϕ in Ω \ (Γshock ∪ Γsonic ∪ {P3}), and the C1,1–regularity of ϕ near and up
to Γsonic follows from Lemma 9.2.2 and Proposition 11.4.6 applied to each ϕ(i),
where the constants in the estimates are independent of i ≥ N so that, passing
to the limit, the same estimate holds for ϕ(∞).

It can be proved in the same way as in §13.7 that, for the detached and
attached solutions, the corresponding (ρ,Φ)(t,x) is a weak solution of Problem
2.2.1 in the sense of Definition 2.3.3 satisfying the entropy condition.

Now Theorem 2.6.5 is proved.

13.9 APPENDIX: EXTENSION OF THE FUNCTIONS IN
WEIGHTED SPACES

In this section, we extend the functions which belong to the weighted C2,α–
spaces through a Lipschitz boundary, so that the extension is of the same regu-
larity as the original function. We follow the methods of Stein [251, Chapter 6],
with modification owing to the fact that we extend the functions that belong to
the weighted and scaled C2,α–spaces and require the continuity of the extension
operator with respect to the changes of the boundary in the sense described
below.

Let a > 0 and g ∈ C0,1([0, a]) with g(s) > 0 on (0, a). Let

Ωa∞ = (0, a)× (0,∞),

Ωag = {x = (x1, x2) ∈ Ωa∞ : 0 < x2 < g(x1)},
Γag = {(x1, g(x1)) : 0 < x1 < a},
Σ0
g = ∂Ωag ∩ {x1 = 0} ≡ {(0, x2) : 0 ≤ x2 ≤ g(a)},

Σag = ∂Ωag ∩ {x1 = a} ≡ {(a, x2) : 0 ≤ x2 ≤ g(a)}.

(13.9.1)

For real σ > 0, α ∈ (0, 1), and ε ∈ (0, 1) with ε < a, denote

‖u‖∗,(σ)
2,α,Ωag

:= ‖u‖(−1−α),Σag
2,α,Ωag∩{s>ε/10} + ‖u‖(σ),(par)

2,α,Ωag∩{s<ε}
, (13.9.2)

where the parabolic norms are with respect to {s = 0}.
Denote by C2,α

∗,σ (Ωag) the space:

C2,α
∗,σ (Ωag) :=

{
u ∈ C1(Ωag) ∩ C2(Ωag) : ‖u‖∗,(σ)

2,α,Ωag
<∞

}
.

Given u ∈ C2,α
∗,σ (Ωag), we wish to extend it to the larger domain Ωa(1+κ)g for

κ > 0, depending only on Lip[g], in such a way that the extended function,
denoted as E(a)(u), satisfies E(a)(u) ∈ C2,α

∗,σ (Ωa(1+κ)g) with the estimate of its

norm, and that the extension operator E(a) ≡ E(a)
g : Ωag 7→ Ωa(1+κ)g has some

continuity properties with respect to a and Γag .
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If g(·) ≥ c > 0 on [0, a], the extension into Ωa(1+κ)g can be continued to Ωa∞
with the same estimate in the weighted spaces by using a cutoff function in the
x2–variable. However, we cannot assume this lower bound below, in order to
allow in the case that g(0) = 0 in Chapter 17.

In order to define the extension, we first construct a regularized distance
function related to boundary Γag . Below, when no confusion arises, we write
(Ω∞,Ωg,Γg, E∗) for (Ωa∞,Ω

a
g ,Γ

a
g , E(a)).

13.9.1 Regularized distance

Given Ωag , we follow [185] to construct a regularized distance to Γag in Ωa∞ \Ωag .
This construction yields the continuity of the regularized distance with respect
to Γag .

Lemma 13.9.1. For each a > 0 and g ∈ C0,1([0, a]) satisfying

g > 0 on (0, a), (13.9.3)

there exists a function δg ∈ C∞(R2 \ Γag), the regularized distance, such that

(i) 1
2dist(x,Γ

a
g) ≤ δg(x) ≤ 3

2dist(x,Γ
a
g) for all x ∈ R2 \ Γag ;

(ii) |Dmδg(x)| ≤ C(m)
(
dist(x,Γag)

)1−m for all x ∈ R2 \ Γag and m = 1, 2, . . . ,
where C(m) depends only on m;

(iii) There exists c > 0 depending only on Lip[g] such that

δg(x) ≥ c
(
x2 − g(x1)

)
for all x = (x1, x2) ∈ Ωa∞ \ Ωag ;

(iv) If gi ∈ C0,1([0, ai]) and g ∈ C0,1([0, a]) satisfy (13.9.3) and

‖gi‖C0,1([0,ai]) ≤ L for all i,

and if ai → a and functions gi(aia x1) (defined on [0, a]) converge to g(x1)
uniformly on [0, a], then functions δgi(

ai
a x1, x2) converge to δg(x1, x2) in

Cm(K) for any m = 0, 1, 2, . . . , and any compact K ⊂ Ω∞ \ Ωg.

Proof. We divide the proof into four steps.

1. We define δg as follows: Let

dg(x) = dist(x,Γag) for x ∈ R2.

Let φ ∈ C∞(R2) be nonnegative with
∫
φ(x) dx = 1 and supp(φ) ⊂ B1(0).

Define
G(x, τ) =

∫

R2

dg(x−
τ

2
y)φ(y)dy. (13.9.4)
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Then, noting that |dg(x)− dg(x̂)| ≤ |x− x̂|, we have

|G(x, τ1)−G(x, τ2)| =
∣∣∣∣∣

∫

|y|≤1

(
dg(x−

τ1
2
y)− dg(x−

τ2
2
y)
)
φ(y)dy

∣∣∣∣∣

≤ 1

2
|τ1 − τ2|

∫

|y|≤1

|y|φ(y)dy

≤ 1

2
|τ1 − τ2|,

(13.9.5)

and similarly,

|G(x1, τ)−G(x2, τ)| =
∣∣∣∣∣

∫

|y|≤1

(
dg(x1 −

τ

2
y)− dg(x2 −

τ

2
y)
)
φ(y)dy

∣∣∣∣∣

≤ |x1 − x2|
∫

|y|≤1

φ(y)dy

≤ |x1 − x2|.

(13.9.6)

Now we define the regularized distance δg(x) at x ∈ R2 by the equation:

δg(x) = G(x, δg(x)). (13.9.7)

By (13.9.5) and the contraction mapping theorem, for each x ∈ R2, equation
(13.9.7) has a unique solution so that δg(x) is well-defined. Also, δg(·) ≥ 0,
since G(·) ≥ 0. Furthermore, since (13.9.4) yields that G(x, 0) = dg(x), (13.9.5)
(with τ1 = δg(x) and τ2 = 0) and (13.9.7) imply

|δg(x)− dg(x)| ≤ 1

2
δg(x),

which leads to assertion (i).
2. Writing G(x, τ) as

G(x, τ) =
4

τ2

∫

R2

dg(y)φ(
2(x− y)

τ
)dy,

we see that G ∈ C∞(R2 × (R \ {0})). In particular, from (13.9.5)–(13.9.6),

|∂τG| ≤
1

2
, |∂xG| ≤ 1 on R2 × (R \ {0}). (13.9.8)

Now (13.9.7) and the implicit function theorem imply

δg ∈ C∞(R2 \ Γag),

where we have used that, by assertion (i) proved above, δg(x) = 0 if and only
if x ∈ Γag . Furthermore, using that dg(·) ∈ C0,1(R2), we obtain that, for each
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k, l = 0, 1, . . . , with k + l ≥ 1 (we assume k > 0 below; Case l > 0 is similar),

∂kx1
∂lx2

G(x, τ) =
4

τ2

∫

R2

∂x1
dg(y) ∂k−1

x1
∂lx2

φ(
2(x− y)

τ
) dy

=
4C(k + l)

τk+l+1

∫

R2

∂x1
dg(y) ∂k−1

x1
∂lx2

φ(
2(x− y)

τ
) dy

=
C(k + l)

τk+l−1

∫

R2

∂x1
dg(x−

τ

2
y) ∂k−1

x1
∂lx2

φ(y)dy.

From this and a similar (but longer) calculation that also involves the τ -derivatives
of G, and using the fact that

|Ddg(·)| ≤ 1 a.e.,

we have

|Dm
x,τG(x, τ)| ≤ C(m)

τm−1
for m = 1, 2, . . . . (13.9.9)

Combining this with the first estimate in (13.9.8), differentiating (13.9.7), and
using the induction in m = 1, 2, . . . , we obtain assertion (ii).

3. We now prove assertion (iii). Denote L := Lip[g]. Using assertion (i), it
suffices to show that

dist(x,Γag) ≥ c
(
x2 − g(x1)

)
for all x = (x1, x2) ∈ Ωa∞ \ Ωag , (13.9.10)

where c = c(L). We show this as follows: Let x∗ = (x∗1, x
∗
2) ∈ Ωa∞ \ Ωag . Denote

by C the following cone:

C := {x ∈ R2 : x2 ≥ g(x∗1) + L|x1 − x∗1|}.

The Lipschitz property of g implies that g(x∗1) + L|x1 − x∗1| ≥ g(x1) for all
x1 ∈ [0, a] so that, for x ∈ C, x2 ≥ g(x1), which implies

C ∩ Ωa∞ ⊂ Ωa∞ \ Ωag .

Also, since x∗ ∈ Ωa∞ \Ωag , then x∗2 ≥ g(x∗1), which implies that x∗ ∈ C. It follows
that

dist(x∗,Γag) ≥ dist(x∗, ∂C).

By a simple geometric argument, dist(x∗, ∂C) =
x∗2−g(x

∗
1)√

1+L2
. This proves (13.9.10)

so that assertion (iii) follows.

4. Now we prove assertion (iv). If the curve segments Γagi correspond to
gi ∈ C0,1([0, ai]), the conditions on sequence {gi} imply that

dgi → dg uniformly in R2. (13.9.11)
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Indeed, let ε ∈ (0, a2 ), and let N = N(ε) be such that

|ai − a| < ε, |gi(
a

ai
x1)− g(x1)| < ε for all x1 ∈ [0, a], i ≥ N.

Let x ∈ R2 and i ≥ N , and let x̂ ∈ Γagi be such that dgi(x) = |x − x̂|. Then
x̂ = (x̂1, gi(x̂1)) for x̂1 ∈ [0, ai]. Let x̃ := ( aai x̂1, gi(

a
ai
x̂1)) so that x̃ ∈ Γag .

Noting that ai ≥ a− ε ≥ a
2 , we have

|x̂− x̃| ≤ ε
√(2

a

)2
+ 1.

Then

dg(x) ≤ |x− x̃| ≤ |x− x̂|+ |x̂− x̃| ≤ dgi(x) + ε

√(2

a

)2
+ 1,

that is, dg(x)−dgi(x) ≤ C(a)ε. The opposite inequality, dgi(x)−dg(x) ≤ C(a)ε,
is obtained by a similar argument, with the difference that x̂ ∈ Γag is first chosen
such that dg(x) = |x − x̂|, and then the corresponding point on Γagi is chosen.
Combining these estimates, we conclude (13.9.11).

Using (13.9.11), we obtain from (13.9.4) that Ggi → Gg pointwise on R2×R.
Combining this with the equi-Lipschitz property (13.9.8) for all Ggi , we see that
Ggi → Gg uniformly on compact subsets of R2 × R and

Ĝgi → Gg uniformly on compact subsets of R2 × R,

where Ĝgi(x, τ) = Ggi(
ai
a x1, x2, τ). Also, from (13.9.8), we find that, for all

sufficiently large i,

|∂τ Ĝgi | ≤
1

2
, |Dm

(x,τ)Ĝgi(x, τ)| ≤ C(m)

τm−1
for m = 1, 2, . . . on R2 × (R \ {0}).

Noting that, by (13.9.7), functions δ̂gi(x1, x2) := δgi(
ai
a x1, x2) satisfy

δ̂gi(x) = Ĝgi(x, δ̂gi(x)) for i ≥ N ,

we conclude the proof of assertion (iv).

13.9.2 The extension operator

In the construction of the extension operator, we will employ the regularized
distance function constructed above and the following cutoff function:

Lemma 13.9.2. There exists a function ψ ∈ C∞c (R) with supp(ψ) ⊂ [1, 2] such
that

∫ ∞

−∞
ψ(λ) dλ = 1,

∫ ∞

−∞
λmψ(λ) dλ = 0 for m = 1, 2. (13.9.12)
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Proof. We divide the proof into two steps.

1. We first construct a piecewise-constant function ψ̃ with supp(ψ̂) ⊂ (1, 2)
and satisfying (13.9.12).

Let k ∈ (1, 2
1
6 ) be determined below. Let

ψ̂1 = χ[k, k2], ψ̂2 = χ[k3, k4], ψ̂3 = χ[k5, k6],

where χ[a,b](·) is the characteristic function of [a, b]. Define

ψ̂ =
3∑

i=1

siψ̂i,

where constants si ∈ R, i = 1, 2, 3, will be defined so that ψ̂ satisfies (13.9.12).
Note that supp(ψ̂) ⊂ [k, k6] ⊂ (1, 2).

Function ψ̂ satisfies (13.9.12) if si, i = 1, 2, 3, satisfy the linear algebraic
system:

A




s1

s2

s3


 =




1
0
0


 , (13.9.13)

where matrix A = [aij ]
3
i,j=1 is defined by

aij =

∫ ∞

−∞
λi−1ψ̂j(λ) dλ =

∫ k2j

k2j−1

λi−1dλ =
ki(2j−1)

i
(ki − 1).

By calculation,

detA =
1

6
k14(k − 1)(k2 − 1)(k3 − 1)P (k),

where P (k) = k8 − 2k6 + 2k2 − 1. Since P (k) is a non-zero polynomial, then
there exists k0 ∈ (1, 2

1
6 ) such that P (k0) 6= 0, which implies that detA 6= 0 at

k0.
Fix such k0. Then we can determine si by solving system (13.9.13). Thus,

ψ̂ is defined and satisfies all the required conditions.

2. Now we modify ψ̂ to obtain a smooth function ψ with the properties
asserted. Let η ∈ C∞c (R) satisfies η ≥ 0, supp(η) ⊂ [−1, 1], and

∫∞
−∞ η(λ) dλ =

1. Let ηε(t) = 1
εη( tε ) for ε > 0. Define

ψ =
3∑

i=1

s
(ε)
i ψ

(ε)
i with ψ(ε)

i = ψ̂i ∗ ηε,

where constants ε > 0 and s(ε)
i , i = 1, 2, 3, will be determined below.
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Function ψ satisfies (13.9.12) if s(ε)
i , i = 1, 2, 3, satisfy the linear algebraic

system of form (13.9.13) with the same right-hand side, as in (13.9.13), and
matrix A(ε) = [a

(ε)
ij ]3i,j=1 defined by

a
(ε)
ij =

∫ ∞

−∞
λi−1ψ

(ε)
j (λ) dλ.

Since 0 ≤ ψ̂i ≤ 1, ψ(ε)
i → ψ̂i a.e. in R as ε → 0, and 0 ≤ ψ

(ε)
i ≤ 1 with

supp(ψ
(ε)
i ) ⊂ [1, 2] if ε is small. Thus, by the dominated convergence theorem,

a
(ε)
ij → aij as ε→ 0 so that, if ε > 0 is sufficiently small, detA(ε) 6= 0. Therefore,
s

(ε)
i , i = 1, 2, 3, can be determined from the linear algebraic system. Then
function ψ is well-defined and satisfies all the required properties.

Now, for domain Ωag defined by (13.9.1), we define the extension operator
E(a) ≡ E(a)

g : C2(Ωag ∪ Γag) 7→ C2(Ωa(1+κ)g). We use the regularized distance δg

from Lemma 13.9.3 and define δ∗g =
2

c
δg for c from Lemma 13.9.1(iii). Then

δ∗g(x) ≥ 2
(
x2 − g(x1)

)
in Ωa∞ \ Ωag .

Definition 13.9.3. For u ∈ C2(Ωag ∪ Γag), we define its extension E(a)
g (u) on

Ωa(1+κ)g, for κ defined below, by setting

E(a)
g (u)(x) =

{
u(x) for x ∈ Ωag ,∫∞
−∞ u(x1, x2 − λδ∗g(x))ψ(λ) dλ for x ∈ Ωa(1+κ)g \ Ωag .

(13.9.14)

We note that x2 − g(x1) ∈ (0, κg(x1)) for each x ∈ Ωa(1+κ)g \ Ωag .

Lemma 13.9.4. There exists κ ∈ (0, 1
3 ) depending only on Lip[g] such that

the integral on the right-hand side of (13.9.14) is well-defined: For each x =
(x1, x2) ∈ Ωa(1+κ)g \ Ωag ,

(x1, x2 − λδ∗g(x)) ∈ {x1} × [
g(x1)

3
, g(x1)− (x2 − g(x1))] b Ωag

for all λ ∈ supp(ψ).

Proof. Let x = (x1, x2) ∈ Ωa(1+κ)g \Ωag . Let λ ∈ supp(ψ). Since supp(ψ) ⊂ [1, 2],

x2 − λδ∗g(x) ≤ x2 − 2(x2 − g(x1)) = g(x1)− (x2 − g(x1)) < g(x1).

Also, using Lemma 13.9.1(i) and the inequality that dist(x,Γag) ≤ x2 − g(x1),
we have

δ∗g(x) =
2

c
δg(x) ≤ 3

c
dist(x,Γag) ≤ 3

c

(
x2 − g(x1)

)
.
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Then, since λ ∈ [1, 2], we estimate

x2 − λδ∗g(x) ≥ x2 −
6

c

(
x2 − g(x1)

)
≥ g(x1)− 6

c

(
x2 − g(x1)

)
≥ g(x1)

3
,

if x2 ≤ (1 + c
9 )g(x1). This completes the proof with κ = c

9 for c from Lemma
13.9.1(iii) depending only on Lip[g].

Now we prove the regularity of the extension.

Theorem 13.9.5. Let a > 0. Let g ∈ C0,1([0, a]) with g(s) > 0 on (0, a). Let
κ be from Lemma 13.9.4. Then the extension operator E(a) ≡ E(a)

g , introduced
in Definition 13.9.3, maps C2(Ωag ∪ Γag) into C2(Ωa(1+κ)g) with the following
properties: For any σ > 0 and α ∈ (0, 1),

(i) E(a) is a linear continuous operator from C2,α
∗,σ (Ωag) to C2,α

∗,σ (Ωa(1+κ)g);

(ii) There exists C depending only on (Lip[g], α, σ) such that

‖E(a)(u)‖∗,(σ)
2,α,Ωa

(1+κ)g
≤ C‖u‖∗,(σ)

2,α,Ωag

for all u ∈ C2,α
∗,σ (Ωag). Note that C is independent of a and ε in (13.9.2);

(iii) Let gi ∈ C0,1([0, ai]) and g ∈ C0,1([0, a]) satisfy (13.9.3) and

‖gi‖C0,1([0,ai]) ≤ L for all i,

and let ai → a and functions gi(aia x1) (defined on [0, a]) converge to g(x1)

uniformly on [0, a]. Then, if ui ∈ C2,α
∗,σ (Ωaigi ), u ∈ C

2,α
∗,σ (Ωag), and ui → u

uniformly on compact subsets of the open set Ωag , and if there exists M > 0

such that ‖ui‖∗,(σ)

2,α,Ω
ai
gi

≤M for all i, then

wi(x) := E(ai)
gi (ui)(

ai
a
x1, x2)→ E(a)

g (u)(x) in C2,β
∗,σ′(Ω

a
(1+ 1

2κ)g
)

for all β ∈ (0, α) and σ′ ∈ (0, σ), where we note that wi is defined on
Ωa

(1+ 1
2κ)g

for large i.

We start the proof of Theorem 13.9.5 by showing that operator E(a) deter-
mines the extension in the non-weighted C2,α–spaces. We also localize in x1:
For any b1, b2 ∈ [0, a] with b1 < b2, denote

Ωag(b1, b2) := Ωag ∩ {(x1, x2) ∈ R2 : b1 < x1 < b2},

and similarly define Γag(b1, b2) and (Ωag ∪Γag)(b1, b2). We note that the extension
operator E(a)

g in Definition 13.9.3 can be applied to u ∈ C2((Ωag ∪ Γag)(b1, b2))
and defines a function on Ωa(1+κ)g(b1, b2).
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Lemma 13.9.6. Let g and κ be as in Theorem 13.9.5. Then the extension
operator E(a) ≡ E(a)

g maps C2(Ωag ∪ Γag) into C2(Ωa(1+κ)g) with the following
properties: For any α ∈ (0, 1), there exists C depending only on (Lip[g], α) such
that, for any b1, b2 ∈ [0, a] with b1 < b2,

(i) E(a) is a linear continuous operator:

E(a) : C2,α(Ωag(b1, b2)) 7→ C2,α(Ωa(1+κ)g(b1, b2)).

(ii) For all u ∈ C2,α(Ωag(b1, b2)),

‖E(a)(u)‖2,α,Ωa
(1+κ)g

(b1,b2) ≤ C‖u‖2,α,Ωag(b1,b2).

More precisely,

‖E(a)(u)‖m,0,Ωa
(1+κ)g

(b1,b2) ≤ C‖u‖m,0,Ωag(b1,b2), m = 0, 1, 2, (13.9.15)

[E(a)(u)]2,α,Ωa
(1+κ)g

(b1,b2) ≤ C[u]2,α,Ωag(b1,b2). (13.9.16)

Note that C is independent of (a, b1, b2).

(iii) Let gi ∈ C0,1([0, ai]) and g ∈ C0,1([0, a]) satisfy (13.9.3) and

‖gi‖C0,1([0,ai]) ≤ L for all i,

and let ai → a and functions gi(aia x1) (defined on [0, a]) converge to g(x1)

uniformly on [0, a]. Then, if ui ∈ C2,α(Ωaigi (
ai
a b1,

ai
a b2)), u ∈ C2,α(Ωag(b1, b2)),

and ui → u uniformly on compact subsets of the open set Ωag(b1, b2), and if
there exist L,M > 0 such that Lip[gi] ≤ L and ‖ui‖2,α,Ωaigi (

ai
a b1,

ai
a b2) ≤ M

for all i, then

wi(x) := E(ai)
gi (ui)(

ai
a
x1, x2)→ E(a)

g (u)(x) in C2,β(Ωa
(1+ 1

2κ)g
)(b1, b2)

for all β ∈ (0, α), where we note that wi is defined on Ωa
(1+ 1

2κ)g
(b1, b2) for

large i.

Proof. We divide the proof into three steps.

1. Let u ∈ C2(Ωag ∪Γag). We show that E(a)
g (u) ∈ C2(Ωa(1+κ)g). We first note

that it follows from (13.9.14) that E(a)
g (u) is in C2 in the open set Ωa(1+κ)g \Ωag .

Indeed, the continuity of E(a)
g (u) follows directly from (13.9.14). Furthermore,

we obtain the explicit expressions of the first and second partial derivatives of
E(a)
g (u) by differentiating (13.9.14), and show that these expressions define the

continuous functions in Ωa(1+κ)g \Ωag . We show that only for Diju (the argument
for the first derivatives is similar). For x ∈ Ωa(1+κ)g \ Ωag ,

DijE(a)
g (u)(x) = I1 + I2 + I3 + I4, (13.9.17)
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where

I1 =

∫ ∞

−∞
Diju(x1, x2 − λδ∗g(x))ψ(λ) dλ,

I2 =

∫ ∞

−∞
Di2u(x1, x2 − λδ∗g(x))λDiδ

∗
g(x)ψ(λ) dλ

+

∫ ∞

−∞
Dj2u(x1, x2 − λδ∗g(x))λDjδ

∗
g(x)ψ(λ) dλ

=: I21 + I22,

I3 =

∫ ∞

−∞
D22u(x1, x2 − λδ∗g(x))λ2Diδ

∗
g(x)Djδ

∗
g(x)ψ(λ) dλ,

I4 =

∫ ∞

−∞
D2u(x1, x2 − λδ∗g(x))λDijδ

∗
g(x)ψ(λ) dλ.

(13.9.18)

Now the assumed regularity of u, and Lemmas 13.9.1(ii), 13.9.2, and 13.9.4
imply the continuity of Diju in Ωa(1+κ)g \ Ωag .

We now show that E(a)
g (u) and its first and second partial derivatives in

Ωa(1+κ)g \Ωag are continuous up to Γag , i.e., E(a)
g (u) ∈ C2(Ωa(1+κ)g \Ωag), and their

limits at Γag match with the corresponding limits of u and its partial derivatives
from Ωag . Again, we discuss the proof in detail only for the second derivatives.

Let x0 ∈ Γag . If x ∈ Ωa(1+κ)g \Ωag tends to x0, then δ∗g(x)→ 0 and |Dδ∗g(x)| ≤
C, by Lemma 13.9.1(ii). Thus, I1(x)→ Diju(x0), whereas (13.9.12) implies that
I2(x), I3(x)→ 0.

It remains to consider term I4. Note that I4 includes Dijδ
∗
g , which may blow

up near Γag by Lemma 13.9.1(ii). We rewrite I4 as follows: Since supp(ψ) ⊂ [1, 2],
we expand

ux2
(x1, x2 − λδ∗g) = ux2

(x1, x2 − δ∗g)

− (λ− 1)δ∗gux2x2(x1, x2 − δ∗g)− (λ− 1)δ∗gR(x, λ)

(13.9.19)

with δ∗g = δ∗g(x) and

R(x, λ) =

∫ 1

0

(
ux2x2

(x1, x2 − (1 + t(λ− 1))δ∗g(x))

− ux2x2(x1, x2 − δ∗g(x))
)
dt,

(13.9.20)

and substitute (13.9.19) into I4. Then, using (13.9.12) again, we find that the
first and second terms of (13.9.19) give the integrals that vanish. Thus, we have
shown that

I4 = (λ− 1)δ∗g(x)Dijδ
∗
g(x)

∫ ∞

−∞
R(x, λ)λψ(λ) dλ. (13.9.21)
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Now, to estimate I4, we note that Lemma 13.9.4, regularity u ∈ C2(Ωag ∪ Γag),
and the fact that x0 ∈ Γag with g(x0

1) > 0 imply that, for sufficiently small
ε(x0) > 0, there exists C such that

|R(x, λ)| ≤ C if x ∈ Ωag ∪ Γag , |x− x0| ≤ 1
C(ε) , and λ ∈ supp(ψ),

and
R(x, λ)→ 0 as x→ x0 for each λ ∈ supp(ψ).

Using that δ∗g(x)Dijδ
∗
g(x) is bounded by Lemma 13.9.1(ii), we see that limit

(13.9.21) is zero as x→ x0.
Thus, we have shown that

lim
x→x0,x∈Ωa

(1+κ)g
\Ωag

DijE(a)
g (u)(x) = lim

x→x0,x∈Ωag

Diju(x). (13.9.22)

Then E(a)
g (u) is in C2(Ωag ∪ Γag) ∪ C2(Ωa(1+κ)g \ Ωag), and the values of E(a)

g (u)
match with its first and second derivatives on the common boundary Γag of these
domains, where Γag is a Lipschitz graph. Then the standard argument (see, e.g.,
[251, page 186]) shows that E(a)

g (u) ∈ C2(Ωa(1+κ)g).

2. Now we prove assertions (i)–(ii). The linearity of operator E(a)
g follows

directly from its definition. Then (i) follows from the estimate in (ii), which we
now prove. We discuss only the estimates of second derivatives. In the argument
below, all the constants depend only on (Lip[g], α).

From (13.9.20),

sup
λ∈[1,2]

‖R(·, λ)‖0,0,(Ωa
(1+κ)g

\Ωag)(b1,b2) ≤ C‖u‖2,0,Ωag(b1,b2) for λ ∈ [1, 2].

Then (13.9.15) withm = 2 follows directly from (13.9.17)–(13.9.18) and (13.9.21)
by using Lemma 13.9.1(ii), especially noting that δ∗g(x)Dijδ

∗
g(x) is bounded.

3. Now we show (13.9.16). Let x, x̄ ∈ Ωa(1+κ)g(b1, b2). We need to prove that

|DijE(a)
g (u)(x)−DijE(a)

g (u)(x̄)| ≤ C[u]2,α,D|x− x̄|α. (13.9.23)

If x, x̄ ∈ Ωag(b1, b2), then DijE(a)
g (u) = Diju at these points, and the estimates

follow.
Thus, we need to consider only the case that

x ∈ (Ωa(1+κ)g \ Ωag)(b1, b2).

Denote by L the open segment connecting x to x̄. We consider three separate
cases:

(a) x̄ ∈ Ωag(b1, b2);

(b) x̄ ∈ (Ωa(1+κ)g \ Ωag)(b1, b2), min
x′∈L

(x′2 − g(x′1)) ≤ |x− x̄|;

(c) x̄ ∈ (Ωa(1+κ)g \ Ωag)(b1, b2), min
x′∈L

(x′2 − g(x′1)) > |x− x̄|.
(13.9.24)
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Cases (a)–(b) will follow from the estimate of |DijE(a)
g (u)(x)−DijE(a)

g (u)(x̄)|
when

x̄ ∈ Γag(b1, b2), L ⊂ (Ωa(1+κ)g \ Ωag)(b1, b2). (13.9.25)

Thus, we consider this case. Then δ∗g(x) ≤ C|x− x̄| and E(a)
g (u)(x̄) = u(x̄).

We use (13.9.17)–(13.9.18), (13.9.21), and the estimate of |I1(x)−Diju(x̄)|
and Im(x) for i, j = 1, 2, and m = 2, 3, 4.

From (13.9.25),
dist(x,Γag(b1, b2)) ≤ |x− x̄|. (13.9.26)

For brevity, we denote D := Ωag(b1, b2). Using (13.9.26), supp(ψ) ⊂ [1, 2],
and the first property in (13.9.12), we have

|I1(x)−Diju(x̄)|

=

∣∣∣∣
∫ ∞

−∞

(
Diju(x1, x2 − λδ∗g(x))−Diju(x̄)

)
ψ(λ) dλ

∣∣∣∣

≤ C[u]2,α,D
(
|x− x̄|α + (δg(x))α

)

≤ C[u]2,α,D|x− x̄|α.

(13.9.27)

Next we estimate the first integral in the expression of I2. We use (13.9.26) and
the orthogonality properties in (13.9.12) to obtain

|I21(x)|

= |Diδ
∗
g(x)|

∣∣∣∣
∫ ∞

−∞

(
Di2u(x1, x2 − λδ∗g(x))−Di2u(x)

)
λψ(λ) dλ

∣∣∣∣

≤ C[u]2,α,D(δg(x))α ≤ C[u]2,α,D|x− x̄|α. (13.9.28)

The estimates of I22(x) and I3(x) are similar.
To estimate I4(x), we use its expression (13.9.21) with the following estimate:

From (13.9.20), we obtain that, for λ ∈ [1, 2],

sup
λ∈[1,2]

‖R(·, λ)‖0,0,(Ωa
(1+κ)g

\Ωag)(b1,b2) ≤ C[u]2,α,D(δg(x))α. (13.9.29)

From this, Lemma 13.9.1(ii), and (13.9.26),

|I4(x)| ≤ C[u]2,α,D|x− x̄|α.

Thus, (13.9.23) is proved when (13.9.25) holds.
Now we show

Claim 13.9.7. Given that (13.9.23) is true when (13.9.25) holds, then (13.9.23)
holds for Cases (a)–(b) of (13.9.24).
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We first consider Case (a) of (13.9.24). Then there exists x̂ ∈ L ∩ Γag(b1, b2)

such that the open segment connecting x to x̂ lies within (Ωa(1+κ)g \Ωag)(b1, b2).

We can apply (13.9.23) for (x, x̂) and use DijE(a)
g (u)(x̂) = Diju(x̂) by (13.9.22)

so that

|DijE(a)
g (u)(x)−DijE(a)

g (u)(x̄)|
≤ |DijE(a)

g (u)(x)−DijE(a)
g (u)(x̂)|+ |Diju(x̂)−Diju(x̄)|

≤ C[u]2,α,D|x− x̄|α.
Thus, (13.9.23) is proved for Case (a).

Next, we consider Case (b) of (13.9.24). Then there are two cases: Either L
intersects Γag or it does not.

If L intersects Γag , there exists x(1),x(2) ∈ L ∩ Γag(b1, b2) such that the open
segments connecting x to x(1) and x̄ to x(2) lie within (Ωa(1+κ)g\Ωag)(b1, b2). Then
|x − x(1)| + |x(1) − x(2)| + |x(2) − x̄| = |x − x̄|, and we can apply (13.9.23) for
both (x,x(1)) and (x̄,x(2)), and use DijE(a)

g (u)(x(k)) = Diju(x(k)) for k = 1, 2,
to complete estimate (13.9.23) similarly to Case (a).

If L does not intersect Γag , let x̂ = (x̂1, x̂2) ∈ L be such that

x̂2 − g(x̂1) = min
x′∈L
{x′2 − g(x′1)}. (13.9.30)

The conditions of Case (b) in (13.9.24) imply that L ⊂ (Ωa(1+κ)g \Ωag)(b1, b2), so
that x̂2−g(x̂1) > 0. Denote ŷ := (x̂1, g(x̂1)). Then ŷ ∈ Γag(b1, b2), and the open
segments connecting x to ŷ and x̄ to ŷ lie in (Ωa(1+κ)g \ Ωag)(b1, b2); otherwise,
(13.9.30) would be violated. Thus, we can apply (13.9.23) for both (x, ŷ) and
(x̄, ŷ). Also, using the conditions of Case (b), we have

|x− ŷ| ≤ |x− x̂|+ |x̂− ŷ| = |x− x̂|+ |x̂2 − g(x̂1)| ≤ 2|x− x̄|,
and similarly, |x̄− ŷ| ≤ 2|x− x̄|. Then

|DijE(a)
g (u)(x)−DijE(a)

g (u)(x̄)|
≤ |DijE(a)

g (u)(x)−DijE(a)
g (u)(ŷ)|+ |DijE(a)

g (u)(ŷ)−DijE(a)
g (u)(x̄)|

≤ C[u]2,α,D|x− x̄|α.
Now (13.9.23) is proved for Case (b). Claim 13.9.7 is proved.

4. We consider Case (c) of (13.9.24). Using Lemma 13.9.1(iii), we obtain
that, for Case (c),

|x− x̄| ≤ C(Lip[g]) min
x′∈L

δg(x
′). (13.9.31)

Notice that, for any x(1),x(2) ∈ L, letting y(2) ∈ Γag(b1, b2) be such that |x(2) −
y(2)| = dist(x(2),Γag(b1, b2)), we have

dist(x(1),Γag(b1, b2)) ≤ |x(1) − y(2)| ≤ |x(1) − x(2)|+ |x(2) − ȳ(2)|
≤ |x̄− x|+ dist(x(2),Γag(b1, b2)) ≤ Cδg(x(2)),
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where we have used (13.9.31) and Lemma 13.9.1(i) in the last estimate. There-
fore, we obtain the existence of C(Lip[g]) such that, for Case (c),

δg(x
(1)) ≤ Cδg(x(2)) for all x(1),x(2) ∈ L. (13.9.32)

We use (13.9.17)–(13.9.18), (13.9.21), and the estimate of |Im(x) − Im(x̄)|
for m = 1, 2, 3, 4, to obtain

|I1(x)− I1(x̄)|

=

∣∣∣∣
∫ ∞

−∞

(
Diju(x1, x2 − λδ∗g(x))−Diju(x̄1, x̄2 − λδ∗g(x̄))

)
ψ(λ) dλ

∣∣∣∣

≤ C[u]2,α,D
(
|x− x̄|α + |δg(x)− δg(x̄)|α

)
≤ C[u]2,α,D|x− x̄|α, (13.9.33)

where we have used Lemma 13.9.1(ii) in the last estimate.
Next we estimate the difference quotient for I2. We discuss only the first

term in I2:
I21(x)− I21(x̄) = J21 + J22, (13.9.34)

where

J21 = Diδ
∗
g(x)

∫ ∞

−∞

(
Di2u(x1, x2 − λδ∗g(x))−Di2u(x̄1, x̄2 − λδ∗g(x̄))

)
λψ(λ) dλ,

J22 =
(
Diδ

∗
g(x)−Diδ

∗
g(x̄)

) ∫ ∞

−∞
Di2u(x̄1, x̄2 − λδ∗g(x̄))λψ(λ) dλ.

Then J21 is estimated similarly to |I1(x)−I1(x̄)|. Now we estimate J22 by using
the orthogonality properties in (13.9.12):

J22 =
(
Diδ

∗
g(x)−Diδ

∗
g(x̄)

) ∫ ∞

−∞

(
Di2u(x̄1, x̄2 − λδ∗g(x̄))−Di2u(x̄)

)
λψ(λ) dλ,

(13.9.35)

so that, from (13.9.31)–(13.9.32),

|J22| ≤ C
|x− x̄|

infx′∈L δ(x′)
[u]2,α,D(δg(x̄))α ≤ C[u]2,α,D|x− x̄|α. (13.9.36)

This completes the estimate of |I21(x)−I21(x̄)|. Then |I3(x)−I3(x̄)| is estimated
similarly.

Finally, we estimate

I4(x)− I4(x̄) = J41 + J42,

where

J41 = (λ− 1)Dijδ
∗
g(x)

∫ ∞

−∞

(
R(x, λ)−R(x̄, λ)

)
λψ(λ) dλ,

J42 = (λ− 1)
(
Dijδ

∗
g(x)−Dijδ

∗
g(x̄)

) ∫ ∞

−∞
R(x̄, λ)λψ(λ) dλ.
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From (13.9.20), for λ ∈ [1, 2],

|R(x, λ)−R(x̄, λ)|
≤ Cδg(x)

(∣∣ux2x2(x1, x2 − (1 + t(λ− 1))δ∗g(x))− ux2x2(x̄1, x̄2 − λδ∗g(x̄))
∣∣

+
∣∣ux2x2(x1, x2 − δ∗g(x))− ux2x2(x̄1, x̄2 − δ∗g(x̄))

∣∣)

≤ C
(
δg(x)|x− x̄|α + (δg(x))α|x− x̄|

)
.

With this, term J41 is estimated similarly to J22 in (13.9.36). To estimate J42,
we employ (13.9.29) and the fact that

|δ∗g(x)−Dijδ
∗
g(x̄)| ≤ C

infx′∈L(δ(x′))2
|x− x̄|,

and then follow the argument for (13.9.36). Now (13.9.16) is proved.
5. It remains to show assertion (iii). Since ‖ui‖2,α,Ωaigi (

ai
a b1,

ai
a b2) ≤M for all

i, then, using the estimate of assertion (ii) for E(ai)
gi (ui), i = 1, 2, . . . , and the

convergence of (ai, gi) to (a, g) in the sense described in (iii), it follows that,
for all sufficiently large i, functions wi(x) := E(ai)

gi (ui)(
ai
a x1, x2) are defined on

Ωa
(1+ 1

2κ)g
(b1, b2) and satisfy

‖wi‖2,α,Ωa
(1+ 1

2
κ)g

(b1,b2) ≤ C‖ui‖2,α,Ωaigi (
ai
a b1,

ai
a b2) ≤ CM.

Then, if β < α, it follows that, from every subsequence of wi, we can extract a
further subsequence that converges in C2,β(Ωa

(1+ 1
2κ)g

)(b1, b2). Thus, it remains

to prove that the limit in C2,β(Ωa
(1+ 1

2κ)g
)(b1, b2) of each of such sequences is u,

for which it suffices to show that

wi(x)→ u(x) for all x ∈ Ωa(1+ 1
2κ)g(b1, b2) \ Γag . (13.9.37)

If x = (x1, x2) ∈ Ωag(b1, b2), (aia x1, x2) ∈ Ωaigi (
ai
a b1,

ai
a b2) for all sufficiently

large i. Thus, the uniform convergence ui → u on compact subsets of the open
set Ωag(b1, b2), combined with ai → a, implies wi(x) = ui(

ai
a x1, x2)→ u(x).

Now let x = (x1, x2) ∈ (Ωa
(1+ 1

2κ)g
\Ωag)(b1, b2). Then (aia x1, x2) ∈ (Ωa(1+κ)gi

\
Ωaigi )(

ai
a b1,

ai
a b2) for all sufficiently large i so that

wi(x) = E(ai)
gi (ui)(

ai
a
x1, x2)

=

∫ ∞

−∞
ui(

ai
a
x1, x2 − λδ∗gi(

ai
a
x1, x2))ψ(λ) dλ.

(13.9.38)

Then, using Lemma 13.9.4 and the convergence: (ai, gi) → (a, g) given in (iii),
it follows that there exists a compact set K(x) ⊂ Ωag such that

(
ai
a
x1, x2 − λδ∗gi(

ai
a
x1, x2)) ⊂ K(x) for all λ ∈ supp(ψ)
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for all sufficiently large i. It also follows that K(x) ⊂ Ωaigi for all large i. Then,
using the uniform convergence: ui → u on K(x) and Lemma 13.9.1(iv), we find
that the integrands of (13.9.38) converge to the integrand of (13.9.14) for each
λ ∈ R as i → ∞. Also, the uniform estimates on ui, Lemma 13.9.1(i), and
supp(ψ) ∈ [1, 2] imply that the integrands of (13.9.38) are uniformly bounded
on [1, 2], and the integration is actually over [1, 2]. Therefore, by the domi-
nated convergence theorem, the integrals in (13.9.38) converge to the integral
in (13.9.14). Now (13.9.37) is proved.

This completes the proof.

Proof of Theorem 13.9.5. The fact that E(a)
g is linear and maps C2(Ωag ∪

Γag) into C2(Ωa(1+κ)g) follows from Lemma 13.9.6. It only remains to prove
assertions (ii)–(iii). Then assertion (i) follows from (ii).

We focus first on assertion (ii). For this, we need to show that the estimates
for the extension operator, proved in Lemma 13.9.6 in the C2,α–norms, can be
proved for the weighted norms in (13.9.2). We divide the proof into four steps.

1. We first prove the estimate:

‖E(a)(u)‖(−1−α),Σa(1+κ)g

2,α,Ωa
(1+κ)g

∩{s> ε
10}
≤ C‖u‖(−1−α),Σag

2,α,Ωag∩{s> ε
10}
. (13.9.39)

We note that, from the structure of Ωag in (13.9.1), it follows that, for any
x ∈ Ωag ,

dist(x,Σag) ≥ a− x1 ≥
dist(x,Σag)√
1 + (Lip[g])2

.

Thus, in definition (4.1.5) of ‖ · ‖(−1−α),Σag
2,α,Ωag∩{s> ε

10}
(resp. ‖ · ‖(−1−α),Σa(1+κ)g

2,α,Ωa
(1+κ)g

∩{s> ε
10}

),

we can replace δx := dist(x,Σag) (resp. δx := dist(x,Σa(1+κ)g)) by δx := a − x1

in both cases – this will change C in (13.9.39) by a multiplicative constant
depending only on (Lip[g], α). With δx = a − x1, we see from (4.1.5) that
u ∈ C(−1−α),Σag

2,α,Ωag∩{s>ε/10} if and only if there exists a constant M such that, using
the notations in Lemma 13.9.6, for any b1, b2 ∈ ( ε10 , a) with b1 < b2, the following
estimates hold:

‖u‖1,0,Ωag(b1,b2) ≤M, ‖u‖2,0,Ωag(b1,b2) ≤M(a− b2)α−1,

‖u‖2,α,Ωag(b1,b2) ≤M(a− b2)−1.

Moreover, if such a constant M exists, ‖u‖(−1−α),Σag
2,α,Ωag∩{s> ε

10}
≤ CM , where C is

a uniform constant (actually, C = 9). Now (13.9.39) follows directly from
(13.9.15)–(13.9.16).

2. Now we show the estimate:

‖E(a)(u)‖(σ),(par)
2,α,Ωa

(1+κ)g
∩{s<ε} ≤ C‖u‖

(σ),(par)
2,α,Ωag∩{s<ε}

. (13.9.40)
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From (4.6.2), it follows that u ∈ C2,α
σ,(par)(Ω

a
g ∩ {s < ε}) if and only if there

exists M such that, for any x, x̄ ∈ Ωag ∩ {s < ε} and i, j = 1, 2,

|u(x)| ≤Mxσ1 , |Diu(x)| ≤Mx
d1(i)
1 , (13.9.41)

|Diju(x)| ≤Mx
d2(i+j)
1 , (13.9.42)

|Diju(x)−Diju(x̄)| ≤Mx
d3(i+j)
1 δ(par)

α (x, x̄), (13.9.43)

where

d1(k) = σ +
k − 3

2
, d2(k) = σ +

k

2
− 3, d3(k) = σ +

k

2
− 3− α, (13.9.44)

and δ(par)
α (·) is defined by (4.6.1). Moreover, if such M exists, then

‖u‖(σ),(par)
2,α,Ωag∩{s<ε}

≤ CM,

where C is uniform (actually, C = 9).
To prove estimate (13.9.40), we show that E(a)(u) satisfies estimates

(13.9.41)–(13.9.43) with M = C‖u‖(σ),(par)
2,α,Ωag∩{s<ε}

in domain Ωa(1+κ)g ∩ {s < ε},
where C depends only on (Lip[g], α, σ). In order to obtain these estimates, we
repeat the estimates of Lemma 13.9.6, with the changes due to the fact that
u satisfies (13.9.41)–(13.9.43) in Ωag ∩ {s < ε} and that the weighted distances
δ

(par)
1 (x, x̄) and δ

(par)
α (x, x̄) = (δ

(par)
1 (x, x̄))α are used instead of the standard

distance |x − x̄| in (13.9.43). Below we sketch the argument and give some
details for the estimates of several typical terms.

Similarly to Lemma 13.9.6, we discuss only the estimates of the second
derivatives, since the other terms are similar and simpler. We will write Ωag(ε)
for Ωag ∩{s < ε} and define Γag(ε), (Ωag ∪ Γag)(ε), and (Ωa(1+κ)g \ Ωag)(ε) similarly.

We first show (13.9.42) for E(a)(u) in Ωa(1+κ)g(ε), which is

|DijE(a)(u)(x)| ≤Mx
d2(i+j)
1 for all x ∈ Ωa(1+κ)g(ε). (13.9.45)

Since this estimate holds in Ωag(ε) by the assumption for this theorem, it suf-
fices to consider x ∈ (Ωa(1+κ)g \ Ωag)(ε). Then, in order to show (13.9.45), we
use (13.9.17)–(13.9.18), and expression (13.9.21) of I4. We also note that, for
DijE(a)

g (u), these expressions involve (Diju,Di2u,Dj2u,D22u,D2u), and that
d2(·) in (13.9.44) is monotone increasing so that, using x1 ∈ (0, ε) and ε < 1,

x
d2(2+2)
1 ≤ max(x

d2(i+2)
1 , x

d2(j+2)
1 ) ≤ xd2(i+j)

1 . (13.9.46)

In particular, by (13.9.20) and estimate (13.9.43) for u in Ωag(ε), the estimate of
R(x, λ) in (13.9.21) is

sup
λ∈[1,2]

‖R(·, λ)‖
0,0,Ωa

(1+κ)g
\Ωag(ε)

≤ Cxd2(2+2)
1 [u]

σ,(par)
2,0,Ωag(ε) ≤ Cx

d2(i+j)
1 ‖u‖σ,(par)

2,α,Ωag(ε),
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which implies the estimate of I4 by the right-hand side of (13.9.45). The esti-
mates of I1, I2, and I3 are obtained similarly. Now (13.9.45) follows.

3. Now we show (13.9.43) for E(a)(u) in Ωa(1+κ)g(ε), which is

|DijE(a)(u)(x)−DijE(a)(u)(x̄)| ≤Mx
d3(i+j)
1 δ(par)

α (x, x̄) (13.9.47)

for all x, x̄ ∈ Ωa(1+κ)g(ε).

We first note some basic properties of the weighted distance δ(par)
1 in (4.6.1),

which follow directly from its definition by a simple argument: Let x = (x1, x2),
x̂ = (x̂1, x̂2), and x̄ = (x̄1, x̄2) with x1, x̂1, x̄1 ∈ (0, 1), and let L(x, x̂) be the
open segment connecting x to x̂. Then

δ
(par)
1 (x(1),x(2)) ≤ δ(par)

1 (x, x̂) for all x(1),x(2) ∈ L(x, x̂);

δ
(par)
1 ((x1, x2 + b), (x̂1, x̂2 + b̂))

≤
√

2
(
δ

(par)
1 (x, x̂) +

√
max(x1, x̂1)|b− b̂|

)
;

δ
(par)
1 (x, x̂) ≥

√
|x1||x− x̂|;

δ
(par)
1 (x, x̂) =

√
|x1||x2 − x̂2| if x1 = x̂1;

δ
(par)
1 (x, x̂) ≤ δ(par)

1 (x, x̄) + δ
(par)
1 (x̄, x̂) if x̂1 = x̄1.

(13.9.48)

We note that, in the proof of the first of the above properties, we have used that

max(x
(1)
1 , x

(2)
1 ) ≤ max(x1, x̂1) if x(1),x(2) ∈ L(x, x̂).

Properties (13.9.48), combined with the parabolic estimates (13.9.43) of u in
Ωag(ε), allow us to obtain a proof of (13.9.47) by following the proof of (13.9.23)
in Lemma 13.9.6 with just notational changes. Some details are the following:

Estimate (13.9.47) follows from the assumption on u if x, x̄ ∈ Ωag(ε). Then
it suffices to consider

x ∈ (Ωa(1+κ)g \ Ωag)(ε).

Similarly to Cases (13.9.24) in the proof of Lemma 13.9.6, we consider sep-
arately the cases:

(a) x̄ ∈ (Ωag ∪ Γag)(ε),

(b) x̄ ∈ Ωa(1+κ)g(ε) \ Ωag(ε), min
x′∈L

(x′2 − g(x′1)) ≤ |x− x̄|,

(c) x̄ ∈ Ωa(1+κ)g(ε) \ Ωag(ε), min
x′∈L

(x′2 − g(x′1)) > |x− x̄|,
(13.9.49)

where L denotes the open segment connecting x to x̄.
Cases (a)–(b) follow from estimate (13.9.47) when

x̄ ∈ Γag(ε), L ⊂ Ωa(1+κ)g(ε) \ Ωag(ε). (13.9.50)
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The proof of this fact repeats the proof of Claim 13.9.7 by using properties
(13.9.48) of the weighted distance.

Now we show that (13.9.47) holds under conditions (13.9.50).
In the estimates below, similarly to the estimate of (13.9.45), we use the

fact that, in expression (13.9.17)–(13.9.18) with (13.9.21) for I4, DijE(a)
g (u) is

expressed through (Diju,Di2u,Dj2u,D22), and that (13.9.46) holds for d3(·).
Thus, the weights in all of the terms are estimated by xd3(i+j)

1 , as needed for
(13.9.47).

From (13.9.50),

√
x1 dist(x,Γag(ε)) ≤ √x1|x− x̄| ≤ δ(par)

1 (x, x̄). (13.9.51)

We estimate |I1(x)−Diju(x̄)| and Im(x) for m = 2, 3, 4.
To estimate |I1(x) − Diju(x̄)|, we use its expression in (13.9.27). From

(13.9.43), (13.9.48), and (13.9.51), we obtain that, for λ ∈ [1, 2],

∣∣u(x1, x2 − λδ∗g(x))−Diju(x̄)
∣∣

≤ C[u]
(σ),(par)
2,α,Ωag(ε)x

d3(i+j)
1

(
δ

(par)
1 (x, x̄) +

√
x1δg(x)

)α

≤ C[u]
(σ),(par)
2,α,Ωag(ε)x

d3(i+j)
1

(
δ

(par)
1 (x, x̄)

)α
.

Using estimate (13.9.27), we obtain the estimate of |I1(x) − Diju(x̄)| by the
right-hand side of (13.9.47).

Next we estimate |I21(x)| by using its expression in (13.9.28). For that, we
first estimate for λ ∈ [1, 2]:

∣∣Di2u(x1, x2 − λδ∗g(x))−Di2u(x)
∣∣

≤ C[u]
(σ),(par)
2,α,Ωag(ε)x

d3(i+2)
1

(√
x1δg(x)

)α ≤ C[u]
(σ),(par)
2,α,Ωag(ε)x

d3(i+j)
1

(
δ

(par)
1 (x, x̄)

)α
.

Inserting this estimate into (13.9.28), we obtain the estimate of |I21(x)| by the
right-hand side of (13.9.47).

Modifying similarly the estimates of the remaining terms in Step 3 of the
proof of Lemma 13.9.6, we conclude the proof of (13.9.47) under conditions
(13.9.50), hence for Cases (a)–(b) of (13.9.49).

It remains to show (13.9.47) under condition (c) in (13.9.49). We follow the
argument in Step 4 of the proof of Lemma 13.9.6 by modifying the case of the
weighted distances and parabolic norms. We continue to use (13.9.48).

From (13.9.31),

δ
(par)
1 (x, x̄) ≤ C(Lip[g])

√
max(x1, x̄1)δg(x

′) for all x′ ∈ L. (13.9.52)

We need to estimate |Im(x)− Im(x̄)| for m = 1, 2, 3, 4.
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First consider m = 1. We use the expression of |I1(x) − I1(x̄)| in (13.9.33)
and first estimate:

∣∣Diju(x1, x2 − λδ∗g(x))−Diju(x̄1, x̄2 − λδ∗g(x̄))
∣∣

≤ C[u]
(σ),(par)
2,α,Ωag(ε)x

d3(i+j)
1

(
δ

(par)
1 (x, x̄) +

√
max(x1, x̄1)|δg(x)− δg(x̄)|

)α

≤ C[u]
(σ),(par)
2,α,Ωag(ε)x

d3(i+j)
1

(
δ

(par)
1 (x, x̄) +

√
max(x1, x̄1)|x− x̄|

)α

≤ C[u]
(σ),(par)
2,α,Ωag(ε)x

d3(i+j)
1

(
δ

(par)
1 (x, x̄)

)α
.

Inserting this estimate into (13.9.33), we obtain the estimate of |I1(x)− I1(x̄)|
by the right-hand side of (13.9.47).

Next we estimate |I21(x)− I21(x̄)| expressed as (13.9.34). Term J21 is esti-
mated as |I1(x) − I1(x̄)| above. Thus, we estimate J22 by using its expression
in (13.9.35). Since

∣∣Di2u(x̄1, x̄2 − λδ∗g(x̄))−Di2u(x̄1, x̄2))
∣∣

≤ C[u]
(σ),(par)
2,α,Ωag(ε)x

d3(i+2)
1

(√
x1δg(x)

)α
,

then, using (13.9.31)–(13.9.32), we have

|J22| ≤ C
|x− x̄|

infx′∈L δ(x′)
[u]

(σ),(par)
2,α,Ωag(ε)x

d3(i+2)
1

(√
x1δg(x)

)α

≤ C[u]
(σ),(par)
2,α,Ωag(ε)x

d3(i+j)
1 (

√
x1|x− x̄|)α

≤ C[u]
(σ),(par)
2,α,Ωag(ε)x

d3(i+j)
1

(
δ

(par)
1 (x, x̄)

)α
,

that is, J22 is bounded by the right-hand side of (13.9.47). This completes the
estimate of |I2(x)− I2(x̄)|.

The remaining terms (i.e., |Im(x) − Im(x̄)| for m = 3, 4) are estimated
by following the argument in Step 4 of the proof of Lemma 13.9.6 with the
modifications similar to those done above.

This completes the proof of (13.9.47), as well as the proof of (13.9.40). Com-
bined with (13.9.39), this completes the proof of assertion (ii) of Theorem 13.9.5.
Then assertion (i) also follows.

4. It remains to prove assertion (iii) of Theorem 13.9.5. From its condition,
it follows that, for each b1, b2 ∈ (0, a) with b1 < b2, we have

‖ui‖2,α,Ωaigi (
ai
a b1,

ai
a b2) ≤M(b1, b2) for all i.

Then, from Lemma 13.9.6(iii), we conclude that, for each (b1, b2) as above,

wi → E(a)
g (u) in C2,α2 (Ωa

(1+ 1
2κ)g

)(b1, b2).

In particular, wi → E(a)
g (u) pointwise in Ωa

(1+ 1
2κ)g

.
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Since ‖ui‖∗,(σ)

2,α,Ω
ai
gi

≤ M for all i, then, using the estimate of assertion (ii)

of Theorem 13.9.5 for E(ai)
gi (ui), i = 1, 2, . . . , and the convergence of (ai, gi)

to (a, g) in the sense described in (iii), we find that, for all sufficiently large i,
functions wi(x1, x2) := E(ai)

gi (ui)(
ai
a x1, x2) are defined on Ωa

(1+ 1
2κ)g

and satisfy

‖wi‖∗,(σ)
2,α,Ωa

(1+ 1
2
κ)g

≤ C‖ui‖∗,(σ)

2,α,Ω
ai
gi

≤ CM.

Then, if β < α, it follows that, from every subsequence of wi, we can extract
a further subsequence that converges in C2,β

∗,σ′(Ω
a
(1+ 1

2κ)g
). Combining with the

pointwise convergence in Ωa
(1+ 1

2κ)g
of the whole sequence wi to E(a)

g (u), we con-
clude the proof of assertion (iii). Theorem 13.9.5 is proved.

We also note that, from Step 1 of the proof of Theorem 13.9.5, we obtain from
Definition 13.9.3 that E(a) also extends the functions in spaces C

(−1−α),Σ0
g∪Σag

2,α,Ωag

defined by norms (4.1.5).

Theorem 13.9.8. Let a > 0. Let g ∈ C0,1([0, a]) with g(s) > 0 on (0, a). Let
κ be the constant in Lemma 13.9.4. Then the extension operator E(a) ≡ E(a)

g ,
introduced in Definition 13.9.3, maps C2(Ωag ∪ Γag) into C2(Ωa(1+κ)g) with the
following properties for any α ∈ (0, 1):

(i) E(a) is a linear continuous operator:

E(a) : C
(−1−α),Σ0

g∪Σag
2,α,Ωag

7→ C
(−1−α),Σ0

(1+κ)g∪Σa(1+κ)g

2,α,Ωa
(1+κ)g

;

(ii) There exists C depending only on (Lip[g], α, σ) such that

‖E(a)(u)‖(−1−α),Σ0
(1+κ)g∪Σa(1+κ)g

2,α,Ωa
(1+κ)g

≤ C‖u‖(−1−α),Σ0
g∪Σag

2,α,Ωag

for any u ∈ C(−1−α),Σ0
g∪Σag

2,α,Ωag
, where C is independent of a;

(iii) If (u,Du) = (0,0) on Σ0
g, then (E(a)(u), DE(a)(u)) = (0,0) on Σ0

(1+κ)g;

(iv) Let gi ∈ C0,1([0, ai]) and g ∈ C0,1([0, a]) satisfy (13.9.3) and

‖gi‖C0,1([0,ai]) ≤ L for all i,

and let ai → a and functions gi(aia x1) (defined on [0, a]) converge to g(x1)

uniformly on [0, a]. If ui ∈ C
(−1−α),Σ0

gi
∪Σ

ai
gi

2,α,Ω
ai
gi

, u ∈ C
(−1−α),Σ0

g∪Σag
2,α,Ωag

, and
ui → u uniformly on compact subsets of the open set Ωag , and if there exist

L,M > 0 such that Lip[gi] ≤ L and ‖ui‖
(−1−α),Σ0

gi
∪Σ

ai
gi

2,α,Ω
ai
gi

≤M for all i, then

wi(x) := E(ai)
gi (ui)(

ai
a
x1, x2)→ E(a)

g (u)(x) in C
(−1−β),Σ0

g∪Σag
2,β,Ωa

(1+ 1
2
κ)g
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for any β ∈ (0, α) and σ′ ∈ (0, σ), where we note that wi is defined on
Ωa

(1+ 1
2κ)g

for large i.

Proof. We combine estimate (13.9.39) for space C
(−1−α),Σag
2,α,Ωag∩{x1>

a
4 }

with similar

estimates for space C
(−1−α),Σ0

g

2,α,Ωag∩{x1<3a/4}. This concludes (i) and (ii).

Fact (iii) follows directly from definition (13.9.14) of E(a)
g (u) since Σ0

g =

Ωag ∩ {x1 = 0}.
To prove (iv), we repeat the argument in Step 4 of the proof of Theorem

13.9.5, replacing spaces C2,α
∗,σ (Ωaigi ) by spaces C

(−1−α),Σ0
gi
∪Σ

ai
gi

2,α,Ω
ai
gi

.



Chapter Fourteen

Optimal Regularity of Solutions near the

Sonic Circle

As indicated in Theorems 2.6.3 and 2.6.5, the global solution ϕ constructed is
at least C1,1 near the pseudo-sonic circle Γsonic. More specifically, the solutions
constructed in the proofs of Theorems 2.6.3 and 2.6.5 are admissible solutions
of Problem 2.6.1, so that estimate (11.4.4) near Γsonic is satisfied. This gives
a weighted and scaled C2,α–regularity up to Γsonic, which implies the standard
C1,1–regularity of ϕ up to and across Γsonic. However, (11.4.4) does not imply
the standard C2,α–regularity of ψ up to Γsonic or across Γsonic. We study these
problems and present a complete proof of Theorem 2.6.6 in this chapter; also
see [4]. In particular, we show that, for any admissible solution ϕ of Problem
2.6.1, ϕ is not C2 across Γsonic, and the jump of the second derivative of ϕ across
Γsonic in the radial direction of its center is determined solely by the adiabatic
exponent, independent of the wedge angles θw ∈ (θs

w,
π
2 ). Furthermore, we show

the one-sided regularity that ϕ is C2,α in Ω up to Γsonic \ {P1}.

14.1 REGULARITY OF SOLUTIONS NEAR THE
DEGENERATE BOUNDARY FOR NONLINEAR
DEGENERATE ELLIPTIC EQUATIONS OF SECOND
ORDER

In order to study the regularity of solutions of Problem 2.6.1, we first study
the regularity of solutions near a degenerate boundary for a class of nonlinear
degenerate elliptic equations of second order.

Let ϕ be an admissible solution of Problem 2.6.1. We use the (x, y)–
coordinates (11.1.1)–(11.1.2) in a neighborhood Ω ∩ Nε(Γsonic) of Γsonic, where
ε is chosen small so that (11.1.3) holds. Then ψ = ϕ − ϕ2, written in the
(x, y)–coordinates, is a positive solution of equation (11.1.4) with (11.1.5) in
Ω∩Nε(Γsonic). Also, ψ satisfies (11.0.2)–(11.0.3) and, more precisely, (11.2.42).
Furthermore, ψ satisfies the estimates in (11.4.4). This, combined with (11.1.5),
implies that terms Ok(x, y) := Ok(Dψ(x, y), ψ(x, y), x) in equation (11.1.4)
satisfy estimates (14.1.5)–(14.1.6) below. This motivates the structure of the
equation considered in the rest of this section.
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14.1.1 Nonlinear degenerate elliptic equations and the regularity
theorem

We now study the regularity of positive solutions near the degenerate boundary
for the Dirichlet problem for the following class of nonlinear degenerate elliptic
equations with the form:

N1ψ := (2x− aψx +O1)ψxx +O2ψxy + (b+O3)ψyy − (1 +O4)ψx +O5ψy

= 0 in Q+
r,R, (14.1.1)

ψ > 0 in Q+
r,R, (14.1.2)

ψ = 0 on ∂Q+
r,R ∩ {x = 0}, (14.1.3)

where a, b > 0 are constants and, for r,R > 0,

Q+
r,R := {(x, y) : 0 < x < r, |y| < R} ⊂ R2, (14.1.4)

and terms Oi(x, y), i = 1, . . . , 5, are continuously differentiable and

|O1(x, y)|
x2

,
|Ok(x, y)|

x
≤ N for k = 2, . . . , 5, (14.1.5)

|DO1(x, y)|
x

, |DOk(x, y)| ≤ N for k = 2, . . . , 5, (14.1.6)

in {x > 0} for some constant N .
Conditions (14.1.5)–(14.1.6) imply that terms Oi, i = 1, · · · , 5, are small ;

the precise meaning of which can be seen in §14.2 for Problem 2.6.1 (also see
the estimates in §11.4). Thus, the main terms of equation (14.1.1) form the
following equation:

(2x− aψx)ψxx + bψyy − ψx = 0 in Q+
r,R. (14.1.7)

Equation (14.1.7) is elliptic with respect to ψ in {x > 0} if ψx < 2x
a . In this

chapter, we consider solutions ψ that satisfy

−Mx ≤ ψx ≤
2− β
a

x in Q+
r,R (14.1.8)

for some constants M ≥ 0 and β ∈ (0, 1). Then (14.1.7) is uniformly elliptic in
every subdomain {x > δ} with δ > 0. The same is true for equation (14.1.1) in
Q+
r,R if r is sufficiently small.

Remark 14.1.1. If r̂ is sufficiently small, depending only on (a, b,N), (14.1.5)–
(14.1.6) and (14.1.8) imply that equation (14.1.1) is uniformly elliptic with re-
spect to ψ in Q+

r̂,R∩{x > δ} for any δ ∈ (0, r̂2 ). We always assume such a choice
of r̂ hereafter.
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Let ψ ∈ C2(Q+
r̂,R) be a solution of (14.1.1) satisfying (14.1.8). Remark 14.1.1

implies that the interior regularity:

ψ ∈ C2,α(Q+
r̂,R) for any α ∈ (0, 1), (14.1.9)

follows first from the linear elliptic theory in two dimensions (cf. [131, Chapter
12]) to conclude the solution in C1,α which leads that the coefficient becomes
Cα, and then from the Schauder theory to obtain the C2,α–estimate (cf. [131,
Chapter 6]), where we have used the fact that Oi ∈ C1({x > 0}), i = 1, · · · , 5.
Therefore, we focus on the regularity of ψ near boundary {x = 0} ∩ ∂Q+

r̂,R,
where the ellipticity of (14.1.1) degenerates.

Theorem 14.1.2 (Regularity Theorem). Let a, b,M,N,R > 0 and β ∈ (0, 1
4 )

be constants. Let ψ ∈ C(Q+
r̂,R) ∩ C2(Q+

r̂,R) satisfy (14.1.2)–(14.1.3), (14.1.8),

and equation (14.1.1) in Q+
r̂,R with Oi = Oi(x, y) satisfying Oi ∈ C1(Q+

r̂,R) and
(14.1.5)–(14.1.6). Then

ψ ∈ C2,α(Q+
r̂/2,R/2) for any α ∈ (0, 1),

with

ψxx(0, y) =
1

a
, ψxy(0, y) = ψyy(0, y) = 0 for any |y| < R

2 .

To prove Theorem 14.1.2, it suffices to show that, for any given α ∈ (0, 1),

ψ ∈ C2,α(Q+
r,R/2) for some r ∈ (0,

r̂

2
), (14.1.10)

since ψ belongs to C2,α(Q+
r̂/2,R/2 ∩ {x > r

2}) by (14.1.9).
Note that, by (14.1.2)–(14.1.3) and (14.1.8), it follows that

0 < ψ(x, y) ≤ 2− β
2a

x2 for any (x, y) ∈ Q+
r̂,R. (14.1.11)

The essential part of the proof of Theorem 14.1.2 is to show that, if a solution
ψ satisfies (14.1.11), then, for any given α ∈ (0, 1), there exists r ∈ (0, r̂2 ] such
that

|ψ(x, y)− 1

2a
x2| ≤ Cx2+α for any (x, y) ∈ Q+

r,7R/8. (14.1.12)

Notice that, although ψ(0) ≡ 0 is a solution of (14.1.1), it satisfies neither
(14.1.12) nor the conclusion that ψ(0)

xx (0, y) = 1
a of Theorem 14.1.2. Therefore,

it is necessary to improve first the lower bound of ψ in (14.1.11) to separate our
solution from the trivial solution ψ(0) ≡ 0.
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14.1.2 Quadratic lower bound of ψ

By Remark 14.1.1, equation (14.1.1) is strictly elliptic with respect to ψ inside
Q+
r̂,R. Thus, our idea is to construct a positive subsolution of (14.1.1), which

provides our desired lower bound of ψ.

Proposition 14.1.3. Let ψ satisfy the assumptions of Theorem 14.1.2. Then
there exist r ∈ (0, r̂2 ] and µ > 0, depending only on infQ+

r̂,R∩{x>r̂/2}
ψ and

(a, b,N,R, r̂, β), such that

ψ(x, y) ≥ µx2 on Q+
r,15R/16.

Proof. In this proof, all the constants below depend only on the data, i.e.,
(a, b,M,N,R, r̂, β) and infQ+

r̂,R∩{x>r̂/2}
ψ, unless otherwise specified.

Fix y0 with |y0| ≤ 15R
16 . We now prove that

ψ(x, y0) ≥ µx2 for x ∈ (0, r). (14.1.13)

We first note that, without loss of generality, we may assume that R = 2 and
y0 = 0. Otherwise, we set ψ̃(x, y) := ψ(x, y0 + R

32y) for any (x, y) ∈ Q+
r̂,2. Then

ψ̃ ∈ C(Q+
r̂,2) ∩ C2(Q+

r̂,2) satisfies equation (14.1.1) with (14.1.5) and conditions
(14.1.2)–(14.1.3) and (14.1.8) in Q+

r̂,2, with some modified constants (a, b,N, β)
and functions Oi, depending only on R and the corresponding quantities in the
original equation. Moreover,

inf
Q+
r̂,2∩{x>r̂/2}

ψ̃ = inf
Q+
r̂,R∩{x>r̂/2}

ψ.

Then (14.1.13) for ψ follows from (14.1.13) for ψ̃ with y0 = 0 and R = 2.
Therefore, we will keep the original notation with y0 = 0 and R = 2. Then it
suffices to prove

ψ(x, 0) ≥ µx2 for x ∈ (0, r). (14.1.14)

By Remark 14.1.1 and the Harnack inequality, we conclude that, for any
r ∈ (0, r̂2 ), there exists σ = σ(r) > 0, depending only on r, (a, b,N,R, r̂, β), and
infQ+

r̂,R∩{x>r̂/2}
ψ, such that

ψ ≥ σ on Q+
r̂,3/2 ∩ {x > r}. (14.1.15)

Let r ∈ (0, r̂2 ), k > 0, and

0 < µ ≤ σ(r)

r2
(14.1.16)

which will be chosen later. Set

w(x, y) := µx2(1− y2)− kxy2. (14.1.17)
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Then, using (14.1.15)–(14.1.16), we obtain that, for any x ∈ (0, r) and |y| < 1,




w(0, y) = 0 ≤ ψ(0, y),

w(r, y) ≤ µr2 ≤ ψ(r, y),

w(x,±1) = −kx ≤ 0 ≤ ψ(x,±1).

Therefore, we have
w ≤ ψ on ∂Q+

r,1. (14.1.18)

Next, we show that w is a strict subsolution N1w > 0 in Q+
r,1, if the param-

eters are chosen appropriately. In order to estimate N1w, we denote

A0 :=
k

µ
(14.1.19)

and notice that

wyy = −2x(µx+ k) = −2x(µx+ k)
(
(1− y2) + y2

)

= −2µx(1− y2)(x+A0)− 2ky2x
( x
A0

+ 1
)
.

Then, by a direct calculation and simplification, we obtain

N1w = 2µx(1−y2)I1 + ky2I2, (14.1.20)

where

I1 = 1−2µa(1−y2)−O4+
O1

x
−(x+A0)

(
b+O3 + yO5

)
− y(2x+A0)

x
O2,

I2 = (1+O4)+2µa(1−y2)−2x(
x

A0
+1)

(
b+O3 + yO5

)
−2y(

2x

A0
+1)O2.

Now we choose r and µ so that N1w ≥ 0 holds. Clearly, N1w ≥ 0 if I1, I2 ≥ 0.
By (14.1.5), we find that, in Q+

r,1,

I1 ≥ 1− 2µa− C0r − (b+N + C0r)A0,

I2 ≥ 1− C0r −
r

A0
C0r.

(14.1.21)

Choose r0 to satisfy the smallness assumptions stated above and

0 < r0 ≤ min{ 1

4C0
,
b+N

C0
,

1

8
√
C0(b+N)

,
r̂

2
}, (14.1.22)

where C0 is the constant in (14.1.21). For such a fixed r0, we choose µ0 to satisfy
(14.1.16) and

µ0 ≤
1

8a
, (14.1.23)
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and A0 to satisfy

4C0r
2
0 < A0 <

1

8(b+N)
, (14.1.24)

where we have used (14.1.22) to see that 4C0r
2
0 <

1
8(b+N) in (14.1.24). Then k

is defined from (14.1.19). From (14.1.21)–(14.1.24),

I1, I2 > 0,

which implies
N1w > 0 in Q+

r,1 (14.1.25)

whenever r ∈ (0, r0] and µ ∈ (0, µ0].
By (14.1.18), (14.1.25), Remark 14.1.1, and the comparison principle (Lemma

4.1.3), we have

ψ(x, y) ≥ w(x, y) = µx2(1− y2)− kxy2 in Q+
r,1.

In particular,
ψ(x, 0) ≥ µx2 for x ∈ [0, r]. (14.1.26)

This implies (14.1.14), hence (14.1.13). The proof is completed.

With Proposition 14.1.3, we now make the C2,α–estimate of ψ.

14.1.3 C2,α–estimate of ψ

If ψ satisfies (14.1.1)–(14.1.3) and (14.1.8), it is expected that ψ is very close to
x2

2a , which is a solution to (14.1.7). More precisely, we now prove (14.1.12). To
achieve this, we study the function:

W (x, y) :=
x2

2a
− ψ(x, y). (14.1.27)

By (14.1.1), W satisfies

N2W :=(x+aWx+O1)Wxx+O2Wxy+(b+O3)Wyy

−(2+O4)Wx+O5Wy =
O1 − xO4

a
in Q+

r̂,R,
(14.1.28)

W (0, y) = 0 on ∂Q+
r̂,R ∩ {x = 0}, (14.1.29)

− 1− β
a

x ≤Wx(x, y) ≤ (M +
1

a
)x in Q+

r̂,R. (14.1.30)

Lemma 14.1.4. Let (a, b,N,R, r̂, β) and Oi be as in Theorem 14.1.2. Let µ be
the constant determined in Proposition 14.1.3. Then there exist α1 ∈ (0, 1) and
r1 > 0 such that, if W ∈ C(Q+

r̂,R) ∩ C2(Q+
r̂,R) satisfies (14.1.28)–(14.1.30),

W (x, y) ≤ 1− µ1

2arα
x2+α in Q+

r,7R/8, (14.1.31)

whenever α ∈ (0, α1] and r ∈ (0, r1] with µ1 := min{2aµ, 1
2}.
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Proof. In the proof below, all the constants depend only on the data, i.e.,
(a, b,N, β,R, r̂) and infQ+

r̂,R∩{x>r̂/2}
ψ, unless otherwise specified.

By Proposition 14.1.3,

W (x, y) ≤ 1− µ1

2a
x2 in Q+

r0,15R/16, (14.1.32)

where r0 depends only on (a, b,N,R, r̂, β).
Fix y0 with |y0| ≤ 7R

8 . We now prove that

W (x, y0) ≤ 1− µ1

2arα
x2+α for x ∈ (0, r).

By a scaling argument similar to the one at the beginning of proof of Lemma
14.1.3, i.e., considering ψ̃(x, y) = ψ(x, y0 + R

32y) in Q+
r̂,2, we can assume without

loss of generality that y0 = 0 and R = 2. That is, it suffices to prove that

W (x, 0) ≤ 1− µ1

2arα
x2+α for x ∈ (0, r) (14.1.33)

for some r ∈ (0, r0) and α ∈ (0, α1), under the assumptions that (14.1.28)–
(14.1.30) hold in Q+

r̂,2 and (14.1.32) holds in Q+
r0,2

.
For any given r ∈ (0, r0), let

A1r
α =

1− µ1

2a
, B1 =

1− µ1

2a
, (14.1.34)

v(x, y) = A1x
2+α(1− y2) +B1x

2y2. (14.1.35)

Since (14.1.29) holds on ∂Q+
r̂,2 ∩{x = 0} and (14.1.32) holds in Q+

r0,2
, we obtain

that, for any x ∈ (0, r) and |y| ≤ 1,




v(0, y) = 0 = W (0, y),

v(r, y) =
(
A1r

α(1− y2) +B1y
2
)
r2 = 1−µ1

2a r2 ≥W (r, y),

v(x,±1) = B1x
2 = 1−µ1

2a x2 ≥W (x,±1).

Then we have
W ≤ v on ∂Q+

r,1. (14.1.36)

We now show that N2v < N2W in Q+
r,1. From (14.1.28),

N2v −N2W = N2v −
O1 − xO4

a
.

In order to rewrite the right-hand side in a convenient form, we write the term
of vyy in the expression of N2v as (1−y2)vyy+y2vyy and use similar expressions
for the terms of vxy and vy. Then a direct calculation yields

N2v −
O1 − xO4

a
= (2 + α)A1x

1+α(1− y2)J1 + 2B1xy
2J2,
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where

J1 = (1 + α)
(

1 + a
(
(2 + α)A1x

α(1− y2) + 2B1y
2
)

+
O1

x

)
− (2 +O4) + T1,

J2 = 1 + a
(
(2 + α)A1x

α(1− y2) + 2B1y
2
)

+
O1

x
− (2 +O4) + T2,

T1 =
1

(2 + α)A1x1+α

(
2x2(B1 −A1x

α)
(
(b+O3) +O5y

)

+ 2O2xy(2B1 − (2 + α)A1x
α)− O1 − xO4

a

)
,

T2 =
(2 + α)A1x

1+α

2B1x
T1.

Thus, in Q+
r,1,

N2v −N2W < 0 if J1, J2 < 0. (14.1.37)

By (14.1.5) and (14.1.34), we obtain

|T1|+ |T2| ≤ Cr1−α in Q+
r,1,

so that, in Q+
r,1,

J1 ≤ (1 + α)
(
1 +

2 + α

2
(1− µ1)

)
− 2 + Cr1−α, (14.1.38)

J2 ≤ 1 +
2 + α

2
(1− µ1)− 2 + Cr1−α. (14.1.39)

Choose α1 > 0 depending only on µ1 so that, when 0 < α ≤ α1,

(1 + α)
(

1 +
2 + α

2
(1− µ1)

)
− 2 ≤ −µ1

4
. (14.1.40)

Such a choice of α1 > 0 is possible because we have the strict inequality in
(14.1.40) when α = 0, and the left-hand side is an increasing function of α > 0
(where we have used 0 < µ1 ≤ 1

2 by reducing µ if necessary). Now, choosing
r1 > 0 so that

r1 < min
{( µ1

4C

) 1
1−α , r0

}
(14.1.41)

is satisfied, we use (14.1.38)–(14.1.40) to obtain

J1, J2 < 0 in Q+
r,1.

Then, by (14.1.37), we obtain

N2v < N2W in Q+
r,1 (14.1.42)

whenever r ∈ (0, r1] and α ∈ (0, α1]. By (14.1.36), (14.1.42), Remark 14.1.1,
and the standard comparison principle (Lemma 4.1.3), we obtain

W ≤ v in Q+
r,1. (14.1.43)

In particular, using (14.1.34)–(14.1.35) with y = 0, we obtain (14.1.33).
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Using Lemma 14.1.4, we now generalize the result in (14.1.31) for any α ∈
(0, 1).

Proposition 14.1.5. Let (a, b,N,R, r̂, β) and Oi be as in Theorem 14.1.2.
Then, for any α ∈ (0, 1), there exist positive constants r and A, depending
only on (a, b,N,R, r̂, β) and α, so that, if W ∈ C(Q+

r̂,R) ∩ C2(Q+
r̂,R) satisfies

(14.1.28)–(14.1.30),

W (x, y) ≤ Ax2+α in Q+
r,3R/4. (14.1.44)

Proof. As argued before, without loss of generality, we may assume that R = 2,
and it suffices to show that

W (x, 0) ≤ Ax2+α for x ∈ [0, r]. (14.1.45)

By Lemma 14.1.4, it suffices to prove (14.1.45) for α > α1. Fix any α ∈ (α1, 1),
and set the following comparison function:

u(x, y) =
1− µ1

2arα1
1 rα−α1

x2+α(1− y2) +
1− µ1

2arα1
1

x2+α1y2. (14.1.46)

By Lemma 14.1.4,

W ≤ u on ∂Q+
r,1 for r ∈ (0, r1]. (14.1.47)

As in the proof of Lemma 14.1.4, we write

L2u−
O1 − xO4

a
u

= (2 + α)
(1− µ1)x1+α

2arα1
1 rα−α1

(1− y2)Ĵ1 + (2 + α1)
(1− µ1)x1+α1

2arα1
1

y2Ĵ2,

where

D0 =
1− µ1

2

(
(1− y2)(2 + α)

(x
r

)α
+ y2(2 + α1)

(x
r

)α1
)
,

Ĵ1 = (1 + α)
(

1 +
( r
r1

)α1
D0

)
− 2 + T̂1,

Ĵ2 = (1 + α1)
(

1 +
( r
r1

)α1
D0

)
− 2 + T̂2,

T̂1 =
2arα1

1 rα−α1

(2 + α(1− µ1))x1+α

(
L2u−

(
(x+ aux)uxx − 2ux

)
− O1 − xO4

a

)
,

T̂2 =
2 + α(1− µ1)

(a+ α1)(1− µ)

(x
r

)α−α1

T̄1.

By (14.1.5), we have
|T̂1|+ |T̂2| ≤ Cr1−α1
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for some positive constant C depending only on (a, b,N, β, r1, α1). Thus, we
find that, for any (x, y) ∈ Q+

r,1,

max(Ĵ1, Ĵ2) ≤ (1 + α)
(

1 + (2 + α)
1− µ1

2

( r
r1

)α1
)
− 2 + Cr1−α1 . (14.1.48)

Choosing r > 0 sufficiently small, depending only on (r1, α, C), we obtain

L2u− L2W = L2u−
O1 − xO4

a
< 0 in Q+

r,1.

Then Lemma 4.1.3 implies that

W ≤ u in Q+
r,1.

Therefore, (14.1.45) holds with

A =
1− µ1

2arα1
1 rα−α1

.

Lemma 14.1.6. Let (a, b,N,R, r̂, β) and Oi be as in Theorem 14.1.2. Then
there exist r2 > 0 and α2 ∈ (0, 1) such that, for any W ∈ C(Q+

r̂,R) ∩ C2(Q+
r̂,R)

satisfying (14.1.28)–(14.1.30),

W (x, y) ≥ −1− β
2arα

x2+α in Q+
r,7R/8, (14.1.49)

whenever α ∈ (0, α2] and r ∈ (0, r2].

Proof. By (14.1.29)–(14.1.30), it can be easily verified that W (x, y) ≥ −1−β
2a x

2

in Q+
r̂,R. Now, similar to the proof of Lemma 14.1.4, it suffices to prove that,

with assumption R = 2,

W (x, 0) ≥ −1− β
2arα

x2+α for x ∈ (0, r)

for some r > 0 and α ∈ (0, α2).
For this, we use the comparison function:

v(x, y) := −Lx2+α(1− y2)−Kx2y2 with Lrα = K =
1− β

2a
.

Then we follow the same procedure as the proof of Lemma 14.1.4, except we
use that N2v > N2W , to find that the conditions for the choice of α, r > 0
are inequalities (14.1.40)–(14.1.41) with an appropriate constant C and (µ1, r1)
replaced by (β, r2).

Using Lemma 14.1.6, we now generalize the result in (14.1.49) for any α ∈
(0, 1).
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Proposition 14.1.7. Let (a, b,N,R, r̂, β) and Oi be as in Theorem 14.1.2.
Then, for any α ∈ (0, 1), there exist positive constants r and B depending
only on (a, b,N,R, r̂, β, α) so that, for any W ∈ C(Q+

r̂,R) ∩ C2(Q+
r̂,R) satisfying

(14.1.28)–(14.1.30),

W (x, y) ≥ −Bx2+α in Q+
r,3R/4. (14.1.50)

Proof. For fixed α ∈ (α2, 1), we set the comparison function:

u−(x, y) = − 1− β
2arα2

2 rα−α2
x2+α(1− y2)− 1− β

2arα2
2

x2+α2y2.

Then, using the argument as in the proof of Proposition 14.1.5, we can choose
r > 0 appropriately small so that

L2u− − L2W = L2u− −
O1 − xO4

a
> 0

holds for any (x, y) ∈ Q+
r,1.

With Propositions 14.1.5–14.1.7, we now prove Theorem 14.1.2.

14.1.4 Proof of Theorem 14.1.2

We divide the proof into four steps.
1. Let ψ be a solution of (14.1.1) in Q+

r̂,R for r̂ as in Remark 14.1.1, and
let the assumptions of Theorem 14.1.2 hold. Then ψ satisfies (14.1.9). Thus,
it suffices to show that, for any given α ∈ (0, 1), there exists r > 0 so that
ψ ∈ C2,α(Q+

r,R/2), and ψxx(0, y) = 1
a and ψxy(0, y) = ψyy(0, y) = 0 for any

|y| < R
2 .

LetW (x, y) be defined by (14.1.27). Then, in order to prove Theorem 14.1.2,
it suffices to show that, for any given α ∈ (0, 1), there exists r > 0 so that

(i) W ∈ C2,α(Q+
r,R/2);

(ii) D2W (0, y) = 0 for any |y| < R
2 .

2. By definition, W satisfies (14.1.28)–(14.1.30). For any given α ∈ (0, 1),
there exists r > 0 so that both (14.1.44) and (14.1.50) hold in Q+

r,3R/4, by
Propositions 14.1.5–14.1.7. Fix such r > 0.

Furthermore, since W satisfies estimate (14.1.30), we can introduce a cutoff
function into the nonlinear term of equation (14.1.28), i.e., modify the nonlinear
term away from the values determined by (14.1.30) to make the term bounded
in Wx

x . Namely, fix ζ ∈ C∞(R) satisfying

− 2−β
2a ≤ ζ ≤M + 2

a on R,
ζ(s) = s on

(
− 1−β

a ,M + 1
a

)
,

ζ ≡ 0 on R \
(
− 2−β

a , M + 4
a

)
.

(14.1.51)
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Then, from (14.1.28) and (14.1.30), it follows that W satisfies

x
(
1+aζ(

Wx

x
)+

O1

x

)
Wxx+O2Wxy+(b+O3)Wyy

− (2 +O4)Wx +O5Wy =
O1 − xO4

a
in Q+

r̂,R.

(14.1.52)

3. For z := (x, y) ∈ Q+
r/2,R/2, define

Rz :=
{

(s, t) : |s− x| < x

8
, |t− y| <

√
x

8

}
. (14.1.53)

Then
Rz ⊂ Q+

r,3R/4 for any z = (x, y) ∈ Q+
r/2,R/2. (14.1.54)

Fix z0 = (x0, y0) ∈ Q+
r/2,R/2. Rescale W in Rz0 by defining

W (z0)(S, T ) :=
1

x2+α
0

W (x0 +
x0

8
S, y0 +

√
x0

8
T ) for (S, T ) ∈ Q1, (14.1.55)

where Qh = (−h, h)2 for h > 0. Then, by (11.4.8), (14.1.44), and (14.1.50), we
have

‖W (z0)‖C0(Q1) ≤
1

arα
. (14.1.56)

Moreover, sinceW satisfies equation (14.1.28),W (z0) satisfies the following equa-
tion for (S, T ) ∈ Q1:

(1 +
S

8
)
(

1 + aζ(
8xα0W

(z0)
S

1 + S
8

) + Õ
(z0)
1

)
W

(z0)
SS + Õ

(z0)
2 W

(z0)
ST + (b+ Õ

(z0)
3 )W

(z0)
TT

− 1

8
(2 + Õ

(z0)
4 )W

(z0)
S +

1

8
Õ

(z0)
5 W

(z0)
T =

(1 + S
8 )

64axα0

(
Õ

(z0)
1 −Õ(z0)

4

)
,

(14.1.57)

where

Õ
(z0)
1 (S, T ) = 1

x0(1+S
8 )
O1(x, y), Õ

(z0)
2 (S, T ) = 1√

x0
O2(x, y),

(Õ
(z0)
3 , Õ

(z0)
4 )(S, T ) = (O3, O4)(x, y), Õ

(z0)
5 (S, T ) =

√
x0O5(x, y)

with x = x0(1 + S
8 ) and y = y0 +

√
x0

8 T . Then, from (14.1.5)–(14.1.6), we find
that, for any (S, T ) ∈ Q1 and z0 ∈ Q+

r/2,R/2 with r ≤ 1,

|Õ(z0)
k (S, T )| ≤ 2N

√
r for k = 1, . . . , 5,

|DÕ(z0)
k (S, T )| ≤ 2N

√
r for k 6= 2,

|DÕ(z0)
2 (S, T )| ≤ 2N.

(14.1.58)
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Also, denoting the right-hand side of (14.1.57) by F (z0)(S, T ), we obtain from
(14.1.58) that, for any (S, T ) ∈ Q1 and z0 ∈ Q+

r/2,R/2,

|F (z0)(S, T )| ≤ Cr1−α, |DF (z0)(S, T )| ≤ Cr 1
2−α, (14.1.59)

where C depends only on (N, a).
Now, writing equation (14.1.57) as

2∑

i,j=1

Aij(DW
(z0), S, T )DijW

(z0) +
2∑

i=1

Bi(S, T )DiW
(z0) = F (z0) in Q1,

(14.1.60)
we obtain from (14.1.51) and (14.1.57)–(14.1.59) that, if r > 0 is sufficiently
small, depending only on the data, then (14.1.60) is uniformly elliptic with el-
lipticity constants depending only on b, but independent of z0, and (Aij(p, S, T ),
Bi(S, T )) and F (z0)(S, T ) for p ∈ R2 and (S, T ) ∈ Q1 satisfy

‖Aij‖C1(R2×Q1) ≤ C, ‖(Bi,
F (z0)

r
1
2−α

)‖C1(Q1) ≤ C,

where C depends only on the data and is independent of z0. By Theorem 4.2.1
and (14.1.56), we have

‖W (z0)‖C2,α(Q1/2) ≤ C
(
‖W (z0)‖C0(Q1) + ‖F (z0)‖Cα(Q1)

)

≤ C
( 1

arα
+ r

1
2−α

)
=: Ĉ, (14.1.61)

where C depends only on the data and α in this case. From (14.1.61),

|Di
xD

j
yW (x0, y0)| ≤ Cx2+α−i− j2

0 (14.1.62)

for any (x0, y0) ∈ Q+
r/2,R/2 and 0 ≤ i+ j ≤ 2.

4. It remains to prove the Cα–continuity of D2W in Q+
r/2,R/2.

For two distinct points z1 = (x1, y1) and z2 = (x2, y2) ∈ Q+
r/2,R/2, consider

A :=
|Wxx(z1)−Wxx(z2)|

|z1 − z2|α
.

Without loss of generality, assume that x1 ≤ x2. Then there are two cases:
Case 1: z1 ∈ Rz2 . In this case,

x1 = x2 +
x2

8
S, y1 = y2 +

√
x2

8
T for some (S, T ) ∈ Q1.

By (14.1.61),
|W (z2)

SS (S, T )−W (z2)
SS (0)|

(S2 + T 2)
α
2

≤ Ĉ,
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which is
|Wxx(x1, y1)−Wxx(x2, y2)|
(
(x1 − x2)2 + x2(y1 − y2)2

)α
2
≤ Ĉ.

Since x2 ∈ (0, r) and r ≤ 1, the last estimate implies

|Wxx(x1, y1)−Wxx(x2, y2)|
(
(x1 − x2)2 + (y1 − y2)2

)α
2
≤ Ĉ.

Case 2: z1 /∈ Rz2 . Then either |x1 − x2| > x2

8 or |y1 − y2| >
√
x2

8 . Since
0 ≤ x2 ≤ r ≤ 1, we have

|z1 − z2|α ≥
(x2

8

)α
.

Using (14.1.62) and x1 ≤ x2, we obtain

|Wxx(z1)−Wxx(z2)|
|z1 − z2|α

≤ |Wxx(z1)|+ |Wxx(z2)|
|z1 − z2|α

≤ Ĉ x
α
1 + xα2
xα2

≤ 2Ĉ.

Thus, A ≤ 2Ĉ in both cases, where Ĉ depends on (α, r) and the data. Since
z1 6= z2 are arbitrary points of Q+

r/2,R/2, we obtain

[Wxx]
Cα(Q+

r/2,R/2
)
≤ 2Ĉ. (14.1.63)

The estimates for (Wxy,Wyy) can be obtained similarly. In fact, for these deriva-
tives, we obtain the stronger estimates: For any δ ∈ (0, r2 ],

[Wxy]
Cα(Q+

δ,R/2
)
≤ Ĉ
√
δ, [Wyy]

Cα(Q+
δ,R/2

)
≤ Ĉδ,

where Ĉ depends on (α, r) and the data, but is independent of δ > 0 and z0.
Therefore, W ∈ C2,α(Q+

r,R/2) with ‖W‖
C2,α(Q+

r,R/2
)
depending only on the

data, because r > 0 depends on the data. Moreover, (14.1.62) implies that
D2W (0, y) = 0 for any |y| ≤ R

2 . This concludes the proof of Theorem 14.1.2. 2

14.2 OPTIMAL REGULARITY OF SOLUTIONS ACROSS Γsonic

In this section, we apply the results in §14.1 to study the regularity of admissible
solutions (even a larger class of solutions) up to and across Γsonic. Specifically,
we prove that C1,1 is actually the optimal regularity of any solution ϕ across the
pseudo-sonic circle P1P4 in the class of admissible solutions of Problem 2.6.1.

In fact, we define a class of regular reflection-diffraction solutions, which
includes admissible solutions of Problem 2.6.1 but requires less conditions,
and prove the following three main results:

(i) There is no regular reflection-diffraction solution that is C2 across the
pseudo-sonic circle.
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Furthermore, for admissible solutions of Problem 2.6.1 or, more gener-
ally, for any regular reflection-diffraction solutions satisfying the conclusions of
Lemma 11.2.5, Proposition 11.2.8, and estimate (11.4.4), we show that

(ii) ϕ is C2,α in the pseudo-subsonic region Ω up to the pseudo-sonic cir-
cle P1P4, excluding endpoint P1, but D2ϕ has a jump across Γsonic := P1P4

depending only on the adiabatic exponent, independent of the wedge angles
θw ∈ (θs

w,
π
2 ).

(iii) In addition, D2ϕ does not have a limit at P1 from Ω.
In order to state these results, we first define the class of regular reflection-

diffraction solutions.

Definition 14.2.1. Let γ > 1 and ρ1 > ρ0 > 0 be constants. Let θw ∈ (θs
w,

π
2 ).

A function ϕ ∈ C0,1(Λ) is a regular reflection-diffraction solution if ϕ is a
solution of Problem 2.2.3 for the wedge angle θw, satisfying conditions (i)–
(iii) of Definition 8.1.1 and

ϕ ≥ ϕ2 on Γshock := P1P2. (14.2.1)

Remark 14.2.2. The admissible solutions of Problem 2.6.1 are regular
reflection-diffraction solutions. This can be seen directly from a comparison be-
tween Definitions 8.1.1 and 14.2.1, since (14.2.1) follows by Definition 8.1.1(iv).

Remark 14.2.3. We note that, when θw = π
2 , the regular reflection-diffraction

becomes the normal reflection, in which u2 = 0 and the solution is smooth across
the sonic circle of state (2); see §6.2. The condition, θw ∈ (0, π2 ), in Definition
14.2.1 rules out this case.

Remark 14.2.4. Since ϕ = ϕ1 on Γshock by (8.1.3), condition (14.2.1) of
Definition 14.2.1 is equivalent to

Γshock ⊂ {ϕ2 ≤ ϕ1},

that is, Γshock is below S1.

Furthermore, we have

Lemma 14.2.5. For any regular reflection-diffraction solution ϕ in the sense
of Definition 14.2.1,

ϕ > ϕ2 in Ω. (14.2.2)

Proof. By (2.2.8)–(2.2.9) and (2.4.1), ψ := ϕ− ϕ2 satisfies
(
c̃2 − (ψξ1 − ξ1 + u2)2

)
ψξ1ξ1 +

(
c̃2 − (ψξ2 − ξ2 + u2 tan θw)2

)
ψξ2ξ2

− 2(ψξ1 − ξ1 + u2)(ψξ2 − ξ2 + u2 tan θw)ψξ1ξ2 = 0 in Ω, (14.2.3)

where

c̃2(Dψ,ψ, ξ) = c22 + (γ − 1)
(

(ξ1 − u2)ψξ1 + (ξ2 − u2 tan θw)ψξ2 −
1

2
|Dψ|2 − ψ

)
.



OPTIMAL REGULARITY OF SOLUTIONS NEAR THE SONIC CIRCLE 601

We regard that the coefficients of (14.2.3) are computed on ψ as fixed, so that
(14.2.3) can be considered as a linear equation with respect to the second deriva-
tive of ψ.

Since equation (14.2.3) is elliptic and ϕ is smooth inside Ω, it follows that
(14.2.3) is uniformly elliptic in any compact subset of Ω. Furthermore, we have

ψ = 0 on Γsonic,

Dψ · (− sin θw, cos θw) = 0 on Γwedge,

ψξ2 = −u2 tan θw < 0 on ∂Ω ∩ {ξ2 = 0},
ψ ≥ 0 on Γshock (by Definition 4.1 (c)).

Then the strong maximum principle implies

ψ > 0 in Ω,

which is (14.2.2). This completes the proof.

Now we first show that any regular reflection-diffraction solution in our case
cannot be C2 across the pseudo-sonic circle Γsonic := P1P4.

Theorem 14.2.6. Let ϕ be a regular reflection-diffraction solution in the sense
of Definition 14.2.1. Then ϕ cannot be C2 across the pseudo-sonic circle Γsonic.

Proof. On the contrary, assume that ϕ is C2 across Γsonic. Then ψ = ϕ − ϕ2

is also C2 across Γsonic, where ϕ2 is given by (2.4.1). Moreover, since ψ ≡ 0 in
P0P1P4 by (8.1.3), we see that D2ψ(ξ) = 0 at any ξ ∈ Γsonic.

Furthermore, we use the (x, y)–coordinates (11.1.1)–(11.1.2) in a neighbor-
hood of Γsonic. Since ϕ is a regular reflection-diffraction solution, it follows that
(11.1.3) holds if ε is sufficiently small. Indeed, this follows from (8.1.3), since ϕ =
ϕ1 on P0P1P2 by the Rankine-Hugoniot conditions, and fromD(ϕ1−ϕ2)(P1) 6= 0
and the fact that segment P0P1 intersects with (but is not tangential to) circle
∂Bc2(O2) at P1, which holds by (6.1.4)–(6.1.5).

Moreover, ψ = ϕ−ϕ2 satisfies equation (11.1.4) with (11.1.5) in Ω∩Nε(Γsonic),
which is obtained by substituting ϕ = ψ + ϕ2 into equation (2.2.8) and writing
the resulting equation in the (x, y)–coordinates (11.1.2).

Let (0, y0) be a point in the relative interior of Γsonic. Then

(0, y0) +Q+
r,R ⊂ Ω ∩Nε(Γsonic) if r,R > 0 are sufficiently small.

By shifting the coordinates (x, y) 7→ (x, y − y0), we may assume that (0, y0) =
(0, 0) and Q+

r,R ⊂ Ω ∩ Nε(Γsonic). Note that the shifting coordinates in the
y–direction do not change the expressions in (11.1.5).

Since ψ ∈ C2((Ω ∩ Nε(Γsonic)) ∪ Γsonic) with (ψ,Dψ,D2ψ) ≡ 0 on Γsonic,
reducing r if necessary, we have

|Dψ| ≤ δx in Q+
r,R,
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where δ > 0 is so small that (14.1.8) holds in Ω ∩ Nε(Γsonic) with β = M = 1,
and that terms Oi defined by (11.1.5) satisfy (14.1.5)–(14.1.6) with M = 1.
Also, from Lemma 14.2.5, we obtain that ψ = ϕ− ϕ2 > 0 in Q+

r,R. Now we can
apply Proposition 14.1.3 to conclude

ψ(x, y) ≥ µx2 on Q+
r,15R/16

for some µ, r > 0. This is in contradiction to the fact that D2ψ(0, y) = 0 for all
y ∈ (−R,R), that is, D2ψ(ξ) = 0 at any ξ ∈ Γsonic.

In the following theorem, we study more detailed regularity of ψ near the
sonic circle Γsonic in the case of regular reflection-diffraction solutions with C1,1

near Γsonic, satisfying the additional assumptions (b)–(c) in Theorem 14.2.7 be-
low. Note that this class includes the admissible solutions, and hence includes
the solutions constructed in Theorems 2.6.3–2.6.5. In particular, assumptions
(a)–(c) in Theorem 14.2.7 are satisfied for the admissible solutions by Propo-
sition 11.4.6, Lemma 11.2.5, and Proposition 11.2.8 (combined with estimate
(11.4.5)).

Theorem 14.2.7. Let ϕ be a regular reflection-diffraction solution in the sense
of Definition 14.2.1 and satisfy the following properties:

(a) ϕ is C1,1 across the sonic circle Γsonic: There exists ε1 > 0 such that ϕ ∈
C1,1(P0P1P2P3 ∩ Nε1(Γsonic)), where Nε1(Γsonic) is an ε1–neighborhood of
Γsonic;

(b) There exists δ0 > 0 such that, in coordinates (11.1.2),

|∂x(ϕ− ϕ2)(x, y)| ≤ 2− δ0
γ + 1

x in Ωε0 ; (14.2.4)

(c) There exist ε1 ≥ ε0 > 0, ω > 0, and a function y = f̂(x) such that, for
Ωε0 := Ω ∩Nε1(Γsonic) ∩ {r > c2 − ε0} in coordinates (11.1.2),

Ωε0 = {(x, y) : 0 < x < ε0, 0 < y < f̂(x)},
Γshock ∩ ∂Ωε0 = {(x, y) : 0 < x < ε0, y = f̂(x)},

(14.2.5)

and

‖f̂‖C1,1([0, ε0]) <∞ ,
df̂

dx
≥ ω > 0 for 0 < x < ε0. (14.2.6)

Then we have

(i) ϕ is C2,α in Ω up to Γsonic away from point P1 for any α ∈ (0, 1). That
is, for any α ∈ (0, 1) and any given ξ0 ∈ Γsonic \ {P1}, there exists K <∞
depending only on (ρ0, ρ1, γ, ε0, α), ‖ϕ‖C1,1(Ωε0 ), and d = dist(ξ0, Γshock)
such that

‖ϕ‖
2,α;Bd/2(ξ0)∩Ωε0/2

≤ K;
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(ii) For any ξ0 ∈ Γsonic \ {P1},

lim
ξ→ξ0

ξ∈Ω

(Drrϕ−Drrϕ2) =
1

γ + 1
;

(iii) D2ϕ has a jump across Γsonic: For any ξ0 ∈ Γsonic \ {P1},

lim
ξ→ξ0

ξ∈Ω

Drrϕ − lim
ξ→ξ0

ξ∈Λ\Ω

Drrϕ =
1

γ + 1
;

(iv) The limit lim ξ→P1
ξ∈Ω

D2ϕ does not exist.

Proof. The proof consists of seven steps.
1. Let

ψ := ϕ− ϕ2.

By (8.1.3) and (14.2.5), we have

ψ(0, y) = ψx(0, y) = ψy(0, y) = 0 for any (0, y) ∈ Γsonic. (14.2.7)

Using (14.2.5)–(14.2.6), we have

|ψ(x, y)| ≤ Cx2, |D(x,y)ψ(x, y)| ≤ Cx for any (x, y) ∈ Ωε0 , (14.2.8)

where C depends only on ‖ψ‖C1,1(Ωε0 ) and ‖f̂‖C1([0, ε0]).
Recall that, in the (x, y)–coordinates (11.1.2), domain Ωε0 defined in prop-

erty (c) satisfies (14.2.5), and ψ(x, y) satisfies equation (14.1.1) with

Oi(x, y) = Oi(x, y, ψ(x, y), D(x,y)ψ(x, y))

given by (11.1.5). Then it follows from (11.1.5) and (14.2.8) that (14.1.5)–
(14.1.6) hold with N depending only on ε0, ‖ψ‖C1,1(Ωε0 ), and ‖f̂‖C1([0, ε0]).

2. Now, using (14.2.4) and reducing ε0 if necessary, we conclude that (14.1.1)
is uniformly elliptic on Ωε0 ∩ {x > δ} for any δ ∈ (0, ε0). Moreover, by (c),
equation (14.1.1) with (11.1.5), considered as a linear elliptic equation, has C1–
coefficients. Furthermore, since the boundary conditions (2.2.20) hold for ϕ and
ϕ2, especially on Γwedge = {y = 0}, it follows that, in the (x, y)–coordinates, we
have

ψy(x, 0) = 0 for any x ∈ (0, ε0). (14.2.9)

Then, by the standard regularity theory for the oblique derivative problem for
linear, uniformly elliptic equations, ψ is C2 in Ωε0 up to ∂Ωε0∩{0 < x < ε0, y =
0}. From this and (c), we have

ψ ∈ C1,1(Ωε0) ∩ C2(Ωε0 ∪ Γ
(ε0)
wedge), (14.2.10)



604 CHAPTER 14

where Γ
(ε0)
wedge := Γwedge ∩ ∂Ωε0 ≡ {(x, 0) : 0 < x < ε0}.

Reflecting Ωε0 with respect to the y–axis, i.e., using (14.2.5), we define

Ω̂ε0 := {(x, y) : 0 < x < ε0, −f̂(x) < y < f̂(x)}. (14.2.11)

Extend ψ(x, y) from Ωε0 to Ω̂ε0 by even reflection: ψ(x,−y) = ψ(x, y) for
(x, y) ∈ Ωε0 . Using (14.2.9)–(14.2.10), we conclude that the extended function
ψ(x, y) satisfies

ψ ∈ C1,1(Ω̂ε0) ∩ C2(Ω̂ε0). (14.2.12)

Now we use the explicit expressions (11.1.5) and (14.1.1) to find that, if
ψ(x, y) satisfies equation (14.1.1) with (11.1.5) in Ωε0 , ψ̃(x, y) := ψ(x,−y)
also satisfies (14.1.1) with Ok(Dψ̃, ψ̃, x) defined by (11.1.5) in Ωε0 . Thus, in
the extended domain Ω̂ε0 , the extended function ψ(x, y) satisfies (14.1.1) with
O1, . . . , O5 defined by the expressions in (11.1.5) in Ω̂ε0 .

Moreover, by (8.1.3), it follows that ψ = 0 on Γsonic. Thus, in the (x, y)–
coordinates, for the extended function ψ, we have

ψ(0, y) = 0 for any y ∈ (−f̂(0), f̂(0)). (14.2.13)

Also, using ϕ ≥ ϕ2 in Ω,

ψ(0, y) ≥ 0 in Ω̂ε0 . (14.2.14)

3. Let P = ξ∗ ∈ Γsonic \ {P1}. Then, in the (x, y)–coordinates, P =

(0, y∗) with y∗ ∈ [0, f̂(0)). Moreover, by (14.2.5)–(14.2.6) and (14.2.11), there
exist r > 0 and R > 0, depending only on ε0, c2 = c2(ρ0, ρ1, u1, θw), and d =
dist(ξ∗,Γshock), such that

(0, y∗) +Q+
r,R ⊂ Ω̂ε0 .

Then, in Q+
r,R, ψ̂(x, y) := ψ(x, y − y∗) satisfies all the conditions in Theorem

14.1.2. Applying Theorem 14.1.2 and expressing the results in terms of ψ, we
obtain that, for any y∗ ∈ [0, f̂(0)),

lim
(x,y)→(0,y∗)

(x,y)∈Ω

ψxx(x, y) =
1

γ + 1
, lim

(x,y)→(0,y∗)
(x,y)∈Ω

(ψxy, ψyy)(x, y) = (0, 0). (14.2.15)

Since ψrr = ψxx by (11.1.2), this implies assertions (i)–(ii).
Now assertion (iii) follows from (ii), since ϕ = ϕ2 in Bε(ξ

∗) \ Ω for small
ε > 0 by (8.1.3), and ϕ2 is a C∞–smooth function in R2.

4. It remains to show assertion (iv). We prove this by contradiction. Assume
that assertion (iv) is false, i.e., there exists a limit of D2ψ at P1 from Ω. Then
our strategy is to choose two different sequences of points converging to P1 and
show that the limits of ψxx along the two sequences are different, which leads to
a contradiction. We note that, in the (x, y)–coordinates, point P1 = (0, f̂(0)).
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5. A sequence close to Γsonic. Let {y(1)
m }∞m=1 be a sequence such that

y
(1)
m ∈ (0, f̂(0)) and limm→∞ y

(1)
m = f̂(0). By (14.2.15), there exists x(1)

m ∈
(0, 1

m ) such that

∣∣ψxx(x(1)
m , y(1)

m )− 1

γ + 1

∣∣+ |ψxy(x(1)
m , y(1)

m )|+ |ψyy(x(1)
m , y(1)

m )| < 1

m

for each m = 1, 2, 3, . . . . Using (14.2.6), we have

y(1)
m < f̂(0) ≤ f̂(x(1)

m ).

Then we employ (14.2.5) to obtain that (x
(1)
m , y

(1)
m ) ∈ Ω such that

lim
m→∞

(x(1)
m , y(1)

m ) = (0, f̂(0)),

lim
m→∞

ψxx(x(1)
m , y(1)

m ) =
1

γ + 1
,

lim
m→∞

(ψxy, ψyy)(x(1)
m , y(1)

m ) = (0, 0).

(14.2.16)

6. The Rankine-Hugoniot conditions on Γshock. In order to construct
another sequence, we first combine the Rankine-Hugoniot conditions on Γshock

into a condition with the following form:

Lemma 14.2.8. There exists ε ∈ (0, ε0) such that ψ satisfies

b̂1(x, y)ψx + b̂2(x, y)ψy + b̂3(x, y)ψ = 0 on Γshock ∩ {0 < x < ε}, (14.2.17)

where b̂k ∈ C(Γshock ∩ {0 ≤ x ≤ ε}) with

b̂1(x, y) ≥ λ, |b̂2(x, y)| ≤ 1

λ
, |b̂3(x, y)| ≤ 1

λ
on Γshock ∩ {0 < x < ε}

(14.2.18)
for some constant λ > 0.

Proof. To prove this, we first work in the ξ–coordinates. Since

ϕ = ϕ1, ρDϕ · ν = ρ1Dϕ1 · ν on Γshock,

ν is parallel to Dϕ1 −Dϕ so that

(ρ1Dϕ1 − ρDϕ) · (Dϕ1 −Dϕ) = 0 on Γshock. (14.2.19)

Since both ϕ and ϕ2 satisfy (2.2.8)–(2.2.9) and ψ := ϕ− ϕ2, we have

ρ = ρ(Dψ,ψ, ξ)

=
(
ργ−1

2 + (γ − 1)
(
(ξ − (u2, v2)) ·Dψ − 1

2
|Dψ|2 − ψ

)) 1
γ−1

,

c2 = c2(Dψ,ψ, ξ) = c22 + (γ − 1)
(

(ξ − (u2, v2)) ·Dψ − 1

2
|Dψ|2 − ψ

)
.

(14.2.20)
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Then, using (2.2.16)–(2.2.17) and ϕ = ϕ2 + ψ, we rewrite (14.2.19) as

E(Dψ,ψ, ξ) = 0 on Γshock, (14.2.21)

where, for (p, p0, ξ) ∈ R5,

E(p, p0, ξ)

= ρ1

(
(u1 − ξ1)(u1 − u2 − p1) + ξ2(v2 + p2)

)

+ρ(p, p0, ξ)
(
ξ − p− (u2, v2)

)
·
(
(u1 − u2,−v2)− p

)
, (14.2.22)

ρ(p, p0, ξ) =
(
ργ−1

2 + (γ − 1)
(
(ξ − (u2, v2)) · p− 1

2
|p|2 − p0

)) 1
γ−1

, (14.2.23)

with v2 := u2 tan θw.
Since points P0 and P1 both lie on S1 = {ϕ1 = ϕ2}, we have

(u1 − u2)(ξ1
1 − ξ0

1)− v2(ξ1
2 − ξ0

2) = 0,

where ξ1 are the coordinates of P1. Now, using the condition that ϕ = ϕ1 on
Γshock, i.e., ψ + ϕ2 = ϕ1 on Γshock, we have

ξ2 =
(u1 − u2)(ξ1 − ξ1

1)− ψ(ξ)

v2
+ ξ1

2 on Γshock. (14.2.24)

From (14.2.21) and (14.2.24), we conclude

F (Dψ,ψ, ξ1) = 0 on Γshock, (14.2.25)

where

F (p, p0, ξ1) = E(p, p0, ξ1,
(u1 − u2)(ξ1 − ξ1

1)− p0

v2
+ ξ1

2). (14.2.26)

Now, from (14.2.22)–(14.2.23), we obtain that, for any ξ1 ∈ R,

F (0, 0, ξ1) = E(0, 0, ξ1,
(u1 − u2)(ξ1 − ξ1

1)

v2
+ ξ1

2)

= ρ1

(
(u1 − ξ1

1)(u1 − u2) + v2ξ
1
2

)

− ρ2

(
(u2 − ξ1

1)(u1 − u2)− v2(v2 − ξ1
2)
)

=
(
ρ1Dϕ1(ξ1)− ρ2Dϕ2(ξ1)

)
· (u1 − u2, −v2)

= 0,

(14.2.27)

where the last expression is zero, since it represents the right-hand side of the
Rankine-Hugoniot condition (2.2.13) at point P1 of the reflected shock S1 =
{ϕ1 = ϕ2} separating state (2) from state (1).
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Now we write condition (14.2.25) in the (x, y)–coordinates on Γshock ∩ {0 <
x < ε0}. By (11.1.1)–(11.1.2) and (14.2.25), we have

Ψ(ψx, ψy, ψ, x, y) = 0 on Γshock ∩ {0 < x < ε0}, (14.2.28)

where

Ψ(p, p0, x, y) = F
(
− p1 cos(y + θw)− p2

c2 − x
sin(y + θw),

− p1 sin(y + θw) +
p2

c2 − x
cos(y + θw),

p0, u2 + (c2 − x) cos(y + θw)
)
.

(14.2.29)

From (14.2.27) and (14.2.29), we find that, on Γshock ∩ {0 < x < ε0},

Ψ(0, 0, x, y) = F (0, 0, u2 + (c2 − x) cos(y + θw)) = 0. (14.2.30)

By the explicit definitions in (14.2.22)–(14.2.23), (14.2.26), and (14.2.29), we
see that Ψ(p, p0, x, y) is C∞ on {|(p, p0, x)| < δ}, where δ > 0 depends only on
(u2, v2, ρ2, ξ

0), i.e., on the data. Using (14.2.8) and choosing ε > 0 small, we
have

|x|+ |ψ(x, y)|+ |(ψx, ψy)(x, y)| ≤ δ for any (x, y) ∈ Ωε.

Thus, from (14.2.28)–(14.2.30), it follows that ψ satisfies (14.2.17) on Γshock ∩
{0 < x < ε}, where

b̂k(x, y) =

∫ 1

0

Ψpk(tψx(x, y), tψy(x, y), tψ(x, y), x, y) dt for k = 0, 1, 2.

(14.2.31)
Then we obtain that, for k = 0, 1, 2,

b̂k ∈ C(Γshock ∩ {0 ≤ x ≤ ε}), |b̂k| ≤
1

λ
on Γshock ∩ {0 < x < ε},

for some λ > 0.
It remains to show that b̂1 ≥ λ for some λ > 0. For this, since b̂1 is defined

by (14.2.31), we first show that Ψp1(0, 0, 0, y1) > 0, where (x1, y1) = (0, f̂(0))
are the coordinates of P1.

Since (0, y1) are the (x, y)–coordinates of P1 = ξ1, then, by (11.1.1)–(11.1.2),

ξ1 = (ξ1
1 , ξ

1
2) = (u2 + c2 cos(y1 + θw), v2 + c2 sin(y1 + θw)),

which implies
(ξ1

1 − u2)2 + (ξ1
2 − v2)2 = c22.

Also, c22 = ργ−1
2 . Then, by an explicit calculation, we obtain

Ψp1
(0, 0, 0, y1) =

ρ1

c2

(
(u1 − ξ1

1)(ξ1
1 − u2)− ξ1

2(ξ1
2 − v2)

)

− ρ2

c2

(
(u2 − ξ1

1)(ξ1
1 − u2) + (v2 − ξ1

2)(ξ1
2 − v2)

)
.

(14.2.32)
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Now, working on the right-hand side in the ξ–coordinates and noting that
Dϕ1(ξ1) = (u1− ξ1

1 ,−ξ1
2) and Dϕ2(ξ1) = (u2− ξ1

1 , v2− ξ1
2), we rewrite (14.2.32)

as

Ψp1
(0, 0, y1) = − 1

c2

(
ρ1Dϕ1(ξ1)− ρ2Dϕ2(ξ1)

)
·Dϕ2(ξ1),

where D = (∂ξ1 , ∂ξ2). Since point P1 lies on shock S1 = {ϕ1 = ϕ2} separating
state (2) from state (1), then, denoting by τ 0 the unit vector along line S1, we
have

Dϕ1(ξ1) · τ 0 = Dϕ2(ξ1) · τ 0.

Now, using the Rankine-Hugoniot condition (2.2.13) for ϕ1 and ϕ2 at point P1,
we obtain

ρ1Dϕ1(ξ1)− ρ2Dϕ2(ξ1) = (ρ1 − ρ2)
(
Dϕ2(ξ1) · τ 0

)
τ 0

so that

Ψp1
(0, 0, 0, y1) =

1

c2
(ρ2 − ρ1)

(
Dϕ2(ξ1) · τ 0

)2
,

where ρ2 > ρ1 by the assumption of our theorem.
Thus, it remains to prove that Dϕ2(ξ1) · τ 0 6= 0. Note that

|Dϕ2(ξ1)| = c2 = ρ
(γ−1)/2
2 ,

since ξ1 is on the pseudo-sonic circle. Then, on the contrary, if Dϕ2(ξ1) ·τ 0 = 0,
we use Dϕ1(ξ1) · τ 0 = Dϕ2(ξ1) · τ 0 to write the Rankine-Hugoniot condition
(2.2.13) at ξ1 in the form:

ρ1|Dϕ1(ξ1)| = ρ2 ρ
(γ−1)/2
2 = ρ

(γ+1)/2
2 . (14.2.33)

Since both ϕ1 and ϕ2 satisfy (2.2.8), ϕ1(ξ1) = ϕ2(ξ1), and |Dϕ2(ξ1)| = c2, we
have

ργ−1
1 +

γ − 1

2
|Dϕ1(ξ1)|2 = ργ−1

2 +
γ − 1

2
ργ−1

2 .

Combining this with (14.2.33), we obtain

2

γ + 1

(
ρ1

ρ2

)γ−1

+
γ − 1

γ + 1

(
ρ2

ρ1

)2

= 1. (14.2.34)

Consider the function:

g(s) =
2

γ + 1
sγ−1 +

γ − 1

γ + 1
s−2 on (0,∞).

Since γ > 1, we have

g′(s) < 0 on (0, 1), g′(s) > 0 on (1,∞), g(1) = 1.
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Thus, g(s) = 1 only for s = 1. Therefore, (14.2.34) implies that ρ1 = ρ2, which
contradicts the assumption that ρ1 < ρ2 in our theorem. This implies that
Dϕ2(ξ1) · τ 0 6= 0, so that Ψp1

(0, 0, y1) > 0.
Choose λ := 1

2Ψp1
(0, 0, 0, y1). Then λ > 0. Since Ψ(p, p0, x, y) is C∞ on

{|(p, p0, x)| < δ} and, by (14.2.7), ψ ∈ C1,1(Ωε0) with ψ(0) = ψx(0) = ψy(0) =
0, we find that, for small ε > 0,

Ψp1
(tψx(x, y), tψy(x, y), tψ(x, y), x, y) ≥ λ

for any (x, y) ∈ Γshock ∩ {0 < x < ε} and t ∈ [0, 1]. Therefore, from (14.2.31),
we see that b̂1 ≥ λ. Lemma 14.2.8 is proved.

7. A sequence close to Γshock. Now we construct the sequence close to
Γshock. Since we have assumed that assertion (iv) is false, i.e., D2ψ has a limit
at P1 from Ω, then (14.2.16) implies

lim
(x,y)→(0, f̂(0))

(x,y)∈Ω

(ψxy, ψyy)(x, y) = (0, 0), (14.2.35)

where (0, f̂(0)) are the coordinates of P1 in the (x, y)–plane. Note that, from
(14.2.7),

ψy(x, f̂(x)) =

∫ x

0

ψxy(s, f̂(0))ds+

∫ f̂(x)

f̂(0)

ψyy(x, t)dt,

and, from (14.2.5), all the points in the paths of integration are within Ω. Fur-
thermore, by (14.2.6), 0 < f̂(x)− f̂(0) < Cx with C independent of x ∈ (0, ε0).
Now, (14.2.35) implies

lim
x→0+

ψy(x, f̂(x))

x
= 0. (14.2.36)

Also, by Lemma 14.2.8,

|ψx(x, f̂(x))| =
∣∣ b̂2ψy + b̂3ψ

b̂1

∣∣ ≤ C(|ψy|+ |ψ|) for x ∈ (0, ε),

where ε > 0 is from Lemma 14.2.8. Then, using (14.2.36) and |ψ(x, y)| ≤ Cx2

by (14.2.8), we have

lim
x→0+

ψx(x, f̂(x))

x
= 0. (14.2.37)

Let

F(x) := ψx(x, f̂(x)− ω

10
x) for some constant ω > 0.
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Then F(x) is well-defined and differentiable for 0 < x < ε0 so that

F(x) = ψx(x, f̂(x)− ω

10
x)

= ψx(x, f̂(x)) +

∫ 1

0

d

dt
ψx(x, f̂(x)− tω

10
x) dt

= ψx(x, f̂(x))− ω

10
x

∫ 1

0

ψxy(x, f̂(x)− tω

10
x) dt.

Now (14.2.35) and (14.2.37) imply

lim
x→0+

F(x)

x
= 0. (14.2.38)

Using (14.2.10) and f̂ ∈ C1,1([0, ε0]), we have

F ∈ C([0, ε]) ∩ C1((0, ε)). (14.2.39)

Then (14.2.38) and the mean-value theorem imply that there exists a sequence
{x(2)

k } with x
(2)
k ∈ (0, ε) and

lim
k→∞

x
(2)
k = 0, lim

k→∞
F ′(x(2)

k ) = 0. (14.2.40)

By the definition of F(x),

ψxx
(
x, g(x)

)
= F ′(x)− g′(x)ψxy(x, g(x)), (14.2.41)

where g(x) := f̂(x)− ω
10x.

On the other hand, |f̂ ′(x)| is bounded. Then, using (14.2.35) and (14.2.40)–
(14.2.41), we have

lim
k→∞

ψxx(x
(2)
k , g(x

(2)
k )) = lim

k→∞
F ′(x(2)

k ) = 0.

Note that limx→0+ g(x) = f̂(0). Denoting y(2)
k = g(x

(2)
k ), we conclude

(x
(2)
k , y

(2)
k ) ∈ Ω, lim

k→∞
(x

(2)
k , y

(2)
k ) = (0, f̂(0)), lim

k→∞
ψxx(x

(2)
k , y

(2)
k ) = 0.

Combining this with (14.2.16), we conclude that ψxx does not have a limit at
P1 from Ω, which implies assertion (iv). This completes the proof of Theorem
14.2.7.

Remark 14.2.9. For the isothermal case, γ = 1, there exists a global reg-
ular reflection-diffraction solution in the sense of Definition 14.2.1 when θw ∈
(θs

w,
π
2 ). Moreover, the solution has the same properties stated in Theorem 14.2.7
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with γ = 1. This can be verified by the limiting properties of the solutions for
the homentropic case when γ → 1+. This is because, when γ → 1+,

i(ρ)→ lnρ, p(ρ)→ ρ, c2(ρ)→ 1 in (1.2),

ρ(|Dϕ|2, ϕ)→ ρ0e
−(ϕ+ 1

2 |Dϕ|
2) in (2.2.9),

c∗(ϕ, ρ0, γ)→ 1 in (2.2.12).

In this case, the arguments for establishing Theorem 14.2.7 are even simpler.

Corollary 14.2.10. Let ϕ be an admissible solution of Problem 2.6.1. Then
the conclusions of Theorems 14.2.6–14.2.7 hold for ϕ.

Proof. It suffices to check that any admissible solution of Problem 2.6.1 sat-
isfies the conditions of Theorems 14.2.6–14.2.7.

By Remark 14.2.2, any admissible solution is a regular reflection-diffraction
solution. Then it remains to check whether any admissible solution satisfies
conditions (a)–(c) of Theorem 14.2.7.

Condition (a) of Theorem 14.2.7 holds for admissible solutions by (11.4.4),
condition (b) holds by Lemma 11.2.5, and condition (c) holds by Proposition
11.2.8 and (11.4.5).





Part IV

Subsonic Regular
Reflection-Diffraction

and Global Existence of Solutions
up to the Detachment Angle





Chapter Fifteen

Admissible Solutions and Uniform Estimates up to

the Detachment Angle

In the next chapters, Chapters 15–17, we prove Theorems 2.6.7–2.6.9, stated
in §2.6. To achieve this, we extend the argument in Chapters 8–13 to the
present case, where the solutions of both supersonic and subsonic reflection
configurations (cf. §2.4.2–§2.4.3) are presented.

In this chapter, we define admissible solutions and derive their estimates by
extending the estimates of Chapters 8–10 to the present case. An overview of
some steps of the argument has been given in §3.3.1–§3.3.4.

15.1 DEFINITION OF ADMISSIBLE SOLUTIONS FOR THE
SUPERSONIC AND SUBSONIC REFLECTIONS

In this section, we use the terminology and notations introduced in §7.5. In
particular, we use the notions of supersonic, sonic, and subsonic wedge angles;
see Definition 7.5.1.

We define the notion of admissible solutions for all the wedge angles θw ∈
(θd

w,
π
2 ). The definitions are separate for supersonic wedge angles when the

solutions are of the structure of supersonic reflection configuration as in §2.4.2
(see also Fig. 2.3), and for subsonic-sonic wedge angles when the solutions are
of the structure of subsonic reflection configuration as in §2.4.3 (see also Fig.
2.4). There is a continuity between these definitions through the sonic reflection
configuration.

Definition 15.1.1 (Admissible Solutions for the Supersonic Reflection). Let
γ > 1, ρ1 > ρ0 > 0, and u1 > 0 be constants. Fix a supersonic wedge angle
θw ∈ (θd

w,
π
2 ). A function ϕ ∈ C0,1(Λ) is called an admissible solution of the

regular shock reflection-diffraction problem if ϕ is a solution to Problem 2.6.1
and satisfies all the conditions of Definition 8.1.1.

Definition 15.1.2 (Admissible Solutions for the Subsonic Reflection). Let γ >
1, ρ1 > ρ0 > 0, and u1 > 0 be constants. Fix a subsonic or sonic wedge angle
θw ∈ (θd

w,
π
2 ). A function ϕ ∈ C0,1(Λ) is called an admissible solution of the

regular shock reflection-diffraction problem if ϕ is a solution to Problem 2.6.1
satisfying the following:
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(i) There exists a continuous shock curve Γshock with endpoints P0 = (ξ0
1 , ξ

0
1 tan θw)

and P2 = (ξ1P2
, 0), and

ξ1P2
< ξ1P3

= 0

such that

• Γshock is outside the sonic circle ∂Bc1(u1, 0):

Γshock ⊂
(
Λ \Bc1(u1, 0)

)
∩ {ξ1P2

≤ ξ1 ≤ ξ0
1}; (15.1.1)

• Γshock is C2 in its relative interior. Moreover, for Γext
shock := Γshock ∪

Γ−shock ∪ {P2} with Γ−shock being the reflection of Γshock with respect to
{ξ2 = 0}, Γext

shock is C1 in its relative interior (including P2).

Denote the line segments Γsym := P2P3 and Γwedge := P0P3. Note that
Γsym∩Γwedge = {P3}. We require that there be no common points between
Γshock and curve Γsym ∪ Γwedge except their common endpoints {P0, P2}.
Thus, Γshock ∪ Γsym ∪ Γwedge is a closed curve without self-intersection.
Denote by Ω the open bounded domain restricted by this curve. Note that
Ω ⊂ Λ and ∂Ω ∩ ∂Λ := Γsym ∪ Γwedge.

(ii) ϕ satisfies (2.6.4) and

ϕ ∈ C0,1(Λ) ∩ C1(Λ \ Γshock),

ϕ ∈ C3(Ω \ {P0, P2, P3}) ∩ C1(Ω).
(15.1.2)

Furthermore,

ϕ(P0) = ϕ2(P0), Dϕ(P0) = Dϕ2(P0). (15.1.3)

(iii) Equation (2.2.8) is strictly elliptic in Ω \ {P0} = Ω \ Γsonic:

|Dϕ| < c(|Dϕ|2, ϕ) in Ω \ Γsonic. (15.1.4)

(iv) In Ω,
ϕ2 ≤ ϕ ≤ ϕ1. (15.1.5)

(v) Let eS1
be defined by (7.5.8). Then

∂eS1
(ϕ1 − ϕ) ≤ 0 in Ω, (15.1.6)

∂ξ2(ϕ1 − ϕ) ≤ 0 in Ω. (15.1.7)

Remark 15.1.3. Condition (15.1.3) for the subsonic reflection solutions cor-
responds to the property of supersonic reflection solutions discussed in Remark
8.1.2.
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15.2 BASIC ESTIMATES FOR ADMISSIBLE SOLUTIONS UP
TO THE DETACHMENT ANGLE

In this section, we make some basic estimates for admissible solutions up to the
detachment angle.

Proposition 15.2.1. Lemmas 8.1.7 and 8.1.9, Corollary 8.1.10, and all the as-
sertions proved in §8.2.1–§8.2.3 hold for both supersonic and subsonic admissible
solutions for the wedge angles θw ∈ (θd

w,
π
2 ), with only the following notational

changes in the subsonic case: Γsonic, P1, and P4 need to be replaced by P0,
and the conditions of Definition 8.1.1 need to be replaced by the corresponding
conditions of Definition 15.1.2 in the statements and proofs.

Proof. In the proofs of the assertions in §8.1–§8.2, the only property related to
Γsonic used is that (ϕ,Dϕ) = (ϕ2, Dϕ2) on Γsonic. For the subsonic reflection, the
admissible solutions satisfy this property at P0 by (15.1.3). The other properties
employed in the proofs hold for both subsonic and supersonic reflection solutions.

The formulas derived in §5.1 obviously apply to the subsonic admissible
solutions.

Proposition 15.2.2. All the assertions proved in §9.1–§9.2 hold for both su-
personic and subsonic admissible solutions, with only the following notational
changes in the subsonic case: Γsonic, P1, and P4 need to be replaced by P0,
and the conditions of Definition 8.1.1 need to be replaced by the corresponding
conditions of Definition 15.1.2 in the statements and proofs.

Moreover, for any subsonic/supersonic admissible solution with the wedge
angle θw ∈ (θd

w,
π
2 ),

• The estimates in Proposition 9.1.2, Corollary 9.1.3, and Lemma 9.1.4 hold
with the constants depending only on the data, i.e., (ρ0, ρ1, γ);

• The estimates in Lemma 9.2.2 hold with the constants depending only on
(ρ0, ρ1, γ, α, r);

• In Definition 9.2.3, for the subsonic/sonic wedge angles, region P0P1P4 in
(2.6.1) is one point;

• Corollary 9.2.5 holds for any sequence of subsonic/supersonic admissible
solutions of Problem 2.6.1 with the wedge angles θ(i)

w ∈ (θd
w,

π
2 ) such that

θ(i)
w → θ(∞)

w ∈ [θd
w,
π

2
].

Furthermore, in the assertions and the proof of Corollary 9.2.5, if the type
of admissible solutions is subsonic for the wedge angle θ(i)

w (resp. θ(∞)
w ),

then P1
(i) = P4

(i) = P0
(i) (resp. P1

(∞) = P4
(∞) = P0

(∞)), in which case
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Γ
(i)
sonic denotes {P4

(i)} (resp. Γ
(∞)
sonic denotes {P4

(∞)}). In particular, if
θ

(∞)
w is a subsonic/sonic wedge angle, there is no region of state (2) in
the solution in assertion (v) of Corollary 9.2.5, i.e., ϕ(∞) is equal to the
constant states in their respective domains as in (2.6.4).

Proof. The proofs in §9.1 and the proof of Lemma 9.2.2 work without change
in the present case.

In the proof of Corollary 9.2.5, the changes are only notational, as described
above, by using the fact that the wedge angles corresponding to the supersonic
admissible solutions are an open subset of [θd

w,
π
2 ). When θ(i) are supersonic

wedge angles and θ(∞) is a sonic wedge angle, we see that P1
(i) → P0

(∞) and
P4

(i) → P0
(∞), as in the proof of assertion (v) of Corollary 9.2.5 in this case.

15.3 SEPARATION OF Γshock FROM Γsym

Proposition 9.3.1 and Corollary 9.3.2 hold, without change in the formulation
and the proof, for any subsonic/supersonic admissible solution of Problem
2.6.1 for the wedge angles θw ∈ [θd

w,
π
2 ).

15.4 LOWER BOUND FOR THE DISTANCE BETWEEN Γshock

AND Γwedge AWAY FROM P0

For the subsonic reflection, the reflected shock intersects the wedge at point
P0. Thus, we make estimates similar to Propositions 9.4.5 and 9.4.8 for all
subsonic/supersonic admissible solutions for the portions of Γshock which are
away from P0 by a distance r > 0, with the constants in the estimates depending
on r. Of course, for any given r, for the supersonic wedge angles such that
dist(P0, P4) ≥ r, these results are equivalent to Propositions 9.4.5 and 9.4.8.

Note that all the wedge angles θw ∈ (θs
w,

π
2 ) are supersonic, so that Lemma

9.4.7 remains without change in the present case.
We first note the following:

Lemma 15.4.1. Lemmas 9.4.1–9.4.2 and Corollary 9.4.3 hold for both super-
sonic and subsonic admissible solutions for the wedge angles θw ∈ (θd

w,
π
2 ), with

only notational changes in the subsonic case: Γsonic, P1, and P4 need to be re-
placed by P0; that is, property (9.4.32) for subsonic/sonic admissible solutions
takes the form:

sup
P∈Γshock∩Br(P0)

dist(P, LΓwedge
) >

1

Cr
. (15.4.1)

Proof. The proofs of Lemmas 9.4.1–9.4.2 and Corollary 9.4.3 work without
changes in the present case by using that Corollaries 8.2.14, 9.2.5, and 9.3.2
are extended to the present case in Propositions 15.2.1–15.2.2 and §15.3.
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15.4.1 Uniform positive lower bound for the distance between
Γshock and Γwedge away from P0 when u1 < c1

We note that, from Lemma 7.5.9, the length of Γ
(θw)
wedge = P3P4 is positive and

depends continuously on θw ∈ [θd
w,

π
2 ] so that

r1 := min
θw∈[θd

w,
π
2 ]
|Γ(θw)

wedge| > 0. (15.4.2)

For simplicity, we will often use Γwedge = Γ
(θw)
wedge, when no confusion arises.

Proposition 15.4.2. Assume that u1 < c1. For every r ∈ (0, r110 ), there exists
Cr > 0 depending only on the data and r such that

dist(Γshock,Γwedge \Br(P0)) >
1

Cr

for any subsonic/supersonic admissible solution of Problem 2.6.1 with the
wedge angle θw ∈ (θd

w,
π
2 ).

Proof. We note that Propositions 15.2.1–15.2.2 and Lemma 15.4.1 extend all
the results used in the argument below to the present setting.

In this proof, the universal constants C and Ck are positive and depend only
on (ρ0, ρ1, γ, r).

Arguing as in the proof of (9.4.36), we obtain

dist(P2, LΓwedge
) = fνw

(TP2
) ≥ (c1 − u1) sin θd

w > 0, (15.4.3)

that is, the positive lower bound depends only on the data, i.e., (ρ0, ρ1, γ).
Now we follow Step 1 and Steps 3–4 of the proof of Proposition 9.4.9 by

using (15.4.3) instead of estimate (9.4.35) obtained in Step 2 of that proof.
More specifically, it suffices to consider r ∈ (0, r

∗

10 ] for r∗ = min{r1, r̂0}, where
r̂0 is defined in Remark 9.4.6. Fix such a constant r.

Let ϕ be an admissible solution for a wedge angle θw ∈ (θd
w,

π
2 ).

Then, arguing as in Step 1 of the proof of Proposition 9.4.9 and changing θs
w

to θd
w in the argument, we conclude that there exist C and C1 such that (9.4.44)

holds if dist(P1, LΓwedge
) ≤ 1

C1
.

As in Step 3 of the proof of Proposition 9.4.9, we consider the case that
dist(P1, LΓwedge

) ≥ 1
C1

, i.e., (9.4.45) holds. We argue as in the proof of Propo-
sition 9.4.5 by using (15.4.3) and (9.4.45) instead of (9.4.36) and (9.4.37), re-
spectively. Also, (9.4.38) holds, and from that, using Remark 9.4.6, we obtain
(9.4.39) with the lower bound depending only on the data. Then, following
the argument in the proof of Proposition 9.4.5 after (9.4.39), we obtain that
dist(Γshock,Γwedge) > 1

C , where C depends on (ρ0, ρ1, γ, r) now, since the con-
stants in (9.4.39), (9.4.45), and (15.4.3) depend on these parameters.

Finally, as in Step 4 of the proof of Proposition 9.4.9, we consider the case
that dist(P1, LΓwedge

) ≤ 1
C1

, i.e., (9.4.46) holds. We follow the argument in
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that step by using P2 instead of Q and (15.4.3) instead of the first inequality in
(9.4.35). We also note, by (8.2.20), that TP2

< TP3
, since θw < π

2 . Similarly to
(9.4.47), we obtain

|Q̂− P2| ≥ TQ̂ − TP2
≥ TP0

− 3r

4
− TP3

≥ r1 −
3r

4
≥ r1

2
,

where we have used that TP0 − TP3 ≥ |Γwedge| ≥ r1 by (15.4.2). With this,
repeating the proof of (9.4.48), we have

dist(Γshock[P2, Q̂],Γwedge) ≥ 1

C
.

Then, arguing as in the proof of (9.4.49) and using again that TP2
< TP3

, we
obtain

dist(Γshock ∩
{
TP3
≤ T ≤ TP0

− 3r

4

}
, Γwedge) ≥ 1

C
. (15.4.4)

On the other hand,

Γwedge \Br(P4) = {(0, T ) : TP3 < T ≤ TP4 − r},

and then we use TP0
≥ TP4

and (15.4.4) to obtain

dist
(
Γshock \

{
TP3 ≤ T ≤ TP0 −

3r

4

}
, Γwedge \Br(P4)

)
≥ r

4
.

Combining this with (15.4.4), we conclude

dist(Γshock,Γwedge \Br(P0)) >
1

Cr
.

This completes the proof.

15.4.2 Lower bound for the distance between Γshock and Γwedge away
from P0 and P3

In the next proposition, we use constant r1 defined by (15.4.2).

Proposition 15.4.3. Fix ρ1 > ρ0 > 0 and γ > 1. For every r ∈ (0, r110 ), there
exists Cr > 0 such that

dist (Γshock, Γwedge \ (Br(P0) ∪Br(P3))) ≥ 1

Cr

for any subsonic/supersonic admissible solution of Problem 2.6.1 with the
wedge angle θw ∈ [θd

w,
π
2 ).

Proof. The proof of Proposition 9.4.9 works with only notational changes, i.e.,
changing θs

w to θd
w in the argument, and noting that Propositions 15.2.1–15.2.2

and Lemma 15.4.1 extend to the present setting for all the results used in the
argument.
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15.5 UNIFORM POSITIVE LOWER BOUND FOR THE
DISTANCE BETWEEN Γshock AND THE SONIC CIRCLE
OF STATE (1)

The results in §9.5 hold for all the subsonic/supersonic admissible solutions with
uniform constants. More specifically, we have

Lemma 15.5.1. For every compact set K ⊂ Bc1(O1) \ {P3}, there exists C =

C(K) > 0 such that, for any wedge angle θw ∈ [θd
w,

π
2 ) satisfying K ∩ Λ(θw) 6= ∅

and any admissible solution ϕ of Problem 2.6.1 with the wedge angle θw,

inf
K∩Λ(θw)

(ϕ1 − ϕ) ≥ 1

C(K)
.

Proof. The proof of Lemma 9.5.1 works without amendment, by using Proposi-
tions 15.2.1–15.2.2 to adjust the results in §9.1–§9.2 (especially Corollary 9.2.5)
to the present case.

Lemma 15.5.2. Fix ρ1 > ρ0 > 0 and γ > 1. For any ε0 ∈ (0, c12 ), there exists
C > 0 such that, if θw ∈ [θd

w,
π
2 ) satisfies that Bc1−ε0 ∩ Λ(θw) 6= ∅ and ϕ is an

admissible solution of Problem 2.6.1 with the wedge angle θw, then

dist(Γshock, Bc1(O1)) ≥ 1

C
.

Proof. The proof of Lemma 9.5.2 works without change, by using Lemma 15.5.1
instead of Lemma 9.5.1, and using Propositions 15.2.1–15.2.2 to adjust the re-
sults in §9.1–§9.2 to the present case.

Proposition 15.5.3. Fix γ > 1 and ρ1 > ρ0 > 0. There exists C > 0 such that

dist(Γshock, Bc1(O1)) ≥ 1

C

for any supersonic/subsonic admissible solution of Problem 2.6.1 with θw ∈
[θd

w,
π
2 ).

Proof. The proof of Proposition 9.5.6 works without change by recalling that P1

and P4 are identified with P0 in the case of subsonic/sonic admissible solutions,
and using Proposition 15.4.3 and Lemma 15.5.2 instead of Proposition 9.4.9 and
Lemma 9.5.2, respectively. Also, we use r1 defined by (15.4.2) instead of r0.

Finally, we note that minθw∈[θd
w,
π
2 ] r

(θw)
2 > 0 by the same argument as in

Proposition 9.5.6, where the similar quantity with θs
w instead of θd

w has been
considered.

Corollary 15.5.4. Let r1 be defined by (15.4.2). Let γ > 1 and ρ1 > ρ0 > 0 be
such that u1 = c1. For every r ∈ (0, r110 ), there exists Cr > 0 such that

dist (Γshock,Γwedge \Br(P0)) >
1

Cr
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for any subsonic/supersonic admissible solution of Problem 2.6.1, where we
write P4 for P0 in the case of subsonic admissible solutions.

Proof. The proof repeats that for Corollary 9.5.7 by using Propositions 15.4.3
and 15.5.3 instead of Propositions 9.4.8 and 9.5.6.

15.6 UNIFORM ESTIMATES OF THE ELLIPTICITY
CONSTANT

We now extend the results of §9.6. We use the notation introduced in §9.6. We
first extend Proposition 9.6.3 as follows:

Proposition 15.6.1. There exist µ > 0 and ζ̂ > 0 depending only on (ρ0, ρ1, γ)
such that, if ϕ is an admissible solution of Problem 2.6.1 with θw ∈ (θd

w,
π
2 )

and g ∈ C1(Ω) so that g(P1) = 0 and |Dg| ≤ 1 in Ω, then either

M2 ≤ 1− ζ̂ in Ω

or the maximum of M2 + µg over Ω cannot be attained on Γshock ∪ {P2}, where
M is the Mach number, i.e., M = |Dϕ|

c(|Dϕ|2,ϕ) .

Proof. In this proof, all constants (C, µ, α, ζ, δ) depend only on (ρ0, ρ1, γ).
By Proposition 15.5.3,

dist(Γshock, Bc1(O1)) >
1

C

for any admissible solution of Problem 2.6.1 with θw ∈ [θd
w,

π
2 ). Then, using

Dϕ1(ξ) = (u1, 0)− ξ, we obtain that there exists δ > 0 such that

|Dϕ1|2 ≥ (1 + δ)c21 on Γshock (15.6.1)

for all such solutions.
Let ϕ be an admissible solution of Problem 2.6.1 with θw ∈ [θd

w,
π
2 ).

Note that, from Lemma 9.1.4 and Proposition 15.2.2,

ρ ≥ aρ1 > 0 in Ω.

Let g ∈ C1(Ω) with g(P1) = 0 and |Dg| ≤ 1 in Ω. Denote

d(ξ) = µg(ξ)

for µ > 0 to be chosen. Since diam(Ω) ≤ C by Propositions 9.1.2 and 15.2.2,

|d(ξ)| ≤ µ
(
|g(P1)|+ ‖Dg‖L∞(Ω)diam(Ω)

)
≤ Cµ for all ξ ∈ Ω. (15.6.2)
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Let α, ζ > 0 be the constants as defined in Lemma 9.6.2 for ρ− = ρ1 and δ
from (15.6.1). Then, choosing µ sufficiently small, we obtain from (15.6.2) that

|d(ξ)| ≤ Cµ ≤ ζ

10
for all ξ ∈ Ω. (15.6.3)

Assume that the maximum of M2 + d over Ω is attained at Pmax ∈ Γshock ∪
{P2}. Consider first the case:

M2(Pmax) ≤ 1− ζ

2
.

Then, using (15.6.3),

(M2 + d)(ξ) ≤ (M2 + d)(Pmax) ≤ 1− ζ

2
+

ζ

10
= 1− 2ζ

5
for all ξ ∈ Ω,

which implies

M2(ξ) ≤ 1− 2ζ

5
− d(ξ) ≤ 1− 2ζ

5
+

ζ

10
.

Therefore, we obtain the first assertion with ζ̂ = 3ζ
10 .

It remains to consider the case:

M2(Pmax) ≥ 1− ζ

2
.

This is inequality (9.6.14) in the proof of Proposition 9.6.3. Therefore, we can
proceed from there as in the rest of the proof of Proposition 9.6.3 to arrive at a
contradiction, which implies that, in this case, the maximum of M2 + d over Ω
cannot be attained at Pmax ∈ Γshock ∪ {P2}.

Proposition 15.6.2. There exist µ̃ > 0 and ζ̂ > 0 depending only on (ρ0, ρ1, γ)
such that, if ϕ is an admissible solution of Problem 2.6.1 with θw ∈ (θd

w,
π
2 ),

then

(i) For any supersonic wedge angle θw, the Mach number satisfies

M2(ξ) ≤ 1− µ̃dist(ξ,Γsonic) for all ξ ∈ Ω(ϕ). (15.6.4)

(ii) For any subsonic/sonic wedge angle θw, the Mach number satisfies

M2(ξ) ≤ max
(
1− ζ̂, |Dϕ2(P0)|2

c22
− µ̃|ξ − P0|

)
for all ξ ∈ Ω(ϕ).

(15.6.5)

Proof. We use the convention that P1 = P2 = P0 and Γsonic = P0 for the
subsonic reflection. Also, the constants in this proof depend only on (ρ0, ρ1, γ).

We first note that Lemma 9.6.4 can be extended to all the wedge angles
θw ∈ (θd

w,
π
2 ), that is, θs

w can be replaced by θd
w in the formulation of the lemma.



624 CHAPTER 15

The only difference in the proof is that, instead of circle ∂Bc2(O2), we now use
circle ∂Br(O2) with

r = min{c2, |O2P0|}.
Note that r = c2 for the supersonic/sonic wedge angles, and r < c2 for the
subsonic wedge angles. Line S1 intersects with circle ∂Br(O2) at points {P1, Q}.
Expression (9.6.33) now takes the form:

ĝθw(ξ) =
1

2
(r − ĉ)h(

dist(ξ, ∂Br(O2))

r − ĉ ).

The rest of the proof of Lemma 9.6.4 is unchanged.
Now we note that (9.1.2) and Proposition 15.2.2, combined with (9.6.29) in

the extended version of Lemma 9.6.4, imply the existence of µ0 > 0 such that,
for any admissible solution with θw ∈ (θd

w,
π
2 ),

µ0|gθw(ξ)| ≤ 1

4
in Ω. (15.6.6)

Consider an admissible solution ϕ with θw ∈ (θd
w,

π
2 ). We use function gθw

from the extended version of Lemma 9.6.4.
The argument in the proof of Proposition 9.6.5 shows that, for small µ ∈

(0, µ0), the maximum ofM2+µgθw over Ω cannot be attained in Ω∪Γsym∪Γwedge.
Furthermore, following the proof of Proposition 9.6.5, we see that M(P3) = 0.

If ϕ is a supersonic reflection solution, M2 + µgθw = 1 on Γsonic, since
M2 = 1 on Γsonic by (8.1.3), and gθw = 0 on Γsonic by (9.6.29). Using (15.6.6),
we conclude that the maximum of M2 + µgθw is not attained at P3.

Thus, if the maximum of M2 + µgθw is attained at P3, then ϕ is a subsonic
reflection solution, and M2 + µgθw ≤ 1

4 in Ω by (15.6.6). Another application
of (15.6.6) implies that M2 ≤ 1

2 in Ω.
Therefore, we have proved that, if the maximum of M2 + µgθw is attained

at P3, then ϕ is a subsonic reflection solution, and (15.6.5) holds with ζ̂ = 1
2 .

It remains to consider the case that the maximum of M2 + µgθw over Ω is
not attained in Ω∪Γsym ∪Γwedge ∪{P3}. Recall that this case necessarily holds
if ϕ is a supersonic reflection solution.

Thus, the maximum ofM2+µgθw over Ω is attained in Γsonic∪Γshock∪{P2} in
this case. Now Proposition 15.6.1 and the properties of function gθw in Lemma
9.6.4 imply that

either M2 ≤ 1− ζ̂ in Ω (15.6.7)

or M2(ξ) ≤M2(P1)− µ̃dist(ξ,Γsonic) in Ω, (15.6.8)

where ζ̂, µ̃ > 0 depend only on the data.
For the supersonic wedge angles, the definition of P1 ∈ ∂Bc2(O2) in Defini-

tion 7.5.7, combined with Definition 8.1.1(ii), implies that M2(P1) = 1. There-
fore, (15.6.7) cannot happen, and (15.6.8) implies assertion (i) in this proposi-
tion.
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For the subsonic wedge angles, P1 = P0, and (15.1.3) implies thatM2(P0) =
|Dϕ2(P0)|2

c22
. Therefore, (15.6.7)–(15.6.8) imply assertion (ii).

Corollary 15.6.3. There exist ζ̂ > 0 and C > 0 depending only on (ρ0, ρ1, γ)
such that, if ϕ is an admissible solution of Problem 2.6.1 with θw ∈ (θd

w,
π
2 ),

then, using the notations in (9.2.1), equation (2.2.8) satisfies the following:

(i) For any supersonic wedge angle θw,

dist(ξ,Γsonic)

C
|κ|2 ≤

2∑

i,j=1

Aipj (Dϕ(ξ), ϕ(ξ))κiκj ≤ C|κ|2 (15.6.9)

for any ξ ∈ Ω and κ = (κ1, κ2) ∈ R2.

(ii) For any subsonic/sonic wedge angle θw,

1

C
min(c2 − |Dϕ2(P0)|+ |ξ − P0|, ζ̂)|κ|2

≤
2∑

i,j=1

Aipj (Dϕ(ξ), ϕ(ξ))κiκj ≤ C|κ|2
(15.6.10)

for any ξ ∈ Ω and κ = (κ1, κ2) ∈ R2.

Proof. In this proof, the universal constant C depends only on (ρ0, ρ1, γ).
We follow the proof of Corollary 9.6.6 by using Proposition 15.6.2 instead of

Proposition 9.6.5. Then, for any supersonic wedge angle, we obtain (15.6.9).
For any subsonic/sonic wedge angle, applying Proposition 15.6.2(ii), we ob-

tain the following lower bound:

2∑

i,j=1

Aipj (Dϕ,ϕ)κiκj ≥ c2(|Dϕ|2, ϕ) min(1− |Dϕ2(P0)|2
c22

+ µ̃|ξ − P0|, ζ̂)|κ|2.

Since |Dϕ2(P0)| = |P0O2|, 1
C ≤ c(|Dϕ|2, ϕ) ≤ C by Lemma 9.1.4 and Proposi-

tion 15.2.2, and 1
C ≤ c

(θw)
2 ≤ C for θw ∈ [θd

w,
π
2 ], we obtain (15.6.10).

15.7 REGULARITY OF ADMISSIBLE SOLUTIONS AWAY
FROM Γsonic

Proposition 15.7.1. All the assertions proved in §10.1 and §10.3 hold for both
supersonic and subsonic admissible solutions with θw ∈ (θd

w,
π
2 ), for which the

constants in the estimates depend only on (ρ0, ρ1, γ).
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Proof. The proof of Lemma 10.1.1 is based on the properties of admissible solu-
tions that ϕ < ϕ1 in Ω and on the uniform estimates: dist(Γshock, Bc1(O1)) ≥ 1

C
and ‖ϕ‖C0,1 ≤ C. All these properties hold for any admissible solution with
θw ∈ (θd

w,
π
2 ), with constant C depending only on (ρ0, ρ1, γ), as we have shown

in Propositions 15.2.2 and 15.5.3. Thus, Lemma 10.1.1 holds for any admissible
solution with θw ∈ [θd

w,
π
2 ), with constant δ > 0 depending only on (ρ0, ρ1, γ).

Then the rest of the proof in §10.1 readily follows.
Proposition 10.3.1 is independent of the type of the reflection. Its proof

employs Lemma 10.1.1, the ellipticity principle (where we use Proposition 15.6.2
now), and the Lipschitz bounds of the solution in Proposition 15.2.2. Therefore,
Proposition 10.3.1 holds in the present case, with the constants depending only
on (ρ0, ρ1, γ).

Remark 15.7.2. The results in §10.2 do not use the definition of admissible
solutions, so that they apply to the present case without change.

In the estimates away from the sonic arc, similarly to Chapter 10, we need
to take into account the possibility that Γshock may hit the wedge vertex P3 if
u1 > c1. Then, similarly to §10.4, we define the critical angle. However, for
the subsonic reflection, Γshock intersects with Γwedge at P0 so that we need to
modify Definition 10.4.1 as follows:

Definition 15.7.3. Let γ > 1 and ρ1 > ρ0 > 0. Define the set:

A :=




θ∗w ∈ (θd

w,
π

2
] :

For each r ∈ (0, r1), there exists ε > 0 such
that dist(Γshock,Γwedge \Br(P0)) ≥ ε for

any admissible solution with θw ∈ [θ∗w,
π

2
]




,

where the normal reflection is included as the unique admissible solution for
θw = π

2 , so that the set of admissible solutions with the wedge angles θw ∈ [θ∗w,
π
2 ]

is non-empty for any θ∗w ∈ (θd
w,

π
2 ]. Since dist(Γshock,Γwedge) > 0 for the normal

reflection, π
2 ∈ A, i.e., A 6= ∅. Also, r1 above is defined by (15.4.2). Now we

define the critical angle
θc

w = inf A,

so that θc
w depends only on (ρ0, ρ1, γ).

Directly from this definition, θc
w ∈ [θd

w,
π
2 ].

Lemma 15.7.4. Let γ > 1 and ρ1 > ρ0 > 0. Then the critical angle θc
w has the

following properties:

(i) θc
w < π

2 , i.e., θ
c
w ∈ [θd

w,
π
2 );

(ii) If u1 ≤ c1, θc
w = θd

w;
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(iii) If θc
w > θd

w, there exist r ∈ (0, r1) and a sequence of admissible solutions
ϕ(i) with the wedge angles θ(i)

w ∈ [θc
w,

π
2 ) such that

lim
i→∞

θ(i)
w = θc

w, lim
i→∞

dist(Γ(i)
shock,Γ

(i)
wedge \Br(P0

(i))) = 0;

(iv) Let r1 be defined by (15.4.2). For any θ∗w ∈ (θc
w,

π
2 ) and r ∈ (0, r1), there

exists Cr > 0 such that, for any admissible solution ϕ with θw ∈ [θ∗w,
π
2 ),

dist(Γshock,Γwedge \Br(P0)) ≥ 1

Cr
.

Proof. Assertion (i) follows from Lemma 9.4.7. Assertion (ii) follows from
Proposition 15.4.2 and Corollary 15.5.4. Assertions (iii)–(iv) follow directly
from Definition 15.7.3.

Proposition 15.7.5. Let θ∗w ∈ (θc
w,

π
2 ). All the assertions proved in §10.5–§10.6

hold for both supersonic and subsonic admissible solutions for θw ∈ [θ∗w,
π
2 ), with

the constants in the estimates depending on (ρ0, ρ1, γ, θ
∗
w) and with the follow-

ing notational adjustments in the statements in the case that ϕ is a subsonic
reflection solution: Arc Γsonic and points {P1, P4} need to be replaced by P0. In
particular, (10.6.1) when |Dϕ(∞)

2 (P0
(∞))| ≤ c(∞)

2 is of the form:

Ω(∞) =





(S, T ) ∈ R2 :

TP2
(∞) ≤ T ≤ TP0

(∞) ,

− (T − TP3) tan θ(∞)
w < S < f

(∞)
e,sh (T )

for T ∈ [TP2
(∞) , TP3

(∞) ],

0 < S < f
(∞)
e,sh (T ) for T ∈ (TP3

(∞) , TP0
(∞) ]





.

(15.7.1)

Proof. We fix θ∗w ∈ (θc
w,

π
2 ).

To prove Proposition 10.5.1 in the present case, we choose P = (rP , θP ) ∈
Γext

shock with dist(P,Γext
sonic) ≥ d, where Γext

sonic is replaced by P0 in the subsonic
reflection case. Then, from Lemma 15.7.4(iv) applied with r = d

2 , we obtain
that dist(P,Γext

wedge) ≥ 1
C . Now we can argue as in the proof of Proposition

10.5.1 and employ Proposition 15.7.1 to conclude the expected result.
The proof of Lemma 10.5.2 is unchanged in the present case by using Lemma

15.7.4 instead of Lemma 10.4.2.
In the proof of Proposition 10.6.1(i), we update the proof of the fact that

Γ
(∞)
shock is disjoint with Γ

(∞)
wedge as follows: By Lemma 15.7.4(iv), for any r ∈ (0, r1),

there exists Cr > 0 such that the estimate:

dist(Γ(i)
shock,Γ

(i)
wedge \Br(P0)) ≥ 1

Cr

holds for all i. Also, P3
(i) = 0, P4

(i) → P4
(∞) since θ(i)

w → θ
(∞)
w , and Γ

(i)
wedge =

P3
(i)P4

(i). Thus, Γ
(i)
wedge → Γ

(∞)
wedge in the Hausdorff metric. Also, f (i)

g,sh → f
(∞)
g,sh
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uniformly, by (ii) in Corollary 9.2.5, so that Γ
(i)
shock → Γ

(∞)
shock in the Hausdorff

metric. Then it follows that

dist(Γ(∞)
shock,Γ

(∞)
wedge \Br(P0)) ≥ 1

Cr
for each r ∈ (0, r1).

This implies that Γ
(∞)
shock is disjoint with Γ

(∞)
wedge.

We also update the proof of Proposition 10.6.1(v) in a similar way. Namely,
sinceO2 ∈ P3P4 by Lemma 7.4.8 and the definition of P4 in Definition 7.5.7, then
dist(P3,Γsonic) = |P3P1|, whereas Γsonic = P4 = P0 for subsonic wedge angles.
Then dist(P3,Γsonic) ≥ c2 for supersonic wedge angles, while dist(P3,Γsonic) ≥
r1 for subsonic wedge angles, where r1 > 0 is from (15.4.2). We note that
ĉ2 := minθw∈[θd

w,
π
2 ] c2(θw) > 0. Thus, for any θw ∈ [θd

w,
π
2 ], we obtain that

dist(P3,Γsonic) ≥ min(r1, ĉ2) =: r̂ > 0. From Lemma 15.7.4(iv), there exists C
depending only on the data such that

dist(Γ(i)
shock,Γ

(i)
wedge \Br̂/10(P0

(i))) ≥ 1

C
for all i.

Without loss of generality, we can assume that 1
C ≤ r̂

10 . Let s = 1
4C . Then, from

the argument in the proof of Lemma 10.5.2, it follows that Λ(i)∩B3s(P3) ⊂ Ω(i)

for each i. From that point, we follow the proof of Proposition 10.6.1(v).
The rest of the proof of Proposition 10.6.1 is unchanged in the present case,

on account of using Propositions 15.2.1–15.2.2 and 15.7.1, as well as §15.3, in
place of the corresponding estimates from Chapters 8–10.



Chapter Sixteen

Regularity of Admissible Solutions near the Sonic

Arc and the Reflection Point

In this chapter, we establish the regularity of admissible solutions near the sonic
arc Γsonic (an elliptic degenerate curve) in the supersonic reflection configura-
tions, as shown in Figs. 2.3 and 2.5, and near the shock reflection point P0 in
the subsonic reflection configurations, as shown in Figs. 2.4 and 2.6.

16.1 POINTWISE AND GRADIENT ESTIMATES NEAR Γsonic

AND THE REFLECTION POINT

In this section, we extend the estimates in §11.2. In §11.2, the pointwise and
gradient estimates have been obtained for ψ = ϕ − ϕ2 near Γsonic, where ϕ
is an admissible solution with the supersonic reflection configuration for θw ∈
(θs

w,
π
2 ). These estimates are now extended further for the following two classes

of admissible solutions:
First, Theorem 7.1.1(v)–(vi) do not exclude the possibility that |Dϕ2(P0)|

c2
> 1

for some wedge angles θw ∈ (θ̃s
w, θ

s
w). We will show that, if such a wedge angle

θw exists, the estimates of (ψ,Dψ) near Γsonic, similar to those for θw ∈ (θs
w,

π
2 ),

also hold, where the only difference is that the constants will be modified, but
still depend only on (ρ0, ρ1, γ).

Furthermore, we show that similar estimates hold near the reflection point
P0 for the subsonic reflection solutions that are close to the sonic angle, i.e., for
subsonic/sonic admissible solutions ϕ such that 1− δ ≤ |Dϕ2(P0)|

c2
≤ 1 for some

small δ > 0.
We first recall that, for the subsonic reflection solutions, the straight line

S1 = {ϕ1 = ϕ2}

is well-defined and contains the reflection point P0. Also, in the (x, y)–coordinates
considered in §11.1,

x
(θw)
P0

> 0 for subsonic wedge angles, i.e., when |Dϕ2(P0)|
c2

(θw) < 1,

x
(θw)
P0

= 0 for sonic wedge angles, i.e., when |Dϕ2(P0)|
c2

(θw) = 1,

x
(θw)
P0

< 0 for supersonic wedge angles, i.e., when |Dϕ2(P0)|
c2

(θw) > 1.

(16.1.1)
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Next, we note that Definition 11.2.1 applies to the subsonic reflection case
with the following change: Instead of the sonic circle ∂Bc2(O2) of state (2), we
consider circle ∂B|O2P0|(O2). Notice that S1 is not orthogonal to Γwedge, since
S1 ⊥ O1O2, O1 /∈ {ξ2 = ξ1 tan θw}, and O2 ∈ {ξ2 = ξ1 tan θw}. It follows that
S1 intersects with ∂B|O2P0|(O2) at two points. One of the intersection points is
P0, which follows from the choice of the radius.

Definition 16.1.1. For any subsonic/sonic wedge angle θw ∈ (θd
w,

π
2 ) (in this

case, P0 = P1 = P4 and Γsonic = {P0}), we define the following points:

(i) By (6.1.4)–(6.1.5) of Lemma 6.1.2, applied with ϕ− = ϕ1 and ϕ+ = ϕ2, it
follows that O2 ∈ {ϕ1 > ϕ2} so that the smaller arc P1P1 lies within {ϕ2 >
ϕ1}, where P1 is the second point of intersection of S1 with ∂B|O2P0|(O2);

(ii) Denote by Q the midpoint of the smaller arc P0P1 of ∂B|O2P0|(O2) so that
Q ∈ {ϕ2 > ϕ1};

(iii) Denote by Q′ the midpoint of the line segment (chord) P0P1.

Since O2 ∈ Γwedge by Lemma 7.4.8, O2 ∈ {ϕ1 > ϕ2}, and O1O2 ⊥ S1, we
conclude that Q,Q′ ∈ Λ.

With these definitions, we have

Lemma 16.1.2. There exist constants ε1 > ε0 > 0, δ > 0, ω > 0, C > 0, and
M ≥ 2, and a function m(·) ∈ C([0,∞)) depending only on (ρ0, ρ1, γ) such that
Lemma 11.2.2 holds for any θw ∈ [θd

w,
π
2 ) with the following changes which affect

only the subsonic/sonic wedge angles:

• P0 = P1 = P4 and Γsonic = {P0} for any subsonic/sonic wedge angle θw, so
that xP1

≥ 0 for any θw ∈ [θd
w,

π
2 ], with xP1

= 0 for any supersonic/sonic
wedge angle, and xP1

> 0 for any subsonic wedge angle;

• Γsonic should be replaced by Γsonic in every occurrence;

• (11.2.4) is replaced by

{ϕ2 < ϕ1} ∩ Nε1(Γsonic) ∩ {θ > θP1} ⊂ {x > xP1}; (16.1.2)

• In (11.2.5)–(11.2.10), −εk < x < εk is replaced by −εk < x−xP1
< εk for

k = 0, 1. Similarly, ε′ ≤ x ≤ ε′′ is replaced by ε′ ≤ x− xP1
≤ ε′′.

Proof. Several points in the proof of Lemma 11.2.2 are based on the continuous
dependence of the parameters of state (2) on θw ∈ [θs

w,
π
2 ], and the positivity

of certain quantities related to state (2), e.g., c2, yQ − yP1 , etc., and hence the
positivity of their infimum over θw ∈ [θs

w,
π
2 ]. In the present case, we use the fact

that similar continuous dependence and positivity hold up to the detachment
angle, i.e., for θw ∈ [θd

w,
π
2 ]. With this and the modifications in Definition 11.2.1

for the subsonic/sonic wedge angles, as described in Definition 16.1.1, the proof
of Lemma 11.2.2 applies directly to the present case.
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Next, we extend Proposition 11.2.3 to the case of both supersonic and sub-
sonic reflections.

Proposition 16.1.3. Let ε0 and ε1 be the constants defined in Lemma 16.1.2.
Let ϕ be an admissible solution with θw ∈ (θd

w,
π
2 ] and Ω = Ω(ϕ). Then, for

ε ∈ (0, ε0), region Ωε, defined by

Ωε := Ω ∩Nε1(Γsonic) ∩ {x < xP1
+ ε}, (16.1.3)

satisfies

Ω ∩Nε(Γsonic) ⊂ Ωε, (16.1.4)

Ωε = Ωε ∩ {x > xP1
}, (16.1.5)

Ωε ⊂ {ϕ2 < ϕ1} ∩ Λ ∩Nε1(Γsonic) ∩ {xP1 < x < xP1 + ε}. (16.1.6)

We note that

• xP1
= 0 for supersonic/sonic wedge angles, and hence (16.1.3)–(16.1.6)

are (11.2.16)–(11.2.19);

• xP1 = xP0 > 0 for subsonic wedge angles.

Proof. For the supersonic wedge angles θw, the proof of Proposition 11.2.3 ap-
plies without change. Thus, it suffices to focus on the subsonic/sonic wedge
angles θw. Then xP0

≥ 0 and yP0
= θw.

Since ε < ε0 < ε1, and P0 ∈ ∂Bc2−xP1
(O2) implies

Nε(P0) ⊂ Nε(∂Bc2−xP1
(O2)) = {|x− xP1

| < ε} ⊂ {x < xP1
+ ε},

then (16.1.4) follows from (16.1.3).
By (i) and (iv) of Definition 15.1.2, Ω ⊂ {ϕ2 < ϕ1} ∩ Λ and Λ ⊂ {θ > θw}.

Then, since yP0
= θw and P0 = P1 in the subsonic case, it follows that Ω ⊂

{ϕ2 < ϕ1} ∩ Λ ∩ {θ > θP1
}. Combining this with (16.1.2)–(16.1.3), we obtain

(16.1.5).
Furthermore, Ω ⊂ {ϕ2 < ϕ1} ∩ Λ, combined with (16.1.3) and (16.1.5),

implies (16.1.6).

In extending the remaining results in §11.2, we restrict to the following set
Iw(δP0

) of wedge angles:

Iw(δ) :=
{
θw ∈ [θd

w,
π

2
) :
|Dϕ2(P0)|

c2
(θw) ≥ 1− δ

}
for δ ∈ (0, 1), (16.1.7)

and δP0
∈ (0, 1) is chosen below depending only on (ρ0, ρ1, γ). We note that the

regular reflection solutions with θw ∈ Iw(δ) include all the supersonic reflection
solutions, as well as the subsonic reflection solutions that are sufficiently close
to sonic at P0.
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Denote

x∗P0
(δ) = sup{x(θw)

P0
: θw ∈ Iw(δ)} for δ ∈ (0, 1). (16.1.8)

Recall that x(θw)
P0

< 0 if |Dϕ2(P0)|
c2

(θw) > 1, and x(θw)
P0

> 0 if |Dϕ2(P0)|
c2

(θw) < 1.
Then the continuous dependence of the parameters of state (2) on θw ∈ [θd

w,
π
2 ]

and (16.1.1) imply that

x∗P0
(·) ∈ C([0, 1]), x∗P0

(·) is increasing, lim
δ→0+

x∗P0
(δ) = 0. (16.1.9)

Now we can extend the rest of the results in §11.2 to the present case.

Proposition 16.1.4. There exist ε0, δP0
∈ (0, 1) depending only on (ρ0, ρ1, γ)

such that the results in Lemmas 11.2.4–11.2.7, Lemma 11.2.11, Proposition
11.2.8, and Corollaries 11.2.9–11.2.10 and 11.2.12 hold in Ωε0 for all admissible
solutions with any wedge angle θw ∈ Iw(δP0), with the following changes (which
affect only the admissible solutions with subsonic wedge angles): x ∈ (0, ε0)
should be replaced by x ∈ (xP1

, xP1
+ ε0) in (11.2.38) and (11.2.40), where we

recall our convention that P0 := P1 = P4 and Γsonic := {P0} for subsonic/sonic
wedge angles, and that xP1

≥ 0 for any θw ∈ [θd
w,

π
2 ] with xP1

= 0 for super-
sonic/sonic wedge angles and xP1 > 0 for subsonic wedge angles.

More explicitly, for any θw ∈ Iw(δP0
), we define Ωε by (16.1.3), which is

consistent with definition (11.2.16) of Ωε used in the supersonic case. Then, for
each ε ∈ (0, ε0], region Ωε is of the form:

Ωε = {(x, y) : xP1
< x < xP1

+ ε, θw < y < f̂(x)},

Γshock ∩ ∂Ωε = {(x, y) : xP1 < x < xP1 + ε, y = f̂(x)},
Γwedge ∩ ∂Ωε = {(x, y) : xP1

< x < xP1
+ ε, y = θw},

Γsonic ≡ Γsonic ∩ ∂Ωε = {(xP1
, y) : θw ≤ y ≤ f̂(xP1

)},

(16.1.10)

and

xP1
= 0 for the supersonic/sonic wedge angles, xP1

> 0 otherwise, (16.1.11)

{
f̂(xP1

) = yP1
> yP4

= θw for supersonic wedge angles,

f̂(xP1
) = yP0

= yP1
= yP4

= θw otherwise,
(16.1.12)

0 < ω ≤ df̂

dx
< C for any x ∈ (xP1 , xP1 + ε0). (16.1.13)

Proof. For ε0 > 0 specified below, we choose δP0
∈ (0, 1) so that x∗P0

(δP0
) = ε0

2 .
We note that the existence of such a constant δP0

follows from (16.1.9) if ε0 is
small; otherwise, we use δ = 1. Moreover, δP0

> 0 defined in this way depends
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only on (ρ0, ρ1, γ, ε0). Below we choose a uniform ε0 > 0, i.e., depending only
on (ρ0, ρ1, γ), which then fixes a uniform δP0

> 0.
We now show that, for sufficiently small ε0 > 0 depending only on (ρ0, ρ1, γ),

the estimates asserted hold in Ωε0 for every admissible solution with θw ∈
Iw(δP0).

The proofs of the above estimates in Ωε for small ε > 0 in the present
conditions repeat the proofs of the corresponding results in §11.2, by both using
that the uniform bounds proved in the previous chapters have to be extended
to the present case (see Propositions 15.2.1–15.2.2, Corollary 15.6.3, Lemma
16.1.2, and Proposition 16.1.3) and employing the continuous dependence of the
parameters of state (2) on θw ∈ [θd

w,
π
2 ]. Also, in the subsonic reflection case, we

employ the modifications in Definition 11.2.1 described before Lemma 16.1.2.
We comment only on the proof of Lemma 11.2.5 under the present assump-

tions. In the supersonic/sonic reflection case, the proof of Lemma 11.2.5 works
without change. In the subsonic reflection case, we rewrite the right-hand side
of (15.6.10) as follows: Using that xP1

= c2 − |Dϕ2(P1)| > 0 and (16.1.6), we
obtain that, for any ξ ∈ Ωε and ε small,

c2 − |Dϕ2(P1)|+ |ξ − P1| = xP1
+ |ξ − P1| ≥ xξ,

where the last inequality follows from the definition of coordinates (x, y) and
a simple geometric argument by using (16.1.6) and reducing ε if necessary de-
pending only on c2 (hence it can be chosen uniformly). From (15.6.10), we
have

2∑

i,j=1

Aipj (Dϕ(ξ), ϕ(ξ))κiκj ≥
1

C
min(xξ, ζ̂)|κ|2

for any ξ ∈ Ωε and κ = (κ1,κ2) ∈ R2.
Reducing ε if necessary to have ε ≤ ζ̂, we have

2∑

i,j=1

Aipj (Dϕ(ξ), ϕ(ξ))κiκj ≥
1

C
xξ|κ|2

for any ξ ∈ Ωε and κ = (κ1,κ2) ∈ R2. Then we can follow the proof of Lemma
11.2.5 without change.

16.2 THE RANKINE-HUGONIOT CONDITION ON Γshock

NEAR Γsonic AND THE REFLECTION POINT

In this section, we extend the constructions and estimates in §11.3 to include
both the supersonic and subsonic reflection solutions that are close to sonic. We
thus continue to consider the wedge angles θw ∈ Iw(δP0

) defined by (16.1.7) for
δP0
∈ (0, 1) chosen depending on the data.
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Proposition 16.2.1. For any θ∗w ∈ (θd
w,

π
2 ), the results in §11.3 hold for all

admissible solutions with any wedge angle θw ∈ [θ∗w,
π
2 ), where P0 = P1 = P4 and

Γsonic = {P0} in the subsonic reflection case, definition (16.1.3) of Ωε is used in
the results and constructions in §11.3, and the positive constants (ε, δ, δbc, δ̂bc, C)
in the estimates depend only on (ρ0, ρ1, γ, θ

∗
w).

Proof. Fix θ∗w ∈ (θd
w,

π
2 ). In the argument below, all the constants depend only

on (ρ0, ρ1, γ, θ
∗
w) unless otherwise specified. We divide the proof into four steps.

1. We first show that estimate (11.3.5) holds for θw ∈ [θ∗w,
π
2 ].

If θw is a subsonic/sonic wedge angle, i.e., |Dϕ2(P0)| ≤ c2 for θw, then
P1 = P0 so that

(Dpg
sh(Dϕ2(P1), ϕ2(P1), P1) ·Dϕ2(P1))(θw) < 0 (16.2.1)

by Theorem 7.1.1(vii) for the weak state (2). If θw is a supersonic wedge angle
(i.e., |Dϕ2(P0)| > c2 for θw), then (16.2.1) holds by Corollary 7.4.7. Also, using
the continuous dependence on θw in Theorem 7.1.1(i) and Lemma 7.5.9(i), we
obtain that (ϕ

(θw)
2 , Dϕ

(θw)
2 )(P1

(θw)) depends continuously on θw ∈ [θ∗w,
π
2 ]. Then

(16.2.1) that holds for any θw ∈ [θ∗w,
π
2 ] implies (11.3.5) for any θw ∈ [θ∗w,

π
2 ]

with constant δ > 0 depending only on the data and θ∗w.
2. We note that (11.3.6) and (11.3.10) hold for any θw ∈ [θd

w,
π
2 ], and their

proofs given in Lemmas 11.3.1–11.3.2 work without change for the present range
of wedge angles, where we recall that P0 = P1 for the subsonic/sonic wedge
angles.

3. Now we show that (11.3.11) holds for any θw ∈ [θd
w,

π
2 ] with constant

δ > 0 depending only on (ρ0, ρ1, γ). Fix such an angle θw. We follow the proof
of Lemma 11.3.3 without change up to equation (11.3.13) by using P1 := P0,
for the subsonic/sonic wedge angles in the argument.

Next, from the definition of P1, we have

|Dϕ2(P1)| ≤ c2 for all θw ∈ [θd
w,
π

2
], (16.2.2)

where the equality holds for the supersonic/sonic reflection solutions, and the
strict inequality holds for the subsonic reflection solutions. Using thatDϕ2(P1) =

|Dϕ2(P1)|eP1 for eP1 := Dϕ2(P1)
|Dϕ2(P1)| = O2−P1

|O2−P1| , we calculate from (11.3.13) and
then use (16.2.2) to obtain

(νS1 ·Dp)gsh(Dϕ2(P1), ϕ2(P1), P1)

= ρ2

(
1− |Dϕ2(P1)|2

c22

(
νS1
· eP1

)2)

≥ ρ2

(
1−

(
νS1 · eP1

)2)
> 0,

(16.2.3)

where the last inequality follows from the facts that |νS1
| = |eP1

| = 1, and
{νS1 , eP1} are not parallel to each other.
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Indeed, for supersonic wedge angles, this has been shown in the paragraph
before equation (11.3.14).

For subsonic/sonic wedge angles, P1 and O2 lie on line {ξ2 = ξ1 tan θw}
so that eP1

= O2−P1

|O2−P1| is parallel to that line. If νS1
and eP1

are parallel, line
S1 = {ϕ1 = ϕ2} is perpendicular to line {ξ2 = ξ1 tan θw} at P0 = P1. Then, from
the Rankine-Hugoniot conditions (7.1.5) at which (ν, τ ) = (νS1

, τS1
), it follows

that Dϕ1 · τS1 = Dϕ2 · τS1 = 0 at P1 = P0, since Dϕ2(P1) = |Dϕ2(P1)|eP1 is
parallel to line Lw := {ξ2 = ξ1 tan θw}, which means that Dϕ1(P1) is parallel to
line Lw. This is a contradiction, since Dϕ1(P1) = O1 − P1 for P1 = P0 ∈ Lw,
but O1 = (u1, 0) /∈ Lw. Thus, vectors νS1

and eP1
are not parallel to each other.

Therefore, (16.2.3) holds for each θw ∈ [θd
w,

π
2 ). Now (11.3.11) is proved for

any θw ∈ [θd
w,

π
2 ).

4. In Steps 1–3, we have established Lemmas 11.3.1–11.3.3 for any θw ∈
[θ∗w,

π
2 ] with uniform constants. The rest of §11.3 is obtained based on Lemmas

11.3.1–11.3.3 by using the uniform estimates of admissible solutions, which hold
for any θw ∈ [θd

w,
π
2 ) by Proposition 15.2.2. Therefore, all the results in §11.3

hold for θw ∈ [θ∗w,
π
2 ).

Corollary 16.2.2. There exists σ > 0, depending only on (ρ0, ρ1, γ), such that
constants (ε, δ, δbc, δ̂bc, C) in Proposition 16.2.1 can be chosen depending only
on (ρ0, ρ1, γ) for all θw ∈ [θd

w,
π
2 ) satisfying

|Dϕ2(P0)|
c2

> 1− σ.

Proof. By Theorem 7.1.1(vi) and the continuous dependence of the parameters
of (weak) state (2) on θw ∈ [θd

w,
π
2 ] by Theorem 7.1.1(i), there exists σ > 0 such

that |Dϕ2(P0)|
c2

≤ 1 − σ for all θw ∈ [θd
w, θ̃

s
w]. Then, for this σ, we obtain the

assertion as expected by using Proposition 16.2.1 with θ∗w = θ̃s
w.

16.3 A PRIORI ESTIMATES NEAR Γsonic IN THE
SUPERSONIC-AWAY-FROM-SONIC CASE

All the estimates in §11.4 hold in this case without change. Specifically, we have

Proposition 16.3.1. There exists σ ∈ (0, ε02 ) depending only on (ρ0, ρ1, γ) and,
for any α ∈ (0, 1), there exists C > 0 depending only on (ρ0, ρ1, γ, α) such that
the following estimates hold: Let lso > 0. Define

ε = min{σ, l2so}. (16.3.1)

If θw ∈ [θd
w,

π
2 ) is a supersonic wedge angle that satisfies

y
(θw)
P1
− θw ≥ lso,
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and ϕ is an admissible solution of Problem 2.6.1 with the wedge angle θw,
then ψ = ϕ− ϕ(θw)

2 satisfies

‖ψ‖(par)
2,α,Ωε

≤ C, (16.3.2)

where Ωε is defined by (16.1.3). Moreover, the shock function f̂(x) from (11.2.38)
satisfies

‖f̂ − f̂ (θw)
0 ‖(par)

2,α,(0,ε) ≤ C, (16.3.3)

where f̂ (θw)
0 is the function defined in (11.2.8).

Proof. The same proof of Proposition 11.4.3 works for Proposition 16.3.1 with-
out change by using Proposition 16.2.1. We also note that the constants in
Proposition 16.2.1 can be chosen uniformly for all supersonic angles θw ∈ [θd

w,
π
2 )

by Corollary 16.2.2.

Next we note that (16.1.12) and the continuous dependence of the parameters
of state (2) on θw ∈ [θd

w,
π
2 ] imply that, for every δ ∈ (0, 1),

l(δ) := inf
θw∈Jw(δ)

(y
(θw)
P1
− θw) > 0, (16.3.4)

where
Jw(δ) :=

{
θw ∈ [θd

w,
π

2
] :
|Dϕ2(P0)|

c2
(θw) ≥ 1 + δ

}
.

Then Proposition 16.3.1 implies

Proposition 16.3.2. Let δ ∈ (0, 1). There exists ε ∈ (0, ε02 ) depending only on
(ρ0, ρ1, γ, δ) such that the following estimates hold: For any α ∈ (0, 1), there is
C > 0 depending only on (ρ0, ρ1, γ, α) so that, if θw ∈ [θd

w,
π
2 ) satisfies

|Dϕ2(P0)|
c2

(θw) ≥ 1 + δ (16.3.5)

and ϕ is an admissible solution of Problem 2.6.1 with the wedge angle θw, then
ψ = ϕ − ϕ2 satisfies (16.3.2), and the shock function f̂(x) defined in (11.2.38)
satisfies (16.3.3).

Proof. We apply Proposition 11.4.3 with lso = l(δ) defined by (16.3.4) to con-
clude the proof.

16.4 A PRIORI ESTIMATES NEAR Γsonic IN THE
SUPERSONIC-NEAR-SONIC CASE

The estimates of Proposition 16.3.2 depend on δ ∈ (0, 1) in (16.3.5). Thus,
in order to obtain the uniform estimates in Ωε with uniform ε > 0 for all the
admissible solutions for θw ∈ (θd

w,
π
2 ) satisfying |Dϕ2(P0)|

c2
(θw) > 1, we employ
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a different technique to obtain the estimates near Γsonic for all the admissible
solutions with θw ∈ (θd

w,
π
2 ) satisfying

|Dϕ2(P0)|
c2

(θw) ∈ (1, 1 + δP0), (16.4.1)

where δP0 ∈ (0, 1) will be determined below. Combining these estimates with
Proposition 16.3.2, we obtain the uniform estimate in Ωε for all the supersonic
reflection solutions.

16.4.1 Main steps of the estimates near Γshock in the
supersonic-near-sonic case

The main issue here is that, if δ := |Dϕ2(P0)|
c2

(θw) − 1 becomes small, then the

length of Γsonic (or, equivalently, y(θw)
P1
− θw in the (x, y)–coordinates) becomes

small, so that Proposition 16.3.1 gives the estimates in Ωε with ε→ 0 as δ → 0.
Thus, we do not obtain the uniform estimates near Γsonic for all the supersonic
reflection solutions from Proposition 16.3.1.

In order to obtain these estimates, we argue in this section as follows: If
δ = |Dϕ2(P0)|

c2
(θw)− 1 is small, then

(i) Using Proposition 16.3.1, we obtain the estimates in Ωb2so , where

bso(θw) := y
(θw)
P1
− θw. (16.4.2)

(ii) We note that, in the (x, y)–coordinates,

Ωε0 ⊂ {0 < x < ε0, 0 < y − θw < bso + kx}, (16.4.3)

where k > 1 can be chosen uniformly for all the supersonic reflection
solutions. Then we show that, for each integer m ≥ 3 and all bso ∈ (0, b∗so)
for sufficiently small b∗so depending on (ρ0, ρ1, γ,m), solution ψ(x, y) has a
growth xm in Ωε ∩ {x > b2so

10 }:

0 ≤ ψ(x, y) ≤ Cxm in Ωε ∩ {x >
b2so
10
}

for some ε > 0 and C depending only on (ρ0, ρ1, γ,m). In the proof,
we use the smallness of bso and the elliptic degeneracy of the equation
near Γsonic. The main point of this estimate is that bso can be arbitrarily
close to zero, but C is independent of bso. On the other hand, we note
that this estimate cannot be extended to the whole region Ωε (i.e., the
condition that x >

b2so
10 cannot be dropped), since Dxxψ(0, y) = 1

γ+1 for

any y ∈ [θw, y
(θw)
P1

) by Theorem 14.1.2.
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(iii) Using the algebraic growth, with m = 4, we can obtain the estimates of ψ
in Ωε ∩ {x > b2so

10 } by using a different scaling from the one in Proposition

16.3.1: From (16.4.3), for z0 = (x0, y0) ∈ Ωε∩{ b
2
so

5 < x < ε} and ρ ∈ (0, 1],
rectangle Rz0,ρ defined by (11.4.7) does not satisfy (11.4.9) in general (i.e.,
the rectangle does not fit into Ωε). On the other hand, we note that

{0 < x < ε0, 0 < y − θw < bso +
x

k
} ⊂ Ωε0 ,

where k > 1 can be chosen uniformly for all the supersonic reflection
solutions. Since bso can be arbitrarily close to zero, then, for z0 = (x0, y0),
we have to use a rectangle with the side length ∼ x0 (i.e., proportional to
x0) in the y–direction in order to have a property similar to (11.4.9). Also,
from the degenerate ellipticity structure (11.2.43) of the equation for the
regular reflection solutions, we need to have a rectangle in which the ratio
of the side lengths in the x– and y–directions is ∼ √x0, in order to obtain
a uniformly elliptic equation after rescaling the rectangle into a square.
Thus, for (x0, y0) ∈ Ωε ∩ {x > b2so

10 }, we consider the rectangle:

R̂(x0,y0) := {|x− x0| <
x

3/2
0

10k
, |y − y0| <

x0

10k
} ∩ Ω.

Such rectangles fit into Ω, i.e., for (x0, y0) ∈ Γwedge∩Ωε, the corresponding
rectangle R̂(x0,y0) does not intersect with Γshock and, for (x0, y0) ∈ Γshock∩
Ωε, the corresponding rectangle R̂(x0,y0) does not intersect with Γwedge.
Moreover, note that the ratio of the side lengths in the x– and y–directions
of R̂(x0,y0) is 10k

√
x0, i.e., the same as for the rectangles in Proposition

16.3.1 up to a multiplicative constant. From this, rescaling R̂(x0,y0) to the
portion of square (−1, 1)2 := (−1, 1)× (−1, 1):

Q̂(x0,y0) := {(S, T ) ∈ (−1, 1)2 : (x0 + x
3
2
0 S, y0 +

x0

10k
T ) ∈ Ω},

we obtain a uniformly elliptic equation for the function:

ψ(x0,y0)(S, T ) :=
1

x4
0

ψ(x0 + x
3
2
0 S, y0 +

x0

10k
T ) for (S, T ) ∈ Q̂(x0,y0).

The algebraic growth of ψ with m = 4 implies the uniform estimates in
L∞(Q̂(x0,y0)) of ψ(x0,y0)(·) for any (x0, y0) ∈ Ωε∩{x > b2so

10 }. Then, arguing
as in Proposition 16.3.1, we obtain the estimates of ψ in Ωε ∩ {x > b2so

10 } in
the appropriate weighted and scaled C2,α–norms, which are in fact stronger
than the estimates in Proposition 16.3.1.

In the rest of this section, we assume that ϕ is an admissible solution with
θw satisfying (16.4.1) with δP0

to be specified.
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16.4.2 Algebraic growth of ψ in Ωε ∩ {x > b2so
10 } in the

supersonic-near-sonic case

We work in the (x, y)–coordinates (11.1.1)–(11.1.2) in Ωε defined by (11.2.16),
where ε ∈ (0, ε0) will be chosen below. Then ψ = ϕ − ϕ2 satisfies equation
(11.1.4)–(11.1.5) in Ωε.

For the growth estimates of the solution, we consider equation (11.1.4)–
(11.1.5) as a linear equation:

Lψ :=
2∑

i,j=1

aij(x, y)Dijψ +
2∑

i

ai(x, y)Diψ = 0 in Ωε, (16.4.4)

which is obtained by plugging ψ into the coefficients of (11.1.4), where D =
(D1, D2) := (∂x, ∂y) and Dij = DiDj .

From the explicit expressions of the coefficients (aij , ai) given by (11.1.4)–
(11.1.5), using Lemma 11.2.6 and Corollary 11.2.9 with Proposition 16.1.4, we
obtain the following bounds in Ωε for sufficiently small ε > 0:

x ≤ a11(x, y) ≤ 3x,
1

C
≤ a22(x, y) ≤ C,

|(a12, a2)(x, y)| ≤ Cx, a1(x, y) ≤ 0,
(16.4.5)

where ε and C depend only on (ρ0, ρ1, γ). Also, equation (16.4.5) is strictly ellip-
tic in Ωε by the properties of admissible solutions in Definition 15.1.1 combined
with Definition 8.1.1(iii).

By Proposition 16.2.1, the boundary condition for ψ on Γshock is (11.3.33),
and B1(p, z, x, y) satisfies (11.3.35). Then we can write (11.3.33) as a linear
condition:

Nψ := b(x, y) ·Dψ + b0(x, y)ψ = 0 on Γshock ∩ ∂Ωε, (16.4.6)

where b = (b1, b2) and b0 are given by

(b, b0)(x, y) =

∫ 1

0

(Dp, Dz)B1(tDψ(x, y), tψ(x, y), x, y)dt.

By Proposition 16.2.1 with Corollary 16.2.2, Lemma 11.3.7, and (11.3.36), using
Lemma 11.2.6 and Corollary 11.2.9 with Proposition 16.1.4, and reducing ε if
necessary, we have

−C ≤ bi ≤ −
1

C
on Γshock ∩ ∂Ωε for i = 0, 1, 2. (16.4.7)

Also, the boundary condition (16.4.6) is strictly oblique in the sense that

b · ν(xy)
sh > 0 on Γshock ∩ ∂Ωε, (16.4.8)
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where ν(xy)
sh is the unit normal to curve Γshock expressed in the (x, y)–coordinates

and directed into the interior of Ω, as defined in Lemma 11.3.8. The obliqueness
condition (16.4.8) is obtained by Proposition 16.2.1 and Lemma 11.3.8.

The boundary condition: ∂νψ = 0 on Γwedge in the ξ–coordinates, expressed
in the (x, y)–coordinates, is

D2ψ = 0 on Γwedge ∩ ∂Ωε. (16.4.9)

Also, ψ satisfies

ψ = 0 on Γsonic, (16.4.10)

ψ ≤ C on ∂Ωε ∩ {x = ε}, (16.4.11)

where the last bound follows from Corollary 11.2.9 with Proposition 16.1.4.
We also note that, from structure (11.2.38)–(11.2.40) of Ωε for any supersonic

admissible solution, there exists k > 0 depending only on (ρ0, ρ1, γ) such that

Ωε ⊂ {0 < x < ε0, 0 < y − θw < bso + kx}. (16.4.12)

First we prove the algebraic growth estimate for the solutions of the linear
problem (16.4.4), (16.4.6), and (16.4.9)–(16.4.10) in a domain of the appropriate
structure.

Lemma 16.4.1. Let ε > 0, θw ∈ R, and domain Ωε be of the structure as
in (11.2.38)–(11.2.39), and let (11.2.40) hold. Let ψ ∈ C(Ωε) ∩ C1(Ωε ∩ {0 <
x < ε})∩C2(Ωε) satisfy (16.4.4), (16.4.6), and (16.4.9)–(16.4.10). Let equation
(16.4.4) be strictly elliptic in Ωε \Γsonic, and let the boundary condition (16.4.6)
be strictly oblique on Γshock ∩ ∂Ωε in the sense of (16.4.8). Let (16.4.5) and
(16.4.7) hold. Denote

bso := yP1
− yP4

with the notations from (11.2.39). Then, for every integer m ≥ 3, there exist
ε̂, b∗so > 0, and Ĉ > 0 depending only on m and the constants in (11.2.40),
(16.4.5), and (16.4.7) such that, if ε ≤ ε̂ and bso ≤ b∗so,

ψ(x, y) ≤ Ĉmax∂Ωε∩{x=ε} ψ

εm
xm in Ωε ∩ {x >

b2so
10
}. (16.4.13)

Proof. We divide the proof into four steps.
1. We note that structure (11.2.38)–(11.2.40) of Ωε implies that (16.4.12)

holds with k depending only on the constants in (11.2.40).
Fix integer m ≥ 3. In the proof, constants (C,L,M,N, ε̂) depend only on m

and the constants in (11.2.40), (16.4.5), and (16.4.7). Also, L,M,N ≥ 1.
Furthermore, it is convenient to shift the y–coordinate by replacing y − θw

by y. This does not affect our conditions, but in fact means that we can assume
without loss of generality that

θw = 0.
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Then (16.4.12) is replaced by

Ωε ⊂ {0 < x < ε0, 0 < y < bso + kx}. (16.4.14)

2. We now show that, for an appropriate choice of constants M,L > 0 and
for sufficiently small bso, the function:

v(x, y) = (x+Mb2so)m − L(x+Mb2so)m−1y2 (16.4.15)

is a positive supersolution of equation (16.4.4) in Ωε with the boundary condition
(16.4.6) on Γshock ∩ ∂Ωε. From this, we show that ψ ≤ Bv in Ωε for sufficiently
large B depending on the data and (ε,m). This implies (16.4.13).

In the following estimates, the dependence of the constants is as follows: We
denoteM = NL and choose large L,N > 1 depending only on the data, i.e., the
constants in (11.2.40), (16.4.5), and (16.4.7). Then we choose ε, bso > 0 small
depending on (L,M,N) (hence on the data), where the smallness condition is
explicitly

bso ≤
1

LMN
, ε ≤ 1

LN
, (16.4.16)

which implies especially that bso ≤ 1
N .

Thus, we employ (16.4.14) to obtain that, for (x, y) ∈ Ωε,

1

(x+Mb2so)m−1
v(x, y) = x+Mb2so − Ly2

≥ x+Mb2so − L(bso + kx)2

≥ x+Mb2so − 2Lb2so − 2Lk2x2.

For L,N ≥ 1, choosing M = NL ≥ 1, assuming that ε is small so that (16.4.16)
holds, choosing N = 4 max{1, k2}, and using that x ∈ (0, ε) in Ωε, we have

v(x, y) ≥ 1

2
(x+Mb2so)m > 0. (16.4.17)

Similar estimates imply that, for (x, y) ∈ Ωε,

vx(x, y) = (x+Mb2so)m−2
(
m(x+Mb2so)− (m− 1)Ly2

)

≥ m(x+Mb2so)m−2
(
x+Mb2so − CL(bso + kx)2

)

≥ m(x+Mb2so)m−2
(
x+Mb2so − 2CLb2so − 2CLk2x2

)
,

by using (16.4.14). Choosing N large and ε satisfying (16.4.16), we have

vx(x, y) ≥ m

2
(x+Mb2so)m−1 > 0. (16.4.18)
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Similarly,

vxx(x, y) = (x+Mb2so)m−3
(
m(m− 1)(x+Mb2so)− (m− 1)(m− 2)Ly2

)

≥ m(m− 1)(x+Mb2so)m−3
(

(x+Mb2so)− CL(bso + kx)2
)

≥ m(m− 1)

2
(x+Mb2so)m−2 ≥ 0,

by further increasing N if necessary and choosing ε satisfying (16.4.16). Then
we conclude

|vxx(x, y)| ≤ m(m− 1)(x+Mb2so)m−2. (16.4.19)

Next we estimate (vxy, vyy, vy). For (x, y) ∈ Ωε, using (16.4.14) and then
(16.4.16), which implies particularly that 0 ≤ bso + kx ≤ C

LN in Ωε, we have

|vxy(x, y)| = | − 2(m− 1)L(x+Mb2so)m−2y|
≤ 2(m− 1)L(x+Mb2so)m−2(bso + kx)

≤ C

N
(x+Mb2so)m−2,

(16.4.20)

vyy(x, y) = −2L(x+Mb2so)m−1, (16.4.21)

|vy(x, y)| = | − 2L(x+Mb2so)m−1y|
≤ 2L(x+Mb2so)m−1(bso + kx)

≤ C

N
(x+Mb2so)m−1.

(16.4.22)

3. Now combining the estimates of (v,Dv,D2v) above with (16.4.5) and
(16.4.7), we show that v is a supersolution of equation (16.4.4) and the boundary
condition (16.4.6) as follows:

First, we consider equation (16.4.4). For (x, y) ∈ Ωε, using (16.4.5), (16.4.16),
and the estimates of (v,Dv,D2v), we see that

(i) a22(x, y)vyy(x, y) ≤ −L
C

(
x+Mb2so

)m−1;

(ii) a1(x, y)vx(x, y) ≤ 0;

(iii) The absolute value of the other terms of Lv is estimated by C(x+Mb2so)m−1:

|a11(x, y)vxx(x, y)| ≤ Cx(x+Mb2so)m−2 ≤ C(x+Mb2so)m−1,

|a12(x, y)vxy(x, y)| ≤ C

N
x(x+Mb2so)m−2 ≤ C(x+Mb2so)m−1,

|a2(x, y)vy(x, y)| ≤ C

N
x(x+Mb2so)m−1 ≤ C(x+Mb2so)m−1.
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Therefore, we have

Lv ≤ C(x+Mb2so)m−1 − L

C
(x+Mb2so)m−1 < 0

by choosing L large. That is, v is a supersolution of equation (16.4.4).
Next we consider the boundary condition (16.4.6). For (x, y) ∈ Γshock∩∂Ωε,

using (16.4.7) and estimates (16.4.18) and (16.4.22) of Dv, and noting that
b3v ≤ 0, we have

N v ≤ − 1

C

(
x+Mb2so

)m−1
+
C

N

(
x+Mb2so

)m−1
< 0,

by increasing N .
4. Now, if ε ≤ ε̂ := 1

LN , then, choosing

B = max
{

0,
2

εm
max

∂Ωε∩{x=ε}
ψ
}
≥ 0

and using (16.4.17), we have

Bv ≥ ψ on ∂Ωε ∩ {x = ε}.

Also, from the explicit expression of v and the boundary conditions (16.4.9)–
(16.4.10) satisfied by ψ, and using structure (11.2.38)–(11.2.39) of the domain,
we have

Bv = 0 = ψ on Γsonic ⊂ {x = 0},
vy = 0 = ψy on Γwedge ⊂ {y = 0},

where we have used the shifted coordinates, i.e., set θw = 0. From the maximum
principle (where we have used the strict ellipticity of equation (16.4.4), the strict
obliqueness of the boundary condition (16.4.6), and the property that b3 < 0),
it follows that Bv ≥ ψ in Ωε. Now (16.4.13) is proved.

In order to apply Lemma 16.4.1 to the estimates for regular reflection so-
lutions, we first note the following facts: From Propositions 11.2.8 and 16.1.4
and the continuous dependence of the parameters of state (2) on θw ∈ [θd

w,
π
2 ],

it follows that, for any θw ∈ (θd
w,

π
2 ] satisfying |Dϕ2(P0)|

c2
(θw) > 1, we have

Γ
(θw)
sonic = {(0, y) : θw < y < y

(θw)
P1
}, (16.4.23)

where y(θw)
P1
− θw > 0 and y

(θ(i)
w )

P1
− θ(i)

w → 0 when |Dϕ2(P0)|
c2

(θ
(i)
w ) → 1+. From

this, again using the continuous dependence of the parameters of state (2) on
θw ∈ [θd

w,
π
2 ], we find that, for every δ ∈ (0, 1), denoting

s(δ) := sup
θw∈Gw(δ)

(y
(θw)
P1
− θw) (16.4.24)
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with
Gw(δ) :=

{
θw ∈ [θd

w,
π

2
] : 1 <

|Dϕ2(P0)|
c2

(θw) < 1 + δ
}
,

we obtain that s(δ) > 0 for any δ ∈ (0, 1) and

lim
δ→0+

s(δ) = 0. (16.4.25)

Proposition 16.4.2. For every integer m ≥ 3, there exist small δP0
, ε > 0 and

large C, depending only on (ρ0, ρ1, γ,m), such that, if θw ∈ (θd
w,

π
2 ) satisfies

(16.4.1) and ϕ is an admissible solution of Problem 2.6.1 with the wedge angle
θw, then

0 ≤ ψ(x, y) ≤ Cxm in Ωε ∩ {x >
b2so(θw)

10
}, (16.4.26)

where bso is defined by (16.4.2).

Proof. As we have shown at the beginning of §16.4.2, there exists ε > 0 depend-
ing only on (ρ0, ρ1, γ) such that any supersonic reflection solution ψ satisfies
(16.4.4), (16.4.6), and (16.4.9)–(16.4.11) in Ωε. Moreover, by Proposition 16.1.4,
Ωε is of structure (11.2.38)–(11.2.39), and equation (16.4.4) is strictly elliptic
in Ωε \ Γsonic. Also, by Proposition 16.2.1 and Corollary 16.2.2, the boundary
condition (16.4.6) is strictly oblique on Γshock ∩ ∂Ωε, and estimates (11.2.40),
(16.4.5), and (16.4.7) hold with the constants depending only on (ρ0, ρ1, γ).

Fix m ≥ 3. Then this and the constants in (11.2.40), (16.4.5), and (16.4.7)
for supersonic reflection solutions fix the corresponding constants ε̂, b∗so > 0, and
Ĉ > 0 in Lemma 16.4.1. We reduce ε if necessary by replacing it with min{ε, ε̂}.

Furthermore, from (16.4.24)–(16.4.25), there exists δP0 > 0 depending only
on (ρ0, ρ1, γ) such that s(δP0) ≤ b∗so. Then, using Lemma 16.4.1 and (16.4.11),
we conclude the proof.

16.4.3 Regularity and uniform a priori estimates of solutions

Using the growth estimate in Proposition 16.4.2 (with m = 4), we now prove
the a priori estimates of solutions in the weighted and scaled C2,α spaces. The
argument follows the proof of Proposition 11.4.3, but with a different scaling.
Since, in §16.5, we will also need similar estimates with another scaling, we
first prove a more general version of the estimates in Steps 2–4 of the proof
of Proposition 11.4.3, which allows for various scalings, including the one in
Proposition 11.4.3 and the two cases that we will need below. Moreover, note
that we prove these results for ψ that satisfies only the equation, the boundary
conditions, and the growth conditions in a domain of an appropriate shape,
without assumption on ψ to be a regular reflection solution. This will allow us
to use these results later for solving the iteration problem.

Lemma 16.4.3. Let θw ∈ R and ε∗ > 10xP1
≥ 0, and let Ωε∗ be of structure

(16.1.10) and (16.1.13) with f̂(0) ≥ θw, which includes both the supersonic and
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subsonic reflection cases by Proposition 16.1.4. Note that x ≡ xP1
on Γsonic.

Denote
dso(x) := x− xP1 . (16.4.27)

Then dso > 0 in Ωε∗ , and dso = 0 on Γsonic by (16.1.10).
Let g, h ∈ C([xP1

, xP1
+ ε∗]) and satisfy that, on (xP1

, xP1
+ ε∗],

g(·) and h(·) are monotone increasing, (16.4.28)

0 < h(x) ≤ dso(x)

4
√
x
, (16.4.29)

0 < g(x) ≤ x 3
2h(x), (16.4.30)

g(x)

g(x− dso(x)
2 )

≤M,
h(x)

h(x− dso(x)
2 )

≤M. (16.4.31)

Let ε ∈ (0, ε
∗

2 ), and let ψ ∈ C(Ω2ε)∩C1(Ω2ε∩{xP1 < x < xP1+2ε})∩C2(Ω2ε)
satisfy the equation:

2∑

i,j=1

Aij(Dψ,ψ, x, y)D2
ijψ +

2∑

i=1

Ai(Dψ,ψ, x, y)Diψ = 0, (16.4.32)

where A12 = A21, with (Aij , Ai)(p, z, x, y) satisfying

λ|κ|2 ≤
2∑

i,j=1

Aij(Dψ(x, y), ψ(x, y), x, y)
κiκj

x2− i+j2

≤ 1

λ
|κ|2 (16.4.33)

for all (x, y) ∈ Ω2ε and κ = (κ1, κ2) ∈ R2. Assume also that, for each (p, z) ∈
R2 × R, (x, y) ∈ Ω2ε, and i, j = 1, 2,

|Aij(p, z, x, y)| ≤Mx2− i+j2 ,

‖Ai‖L∞(R2×R×Ω2ε) + ‖D(p,z)(Aij , Ai)‖L∞(R2×R×Ω2ε) ≤M,

|x i+j−3
2 h(x)DxAij(p, z, x, y)|+ |x i+j2 −2h(x)DyAij(p, z, x, y)| ≤M,

|x i−1
2 h2(x)DxAi(p, z, x, y)|+ |x i2−1h2(x)DyAi(p, z, x, y)| ≤M.

(16.4.34)

Let ψ satisfy the boundary conditions:

ψx = b(ψy, ψ, x, y) on Γshock ∩ ∂Ω2ε, (16.4.35)

ψ = G(x, y) on Γshock ∩ ∂Ω2ε, (16.4.36)

ψy = 0 on Γwedge ∩ ∂Ω2ε. (16.4.37)

Assume that b(p2, z, x, y) satisfies (11.3.41)–(11.3.42) on Ω2ε.
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Denote ΩNδ := {(x, y) : x ∈ (xP1
, xP1

+ δ), y ∈ (θw, f̂(x) + 1
N )} for N > 1

and δ ∈ (0, ε∗]. Assume that G ∈ C1,1(ΩM2ε) and satisfies

‖G‖1,1,ΩM2ε ≤M, DyG ≤ −
1

M
in ΩM2ε . (16.4.38)

Assume that xbot ∈ [xP1 , xP1 + ε) and

|ψ(x, y)| ≤Mg(x) for all (x, y) ∈ Ω2ε ∩ {dso(x) >
dso(xbot)

2
}. (16.4.39)

For z0 = (x0, y0) ∈ Ωε ∩ {x > xbot} and ρ ∈ (0, 1], consider the rectangle:

R̃z0,ρ := {(x, y) : |x− x0| < ρ
√
x0h(x0), |y − y0| < ρh(x0)},

R̂z0,ρ := R̃z0,ρ ∩ Ω2ε.
(16.4.40)

We assume that f̂(·), h(·), and ε are such that

R̂zw,1 ∩ Γshock = ∅ for all zw = (x, 0) ∈ Γwedge ∩ {xbot < x < xP1 + ε},
R̂zs,1 ∩ Γwedge = ∅ for all zs = (x, f̂(x)) ∈ Γshock ∩ {xbot < x < xP1

+ ε}.
(16.4.41)

Furthermore, introducing (S, T ) by the invertible change of variables:

(x, y) = (x0 +
√
x0 h(x0)S, y0 + h(x0)T ), (16.4.42)

we find that there exists Q(z0)
ρ ⊂ Qρ := (−ρ, ρ)2 such that

R̂z0,ρ =
{

(x0 +
√
x0 h(x0)S, y0 + h(x0)T ) : (S, T ) ∈ Q(z0)

ρ

}
. (16.4.43)

Define

ψ(x0,y0)(S, T ) :=
1

g(x0)
ψ(x0 +

√
x0 h(x0)S, y0 + h(x0)T ) in Q(z0)

1 .

(16.4.44)
Then there exists ε∗1 ∈ (0, ε∗) such that, if ε ≤ ε∗1

2 and xP1
≤ ε∗1

2 ,

‖ψ(z0)‖
C2,α(Q

(z0)

1/100
)
≤ C for all z0 ∈ Ωε ∩ {x > xbot} (16.4.45)

for each α ∈ (0, 1), where ε∗1 depends only on M and the constants in conditions
(11.3.41), (16.1.13), and (16.4.33)–(16.4.34), and C depends on α in addition
to the previous parameters.

Proof. We divide the proof into five steps.
1. Note that, in the proof of Proposition 11.4.3, we have considered a specific

case: xP1
= xbot = 0, h(x) =

√
x

4 , g(x) = x2

4 , and M = max{4, L}, where L is
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from (11.2.44). This choice of M is done by the argument that M = 4 works
for (16.4.31) so that M = max{4, L} works for both (16.4.31) and (16.4.39).

In order to prove this lemma, we repeat the proof of Proposition 11.4.3 with
only notational changes in the general case from the specific case considered
in Proposition 11.4.3, which can be achieved since our conditions imply that
the argument works. Below, we sketch this argument and do some explicit
calculations to illustrate this.

In this proof, all constants C, ε, and xP1
depend only on M and the con-

stants in the conditions in (16.1.13), (16.4.33)–(16.4.34), and (11.3.41). In some
estimates, in addition to these parameters, C depends on α ∈ (0, 1), which is
written as C(α) in that case.

2. From (16.4.29) and (16.4.40), it follows that, for all z0 := (x0, y0) ∈ Ωε
and ρ ∈ (0, 1],

R̂z0,ρ ⊂ Ω ∩ {(x, y) : x0 −
dso(x0)

4
< x < x0 +

dso(x0)

4
}

⊂ Ω ∩ {(x, y) :
3x0

4
< x <

5x0

4
} ⊂ Ω2ε.

(16.4.46)

In particular,
R̂z,ρ ∩ Γsonic = ∅ for all z ∈ Ω2ε.

Next, as in the proof of Proposition 11.4.3, we consider three cases of rect-
angles R̂z0,ρ as in Step 1 of the proof of Proposition 11.4.3:

(i) R̂z0,1/10 for z0 ∈ Ωε ∩ {x > xbot} satisfying R̂z0,1/10 = R̃z0,1/10;

(ii) R̂z0,1/2 for z0 ∈ Γwedge ∩ {xbot < x < xP1 + ε};

(iii) R̂z0,1 for z0 ∈ Γshock ∩ {xbot < x < xP1
+ ε}.

Then, using structure (16.1.10) and (16.1.13) of Ω2ε, and the properties in
(16.4.41) and (16.4.46) of rectangles R̂z0,ρ, we see that domains Q(z0)

ρ for the
(S, T )–variables, as defined in (16.4.43), take the following form in Cases (i)–(iii):

(i) Q(z0)
ρ = Qρ for ρ ∈ (0, 1

10 ];

(ii) Q(z0)
ρ = Qρ ∩ {T > 0} for ρ ∈ (0, 1];

(iii) Using (16.1.10),

Q(z0)
ρ =

{
(S, T ) ∈ Qρ : T < F (z0)(S)

}
for ρ ∈ (0, 1],

where

F (z0)(S) =
f̂(x0 +

√
x0 h(x0)S)− f̂(x0)

h(x0)
.
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Then, using (16.1.13), for any ρ ∈ (0, 1],

‖F (z0)‖C0,1([−ρ,ρ]) ≤ C
√
x0 ≤

1

10
, (16.4.47)

where the last inequality is obtained by choosing ε∗1 sufficiently small and
recalling that xP1 , ε ∈ [0, ε∗1]. From (16.4.47) and since F (z0)(0) = 0, we
obtain that, for any ρ ∈ (0, 1],

F (z0)(S) > −ρ for all S ∈ (−ρ, ρ).

Combining this with (16.4.40) and (16.4.43), and further reducing ε1 if
necessary, we have

Q(z0)
ρ =

{
(S, T ) : −ρ < S < ρ, −ρ < T < F (z0)(S)

}
.

3. Then, similarly to Steps 2–4 of the proof of Proposition 11.4.3, we obtain
the uniformly elliptic equation for the function in (16.4.44) in Q

(z0)
ρ for Cases

(i)–(iii), and the boundary conditions for Cases (ii)–(iii).
Specifically, using that

ψx(x, y) =
g(x0)√
x0 h(x0)

ψ
(z0)
S (S, T ), ψy(x, y) =

g(x0)

h(x0)
ψ

(z0)
T (S, T )

for (x, y) given by (16.4.42), expressing similarly the second derivatives of ψ,
substituting them into equation (16.4.32), and dividing by g(x0)

[h(x0)]2 , we obtain
the equation for ψ(x0,y0)(S, T ), which is of the form:

2∑

i,j=1

A
(z0)
ij (Dψ(z0), ψ(z0), S, T )Dijψ

(z0)

+
2∑

i=1

A
(z0)
i (Dψ(z0), ψ(z0), S, T )Diψ

(z0) = 0

(16.4.48)

with

A
(z0)
ij (p, z, S, T ) = x

i+j
2 −2

0 Aij(
g(x0)√
x0 h(x0)

p1,
g(x0)

h(x0)
p2, g(x0)z, x, y),

A
(z0)
i (p, z, S, T ) = h(x0)x

i
2−1
0 Ai(

g(x0)√
x0 h(x0)

p1,
g(x0)

h(x0)
p2, g(x0)z, x, y),

(16.4.49)

where (x, y) are given by (16.4.42).
Then, similarly to the argument in Step 2 of the proof of Proposition 11.4.3,

we find that properties (11.4.17)–(11.4.18) hold in the present case, in the re-
spective (S, T )–regions Q(z0)

ρ for Cases (i)–(iii). Indeed:
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(a) (16.4.33) implies (11.4.17);

(b) (16.4.34), combined with the assumptions of this lemma regarding the scal-
ing, implies (11.4.18) in the present case: For (x, y) given by (16.4.42) with
|S|, |T | ≤ 1, we obtain that, by (16.4.29),

|x− x0| <
dso(x0)

4
≤ x0

4
. (16.4.50)

Then, using that (x, y) in (16.4.49) given by (16.4.42), we find from (16.4.34)
that

|A(z0)
11 (p, z, S, T )| = 1

x0

∣∣A11(
g(x0)√
x0 h(x0)

p1,
g(x0)

h(x0)
p2, g(x0)z, x, y)

∣∣

≤ 1

x0
Cx ≤ C,

|Dp1A
(z0)
11 (p, z, S, T )|

=
1

x0

g(x0)√
x0 h(x0)

|Dp1
A11(

g(x0)√
x0 h(x0)

p1,
g(x0)

h(x0)
p2, g(x0)z, x, y)|

≤ C g(x0)

x
3/2
0 h(x0)

≤ C,

where constant C above may change at each occurrence, and we have also
used (16.4.30) in the last estimate. Moreover, using (16.4.28)–(16.4.31), we
obtain from (16.4.34) and (16.4.50) that

|DTA
(z0)
11 (p, z, S, T )|

=
h(x0)

x0

∣∣∣DyA11(
g(x0)√
x0 h(x0)

p1,
g(x0)

h(x0)
p2, g(x0)z, x, y)

∣∣∣

≤ Ch(x0)

x0

x

h(x)
≤ C,

|DSA
(z0)
12 (p, z, S, T )|

= h(x0)
∣∣∣DxA12(

g(x0)√
x0h(x0)

p1,
g(x0)

h(x0)
p2, g(x0)z, x, y)

∣∣∣

≤ Ch(x0)

h(x)
≤ C,

|A(z0)
1 (p, z, S, T )| ≤ Ch(x0)√

x
≤ C dso(x0)

4
√
x0x

≤ C
√
x0√
x
≤ C.

The other estimates in (11.4.18) are obtained similarly.

4. Furthermore, from (16.4.39), using (16.4.31) and (16.4.46), and recalling
that g(x) is an increasing function, we have

|ψ(z0)| ≤ C. (16.4.51)



650 CHAPTER 16

Now, repeating directly the argument in Steps 2–3 of the proof of Proposition
11.4.3, we obtain estimate (11.4.19) for Case (i), and estimate (11.4.21) for Case
(ii) for each α ∈ (0, 1), with constants C(α).

5. It remains to discuss Case (iii). The rescaled boundary conditions on
Γshock for Case (iii) are the following: Since ψ satisfies (16.4.35), the function
in (16.4.44) satisfies

∂Sψ
(z0) =

√
x0 b

(z0)(∂Tψ
(z0), ψ(z0), S, T ) on Γ

(z0)
shock, (16.4.52)

where Γ
(z0)
shock is given by (11.4.25),

b(z0)(p2, z, S, T ) =
h(x0)

g(x0)
b (

g(x0)

h(x0)
p2, g(x0)z, x, y) on Γ

(z0)
shock, (16.4.53)

and (x, y) are given by (16.4.42). From (11.3.41)–(11.3.42) on Ω2ε, combined
with (16.4.29)–(16.4.30), it follows that b(z0) on Γ

(z0)
shock satisfies (11.4.28).

Now, arguing as in Step 4 of the proof of Proposition 11.4.3, we obtain
(11.4.29) with β ∈ (0, 1) and C depending only on M and the constants in
conditions (16.1.13), (16.4.33)–(16.4.34), and (11.3.41).

This estimate allows us to improve the regularity of the free boundary Γ
(z0)
shock.

To see this, we denote

G(z0)(S, T ) =
1

g(x0)
G(x0 +

√
x0 h(x0)S, f(x0) + h(x0)T ).

Assume that ε ≤ 1
4 and xP1

≤ 1
4 . Then, from (16.4.38), using (16.4.30) and

x0 ∈ (xP1
, xP1

+ ε), we have

|DG(z0)| ≤Mh(x0)

g(x0)
, DTG

(z0) ≤ − h(x0)

Mg(x0)
≤ − 1

M
x
− 3

2
0 in ΩM2ε . (16.4.54)

From this and (11.4.29), and since x0 ∈ (xP1
, xP1

+ ε), we obtain that, for
sufficiently small ε and xP1

(depending only on M and constants C and β in
(11.4.29), hence only on M and the constants in conditions (11.3.41), (16.1.13),
and (16.4.33)–(16.4.34)),

DT φ̄
(z0) ≤ − h(x0)

Mg(x0)
≤ − 1

2M
in Ω2ε, (16.4.55)

where
φ̄(z0) = G(z0) − ψ(z0).

By (16.4.36),
φ̄(z0) = 0 on Γ

(z0)
shock. (16.4.56)

Then, using (11.4.24)–(11.4.25), we have

φ̄(z0) < 0 in Q(z0)
1 . (16.4.57)
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Now we obtain (11.4.33). Indeed, it follows from (16.4.55)–(16.4.57) and
(11.4.24)–(11.4.25).

From (11.4.33), we will obtain an improved estimate of F (z0), i.e., Γ
(z0)
shock.

First, from (11.4.29), (16.4.30), and (16.4.54), we find that, for sufficiently
small ε and xP1

,

‖Dφ̄(z0)‖L∞(Ω2ε) ≤
Mh(x0)

2g(x0)
. (16.4.58)

Next, we note that

[DG(z0)]
0,β,Q

(z0)
1

≤ h(x0)

g(x0)
|h(x0)|β [DG]0,β,ΩM2ε ≤ C

|h(x0)|β+1

g(x0)
,

where we have assumed without loss of generality that xP1
+ ε < 1.

Combining this with (11.4.29) (obtained above for the present case), and
using (11.4.33) (also obtained above for the present case), (16.4.38), (16.4.55),
and (16.4.58), we have

[DSF
(z0)]0,β,[−1/2,1/2]

≤
[DSφ̄

(z0)]
0,β,Q

(z0)
1

inf
Q

(z0)
1

|DT φ̄(z0)| +
‖DSφ̄

(z0)‖
L∞(Q

(z0)
1 )

(inf
Q

(z0)
1

|DT φ̄(z0)|)2
[DT φ̄

(z0)]
0,β,Q

(z0)
1

≤ C g(x0)

h(x0)
[DG(z0) −Dψ(z0)]

0,β,Q
(z0)
1

≤ C g(x0)

h(x0)

( |h(x0)|β+1

g(x0)
+ 1
)
≤ C,

where we have used (16.4.29)–(16.4.30) in the last inequality. Now, using
(16.4.47),

‖DSF
(z0)‖C1,β([−1/2,1/2]) ≤ C,

which is estimate (11.4.34). Then, repeating the argument in the proof of Propo-
sition 11.4.3 after equation (11.4.34), we obtain (11.4.36) in the present case.
This completes the proof.

Remark 16.4.4. Let ϕ = ϕ2 +ψ be an admissible solution for the wedge angle
θw ∈ Iw(δP0), where we have used the set in (16.1.7) and δP0 from Proposition
16.1.4. It follows from Corollaries 11.2.10 and 11.2.12 with Proposition 16.1.4
that ψ satisfies an equation of form (16.4.32) in the corresponding domain Ω2ε in
(16.1.10) with coefficients (A

(mod)
ij , A

(mod)
i )(p, z, x) independent of y, satisfying

the properties in (16.4.33) and the first two lines in (16.4.34). The remain-
ing conditions in (16.4.34) depend on h(x), and we will comment on them in
each application of Lemma 16.4.3. Moreover, by Lemma 11.3.9 (via Proposi-
tion 16.2.1 and Corollary 16.2.2), ψ satisfies the boundary condition (16.4.35)
with properties (11.3.41)–(11.3.42). We note that the constants in the properties
discussed above depend only on (ρ0, ρ1, γ).
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Remark 16.4.5. The admissible solution ϕ = ϕ
(θw)
2 + ψ for the wedge angle

θw satisfies (16.4.36) with G = ϕ1 − ϕ(θw)
2 , since ϕ = ϕ1 on Γshock. Here ϕ1

and ϕ(θw)
2 are expressed in the (x, y)–coordinates (11.1.1)–(11.1.2) for θw. We

note that G = ϕ1 − ϕ
(θw)
2 satisfies condition (16.4.38) with uniform constant

M for all θw ∈ [θd
w,

π
2 ]. This follows from the facts that ϕ1 − ϕ(θw)

2 is a linear
function in the (ξ1, ξ2)–coordinates, with the parameters depending continuously
on θw ∈ [θd

w,
π
2 ], that c(θw)

2 ≥ 1
C for all θw, and from property (11.2.5) which

holds for all θw ∈ [θd
w,

π
2 ] by Lemma 16.1.2.

Using Lemma 16.4.3, we prove the a priori estimates for admissible solutions
in the supersonic-close-to-sonic case.

Proposition 16.4.6. There exist δP0
> 0 and ε ∈ (0, ε02 ) depending only

on (ρ0, ρ1, γ) and, for any α ∈ (0, 1), there exists C > 0 depending only on
(ρ0, ρ1, γ, α) such that the following estimates hold:

If θw ∈ (θd
w,

π
2 ) is a supersonic wedge angle satisfying (16.4.1) and ϕ is

an admissible solution of Problem 2.6.1 with the wedge angle θw, then ψ =

ϕ− ϕ(θw)
2 satisfies

‖ψ‖(par)
2,α,Ωε

≤ C. (16.4.59)

Moreover, the shock function f̂(x) defined in (11.2.38) satisfies

‖f̂ − f̂ (θw)
0 ‖(par)

2,α,(0,ε) ≤ C, (16.4.60)

where f̂ (θw)
0 is the function defined in (11.2.8).

Proof. In this proof, all the constants depend only on (ρ0, ρ1, γ), unless otherwise
specified. We divide the proof into three steps.

1. Let (δP0
, ε) be as in Proposition 16.4.2 with m = 4. Moreover, reducing

ε if necessary, we can assume that ε ≤ σ, where σ is from Proposition 16.3.1.
Let θw ∈ [θd

w,
π
2 ) be a supersonic wedge angle satisfying (16.4.1), and let

ϕ be an admissible solution of Problem 2.6.1 with the wedge angle θw. Let
bso = bso(θw) be defined by (16.4.2).

If b2so ≥ ε, the assertions of Proposition 16.4.6 follow from Proposition 16.3.1.
Thus, we assume that b2so < ε. In this case, Proposition 16.3.1, applied with

lso = bso, implies that, for any α ∈ (0, 1),

‖ψ‖(par)
2,α,Ωb2so

≤ C, (16.4.61)

where C depends only on (ρ0, ρ1, γ, α).

2. In this step, we estimate ψ in Ωε ∩ { b
2
so

5 < x < ε}.
From the choice of (δP0 , ε), we can apply Proposition 16.4.2 with m = 4 and

further reduce ε if necessary to obtain the growth estimate in Ω2ε:

0 ≤ ψ(x, y) ≤ Cx4 in Ω2ε ∩ {x >
b2so(θw)

10
}. (16.4.62)
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Moreover, since Ω2ε is of the structure as in (11.2.38)–(11.2.40), there exists
k > 1 such that

{0 < x < ε, 0 < y − θw < bso +
x

k
} ⊂ Ω2ε. (16.4.63)

Now we define the rectangles for the estimates in the present case. Definition
(16.4.64) is motivated by the following: From (16.4.12), for z0 = (x0, y0) ∈
Ωε ∩ { b

2
so

5 < x < ε} and ρ ∈ (0, 1], rectangle Rz0,ρ defined by (11.4.7) does not
satisfy (11.4.9) in general (i.e., the rectangle does not fit into Ωε). On the other
hand, (16.4.63) holds uniformly for k > 1. Since bso can be arbitrarily close to
zero, then, for z0 = (x0, y0), we have to use a rectangle with the side length
∼ x0 in the y–direction in order to have a property similar to (11.4.9). Also,
from the degenerate ellipticity structure (11.2.43) of the equation for regular
reflection solutions, we need to have a rectangle in which the ratio of the side
lengths in the x– and y–directions is ∼ √x0, in order to obtain a uniformly
elliptic equation after rescaling the rectangle into a square.

Thus, for z0 = (x0, y0) ∈ Ωε ∩ {x >
b2so
5 } and ρ ∈ (0, 1], we consider the

rectangle:

R̃z0,ρ := {(x, y) : |x− x0| <
ρ

10k
x

3
2
0 , |y − y0| <

ρ

10k
x0}, (16.4.64)

and set
R̂z0,ρ := R̃z0,ρ ∩ Ω2ε. (16.4.65)

Then (11.4.8) holds if ε is small. Also, using (11.2.40) and (16.4.63), and reduc-
ing ε further if necessary, we have

R̂zw,1 ∩ Γshock = ∅ for all zw = (x, 0) ∈ Γwedge ∩ {x < ε},
R̂zs,1 ∩ Γwedge = ∅ for all zs = (x, f̂(x)) ∈ Γshock ∩ {x < ε},

(16.4.66)

i.e., the rectangles in (16.4.64) fit into domain Ω2ε.
Now, using Remark 16.4.4, we can apply Lemma 16.4.3 with the following

corresponding ingredients:

(i) f̂(·) and ε∗ are f̂(·) and ε in Proposition 11.2.8, respectively;

(ii) xP1 = 0;

(iii) h(x) = x
10k and g(x) = x4

10k ;

(iv) xbot =
b2so
5 ;

(v) G = ϕ1 − ϕ2.

We note that

(a) (16.4.27) and (ii) imply dso(x) = x;



654 CHAPTER 16

(b) the functions in (iii) satisfy (16.4.28)–(16.4.31) with M = 16 for dso(x) = x;

(c) the potential flow equation, written as (16.4.32), satisfies (16.4.33)–(16.4.34)
by Corollaries 11.2.10 and 11.2.12 with Proposition 16.1.4, and by using that
h(x) = x

10k ;

(d) the boundary condition (16.4.35) holds and satisfies (11.3.41)–(11.3.42) by
Lemma 11.3.9 with Proposition 16.2.1 and Corollary 16.2.2;

(e) from (v), property (16.4.38) holds, as shown in Remark 16.4.5;

(f) from (iv), property (16.4.39) holds by Proposition 16.4.2 (with m = 4),
where we have adjusted constant M depending only on (ρ0, ρ1, γ);

(g) (16.4.41) holds by (16.4.66).

This allows us to apply Lemma 16.4.3. Fix α ∈ (0, 1). Then (16.4.45) implies
that, for rectangles R̂z0,ρ defined by (16.4.64) and the corresponding Q(z0)

ρ and
ψ(z0) for z0 = (x0, y0) defined by

R̂z0,ρ =
{

(x0 +
x

3/2
0

10k
S, y0 +

x0

10k
T ) : (S, T ) ∈ Q(z0)

ρ

}
,

ψ(z0)(S, T ) :=
10k

x4
0

ψ(x0 +
x

3/2
0

10k
S, y0 +

x0

10k
T ) on Q(z0)

ρ ,

(16.4.67)

the following estimate holds:

‖ψ(z0)‖
C2,α(Q

(z0)

1/100
)
≤ C for all z0 ∈ Ωε ∩ {x >

b2so
5
}, (16.4.68)

where C depends only on (ρ0, ρ1, γ, α), and ε is reduced depending only on
(ρ0, ρ1, γ).

Denote D := Ωε ∩ {x > b2so
5 }. From (16.4.68), we repeat the proof of Lemma

4.6.1 to obtain
∑

0≤k+l≤2

sup
z∈D

(
x

3k
2 +l−4|∂kx∂lyψ(z)|

)

+
∑

k+l=2

sup
z,z̃∈D,z 6=z̃

(
min(x

3
2 (α+k)+l−4, x̃

3
2 (α+k)+l−4)

× |∂
k
x∂

l
yψ(z)− ∂kx∂lyψ(z̃)|
δ

(par)
α (z, z̃)

)
≤ C, (16.4.69)

where k and l are nonnegative integers, C depends only on constant C in
(16.4.68) and α (hence only on (ρ0, ρ1, γ, α)), and δ(par)

α (z, z̃) is defined by (4.6.1).
Comparing the left-hand side of (16.4.69) with the expression of norm ‖ψ‖2,(par)

2,α,D
in (4.6.2) with m = σ = 2, we see that, in both expressions, each term (the
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derivative or the difference quotient of the derivatives of ψ) is multiplied by
xβ and, for each term, exponent β = β(k, l, α) is larger in the expression
of ‖ψ‖2,(par)

2,α,D than the one in the corresponding term on the left-hand side of
(16.4.69). For ε ≤ 1, it follows that the left-hand side of (16.4.69) is larger than
‖ψ‖2,(par)

2,α,D . Therefore, we obtain

‖ψ‖2,(par)
2,α,Ωε∩{x>b2so/5}

≤ C, (16.4.70)

where C is from (16.4.69).
3. We now show that (16.4.70), combined with (16.4.61), implies (16.4.59).

Indeed, using expression (4.6.2) with m = σ = 2, we see that (16.4.61) and
(16.4.70) imply

‖ψ‖2,(par)
2,0,Ωε

≤ C. (16.4.71)

Therefore, it remains to show that there exists C depending only on the data
and α such that, for any nonnegative integers k and l with k + l = 2, and for
any z, z̃ ∈ Ωε with z = (x, y) and z̃ = (x̃, ỹ),

min(xα+k+ l
2−2, x̃α+k+ l

2−2)
|∂kx∂lyu(z)− ∂kx∂lyu(z̃)|

δ
(par)
α (z, z̃)

≤ C. (16.4.72)

If z, z̃ ∈ Ωb2so , or z, z̃ ∈ Ωε ∩ {x > b2so
5 }, (16.4.72) is obtained in (16.4.61) and

(16.4.70), respectively.
Therefore, it remains to consider the case:

x > b2so >
b2so
5
> x̃.

Then x− x̃ ≥ x
2 so that

δ(par)
α (z, z̃) ≥ xα

2α
≥ x̃α

2α
.

This estimate is similar to (4.6.9). Then we conclude estimate (16.4.72) by
following the argument in the proof of Lemma 4.6.1 starting from (4.6.9) and
by using (16.4.71). Now (16.4.59) is proved.

Then (16.4.60) follows as in Step 5 of the proof of Proposition 11.4.3.

16.4.4 Uniform estimates for supersonic reflection solutions

First, we state the estimates near Γsonic:

Corollary 16.4.7. There exists ε > 0 depending only on (ρ0, ρ1, γ) and, for
any α ∈ (0, 1), there exists C > 0 depending only on (ρ0, ρ1, γ, α) such that,
if θw ∈ (θd

w,
π
2 ) is a supersonic wedge angle and ϕ is an admissible solution of

Problem 2.6.1 with the wedge angle θw, then ψ = ϕ − ϕ
(θw)
2 and the shock

function f̂(x) from (11.2.38) satisfy estimates (16.4.59)–(16.4.60).
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Proof. We combine Proposition 16.4.6 with Proposition 16.3.2 in which δ = δP0

is chosen, where δP0
is determined by Proposition 16.4.6. Then δ = δP0

depends
only on (ρ0, ρ1, γ) so that constants ε and C in the estimates of Proposition
16.3.2 depend only on (ρ0, ρ1, γ).

We also obtain the following global estimate for all the supersonic reflections
with the wedge angles θw ∈ (θc

w,
π
2 ) for θc

w from Definition 15.7.3:

Corollary 16.4.8. Let θ∗w ∈ (θc
w,

π
2 ). Let α from Lemma 10.5.2 be extended

to all θw ∈ [θ∗w,
π
2 ) by Proposition 15.7.5. Let ε ∈ (0, ε0]. Then there exists C

depending only on the data and ε such that, if ϕ is an admissible solution of
Problem 2.6.1 with the supersonic wedge angle θw ∈ [θ∗w,

π
2 ), then

ϕext ∈ C1,α(Ω
ext

) ∩ C1,1(Ωext \ {P3}) ∩ C∞(Ωext \ (Γext
sonic ∪ {P3})),

‖ϕ‖(−1−α),{P3}
2,α,Ω\Ωε/10

+ ‖ϕ− ϕ2‖(par)
2,α,Ωε

≤ C.
(16.4.73)

Furthermore, the shock function fO1,sh for Γext
shock, introduced in Corollary 10.1.3

and Proposition 15.7.1, satisfies

fO1,sh ∈ C1,1([θP1
, θP1

− ]) ∩ C∞((θP1
, θP1

−)),

‖fO1,sh‖C1,1([θP1
,θP1

− ]) ≤ Ĉ,
(16.4.74)

where Ĉ depends only on the data and θ∗w.

Proof. We use Corollary 16.4.7 for the estimates near Γshock. Then the proof of
Corollary 11.4.7 applies directly by employing Proposition 16.3.2 and the other
results which extend the results of the previous chapters to θw ∈ [θd

w,
π
2 ].

16.5 A PRIORI ESTIMATES NEAR THE REFLECTION POINT
IN THE SUBSONIC-NEAR-SONIC CASE

Now we consider the subsonic reflection configuration. First we consider the
subsonic-near-sonic case to obtain the estimates near

Γsonic = P0 = P1 = P2

for all the admissible solutions with θw ∈ (θd
w,

π
2 ) satisfying

|Dϕ2(P0)|
c2

(θw) ∈ (1− δP0
, 1], (16.5.1)

where δP0
∈ (0, σ), and σ > 0 is from Corollary 16.2.2 which will be determined

below by reducing constant δP0
in Proposition 16.4.6, if necessary, so that the

resulting constant works both in the cases of §16.4 and the present section.
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16.5.1 Main steps of the estimates near the reflection point in the
subsonic-near-sonic case

We argue similarly to the supersonic-near-sonic case in §16.4, with different
scaling based on the different shape of domain Ωε in the present case. We also
note that, for each fixed θw such that |Dϕ2(P0)|

c2
(θw) ∈ (1−δP0

, 1), the equation is
uniformly elliptic on Ωε. However, we do not have a uniform positive ellipticity
constant for all the wedge angles θw satisfying (16.5.1), so that we cannot use
the uniform ellipticity, since we want to obtain the uniform estimates for all
the admissible solutions corresponding to these wedge angles. In fact, we use
that the ellipticity constant is small near P0 for the wedge angles θw satisfying
(16.5.1).

The outline of the estimates in this section is the following:

(i) From (16.1.10)–(16.1.13), in the subsonic-sonic case, domain Ωε in the
(x, y)–coordinates is of the form:

{0 < x− xP0
< ε, 0 < y − θw <

1

k
dso(x)} ⊂ Ωε,

Ωε ⊂ {0 < x− xP0 < ε, 0 < y − θw < kdso(x)},
(16.5.2)

where k > 1 can be chosen uniformly for any subsonic-sonic reflection
solution, P1 = P0 in this case, and

dso(x) := x− xP1
= x− xP0

(16.5.3)

introduced in (16.4.27). Then we show that, for each integer m ≥ 3 and
sufficiently small bso depending on (ρ0, ρ1, γ,m), solution ψ(x, y) has a
growth |dso(x)|m in Ωε:

0 ≤ ψ(x, y) ≤ C|dso(x)|m in Ωε

for some ε > 0 and C depending only on the data and m. In the proof, we
use shape (16.5.2) of Ωε and the fact that the ellipticity constant is small
near P0.

(ii) Using the algebraic growth, with m = 5 (for a reason to be explained
below), we can obtain the estimates of ψ in Ωε by using a different scaling
from that in Propositions 16.3.1 and (16.4.6). Indeed, from (16.5.2), for
z0 = (x0, y0) ∈ Ωε\{P0}, we have to use a rectangle with the side length ∼
1
kdso(x0) in the y–direction in order to have a property similar to (11.4.9).
Also, from the degenerate ellipticity structure (11.2.43) of the equation for
subsonic reflection solutions, we need to have a rectangle in which the ratio
of the side lengths in the x– and y–directions is ∼ √x0, in order to obtain
a uniformly elliptic equation after rescaling the rectangle into a square.
Thus, for z0 = (x0, y0) ∈ Ωε \ {P0}, we consider the rectangle:

R̂z0 := {|x− x0| <
√
x0

10k
dso(x0), |y − y0| <

1

10k
dso(x0)} ∩ Ω.
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Such rectangles fit into Ω; that is, for z0 = (x0, y0) ∈ Γwedge ∩ Ωε, the
corresponding R̂z0 does not intersect with Γshock and, for (x0, y0) ∈ Γshock∩
Ωε, the corresponding R̂z0 does not intersect with Γwedge. Also, note that
the ratio of the x– and y–directions of R̂z0 is

√
x0, as required in Lemma

16.4.3. Rescaling R̂z0 to the portion of square (−1, 1)2:

Q̂z0 := {(S, T ) ∈ (−1, 1)2 : (x0 +

√
x0

10k
dso(x0)S, y0 +

1

10k
dso(x0)T ) ∈ Ω},

we consider the following function in (S, T ) ∈ Q̂z0 :

ψ(z0)(S, T ) :=
1

|dso(x0)|5ψ(x0 +

√
x0

10k
dso(x0)S, y0 +

1

10k
dso(x0)T ).

The algebraic growth of ψ with m = 5 implies the uniform estimates in
L∞(Q̂z0) of ψ(z0)(·) for all z0 ∈ Ωε. Then, from Lemma 16.4.3 with G =
ϕ1−ϕ2, we obtain the estimates of ψ(z0) in C2,α, independent of z0 ∈ Ωε.
This implies the estimates of ψ in Ωε in the weighted and scaled C2,α–
norms for any α ∈ (0, 1), which are stronger than the standard C2,α(Ωε)–
norm with Dψ(P0) = 0 and D2ψ(P0) = 0.

16.5.2 Algebraic growth of ψ in Ωε in the subsonic-near-sonic case

Similarly to §16.4.2 for the growth estimates of the solution, we consider equation
(11.1.4)–(11.1.5) as a linear equation (16.4.4) which is obtained by plugging ψ
into the coefficients of (11.1.4). Equation (16.4.4) is strictly elliptic in Ωε \ {P0}
by the properties of subsonic admissible solutions in Definition 15.1.2(iii).

By Proposition 16.2.1, the boundary condition for ψ on Γshock is (11.3.33),
and B1(p, z, x, y) satisfies (11.3.35). Similarly to that in §16.4.2, we can write
(11.3.33) as a linear condition (16.4.6).

Choosing (ε, δP0) and employing Propositions 16.1.4 and 16.2.1 and Corol-
lary 16.2.2 similarly as in §16.4.2, we obtain the bounds in (16.4.5) in Ωε, and
estimates (16.4.7)–(16.4.8) on Γshock∩∂Ωε in the present case, where C depends
only on (ρ0, ρ1, γ).

Also, similarly to that in §16.4.2, ψ satisfies (16.4.9) and (16.4.11), as well
as (16.4.10) with Γsonic = {P0}.

First, we prove the algebraic growth estimate for the solutions of the linear
problem (16.4.4), (16.4.6), and (16.4.9)–(16.4.10) in a domain of the appropriate
structure, especially satisfying (16.5.2).

Lemma 16.5.1. Let ε > xP1
≥ 0 and θw ∈ R. Let domain Ωε be of the structure

as in (16.1.10) with
f̂(xP1

) = θw, (16.5.4)

and let (16.1.13) hold. Let ψ ∈ C(Ωε) ∩ C1(Ωε ∩ {xP1
< x < ε}) ∩ C2(Ωε) sat-

isfy (16.4.4), (16.4.6), and (16.4.9)–(16.4.10). Let equation (16.4.4) be strictly
elliptic in Ωε \ Γsonic, and let the boundary condition (16.4.6) be strictly oblique
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on Γshock ∩ ∂Ωε in the sense of (16.4.8). Let (16.4.5) and (16.4.7) hold. Then,
for every integer m ≥ 3, there exist ε̂ > 0 and Ĉ > 0 depending only on m and
the constants in (16.1.13), (16.4.5), and (16.4.7) such that, if ε ≤ ε̂,

ψ(x, y) ≤ Ĉ
max∂Ωε∩{x=xP1

+ε} ψ

εm
(x− xP1

)m in Ωε. (16.5.5)

Proof. We note that the structure of Ωε, as described in (16.1.10), (16.1.13),
and (16.5.4), implies that (16.5.2) holds with k depending only on the constants
in (16.1.13). Fix integer m ≥ 3. In the proof, constants C,L, and ε̂ depend only
on m and the constants in (16.1.13), (16.4.5), and (16.4.7). Also, L,M,N ≥ 1.
We divide the proof into three steps.

1. It will be convenient to shift the y–coordinate by replacing y − θw by y.
This does not affect the conditions of this lemma. In fact, this means that we
can assume without loss of generality that

θw = 0.

Then (16.5.2) is replaced by

{0 < x− xP0
< ε0, 0 < y <

1

k
(x− xP1

)} ⊂ Ωε0 ,

Ωε0 ⊂ {0 < x− xP0
< ε0, 0 < y < k(x− xP1

)}.
(16.5.6)

To prove this lemma, we show that, if L > 0 is sufficiently large and ε > 0 is
sufficiently small, then, for any xP1

∈ [0, ε), the function:

v(x, y) = (x− xP1
)m − 1

L
(x− xP1

)m−2y2 (16.5.7)

is a positive supersolution of equation (16.4.4) in Ωε with the boundary condition
(16.4.6) on Γshock ∩ ∂Ωε. From this, we show that ψ ≤ Bv in Ωε for sufficiently
large B depending on the data and (ε,m). This implies (16.5.5).

2. We now employ (16.5.6) to estimate that, if L ≥ 2k2,

v(x, y) ≥ (x−xP1)m− k
2

L
(x−xP1)m ≥ 1

2
(x−xP1)m for (x, y) ∈ Ωε. (16.5.8)

Using (16.5.6), similar estimates imply that, for (x, y) ∈ Ωε,

vx(x, y) = (x− xP1)m−3
(
m(x− xP1)2 − m− 2

L
y2
)

≥ (x− xP1)m−3
(
m(x− xP1)2 − m− 2

L
k2(x− xP1)2

)
.

It follows by choosing L ≥ 2(m−2)
m k2 that

vx(x, y) ≥ m

2
(x− xP1

)m−1 > 0. (16.5.9)
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Similarly, we have

vxx(x, y)

= (x− xP1
)m−4

(
m(m− 1)(x− xP1

)2 − (m− 2)(m− 3)

L
y2
)

≥ (x− xP1
)m−4

(
m(m− 1)(x− xP1

)2 − k2 (m− 2)(m− 3)

L
(x− xP1

)2
)

≥ m(m− 1)

2
(x− xP1)m−2 ≥ 0,

by further increasing L. Then

|vxx(x, y)| ≤ m(m− 1)(x− xP1)m−2. (16.5.10)

Next, we estimate (vxy, vyy, vy): For (x, y) ∈ Ωε, using (16.5.6) which implies
especially that 0 ≤ y ≤ k(x− xP1), we have

|vxy(x, y)| =
∣∣− 2

m− 2

L
(x− xP1

)m−3y
∣∣ ≤ C(x− xP1

)m−2, (16.5.11)

vyy(x, y) = − 2

L
(x− xP1

)m−2, (16.5.12)

|vy(x, y)| =
∣∣− 2

L
(x− xP1

)m−2y
∣∣ ≤ C

L
(x− xP1

)m−1. (16.5.13)

3. Now, combining the estimates of (v,Dv,D2v) above with (16.4.5) and
(16.4.7), we show that v is a supersolution of equation (16.4.4) with the boundary
condition (16.4.6).

First, we consider equation (16.4.4). Using (16.4.5), (16.4.16), and the esti-
mates of (v,Dv,D2v), we notice that, for (x, y) ∈ Ωε,

(i) a22(x, y)vyy(x, y) ≤ − 1
CL (x− xP1

)m−2;

(ii) a1(x, y)vx(x, y) ≤ 0;

(iii) The absolute value of the other terms of Lv is estimated by Cε(x−xP1
)m−2:

|a11(x, y)vxx(x, y)| ≤ Cx(x− xP1
)m−2 ≤ Cε(x− xP1

)m−2,

|a12(x, y)vxy(x, y)| ≤ Cx(x− xP1
)m−2 ≤ Cε(x− xP1

)m−2,

|a2(x, y)vy(x, y)| ≤ C

N
x(x− xP1

)m−1 ≤ Cε(x− xP1
)m−2,

so that
Lv ≤ Cε(x− xP1

)m−2 − 1

CL
(x− xP1

)m−2 < 0, (16.5.14)

if ε > 0 is small, i.e., ε ∈ (0, ε̂) where ε̂ > 0 depends only on (C,L). There-
fore, we have shown that, under the conditions on (ε, L) given above, v is a
supersolution of equation (16.4.4).
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Next we consider the boundary condition (16.4.6). For (x, y) ∈ Γshock∩∂Ωε,
we employ (16.4.7) and estimates (16.5.9)–(16.5.13) ofDv, and note that b3v ≤ 0
to obtain

N v ≤ − 1

C
(x− xP1

)m−1 +
C

L
(x− xP1

)m−1 < 0,

by increasing L. At this point, we fix L based on all the previous conditions, and
note that L is chosen depending only on (m, k) and the constants in (16.4.5) and
(16.4.7), and k depends only on the constants in (16.1.13). Thus, L is chosen
depending on the data in the problem and m. This also fixes the choice of ε̂,
which has been made after equation (16.5.14), so that ε̂ depends only on the
data and m.

If ε ∈ (0, ε̂), we choose

B = max
{

0,
2

εm
max

∂Ωε∩{x=xP1
+ε}

ψ
}
≥ 0,

and use (16.5.8) to obtain

Bv ≥ ψ on ∂Ωε ∩ {x = xP1
+ ε}.

Also, employing the explicit expression of v, structure (16.1.10) and (16.5.4) of
the domain with xP0

= xP1
∈ [0, ε), and the fact that ψ satisfies the boundary

conditions (16.4.9)–(16.4.10), we have

Bv ≥ 0 = ψ at Γsonic = {P0} ⊂ {x = xP1
},

vy = 0 = ψy on Γwedge ⊂ {y = 0},

where we have used the shifted coordinates, i.e., θw = 0. Therefore, from the
maximum principle by using the strict ellipticity of equation (16.4.4), and the
strict obliqueness of the boundary condition (16.4.6) with the property that
b3 < 0, it follows that Bv ≥ ψ in Ωε. Then (16.5.5) is proved.

Now we apply Lemma 16.5.1 to the estimates for the subsonic reflection
solutions.

Proposition 16.5.2. For every integer m ≥ 3, there exist small δP0 , ε > 0
and large C, depending only on (m, ρ0, ρ1, γ), such that, if θw ∈ [θd

w,
π
2 ) satisfies

(16.5.1) and ϕ is an admissible solution of Problem 2.6.1 with the wedge angle
θw, then

xP1
≤ ε

10
, (16.5.15)

0 ≤ ψ(x, y) ≤ C(x− xP1
)m in Ωε. (16.5.16)

Proof. It suffices to show (16.5.15) and the upper bound of ψ in (16.5.16), since
ψ = ϕ− ϕ2 ≥ 0 in Ω by (15.1.5).
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Fix integer m ≥ 3. Fix δP0
, ε > 0 depending only on (ρ0, ρ1, γ) such that

Propositions 16.1.4 and 16.2.1 and Corollary 16.2.2 apply.
Then, for every admissible solution ϕ with θw ∈ Iw(δP0

), region Ωε is of
structure (16.1.10)–(16.1.13), and ψ = ϕ − ϕ2 satisfies a linear strictly elliptic
equation (16.4.4) in Ωε with a linear oblique boundary condition (11.3.33) on
Γshock∩∂Ωε, and the coefficients satisfy (16.4.5) and (16.4.7) with the constants
depending only on (ρ0, ρ1, γ). Then let ε̂ be the constant from Lemma 16.5.1
determined by m and the constants in estimates (16.1.13), (16.4.5), and (16.4.7)
for admissible solutions with wedge angles θw ∈ Iw(δP0

). We replace ε chosen
above by min{ε, ε̂}. Using property (16.1.9) of x∗P0

(δ) defined by (16.1.8) and
reducing δP0 > 0 if necessary, depending only on (ρ0, ρ1, γ,m), we have

xP1
(θw) ≤ ε

10
for each θw ∈ Iw(δP0

).

Then (16.5.15) holds for each θw ∈ Iw(δP0
), especially for each θw ∈ [θd

w,
π
2 )

satisfying (16.5.1). Also, if ϕ is an admissible solution for the wedge angle
θw ∈ [θd

w,
π
2 ) satisfying (16.5.1), then, from (16.1.11) in the subsonic case, we

see that (16.5.4) holds. Thus, we can apply Lemma 16.5.1 to obtain (16.5.16)
for ψ = ϕ − ϕ2, with constant C depending only on (ρ0, ρ1, γ,m), since the
constants in (16.1.13), (16.4.5), and (16.4.7) depend only on (ρ0, ρ1, γ).

16.5.3 Regularity and uniform a priori estimates of solutions in the
subsonic-close-to-sonic case

Proposition 16.5.3. There exist δP0
> 0 and ε ∈ (0, ε02 ) depending only

on (ρ0, ρ1, γ) and, for any α ∈ (0, 1), there exists C > 0 depending only on
(ρ0, ρ1, γ, α) such that the following estimates hold: If θw ∈ [θd

w,
π
2 ) is a wedge

angle satisfying (16.5.1) and ϕ is an admissible solution of Problem 2.6.1 with
wedge angle θw, then ψ = ϕ− ϕ(θw)

2 satisfies

‖ψ‖C2,α(Ωε)
≤ C,

Dmψ(P0) = 0 for m = 0, 1, 2,
(16.5.17)

where the last assertion, for m = 0, 1, is actually given by (15.1.3). Moreover,
the shock function f̂(x) from (16.1.10) satisfies

‖f̂ − f̂ (θw)
0 ‖C2,α([xP0

,xP0
+ε]) ≤ C,

f̂(xP0
) = f̂

(θw)
0 (xP0

), f̂ ′(xP0
) = (f̂

(θw)
0 )′(xP0

),

f̂ ′′(xP0
) = (f̂

(θw)
0 )′′(xP0

),

(16.5.18)

where f̂ (θw)
0 is the function defined by (11.2.8) by using Lemma 16.1.2.

Proof. In this proof, all the constants depend only on (ρ0, ρ1, γ), unless otherwise
specified. We divide the proof into two steps.
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1. Let δP0
and ε be as in Proposition 16.5.2 with m = 5. Then we apply

Proposition 16.5.2 with m = 5 to obtain the growth estimate in Ω2ε by further
reducing ε if necessary:

0 ≤ ψ(x, y) ≤ Cx5 in Ω2ε. (16.5.19)

Moreover, since Ω2ε is of the structure as in (16.1.10)–(16.1.13) in the subsonic-
sonic case in (16.1.11)–(16.1.12) by (16.5.1), there exists k > 1 such that (16.5.2)
holds, where dso(·) is defined by (16.5.3).

2. As we have discussed in §16.5.1, for each z0 = (x0, y0) ∈ Ωε \ Γsonic, we
consider the rectangle:

R̃z0,ρ := {|x− x0| <
ρ
√
x0

10k
dso(x0), |y − y0| <

ρ

10k
dso(x0)},

R̂z0,ρ := R̃z0,ρ ∩ Ω2ε.

(16.5.20)

Then (16.4.46) holds if ε is small. Also, using (16.5.2) and reducing ε further if
necessary, we have

R̂zw,1 ∩ Γshock = ∅ for all zw = (x, 0) ∈ Γwedge ∩ ∂Ωε,

R̂zs,1 ∩ Γwedge = ∅ for all zs = (x, f̂(x)) ∈ Γshock ∩ ∂Ωε,
(16.5.21)

i.e., the rectangles in (16.4.64) fit into domain Ω2ε.
Now, using Remark 16.4.4, we can apply Lemma 16.4.3 with the following

corresponding ingredients:

(i) f̂(·) and ε∗ are function f̂(·) and constant ε in Proposition 16.1.4, respec-
tively;

(ii) xP1
≥ 0 is determined by θw;

(iii) Functions h(x) and g(x) are

h(x) =
1

10k
dso(x) =

1

10k
(x− xP1

),

g(x) =
1

10k

(
dso(x)

)5
=

1

10k
(x− xP1

)5;

(iv) xbot = xP1
;

(v) G = ϕ1 − ϕ2.

We note that

(a) the functions in (iii) satisfy (16.4.28)–(16.4.31) withM = 32, since dso(x) =
x− xP1

;
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(b) the potential flow equation, written as (16.4.32), satisfies (16.4.33)–(16.4.34)
by using Corollaries 11.2.10 and 11.2.12, Proposition 16.1.4, and h(x) =

1
10k (x− xP1

);

(c) the boundary condition (16.4.35) holds and satisfies (11.3.41)–(11.3.42) by
Lemma 11.3.9 with Proposition 16.2.1 and Corollary 16.2.2;

(d) from (v), property (16.4.38) holds, as shown in Remark 16.4.5;

(e) from (iv), property (16.4.39) holds by Proposition 16.5.2 (with m = 5),
where we have adjusted constant M depending only on (ρ0, ρ1, γ);

(f) (16.4.41) holds by (16.5.21).

This allows us to apply Lemma 16.4.3. Fix α ∈ (0, 1). Then (16.4.45) implies
that, for rectangles R̂z0,ρ defined by (16.5.20) and the corresponding Q(z0)

ρ and
ψ(z0) for z0 = (x0, y0) defined by

R̂z0,ρ =
{

(x0 +

√
x0

10k
dso(x0)S, y0 +

1

10k
dso(x0)T ) : (S, T ) ∈ Q(z0)

ρ

}
, (16.5.22)

ψ(z0)(S, T ) :=
10k

|dso(x0)|5ψ(x0 +

√
x0

10k
dso(x0)S, y0 +

1

10k
dso(x0)T ) on Q(z0)

ρ ,

(16.5.23)
the estimate holds:

‖ψ(z0)‖
C2,α(Q

(z0)

1/100
)
≤ C for all z0 ∈ Ωε, (16.5.24)

where C depends on (ρ0, ρ1, γ, α), if ε and xP1
are small depending only on

(ρ0, ρ1, γ). In order to have xP1
small as required, we reduce δP0

in (16.5.1),
depending only on (ρ0, ρ1, γ).

From (16.5.24), repeating the proof of Lemma 4.6.1 and using the fact that,
for all nonnegative integers k and l satisfying k + l = 2, real α ∈ (0, 1), and
xP1
≥ 0, the functions:

gk,l,α(x) = (x− xP1)k+l+α−5x
k+α

2 decrease on (xP1 ,∞),

which can be checked explicitly by taking derivatives, then we have
∑

0≤k+l≤2

sup
z∈Ωε

(
(x− xP1

)k+l−5x
k
2 |∂kx∂lyψ(z)|

)

+
∑

k+l=2

sup
z,z̃∈Ωε,z 6=z̃

((
max(x, x̃)− xP1

)k+l+α−5(
max(x, x̃)

) k+α
2

× |∂
k
x∂

l
yψ(z)− ∂kx∂lyψ(z̃)|
δ

(par)
α (z, z̃)

)
≤ C,

(16.5.25)
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where C depends only on α and constant C in (16.5.24), so that it depends
only on (ρ0, ρ1, γ), k and l are nonnegative integers, and δ(par)

α (z, z̃) is defined
by (4.6.1).

We note that the norm on the left-hand side of (16.5.25) is stronger than that
in C2,α(Ωε). Indeed, using that xP1

∈ [0, ε) and k+ l+α−5 < 0 for any (k, l, α)
involved in the expression in (16.5.25), we obtain that, for x, x̃ ∈ (xP1

, xP1
+ ε),

(x− xP1)k+l−5x
k
2 ≥ x 3

2k+l−5,

(
max(x, x̃)− xP1

)k+l+α−5(
max(x, x̃)

) k+α
2 ≥

(
max(x, x̃)

) 3
2 (k+α)+l−5

.

Now, since 3
2 (k + α) + l− 5 < 0 for any (k, l, α) involved in (16.5.25), and since

x, x̂ ∈ (xP1
, xP1

+ ε) in (16.5.25), we have

(x− xP1)k+l−5x
k
2 ≥ ε 3

2k+l−5,

(
max(x, x̃)− xP1

)k+l+α−5(
max(x, x̃)

) k+α
2 ≥ ε 3

2 (k+α)+l−5.

Also, assuming without loss of generality that ε ≤ 1, we obtain from (4.6.1) that

δ(par)
α (z, z̃) ≤ |z − z̃|α.

Thus, the expression on the left-hand side of (16.5.25) decreases if the weights
are replaced by constants ε

3
2k+l−5 and ε

3
2 (k+α)+l−5, respectively, and the de-

nominators in the difference quotients are replaced by |z − z̃|α. The resulting
expression is equivalent to the C2,α(Ωε)–norm with the constant depending only
on (ε, α), i.e., on (ρ0, ρ1, γ, α).

Also, from (16.5.25),

|D2ψ(x)| ≤ C(x− xP1)2.

Therefore, for P0 = P1, we conclude that D2ψ(P0) = 0. This completes the
proof of (16.5.17).

Then (16.5.18) follows as in Step 5 of the proof of Proposition 11.4.3.

Using Proposition 16.5.3, we can obtain the global estimate for the wedge
angles θw ∈ (θc

w,
π
2 ) satisfying (16.5.1), where θc

w is from Definition 15.7.3.

Corollary 16.5.4. Let δP0 be from Proposition 16.5.3. Let θ∗w ∈ (θd
w,

π
2 ). Let α

from Lemma 10.5.2 be extended to all θw ∈ [θ∗w,
π
2 ) by Proposition 15.7.5. Then

there exists C depending only on the data and θ∗w such that, if θw ∈ [θd
w,

π
2 ) is

a wedge angle satisfying (16.5.1) and ϕ is an admissible solution of Problem
2.6.1 with the wedge angle θw, then

ϕext ∈ C1,α(Ωext) ∩ C2,α(Ω
ext \ {P3}) ∩ C∞(Ωext \ {P0, P

−
0 , P3}),

‖ϕ‖(−1−α),{P3}
2,α,Ω ≤ C,

Dm(ϕ− ϕ2)(P0) = 0 for m = 0, 1, 2.

(16.5.26)
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Furthermore, the shock function fO1,sh for Γext
shock, introduced in Corollary 10.1.3

and Proposition 15.7.1, satisfies

fO1,sh ∈ C2,α([θP1
, θP−1

]) ∩ C∞((θP1
, θP−1

)),

‖fO1,sh‖C2,α([θP1
,θ
P
−
1

]) ≤ C.
(16.5.27)

Proof. We use Corollary 16.4.8 for the estimates near Γsonic. Then the proof of
Corollary 11.4.7 applies directly by means of Proposition 16.3.2 and the other
results in this chapter which extend the results of the previous chapters to
θw ∈ [θd

w,
π
2 ].

16.6 A PRIORI ESTIMATES NEAR THE REFLECTION POINT
IN THE SUBSONIC-AWAY-FROM-SONIC CASE

We fix θ∗w ∈ (θd
w, θ

s
w) and δP0

∈ (0, 1). In the rest of this section, we assume that
ϕ is an admissible solution with θw ∈ (θ∗w, θ

s
w) satisfying

|Dϕ2(P0)|
c2

≤ 1− δP0 . (16.6.1)

By (16.6.1), it follows from Proposition 15.6.2 that there exists δell > 0
depending only on (ρ0, ρ1, γ) such that

|Dϕ|
c(|Dϕ|2, ϕ)

≤ 1− δell in Ω. (16.6.2)

Using this and (9.1.5)–(9.1.6), we see that there exists a sufficiently large M
such that ϕ satisfies (9.2.6)–(9.2.8). Thus, by Lemma 9.2.1, we can modify
coefficients (A, B) in (9.2.1) so that the modified coefficients (Ã, B̃) are defined
for any (p, z) ∈ R2 ×R and satisfy (9.2.3)–(9.2.5) with D = Ω, where constants
(λ,Ck) depend only on (ρ0, ρ1, γ, δP0). Then, by (9.2.3), ϕ satisfies the modified
equation (9.2.9) in Ω. Therefore, we have

Corollary 16.6.1. There exist ε, λ > 0, Ck > 0 for k = 0, 1, . . . , and functions
Ã, B̃ ∈ C∞(R2×R), depending only on (ρ0, ρ1, γ, δP0

), such that (9.2.3)–(9.2.5)
hold and, if ϕ is an admissible solution of Problem 2.6.1 with θw ∈ (θd

w,
π
2 )

satisfying (16.6.1), then ϕ is a solution of equation (9.2.9) in Ω, and equation
(9.2.9) is elliptic by (9.2.4). Moreover, equation (9.2.9) for ϕ coincides with
equation (2.2.8) by (9.2.3) with (9.2.2).

Next we discuss the boundary condition on Γshock. From Lemma 10.1.1 and
Proposition 15.7.1, there exist ε̂, δ̂ ∈ (0, 1) depending only on (ρ0, ρ1, γ) such
that

|D(ϕ1 − ϕ)| ≥ δ̂ in Nε̂(Γshock) ∩ Ω (16.6.3)



REGULARITY OF ADMISSIBLE SOLUTIONS NEAR THE SONIC ARC 667

for any admissible solution ϕ. Then, applying Lemma 10.2.1 withM determined
by (9.1.5)–(9.1.6), (16.6.2), and δ = δ̂ to obtain the corresponding g(sh)

mod(p, z, ξ),
we find from (10.2.4) that ϕ satisfies

g
(sh)
mod(Dϕ,ϕ, ξ) = 0 on Γshock. (16.6.4)

Lemma 16.6.2. There exists ε̂ > 0 depending only on (ρ0, ρ1, γ, δP0
) such that,

for any admissible solution ϕ with θw ∈ (θd
w,

π
2 ) and any ξ ∈ R2,

g
(sh)
mod(p, z, ξ) = gsh(p, z, ξ) if |(p, z)− (Dϕ(ξ̃), ϕ(ξ̃))| ≤ ε̂ for some ξ̃ ∈ Ω,

where gsh(·) is given by (7.1.9).

Proof. The assertion follows from (10.2.4) in Lemma 10.2.1 and the choice of
constants M and δ = δ̂ in the application of Lemma 10.2.1 for defining g(sh)

mod,
where we have used that ϕ ∈ C1(Ω) in order to allow ξ̃ ∈ ∂Ω.

Lemma 16.6.3. Let L > 0. Denote

RL = {(p, z, ξ) : |p| ≤ 2L, |z| ≤ 2L, |ξ| ≤ 2L}.

Then there exists CL > 0 depending only on (ρ0, ρ1, γ, δP0
, L) such that

‖g(sh)
mod‖C3(RL) ≤ CL. (16.6.5)

In particular, let C be the constant depending only on (ρ0, ρ1, γ) such that (9.1.2)
and (9.1.5) hold for any admissible solution with θw ∈ (θd

w,
π
2 ), where such a

constant C exists by Proposition 15.2.2. Then (16.6.5) holds for L = C with M
depending only on (ρ0, ρ1, γ, δP0

).

Proof. The assertion follows from estimate (9.2.5) of Ã in Corollary 16.6.1 and
the explicit expression (10.2.3).

Lemma 16.6.4. There exist δbc > 0 and R ≥ 0 depending only on (ρ0, ρ1, γ, δP0
)

such that, for any admissible solution ϕ of Problem 2.6.1 with θw ∈ [θd
w,

π
2 )

satisfying (16.6.1), the boundary condition (16.6.4) satisfies

Dpg
(sh)
mod(Dϕ(ξ), ϕ(ξ), ξ) · νsh(ξ) ≥ δbc for all ξ ∈ Γshock, (16.6.6)

Dpg
(sh)
mod(Dϕ,ϕ, ξ) · Dϕ1 −Dϕ

|Dϕ1 −Dϕ|
≥ δbc for all ξ ∈ Ω ∩BR(P0), (16.6.7)

where νsh is the interior normal on Γshock to Ω.

Proof. We choose R := ε̂
2 , where ε̂ is from (16.6.3). Then, noting that P0 ∈

Γshock, we obtain

|D(ϕ1 − ϕ)| ≥ δ̂ in Ω ∩BR(P0)
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by (16.6.3). Also, we recall that νsh = Dϕ1−Dϕ
|Dϕ1−Dϕ| on Γshock.

Now properties (16.6.6)–(16.6.7) follow from (10.2.6), (16.6.3), and the choice
of constants M and δ = δ̂ used in the application of Lemma 10.2.1 for defining
g

(sh)
mod in the present case.

Also, by (2.2.20), the boundary condition on Γwedge is

gw(Dϕ) = 0 on Γwedge, (16.6.8)

where gw(p) = p ·νw, and νw is the inner unit normal νw on Γwedge to Ω, given
by (8.2.14).

16.6.1 Main steps of the proof of the a priori estimates near the
reflection point in the subsonic-away-from-sonic case

In order to obtain the C1,α–estimates near the reflection point P0, we apply
the estimates near the corner for the oblique derivative problem by Lieberman
[192, Theorem 2.1], in the version presented in §4.3.2. For that, we perform the
following steps, which we first outline below and then perform in detail:

1. Prove the functional independence of functions g(sh)
mod(p, z, ξ) and gw(p) on

Γshock for (p, z) = (Dϕ,ϕ) in the sense of (4.3.56). In the proof, we use
the cone of monotonicity for ϕ − ϕ2 and the structure of the shock polar
(including its convexity). We also use the fact that ϕ2 is the weak state (2);
see (16.6.16).

2. Since only the Lipschitz estimate of Γshock is available so that we do not have
the sufficient regularity to apply Proposition 4.3.7 directly with Γ1 = Γwedge

and Γ2 = Γshock, we perform the hodograph transform to flatten Γshock. Then
we apply Proposition 4.3.7 to obtain (4.3.57) with g1 = gw and x0 = P0 in
the hodograph variables.

3. Combining with (16.6.4) and applying Proposition 4.3.9 with W = Γshock in
the hodograph variables, we obtain the full gradient estimate (4.3.80) on the
hodograph plane. Then, changing the variables back, we obtain (4.3.80) for
ϕ on Γshock in the ξ–variables. We also obtain (4.3.57) with g1 = gw in Ω.

4. Choosing a vector e 6= νw and a function ĝsh(p) := (p − Dϕ2(P0)) · e and
noting that ĝsh(Dϕ(P0)) = 0 by (15.1.3) so that |ĝsh(Dϕ(ξ))| ≤ |ξ − P0|α
by (4.3.80) for ϕ on Γshock, we apply Proposition 4.3.7 with Γ1 = Γshock,
Γ2 = Γwedge, g1 = ĝsh, and g2 = gw to obtain (4.3.57) with g1 = ĝsh in Ω.

5. Combining with (4.3.57) for g1 = gw and applying Proposition 4.3.9 with
W = Ω, we obtain the full gradient estimate (4.3.80) in Ω. From that, we
prove the C1,α–regularity of ϕ and Γshock up to P0.
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Remark 16.6.5. In this proof, we crucially use both properties (15.1.3) and the
fact that ϕ2 corresponds to the weak reflection. We also note that the estimates
hold for θw ∈ [θ∗w, θ

s
w) satisfying (16.6.1), and the constants in these estimates

depend on θ∗w in addition to (ρ0, ρ1, γ, δP0) and blow up as θ∗w → θd
w+.

Now, in §16.6.2–§16.6.5, we give the details of Steps 1–5.

16.6.2 Functional independence of functions g(sh)
mod(p, z, ξ) and gw(p)

on Γshock for (p, z) = (Dϕ,ϕ)

Denote by τ (0)
w the unit tangent vector to Γwedge in the following direction:

τ (0)
w :=

Dϕ2(P0)

|Dϕ2(P0)| = −(cos θw, sin θw). (16.6.9)

Note that τ (0)
w = −τw, where τw is defined by (8.2.17).

Lemma 16.6.6. There exist r,M > 0 depending only on (ρ0, ρ1, γ, θ
∗
w, δP0

)
such that, for any admissible solution ϕ of Problem 2.6.1 with θw ∈ [θ∗w, θ

s
w]

satisfying (16.6.1),

|detG(Dϕ(ξ), ϕ(ξ), ξ)| ≥ 1

M
for all ξ ∈ Γshock ∩Br(P0), (16.6.10)

where G(p, z, ξ) is the matrix with columns Dpg
(sh)
mod(p, z, ξ) and Dpg

w(p, z, ξ).
More specifically, we have

τ (0)
w ·Dpg

(sh)
mod(Dϕ(ξ), ϕ(ξ), ξ) ≤ − 1

M
for all ξ ∈ Γshock ∩Br(P0),

(16.6.11)
where τ (0)

w is defined by (16.6.9). Note that (16.6.11) implies (16.6.10), since
Dpg

w = νw.

Proof. It suffices to prove (16.6.11), since (16.6.10) follows from (16.6.11). In this
proof, constants C, r, and M depend only on the data and θ∗w, unless otherwise
specified. We divide the proof into three steps.

1. Properties of the shock polar. Let ϕ be an admissible solution. From
Corollary 7.4.6, for any ξ ∈ Γshock, we have

Dϕ(ξ) = u e(ξ) + f
(ξ)
polar(u)e⊥(ξ), (16.6.12)

where u = ∂e(ξ)ϕ(ξ), f (ξ)
polar(·) is introduced in Definition 7.4.2, and

e(ξ) :=
Dϕ1(ξ)

|Dϕ1(ξ)| ,

e⊥(ξ) is the vector from rotating e(ξ) with
π

2
clockwise.

(16.6.13)
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Note that f (ξ)
polar(·) is the shock polar for the steady incoming flow with velocity

Dϕ1(ξ) and density ρ1, and Dϕ1(ξ) depends smoothly on ξ. Then, from Lemma
7.3.2(c) and (g), we have

Claim 16.6.7. Fix ρ1 and u1. For any compact set K ⊂ R2 \ Bc1(O1), there
exist r > 0 and C > 0 depending only on K such that, denoting by u(ξ)

s and
u

(ξ)
d the u–coordinates for the sonic and detachment points on the shock polar
v = f

(ξ)
polar(u) respectively, we have

(i) |f (ξ)
polar(u)| ≤ C for any ξ ∈ Nr(K) and u ∈ [û

(ξ)
0 , |Dϕ1(ξ)|];

(ii) |(f (ξ)
polar)

′(u)| ≤ C for any ξ ∈ Nr(K) and u ∈ [u
(ξ)
d , u

(ξ)
s ];

(iii) (u
(ξ)
d , u

(ξ)
s ) depend continuously on ξ ∈ R2 \Bc1(O1);

(iv) (û
(P0(θw))
0 , u

(P0(θw))
d , u

(P0(θw))
s ) depend continuously on θ ∈ (θd

w,
π
2 );

(v) If ξ̂ ∈ K, ξ ∈ Br(ξ̂), and u ∈ (u
(ξ)
d , u

(ξ)
s ), then u is in the domain of

f
(ξ̂)
polar(·) and

|f (ξ)
polar(u)− f (ξ̂)

polar(u)| ≤ Cr for all u ∈ [u
(ξ)
d , u(ξ)

s ]. (16.6.14)

Now we choose set K in Claim 16.6.7 to fix constants r and C for the rest
of the proof of Lemma 16.6.6. We will apply these estimates near the reflection
point P0 = (ξ0

1 , ξ
0
1 tan θw) for θw ∈ [θ∗w, θ

s
w], and hence fix

K = {(ξ0
1 , ξ

0
1 tan θw) : θ∗w ≤ θw ≤ θs

w}. (16.6.15)

Note that K ⊂ R2\Bc1(O1) by Theorem 7.1.10(iii). Now, applying Claim 16.6.7
with K defined by (16.6.15), we have

Corollary 16.6.8. There exist positive constants r and C, depending only on
the data and θ∗w, such that all the assertions of Claim 16.6.7 are satisfied for
any ξ ∈ Br(P0(θw)) and ξ̂ = P0(θw) with any θw ∈ [θ∗w, θ

s
w].

2. Reduction to the shock polar at the reflection point. Since the weak
state (2) is chosen for the wedge angles θw ∈ [θ∗w, θ

s
w) with θ∗w ∈ (θd

w, θ
s
w), then,

employing Theorem 7.1.1(vii) and using that point P0 = (ξ0
1 , ξ

0
1 tan θw) and the

quantities in Theorem 7.1.1(i) depend continuously on θw ∈ (θd
w,

π
2 ), we conclude

that there exists M > 0 depending only on the data and θ∗w such that

τ (0)
w ·Dpg

sh(Dϕ2(P0), ϕ2(P0), P0) ≤ − 1

M
for all [θ∗w, θ

s
w], (16.6.16)

where gsh is the function in (7.1.9). Thus, (16.6.11) holds at the reflection point
P0. We need to show that a similar inequality holds (with a possibly modified
constant) on Γshock ∩Br(P0) for small r > 0.

For that, we use the cone of monotonicity directions for ϕ−ϕ2 from Corollary
8.2.20, which can be applied by Proposition 15.2.1. We first prove the following:
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Claim 16.6.9. Let a := P0O1 ≡ Dϕ1(P0). Then a ∈ Cone0(eS1
,nw), where

{eS1
,nw} are defined by (7.5.8) and (8.2.35).

This can be seen by showing that

a = snw + t eS1 with s > 0, t > 0.

We compute

s =
a · νS1

nw · νS1

, t =
a · τ (0)

w

eS1 · τ (0)
w

,

where νS1
= D(ϕ1−ϕ2)
|D(ϕ1−ϕ2) = (u1−u2,−v2)√

(u1−u2)2+v2
2

is the unit normal to eS1
, and τ (0)

w

given by (16.6.9) is the unit vector along Γwedge and hence orthogonal to nw.
Recall that, by (7.1.2), the coordinates of P0 are (ξ0

1 , ξ
0
1 tan θw), with ξ0

1 =
ρ1u1

ρ1−ρ0
> u1; see §6.2. This implies that ξ1P0

> u1 and ξ2P0
> 0. Then, using

O1 = (u1, 0), we obtain

a = P0O1 = −|a|(cos θ̂, sin θ̂) for θ̂ ∈ (θw,
π

2
). (16.6.17)

Thus, using (7.5.8) and (8.2.17), we have

a · τ (0)
w = |a| cos(θ̂ − θw) > 0, eS1

· τ (0)
w =

u1 sin θw√
(u1 − u2)2 + v2

2

> 0,

so that

t =
a · τ (0)

w

eS1
· τ (0)

w

> 0.

Next, using (8.2.35) and νS1
= (u1−u2,−v2)√

(u1−u2)2+v2
2

, we have

nw · νS1 =
u1 sin θw√

(u1 − u2)2 + v2
2

> 0.

In order to estimate a · νS1 , we express νS1 as follows: By Lemma 7.4.8,
center O2 = (u2, u2 tan θw) of the sonic circle of state (2) lies within the rel-
ative interior of segment P0P3 ⊂ {ξ2 = ξ1 tan θw} for P3 = 0. Let Q̂ =
cos θw(u1 cos θw, u1 sin θw) be the nearest point to O1 on the wedge boundary
{ξ2 = ξ1 tan θw}. Then Q̂ ∈ P0P3 for P3 = 0 and P0 = (ξ0

1 cos θw, ξ
0
1 sin θw),

since u1 < ξ0
1 . Note that O2 cannot lie on segment P3Q̂ since, in that case, O1

and O2 are on the different sides of S1 (since S1 ⊥ O1O2), which contradicts
(6.1.3) and (6.1.5). Thus, O2 lies on segment Q̂P0. Using again that O1O2 ⊥ S1,
we have

νS1
= −(cos θ̄, sin θ̄),

where θ̂ ≤ θ̄ ≤ π
2 + θw for θ̂ in (16.6.17) so that θw < θ̂ < π

2 . Then

a · νS1
= cos(θ̄ − θ̂) > 0.
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Now we have
s =

a · νS1

nw · νS1

> 0,

and Claim 16.6.9 is proved.
3. We now continue our proof of Lemma 16.6.6. We use {e(·), e⊥(·)} defined

by (16.6.13). From Claim 16.6.9, since ϕ1 is a fixed smooth function, there exists
r depending only on the data such that, for any θw ∈ [θd

w, θ
s
w],

e(ξ) ∈ Cone0(eS1
,nw) for all ξ ∈ Br(P0).

Then, by Corollary 8.2.20 which holds in the present case by Proposition 15.2.1,
we have

∂e(ξ)(ϕ− ϕ2)(ξ) ≥ 0 for all ξ ∈ Ω ∩Br(P0). (16.6.18)

From this and the smooth dependence of e(·) and ϕ2(·) on ξ ∈ Nr(K) and
θw ∈ [θ∗w, θ

s
w] for K in (16.6.15), we obtain that, for any ξ ∈ Γshock ∩Br(P0),

u := ∂e(ξ)ϕ(ξ) ≥ ∂e(ξ)ϕ2(ξ) = e(ξ) ·Dϕ2(ξ) ≥ ∂e(P0)ϕ2(P0)− Cr. (16.6.19)

Remark 16.6.10. Estimate (16.6.19) is crucial for the proof of (16.6.11).
Indeed, by (15.1.3) and (16.6.16), we see that inequality (16.6.11) holds for
(p, z, ξ) = (Dϕ(P0), ϕ(P0), P0). Thus, (16.6.11) also holds for (p, z, ξ) close to
(Dϕ(P0), ϕ(P0), P0). However, since only the Lipschitz bound of ϕ is available,
we cannot argue that Dϕ(ξ) is close to Dϕ(P0) if ξ is close to P0. Instead,
using the cone of monotonicity for ϕ− ϕ2, we obtain (16.6.19), which amounts
to the one-sided closedness of a specific directional derivative of ϕ at ξ and P0.
Below, using the convexity of the shock polar, we will show that the one-sided
estimate (16.6.19) is sufficient to complete the proof of (16.6.11).

We also note that |Dϕ(ξ)| ≤ c(|Dϕ(ξ)|2, ϕ(ξ)) for any ξ ∈ Γshock, since ϕ
is an admissible solution in the sense of Definition 15.1.2 so that (15.1.4) holds.
From this, using parts (b), (e), and (g) of Lemma 7.3.2, we find that u ≤ u

(ξ)
s .

Combining this with (16.6.19), we have

∂e(P0)ϕ2(P0)− Cr ≤ u ≤ u(ξ)
s . (16.6.20)

We also note that one of the consequences of (16.6.20) is

u
(ξ)
d ≤ u ≤ u(ξ)

s . (16.6.21)

Indeed, recalling that P0 = (ξ0
1 , ξ

0
1 tan θw), we see that ∂e(P0)ϕ2(P0) is a smooth

function of θw ∈ (θd
w,

π
2 ). Also, since ϕ2 is a weak state (2), it follows from

(7.3.13) and Lemma 7.4.4 that

∂e(P0)ϕ2(P0) > u
(P0)
d for each θw ∈ (θd

w,
π
2 ). (16.6.22)
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Then, again using the continuous dependence of P0 on θw ∈ (θd
w,

π
2 ), and em-

ploying Claim 16.6.7(iv) and Corollary 16.6.8, we have

∂e(P0)ϕ2(P0)− u(P0)
d ≥ 1

C
for all θw ∈ [θ∗w, θ

s
w].

Now, from the continuous dependence of u(ξ)
d on ξ in Claim 16.6.7(iii), recalling

that ξ ∈ Γshock∩Br(P0) ⊂ Nr(K) with K from (16.6.15), we find that, reducing
r if necessary (depending only on the data and θ∗w), the left-hand side of (16.6.20)
satisfies

∂e(P0)ϕ2(P0)− Cr ≥ u(ξ)
d ,

which implies (16.6.21) from (16.6.20).
Denote p(ξ)(t) := t e(ξ) + f

(ξ)
polar(t)e

⊥(ξ). Then (16.6.12) implies

Dϕ(ξ) = p(ξ)(u).

From (16.6.21) and parts (i) and (v) of Claim 16.6.7 with Corollary 16.6.8,

|(p(P0)(u), ϕ1(P0))− (Dϕ(ξ), ϕ(ξ))|
= |(p(P0)(u), ϕ1(P0))− (p(ξ)(u), ϕ1(ξ))| ≤ Cr.

(16.6.23)

Now, using Lemma 16.6.3, we obtain that, for any ξ ∈ Γshock ∩Br(P0(θw)),

τ (0)
w ·Dpg

(sh)
mod(Dϕ(ξ), ϕ(ξ), ξ)

≤ τ (0)
w ·Dpg

(sh)
mod(p(P0)(u), ϕ1(P0), P0) + Cr

=
1

|Dϕ2(P0)|Dϕ2(P0) ·Dpg
(sh)
mod(p(P0)(u), ϕ1(P0), P0) + Cr,

(16.6.24)

where we have used (16.6.9) in the last equality. Thus, in order to prove
(16.6.11), it remains to show a negative upper bound of

1

|Dϕ2(P0)|Dϕ2(P0) ·Dpg
(sh)
mod(p(P0)(u), ϕ1(P0), P0)

for all u satisfying (16.6.20) for θw ∈ [θ∗w, θ
s
w].

We note that |Dϕ2(P0)| ∈ (0,∞) for each θw ∈ [θd
w,

π
2 ), where the fact that

Dϕ2(P0) 6= 0 follows from Lemma 7.4.4(ii). Then the continuous dependence of
both point P0 and the parameters of state (2) on θw ∈ [θd, θs] implies that

1

C
≤ |Dϕ2(P0)| ≤ C for all θw ∈ [θd

w, θ
s
w].

Then, to complete the proof of (16.6.11), it remains to show

Dϕ2(P0) ·Dpg
(sh)
mod(p(P0)(u), ϕ1(P0), P0) ≤ − 1

C
(16.6.25)
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for all u satisfying (16.6.20) for θw ∈ [θ∗w, θ
s
w].

Furthermore, from Lemma 16.6.3, Claim 16.6.7(i)–(ii), and Corollary 16.6.8,
we obtain that, for any u, ũ ∈ [u

(P0)
d , u

(P0)
s ],

|Dpg
(sh)
mod(p(P0)(u), ϕ1(P0), P0)−Dpg

(sh)
mod(p(P0)(ũ), ϕ1(P0), P0)| ≤ C|ũ− u|.

Also, noting that u(ξ)
s < u

(ξ)
∞ = |Dϕ1(ξ)| and reducing r if necessary, we obtain

u(ξ)
s ≤ 1

2

(
|Dϕ1(P0)|+ u(P0)

s

)
for all ξ ∈ Br(P0) and θw ∈ [θ∗w, θ

s
w],

by Claim 16.6.7(iii). Therefore, it suffices to show (16.6.25) for all u satisfying

∂e(P0)ϕ2(P0) ≤ u ≤ 1

2

(
|Dϕ1(P0)|+ u(P0)

s

)
, (16.6.26)

since, with this, using (16.6.22) and possibly reducing r, we obtain a similar
estimate (with a modified constant, still depending only on the data and θ∗w)
for all u satisfying (16.6.20).

4. Use of the convexity of the shock polar. We prove (16.6.25) for all u
satisfying (16.6.26). We write fpolar below for f (P0)

polar.
From (16.6.23), reducing r if necessary, we obtain by Lemma 16.6.2 that

Dpg
(sh)
mod(p(P0)(u), ϕ1(P0), P0) = Dpg

sh(p(P0)(u), ϕ1(P0), P0).

Thus, from now on, we use gsh instead of g(sh)
mod in the last expression in (16.6.24).

Denote
h(u, v) = gsh(u e(P0) + v e⊥(P0), ϕ1(P0), P0),

where we have used the notation in (16.6.13). Then, working in the coordinates
with basis {e(P0), e⊥(P0)}, we see that, in order to prove (16.6.25) for all u
satisfying (16.6.26), it suffices to show that

Dϕ2(P0) ·Dh(u, fpolar(u)) ≤ − 1

C
for all u in (16.6.26). (16.6.27)

From Lemma 7.4.4, it follows that h(u, v) is for the boundary condition
(7.3.16) for the steady incoming flow with (ρ∞, u∞) = (ρ1, |Dϕ1(P0)|). Thus,
the assertions of Lemma 7.3.2(h) hold for h(u, v). In particular,

Dh(u, fpolar(u)) 6= 0 for any u ∈ (û0, u∞)

so that, for each θw ∈ [θ∗w, θ
s
w],

1

C
≤ |Dh(u, f

(P0)
polar(u))| ≤ C for all u in (16.6.26),

and, by (7.3.17),

Dh(u, fpolar(u)) =
|Dh(u, fpolar(u))|√

1 + |f ′polar(u)|2
(f ′polar(u), −1). (16.6.28)
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With this, using Lemma 16.6.3, Claim 16.6.7(ii), and Corollary 16.6.8, we con-
clude that (16.6.27) follows from

Dϕ2(P0) · (f ′polar(u), −1) ≤ − 1

C
for all u in (16.6.26). (16.6.29)

Thus, it suffices to show (16.6.29).
By (16.6.12), for each θw ∈ [θ∗w, θ

s
w],

Dϕ2(P0) = u∗e(P0) + fpolar(u
∗)e⊥(P0), (16.6.30)

where u∗ = ∂e(P0)ϕ2(P0) ∈ [u
(P0)
d + 1

C , |Dϕ1(P0)|). Then, denoting

G(u) := Dϕ2(P0) · (f ′polar(u), −1) = u∗f ′polar(u)− fpolar(u
∗),

we see that, for each u ∈ (û
(P0)
0 , u

(P0)
∞ ),

G′(u) = u∗f ′′polar(u) ≤ 0, (16.6.31)

where we have used that u∗ ≥ 0 and the concavity of fpolar(·); see (7.3.9) in
Lemma 7.3.2.

Next, using (16.6.9), (16.6.28), and (16.6.30), the left-hand side of (16.6.16)
can be written as

|Dh(u∗, fpolar(u
∗))|√(

1 + |f ′polar(u
∗)|2
)(
|u∗|2 + |fpolar(u∗)|2

)G(u∗).

Thus, (16.6.16), combined with Lemma 16.6.3, Claim 16.6.7, and Corollary
16.6.8, implies

G(u∗) ≤ − 1

C
.

Combining this with (16.6.31), we obtain that

G(u) ≤ − 1

C
for any u ∈ [u∗, |Dϕ1(P0)|],

which implies (16.6.29). Lemma 16.6.6 is proved.

16.6.3 C1,α–estimates near P0

Now we use the functional independence in Lemma 16.6.6 to prove the C1,α–
estimates near P0.

We note first that Γshock near P0 can be written as the graph in the coordi-
nates with basis {e, e⊥} defined as follows: Denote

e :=
P0O1

|P0O1|
=

Dϕ1(P0)

|Dϕ1(P0)| ,

e⊥ is uniquely defined by |e⊥| = 1, e · e⊥ = 0, and e⊥ · νw > 0,

(16.6.32)
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where νw defined by (7.1.4) is the unit normal vector to Γwedge pointing into Λ.
Let (r, θ) be the polar coordinates with respect to center O1 of state (1) as in

Lemma 10.1.1. Then ∂r(ϕ1−ϕ)(P0) = −∂e(ϕ1−ϕ)(P0). Also, for s ∈ (0, |P0O1|
10 )

and P ∈ Bs(P0) ∩ Ω, vector er(P ) := P−O1

|P−O1| satisfies

er(P ) = er(P0) + g(P ) = −e + g(P ),

where |g(P )| ≤ Cs, with C depending only on |P0O1|, and hence on the data.
From Corollary 9.1.3 with Proposition 15.2.2, and Lemma 10.1.1 with Proposi-
tion 15.7.1, there exist δ and C depending only on the data such that

∂e(ϕ1 − ϕ)(P ) ≥ −∂r(ϕ1 − ϕ)(P )− |g(P )|‖ϕ1 − ϕ‖C0,1(Ω) ≥ δ − Cs.

Then there exists s∗ > 0 depending only on the data such that

∂e(ϕ1 − ϕ) ≥ δ

2
in Bs∗(P0) ∩ Ω. (16.6.33)

Also, ϕ = ϕ1 on Γshock, and ϕ1 > ϕ in Ω.
Next, it follows from (15.1.5) in Definition 15.1.2 that Γshock lies in Λ between

lines Γwedge ⊂ {ξ2 = ξ1 tan θw} and S1 ∩ Λ = {ϕ1 = ϕ2} ∩ Λ. Moreover, if e is
defined by (16.6.32) and τS1

defined by (11.3.8), then

angle α̂ between vectors e and τS1 satisfies α̂ ∈ (0,
π

2
). (16.6.34)

Indeed, using (11.3.9) and Lemma 7.4.4(ii), we obtain that α̂ = π
2 − β, where

β ∈ (βd, cos−1( c∞u∞ )] is defined in Lemma 7.3.2 on the shock polar of the steady
incoming flow (ρ∞, u∞) = (ρ1, |Dϕ1(P0)|), for the steady downstream velocity
Dϕ2(P0) in the coordinates described in Lemma 7.4.4(ii). Here, as defined in
Lemma 7.3.2(d), βd ∈ (0, cos−1( c∞u∞ )) is the detachment angle for the steady
shock polar, and we have used the fact that Dϕ2 is the self-similar weak reflec-
tion, so that Dϕ2(P0) is the steady weak reflection solution for the steady shock
polar described above by Lemma 7.4.4(ii)–(iii). Thus, α̂ = π

2 − β ∈ (0, π2 ).
Using (16.6.32) and (16.6.34), we conclude that, in the (S, T )–coordinates

with basis {e, e⊥} and the origin at P0,

S1 = {S = aS1
T}, {ϕ1 < ϕ2} ⊂ {S > aS1

T},

where aS1
> 0. Combining this with (16.6.33) and (15.1.5) in Definition 15.1.2,

we conclude that there exists fe ∈ C1(R) such that

Γshock ∩Bs∗(P0) = {S = fe(T ), T > 0} ∩Bs∗(P0),

Γwedge ∩Bs∗(P0) = {S = awT, T > 0} ∩Bs∗(P0),

Ω ∩Bs∗(P0) = {aS1
T < fe(T ) < S < awT, T > 0} ∩Bs∗(P0),

(16.6.35)

where aw := cot(∠P3P0O1) > 0. The last inequality holds since, in the ξ–
coordinates, P3 = 0, P0 = (ξ0

1 , ξ
0
1 tan θw), O1 = (u1, 0), and ξ0

1 > u1 > 0 by
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(2.2.18), so that ∠P3P0O1 ∈ (0, π2 − θw). We also note that ∠P3P0O1 depends
continuously on θw ∈ [θd

w, θ
s
w], which implies

1

C
≤ aw(θw) ≤ C for all θw ∈ [θd

w, θ
s
w]. (16.6.36)

Proposition 16.6.11. There exist s > 0, α ∈ (0, 1), and C > 0 depending
only on (ρ0, ρ1, γ, θ

∗
w, δP0

) such that, for any admissible solution ϕ of Problem
2.6.1 with θw ∈ [θ∗w, θ

s
w] satisfying (16.6.1),

‖ϕ‖(−1−α),{P0}
2,α,Ω∩Bs(P0) ≤ C, (16.6.37)

‖fe‖(−1−α),{0}
2,α,(0,s) ≤ C, (16.6.38)

where fe is the function defined in (16.6.35).

Proof. All the constants in this proof depend only on (ρ0, ρ1, γ, θ
∗
w, δP0

). Let ϕ
be the function as in the statement. We divide the proof into three steps.

1. In this step, we apply the hodograph transform in the e–direction to
perform Step 2 in the procedure of §16.6.1.

a) The equation and boundary conditions for φ̄ = ϕ1 − ϕ. We use equation
(2.2.11) for ϕ and φ = ϕ + |ξ|2

2 , with c = c(|Dϕ|2, ϕ, ργ−1
0 ) defined by (1.14).

Then, using that D2φ̄ = −D2φ and substituting it into the coefficients of the
right-hand side of (2.2.11) for ϕ = ϕ1 − φ̄, we see that φ̄ satisfies the equation
of form:

2∑

i,j=1

Aij(Dφ̄, φ̄, ξ)Dij φ̄ = 0 in Ω, (16.6.39)

where, for p ∈ R2 and z ∈ R,

Aij(p, z, ξ) = δij ĉ
2(p, z, ξ)− (∂iϕ1(ξ)− pi)(∂jϕ1(ξ)− pj), (16.6.40)

with ĉ2(p, z, ξ) := ργ−1
0 − (γ − 1)

(
1
2 |Dϕ1(ξ)− p|2 + ϕ1(ξ)− z

)
.

Then, from (16.6.2) and the definition of Aij ,

λ|κ|2 ≤
2∑

i,j=1

Aij(Dφ̄, φ̄, ξ)κiκj ≤ Λ|κ|2 for all ξ ∈ Ω and κ ∈ R2,

(16.6.41)
and, for anyM > 0, k = 1, 2, . . . , there exist Lk depending only on (M,k, ρ0, ρ1, γ)
such that, for k = 1, 2, . . . ,

|Dk
(p,z,ξ)Aij | ≤ Lk on {(p, z, ξ) ∈ R2×R×Ω : |p|+ |z| ≤M}. (16.6.42)

Next, we write the boundary conditions (16.6.4) on Γshock and (16.6.8) on
Γwedge in terms of φ̄, by substituting ϕ = ϕ1 − φ̄. Defining

ĝ(k)(p, z, ξ) = −g(k)(Dϕ1(ξ)− p, ϕ1(ξ)− z, ξ) for k = 1, 2, (16.6.43)
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with (g(1), g(2)) = (gw, g
(sh)
mod), we use notation (ĝw, ĝsh) = (ĝ(1), ĝ(2)) to obtain

ĝsh(Dφ̄, φ̄, ξ) = 0 on Γshock, ĝw(Dφ̄, ξ) = 0 on Γwedge.

Therefore, Dpĝ
sh(Dφ̄(ξ), φ̄(ξ), ξ) = Dpg

sh(Dϕ(ξ), ϕ(ξ), ξ). Then, from Lemma
16.6.4 and possibly reducing s∗ by replacing it with min{s∗, R} > 0, we have

Dpĝ
sh(Dφ̄(ξ), φ̄(ξ), ξ) · ν(ξ) ≥ δbc for all ξ ∈ Γshock, (16.6.44)

Dpĝ
sh(Dφ̄(ξ), φ̄(ξ), ξ) · Dφ̄(ξ)

|Dφ̄(ξ)| ≥ δbc for all ξ ∈ Ω ∩Bs∗(P0). (16.6.45)

We write equation (16.6.39) and the boundary conditions (16.6.43) in the coor-
dinate variables (S, T ) with basis {e, e⊥} and the origin at P0 without change
of notation.

b) The partial hodograph transform and the domain in the hodograph vari-
ables. Now, using (16.6.33), we perform the hodograph transform in domain
Bs∗(P0) ∩ Ω in the e–direction. We work in the (S, T )–coordinates with basis
{e, e⊥} and the origin at P0. Then (16.6.35) holds. We write φ̄ as a function of
(S, T ).

From (9.1.5), (16.6.33), and (16.6.35), and the fact that ϕ = ϕ1 on Γshock, it
follows that

φ̄(fe(T ), T ) = 0 for all T ∈ (0, s∗),

δ

2
≤ ∂Sφ̄ ≤ C,

φ̄(S, T ) ≥ δ

2
(S − fe(T )) > 0 in Ω ∩Bs∗(P0).

(16.6.46)

Define a map F : Bs∗(P0) ∩ Ω 7→ R2, by

F (S, T ) = (φ̄(S, T ), T ) =: (y1, y2) = y. (16.6.47)

Then F ∈ C1(Bs∗(P0) ∩ Ω)∩C3(Bs∗(P0) ∩ Ω\{P0}) by (15.1.2), and F (P0) = 0.
Denote

D := F (Bs∗(P0) ∩ Ω).

Then, from (16.6.33), there exists v ∈ C1(D)∩C2(D\{0}) such that, for y ∈ D,

(v(y), y2) ∈ Bs∗(P0) ∩ Ω,

φ̄(S, y2) = y1 if and only if v(y) = S.
(16.6.48)

In particular, F : Bs∗(P0) ∩ Ω 7→ D is one-to-one with

F−1(y) = (v(y), y2) ∈ Bs∗(P0) ∩ Ω for y ∈ D (16.6.49)

in the (S, T )–coordinates. Using that P0 = 0 in the (S, T )–coordinates, (16.6.49)
implies that

|v| ≤ s∗ on D. (16.6.50)
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Differentiating the equation: φ̄(v(y), y2) = y1, which holds for any y ∈ D,
we have

∂Sφ̄ =
1

∂y1
v
, ∂T φ̄ = − 1

∂y1
v
∂y2

v, (16.6.51)

and

∂SSφ̄ = − 1

v3
y1

vy1y1
, ∂ST φ̄ =

vy2

v3
y1

vy1y1
− 1

v2
y1

vy1y2
,

∂TT φ̄ = −v
2
y2

v3
y1

vy1y1
+ 2

vy2

v2
y1

vy1y2
− 1

vy1

vy2y2
,

(16.6.52)

where the left-hand and right-hand sides are taken at points (S, T ) and F (S, T ),
respectively. Now, if C and δ are the constants from (9.1.5) and (16.6.33),
respectively, then, from (16.6.51),

1

C
≤ ∂y1

v ≤ C

δ
, |Dv| ≤

√
C2 + 1

δ
. (16.6.53)

Next, we describe more precisely domain D in the y–coordinates. We first
note that line S1 = {ϕ1 = ϕ2} passes through P0 so that, from Lemma 7.4.8
and (16.6.35), we obtain that, in the (S, T )–coordinates,

S1 ∩ Λ = {S = aS1
T, S > 0},

{ϕ1 > ϕ2} ∩ Λ = {aS1
T < S < awT, T > 0},

where 0 < aS1
< aw, and aS1

depends continuously on θw ∈ [θd
w, θ

s
w]. Since

Ω ∩Bs∗ ⊂ Λ ∩ {ϕ1 > ϕ2}, we have

Ω ∩Bs∗(P0) ⊂ {aS1T < S < awT, T > 0} ∩Bs∗(P0).

Now, using (16.6.35)–(16.6.36), we have

0 < aS1
T ≤ fe(T ) ≤ awT ≤ CT for T ∈ (0,

s∗√
1 + C2

),

so that

Ω ∩ {0 < T < ŝ} = {fe(T ) < S < awT, 0 < T < ŝ}, (16.6.54)

where ŝ := s∗√
1+C2

. Applying transform (16.6.47) to both sides and using
(16.6.35) and (16.6.46), we have

D ∩ {0 < y2 < ŝ} = {y : f̂w(y2) > y1 > 0, 0 < y2 < ŝ},
F (Γshock ∩Bs∗(P0)) ∩ {0 < y2 < ŝ} = {(0, y2) : 0 < y2 < ŝ},

F (Γwedge ∩Bs∗(P0)) ∩ {0 < y2 < ŝ} = {(f̂w(y2), y2) : 0 < y2 < ŝ},

(16.6.55)
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where f̂w(y2) := φ̄(awy2, y2), f̂w ∈ C1([0, ŝ]), and the regularity of f̂w follows
from (15.1.2). In particular, f̂w(0) = 0, and f̂w > 0 on (0, ŝ) by (16.6.46). Thus,
we have

D ∩ {0 < y2 < ŝ} ⊂ {y : y1 > 0, y2 > 0},
0 = F (P0) ∈ ∂D.

(16.6.56)

Below we use the notations:

Dŝ := D ∩ {0 < y2 < ŝ} ,
Γ

(h)
shock := F (Γshock ∩Bs∗(P0)) ∩ {0 < y2 < ŝ} ,

Γ
(h)
wedge := F (Γwedge ∩Bs∗(P0)) ∩ {0 < y2 < ŝ} .

(16.6.57)

c) The equation and boundary conditions in the hodograph variables. In
order to obtain the equation for v(y) in D, we substitute the right-hand sides of
expressions (16.6.51)–(16.6.52) into equation (16.6.39) to obtain the equation:

2∑

i,j=1

aij(Dv, v,y)Dijv = 0 in D, (16.6.58)

with

a11(p, z,y) =
1

p3
1

(A11 − 2p2A12 + p2
2A22),

a12(p, z,y) = a21(p, z,y) =
1

p2
1

(A12 − p2A22),

a22(p, z,y) =
p2

p1
A22,

(16.6.59)

where Aij = Aij(
1
p1
,−p2

p1
, y1, (z, y2)).

From the definition of aij , we find that, for (p, z,y) satisfying p1 6= 0,

2∑

i,j=1

aij(p, z,y)κiκj =
1

p3
1

2∑

i,j=1

Aijηiηj

for (η1, η2) = (κ1, p1κ2 − p2κ1), so that

2∑

i,j=1

aij(Dv, v,y)κiκj =
1

v3
y1

2∑

i,j=1

Aij(Dφ̄, φ̄, S, T )ηiηj ,

where y = F (S, T ) and (η1, η2) = (κ1, vy1
κ2 − vy2

κ1).
Then, from (16.6.41) combined with (16.6.46), we have

1

C
|κ|2 ≤

2∑

i,j=1

aij(Dv, v,y)κiκj ≤ C|κ|2 for all y ∈ D, κ ∈ R2. (16.6.60)
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Now we discuss the boundary conditions for v. We write conditions (16.6.43)
at point (S, T ) = (v(y), y2) for y ∈ D by using (16.6.48) and substituting
the expressions of (φ̄,Dφ̄) from (16.6.48) and (16.6.51) at such a point into
conditions (16.6.43), we obtain the following boundary conditions for v:

gsh
h (Dv, v,y) = 0 on Γ

(h)
shock, gw

h (Dv, v,y) = 0 on Γ
(h)
wedge, (16.6.61)

where

g
(k)
h (p, z,y) = −ĝ(k)

(
(

1

p1
,−p2

p1
), y1, (z, y2)

)
for k = 1, 2, (16.6.62)

with (g
(1)
h , g

(2)
h ) = (gw

h , g
sh
h ), and we have used functions ĝ(k) on the right-hand

side of (16.6.62) with the arguments written in the (S, T )–coordinates.
Now we show some properties of g(k)

h (p, z,y). Below we always consider
(p, z,y) with p1 6= 0.

We first check the obliqueness of the condition on Γ
(h)
shock. From (16.6.55)

and (16.6.57), we obtain that ν = (1, 0) on Γ
(h)
shock. From (16.6.62), we have

∂p1g
sh
h (p, z,y) =

1

p1
Dpĝ

sh((
1

p1
,−p2

p1
), y1, (z, y2)) · ( 1

p1
,−p2

p1
).

Now, for y ∈ Γ
(h)
shock, we use that (S, T ) := (v(y), y2) ∈ Γshock ∩ Bs∗(P0) and

(16.6.44) expressed in the (S, T )–coordinates to obtain

Dpg
sh
h (Dv, v,y) · ν = ∂p1

gsh
h (Dv, v,y)

= ∂Sφ̄(S, T )Dpĝ
sh(Dφ̄, φ̄, (S, T )) ·Dφ̄(S, T )

≥ δbc∂Sφ̄(S, T )|Dφ̄(S, T )| ≥ δbc

C
,

(16.6.63)

where we have used (16.6.46) in the last inequality.
We also check the nondegeneracy of the condition on Γ

(h)
wedge. Writing (16.6.8)

in the (S, T )–coordinates with basis {e, e⊥}, we have

gw(p) = p1e · νw + p2e
⊥ · νw,

where p = (pS , pT ). Now, using (16.6.43) in the (S, T )–coordinates and then
(16.6.62), and expressing ϕ1 in the (S, T )–coordinates, we have

gw
h (p, z,y) =

1

p1
e · νw −

p2

p1
e⊥ · νw −Dϕ1(z, y2) · νw.

Then we calculate at (p, z,y) with p1 6= 0:

|Dpg
w
h | ≥ |Dp2g

w
h | =

|e⊥ · νw|
p1

.
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Thus, at point (p, z,y) = (Dv(y), v(y),y) for y ∈ D, we employ (16.6.53),
which implies especially that p1 = vy1

(y) 6= 0, to obtain

|Dpg
w
h (Dv(y), v(y),y)| ≥ 1

C
|e⊥ · νw| =

1

C
|e · τw|.

It remains to estimate |e · τw| from below. Using (16.6.32), we have

e =
P0O1

|P0O1|
, τw =

P0P3

|P0P3|
, O1, P3 ∈ {ξ1 = 0}, P0 /∈ {ξ1 = 0}.

Then it follows that |e · τw|(θw) > 0 for each θw ∈ [θd
w, θ

s
w]. Since O1 and P3

are independent of θw, and P0 depends continuously on θw ∈ [θd
w, θ

s
w], it follows

that there exists δw > 0 depending only on (ρ0, ρ1, γ) such that |e ·τw| ≥ δw for
any θw ∈ [θd

w, θ
s
w]. Then

|Dpg
w
h (Dv(y), v(y),y)| ≥ δw > 0 for all y ∈ D. (16.6.64)

We now check the functional independence of functions (gsh
h , g

w
h ) on Γ

(h)
shock.

We first note that, from (16.6.43) and Lemma 16.6.6, the functional indepen-
dence holds for (ĝsh, ĝw) on Γshock ∩Br(P0):

|det Ĝ(Dφ̄(ξ), φ̄(ξ), ξ)| ≥ 1

M
for all ξ ∈ Γshock ∩Br(P0), (16.6.65)

where Ĝ(p, z, ξ) is the matrix with columns Dpĝ
sh(p, z, ξ) and Dpĝ

w(p, z, ξ),
and r > 0 is determined in Lemma 16.6.6. We can assume that s∗ ≤ r. Let
Gh(p, z,y) be the matrix with columns Dpg

sh
h (p, z,y) and Dpg

w
h (p, z,y). Then,

writing ĝ(k) in the (S, T )–coordinates and using (16.6.62), we obtain, by a direct
calculation, that

Gh(p, z,y) =
1

p3
1

Ĝ((
1

p1
,−p2

p1
), y1, (z, y2)).

Now, for y ∈ Γ
(h)
shock, we use that (S, T ) := (v(y), y2) ∈ Γshock ∩Bs∗(P0), as well

as (16.6.65) expressed in the (S, T )–coordinates, to obtain

|detGh(Dv, v,y)| = |∂Sφ̄(S, T )|3 |det Ĝ(Dφ̄, φ̄, (S, T ))| ≥ 1

CM
. (16.6.66)

Finally, we modify (aij(p, z,y), g
(k)
h (p, z,y)) near p1 = 0. Using constant C

from (16.6.53), we choose M1 = C and modify (aij , g
(k)
h ) via multiplying it by

a cutoff function ζ ∈ C∞(R) such that ζ(t) ≡ 0 on (−∞, 1
4M1

) and ζ(t) ≡ 1 on
( 1

2M1
,∞) to obtain

(a
(mod)
ij , g

(k),(mod)
h )(p, z,y) = ζ(p1) (aij , g

(k)
h )(p, z,y).
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Then v(y) satisfies equation (16.6.58) and the boundary conditions (16.6.61)
with (a

(mod)
ij , g

(k),(mod)
h ). Also, from the choice of M1 in the cutoff, we find that

functions (a
(mod)
ij , g

(k),(mod)
h ) satisfy (16.6.60), (16.6.63)–(16.6.64), and (16.6.66).

Furthermore, from (16.6.5), (16.6.42), and the explicit expression (16.6.8), using
(16.6.43) in the (S, T )–variables, (16.6.59), and (16.6.62), we obtain the following
estimates similar to (16.6.42) for any M > 0 and l = 1, 2, . . . : For any l =
1, 2, . . . , there exists Cl depending only on (M, l, ρ0, ρ1, γ) such that

|Dl
(p,z,y)(a

(mod)
ij , g

(k),(mod)
h )| ≤ Cl (16.6.67)

on {(p, z,y) ∈ R2 × R×D : |p|+ |z| ≤M}.
d) Gradient estimates. Now we are in position to apply Proposition 4.3.7

for v(y) in domain Dŝ, with (Γ1,Γ2) = (Γ
(h)
wedge,Γ

(h)
shock). Indeed, by (16.6.55)–

(16.6.57), domain Dŝ ∩Bŝ(0) is of the form required in Proposition 4.3.7. Also,
since Γ

(h)
shock is a straight segment, (4.3.43) holds with L = 0. The Lipschitz

bound of the solution in (4.3.44) holds by (16.6.53). The regularity in (4.3.48)
for the ingredients of the equation and boundary condition holds by (16.6.67).
Also, f ≡ 0 in (4.3.52). The ellipticity in (4.3.53) holds by (16.6.60). The
obliqueness of g(2) = gsh

h in (4.3.54) holds by (16.6.63), the nondegeneracy of
g(1) = gw

h in (4.3.55) follows from (16.6.64), and the functional independence
(4.3.56) of (g(1), g(2)) = (gw

h , g
sh
h ) on Γ2 = Γ

(h)
shock holds by (16.6.66). Thus, from

Proposition 4.3.7, there exist α ∈ (0, 1), C, and s′ ∈ (0, s̃) depending only on
the data such that, for all y ∈ Dŝ ∩Bs′(0),

|gw
h (Dv(y), v(y),y)− gw

h (Dv(0), v(0),0)| ≤ C|y|α. (16.6.68)

Furthermore, we can apply Proposition 4.3.9 with W = Γ
(h)
shock ∩ Bs′(0). In-

deed, functions (gsh
h , g

w
h ) satisfy (4.3.75)–(4.3.76) by (16.6.67). The functional

independence (4.3.77) follows from (16.6.66). Conditions (4.3.78) clearly hold
for the straight segment W = Γ

(h)
shock ∩ Bs′(0) given by (16.6.55) and (16.6.57).

Finally, (4.3.79) follows from (16.6.68) and the fact that gsh
h (Dv, v,y) = 0 on

Γ
(h)
shock. Thus, from (4.3.80), we obtain

|Dv(y)−Dv(0)| ≤ C|y|α for all y ∈ Γ
(h)
shock ∩Bs′(0). (16.6.69)

Now we change back to the (S, T )–coordinates. We first show that

Ω ∩Bs′/C(P0) ⊂ F−1(Dŝ ∩Bs′(0)). (16.6.70)

To see this, we note that, from (16.6.55), ‖f̂ ′w‖[0,ŝ] ≤ ‖φ̄‖C0,1(Ω) ≤ C. Using
(16.6.55) and (16.6.57), we obtain

{
y : f̂w(y2) > y1 > 0, 0 < y2 <

s′

C

}
⊂ Dŝ ∩Bs′(0)
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for C depending on the data and δP0
. From this, using (16.6.54)–(16.6.55), we

conclude that Ω ∩ {0 < T < s′

C } ⊂ F−1(Dŝ ∩ Bs′(0)), which implies (16.6.70).
Then, using (16.6.48), (16.6.51), and (16.6.53), rewriting in terms of ϕ = ϕ− φ̄
expressed in the (S, T )–coordinates, and using the regularity of ϕ1, we obtain
from (16.6.68)–(16.6.69) that

|gw(Dϕ(S, T ), ϕ(S, T ), (S, T ))− gw(Dϕ(P0), ϕ(P0), P0)|
≤ C

(
φ̄2(S, T ) + T 2

)α
2 ≤ C1|(S, T )|α for all (S, T ) ∈ Ω ∩Bs′/C(P0),

|Dϕ(S, T )−Dϕ(P0)| ≤ C|(S, T )|α for all (S, T ) ∈ Γshock ∩Bs′/C(P0),

(16.6.71)

where we have used that, in the (S, T )–coordinates, P0 = 0 such that φ̄(0) = 0,
since P0 ∈ Γshock, which implies that 0 ≤ φ̄(S, T ) ≤ |(S, T )| by (9.1.5) and the
regularity of ϕ1.

Rewriting in the ξ–coordinates:

|∂νw
ϕ(ξ)− ∂νw

ϕ(P0)| ≤ C1|ξ − P0|α for all ξ ∈ Ω ∩Bs′/C(P0), (16.6.72)

|Dϕ(ξ)−Dϕ(P0)| ≤ C|ξ − P0|α for all ξ ∈ Γshock ∩Bs′/C(P0). (16.6.73)

2. Note that

ĝsh(Dϕ) = f(ξ) on Γshock ∩Bs′/C(P0), (16.6.74)

where ĝsh(p) = (p − Dϕ(P0)) · τw, f(ξ) := (Dϕ(ξ) − Dϕ(P0)) · τw, and the
equality holds simply because the left-hand side for Dϕ is the same expression
as the right-hand side. By (16.6.73),

|f(ξ)| ≤ C|ξ − P0|α for all ξ ∈ Γshock ∩Bs′/C(P0). (16.6.75)

Now we apply Proposition 4.3.7 for ϕ in domain Ω ∩ Bs′/C(P0), with Γ1 =
Γshock ∩ Bs′/C(P0) and Γ2 = Γwedge ∩ Bs′/C(P0), on which we prescribe the
boundary conditions (16.6.74) and (16.6.8), respectively. The straight segment
Γ2 obviously satisfies (4.3.43). Also, (4.3.44) follows from (9.1.5) and Proposition
15.2.2. Then the ellipticity and regularity of the ingredients of the equation for
ϕ follow from Corollary 16.6.1. The boundary conditions (16.6.8) and (16.6.74)
are linear with constant coefficients, which have the bounds independent of
θw ∈ [θd

w, θ
s
w]. Thus, the conditions in (4.3.51) are satisfied with the constants

depending only on the data and δP0 . Furthermore, f(·) in (16.6.74) satisfies
(4.3.52) by (16.6.75). Moreover, from the explicit expressions of the boundary
conditions, obliqueness (4.3.54) on Γ2 = Γwedge ∩ Bs′/C(P0), nondegeneracy
(4.3.55), and the functional independence (4.3.56) hold with λ = 1 and M = 1.
Thus, (4.3.57) implies the existence of s > 0 depending only on the data and
δP0

such that

|∂τw
ϕ(ξ)− ∂τw

ϕ(P0)| ≤ C1|ξ − P0|α for all ξ ∈ Ω ∩Bs(P0).
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Combining this with (16.6.72), we obtain

|Dϕ(ξ)−Dϕ(P0)| ≤ C1|ξ − P0|α for all ξ ∈ Ω ∩Bs(P0). (16.6.76)

3. Now we show the C1,α–regularity of ϕ up to P0 by using Proposition
4.3.11. We show that the assumptions of Proposition 4.3.11 are satisfied with
the constants depending only on (ρ0, ρ1, γ, θ

∗
w, δP0

).
Domain Ω ∩Bs(P0) is between the two curves Γshock ∩Bs(P0) and Γwedge ∩

Bs(P0). Since Γwedge is a straight segment, it satisfies (4.3.85) with M = 0.
Also, Γshock satisfies (4.3.85) by Corollary 8.2.14 which holds by Proposition
15.2.1. This can be seen by using assertion (i) of Corollary 8.2.14 and (8.2.24)
with P0 = P1 and e = νw to obtain (4.3.85) depending only on (ρ0, ρ1, γ).

Next, we check condition (4.3.86). Recall that ϕ(P0) = ϕ2(P0) andDϕ(P0) =
Dϕ2(P0) for subsonic admissible solutions by (15.1.3). Also, from the continu-
ous dependence of the parameters of state (2) on θw ∈ [θd

w, θ
s
w], it follows that

‖Dϕ(θw)
2 ‖C2(B1(P0)) ≤ C(ρ0, ρ1, γ) for any θw ∈ [θd

w, θ
s
w]. From (16.6.76), we

have

|ϕ(ξ)− ϕ2(ξ)| ≤ C[d(ξ)]1+α, |Dϕ(ξ)−Dϕ2(ξ)| ≤ C[d(ξ)]α (16.6.77)

for any ξ ∈ Ω ∩Bs(P0), where d(ξ) = |ξ−P0|. Furthermore, angle ζ(θw) between
line S(θw)

1 = {ϕ1 = ϕ
(θw)
2 } and Γwedge is in (0, π2 ) and depends continuously on

θw ∈ [θd
w, θ

s
w] so that ζ̂ = minθw∈[θd

w,θ
s
w] ζ

(θw) ∈ (0, π2 ). Then we have

dist(ξ,Γwedge) ≥ d(ξ) sin ζ̂ for any ξ ∈ S(θw)
1 and θw ∈ [θd

w, θ
s
w].

Thus, recalling that ϕ = ϕ1 on Γshock and using (16.6.46) and (16.6.77), we have

dist(ξ,Γwedge) ≥ d(ξ) sin ζ̂ − C[d(ξ)]1+α for all ξ ∈ Γshock ∩Bs(P0).

Reducing s further if necessary, depending only on constant C in the above
inequality, we obtain (4.3.86) with M = 2

sin ζ̂
.

We write equation (2.2.11) in terms of ϕ:

(c2 − ϕ2
ξ1)ϕξ1ξ1 − 2ϕξ1ϕξ2ϕξ1ξ2 + (c2 − ϕ2

ξ2)ϕξ2ξ2 − 2c2 + |Dϕ|2 = 0, (16.6.78)

where c2 = c2(|Dϕ|2, ϕ) is given by (1.14). This equation is satisfied in Ω ∩
Bs(P0). The boundary conditions are (16.6.4) on Γ1 = Γshock ∩ Bs′/C(P0) and
(16.6.8) on Γ2 = Γwedge ∩Bs′/C(P0).

Then the equation satisfies the regularity properties in (4.3.49)–(4.3.50) and
also (4.3.92) from the explicit expressions of (aij , a) which are polynomials in
(p, z), but independent of ξ. Also, the ellipticity in (4.3.53) on ϕ holds in Ω by
(16.6.2). The boundary conditions satisfy (4.3.87), since (16.6.8) follows from
its explicit expression, and (16.6.4) follows from Lemma 16.6.3.

The nondegeneracy in (4.3.88) is satisfied for (16.6.4) by (16.6.7) and, for
(16.6.8), we explicitly calculate that |Dpg

w(p)| = |νw| = 1. Finally, (4.3.89)
holds by (16.6.76).
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Therefore, we apply Proposition 4.3.11(i) to obtain

‖ϕ‖C1,β(Ω∩Bs/2(P0)) ≤ C,

where β ∈ (0, 1) and C depend only on the constants in the estimates discussed
above, and hence on (ρ0, ρ1, γ, θ

∗
w, δP0

). With this, using (16.6.33), we have

‖fe‖C1,β([0, s2 ]) ≤ C.

Thus, we can apply Proposition 4.3.11(ii) with σ = β to obtain

‖ϕ‖(−1−α),{P0}
2,β,Ω∩Bs/4(P0) ≤ C.

Then, using (16.6.33) again, we have

‖fe‖C1,α([0, s4 ]) ≤ C.

Now, we apply Proposition 4.3.11(ii) with σ = α and (16.6.37) with s
8 instead

of s
2 . From this, applying (16.6.33), we obtain (16.6.38) (with s

8 ). Proposition
16.6.11 is proved.

16.6.4 Global estimate

Using Proposition 16.6.11, we can obtain the global estimate for the wedge
angles θw ∈ (θc

w,
π
2 ), where θc

w is from Definition 15.7.3.

Corollary 16.6.12. Let δP0 ∈ (0, 1). Let θ∗w ∈ (θc
w,

π
2 ). Let α from Lemma

10.5.2 be extended to all θw ∈ [θ∗w,
π
2 ) by Proposition 15.7.5. Then there exists

C depending only on the data and (δP0
, θ∗w) such that, if θw ∈ (θc

w,
π
2 ) satisfies

(16.6.1) and ϕ is an admissible solution of Problem 2.6.1 with the wedge angle
θw, then

ϕext ∈ C1,α(Ωext) ∩ C∞(Ωext \ {P0, P
−
0 , P3}),

‖ϕ‖(−1−α),{P0,P3}
2,α,Ω ≤ C,

Dm(ϕ− ϕ2)(P0) = 0 for m = 0, 1.

(16.6.79)

Furthermore, the shock function fO1,sh for Γext
shock, introduced in Corollary 10.1.3,

satisfies

fO1,sh ∈ C1,α([θP0 , θP0
− ]) ∩ C∞((θP0 , θP0

−)),

‖fO1,sh‖
(−1−α),{θP0

,θP0
−}

2,α,(θP0
,θP0

− ) ≤ C.
(16.6.80)

Proof. Using Proposition 16.6.11, we follow the proof of Corollary 11.4.7 by
using Proposition 16.3.2 and the other results in this chapter, which extend the
results of the previous chapters to θw ∈ [θd

w,
π
2 ], in order to obtain the estimate:

‖ϕ‖(−1−α),{P0,P3}
2,α,Ω ≤ C

(
‖ϕ‖(−1−α),{P0}

2,α,Ω∩Bs(P0) + ‖ϕ‖(−1−α),{P3}
2,α,Ω\Bs/2(P0)

)
.
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This estimate, together with (15.1.3), implies (16.6.79), where the regularity of
ϕext in C∞(Ωext \ {P0, P

−
0 , P3}) is obtained similarly to the argument for the

corresponding part in Corollary 11.4.7.
Then (16.6.79) implies (16.6.80) by Lemma 10.1.1 with Proposition 15.7.1.

16.6.5 Some uniform estimates for all the supersonic and subsonic
reflection solutions away from the detachment angle.

Using the regularity results proved above, we can express Γshock near P0 as a
graph in the (x, y)–coordinates considered in §11.1 for any wedge angle θw ∈
(θd

w,
π
2 ), including the strictly subsonic–away-from-sonic case. This extends

Proposition 16.1.4.
Moreover, we show that the shock functions in the (x, y)–coordinates have

the uniform estimates in C1,α near P1 and in C2,α away from P1 for all the wedge
angles θw ∈ (θd

w,
π
2 ), where we have used the convention that P1 = P4 = P0 and

Γsonic = {P0} for the subsonic wedge angles.
We note that, by now, we have considered these coordinates near Γsonic.

However, from its definition in (11.1.1)–(11.1.2), the (x, y)–coordinates are smooth
coordinates in R2 \O2. From the continuous dependence of state (2) and P0 on
θw, there exists ε > 0 such that |P0

(θw)O(θw)
2 | ≥ 100ε for any θw ∈ [θd

w, θ
s
w]. We

thus consider Γshock ∩ Bε(P0) in the (x, y)–coordinates. Specifically, we extend
(16.1.10)–(16.1.13) to include all θw ∈ (θd

w, θ
s
w] in the following way:

Corollary 16.6.13. For any θ∗w ∈ (θd
w,

π
2 ), there exist ε0 > 0, ω > 0, α ∈ (0, 1),

and C depending only on (ρ0, ρ1, γ, θ
∗
w) such that, for any admissible solution

ϕ with θw ∈ [θ∗w,
π
2 ], there is a shock function f̂ ∈ C

(−1−α),{xP1
}

2,α,(xP1
,xP1

+ε0) so that,
for each ε ∈ (0, ε0], region Ωε defined by (16.1.3) satisfies the properties in
(16.1.10)–(16.1.13) and

1

C
≤ −∂y(ϕ1 − ϕ) ≤ C in Ωε0 , (16.6.81)

and moreover,

‖f̂‖(−1−α),{xP1
}

2,α,(xP1
,xP1

+ε0) ≤ C,

f̂(xP1
) = f̂0(xP1

), f̂ ′(xP1
) = f̂ ′0(xP1

),
(16.6.82)

where f̂0 is the function from (11.2.8) in Lemmas 11.2.2 and 16.1.2.

Proof. We divide the proof into two steps.

1. We first show (16.1.10)–(16.1.13) and (16.6.81). In the light of Proposition
16.1.4, which implies that (16.1.10)–(16.1.13) and Lemma 11.2.7 hold for any
wedge angle satisfying (16.1.7), it remains to consider only the subsonic reflection
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solutions with the wedge angles for which (16.6.1) holds. To prove the assertion
in that case, we note that, by Lemma 16.1.2 and Proposition 11.2.2,

∂y(ϕ1 − ϕ2)(P1) ≤ − 2

M
for all θw ∈ [θd

w,
π

2
]

with uniform M > 0. Then (16.6.79) implies that there exists ε0 > 0 depending
only on the data and θ∗w such that

∂y(ϕ1 − ϕ) ≤ − 1

M
on Ω ∩Bε0(P1) for all θw ∈ [θ∗w,

π

2
]. (16.6.83)

With this, since ϕ1 > ϕ in Ω with ϕ1 = ϕ on Γshock ⊂ ∂Ω, we obtain that the
properties in (16.1.10)–(16.1.13) follow from (16.6.79). Note also that (16.6.81)
follows from (16.6.79) and (16.6.83).

2. Let δP0
be the constant from Proposition 16.4.6. Then estimate (16.6.82)

for all the supersonic reflection solutions is obtained from:

(a) Estimate (16.3.3) with constant C defined in Proposition 16.3.2 for δ =
δP0

2 ,
by using Remark 11.4.2, for the wedge angles satisfying (16.3.5) with δ =
δP0

2 ;

(b) Estimate (16.4.60) in Proposition 16.4.6 for the wedge angles satisfying
(16.4.1).

Let δP0
be the constant in Proposition 16.5.3. Then estimate (16.6.82) for

all the subsonic and sonic reflection solutions with P1 = P0 follows from:

(a) Estimate (16.5.18) for the wedge angles satisfying (16.5.1);

(b) Estimate (16.6.37) by using (16.6.83) and (15.1.3) for the wedge angles sat-
isfying (16.6.1).

We also note that estimate (11.2.23) can be extended to any admissible
solution for θw ∈ [θ∗w,

π
2 ] as follows:

Lemma 16.6.14. For any θ∗w ∈ (θd
w,

π
2 ), there exist ε0 > 0 and C depending

only on (ρ0, ρ1, γ, θ
∗
w) such that, if ϕ is any admissible solution with θw ∈ [θ∗w,

π
2 ),

|D(x,y)ψ| ≤ Cx in Ωε0 , (16.6.84)

where Ωε is defined by (16.1.3).

Proof. By Proposition 16.1.4, the assertion is true for all the admissible solutions
with any wedge angle θw ∈ Iw(δP0

) ∩ [θ∗w,
π
2 ), where we have used the notation

in (16.1.7).
Therefore, it remains to consider the subsonic reflection case with the wedge

angles θw ∈ (θ∗w, θ
s
w) for which (16.6.1) holds. Since δP0

in Proposition 16.1.4
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is positive and depends only on the data, it follows that there exists d̂ > 0
depending only on the data and θ∗w such that xP0

(θw) ≥ d̂ for any θw ∈ (θ∗w, θ
s
w)

satisfying (16.6.1). Therefore, by (16.1.10), x ≥ d̂ in Ωε0 for any admissible
solution with such a wedge angle. Then (16.6.84) for such an admissible solution
ψ follows from the L∞–estimate of Dψ in Ω, given by (16.6.79) in Corollary
16.6.12.



Chapter Seventeen

Existence of Global Regular Reflection-Diffraction

Solutions up to the Detachment Angle

17.1 STATEMENT OF THE EXISTENCE RESULTS

In this chapter, we prove the following existence assertion:

Proposition 17.1.1. Let γ > 1 and ρ1 > ρ0 > 0. Let θcw ∈ [θd
w,

π
2 ) be the

corresponding critical wedge angle, defined in Definition 15.7.4. Then, for any
θw ∈ (θc

w,
π
2 ), there exists an admissible solution of Problem 2.6.1.

The rest of this chapter is a proof of Proposition 17.1.1. To achieve this, it
suffices to prove the existence of admissible solutions with θw ∈ [θ∗w,

π
2 ) for each

θ∗w ∈ (θc
w,

π
2 ). Thus, throughout this chapter, we fix θ∗w ∈ (θc

w,
π
2 ).

Note that, if θ∗w > θs
w, the existence of admissible solutions with θw ∈ [θ∗w,

π
2 )

follows from Proposition 12.1.1. Thus, we focus essentially on the case:

θc
w < θ∗w ≤ θs

w,

although we do not assume this in this chapter (the argument works for Case
θ∗w > θs

w as well, which is essentially reduced to the proof of Proposition 12.1.1).

17.2 MAPPING TO THE ITERATION REGION

17.2.1 Mapping into the iteration region

We follow the construction in §12.2 for all θw ∈ (θd
w,

π
2 ), with only notational

changes, by employing the convention that P0 = P1 = P4 and Γsonic = {P0}
for the subsonic wedge angles and the fact that all the estimates of Chapters
8–11 are extended to all θw ∈ (θd

w,
π
2 ) in Chapters 15–16. We now sketch the

construction.
Using Definitions 11.2.1 and 16.1.1, we can find δ∗ > 0 such that (12.2.2)

holds for any θw ∈ [θd
w,

π
2 ]. Fix this δ∗ > 0. Then, in the same way as in

§12.2, for each wedge angle θw ∈ (θd
w,

π
2 ), we define S1,δ∗ by (12.2.1), point P̂1

by (12.2.3) in which we use circle ∂B|O2P4|(O2) instead of ∂Bc2(O2) (note that
|O2P4| = c2 for supersonic/sonic wedge angles, while |O2P4| < c2 for subsonic
wedge angles), arc Γ

(δ∗)
sonic as the smaller arc P̂1P4 of ∂B|O2P4|(O2) (which is an
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arc, rather than one point, even for subsonic wedge angles), and Q and Qbd by
(12.2.5). Then (12.2.6) holds for all θw ∈ (θd

w,
π
2 ] by the same proof.

Moreover, to define Dδ∗,ε for any wedge angle θw ∈ [θd
w,

π
2 ], we modify

(12.2.8) as follows: Let ε0 and ε1 be the constants from Corollary 16.6.13 and
Lemma 16.1.2, respectively. For each ε ∈ (0, ε0], denote

D(θw)
δ∗,ε

:= {ϕ2 < ϕ1 + δ∗} ∩ Λ ∩Nε1(Γ
(δ∗)
sonic) ∩ {xP1

< x < xP1
+ ε}

≡ Q ∩Nε1(Γ
(δ∗)
sonic) ∩ {xP1

< x < xP1
+ ε},

(17.2.1)

where ϕ2 and Γ
(δ∗)
sonic correspond to the wedge angle θw. Then there exists a

function f̂0,δ∗ ∈ C∞([xP1
, xP1

+ ε0]) such that

Dδ∗,ε0 = {(x, y) : xP1
< x < xP1

+ ε0, θw < y < f̂0,δ∗(x)},
S1,δ∗ ∩Nε1(Γ

(δ∗)
sonic) ∩ {xP1

< x < xP1
+ ε0}

= {(x, y) : xP1 < x < xP1 + ε0, y = f̂0,δ∗(x)}.
(17.2.2)

We recall that, in the (x, y)–coordinates, xP1
= xP4

= 0 and yP1
> yP4

= θw

for supersonic wedge angles, while xP1
= xP4

> 0 and yP1
= yP4

= θw for
subsonic wedge angles.

Lemma 17.2.1. Lemma 12.2.2 holds for any wedge angle θw ∈ [θd
w,

π
2 ], with

constants δ > 0, C > 0, and ε0 > 0 depending only on (ρ0, ρ1, γ) and the
following notational changes that affect only subsonic/sonic wedge angles: P0 =
P1 = P4 for subsonic wedge angles; assertion (iv) in Lemma 12.2.2 should be
replaced by the following (which applies to all the wedge angles θw ∈ [θd

w,
π
2 ],

since xP4
= 0 for supersonic/sonic wedge angles):

(iv) F1(P ) = (xP − xP4
, yP − yP4

) for all P ∈ D(θw)
δ∗, 3ε0/4

under the notation in
(17.2.1). In particular,

F1(P1) = (0, yP1
− yP4

), F1(P4) = 0,

F1(Γsonic) = {s = 0, 0 ≤ t ≤ yP1
− yP4

}.

Also, F1(Qbd \ D(θw)
δ∗, 3ε0/4

) = F1(Qbd) ∩ {s ≥ 3ε0
4 }.

Proof. The proof of Lemma 12.2.2 applies, with the following change in several
places that refer to the (x, y)–coordinates: x should be replaced by x − xP4

(which does not cause any change for the supersonic angles considered in Lemma
12.2.2). Moreover, estimate (16.6.81) is used in the proof of (iv) instead of the
estimate of ∂y(ϕ1 − ϕ) in (11.2.37).

Next, we have
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Lemma 17.2.2. For any θ∗w ∈ (θd
w,

π
2 ), Lemma 12.2.3 holds for any admissible

solutions with the wedge angle θw ∈ [θ∗w,
π
2 ) and the normal reflection for θw = π

2 ,
with constants ε0, ε1, ε, δ > 0 and C ≥ 1 depending only on (ρ0, ρ1, γ, θ

∗
w), and

constants C(ε̂) (resp. C(α)) depending, in addition, on ε̂ (resp. α), given the
following changes:

• Instead of (12.2.30), there exists α ∈ (0, 1) such that

‖gsh‖(−1−α),{0}
2,α,(0,ε0) ≤ C, gsh(0) = gS1

(0), g′sh(0) = g′S1
(0). (17.2.3)

We note that (17.2.3) is equivalent to (12.2.30) with norm ‖ · ‖(1+α),(par)
2,α,(0,ε)

instead of ‖ · ‖(par)
2,α,(0,ε) ≡ ‖ · ‖

2,(par)
2,α,(0,ε).

• Instead of (12.2.31), for any s ∈ (0, ŝ(θw)) and θw ∈ [θ∗w,
π
2 ),

min(gsh(0) +
s

M
,

1

M
)

≤ gsh(s) ≤ min(gsh(0) +Ms, η(θw)(s)− 1

M
),

(17.2.4)

where gsh(0) = tP1(θw) ≥ 0, and M ≥ 1 depends only on (ρ0, ρ1, γ, θ
∗
w),

and function η(θw)(·) is from (12.2.10).

Proof. We follow the proof of Lemma 12.2.3 by using Corollary 16.6.13 and the
estimates of Chapters 15–16 which extend the estimates of Chapters 8–11 to
all θw ∈ (θd

w,
π
2 ). In particular, (17.2.3) follows directly from (16.6.82), since

gS1(s) = f̂0(s+ xP4)− θw and gsh(s) = f̂(s+ xP4)− θw.
To prove (17.2.4), we note that, from (16.1.12)–(16.1.13), (16.6.82) in Corol-

lary 16.6.13, and Lemma 17.2.1(iv), it follows that there exist ε̂ ∈ (0, ε) and
M ≥ 1 depending only on (ρ0, ρ1, γ, θ

∗
w) such that

Ms+ tP1
≥ gsh(s) ≥ 1

M
s+ tP1

for all s ∈ [0, ε̂].

Recall that tP1
= gsh(0) ≥ 0. Now we employ Lemma 15.7.4(iv) (with r =

ε̂
2 ) and the proof of the upper bound in (12.2.31) (see the proof of Lemma
12.2.3) which works in the present case without change to conclude the proof of
(17.2.4).

Now we define a mapping into the iteration region Qiter = [0, 1]2. We first
note

Lemma 17.2.3. Lemma 12.2.4 holds for any θw ∈ (θd
w,

π
2 ]. In particular, θs

w is
replaced by θd

w in (12.2.35) and in the definition of set B after (12.2.38).



SOLUTIONS UP TO THE DETACHMENT ANGLE 693

Proof. We argue in a way similar to Lemma 12.2.4, with only notational changes.
Equation (12.2.39) in the (x, y)–coordinates, in the neighborhood Dδ∗,ε0 defined
now by (17.2.1), takes the form:

ϕ̃20(x, y)

:=

{
ζ1(x− xP1

)ϕ0(x, y) + (1− ζ1(x− xP1
))ϕ2(x, y) for (x, y) ∈ Dδ∗,ε0 ,

ϕ0 otherwise,

where we have used the expression of ϕ2 in the (x, y)–coordinates in the first
equality. With this, using Lemma 17.2.1(iv) and xP1

= xP4
, we follow the

argument for Lemma 12.2.4 with the only changes that (ϕ1 − ϕ2)|(x,y)=(s,t+θw)

is replaced by (ϕ1 − ϕ2)|(x,y)=(s+xP1
,t+θw) in (12.2.40) and in the estimate of

∂I2
∂t . Note that all of the changes affect only the subsonic angles, since xP1 = 0
in the supersonic/sonic case.

We also note that the wedge angles near π
2 are supersonic, so that Step 2 of

the proof of Lemma 12.2.4 is unchanged.

Let θw ∈ (θd
w,

π
2 ), and let ϕ be an admissible solution. Then (12.2.24) holds

by Lemma 17.2.2, which determines function gsh(s). We define the map:

F(2,gsh) : Ω̃∞ = (0, ŝ(θw))× (0,∞) 7→ R2

by (12.2.41). The map is well-defined by (17.2.4). However, for the sub-
sonic/sonic wedge angles with gsh(0) = tP1

= 0, the map becomes singular
as s → 0+. Furthermore, noting that region Ω̃ = F1(Ω) is of form (12.2.24),
we find that F(2,gsh) is one-to-one on Ω̃, F(2,gsh)(Ω̃) = Qiter, and its inverse
F−1

(2,gsh) : Qiter 7→ Ω̃ is given by (12.2.43). We note that the regularity of

F−1
(2,gsh)(·) on Qiter is determined by the regularity of gsh(·) on [0, ŝ(θ)] for any
θ∗w ∈ (θd

w,
π
2 ), even for the subsonic/sonic angles, i.e., F−1

(2,gsh) does not become
singular as s → 0+. However, in the subsonic/sonic case, F−1

(2,gsh) does not

extend to a one-to-one map on Qiter since F−1
(2,gsh)(0, t) = (0, 0) for any t ∈ [0, 1].

Now we can define function u on Qiter by (12.2.44).

17.2.2 Uniform estimates of admissible solutions mapped into the
iteration region

In order to state the extension of Proposition 12.2.5, i.e., to give the uniform
estimates for function u on Qiter defined by (12.2.44) with an admissible solution
ϕ, in the case of all the wedge angles including the subsonic/sonic case, we need
to examine the properties of function u near {s = 0} in the case of subsonic and
sonic wedge angles in more detail. Recall that gsh(0) = 0 in this case, so that
transform (12.2.41) becomes singular near {s = 0}.

Suppose that ϕ is an admissible solution, and u on Qiter is defined by
(12.2.44). Using the property of Lemma 12.2.2(iv) extended to the subsonic re-
flection case in the form given in Lemma 17.2.1, we can use the (x, y)–coordinates
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on Ω∩Dε0/10 for any θw ∈ (θd
w,

π
2 ). For any ξ ∈ Ωε0/10, set (s, t) = F(2,gsh)◦F1(ξ).

Then the (x, y)–coordinates of ξ satisfy

(x− xP4 , y − θw) = (hs, gsh(hs)t) for all s ∈ (0,
ε′0
10

), t ∈ (0, 1). (17.2.5)

Here
h := ŝ(θw), (17.2.6)

and ε′0 is defined similarly to (12.2.45), but with θd
w instead of θs

w:

ε′0 :=
ε0

maxθw∈[θd
w,
π
2 ] ŝ(θw)

, (17.2.7)

where ε0 is from Lemma 17.2.1, and we have used the continuity of ŝ(·) on
[θs

w,
π
2 ]. Then ε′0 ∈ (0, 1

2 ) depends only on the data.
Now, using (12.2.35) that holds by Lemma 17.2.3, we find that, for ψ = ϕ−ϕ2

expressed in the (x, y)–coordinates and u given by (12.2.44), we have

ψ(x, y) = u(
x− xP4

h
,

y − θw

gsh(x− xP4
)
) for all (x, y) ∈ Ωε0/10. (17.2.8)

Proposition 16.6.11 and Corollary 16.6.12 imply that ψ ∈ C
(−1−α),{P0}
2,α,Ωε

with
(ψ,Dψ)(P0) = (0,0) for any subsonic/sonic reflection solution, for uniform ε >
0, where P0 = P1 = P4. Moreover, after possibly increasing M , we can write
(17.2.4) in the subsonic/sonic case, i.e., when gsh(0) = 0, in the form:

s

M
≤ gsh(s) ≤Ms on s ∈ (0, h), (17.2.9)

where we have used the notation in (17.2.6).
Now we discuss the properties of functions u(s, t) obtained by (17.2.8) from

functions ψ ∈ C(−1−α),{P0}
k,α,Ω with (ψ,Dψ)(P0) = (0,0).

Let h > 0, xP4 ∈ R, and θw ∈ R, and let gsh(·) be a function on [0, h]
satisfying (17.2.9). This determines the following map x : R2 7→ R2:

(x, y) = x(s, t) defined by (17.2.5). (17.2.10)

Then map x is one-to-one on (0,
ε′0
10 )×(0, 1), but not one-to-one on [0,

ε′0
10 )×(0, 1).

That is, map x loses its one-to-one property on the side: {s = 0} × [0, 1].
For ε ∈ (0, h), define

Ωε := x(Qε′), P0 = P1 = P4 := x(0, 0), (17.2.11)

with ε′ := ε
h and Qε′ := Qiter ∩ {s < ε′}. Then Ωε is of the same form as in

(16.1.10) with f̂(x) = θw + gsh(x− xP4
), where we recall that P4 = (xP4

, θw).
For k ∈ {1, 2} and α′ ∈ (0, 1) satisfying k + α′ ≥ 1 + α, denote

Ĉ
(−1−α),{P0}
k,α′,Ωε

:= {v ∈ C(−1−α),{P0}
k,α′,Ωε

: v(P0) = 0, Dv(P0) = 0}. (17.2.12)
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We now describe the space of functions u on Qε′ , obtained by (17.2.8) with
ψ ∈ Ĉ(−1−α),{P0}

k,α′,Ω̂
. For that, we define the following norm: For α ∈ (0, 1) and

points s = (s, t) and s̃ = (s̃, t̃), denote

δ(subs)
α (s, s̃) :=

(
|s− s̃|2 +

(
max(s, s̃)

)2|t− t̃|2
)α

2

. (17.2.13)

Then, for σ > 0, α ∈ (0, 1), and a nonnegative integer m, define

‖u‖(σ),(subs)
m,0,Qε

:=
∑

0≤k+l≤m

sup
s∈Qε

(
sk−σ|∂ks ∂ltu(s)|

)
,

[u]
(σ),(subs)
m,α,Qε

:=
∑

k+l=m

sup
s,s̃∈Qε,s6=s̃

(
min(sα+k−σ, s̃α+k−σ)

× |∂
k
s ∂

l
tu(s)− ∂ks ∂ltu(s̃)|
δ

(subs)
α (s, s̃)

)
,

‖u‖(σ),(subs)
m,α,Qε

:= ‖u‖(σ),(subs)
m,0,Qε

+ [u]
(σ),(subs)
m,α,Qε

,

(17.2.14)

where Q = Qiter, Qε := Q ∩ {s < ε}, and k and l are nonnegative integers.
Denote Cm,ασ,(subs)(Qε) := {u ∈ Cm(Qε) : ‖u‖(σ),(subs)

m,α,Qε
<∞}.

We first note that, in (17.2.13), we can use min(s, s̃) instead of max(s, s̃),
and the resulting norm (17.2.14) is equivalent, with the constant depending only
on (m,α):

Lemma 17.2.4. If s, s̃, t, t̃ ∈ (0, 1), then

|s− s̃|2 +
(

max(s, s̃)
)2|t− t̃|2 ≤ 5

(
|s− s̃|2 +

(
min(s, s̃)

)2|t− t̃|2
)
. (17.2.15)

Proof. Let s, s̃, t, t̃ ∈ (0, 1). Assume that s̃ ≤ s. Then we prove (17.2.15) by
considering two separate cases.

If s ≤ 2s̃, then, recalling that s̃ ≤ s, we see that max(s, s̃) ≤ 2 min(s, s̃), so
that (17.2.15) holds.

In the opposite case, recalling that s̃ ≤ s, we obtain that 0 < s̃ < s
2 , so that

s− s̃ > s

2
=

1

2
max(s, s̃) ≥ 1

2
max(s, s̃)|t− t̃|,

which implies

5|s− s̃|2 ≥ |s− s̃|2 +
(

max(s, s̃)
)2|t− t̃|2.

This means that (17.2.15) holds in this case as well.

Now we prove the first main fact about spaces Cm,ασ,(subs)(Qε).
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Lemma 17.2.5. Let M,M1 ≥ 1, xP4
∈ R, and θw ∈ R. Let h ∈ ( 1

M1
,M1) and

ε ∈ (0, h2 ). Let m ∈ {1, 2} and α ∈ [0, 1). Assume that a function gsh(s) on
(0, ε) satisfies (17.2.9) on (0, ε) and

‖gsh‖(−1−α),{0}
m,α,(0,ε) ≤M. (17.2.16)

Let ψ be a function on Ωε. Define a function u on Qε′ by

u(s, t) = ψ
(
xP4

+ hs, θw + gsh(hs)t
)
,

so that (17.2.8) holds. Then ψ ∈ Ĉ(−1−α),{P0}
m,α,Ωε

if and only if u ∈ Cm,α1+α,(subs)(Qε′),
and

1

C
‖ψ‖(−1−α),{P0}

m,α,Ωε
≤ ‖u‖(1+α),(subs)

m,α,Qε′
≤ C‖ψ‖(−1−α),{P0}

m,α,Ωε
,

where C depends only on (M,M1), and we have also used the notations in
(17.2.10)–(17.2.11).

Proof. The proof consists of three steps.

1. From (17.2.12) and structure (16.1.10) of Ωε with f̂(x) = gsh(
x−xP4

h )
satisfying (17.2.9), it is easy to see that, for m = 1, 2, and α ∈ [0, 1), space
Ĉ

(−1−α),{P0}
m,α,Ωε

can be characterized as the set of all v ∈ C(−1−α),{P0}
m,α,Ωε

for which

‖v‖
′,(−1−α)
m,α,Ωε

<∞, where

‖v‖
′,(−1−α)
m,0,Ωε

:=
∑

0≤|β|≤m

sup
x∈Ωε

(
|x− xP4 ||β|−1−α|Dβv(x)|

)
,

[v]
′,(−1−α)
m,α,Ωε

:=
∑

|β|=m

sup
x,x̃∈Ωε,x6=x̃

(
min(|x− xP4 |m−1, |x̃− xP4 |m−1)

|Dβv(x)−Dβv(x̃)|
|x− x̃|α

)
,

‖v‖
′,(−1−α)
m,α,Ωε

:= ‖v‖
′,(−1−α)
m,0,Ωε

+ [v]
′,(−1−α)
m,α,Ωε

,

(17.2.17)

where x = (x, y), x̃ = (x̃, ỹ), and β = (β1, β2) is a multi-index. Moreover, norms
‖ · ‖(−1−α),{P0}

m,α,Ωε
and ‖ · ‖

′,(−1−α)
m,α,Ω are equivalent on Ĉ(−1−α),{P0}

m,α,Ωε
, with constant

C depending only on (M,M1), where only the case that m = 1, 2, and ε < h is
considered.

Then it suffices to show that

1

C
‖ψ‖

′,(−1−α)
m,α,Ωε

≤ ‖u‖(1+α),(subs)
m,α,Qε′

≤ C‖ψ‖
′,(−1−α)
m,α,Ωε

(17.2.18)

with C depending only on (M,M1). In the argument below, the universal con-
stant C depends only on these parameters.
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2. We note that the first and second derivatives of ψ are expressed through
the derivatives of u by

ψx =
1

h
us − t

g′

g
ut, ψy =

1

g
ut,

ψxx =
1

h2
uss − 2

tg′

hg
ust +

( tg′
g

)2

utt − t
(g′′
g
− 2

(g′)2

g2

)
ut,

ψxy =
1

hg
ust −

tg′

g2
utt −

g′

g2
ut, ψyy =

1

g2
utt,

(17.2.19)

where g(·) is used for gsh(·), and (D,D2)ψ = (D,D2)ψ(x, y), (D,D2)u =

(D,D2)u
(x−xP4

h , y−θw
g(x−xP4

)

)
, and (g, g′) = (g, g′)(x− xP4

). Note that, using map
(17.2.10) and denoting by s(·) its inverse, then (D,D2)u = (D,D2)u(s(x)).

From (17.2.19), using (17.2.9) on (0, ε) and ‖gsh‖(−1−α),{0}
m,α,(0,ε) ≤M , we directly

obtain
1

C
‖ψ‖

′,(−1−α)
m,0,Ωε

≤ ‖u‖(1+α),(subs)
m,0,Qε′

≤ C‖ψ‖
′,(−1−α)
m,0,Ωε

.

Indeed, let m = 1 in order to fix the setting. Then u ∈ C1,0
1+α,(subs)(Qε′) implies

that, for (s, t) ∈ (0, ε′)× (0, 1),

|u(s, t)| ≤ Ls1+α, |us(s, t)| ≤ Lsα, |ut(s, t)| ≤ Ls1+α,

where L = ‖u‖(1+α),(subs)
1,0,Qε′

. By (17.2.19) (where the arguments in the functions
are specified after the equation), and using the lower bound g(s) ≥ s

M in (17.2.9),
we have

|ψy| = |
1

g
ut| ≤ CL(x− xP4

)α.

Similarly, using (17.2.16) in addition to the previous properties, we have

|ψx| = |
1

h
us − t

g′

g
ut| ≤ CL(x− xP4)α.

Also, from (17.2.8), |ψ| ≤ CL(x− xP4)1+α. Combining these estimates, we have

‖ψ‖
′,(−1−α)
m,0,Ωε

≤ C‖u‖(1+α),(subs)
m,0,Qε′

for m = 1.

Form = 2, the proof is similar, on account of using the expressions of the second
derivatives in (17.2.19). Also, the estimates:

‖u‖(1+α),(subs)
m,0,Qε′

≤ C‖ψ‖
′,(−1−α)
m,0,Ωε

for m = 1, 2

are obtained similarly by noting from (17.2.19) that (D,D2)u can be expressed
through (D,D2)ψ and using the upper bound that |g(s)| ≤Ms in (17.2.9).

3. It remains to show the estimates of the difference-quotient terms:

[ψ]
′,(−1−α)
m,α,Ωε

≤ C‖u‖(1+α),(subs)
m,α,Qε′

, [u]
(1+α),(subs)
m,α,Qε′

≤ C‖ψ‖
′,(−1−α)
m,α,Ωε

(17.2.20)



698 CHAPTER 17

for m = 1, 2. We show the details of the estimate for one of the terms of the
expression of [u]

(1+α),(subs)
m,α,Qε′

in (17.2.14) with m = 2: k = 0 and l = 2. That is,
we show that

sup
s,s̃∈Qε′ ,s6=s̃

(
min(s−1, s̃−1)

|utt(s)− utt(s̃)|
δ

(subs)
α (s, s̃)

)
≤ C‖ψ‖

′,(−1−α)
2,α,Ωε

. (17.2.21)

To prove this, we change the variables from s = (s, t) to x = (x, y) on the left-
hand side of (17.2.21) by transformation (17.2.5), use (17.2.19) to replace u by
ψ, and then estimate the resulting expression. In order to do this, we first show
that the denominators in the difference quotients in (17.2.14) and (17.2.17) are
comparable to each other under the change of variables (17.2.5).

Claim 17.2.6. Denote by x(s) the transformation: Qε′ → Ωε, given by (17.2.5)
and (17.2.10). Then there exists C depending only on (M,M1) such that

1

C
δ

(subs)
1 (s, s̃) ≤ |x(s)− x(s̃)| ≤ Cδ(subs)

1 (s, s̃).

This can be seen as follows: For s = (s, t) and s̃ = (s̃, t̃), from (17.2.5),

|x(s)− x(s̃)|2 = h2(s− s̃)2 +
(
g(hs)t− g(hs̃)t̃

)2
.

We may assume that
s̃ = min(s, s̃). (17.2.22)

Since g(hs)t − g(hs̃)t̃ = t
(
g(hs) − g(hs̃)) + g(hs̃)(t − t̃), and s, t, s̃, t̃ ∈ (0, 1),

then we can employ (17.2.16) and the upper bound: |g(s)| ≤Ms in (17.2.9) to
obtain

|x(s)− x(s̃)|2 = h2(s− s̃)2 +
(
t(g(hs)− g(hs̃)) + g(hs̃)(t− t̃)

)2

≤ C
(
(s− s̃)2 + s̃2(t− t̃)2

)
≤ C

(
δ

(subs)
1 (s, s̃)

)2
.

Thus, the upper bound of |x(s)− x(s̃)| in the claim is proved.
To prove the lower bound of |x(s)− x(s̃)|, we consider two cases.
In the case that |s− s̃| ≥ s

2M2 |t− t̃|, we estimate

|x(s)− x(s̃)| =
(
h2(s− s̃)2 +

(
g(hs)t− g(hs̃)t̃

)2) 1
2

≥ 1

C
|s− s̃| ≥ 1

C1
δ

(subs)
1 (s, s̃),

where we have used the condition of this case and (17.2.22) in the last inequality.
In the opposite case, when |s− s̃| ≤ s

2M2 |t− t̃|, we use

g(hs)t− g(hs̃)t̃ = t̃
(
g(hs)− g(hs̃)) + g(hs)(t− t̃)
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and the lower bound: g(s) ≥ s
M in (17.2.9) to estimate:

|x(s)− x(s̃)| ≥
∣∣t̃
(
g(hs)− g(hs̃)) + g(hs)(t− t̃)

∣∣
≥
∣∣g(hs)(t− t̃)| −

∣∣g(hs)− g(hs̃)|

≥ hs

M
|t− t̃| −Mh|s− s̃|

≥ hs

2M
|t− t̃| ≥ 1

C
δ

(subs)
1 (s, s̃),

where we have used the condition of this case and (17.2.22) in the last two
inequalities. Now Claim 17.2.6 is proved.

We continue the proof of (17.2.21).
Let s, s̃ ∈ Qε′ and s 6= s̃. Let x = x(s) and x̃ = x(s̃), where x(·) is given by

(17.2.5) and (17.2.10). Let s(·) be the inverse of x(·). Then x, x̃ ∈ Ωε and x 6= x̃.
We change the variables from (s, t) to (x, y) on the left-hand side of (17.2.21),
substitute utt(s(x)) = g2(x− xP4

)ψyy(x) by (17.2.19), and employ also Claim
17.2.6 to replace the denominator in the difference quotient. Then, assuming
without loss of generality that s̃ ≤ s, which implies that 0 < x̃−xP4

≤ x−xP4
so

that |x− x̃| ≤ x−xP4 , and employing the upper bound in (17.2.9) and (17.2.16),
we have

min(s−1, s̃−1)
|utt(s)− utt(s̃)|
δ

(subs)
α (s, s̃)

≤ C(x− xP4
)−1 |g2(x− xP4

)ψyy(x)− g2(x̃− xP4
)ψyy(x̃)|

|x− x̃|α

≤ C(x− xP4
)−1
(
|ψyy(x)| |g

2(x− xP4
)− g2(x̃− xP4

)|
|x− x̃|α

+ g2(x̃− xP4)
|ψyy(x)− ψyy(x̃)|

|x− x̃|α
)

≤ C(x− xP4
)−1
(
‖ψ‖

′,(−1−α)
2,0,Ωε

(x− xP4
)α−1(x− xP4

)
|x− x̃|
|x− x̃|α

+ (x̃− xP4)2[ψ]
′,(−1−α)
2,α,Ωε

(x− xP4)−1
)

≤ C‖ψ‖
′,(−1−α)
2,α,Ωε

.

Since this is true for each s, s̃ ∈ Qε′ such that s 6= s̃, this proves (17.2.21).
The other terms in the expression of [u]

(1+α),(subs)
m,α,Qε′

in (17.2.14) are estimated
similarly. This proves the second estimate in (17.2.20).

The first estimate in (17.2.20) is proved similarly, i.e., for each term in the
expression of [ψ]

′,(−1−α)
m,α,Ωε

in (17.2.17), we change the variables from (x, y) to (s, t)
by (17.2.5) and (17.2.10), express the derivatives of ψ through the derivatives of u
by (17.2.19), replace the denominator |x−x̃|α with δ(subs)

α (s, s̃) =
(
δ

(subs)
1 (s, s̃)

)α
by using Claim 17.2.6, and then perform the estimates by using the lower bound
in (17.2.9). Now Lemma 17.2.5 is proved.
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Corollary 17.2.7. Let ε′ ∈ (0, 1), α, α̂ ∈ [0, 1) with α < α̂, and m ∈ {1, 2}.
Assume that there exists M > 0 such that ‖uk‖(1+α̂),(subs)

m,α̂,Qε′
≤ M holds for a

sequence of functions {uk}∞k=1 on Qε′ . Then there exists a subsequence {ukj}∞j=1

converging in norm ‖ · ‖(1+α),(subs)
m,α,Qε′

.

Proof. Let h = 1, xP4
= θw = 0, ε = hε′ = ε′, and gsh(s) = s on (0, ε).

This defines map x(·) by (17.2.10), and Ωε and P0 by (17.2.11). Now, using
Lemma 17.2.5, the assertion follows from the compactness of C(−1−α̂),{P0}

m,α̂,Ωε
in

C
(−1−α),{P0}
m,α,Ωε

.

We also note that one side of the estimates in Lemma 17.2.5 holds in the
general case of the conditions in (17.2.4). Specifically, let gsh(·) be a function
on [0, h] satisfying

min(gsh(0) +
s

M
, δsh) ≤ gsh(s) ≤ gsh(0) +Ms, (17.2.23)

where gsh(0) ≥ 0 and δsh > 0 satisfy δsh ≥ gsh(0).
We fix xP4

∈ R and use map (17.2.10). For ε ∈ (0, h), denote

Ωε := x(Qε′) with ε′ :=
ε

h
and Qε′ := Qiter ∩ {s < ε′},

P1 := x(0, 1) = (xP4 , θw), P4 := x(0, 0) = (xP4 , θw + gsh(0)),

Γsonic := ∂Ωε ∩ {x = xP4
} = x({0} × (0, 1)).

(17.2.24)

Note that these notations are consistent with (17.2.11) when gsh(0) = 0. Also,
Ωε is of the form as in (16.1.10) with f̂(x) = θw + gsh(x− xP4).

Similarly to (17.2.12) for k ∈ {1, 2} and α′ ∈ (0, 1) satisfying k+α′ ≥ 1 +α,
we denote

Ĉ
(−1−α),{Γsonic}
k,α′,Ωε

:= {v ∈ C(−1−α),{Γsonic}
k,α′,Ωε

: v = 0, Dv = 0 on Γsonic}.
(17.2.25)

Lemma 17.2.8. Let M,M1,M2 ≥ 1, xP4 ∈ R, and θw ∈ R. Let h ∈ ( 1
M1
,M1),

δsh ≥ 1
M2

, and ε ∈ (0, h2 ). Let m ∈ {1, 2} and α ∈ [0, 1). Assume that a function
gsh(s) on (0, ε) satisfies (17.2.16) and (17.2.23). Let u be a function on Qε′ ,
and define function ψ on Ωε by (17.2.8). Then u ∈ Cm,α1+α,(subs)(Qε′) implies that

ψ ∈ Ĉ(−1−α),{Γsonic}
m,α,Ωε

with

‖ψ‖(−1−α),{Γsonic}
m,α,Ωε

≤ C‖u‖(1+α),(subs)
m,α,Qε′

,

where C depends only on (M,M1,M2), and we have also used the notations in
(17.2.10)–(17.2.11) and (17.2.24).
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Proof. We follow the proof of Lemma 17.2.5.
First, we note that x = xP4

on Γsonic, which implies that, by an argu-
ment similar to that for Lemma 17.2.5 for m = 1, 2, and α ∈ [0, 1), space
Ĉ

(−1−α),{Γsonic}
m,α,Ωε

can be characterized as the set of all v ∈ C
(−1−α),{Γsonic}
m,α,Ωε

for

which ‖v‖
′,(−1−α)
m,α,Ωε

<∞, where norm ‖v‖
′,(−1−α)
m,α,Ωε

is defined by (17.2.17).

Moreover, norms ‖ · ‖(−1−α),{Γsonic}
m,α,Ωε

and ‖ · ‖
′,(−1−α)
m,α,Ω , for m = 1, 2, are equiv-

alent to Ĉ(−1−α),{Γsonic}
m,α,Ωε

, with constant C depending only on (M,M1).
Thus, it suffices to show

‖ψ‖
′,(−1−α)
m,α,Ωε

≤ C‖u‖(1+α),(subs)
m,α,Qε/h

(17.2.26)

with C depending only on (M,M1,M2).
For that, we first consider the case that ε ≤ M

M2
. In this case, for any

s ∈ (0, ε),

δsh ≥
1

M2
≥ s

M
,

so that, from (17.2.23),

gsh(s) ≥ min(gsh(0) +
s

M
, δsh) ≥ min(gsh(0) +

s

M
,
s

M
) ≥ s

M
.

Then we follow the proof of estimate (17.2.26) in Lemma 17.2.5 without change,
by noting that, for the proof of that estimate, only the lower bound gsh(s) ≥ s

M
in (17.2.9) has been used, and this estimate holds in our present setting as
shown above. Thus, we obtain (17.2.26) with C depending only on (M,M1)
when ε ≤ M

M2
.

If ε > M
M2

, we first note that (17.2.26) is already proved with ε̃ = M
M2

instead
of ε. Next, from (17.2.16) and (17.2.23), transform (17.2.9) is one-to-one on
Qε/h \Qε̃/(2h) onto Ωε \Ωε̃/2, with x(·) ∈ Cm,α(Qε/h \Qε̃/(2h); R2) and x−1(·) ∈
Cm,α(Ωε \ Ωε̃/2; R2). Moreover, norms ‖ · ‖

′,(−1−α)
m,α,Ωε\Ωε̃/2 and ‖ · ‖(1+α),(subs)

m,α,Qε/h\Qε̃/(2h)

are equivalent to the standard Cm,α–norms in the closures of the corresponding
domains, with the constants depending only on (ε, ε̃), and hence on (M,M1,M2),
since M1

2 ≥ ε ≥ ε̃ = M
M2

. Then

‖ψ‖
′,(−1−α)
m,α,Ωε\Ωε̃/2 ≤ C‖u‖

(1+α),(subs)
m,α,Qε/h\Qε̃/(2h)

with C depending only on (M,M1,M2). Combining this with (17.2.26) for
ε̃ = M

M2
, we obtain (17.2.26) for ε with C depending only on (M,M1,M2).

We will also need the following:

Lemma 17.2.9. If gsh(0) > 0 in the conditions of Lemma 17.2.8, then

|∂yψ(x, y)| ≤ ‖u‖(1+α),(subs)
1,α,Qε′

(x− xP4
)

1
2 +α for all (x, y) ∈ Ωr,

where r = min{g2
sh(0), ε}.
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Proof. By (17.2.14) and (17.2.19), we have

ψy(x, y) =
1

gsh(x− xP4
)
ut
(x− xP4

h
,

y − θw

gsh(x− xP4
)

)
,

|ut(s, t)| ≤ ‖u‖(1+α),(subs)
1,α,Qε′

s1+α.

Also, gsh(s) ≥ gsh(0) for any s ∈ (0, r) by (17.2.23). Thus, for (x, y) ∈ Ωr, using
that 0 ≤ x− xP4

≤ r ≤ g2
sh(0), we have

|ψy(x, y)| ≤ ‖u‖(1+α),(subs)
1,α,Qε′

(x− xP4
)1+α

gsh(0)

≤ ‖u‖(1+α),(subs)
1,α,Qε′

√
r

gsh(0)
(x− xP4)

1
2 +α

≤ ‖u‖(1+α),(subs)
1,α,Qε′

(x− xP4
)

1
2 +α.

In the next two lemmas, we show the relation between spaces Cm,ασ,(subs)(Qε′)

and Cm,ασ,(par)(Qε′).

Lemma 17.2.10. Let ε′ ∈ (0, 1), α ∈ (0, 1), σ ≥ 0, and m be a nonnegative
integer. If u ∈ Cm,ασ,(subs)(Qε′), then u ∈ C

m,α
σ,(par)(Qε′), where the parabolic norms

are with respect to {s = 0}, i.e., (x, y) in (4.6.2) are (s, t) in Qε′ . Moreover,

‖u‖(σ),(par)
m,α,Qε′

≤ ‖u‖(σ),(subs)
m,α,Qε′

.

Proof. The assertion follows directly from the expressions of these norms in
(4.6.2) (with (s, t) instead of (x, y)) and (17.2.14), since the weights in the
corresponding terms are larger than those in the expression of ‖ · ‖(σ),(par)

m,α,Qε′
(i.e.,

sk+ l
2−σ ≤ sk−σ and sα+k+ l

2−σ ≤ sα+k−σ since s ∈ (0, 1) and l ≥ 0), and
also δ

(par)
α (s, s̃) ≥ δ

(subs)
α (s, s̃) from their definitions (4.6.1) and (17.2.13) for

s, s̃ ∈ (0, 1).

In the next lemma, we restrict the values of α to (0, 1
3 ].

Lemma 17.2.11. Let ε′ ∈ (0, 1) and α ∈ (0, 1
3 ]. If u ∈ C2,0

2,(par)(Qε′), then
u ∈ C1,α

1+α,(subs)(Qε′) with

‖u‖(1+α),(subs)
1,α,Qε′

≤ 4‖u‖(2),(par)
2,0,Qε′

, (17.2.27)

where the parabolic norms are defined with respect to {s = 0}.
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Proof. By (4.6.2) (with (s, t) instead of (x, y)) and (17.2.14), we have the fol-
lowing explicit expressions of the components of the norms in (17.2.27):

‖u‖(1+α),(subs)
1,0,Qε′

=‖s−1−αu‖∞ + ‖s−αus‖∞ + ‖s−1−αut‖∞,

‖u‖(2),(par)
2,0,Qε′

=‖s−2u‖∞ + ‖s−1us‖∞ + ‖s− 3
2ut‖∞ + ‖uss‖∞

+ ‖s− 1
2ust‖∞ + ‖s−1utt‖∞,

(17.2.28)

where we have used ‖spv‖∞ := sup(s,t)∈Qε′
(
sp|v(s, t)|

)
.

Since α ∈ (0, 1
3 ] and s ∈ (0, 1), it follows that

‖u‖(1+α),(subs)
1,0,Qε′

≤ ‖u‖(2),(par)
2,0,Qε′

. (17.2.29)

Thus, it remains to estimate the terms of [u]
(1+α),(subs)
1,α,Qε′

in (17.2.14). We first
estimate the term with k = 1 and l = 0, which is

sup
s,s̃∈Qε′ ,s6=s̃

|us(s)− us(s̃)|
δ

(subs)
α (s, s̃)

. (17.2.30)

From (17.2.13), using that s, s̃, t, t̃ ∈ (0, 1), we obtain that, for α ∈ (0, 1
3 ],

√
|s− s̃| ≤ |s− s̃|α ≤ δ(subs)

α (s, s̃),
√

max(s, s̃)|t− t̃| ≤
(

max(s, s̃)|t− t̃|
)α ≤ δ(subs)

α (s, s̃).
(17.2.31)

Then, using (17.2.28), we find that, for s, s̃ ∈ Qε′ ,

|us(s)− us(s̃)| ≤ |us(s, t)− us(s̃, t)|+ |us(s̃, t)− us(s̃, t̃)|
≤ max
s′∈[s,s̃]

|uss(s′, t)| |s− s̃|+ max
t′∈[t,t̃]

|ust(s̃, t′)| |t− t̃|

≤ ‖u‖(2),(par)
2,0,Qε′

(
|s− s̃|+

√
s̃|t− t̃|

)

≤ ‖u‖(2),(par)
2,0,Qε′

(√
|s− s̃|+

√
s̃

√
|t− t̃|

)

≤ 2‖u‖(2),(par)
2,0,Qε′

δ(subs)
α (s, s̃),

where we have used (17.2.31) in the last inequality. Therefore, term (17.2.30) is
estimated from above by 2‖u‖(2),(par)

2,0,Qε′
.

The term in semi-norm [u]
(1+α),(subs)
1,α,Qε′

in (17.2.14) with k = 0 and l = 1 is

sup
s,s̃∈Qε′ ,s6=s̃

{(
max(s, s̃)

)−1 |ut(s)− ut(s̃)|
δ

(subs)
α (s, s̃)

}
. (17.2.32)

To estimate (17.2.32), we choose s, s̃ ∈ Qε′ with s ≤ s̃ (without loss of
generality) and consider the following two cases:
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The first case is when 0 < s̃
2 ≤ s ≤ s̃ and |t− t̃| ≤

√
s̃. Using these conditions

and their consequence: |s− s̃| < s̃, we find that, for any α ∈ [0, 1
3 ],

|ut(s)− ut(s̃)| ≤ max
s′∈[s,s̃]

|ust(s′, t)| |s− s̃|+ max
t′∈[t,t̃]

|utt(s̃, t′)| |t− t̃|

≤ ‖u‖(2),(par)
2,0,Qε′

(√
s̃|s− s̃|+ s̃|t− t̃|

)

≤ ‖u‖(2),(par)
2,0,Qε′

(
s̃

7
6 |s− s̃| 13 + s̃

4
3 |t− t̃| 13

)

≤ 2s̃ ‖u‖(2),(par)
2,0,Qε′

δ(subs)
α (s, s̃),

where we have used that δ(subs)
α (s, s̃) ≥ |s − s̃| 13 and δ(subs)

α (s, s̃) ≥ s̃
1
3 |t − t̃| 13 if

α ∈ [0, 1
3 ].

In the opposite case, either 0 < s ≤ s̃
2 or |t − t̃| ≥

√
s̃. If 0 < s ≤ s̃

2 , then
δ

(subs)
1 (s, s̃) ≥ |s̃−s| ≥ s̃

2 . If |t− t̃| ≥
√
s̃, then δ(subs)

1 (s, s̃) ≥ s̃|t̃− t| ≥ s̃ 3
2 . Thus,

in both cases, we obtain that δ(subs)
1 (s, s̃) ≥ s̃

3
2

2 , which implies that δ(subs)
α (s, s̃) ≥

√
s̃

2 for any α ∈ (0, 1
3 ]. Using that and (17.2.28), we estimate:

|ut(s)− ut(s̃)| ≤ |ut(s)|+ |ut(s̃)| ≤ ‖u‖(2),(par)
2,0,Qε′

(s̃
3
2 + s

3
2 )

≤ 2s̃
3
2 ‖u‖(2),(par)

2,0,Qε′
≤ 4s̃‖u‖(2),(par)

2,0,Qε′
δ(subs)
α (s, s̃).

Combining the estimates obtained in the two cases above, we see that (17.2.32)
is estimated from above by 4‖u‖(2),(par)

2,0,Qε′
. Combining with (17.2.29), we complete

the proof.

Now we can state an extension of Proposition 12.2.5 to the case of angles
θ∗w ∈ (θd

w,
π
2 ). We use ε′0 defined by (17.2.7).

Proposition 17.2.12. Let θ∗w ∈ (θd
w,

π
2 ). There exist M > 0 and ᾱ ∈ (0, 1

3 ]
depending on the data and θ∗w such that, for any admissible solution ϕ for θw ∈
[θ∗w,

π
2 ], function u defined by (12.2.44) satisfies that, for any α ∈ [0, ᾱ],

‖u‖(−1−α),{(1,0)}
2,α,Qiter\Qε′0/10

+ ‖u‖(1+α),(par)
2,α,Qε′0

+ ‖u‖(1+α),(subs)
1,α,Qε′0

≤M, (17.2.33)

where Qε′0 := Qiter ∩ {s < ε′0}, and norm ‖ · ‖(1+α),(par)
2,α,A is stated with respect to

{s = 0}.

Proof. In this proof, the universal constant C depends only on the data and θ∗w.
We first consider the supersonic wedge angles θw ∈ [θ∗w,

π
2 ]. From Corollary

16.4.8, (12.2.26) with ε̂ = ε0
2 , and (17.2.3)–(17.2.4) in Lemma 17.2.2, we have

‖u‖(−1−ᾱ),{(1,0)}
2,ᾱ,Qiter\Qε′0/10

+ ‖u‖(2),(par)
2,ᾱ,Qε′0

≤ C, (17.2.34)
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by using the C3–regularity of map F−1
1 and the explicit form (12.2.43) of map

F−1
(2,gsh). We note that F−1

(2,gsh) does not become singular as tP1
(θw) → 0+ in

(17.2.4), i.e., estimate (17.2.34) holds with uniform constant C for all the su-
personic wedge angles θw ∈ [θ∗w,

π
2 ]. Using this estimate and Lemmas 4.1.2, 4.6.4,

and 17.2.11, we obtain (17.2.33) for all the supersonic wedge angles θw ∈ [θ∗w,
π
2 ]

and all α ∈ [0, ᾱ].
Now we consider the subsonic/sonic wedge angles θw ∈ [θ∗w,

π
2 ]. We note

that estimate (16.5.26) in Corollary 16.5.26 is stronger than estimate (16.6.79) in
Corollary 16.6.12, which implies that every subsonic/sonic reflection solution for
a wedge angle θw ∈ [θ∗w,

π
2 ] satisfies (16.6.79). Then we use Lemma 17.2.5, which

can be applied since (17.2.4) holds with tP1
(θw) = 0 for every subsonic/sonic

reflection solution, i.e., (17.2.9) holds. Using (17.2.3), (12.2.26) with ε̂ = ε0
2 in

Lemma 17.2.2, (16.6.79), and Lemma 17.2.5, we have

‖u‖(−1−ᾱ),{(1,0)}
2,ᾱ,Qiter\Qε′0/10

+ ‖u‖(1+ᾱ),(subs)
2,ᾱ,Qε′0

≤ C.

From this, using Lemmas 4.1.2, 4.6.4, and 17.2.10, we obtain (17.2.33) for all
the subsonic/sonic wedge angles θw ∈ [θ∗w,

π
2 ] and all α ∈ [0, ᾱ].

17.2.3 Mapping from the iteration region

Next, for a function u on Qiter, we determine the corresponding domain Ω and
function ϕ.

We extend the construction in §12.2.3, Definition 12.2.6, and Lemma 12.2.7
to the wedge angles θw ∈ (θd

w,
π
2 ] with the changes cited below, which mostly

affect only the case of subsonic/sonic angles (besides some estimates in the
supersonic-close-to-sonic case).

Fix θ∗w ∈ (θd
w,

π
2 ). Since P1 = P4 in the subsonic/sonic case and P1 6= P4 in

the supersonic case, (12.2.47) now takes the form:

inf
∂Q(θw)

bd ∩F−1
1 ({s=0})

(ϕ1 − ϕ̃(θw)
2 ) < 0 ≤ sup

∂Q(θw)
bd ∩F−1

1 ({s=0})
(ϕ1 − ϕ̃(θw)

2 ), (17.2.35)

with the equality on the right if and only if θw is a subsonic/sonic angle. This
follows from the calculation before (12.2.47).

Now Definition 12.2.6 applies to the present situation, i.e., for θ∗w ∈ (θd
w,

π
2 ),

without change. Note that we still have the strict inequalities in (12.2.49) for
all s∗ ∈ (0, ŝ(θw)] for any wedge angle θw ∈ (θ∗w,

π
2 ), which includes the sub-

sonic/sonic angles. In particular,

S and S(θw) are defined by (12.2.50)–(12.2.51).

Then S(θw) is non-empty for any θw ∈ [θ∗w,
π
2 ] by (12.2.37) with Lemma 17.2.3,

(17.2.35), and Lemma 12.2.2(i) via Lemma 17.2.1. Furthermore, since (12.2.50)
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includes the conditions that (u,Du) vanish on {s = 0}, it follows from (17.2.35)
that, for any (u, θw) ∈ S, the functions defined by Definition 12.2.6(ii) satisfy

g
(u,θw)
sh (0) = h

(u,θw)
sh (0) = tP1

(θw), (17.2.36)

where we recall that tP1 = tP4 = 0 for the subsonic/sonic angle θw, and tP1 >
tP4 = 0 for the supersonic angle θw. Also, the admissible solutions satisfy
(17.2.4). For this reason, instead of the set in (12.2.55), we define that, for
M ≥ 1 and δsh > 0,

Ŝ
(α)
M,δsh

:= {(u, θw) ∈ S : (17.2.23) and (12.2.54) hold}. (17.2.37)

Then we have

Lemma 17.2.13. Let θ∗w ∈ (θd
w,

π
2 ). All the assertions of Lemma 12.2.7 remain

true, except assertion (viii) which now takes the following form:

(viii′) Let α ∈ (0, 1), σ ∈ (1, 2], and M, δsh > 0. Let (u, θw) ∈ S with θw ∈
[θ∗w,

π
2 ], and let (u, θw) satisfy (12.2.64) and (17.2.23). Then

(a) For every ε ∈ (0, ŝ(θw)
2 ), there exists Cε,M depending on the data and

(θ∗w, α, δsh, ε,M) such that

‖F−1
(u,θw)‖

(−1−α),Γsym

2,α,Ω(u)\Dε ≤ Cε,M , (17.2.38)

‖ϕ− ϕ̃(θw)
2 ‖(−1−α),Γsym

2,α,Ω\Dε ≤ Cε,M ; (17.2.39)

(b) Moreover, if θw is supersonic and satisfies |Dϕ2(P0)|
c2

(θw) ≥ 1 + δ for
some δ > 0, then (12.2.69)–(12.2.71) hold for (u, θw), with Ĉ depend-
ing only on the data and (θ∗w, α, σ, δsh, δ), and with Ĉ0 depending only
on the data and δ.

Proof. We first note that all the assertions of Lemma 12.2.7 (except assertion
(viii)) remain true, since all the conditions of these assertions in Lemma 12.2.7
are satisfied in the present case, and their proofs can be repeated without change
by using Lemmas 12.2.2 and 12.2.4 held in the present case by Lemmas 17.2.1
and 17.2.3, respectively.

Thus, it remains to prove assertion (viii′). Fix ε ∈ (0, ŝ(θw)
2 ). Then, by

(17.2.23),

min{ ε
M
, δsh} < g

(u,θw)
sh (s) < Mŝ(θw) + max

θw∈[θ∗w,
π
2 ]
tP1

(θw) on (ε, ŝ(θw)),

where we have used the continuity of tP1
(θw) = yP1

(θw) − θw as a function
of θw on [θ∗w,

π
2 ]. Then condition (12.2.53) holds on (ε, ŝ(θw)) with constant b

depending only on the data and (M, δsh, ε). Also, as we have discussed above, the
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assertion of Lemma 12.2.7(vii) holds in the present case so that, from (12.2.66),
for any ε,

‖g(u,θw)
sh ‖(−1−α),{ŝ(θw)}

2,α,[ε, ŝ(θw)] ≤ Cε,M ,

where Cε,M depends only on the data and (θ∗w, α,M, δsh, ε). Using these two
properties of g(u,θw)

sh , estimate (17.2.38) follows from the explicit expressions
(12.2.41) and (12.2.52) by using Lemma 12.2.2, which holds by Lemma 17.2.1.

Since (12.2.64) holds, then, for any ε′ ∈ (0, 1
2 ),

‖u‖(−1−α),{1}×(1,0)
2,α,Qiter∩{s>ε′} ≤ C(ε′)M,

where C(ε′) depends only on ε′. This, combined with (17.2.38), implies (17.2.39)
by using the explicit formula given in Definition 12.2.6(v) and Lemma 17.2.3.

Finally, if θw is supersonic and satisfies |Dϕ2(P0)|
c2

(θw) ≥ 1 + δ, then tP1
≥

1
C(δ) > 0, where C(δ) depends only on the data and δ. Thus, (17.2.23) implies
that condition (12.2.53) holds on (0, ŝ(θw)) with constant b depending only on δ
and the data. Therefore, the proof of Lemma 12.2.7(viii) implies that (12.2.69)–
(12.2.71) hold with Ĉ and Ĉ0 depending only on the parameters described in
the formulation of this lemma.

17.3 ITERATION SET

Now we define an iteration set to construct global regular reflection solutions
for the wedge angles between π

2 and the detachment angle θd
w, i.e., θw ∈ (θd

w,
π
2 ).

This extends the previous definition of the iteration set in Definition 12.3.2
to allow for proving the existence of both subsonic and supersonic reflection
solutions depending on θw: If the wedge angle θw ∈ (θd

w,
π
2 ) is such that

|Dϕ2|2
c2(|Dϕ2|, ϕ2)

> 1 or
|Dϕ2|2

c2(|Dϕ2|, ϕ2)
≤ 1 at P0,

then we can construct a supersonic or subsonic/sonic reflection solution for θw.
Below, we use constants ε0 in Lemma 17.2.1 and ε′0 defined by (17.2.7).
We use the notations in (i)–(ii) and (iv) of Definition 12.3.1, extended to all

θw ∈ (θd
w,

π
2 ) with the use of notation (17.3.2), and introduce some additional

notations in the definition below.

Definition 17.3.1. (i) For α ∈ (0, 1), define

‖u‖(∗∗)
2,α,Qiter = ‖u‖(−1−α),{1}×(0,1)

2,α,Qiter\Qε′0/10

+ ‖u‖(1+α),(par)
2,α,Qε′0

+ ‖u‖(1+α),(subs)
1,α,Qε′0

,

(17.3.1)
where we have used the norms defined by (4.6.2) with respect to {s = 0}
and by (17.2.14), and Qσ := Qiter ∩ {s < σ}. Denote by C2,α

(∗∗)(Q
iter) the

set of all C2(Qiter)–functions with finite norm (17.3.1).
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(ii) For θw ∈ [θd
w,

π
2 ] and σ ∈ (0, ε0], denote

D(θw)
σ := {ϕ2 < ϕ1} ∩ Λ ∩Nε1(Γ

(δ∗)
sonic) ∩ {xP1

< x < xP1
+ σ}, (17.3.2)

D(θw)
0,σ := {ϕ2 < ϕ1} ∩ Λ ∩Nε1(Γ

(δ∗)
sonic) ∩ {xP1

< x < σ}, (17.3.3)

where δ∗ and Γ
(δ∗)
sonic have been defined at the beginning of §17.2.1, and ε1

is from Lemma 16.1.2. We also write (Dσ,D0,σ) for (D(θw)
σ ,D(θw)

0,σ ).

Remark 17.3.2. From (17.3.2)–(17.3.3), it follows that, for any σ ∈ (0, ε0],

(a) Dσ ≡ D(θw)
σ coincides with the set defined in (17.2.1) for ε = σ;

(b) D0,σ ⊂ Dσ for all the wedge angles;

(c) D0,σ = Dσ for all the supersonic/sonic wedge angles;

(d) D0,σ = ∅ for all the subsonic wedge angles satisfying xP0
> σ;

(e) From Proposition 16.1.3, specifically from (16.1.3) and (16.1.5)–(16.1.6), it
follows that, for any admissible solution,

Ωσ = Ω ∩ Dσ for all σ ∈ (0, ε0). (17.3.4)

We will use the following compactness property of space C2,α
(∗∗)(Q

iter):

Lemma 17.3.3. Let 0 ≤ β < α < 1. Then C2,α
(∗∗)(Q

iter) is compactly embedded

into C2,β
(∗∗)(Q

iter).

This follows directly from Lemma 4.6.3, Corollary 17.2.7, and the standard
results on the compactness in the Hölder spaces.

Now we are ready to define the iteration set. We choose below a constant α ∈
(0, ᾱ2 ], where ᾱ is the constant in Proposition 17.2.12. Let the small constants
δ1, δ2, δ3, ε, λ > 0 and large constant N1 > 1 be fixed and chosen below. We
always assume that ε < ε0, where ε0 is from Lemma 17.2.1.

Definition 17.3.4. Let θ∗w ∈ (θd
w,

π
2 ). The iteration set K ⊂ C2,α

(∗∗)(Q
iter) ×

[θ∗w,
π
2 ] is the set of all (u, θw) satisfying the following:

(i) (u, θw) satisfy the estimates:

‖u‖(∗∗)
2,α,Qiter < η1(θw), (17.3.5)

where η1 ∈ C(R) is defined by

η1(θw) =





δ1 if π2 − θw ≤ δ1
N1
,

N0 if π2 − θw ≥ 2δ1
N1
,

linear if π2 − θw ∈ ( δ1N1
, 2δ1
N1

),

with N0 = max{10M, 1} and constant M in (17.2.33).
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(ii) (u, θw) ∈ S, where we have used (12.2.50). Then gsh, Ω = Ω(u), Γshock =
Γshock(u), and ϕ = ϕ(u) are defined in Definition 12.2.6 and §17.2.3, and
Γsym = Γsym(u) is defined in Lemma 12.2.7(iii) with Lemma 17.2.13.

(iii) The properties of Γshock:

dist(Γshock, Bc1(O1)) ≥ 1

N5
(17.3.6)

with N5 = 2C, where C is from Proposition 15.5.3. Moreover, we require

min(gsh(0) +
s

N2
,

1

N2
) < gsh(s)

< min(gsh(0) +N2 s, η
(θw)(s)− 1

N2
)

(17.3.7)

for any s ∈ (0, ŝ(θw)) and θw ∈ [θ∗w,
π
2 ), where gsh(0) = tP1(θw) ≥ 0,

N2 = 2M , M is from (17.2.4), and function η(θw)(·) is from (12.2.10).

(iv) ϕ satisfies

ψ > η2(θw) in Ω \ Dε/10, (17.3.8)

|∂xψ(x, y)| < η3(θw)x in Ω ∩ (Dε0 \ D0,ε/10), (17.3.9)

|∂yψ(x, y)| < N3x in Ω ∩ (Dε0 \ D0,ε/10), (17.3.10)

|(∂xψ, ∂yψ)| < N3ε in Ω ∩ Dε, (17.3.11)

‖ψ‖C0,1(Ω) < N4, (17.3.12)

∂eS1
(ϕ1 − ϕ) < −η2(θw) in Ω \ Dε/10, (17.3.13)

∂ξ2(ϕ1 − ϕ) < −η2(θw) in Ω \ Nε/10(Γsym), (17.3.14)

∂ν(ϕ1 − ϕ) > µ1 on Γshock, (17.3.15)

∂νϕ > µ1 on Γshock, (17.3.16)

where Dσ and D0,σ are defined by (17.3.2) and (17.3.3), respectively, func-
tions η2, η3 ∈ C(R) are defined by

η2(θw) = δ2 min(
π

2
− θw −

δ1
N2

1

,
δ1
N2

1

),

η3(θw) =





2−µ0

1+γ if |Dϕ2(P0)|
c2

(θw) ≥ 1− δP0

2 ,

N3 if |Dϕ2(P0)|
c2

(θw) ≤ 1− δP0
,

linear if |Dϕ2(P0)|
c2

(θw) ∈ (1− δP0
, 1− δP0

2 )

for δP0
in Proposition 16.1.4, and constants ε0, µk, N3, and N4 are chosen

as follows:
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(a) ε0 is from Corollary 16.6.13;
(b) µ0 = δ

2 , where δ is from Lemma 11.2.5, extended by Proposition 16.1.4;

(c) µ1 = min{δ̂,δ̂1}
2 , where δ̂ and δ̂1 are the constants from Corollary 10.1.2,

extended by Proposition 15.7.1;
(d) N3 = 10C, where C is the constant from estimate (16.6.84) in Lemma

16.6.14.

In (17.3.9)–(17.3.11), we have used ϕ and ϕ2 expressed in the (x, y)–
coordinates (11.1.1)–(11.1.2).

(v) Uniform ellipticity in Ω \ Dε/10: For any ξ ∈ Ω \ Dε/10,

|Dϕ|
c(|Dϕ|2, ϕ)

(ξ) < max(1− ζ̂

2
,
|Dϕ2(P1)|

c2
(θw)− λ dist(ξ,Γsonic))

with λ = µ̃
2 , where µ̃ and ζ̂ are from Proposition 15.6.2, and Γsonic = {P0}

for the subsonic/sonic wedge angles. Note that the formula above combines
both cases in Proposition 15.6.2 with relaxed constants, which allows us to
achieve a strict inequality for admissible solutions.

(vi) Bounds on the density:

ρmin < ρ(|Dϕ|2, ϕ) < ρmax in Ω

with ρmax > ρmin > 0 defined by ρmin = a
2ρ1 and ρmax = 2C, where

a =
(

2
γ+1

) 1
γ−1 and C are the constants from Lemma 9.1.4 extended by

Proposition 15.2.2.

(vii) Consider the boundary value problem (12.3.25)–(12.3.29) determined by
(u, θw), with the equation and boundary condition on Γshock defined below
in §17.3.2 and the boundary condition on Γsonic understood as a one-point
condition at P0 for the subsonic/sonic wedge angles. This problem has a
solution ψ̂ ∈ C2(Ω(u, θw))∩C1(Ω(u, θw)) with the following properties: Let

ϕ̂ := ψ̂ + ϕ2 in Ω(u, θw),

and let function û be defined by (12.2.44) from function ϕ̂, where map
F(2,gsh) is determined by function gsh that corresponds to (u, θw), i.e.,

û := (ϕ̂− ϕ̃2) ◦ F−1
1 ◦ F−1

(2,gsh) on Qiter. (17.3.17)

Then û satisfies

û ∈ S(θw), (17.3.18)

‖û− u‖(∗∗)
2,α/2,Qiter < δ3. (17.3.19)
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Remark 17.3.5. The choice of constants (µ0, µ1, α, ε, λ, δ1, δ2, δ3) and Nk, for
k = 0, . . . , 5, is made below to keep only the following dependence: Constants
(µ0, N3, N4) are fixed above depending on the data; constants (µ1, N0, N2, N5, λ)
are fixed above depending on the data and θ∗w; constant α is fixed later depending
only on the data and θ∗w; and the other constants, in addition to the dependence
on the data and θ∗w, have the following dependence: small ε depends on α, small
δ1 depends on (α, ε), large N1 depends on δ1, small δ2 depends on (δ1, N1, ε), and
then δ3 > 0 is chosen as small as needed, depending on all the other constants.

Remark 17.3.6. The difference between Definitions 12.3.2 and 17.3.4 is that
the different norm is used in conditions (i) and (vii), and conditions (iii) and
(v) and condition (17.3.9) of Definition 17.3.4 are generalized from conditions
(iii) and (v) and condition (12.3.7) of Definition 12.3.2 to take into account the
cases of supersonic/subsonic reflections. Otherwise, the conditions in Defini-
tions 12.3.2 and 17.3.4 are of the same structure with the constants adjusted to
the corresponding cases.

Remark 17.3.7. The following version of Remark 12.3.4 holds in the present
case: Let (u, θw) ∈ C2,α

(∗∗)(Q
iter) × [θ∗w,

π
2 ] satisfy conditions (i)–(iii) of Defini-

tion 17.3.4, and let Ω = Ω(u, θw), Γshock = Γshock(u, θw), and ϕ = ϕ(u,θw) be
as in Definition 12.2.6. Also, let gsh be the function determined by (u, θw) in
Definition 12.2.6(i). Then, from (17.3.5) and Lemma 12.2.7(vii) that holds by
Lemma 17.2.13, gsh satisfies (12.2.66) with σ = 1 +α and M = Cη1(θw), where
C depends only on the data and α. From that, we have

‖gsh‖(−1−α),{0, ŝ(θw)}
2,α,[0, ŝ(θw)] ≤ Cη1(θw) ≤ CN0,

(gsh − gS1
)(0) = (g′sh − g′S1

)(0) = 0,
(17.3.20)

where N0 is from Definition 17.3.4(i). In particular, using that F1 and F−1
1 are

C3–maps, we conclude that Γshock is a C1,α–curve up to its endpoints. Further-
more, using Lemma 17.2.1(iv), we have

Γshock ∩ Dε0/10 = {(x, fsh(x)) : xP1
< x < xP1

+
ε0

10
}

in the (x, y)–coordinates, and

‖fsh − f̂0‖(1+α),(par)
2,α,(0,ε0) < Cη1(θw),

(fsh − f̂0)(0) = (fsh − f̂0)′(0) = 0,

(12.3.23) holds,

(17.3.21)

where f̂0 is from the expression of S1 as a graph in the (x, y)–coordinates, and
constant C in (12.3.23) depends only on the data.

Furthermore, arguing as in Remark 12.3.4, we see that (12.3.18) holds with
Mdom depending only on the data and is independent of the parameters in the
definition of K.
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Remark 17.3.8. Let (u, θw), Ω, Γshock, and ϕ be as in Remark 17.3.7. Using
(17.3.5) (with norm (17.3.1)) and (17.3.7), we combine Lemma 17.2.8 (applied
with ε = ε′0) and (17.2.39) (applied with ε =

ε′0
10 ), employ Lemma 12.2.4 held by

Lemma 17.2.3, choose δ1 ≤ µ for µ in (12.2.34), recall that N0, N1 ≥ 1, and use
(12.3.18) held by Remark 17.3.7 to obtain

‖ψ‖1,α,Ω < Cη1(θw) ≤ N̂0, (ψ,Dψ) = (0,0) on Γsonic, (17.3.22)

where C and N̂0 depend on the data and (θ∗w, α), and we have used notation
Γsonic := {P0} for the subsonic/sonic wedge angles.

Moreover, from (17.3.5) and (17.3.7), we can apply Lemma 17.2.13(viii′) to
obtain (17.2.39), and then we use (12.3.18) to obtain that, for each τ ∈ (0, ε0),

‖ϕ‖(−1−α),Γsym

2,α,Ω\Dτ + ‖ψ‖(−1−α),Γsym

2,α,Ω\Dτ ≤ C, (17.3.23)

where C depends only on the data and (θ∗w, α, τ).

Remark 17.3.9. From (17.3.5) and Lemma 17.2.9 (applied with ε = ε′0), we see
that, if (u, θw) ∈ C2,α

(∗∗)(Q
iter)× [θ∗w,

π
2 ] satisfies conditions (i)–(iii) of Definition

17.3.4, and θw is a supersonic angle, i.e.,
|Dϕ2(P0)|

c2
(θw) > 1, then

|∂yψ(x, y)| ≤ Cx 1
2 +α for all (x, y) ∈ Ω ∩ Dr, (17.3.24)

where r = min{g2
sh(0), ε0}, C depends only on the data and (θ∗w, α), and we have

used that gsh(0) > 0 and xP4
= 0 for the supersonic wedge angles.

Remark 17.3.10. Let δ ∈ (0, 1). Let (u, θw) ∈ C2,α
(∗∗)(Q

iter) × [θ∗w,
π
2 ] satisfy

conditions (i)–(iii) of Definition 17.3.4 and
|Dϕ2(P0)|

c2
(θw) ≥ 1+δ. Then, using

part (b) of Lemma 17.2.13(viii′) and arguing as in Remark 12.3.5, we find that
(12.3.19) holds for δ∗ = α, with constant N∗0 (δ) depending only on the data and
(θ∗w, α, δ).

Remark 17.3.11. If (u, θw) ∈ C1(Qiter) × [θ∗w,
π
2 ] satisfies the conditions in

Definition 17.3.4(ii) and the corresponding ψ satisfies (17.3.22), then, arguing
as in Remark 12.3.6, we see that (12.3.22)–(12.3.23) hold.

Remark 17.3.12. Arguing as in Remarks 12.3.7–12.3.8, and employing (17.3.15)
instead of (vi), and Definition 17.3.4(vi) instead of Definition 12.3.2(vi), we find
that the assertions of Remarks 12.3.7–12.3.8 hold in the present case.

17.3.1 Closure of the iteration set

Similarly to Definition 12.3.9, we introduce the following notations:

Definition 17.3.13. (i) Kext is the set of all (u, θw) ∈ C2,α
(∗∗)(Q

iter)× [θ∗w,
π
2 ]

which satisfy conditions (i)–(vi) of Definition 17.3.4;
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(ii) K and Kext are the closures of K and Kext in C2,α
(∗∗)(Q

iter)× [θ∗w,
π
2 ], respec-

tively;

(iii) For each C ∈ {K, Kext, K, Kext} and each θw ∈ [θ∗w,
π
2 ],

C(θw) := {u : (u, θw) ∈ C} ⊂ C2,α
(∗∗)(Q

iter).

We show that Lemma 12.3.10 holds in the present setting.

Lemma 17.3.14. The sets introduced in Definition 17.3.13 have the following
properties:

(i) Kext ⊆ S; that is, if (u, θw) ∈ Kext, then (u, θw) satisfies condition (ii) of
Definition 17.3.4;

(ii) If (u, θw) ∈ Kext, then (u, θw) satisfies conditions (i) and (iii)–(vi) of Def-
inition 17.3.4 with the nonstrict inequalities in the estimates;

(iii) The properties in Remarks 17.3.6–17.3.12 hold with the nonstrict inequal-
ities for any (u, θw) ∈ Kext.

Proof. We divide the proof into three steps.
1. To prove (i), we follow the argument in Step 1 of the proof of Lemma

12.3.10. Then, using (17.3.7) instead of (12.3.5), it follows that, for each (u, θw) ∈
Kext, we have the following inequality instead of (12.3.24):

inf
Q(θw)

bd (s)

(ϕ1 − ϕ̃(θw)
2 ) +

δs

N2
≤ u(

s

ŝ(θw)
, 1) ≤ sup

Q(θw)
bd (s)

(ϕ1 − ϕ̃(θw)
2 )− δ

N2
(17.3.25)

for any s ∈ (0, ŝ(θw)). Then, arguing similarly to Step 1 of the proof of Lemma
12.3.10 and employing Lemma 12.2.7(vi) to the present case by Lemma 17.2.13,
we conclude that (17.3.25) holds for each (u, θw) ∈ Kext. This implies (12.2.49)
(with the strict inequalities) for any (u, θw) ∈ Kext, and hence assertion (i).

2. To show assertion (ii), we argue as in Step 2 of the proof of Lemma 12.3.10.
The only difference is that Lemma 12.2.7(viii) cannot be applied in the present
situation (since its conditions cannot be satisfied when θw is a subsonic/sonic
wedge angle). Instead, we apply (17.2.38) from Lemma 17.2.13(viii′). Then we
have

(Dϕ ◦ F)
(u(i),θ

(i)
w )
→ (Dϕ ◦ F)(u,θw), (Dψ ◦ F)

(u(i),θ
(i)
w )
→ (Dψ ◦ F)(u,θw)

in Cα(Qiter∩{(s, t) : s ≥ δ}) for any δ ∈ (0, 1
2 ). Combining this with the other

convergence and mapping properties shown in Step 2 of the proof of Lemma
12.3.10, and following that argument, we obtain assertion (ii).

3. Assertion (iii) follows from (i)–(ii).
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17.3.2 The equation and boundary conditions for the iteration

In this section, we define explicitly equation (12.3.25) and the boundary condi-
tion (12.3.26) on Γshock for (u, θw) ∈ Kext. We also discuss some properties of
Problem (12.3.25)–(12.3.29) mapped onto the iteration region Qiter.

In a fashion similar to the notational convention in Remark 12.3.11, we now
have the following:

Remark 17.3.15. In the rest of §17.3.2 and its subsections, we will always con-
sider the nonstrict inequalities in the estimates in conditions (i) and (iii)–(vii) of
Definition 17.3.4, and in Remarks 17.3.6–17.3.12, as in Lemma 17.3.14(ii)–(iii).

Fix (u, θw) ∈ Kext and consider the corresponding (Ω,Γshock,Γsonic, ϕ, ψ).
We will define equation (12.3.25) such that

(i) For the supersonic/sonic wedge angles, the equation is strictly elliptic in
Ω\Γsonic with elliptic degeneracy on the sonic arc Γsonic, which is one point
for sonic wedge angles;

(ii) For the subsonic wedge angles, the equation is strictly elliptic in Ω with
the ellipticity constant depending on |Dϕ2(P0)|

c2
(θw), and its regularity near

P0 is sufficiently high;

(iii) For a fixed point ψ̂ = ψ, equation (12.3.25) coincides with the original
equation (2.2.11) written in terms of ψ;

(iv) The equation depends continuously on θw in a sense specified below.

Similarly to §12.4, we define equation (12.3.25) in Ω ∩ Dεeq
and Ω \ Dεeq/10

separately, and then combine them over region Dεeq
\ Dεeq/10 by using a cutoff

function, where εeq ∈ (0, ε02 ) is determined depending only on the data, ε0 is
from Lemma 17.2.1, and Dε is defined by (17.3.2). Also, from now on, we always
assume that ε in Definition 17.3.4 satisfies (12.4.1).

We use below the potential flow equation in the form of (12.4.2) in terms of
ψ. Now we first define the iteration equation.

17.3.2.1 The iteration equation in Ω away from Γsonic

We continue to consider (u, θw) ∈ Kext and the corresponding (Ω, ψ). We also
recall that the notational convention Γsonic := {P0} is used for subsonic/sonic
wedge angles.

In Ω \ Dεeq/10, we define the equation in the same way as in §12.4.1, by
(12.4.5). This defines coefficients (A1

ij , A
1
i ) = (A1

ij , A
1
i )(ξ) in Ω \ Dεeq/10, with

A1
12 = A1

21 and A1
i ≡ 0. In terms of equation (12.4.2),

A1
ij(ξ) = Apotn

ij (Dψ(ξ), ψ(ξ), ξ).

Condition (v) of Definition 17.3.4 and (12.4.1) imply that the equation is
uniformly elliptic in Ω \Dεeq/10, with the ellipticity constant depending only on
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the data and εeq. Also, from (17.3.23), coefficients (A1
ij , A

1
i ) are in C

(−α),Γsym

1,α,Ω\Dεeq/10
,

and (12.4.6) holds with C depending only on the data and (θ∗w, εeq), and hence
only on the data and θ∗w, once we fix εeq depending only on the data.

17.3.2.2 The iteration equation in Ω near Γsonic

Now we define equation (12.3.25) in region Ω∩Dεeq , i.e., near Γsonic. In the ξ–
coordinates, the equation is of form (12.4.20) with (12.4.21), whose coefficients
(A2

ij , A
2
i ) = (A2

ij , A
2
i )(Dψ̂, ξ) are defined separately for the supersonic up to the

subsonic-close-to-sonic case and for the sufficiently strictly subsonic case, and
are then combined by a cutoff function depending on θw.

In the supersonic reflection case, we define the coefficients in the same way
as in §12.4.2. Working in the (x, y)–coordinates (11.1.1)–(11.1.2), we define
equation (12.4.18) with coefficients (Âij , Âi)(p, x, y) by (12.4.14)–(12.4.15), and
then change the coordinates to ξ in order to obtain (12.4.20)–(12.4.21) with
coefficients (A2

ij , A
2
i )(p, ξ). The properties of this equation in the supersonic

reflection case are collected in Lemma 12.4.2. Now we note that this can be
extended to the subsonic wedge angles which are sufficiently close to and include
the sonic angle.

Lemma 17.3.16. Lemma 12.4.1 holds in the present case, i.e., for any (u, θw) ∈
S satisfying (17.3.9)–(17.3.11) with θw ∈ [θ∗w,

π
2 ).

Proof. All the properties used in the proof of Lemma 12.4.1 have been extended
to the present case; in particular, see (17.3.21) and Lemma 17.2.13.

Lemma 17.3.17. (a) There exist λ1 > 0, εeq ∈ (0, ε02 ), and Neq ≥ 1 depend-
ing only on the data such that all the assertions of Lemma 12.4.2 (with
(v) in a modified form, given below) hold for any (u, θw) ∈ Kext with
|Dϕ2(P0)|

c2
(θw) ≥ 1− δP0

2
, where δP0

is from Proposition 16.1.4.

Assertion (v) of Lemma 12.4.2 now has the following form:

(v′) For any (u, θw) ∈ Kext with the supersonic wedge angle θw,

|Dy(Â11, Â12)(p, x, y)| ≤ Ĉ√x in Ω ∩ Dr, (17.3.26)

where r = min{g2
sh(0), εeq}, and Ĉ depends on the data and (θ∗w, α).

Moreover, for any δ ∈ (0,
δP0

2 ), there exists Ĉδ depending only on the

data and (θ∗w, α, δ) such that, for any (u, θw) ∈ Kext with
|Dϕ2(P0)|

c2
(θw)

≥ 1 + δ,

|Dy(Â11, Â12)(p, x, y)| ≤ Ĉδ
√
x in Ω ∩ Dεeq

. (17.3.27)
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(b) For subsonic wedge angles, Dk
p(Âij , Âi)(p, ·, ·) are in C1,α(Ω ∩ Dεeq

) for k =

0, 1, 2. More specifically, for any δ ∈ (0,
δP0

2 ), there exists Cδ depending on

the data and δ such that, for any (u, θw) ∈ Kext with
|Dϕ2(P0)|

c2
(θw) ∈

[1− δP0

2
, 1− δ], the coefficients satisfy

sup
p∈R2

‖(Dk
pÂij , D

k
pÂi)(p, ·, ·)‖C1,α(Ω∩Dεeq ) ≤ Cδ for k = 0, 1, 2.

(17.3.28)
Similar estimates hold for (A2

ij , A
2
i )(p, ·) in the ξ–coordinates.

(c) Let θw ∈ [θ∗w,
π
2 ) satisfy

|Dϕ2(P0)|
c2

(θw) ∈ [1− δP0

2
, 1) and

x
(θw)
P0
≥ ε

10
. (17.3.29)

Then, if (u, θw) ∈ Kext, and (Ω, ψ) are determined by (u, θw), the corre-
sponding operator N̂2 from (12.4.18) satisfies (12.4.29) in Ω ∩ Dεeq . In
particular, in Ω ∩ Dεeq

in the ξ–coordinates,

c2A
2
ij(Dψ(ξ), ξ) = Apotn

ij (Dψ(ξ), ψ(ξ), ξ), A2
i (Dψ(ξ), ξ) = 0.

Proof. We first show assertion (a). The proof of Lemma 12.4.2 uses only prop-
erties (12.3.7)–(12.3.9) and the properties of the weak state (2), specifically the
continuous dependence of (u2, c2) on θw ∈ [θs

w,
π
2 ] and the positivity of c2(θw)

(hence the uniform positive lower bound of c2 for all θw ∈ [θs
w,

π
2 ]).

In the present case, if
|Dϕ2(P0)|

c2
(θw) ≥ 1 − δP0

2
, condition (17.3.9) is of

form (12.3.7), where we have used the explicit definition of η3(θw) in Defini-
tion 17.3.4(iv). Conditions (17.3.10)–(17.3.11) clearly are of the same form as
(12.3.8)–(12.3.9). The properties of the weak state (2) mentioned above hold
for all θw ∈ [θd

w,
π
2 ], by Theorem 7.1.1. Also, with Lemma 17.3.16, the results in

the lemma follow from the proof of Lemma 12.4.2, quoted verbatim (with the
updated range of wedge angles, now [θd

w,
π
2 ]).

Furthermore, to show assertion (v′), we use Remarks 17.3.9–17.3.10 to show
that the additional condition in Lemma 12.4.2(v) holds in the regions of (17.3.26)
and (17.3.27), respectively. Noting also the dependence of the constants in Re-
marks 17.3.9–17.3.10, we obtain (v′) by repeating the proof of Lemma 12.4.2(v).

Now we show assertion (b). Recall that ζ1 ∈ C∞(R) satisfies (12.4.10)–
(12.4.11). Since x(θw)

P0
> 0 for subsonic wedge angles by (16.1.1), and x ∈

(x
(θw)
P0

, x
(θw)
P0

+ εeq) for any (x, y) ∈ Ω∩Dεeq
by (17.3.2), it follows that, for each

p ∈ R2 fixed, (x, ζ1(
p1

x
), ζ1(

p2

x
)) are in C∞(Ω ∩ Dεeq

) as functions of (x, y).

Then the explicit expressions in (12.4.14)–(12.4.15) and (11.1.5) of (Âij , Âi),
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combined with (17.3.22), imply

(Âij , Âi, D
k
pÂij , D

k
pÂi)(p, ·, ·) ∈ C1,α(Ω ∩ Dεeq

) for k = 1, 2, . . . .

Next, we show (17.3.28). We first note that, from the continuous dependence
of the parameters of the weak state (2) on θw, it follows that there exists c1(δ) >

0 depending on the data and δ such that x(θw)
P0

≥ c1(δ) if
|Dϕ2(P0)|

c2
(θw) ∈

[1 − δP0

2
, 1 − δ]. Then, for any (u, θw) ∈ Kext with such θw, we find that

x ∈ (c1(δ), εeq) for any (x, y) ∈ Ω∩Dεeq
. Using (12.4.33) and calculating similar

to (12.4.34), we obtain that, for m = 0, 1, 2, . . . , K > 0, and q ∈ R,

|Dm
q ζ1(

q

Kx
)| ≤ C(K, δ, εeq) for any (x, y) ∈ Ω ∩ Dεeq .

Then, again using the explicit expressions of (Âij , Âi) and (17.3.22), we obtain
(17.3.28).

Finally, we show assertion (c). Using Remark 17.3.2(d), we note that con-
dition (17.3.29) implies that (17.3.9)–(17.3.10) now hold in Ω∩Dε0 , which lead
to (12.4.28). Thus, (12.4.29) holds in Ω∩Dεeq

, which is shown by repeating the
proof of Lemma 12.4.2(viii). This implies assertion (c).

The properties of the equation in Lemmas 12.4.2 and 17.3.17, shown above,
follow from the properties of the potential flow equation in the region where the
solution is close to sonic (i.e., |Dϕ|

c(|Dϕ|2,ϕ) is close to one), and the fact that state
(2) (hence ϕ for (u, θw) ∈ Kext) is close to sonic in Ω∩Dεeq for the wedge angles
satisfying the conditions of Lemma 17.3.17.

On the other hand, for the subsonic wedge angles satisfying

|Dϕ2(P0)|
c2

(θw) ≤ 1− δ for some δ > 0,

ψ is not close to sonic in Ω∩Dεeq
in general, so that we cannot define the iteration

equation based on these properties. Instead, we use the fact that the potential
flow equation is uniformly elliptic in Ω ∩ Dεeq , with the uniform ellipticity con-

stant (depending on δ) for all (u, θw) ∈ Kext such that
|Dϕ2(P0)|

c2
(θw) ≤ 1− δ.

In order to do that, we follow the way that we have used to define the iteration
boundary condition on Γshock in (12.5.47), which takes a simpler form in the
present case due to the quasilinear structure of the potential flow equation.

We first note the following:

Lemma 17.3.18. In the present case, Lemma 12.5.6 holds for any wedge an-
gle θw ∈ [θ∗w,

π
2 ]. Specifically, fix σ̃1 ∈ (0, 1). Then, for each (u, θw) ∈ Kext,

there exists v ≡ v(u,θw) ∈ C4(Ω
(u,θw)

) such that assertions (i)–(ii) of Lemma
12.5.6 hold with C(σ̃1) in (12.5.40) depending only on the data and (θ∗w, σ̃1, α)
in Definition 17.3.4.
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Proof. In the present case, (u, θw) ∈ Kext ⊂ C1(Qiter) × [θ∗w,
π
2 ], and it satis-

fies the conditions of Definition 17.3.4(ii), (17.3.22), and (17.3.20) with (N̂0, C)
depending on the data and (θ∗w, α).

Thus, the only condition of Lemma 12.5.6 which is not satisfied now is
(12.3.5). Instead, property (17.3.7) is now satisfied.

In the proof of Lemma 12.5.6, condition (12.3.5) is used only to obtain the
existence of δ0 > 0 and Ĉ depending only on min[θ∗w,

π
2 ] ŝ(·) (hence on the data)

and (N̂0, N2) such that (12.5.43) holds.
In the present case, we can follow the proof of (12.5.43) by using (17.3.7)

instead of (12.3.5), for which the argument works without change. Thus, we
obtain the existence of δ0 > 0 and Ĉ depending only on the data and θ∗w such
that (12.5.43) holds. Then the assertions of Lemma 12.5.6 hold with C(σ̃1) in
(12.5.40) depending only on the data and (θ∗w, α) for each σ̃1.

Now we define the iteration equation of form (12.4.20) in Ω ∩ Dεeq
(where

εeq will be adjusted below), with coefficients A2,(subs)
ij (Dψ̂, ξ) and A2,(subs)

i ≡ 0,

for any (u, θw) ∈ Kext such that
|Dϕ2(P0)|

c2
(θw) ≤ 1− δM for some δM ∈ (0, 1).

Fix (u, θw) ∈ Kext. Let η ∈ C∞(R) be a cutoff function such that η ≡ 1 on
(−∞, 1), η ≡ 0 on (2,∞), and 0 ≤ η ≤ 1 on R. Fix σ̃1 ∈ (0, 1), and denote

ησ̃1
(t) = η(

t

σ̃1
).

Let σ̃1 ∈ (0, 1) be defined later, depending only on the data. Then we define
(A

2,(subs)
ij , A

2,(subs)
i )(p, ξ) for (p, ξ) ∈ R2 × Ω ∩ Dεeq by

A
2,(subs)
ij (p, ξ) = ησ̃1

A
(potn)
ij (p, ψ(ξ), ξ) + (1− ησ̃1

)A
(potn)
ij (Dv(ξ), ψ(ξ), ξ),

(17.3.30)
for ησ̃1 = ησ̃1(|p − Dv(ξ)|), where v(ξ) is defined in Lemma 12.5.6 for (u, θw)

and σ̃1, and A
(potn)
ij (p, z, ξ), j = 1, 2, are the coefficients of the potential flow

equation (12.4.2).

Lemma 17.3.19. There exist λs > 0 (depending only on the data) and C
(depending only on the data and θ∗w) such that, if ε and δ1 in Definition 17.3.4
are small (depending only on the data), then, for any (u, θw) ∈ Kext with θw

satisfying
|Dϕ2(P0)|

c2
(θw) ≤ 1 − δP0

4
, coefficients A2,(subs)

ij defined by (17.3.30)

with σ̃1 =
√
δ1 satisfy the following properties:

(i) A2,(subs)
ij (p, ξ) = A

(potn)
ij (p, ψ(ξ), ξ) for any (p, ξ) ∈ R2 × Ω ∩ Dεeq

with

|p−Dψ(ξ)| <
√
δ1
2

;

(ii) For any (p, ξ) ∈ R2 × (Ω ∩ Dεeq
),

∣∣∣A2,(subs)
ij (p, ξ)−A2,(subs)

ij (Dψ(ξ), ξ)
∣∣∣ ≤ C

√
δ1; (17.3.31)
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(iii) Dk
pA

2,(subs)
ij (p, ·) ∈ C1,α(Ω ∩ Dεeq) for k = 0, 1, 2, and for any p ∈ R2,

with
‖Dk

pA
2,(subs)
ij (p, ·)‖C1,α(Ω∩Dεeq ) ≤ C;

(iv) Uniform ellipticity holds: For any ξ ∈ Ω ∩ Dεeq
and p, µ ∈ R2,

λs|µ|2 ≤
2∑

i,j=1

A
2,(subs)
ij (p, ξ)µiµj ≤ λ−1

s |µ|2;

(v) If (u, θw) ∈ Kext, and A2,(subs)
ij (p, ξ) are determined by (u, θw), then, for

the corresponding (Ω, ψ),

A
2,(subs)
ij (Dψ(ξ), ξ) = A

(potn)
ij (Dψ(ξ), ψ(ξ), ξ) in Ω.

Proof. Assertion (i) follows from (12.5.39) with σ̃1 =
√
δ1 if δ1 ≤ 1

4 .
We now show (ii). In this argument, the universal constant C depends

only on the data and θ∗w. From (12.5.39) with σ̃2
1 = δ1 ≤ 1

4 , we find that
ησ̃1

(|Dψ(ξ)−Dv(ξ)|) = 1. Thus, we have

A
2,(subs)
ij (Dψ(ξ), ξ) = A

(potn)
ij (Dψ(ξ), ψ(ξ), ξ) for all ξ ∈ Ω ∩ Dεeq

.
(17.3.32)

With this, we have

A
2,(subs)
ij (p, ξ)−A2,(subs)

ij (Dψ(ξ), ξ) = I1 + I2,

where

I1 = ησ̃1

(
A

(potn)
ij (p, ψ(ξ), ξ)−A(potn)

ij (Dψ(ξ), ψ(ξ), ξ)
)
,

I2 = (1− ησ̃1
)
(
A

(potn)
ij (Dv(ξ), ψ(ξ), ξ)−A(potn)

ij (Dψ(ξ), ψ(ξ), ξ)
)
,

with ησ̃1
= ησ̃1

(|p−Dv(ξ)|). Then I1 can be nonzero only in |p−Dv(ξ)| ≤ 2σ̃1,
which implies that |p − Dψ(ξ)| ≤ 3σ̃1 by (12.5.39). From (12.4.4), combined
with (12.3.18) (which holds by Remark 17.3.7) and (17.3.22), we obtain that
|I1| ≤ Cσ̃1 = C

√
δ1. Similarly,

|I2(ξ)| ≤ C|D(v − ψ)(ξ)| ≤ Cσ̃2
1 = Cδ1.

Now (ii) is proved.
Assertion (iii) follows from (12.4.4), combined with (12.3.18) (which holds

by Remark 17.3.7) and (17.3.22).
Assertion (iv) can be seen as follows: Since P1 = P0 in the subsonic reflection

case, the condition that
|Dϕ2(P0)|

c2
(θw) ≤ 1− δP0

4
, combined with (17.3.32) and

the conditions of Definition 17.3.4(v)–(vi), implies that (iv) holds for (p, ξ) =
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(Dψ(ξ), ξ) for any ξ ∈ Ω ∩ Dεeq
, with λs depending only on the data and δP0

,
and hence only on the data. Now (17.3.31) with small δ1, depending only on
the data and θ∗w, implies assertion (iv) with λs

2 for all (p, ξ) ∈ R2 × (Ω ∩ Dεeq
).

Assertion (v) follows from (i).

Now we combine coefficients (A2
ij , A

2
i ) with A2,(subs)

ij (recall that A2,(subs)
i ≡

0) such that the resulting coefficients are equal to (A2
ij , A

2
i ) in the supersonic

reflection case and to (A
2,(subs)
ij , 0) in the subsonic-away-from-sonic case, and

the coupling is continuous with respect to θw, so that property (iii) of Lemma
12.7.1 holds in the present case (to be shown later).

Let ζ ∈ C∞(R) satisfy

ζ(s) =





0 if s ≤ 1− δP0

2
,

1 if s ≥ 1− δP0

4
,

and ζ ′(s) ≥ 0 on R. (17.3.33)

Given (u, θw) ∈ Kext, for each p ∈ R2 and ξ ∈ Ω ∩ Dεeq
, define

A3
ij(p, ξ) = c2ζA

2
ij(p, ξ) +

(
1− ζ

)
A

2,(subs)
ij (p, ξ),

A3
i (p, ξ) = c2ζA

2
i (p, ξ),

(17.3.34)

where ζ = ζ( |Dϕ2(P0)|
c2

(θw)); see Remark 12.4.4 regarding coefficient c2 in the
terms of (A2

ij , A
2
i ).

We state the properties of (A3
ij , A

3
i ) in the following lemma:

Lemma 17.3.20. There exist λ1 > 0, εeq ∈ (0, ε02 ), Neq ≥ 1 depending on the
data, C > 0 depending on the data and θ∗w, and λ(δ) > 0 for each δ ∈ (0,

δP0

2 )
depending on the data and δ with δ 7→ λ(δ) being non-decreasing such that the
following hold: Let ε and δ1 in Definition 17.3.4 be small, depending only on the
data. Then, for any (u, θw) ∈ Kext, coefficients (A3

ij , A
3
i ) defined by (17.3.34)

with (17.3.33) satisfy the following properties:

(i) If
|Dϕ2(P0)|

c2
(θw) ≥ 1 − δP0

4
, then (A3

ij , A
3
i ) = (A2

ij , A
2
i ). Moreover, these

functions satisfy the properties in Lemma 17.3.17;

(ii) If δ ∈ (0,
δP0

2 ) and
|Dϕ2(P0)|

c2
(θw) ≤ 1− δ, then

(a) Coefficients A3
ij are uniformly elliptic with constant λ(δ): For any

ξ ∈ Ω ∩ Dεeq
and p, µ ∈ R2,

λ(δ)|µ|2 ≤
2∑

i,j=1

A3
ij(p, ξ)µiµj ≤

1

λ(δ)
|µ|2;
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(b) (A3
ij , A

3
i ) satisfy (17.3.28) with constant Cδ depending on the data and

(θ∗w, δ).

The proof of this lemma directly follows from definition (17.3.34) with (17.3.33),
by using Lemmas 17.3.17 and 17.3.19.

17.3.2.3 Combined iteration equation in Ω

Next, we combine the equations introduced above by defining the coefficients of
(12.3.25) in Ω, similar to (12.4.42) with (A3

ij , A
3
i ) instead of (A2

ij , A
2
i ):

Aij(p, ξ) = ζ̂
(εeq)
2 (ξ)A1

ij(ξ) +
(
1− ζ̂(εeq)

2 (ξ)
)
A3
ij(p, ξ),

Ai(p, ξ) =
(
1− ζ̂(εeq)

2 (ξ)
)
A3
i (p, ξ),

(17.3.35)

where A1
ij(ξ) are defined by (12.4.5), (A3

ij , A
3
i )(p, ξ) are defined by (17.3.34)

with (17.3.33), and ζ̂
(εeq)
2 is defined by (12.4.37)–(12.4.38). This equation has

the properties, similar to those in Lemma 12.4.5 and Corollary 12.4.6.

Lemma 17.3.21. There exists εeq ∈ (0, ε02 ) depending only on the data such
that, if ε ∈ (0,

εeq

2 ) in Definition 17.3.4, then, for any (u, θw) ∈ Kext, equation
(12.3.25) with coefficients (17.3.35) satisfies assertions (i)–(vii) of Lemma 12.4.5
(with a modification in (v)–(vi) detailed below), with λ0 > 0 depending only on
the data and θ∗w, and with C depending on the data and (θ∗w, α). The modified
properties (v)–(vi) are:

(v′) (Aij , Ai)(p, ξ) = (A3
ij , A

3
i )(p, ξ) for any (p, ξ) ∈ R2 × (Ω∩Dεeq/2). Thus,

the coefficients in (17.3.35) in R2 × (Ω ∩ Dεeq/2) satisfy Lemma 17.3.20;

(vi′) (Aij , Ai)(p, ξ) = (A3
ij , A

3
i )(p, ξ) for any (p, ξ) ∈ R2 × (Ω ∩ Dεeq/2).

Moreover, assertion (viii) of Lemma 12.4.5 is replaced by the following:

(viii′) Let ψ be a fixed point; that is, ψ̂ = ψ satisfies equation (12.3.25) in Ω.
Then

(a′) (12.3.25) coincides with the potential flow equation (12.4.2) in Ω \
D0,ε/10, where we have used the notation in (17.3.3):

Aij(Dψ, ξ) = A
(potn)
ij (Dψ,ψ, ξ), Ai(Dψ, ξ) = 0. (17.3.36)

In particular, if xP0
≥ ε

10 , (12.3.25) coincides with the potential flow
equation (12.4.2) in Ω, i.e., (17.3.36) holds in Ω.

(b′) If
|Dϕ2(P0)|

c2
(θw) ≤ 1 − δP0

2
, (12.3.25) coincides with the potential

flow equation in Ω, i.e., (17.3.36) holds in Ω.
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(c′) Assume that (12.4.7) holds for ψ̂ = ψ. Assume also that ε (in the
iteration set) is small, depending on the data and the constants in
(12.4.7). Then assertions (b) and (c) of Lemma 12.4.5(viii) hold for

any (u, θw) ∈ Kext with θw satisfying
|Dϕ2(P0)|

c2
(θw) ≥ 1− δP0

4
.

Proof. The conditions in (12.4.43) hold in the present case with M depending
on the data and (θ∗w, α) by (17.3.23) for τ =

εeq

2 . Then all the conditions of
Lemma 12.4.5 are satisfied, and its assertions with modifications given above
follow in the present case by repeating the proof of Lemma 12.4.5 and using the
properties of (A3

ij , A
3
i ) in Lemma 17.3.20.

We comment only on property (b′) of assertion (viii′). From its definition in
§17.3.2.1, coefficients A1

ij for (u, θw) ∈ Kext satisfy A1
ij(ξ) = A

(potn)
ij (Dψ,ψ, ξ) in

Ω, where we have used the form of (12.4.2) for the potential flow equation. Also,
A

2,(subs)
ij (Dψ(ξ), ξ) = A

(potn)
ij (Dψ(ξ), ψ(ξ), ξ) by Lemma 17.3.19(v). Since

A3
ij(p, ξ) = A

2,(subs)
ij (p, ξ) and A3

i (p, ξ) = 0 in R2 × Ω by (17.3.34) for θw sat-

isfying
|Dϕ2(P0)|

c2
(θw) ≤ 1 − δP0

2
, then property (b′) of assertion (viii′) follows

from (17.3.35).

We have the following analogue of Lemma 12.4.7.

Lemma 17.3.22. Let εeq ∈ (0, ε02 ) be as in Lemma 17.3.21, and let δP0
>

0 be from Proposition 16.1.4. Then, for every δe ∈ (0,
δP0

2 ], there exists εδe
depending on the data and (θ∗w, δe) such that, if ε ∈ (0, εδe ] in Definition 17.3.4,
the following hold: Let (u, θw) ∈ K be such that ψ̂ = ψ in Ω for function ψ̂
introduced in Definition 17.3.4(vii). Assume also that, in the (x, y)–coordinates,

|ψx| ≤
2− µ0

5

1 + γ
x, |ψy| ≤ N3x in Ω ∩ D0,ε/4 if

|Dϕ2(P0)|
c2

(θw) ≥ 1− δe.
(17.3.37)

Then ψ satisfies the potential flow equation (12.4.2) in Ω. Moreover, equation
(12.4.2) is strictly elliptic for ψ in Ω \ Γsonic.

Proof. Fix (u, θw) ∈ K satisfying the conditions above. We divide the proof into
two steps.

1. We first show that, if ε > 0 is chosen small in Definition 17.3.4, ψ satisfies
the potential flow equation (12.4.2) in Ω.

If θw satisfies
|Dϕ2(P0)|

c2
(θw) ≤ 1 − δP0

2
, then, by assertion (b′) in Lemma

17.3.21(viii′) and since ψ̂ = ψ satisfies (12.3.25), it follows that ψ satisfies the
potential flow equation (12.4.2).

Next, we can choose δe ∈ (0,
δP0

2 ). Then there exists εδe > 0 small, depending
on the data and (θ∗w, δe), such that

x
(θ∗w)
P0
≥ εδe if

|Dϕ2(P0)|
c2

(θw) ≤ 1− δe.



SOLUTIONS UP TO THE DETACHMENT ANGLE 723

Let ε ∈ (0, εδe ]. With this choice, if θw satisfies

|Dϕ2(P0)|
c2

(θw) ∈ (1− δP0

2
, 1− δe),

then, using assertion (a′) of Lemma 17.3.21(viii′), we come to the same conclu-
sion as that in the previous case.

Finally, if θw satisfies
|Dϕ2(P0)|

c2
(θw) ≥ 1−δe, we combine condition (17.3.37)

with (17.3.9) (in which η3(θw) = 2−µ0

1+γ from the condition of the present case,

with δe ∈ (0,
δP0

2 )) and (17.3.10) to obtain

|∂xψ(x, y)| ≤ 2− µ0

1 + γ
x, |∂yψ(x, y)| ≤ N3x in Ω ∩ Dεeq

. (17.3.38)

From this, arguing as in the proof of (12.4.29) in Lemma 12.4.2, we find that
(12.4.29) holds. Thus, in the ξ–coordinates,

c2A
2
ij(Dψ, ξ) = A

(potn)
ij (Dψ,ψ, ξ), A2

i (Dψ, ξ) = 0 in Ω ∩ Dεeq
.

Combining this with Lemma 17.3.19(v) and using A1
ij(ξ) = A

(potn)
ij (Dψ,ψ, ξ)

from its definition, we obtain from (17.3.35) that (17.3.36) holds in Ω ∩ Dεeq .
Then, using again that ψ̂ = ψ satisfies (12.3.25), we obtain that ψ satisfies the
potential flow equation (12.4.2).

Therefore, for any θw ∈ (θ∗w,
π
2 ), if the conditions of this lemma hold and εδe

is chosen as above, then (17.3.36) holds in Ω, and ψ satisfies equation (12.4.2).
2. The result that equation (12.4.2) is elliptic for ψ follows from both

(17.3.36) in Ω and the fact that equation (12.3.25) is strictly elliptic for ψ in
Ω \ Γsonic by Lemma 12.4.5(i) (which holds by Lemma 17.3.21).

17.3.2.4 Boundary conditions for the iteration

Recall that, by Proposition 16.2.1, operatorsM0(Dψ,ψ, ξ) andM1(Dψ,ψ, ξ),
defined by (11.3.2) and (11.3.23), and function F (z, ξ) in (11.3.20) are defined
for all θw ∈ (θd

w,
π
2 ) and satisfy the properties as in §11.3.

Then all the constructions of §12.5 hold without change for all θw ∈ (θd
w,

π
2 ).

In particular, definition (12.5.15) and Lemma 12.5.1 hold without change if
θw ∈ (θd

w,
π
2 ), and (u, θw) ∈ C2,α

(∗∗)(Q
iter)× [θ∗w,

π
2 ] satisfies conditions (i)–(ii) and

(vi) of Definition 17.3.4 and (17.3.15).
Furthermore, we note that Lemma 12.5.6 holds in the present case by Lemma

17.3.18. Then, for each (u, θw) ∈ Kext, we define the iteration boundary condi-
tion by (12.5.47).

Lemma 17.3.23. If parameters (ε, δ1, δ3,
1
N1

) of the iteration set in Definition
17.3.4 and δK > 0 are all small, depending only on the data and θ∗w, then
the following holds: Let (u, θw) ∈ Kext be such that there exists (u#, θ#

w ) ∈ K
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satisfying (12.5.31) with (u, θw). Define function M(u,θw)(·) by (12.5.47) with
σ̃1 =

√
δ1. Then all the assertions of Lemma 12.5.7 hold for M(u,θw)(·) with

C depending only on the data, δbc depending only on the data and θ∗w, and Cα
depending only on the data and (θ∗w, α).

Proof. If (u#, θ#
w ) ∈ K satisfies (12.5.31) with (u, θw) for constant δK, there

exists (ũ#, θ̃#
w ) ∈ K satisfying (12.5.31) with (u, θw) for constant 2δK. We use

(ũ#, θ̃#
w ) below instead of (u#, θ#

w ). Then we note that all the conditions of
Lemma 12.5.7 are satisfied.

Indeed, the requirements of Lemma 12.5.2 are satisfied for (u, θw) ∈ Kext

by conditions (ii) and (v)–(vi) of Definition 17.3.4, (17.3.11), and (17.3.15)–
(17.3.16), and the dependence of the constants in the conditions are specified in
Definition 17.3.4.

Also, (ũ#, θ̃#
w ) ∈ K satisfies the conditions of Lemma 12.5.3 on (u#, θ#

w )
there, with b > 0 depending only on the data and θ∗w, which follows from
(17.3.7) for (ũ#, θ̃#

w ). Indeed, from Lemma 12.2.2(ii), which holds by Lemma
17.2.1, we see that |P2 − P3| ≥ 1

C gsh(ŝ(θw)) so that |P2 − P3| ≥ 1
C1

=: b, by
(17.3.7) and the uniform lower bound of ŝ(θw) for θw ∈ [θd

w,
π
2 ].

Furthermore, Lemma 12.5.6 holds for (u, θw) ∈ Kext by Lemma 17.3.18, with
C(σ̃1) in (12.5.40) depending only on the data and (θ∗w, α, σ̃1).

Thus, we have checked that all the conditions of Lemma 12.5.7 are satisfied.
We have also specified the dependence of the constants in the conditions.

Furthermore, using Proposition 16.2.1, we can check that the proofs of Lem-
mas 12.5.2–12.5.3 and 12.5.7 and Corollary 12.5.4 work without change in the
sonic/subsonic reflection case.

Then, if parameters (ε, δ1, δ3,
1
N1

) of the iteration set in Definition 17.3.4
and δK > 0 are chosen to satisfy the smallness conditions of Lemma 12.5.7
for the constants in its conditions determined above, we complete the proof by
employing Lemma 12.5.7, taking into account the dependence of the constants
in the conditions.

Therefore, we also obtain the following:

Corollary 17.3.24. Corollary 12.5.8 holds without change in the present case,
i.e., for any θ∗w ∈ (θd

w,
π
2 ).

17.3.2.5 The boundary value problem in the iteration region Qiter

Let (u, θw) ∈ Kext, and let (Ω, ψ) be determined by (u, θw).
Similarly to §12.7.1, we rewrite Problem (12.3.25)–(12.3.29) for an unknown

function ψ̂ in Ω (with Γsonic = {P0} in the subsonic case) as a boundary value
problem for function û in Qiter determined by (12.3.15). Then we obtain that
the problem for û is of form (12.7.2)–(12.7.6), and Lemmas 12.7.1–12.7.2 hold.
The proofs work without change, where, in Step 1 of the proof of Lemma
12.7.1, we use the C∞–smoothness with respect to θw ∈ [θd

w,
π
2 ] of function
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ζ(
|Dϕ2(P0)|

c2
(θw)) in (17.3.34), in addition to the other properties used there.

Also, when extending the proofs to the subsonic/sonic case, it is important that,
in Lemma 12.7.1, we assert only the interior continuity of (Aij ,Ai)(p, s, t) and
f(s, t) with respect to variables (s, t) ∈ Qiter, and the convergence of the se-
quence of such functions on compact subsets of the interior of Qiter. Similarly,
for the boundary conditions, in Lemma 12.7.2, we have established the conti-
nuity and convergence of the ingredients of the boundary conditions within the
relative interiors of the corresponding boundary segments (continuity) and their
compact subsets (convergence). Therefore, the singularity near Γsonic of map
F−1 : Ω 7→ Qiter does not affect the proofs.

17.4 EXISTENCE AND ESTIMATES OF SOLUTIONS OF THE
ITERATION PROBLEM

We now solve the iteration problem (12.3.25)–(12.3.29) for each (u, θw) ∈ Kext,
i.e., establish the existence and estimates of solutions.

Since (u, θw) ∈ Kext is considered, then, throughout this section, when re-
ferring to the conditions of Definition 17.3.4, we always assume the nonstrict
inequalities as described in Remark 17.3.15.

The outline of the argument is the following:

(i) We first show the existence of solutions ψ̂ of the iteration problem for all
(u, θw) ∈ Kext, by using Propositions 4.7.2 and 4.8.7. It remains to obtain
appropriate estimates of solutions ψ̂ in four different cases.

(ii) For the supersonic-away-from-sonic angles, i.e., θw satisfying (16.3.5) for
any given δ > 0, we follow the argument in §12.7.2. The estimates then
depend on δ.

(iii) For the supersonic-near-sonic angles, i.e., θw satisfying

|Dϕ2(P0)|
c2

(θw) ∈ (1, 1 + δ̂P0
) (17.4.1)

with appropriate δ̂P0
> 0, we follow the argument in §16.4, changing from

the free boundary problem to the fixed boundary problem, i.e., the itera-
tion problem (12.3.25)–(12.3.29).

(iv) For the subsonic-near-sonic angles, i.e., θw satisfying

|Dϕ2(P0)|
c2

(θw) ∈ (1− δ̂P0 , 1], (17.4.2)

we similarly follow a fixed boundary version of the argument in §16.5 to
obtain the a priori estimates of solutions.
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(v) For the subsonic-away-from-sonic angles, i.e., θw satisfying

|Dϕ2(P0)|
c2

≤ 1− δ̂P0
, (17.4.3)

we use the estimates of solutions given in Proposition 4.8.7.

(vi) Finally, we combine all these estimates into one estimate for û in Qiter for
any (u, θw) ∈ Kext, similarly to Proposition 17.2.12.

Constant δ̂P0
in the conditions above is determined below, depending only

on the data and θ∗w.
We sketch some details of this procedure below. For this, we first prove

a fixed boundary version of Lemma 16.4.3; that is, we now assume only one
condition on Γshock instead of two, but assume a priori a higher regularity of
Γshock, where we note that only the Lipschitz regularity (16.1.13) of Γshock is
assumed in Lemma 16.4.3.

Lemma 17.4.1. In the conditions of Lemma 16.4.3, we replace the boundary
condition (16.4.36) by

‖f̂‖
C

(−1−β),{0}
2,β,(0,2ε)

≤M for some β ∈ (0, 1). (17.4.4)

Then the conclusion of Lemma 16.4.3 holds without change.

Proof. Note that this lemma is an extension of Theorem 4.7.4 to a more general
scaling, in the same way as Lemma 16.4.3 is an extension of the estimates in
Proposition 11.4.3 to a more general scaling.

We follow the proof of Lemma 16.4.3 to consider Cases (i)–(iii) in rectangles
(16.4.46). In Cases (i)–(ii), the argument works without change. In particular,
we obtain the same estimates for both the ingredients of the rescaled equation
and the rescaled solution ψ(z0) defined by (16.4.44).

Thus, we focus now on Case (iii). Since ψ satisfies (16.4.35) on Γshock,
function (16.4.44) satisfies the rescaled boundary condition (16.4.52) on Γ

(z0)
shock,

defined by (16.4.53). By assumption, b satisfies (11.3.41)–(11.3.42) on Ω2ε. Then
we combine these properties with (16.4.29)–(16.4.30) to conclude that b(z0) on
Γ

(z0)
shock satisfies (11.4.28).
Using condition (17.4.4) and repeating the argument between (4.7.39) and

(4.7.40) in the proof of Theorem 4.7.4, we obtain

‖DSF
(z0)‖C1,α([− 1

2 ,
1
2 ]) ≤ C(M,α).

This is estimate (11.4.34) with α instead of β. Then, repeating the argument
in the proof of Proposition 11.4.3 after equation (11.4.34), we obtain (11.4.36)
(with α instead of β) in the present case. This completes the proof.
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17.4.1 Existence of solutions of the iteration problem

We now show that Proposition 12.7.3 holds in the present case, i.e., for any
θw ∈ (θd

w,
π
2 ). We use ᾱ from Proposition 17.2.12.

Proposition 17.4.2. Let parameters (ε, δ3,
1
N1

) of the iteration set in Definition
17.3.4 and δK > 0 be all small, depending only on the data and θ∗w. Let δ1 be
small, depending on the data and (θ∗w, α), for which (δ1, α) are from Definition
17.3.4. Then there exist α̂ ∈ (0, ᾱ) depending only on the data and θ∗w, and
C ≥ 1 depending only on the data and (θ∗w, α) and, for each s ∈ (0, ε0), there
exists Cs ≥ 1 depending only on the data and (θ∗w, s, α) such that, for each
(u, θw) ∈ Kext satisfying (12.7.13) with some (u#, θ#

w ) ∈ K, there is a unique
solution ψ̂ ∈ C2(Ω) ∩ C1(Ω \ Γsonic) ∩ C(Ω) of Problem (12.3.25)–(12.3.29),
determined by (u, θw), satisfying (12.7.14)–(12.7.16).

Moreover, for every δel ∈ (0, 1), there exist α2 ∈ (0, 1
2 ) depending on the

data and (θ∗w, δel), and Cδel
depending on the data and (θ∗w, α, δel) such that, if

θw satisfies
|Dϕ2(P0)|

c2
(θw) ≤ 1− δel, then

‖ψ̂‖(−1−α2), {P0}∪Γsym

2,α2,Ω
≤ Cδel

. (17.4.5)

Proof. The proof consists of two steps.
1. In the first step, we consider the wedge angles θw ∈ [θ∗w,

π
2 ) satisfying

|Dϕ2(P0)|
c2

(θw) ≥ 1− δe, (17.4.6)

where δe ∈ (0,
δP0

4
) will be determined below, depending only on the data and

θ∗w. Note that all the supersonic wedge angles θw satisfy (17.4.6).
Fix (u, θw) ∈ Kext with θw satisfying (17.4.6), and assume that it satisfies

(12.7.13) with some (u#, θ#
w ) ∈ K. We show the existence of solutions for

Problem (12.3.25)–(12.3.29) determined by (u, θw) ∈ Kext. We follow the proof
of Proposition 12.7.3.

We first note that, by Lemma 17.2.1 and Lemma 12.2.2(ii), transform F1(·)
is C3 with C3–inverse, endowed with the uniform estimates in these norms for
θw ∈ [θd

w,
π
2 ]. Thus, we make the change of coordinates (s, t) = F1(ξ) and

consider the problem in the (s, t)–variables in domain F1(Ω). We will employ
Proposition 4.7.2 to obtain the existence of solutions. Therefore, we need to
check its conditions.

By (17.2.4) and Lemma 17.2.1,

gsh(0) = tP1(θw) = yP1 − yP4 .

Then gsh(0) > 0 for the supersonic wedge angles, and gsh(0) = 0 for the sub-
sonic/sonic wedge angles. From (12.7.17) and (17.3.7), it follows that F1(Ω) is
of the structure of (4.5.1) and (4.5.3) with h = ŝ(θw), fbd = gsh, and t0 = gsh(0).
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Since δe ∈ (0,
δP0

4
), then, from Lemma 17.3.17(a), Lemma 17.3.20(i), and

Lemma 17.3.21, we see that equation (12.3.25) is of the same form and properties
as in Proposition 12.7.3, where we note that Lemma 12.4.2(v) is not used in
Proposition 12.7.3. Also, the boundary condition is of form (12.3.26) with the
same properties as in Proposition 12.7.3 by Lemma 17.3.23.

Next, we rewrite Problem (12.3.25)–(12.3.29) in the coordinates (s, t) =
F1(ξ) and show that it satisfies the properties listed after the problem. We
first discuss property (i) under this change of variables. We use property (iv) of
Lemma 17.2.1. Noting that xP1

= xP4
, we substitute (x, y) = (s+ xP1

, t+ yP4
)

into (i) to obtain that, for any (s, t) ∈ F1(Ω) ∩ {s < εeq} and p,κ ∈ R2,

λ1|κ|2 ≤
2∑

i,j=1

Âij(p, s+ xP1
, t+ yP4

)
κiκj

(s+ xP1
)2− i+j2

≤ 1

λ1
|κ|2. (17.4.7)

This condition is of the same form as condition (4.5.90) for (x1, x2) = (s, t) with

δ = xP1 . (17.4.8)

Note that xP1
(θw) = 0 for supersonic/sonic wedge angles θw, and xP1

(θw) > 0
for subsonic wedge angles θw, by Proposition 16.1.3. Thus, in F1(Ω)∩{s < εeq},
the equation is degenerate elliptic for the supersonic/sonic wedge angles θw, and
uniformly elliptic for the subsonic wedge angles θw.

With this, following the argument for Proposition 12.7.3, we see for Problem
(12.3.25)–(12.3.29), rewritten in coordinates (s, t) = F1(ξ) in domain F1(Ω),
that all the assumptions of Proposition 4.7.2 are satisfied and that the depen-
dence of the parameters in the conditions of Proposition 4.7.2 on δK and the
parameters of the iteration set is the same as those in Proposition 12.7.3, except
that δ is determined by (17.4.8):

α is the same as α in the iteration set;
(ε, κ, λ) depend only on the data and θ∗w;
β = 3

4 ;
σ = C0

√
δ1, with C0 > 0 depending on the data;

M depends only on the data and (θ∗w, α);
h, t1, t2 ∈ ( 1

C , C) and Mbd ≤ C, with C depending only on (ρ0, ρ1, γ, θ
∗
w).

Now, applying Proposition 4.7.2 and changing the variables by ξ = F−1
1 (s, t),

we obtain the existence of ᾱ ∈ (0, 1
8 ) (depending only on the data and θ∗w) and

δ0, δ̂1 > 0 (depending only on the data and (θ∗w, α)) such that, if δ1 ∈ (0, δ̂1)
in the iteration set and xP1

< δ0, there exists a unique solution of Problem
(12.3.25)–(12.3.29) determined by (u, θw), and (12.7.14)–(12.7.16) hold.

Next we note that the continuous dependence of |Dϕ2(P0)|
c2

and xP1
on θw ∈

[θd
w,

π
2 ] and the fact that xP1(θw) = 0 if |Dϕ2(P0)|

c2
(θw) ≥ 1 (supersonic/sonic

wedge angles θw) imply that there exists δe ∈ (0,
δP0

8
) such that (17.4.6) implies
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that xP1 < δ0. Taking the supremum of such δe, we obtain that δe ∈ (0,
δP0

4
) de-

pending only on the data and (θ∗w, α), since δ0 depends only on these parameters.
Now the proposition is proved for the wedge angles satisfying (17.4.6).

2. It remains to consider the wedge angles θw ∈ [θ∗w,
π
2 ) satisfying

|Dϕ2(P0)|
c2

(θw) ≤ 1− δe, (17.4.9)

where δe > 0 has been fixed in Step 1. We again make the change of variables
(s, t) = F1(ξ) and consider the problem in the (s, t)–variables in domain F1(Ω).

In this case, the assertion follows from a direct application of Proposition
4.8.7. Indeed, by Lemma 17.3.21, we can apply Lemma 17.3.20(ii) with δ = δe
and Lemma 12.4.5(i), which imply (4.8.13) with (δ, λ) depending only on the
data and (θ∗w, α), since δe depends only on these parameters. Also, from Lemma
17.3.20(ii) with δ = δe, we obtain (17.3.28) with δ = δe, which implies (4.8.14)
with M depending only on the data and (θ∗w, α), since δe depends only on these
parameters. To summarize, we have shown (4.8.13)–(4.8.14) with the constants
depending only on the data and (θ∗w, α).

The other conditions of Proposition 4.8.7 are checked in the same way as we
have done for the conditions of Proposition 4.7.2 in Step 1, and the constants in
these conditions have the same dependence on the parameters of the iteration set
and δK as in Step 1. Now we apply Proposition 4.8.7 to obtain the existence of
solutions, if σ > 0 depends only on parameters (κ, λ, δ,M,α, ε) of the conditions
of Proposition 4.8.7. Translating in terms of the parameters of the iterations set
and using the dependence of the parameters given in Step 1 (as discussed above)
give the condition that δ1 is small, depending only on the data and (θ∗w, α).

Also, estimates (12.7.14)–(12.7.16) and (17.4.5) follow from Lemma 4.8.6.

Next, we have

Lemma 17.4.3. For any (u, θw) ∈ Kext, the results of Lemmas 12.7.4–12.7.5
and 12.7.7, as well as Corollary 12.7.6, hold in the present case with only the fol-
lowing notational changes: Space C2,α

∗,1+δ∗(Q
iter) is replaced by space C2,α

∗∗ (Qiter),
and the references to the definitions, conditions, and results in §12.3 and §12.7
are replaced by the references to the corresponding statements in §17.3 and §17.4.

Proof. The proofs of Lemmas 12.7.4–12.7.5 and 12.7.7 are the same by using
Proposition 17.4.2. More specifically, in extending the proof of Lemma 12.7.4(i)
to the present case, we note that Lemma 12.2.4 and (12.2.68) hold in the present
case by Lemmas 17.2.3 and 17.2.13.

The proof of Lemma 12.7.5 works in the present situation with only nota-
tional changes as described in the statement of this lemma.

Corollary 12.7.6 is extended to the present case by the same argument with
only notational changes and by using Lemma 12.7.5 which is already extended
to the present case.
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In extending the proof of Lemma 12.7.7 to the present case, we note that all
the subsonic/sonic wedge angles correspond to the case that has been considered
in Step 1 of the proof. Then we note that the argument in Step 1 uses the
property in Lemma 12.2.2(iv) which now holds in the form given in Lemma
17.2.1(iv), and the fact that the equation is strictly elliptic in Ω ∩ Dεp and the
condition on Γshock ∩ Dεp is oblique and homogeneous. Also, we use that, from
Corollary 12.7.6 extended to the present case, any (u, θw) ∈ K satisfies Definition
17.3.4(vii) with the nonstrict inequality in (17.3.19).

17.4.2 Estimates of solutions of the iteration problem for the
supersonic wedge angles

In this section, we consider the supersonic wedge angles θw, i.e., satisfying

|Dϕ2(P0)|
c2

(θw) > 1. (17.4.10)

We first extend Lemma 12.7.8 to this case, which now takes the following
form:

Lemma 17.4.4. If the parameters in Definition 17.3.4 are chosen as in Lemma
12.7.7 (through Lemma 17.4.3), and if ε > 0 is further reduced if necessary
depending on the data, then, for any (u, θw) ∈ Kext with the supersonic wedge
angle θw, estimate (12.7.27) holds with C depending only on the data and (θ∗w, α).

Proof. In extending the proof of Lemma 12.7.8 to the present case, we use the
estimates of Proposition 17.4.2 and the fact that, in the supersonic case, the
iteration equation and boundary condition on Γshock are the same as in §12.3.3,
as we have shown in Step 1 of the proof of Proposition 17.4.2. We note that
Lemma 12.4.2(v) is not used in the proof of Lemma 12.7.8. We also note that
estimate (12.4.17) is true in the present case with C depending only on the data
by Lemma 17.3.16.

Next we need to extend Proposition 12.7.9 to the present case. However,
this is not straightforward because the proof of Proposition 12.7.9 is obtained by
employing Theorem 4.7.4, so that it uses the properties of Definition 12.3.2(iii)
and Lemma 12.4.2(v) to satisfy the conditions of Theorem 4.7.4. Both prop-
erties hold for each supersonic wedge angle, but the constants degenerate as
|Dϕ2(P0)|

c2
(θw) → 1+. Thus, we consider separately the cases of supersonic-

away-from-sonic and supersonic-close-to-sonic wedge angles.
We first consider the case of the supersonic-away-from-sonic wedge angles.

Proposition 17.4.5. If the parameters in Definition 17.3.4 are chosen as in
Lemma 17.4.4, then, for any δ ∈ (0, 1) and σ ∈ (0, 1), there exist ε̂p ∈ (0,

εp
2 ]

(with εp := 1
2 min{εeq, εbc}) and C, depending only on the data and (θ∗w, α, σ, δ),
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such that the following holds: For any (u#, θ#
w ) ∈ K, there is δu#,θ#

w
> 0 small

so that, for any (u, θw) ∈ Kext satisfying (12.7.22) and

|Dϕ2(P0)|
c2

(θw) ≥ 1 + δ, (17.4.11)

solution ψ̂ ∈ C2(Ω) ∩ C1(Ω \ Γsonic) ∩ C(Ω) of Problem (12.3.25)–(12.3.29)
determined by (u, θw) satisfies (12.7.28).

Proof. The continuous dependence of
|Dϕ2(P0)|

c2
(θw), yP1

, and yP4
on θw ∈

[θd
w,

π
2 ] implies that, for each δ > 0, there exists Cδ > 0 depending on the data

and δ such that, if θw satisfies (17.4.11),

(yP1
− yP4

)(θw) ≥ 1

Cδ
.

With this, using Lemma 17.2.1(iv) and (17.2.4), we conclude that, for each
(u, θw) ∈ Kext with θw satisfying (17.4.11),

gsh(0) = (yP1
− yP4

)(θw) ≥ 1

Cδ
.

Now condition (iii) of Definition 17.3.4 implies that the property of Definition
12.3.2(iii) holds with N2 = 1

Cδ
> 0. Also, Lemma 17.3.20(i) and (17.3.27) imply

that property (v) of Lemma 12.4.2 now holds with the constant depending only
on the data and (θ∗w, α, δ). Then we follow the proof of Proposition 12.7.9 to
obtain (12.7.28) with εp and C depending on the data and (θ∗w, α, σ, δ).

Now we consider the case of the supersonic-close-to-sonic wedge angles.

Proposition 17.4.6. If the parameters in Definition 17.3.4 are chosen as in
Lemma 17.4.4, then, for any σ ∈ (0, 1), there exist δ̂P0

> 0 depending only on the
data and (θ∗w, σ), ε̂p ∈ (0,

εp
2 ] (with εp := 1

2 min{εeq, εbc}), and C depending only
on the data and (θ∗w, α, σ) such that, for any (u#, θ#

w ) ∈ K, there is δu#,θ#
w
> 0

small so that, for any (u, θw) ∈ Kext satisfying (12.7.22) and (17.4.1), solution
ψ̂ ∈ C2(Ω) ∩ C1(Ω \ Γsonic) ∩ C(Ω) of Problem (12.3.25)–(12.3.29) determined
by (u, θw) satisfies (12.7.28).

Proof. We follow the proof of Proposition 16.4.6 with the following change: We
use the fixed boundary estimates – Theorem 4.7.4 and Lemma 17.4.1, instead
of the corresponding free boundary estimates – Proposition 11.4.3 and Lemma
16.4.3. Below we show that the conditions of the corresponding results are
satisfied in the present case.

We will fix ε̂p ∈ (0, 1] later. Fix (u, θw) ∈ Kext satisfying the conditions
above with corresponding (Ω,Γshock, gsh, ψ).

1. We show the algebraic growth of ψ as in Proposition 16.4.2 withm = 4 by
using Lemma 16.4.2. We write the equation and condition of Γshock ∩ Dε̂p as a
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linear homogeneous equation and boundary condition, and check the conditions
of Lemma 16.4.2.

Domain Ω∩Dε̂p in the (x, y)–coordinates is of the structure as in (11.2.38)–
(11.2.39) with fsh(x) = gsh(x) + yP4 by Definition 12.2.6(iv), Lemma 17.2.1(iv)
with xP4 = 0 and tP1 = yP1 − yP4 > 0 in the supersonic case (by (16.1.11)–
(16.1.12)), and (17.3.7). Also, using (11.2.10) and (12.3.23) with C depending
only on the data (which holds by Remark 17.3.7), recalling that ε̂p ≤ 1, and
reducing ε depending on the data, we see that (11.2.40) holds for all x ∈ [0, ε̂p].
Moreover, (16.4.12) holds by (17.3.7), and bso = gsh(0).

Using Lemma 17.3.20(i) and Lemma 17.3.17(a) in the supersonic case, we
obtain that Lemma 12.4.2 holds for equation (12.3.25) in the (x, y)–coordinates
in Ω ∩Dε̂p . Then the strict ellipticity and conditions (16.4.5) in Ω ∩Dε̂p follow
from (12.4.22) with Â12 = Â21. Similarly, (16.4.7) follows from (12.5.55). The
homogeneity of (16.4.6) follows from (12.5.56), and the obliqueness follows from
Lemma 12.5.7(iv), where we have used Lemma 17.3.23.

Note that the constants in (11.2.40), (12.5.55), and (16.4.5) depend only on
the data and θ∗w. Thus, we obtain that the corresponding constants ε̂, b∗so > 0 and
Ĉ > 0 in Lemma 16.4.2 depend only on the data and θ∗w. We set ε̂p = min{ε̂, 1}.
Also, there exists δ̂P0

> 0 such that gsh(0) = (yP1
−yP4

)(θw) ≤ b∗so if θw satisfies
(17.4.1). We fix this ε̂p. Then we have

0 ≤ ψ(x, y) ≤ Cx4 in Ωε̂p ∩
{
x >

b2so(θw)

10

}
, (17.4.12)

where bso = gsh(0), C depends only on the data and θ∗w, and the lower bound
follows from Lemma 12.7.7.

2. We follow Step 1 of the proof of Proposition 16.4.6. Then we estimate
ψ in Ωb2so . We can assume that b2so < ε̂p; otherwise, we replace b2so by ε̂p in the
following argument.

We will use Theorem 4.7.4 with (x1, x2) = (x, y), l = bso ≡ gsh(0), and
r = 2l2. Therefore, we check its conditions.

As we discussed in Step 1, for the equation, we can use Lemma 12.4.2, except
for (v), which is replaced by Lemma 17.3.17(v′). For the conditions on Γshock, we
use Lemma 12.5.7, in which (12.5.56) implies the homogeneity of this condition
on Γshock ∩ Dε̂p .

Then we check the conditions of Theorem 4.7.4, as in the proof of Proposition
12.7.10, and conclude that they are satisfied with the constants depending on
the data and (θ∗w, α); in particular, (4.7.14) holds by (17.3.26).

Let σ ∈ (0, 1). Then r0, determined in Theorem 4.7.4 with α = σ by the
constants discussed above, depends only on the data and (θ∗w, σ). We reduce ε̂p

so that gsh(0) = (yP1
− yP4

)(θw) ≤ √r0 if θw satisfies (17.4.1). Then ε̂p depends
only on the data and (θ∗w, σ).

Now l2 = g2
sh(0) ≤ r0. Applying Theorem 4.7.4 with α = σ, we obtain

‖ψ‖(par)
2,σ,Ωb2so

≤ C, (17.4.13)
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where C depends only on the data and (θ∗w, α, σ).
3. Now we follow Step 2 of the proof of Proposition 16.4.6. Thus, we estimate

ψ in Ωε ∩ { b
2
so

5 < x < ε̂p}. We use Lemma 17.4.1, with the same parameters
as in Lemma 16.4.3 which have been used in Step 2 of the proof of Proposition
16.4.6. Therefore, we need to show that the conditions of Lemma 17.4.1 are
satisfied.

As in Step 2 of the proof of Proposition 16.4.6, we use

h(x) =
x

10k
, g(x) =

x4

10k
.

The growth of the solution is estimated in (17.4.12).
Using (17.3.7), we check that (16.4.63) holds with bso = gsh(0) and k = N2

by reducing ε̂p if necessary, depending only on the data and θ∗w. Then it follows
that rectangles (16.4.64)–(16.4.65) satisfy (11.4.8) and (16.4.66). This implies
condition (16.4.41).

Using the properties of the equation and the condition on Γshock discussed
in Steps 1–2, we obtain that ellipticity (16.4.33) and the first line in (16.4.34)
follow from Lemma 12.4.2(i) with A12 = A21, where the last property holds by
Lemma 12.4.2(ii). To check the other conditions in (16.4.34), we note that, in
the condition on DyA11(p, z, x, y), the right-hand side is Mx

h(x) , which is equal to
10MN2 in the present case. Now the conditions in (16.4.34) (from the second
line) follow from Lemma 12.4.2(ii). Constants (λ,M) in (16.4.33)–(16.4.34) then
depend only on the data.

Also, using (12.5.55), the condition on Γshock∩Dε̂p can be written in the form
of (16.4.35). Using Lemma 12.5.7(i) and (12.5.55)–(12.5.56), we show that this
condition satisfies the required properties (11.3.41)–(11.3.42) with the constants
depending only on the data and (θ∗w, α).

Therefore, all the conditions of Lemma 17.4.1 are satisfied, whose constants
depend only on the data and (θ∗w, α).

Applying Lemma 17.4.1, we obtain (16.4.68) (with ε̂p instead of ε) with
notation (16.4.67). Then, arguing as in the rest of the proof of Proposition
16.4.6, we obtain (12.7.28).

Now we obtain the global estimate of supersonic reflection solutions in the
norm introduced in Definition 12.3.1(iv).

Proposition 17.4.7. If parameters ε and 1
N1

of the iteration set in Definition
17.3.4 are small – depending on the data and θ∗w, δ1 is small – depending on
the data and (θ∗w, α), and δ3 is small – depending on the data and (θ∗w, δ2),
then, for any (u#, θ#

w ) ∈ K, there exists δu#,θ#
w
> 0 so that, for any (u, θw) ∈

Kext satisfying (12.7.22) and (17.4.10) (i.e., θw is supersonic), solution ψ̂ of
(12.3.25)–(12.3.29) determined by (u, θw) satisfies ψ̂ ∈ C2,α̂

∗,2 (Ω) with

‖ψ̂‖∗,(2)
2,α̂,Ω ≤ C, (17.4.14)
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where α̂ ∈ (0, 1
8 ) is the constant determined in Proposition 17.4.2 (depending on

the data and θ∗w), and C depends only on the data and (θ∗w, α).

Proof. Fix σ = α̂. This fixes constant δ̂P0
in Proposition 17.4.6. Since α̂ in

Proposition 17.4.2 depends on the data and θ∗w, then δ̂P0
fixed above also depends

only on the data and θ∗w.
Choose δ = δ̂P0

in Proposition 17.4.5.
The choices made above fix constant ε̂p for α = α̂ in Propositions 17.4.5 and

17.4.6, depending only on the data and θ∗w.
Fix (u, θw) satisfying the conditions of this proposition. Thus, θw satisfies

either (17.4.1) or (17.4.11) with δ = δ̂P0
.

Then we complete the proof by combining estimate (12.7.16) (for s =
ε̂p
10 )

from Proposition 17.4.2 with estimate (12.7.28) (for σ = α̂), obtained from
either Proposition 17.4.5 (for δ = δ̂P0

) or Proposition 17.4.6, depending on θw.
For this, we have employed the fact that, since (α̂, ε̂p, δ̂P0

) depend only on the
data and θ∗w, the constants in all the estimates quoted above depend only on
the data and (θ∗w, α).

17.4.3 Estimates of solutions of the iteration problem for the
subsonic/sonic wedge angles

In this section, we consider the subsonic/sonic wedge angles θw, i.e., satisfying

|Dϕ2(P0)|
c2

(θw) ∈ (0, 1]. (17.4.15)

We first consider the case of sonic and subsonic-close-to-sonic wedge angles,
and derive a local estimate near P0. We use constant δP0 determined in Propo-
sition 16.1.4 depending on the data.

Proposition 17.4.8. If the parameters in Definition 17.3.4 are chosen as in
Lemma 12.7.7 (through Lemma 17.4.3), then there exist δ̂P0

∈ (0,
δP0

4 ] and ε̂p ∈
(0,

εp
2 ] depending only on the data and θ∗w and, for any σ ∈ (0, 1), there exists

C > 0 depending only on the data and (θ∗w, α, σ) such that the following estimate
holds: For any (u#, θ#

w ) ∈ K, there is δu#,θ#
w
> 0 small so that, for any (u, θw) ∈

Kext satisfying (12.7.22) and (17.4.2), solution ψ̂ ∈ C2(Ω)∩C1(Ω\Γsonic)∩C(Ω)
of Problem (12.3.25)–(12.3.29) determined by (u, θw) satisfies

‖ψ̂‖C2,σ(Ωε̂p ) ≤ C, Dmψ̂(P0) = 0 for m = 0, 1, 2. (17.4.16)

Proof. The proof is obtained by following the argument for Proposition 16.5.3
and using the fixed boundary estimate (Lemma 17.4.1) instead of the corre-
sponding free boundary estimates (Lemma 16.4.3), in a similar way to the proof
of Proposition 17.4.6.

We first show the algebraic growth of the solutions by using Lemma 16.5.1
with m = 5 and choosing δ̂P0 and ε̂p sufficiently small, where we check its
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conditions as in Step 1 of the proof of Proposition 17.4.6, and the corresponding
constants depend only on the data and θ∗w. The choice of small positive δ̂P0

and
ε̂p, depending on the data and θ∗w, is then performed as follows: ε̂p is constant ε
determined in Lemma 16.5.1, and then δ̂P0 is determined as the largest constant
such that condition (17.4.2) for θw implies that xP1(θw) ≤ ε̂p

10 . This implies that
δ̂P0

> 0 by the continuous dependence of xP1
(θw) on θw ∈ [θd

w,
π
2 ] by noting that

xP1
(θw) = 0 for the supersonic/sonic wedge angles θw.
We apply Lemma 17.4.1 in the same setting as we have used for Lemma

16.4.3 in Step 2 in the proof of Proposition 16.5.3, i.e., with

h(x) =
1

10k
dso(x) =

1

10k
(x− xP1

),

g(x) =
1

10k
d5

so(x) =
1

10k
(x− xP1

)5.

We check the conditions of Lemma 17.4.1 as in Step 3 of the proof of Propo-
sition 17.4.6, where we only note the following: In (16.4.34), the condition on
DyA11(p, z, x, y) has the right-hand side that is Mx

h(x) , which is 10MN2x
x−xP1

≥ 10MN2

in the present case. Thus, the L∞–bound of DyA11(p, z, x, y) is sufficient to sat-
isfy this condition, and this bound holds by Lemma 12.4.2(ii). Then, applying
Lemma 17.4.1 (instead of Lemma 16.4.3) and arguing as in the rest of the proof
of Proposition 16.5.3, we obtain (17.4.16).

Now we consider all the subsonic/sonic wedge angles and derive a global
estimate in Ω.

Proposition 17.4.9. If the parameters in Definition 17.3.4 are chosen as in
Lemma 12.7.7 (through Lemma 17.4.3), there exist α̂ ∈ (0, 1

3 ) depending only
on the data and θ∗w, and C > 0 depending only on the data and (θ∗w, α) such
that the following estimate holds: For any (u#, θ#

w ) ∈ K, there exists δu#,θ#
w
> 0

small so that, for any (u, θw) ∈ Kext satisfying (12.7.22) with subsonic/sonic
wedge angle θw, i.e., with (17.4.15), solution ψ̂ ∈ C2(Ω)∩C1(Ω \Γsonic)∩C(Ω)
of Problem (12.3.25)–(12.3.29) determined by (u, θw) satisfies

‖ψ̂‖(−1−α̂), {P0}∪Γsym

2,α̂,Ω ≤ C, (ψ̂,Dψ̂)(P0) = (0,0). (17.4.17)

Proof. Let δ̂P0 ∈ (0,
δP0

4 ] and ε̂p ∈ (0,
εp
2 ] be the constants determined in Propo-

sition 17.4.8, depending only on the data and θ∗w.
Let (u, θw) ∈ Kext satisfy the conditions of this proposition. If θw satisfies

(17.4.2), we apply first estimate (12.7.16) (for s =
ε̂p
10 ) which holds by Propo-

sition 17.4.2, with α̂ determined in Proposition 12.7.3 (adjusted to the wedge
angle range θw ∈ [θd

w,
π
2 )), depending only on the data. Then we apply Propo-

sition 17.4.8 with σ = α̂. Combining these estimates, we obtain (17.4.17), with
α̂ chosen as above, depending only on the data, and C depending on the data
and (θ∗w, α).
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Otherwise, recalling that θw is subsonic or sonic, it follows that θw satisfies
|Dϕ2(P0)|

c2
(θw) ≤ 1 − δ̂P0 . Then we apply (17.4.5) for δel = δ̂P0

. Thus, we

obtain (17.4.17), in which (α̂, C) are (α2, Cδ) from (17.4.5) corresponding to
δel = δ̂P0

. Therefore, α̂ depends only on the data and θ∗w (since δ̂P0
depends on

these parameters), and C depends on α, in addition to the data and θ∗w.
Combining the two cases considered above, we conclude the proof.

Next, we combine the estimates obtained above for ψ̂ for all the cases into
one uniform estimate for function û on Qiter.

Corollary 17.4.10. Assume that the conditions of Propositions 17.4.7 and
17.4.9 hold, and choose α = α̂

2 in Definition 17.3.4 where α̂ is the smaller one
of α̂ in Propositions 17.4.7 and 17.4.9. Then, for any (u#, θ#

w ) ∈ K, there exists
δu#,θ#

w
> 0 so that, for any (u, θw) ∈ Kext satisfying (12.7.22), solution û of

Problem (12.7.2)–(12.7.6) determined by (u, θw) satisfies

‖û‖(∗∗)
2,α,Qiter < C, (17.4.18)

where C depends only on the data and θ∗w.

Proof. We argue in a manner similar to the proof of Proposition 17.2.12. In this
proof, the universal constant C depends only on the data and θ∗w.

We first consider the case of the supersonic wedge angles θw ∈ [θ∗w,
π
2 ]. Then

we map the estimate of Proposition 17.4.7 into the iteration region Qiter by using
α = α̂

2 , (17.3.7), (17.3.20), the C
3–regularity of map F−1

1 , and the explicit form
(12.2.43) of map F−1

(2,gsh). Here we note that F
−1
(2,gsh) does not become singular as

tP1(θw)→ 0+ in (17.2.4), i.e., these estimates are uniform for all the supersonic
wedge angles θw ∈ [θ∗w,

π
2 ]. Then we obtain

‖û‖(−1−α),{1}×(0,1)

2,α,Qiter\Qε′0/10

+ ‖û‖(2),(par)
(2),α,Qε′0

≤ C.

From this estimate, using Lemmas 4.1.2, 4.6.4, and 17.2.11, we obtain (17.4.18)
for all the supersonic wedge angles θw ∈ [θ∗w,

π
2 ].

Now we consider the case of the subsonic/sonic wedge angles θw ∈ [θ∗w,
π
2 ].

We employ Proposition 17.4.9 and Lemma 17.2.5, which can be applied since
(17.3.7) holds with tP1(θw) = 0, i.e., (17.2.9) holds, for every subsonic/sonic
wedge angle θw ∈ [θ∗w,

π
2 ]. Then, from (17.3.20) and (17.4.17), using Lemma

17.2.5, we have

‖û‖(−1−α),{1}×(0,1)

2,α,Qiter\Qε′0/10

+ ‖û‖(1+α),(subs)
2,α,Qε′0

≤ C.

From this, using Lemmas 4.1.2, 4.6.4, and 17.2.10, we obtain (17.4.18) for all
the subsonic/sonic wedge angles θw ∈ [θ∗w,

π
2 ].
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17.5 OPENNESS OF THE ITERATION SET

We first show that Kext is open.

Lemma 17.5.1. If δ2 is small, depending only on the data and (δ1, N1), then
Kext is relatively open in C2,α

(∗∗)(Q
iter)× [θ∗w,

π
2 ].

Proof. The proof is along the lines of the proof of Lemma 12.8.1. However,
there are some new features related to the present case of subsonic/sonic wedge
angles. We only sketch the argument here. The universal constant C in this
argument depends only on (ρ0, ρ1, γ) and θ∗w.

It suffices to show that each of conditions (i)–(vi) of Definition 17.3.4, to-
gether with condition (i), determines an open subset of C2,α

(∗∗)(Q
iter) × [θ∗w,

π
2 ].

Now we prove this in the following five steps:
1. Condition (i) defines a relatively open set, since function η1(θw) is con-

tinuous;
2. Condition (ii) uses setS defined by (12.2.50), that is, by the inequalities in

(12.2.49). We first note that all the three terms in the inequalities in (12.2.49) are
continuous functions of (s∗, θw). For the middle term u( s∗

ŝ(θw) , 1), this continuity
follows from the continuity and positive lower bound of ŝ(·) and the fact that
u ∈ C2,α

(∗∗)(Q
iter). For the right and left terms, such a continuity follows from

the fact that the parameters of state (2) depend continuously on θw. Also, since
u(0, ·) = 0 by (12.2.50), then

(a) In the supersonic case, the strict inequalities in (17.2.35) hold. This
implies that the strict inequalities in (12.2.49) hold for all s∗ ∈ [0, ŝ(θw)]. Since
the C2,α

(∗∗)(Q
iter)–norm is stronger than the C(Qiter)–norm, the assertion follows.

(b) In the subsonic/sonic case, we have an equality on the right in (17.2.35).
Thus, we cannot extend (12.2.49) to all s∗ ∈ [0, ŝ(θw)], so that an extra argument
is needed. We note first that, for any θw, inclusion (u, θw) ∈ S satisfying
Definition 17.3.4(i) implies that (17.3.20) holds. We also use (17.2.4) which
holds by Lemma 17.2.2. This, with (17.2.35) in the subsonic/sonic case and
(17.2.36), implies that gsh(0) = 0 and g′sh(0) > 1

C . Then

gsh(s) ≥ s

2C
on [0, ε̃], (17.5.1)

where ε̃(N0) ∈ (0, ε0). If (ũ, θ̃w) satisfies that ‖u − ũ‖(∗∗)
2,α,Qiter + |θw − θ̃w| ≤ σ,

we show that (12.2.49) holds for (ũ, θ̃w) if σ > 0 is small, depending on (u, θw).
First we note that, by (17.3.1), ‖u− ũ‖(1+α),(par)

2,α,Qε′0
≤ σ, so that

(u− ũ)(0, t) = 0, |∂s(u− ũ)(s, t)| ≤ σsα if (s, t) ∈ Qε′0 .

Also, for any s ∈ [0, ε̃], we have
∣∣∣∣

s

ŝ(θ̃w)
− s

ŝ(θw)

∣∣∣∣ ≤ Cs|θw − θ̃w| ≤ Csσ
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for C depending only on the data. Furthermore, (u, θw) satisfies (17.3.5). Then
we obtain∣∣∣ũ(

s

ŝ(θ̃w)
, 1)− u(

s

ŝ(θw)
, 1)
∣∣∣

≤
∣∣∣(ũ− u)(

s

ŝ(θ̃w)
, 1)
∣∣∣+
∣∣∣u(

s

ŝ(θ̃w)
, 1)− u(

s

ŝ(θw)
, 1)
∣∣∣ ≤ Cσs1+α

for C depending only on the data and α. With Definition 12.2.6(i)–(ii), this can
be written as∣∣∣ũ(

s

ŝ(θ̃w)
, 1)− (ϕ1 − ϕ̃(θw)

2 )((F
(θw)
1 )−1(s, gsh(s)))

∣∣∣ ≤ Cσs1+α.

Combining this with (12.2.37) in Lemma 17.2.3 and (17.5.1), and choosing σ
small depending on the data, we have

ũ(
s

ŝ(θ̃w)
, 1) < (ϕ1 − ϕ̃(θw)

2 )((F
(θw)
1 )−1(s, 0))− 1

Ĉ
s (17.5.2)

for any s ∈ (0, ε̃). Now we need to replace θw by θ̃w on the right-hand side of the
last estimate. For this, we note from Lemma 12.2.2(iii) (which holds by Lemma
17.2.1) and (12.2.38) in Lemma 17.2.3 that, for σ ≤ 1,
∣∣∣D(ϕ1 − ϕ̃(θw)

2 )((F
(θw)
1 )−1(q, 0))−D(ϕ1 − ϕ̃(θ̃w)

2 )((F
(θ̃w)
1 )−1(q, 0))

∣∣∣ ≤ Cσ

for any q ∈ [0, 1], where C depends on the data and θw. Also, we note that
(F

(θw)
1 )−1(0) = P4

(θw). Moreover, (ϕ1−ϕ(θw)
2 )(P4

(θw)) is positive if θw is super-
sonic, and is zero, otherwise. Also, ϕ(θw)

2 (P4
(θw)) = ϕ̃

(θw)
2 (P4

(θw)) by (12.2.35)
in Lemma 17.2.3. Since, in our case, θw is subsonic or sonic, and θ̃w may be of
any type, we have

(ϕ1 − ϕ̃(θw)
2 )(P4

(θw)) ≤ (ϕ1 − ϕ̃(θ̃w)
2 )(P4

(θ̃w)).

Combining these observations, we have

(ϕ1 − ϕ̃(θw)
2 )((F

(θw)
1 )−1(s, 0))

= (ϕ1 − ϕ̃(θw)
2 )(P4

(θw)) +

∫ s

0

∂q(ϕ1 − ϕ̃(θw)
2 )((F

(θw)
1 )−1(q, 0)) dq

≤ (ϕ1 − ϕ̃(θ̃w)
2 )(P4

(θ̃w))

+

∫ s

0

∂q(ϕ1 − ϕ̃(θ̃w)
2 )((F

(θ̃w)
1 )−1(q, 0)) dq + Cσs

= (ϕ1 − ϕ̃(θ̃w)
2 )((F

(θ̃w)
1 )−1(s, 0)) + Cσs.

Then, from (17.5.2), using (12.2.38) in Lemma 12.2.4 and reducing σ if necessary,
we have

ũ(
s

ŝ(θ̃w)
, 1) < (ϕ1 − ϕ̃(θ̃w)

2 )((F
(θ̃w)
1 )−1)(s, 0) ≤ sup

Q(θ̃w)
bd (s)

(ϕ1 − ϕ̃(θ̃w)
2 ),
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where we have used the notation in (12.2.48). Combining this with (12.2.49)
for u and (17.2.35) (where the left inequality is strict), recalling that ‖u −
ũ‖(∗∗)

2,α,Qiter ≤ σ, and reducing σ depending on (u, θw), we obtain (12.2.49) for û.

3. Condition (iii) defines a relatively open set.
The proof that (17.3.6) defines a relatively open set is as in Lemma 12.8.1.

The proof of (17.3.7) repeats the argument of the previous step.
4. Conditions (iv)–(vi) define a relatively open set.
We note first that, using (17.2.38) instead of (12.2.69)–(12.2.70) in the proof

of (12.8.1), we obtain that, for every ε̃ ∈ (0, 1
10 ),

‖(Dϕ ◦ F)(u,θw) − (Dϕ ◦ F)(ũ,θ̃w)‖L∞(Qiter∩{s≥ε̃})

+ ‖(Dψ ◦ F)(u,θw) − (Dψ ◦ F)(ũ,θ̃w)‖L∞(Qiter∩{s≥ε̃})

≤ C(ε̃)
(
‖u− ũ‖

C1(Qiter)
+ |θw − θ̃w|

)
,

(17.5.3)

where C(ε̃) depends only on the data and (θ∗w, ε̃).
If (u, θw) ∈ Kext, then, as proved above, if (ũ, θ̃w) is sufficiently close to

(u, θw) in the norm of C2,α
(∗∗)(Q

iter), (ũ, θ̃w) ∈ S so that Ω̃ = Ω(ũ,θ̃w), Γ
(ũ,θ̃w)
shock ,

ϕ̃ = ϕ(ũ,θ̃w), and ψ̃ = ψ(ũ,θ̃w) are well-defined. Also, (ũ, θ̃w), taken sufficiently
close to (u, θw), satisfies

‖u‖(∗∗)
2,α,Qiter < N0. (17.5.4)

We prove properties (iv)–(vi) for (ũ, θ̃w).
Since (17.3.8) and (17.3.13) are in domain Ω \ Dε/10, then, using (17.5.3)

instead of (12.8.1), we prove these properties for (ũ, θ̃w) by the same argument
as in Lemma 12.8.1 (the argument for properties (iv)–(vi) there).

Now we prove (17.3.9) for (ũ, θ̃w). The right-hand side satisfies that, for any
θw ∈ [θ∗w,

π
2 ],

η3(θw)x ≥ 2− µ0

10(1 + γ)
ε in Ω̃ ∩ (Dε0 \ D0,ε/10).

On the other hand, since (ũ, θ̃w) ∈ S and satisfies (17.5.4), ψ̃ satisfies (17.3.22).
Thus, |Dψ̃(x, y)| ≤ C(x − xP1

)α, where C depends only on the data and θ∗w.
Then (17.3.9) holds for ψ̃ in Ω̃ ∩ (Dε̃ \ D0,ε/10), where ε̃ ∈ (0, ε0) is small,
depending on the data and θ∗w.

Remark 17.5.2. We note that region Ω̃ ∩ (Dε̃ \ D0,ε/10) may be empty. For
example, this happens in the supersonic reflection case (for which D0,ε/10 =
Dε/10); see Remark 17.3.2 when ε̃ ≤ ε

10 . In fact, it is expected that ε̃ � ε
10

(that can be seen from the procedure of determining ε̃). On the other hand, Ω̃∩
(Dε̃ \D0,ε/10) is definitely non-empty for the subsonic wedge angles θ̃w satisfying
xP1

(θ̃w) ≥ ε
10 . In fact, the argument has been done mostly in this case, since

Ω̃∩(Dε0\D0,ε/10) = Ω̃∩(Dε0\Dε̂) in the opposite case, where ε̂ = ε
10−xP1

(θ̃w) >
0.
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In the remaining region Ω̃ ∩ (Dε0 \ Dε̃), we can use (17.5.3) so that we can
follow the proof in Lemma 12.8.1. Now (17.3.9) is proved for (ũ, θ̃w).

The arguments for properties (17.3.10)–(17.3.13) and (v)–(vi) are similar.
5. It remains to show (17.3.14)–(17.3.16) for (ũ, θ̃w), provided that it is

sufficiently close in the norm of C2,α
(∗∗)(Q

iter) to (u, θw) ∈ Kext. We first show
(17.3.14) for (ũ, θ̃w). Rewrite it as

∂ξ2(ϕ1 − ϕ(θ̃w)
2 ) + ∂ξ2 ψ̃ < −η2(θ̃w) in (Ω \ Nε/10(Γsym))(ũ,θ̃w),

where ∂ξ2(ϕ1 − ϕ(θ̃w)
2 ) is independent of ξ. Since ∂ξ2(ϕ1 − ϕ(θw)

2 ) = −v(θw)
2 is

negative for any θw ∈ [θd
w,

π
2 ) and continuous with respect to θw ∈ [θd

w,
π
2 ] by

the continuous dependence of the parameters of the weak state (2) on θw, we
obtain

∂ξ2(ϕ1 − ϕ(θw)
2 ) ≤ − 1

C
for all θw ∈ [θd

w,
π
2 − δ1

2N2
1

].

Then, using that η2(θw) < 0 for θw ∈ [π2 − δ1
N2

1
, π2 ] and η2(·) ∈ C([θd

w,
π
2 ]), and

choosing δ2 small – depending only on the data, we have

g(θw) := −η2(θw)− ∂ξ2(ϕ1 − ϕ(θw)
2 ) ≥ 1

C
for all θw ∈ [θd

w,
π

2
],

where C > 0 depends only on the data.
From this, following the proof of (17.3.9), we show that there exists ε̃ de-

pending only on the data and (θ∗w, g(θw)) such that, for any (ũ, θ̃w) that is
sufficiently close to (u, θw) in the norm of C2,α

(∗∗)(Q
iter), (17.3.14) holds for ψ̃ in

(Ω∩Dε̃)(ũ,θ̃w). In (Ω\ (Dε̃∪Nε/10(Γsym)))(ũ,θ̃w), we can employ (17.5.3) so that
we can repeat again the proof in Lemma 12.8.1. Now (17.3.14) is proved for
(ũ, θ̃w).

For the remaining properties (17.3.15)–(17.3.16), the proofs are similar to
the ones for (17.3.14), since we can write these properties for (ũ, θ̃w) as

∂ν(ϕ1 − ϕ(θ̃w)
2 ) + ∂ν ψ̃ > µ1 on Γshock,

∂νϕ
(θ̃w)
2 + ∂ν ψ̃ > µ1 on Γshock.

Also, if (u, θw) ∈ Kext in which θw is a subsonic or sonic wedge angle, then, from
(17.3.22) and (17.3.15)–(17.3.16), we obtain

∂ν(ϕ1 − ϕ(θw)
2 )(P0) > µ1 on Γshock,

∂νϕ
(θw)
2 (P0) > µ1 on Γshock.

Now we follow the previous argument by using the fact that (12.8.2) also holds
in the present situation, which can be seen by checking that all the properties
used in the proof of (12.8.2) hold in the present case by Lemmas 17.2.1 and
17.2.13.



SOLUTIONS UP TO THE DETACHMENT ANGLE 741

Now we are ready to prove the main result of this section.

Proposition 17.5.3. If parameters (ε, δ1,
1
N1

) of the iteration set in Definition
17.3.4 are small – depending on the data and θ∗w, δ2 is small – depending on the
data and (δ1, N1), δ3 is small – depending on the data and (θ∗w, δ2), and α = α̂

2
for α̂ determined in Corollary 17.4.10, then the iteration set K is relatively open
in C2,α

(∗∗)(Q
iter)× [θ∗w,

π
2 ].

Proof. We follow the proof of Proposition 12.8.2, replacing C2,α
∗,1+δ∗(Q

iter) by
space C2,α

(∗∗)(Q
iter) and using the results of §17.4, specifically Proposition 17.4.2

and Corollary 17.4.10, instead of the corresponding results of §12.7.2.
Also, we use Lemma 17.3.3 to show the compactness of C2,α

(∗∗)(Q
iter)× [θ∗w,

π
2 ]

in C2,α2
(∗∗)(Q

iter)× [θ∗w,
π
2 ]. Specifically, the argument in the sentence after (12.8.5)

is now replaced by the following: Since sequence {û(i)} is bounded in C2,α
(∗∗)(Q

iter)

by Corollary 17.4.10, there exists a subsequence {ûij} converging in C2,α2
(∗∗)(Q

iter).

17.6 ITERATION MAP AND ITS PROPERTIES

We follow the construction of §13.1–§13.3, via replacing space C2,α
∗,1+δ∗(Q

iter) by
space C2,α

(∗∗)(Q
iter) and using the results of §17.4, specifically Proposition 17.4.2

and Corollary 17.4.10, instead of the corresponding results of §12.7.2.
Now we follow §13.1 to describe some points that require clarification or

updating. The constants in this argument depend only on the data and θ∗w.

Remark 17.6.1. Let (u, θw) ∈ K. Then, by Lemma 17.3.14 and 17.4.3 with
Corollary 12.7.6, (u, θw) satisfies all the conditions of Definition 17.3.4 and Re-
marks 17.3.6–17.3.12 with the nonstrict inequalities in the estimates. We will
consider such nonstrict inequalities when referring to these properties in §17.6–
17.9.

Let (u, θw) ∈ K. Then gsh satisfies (17.3.20). Also, (Ω, ϕ) is determined
for (u, θw) as in Definition 17.3.4(ii), and (ϕ̂, û) is determined by (u, θw) as in
Definition 17.3.4(vii).

Define (v, v̂, v1) by (13.1.1). We first note that F(2,gsh) = F−1
(u,θw) ◦ (F

(θw)
1 )−1

by (12.2.52). Following the calculation in (13.1.2) and using Lemma 17.2.1(iv),
Lemma 12.2.2(ii), Lemma 17.2.8, (17.2.38), and (17.3.19), we have

‖v − v̂‖1,α2 ,F1(Ω) = ‖(u− û) ◦ F(2,gsh)‖1,α2 ,F1(Ω)

≤ C‖(u− û) ◦ F−1
(u,θw)‖1,α2 ,Ω

≤ CM‖u− û‖(∗∗)
2,α2 ,Q

iter

< CMδ3

(17.6.1)
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with constant C depending only on the data and θ∗w. This estimate replaces
(13.1.2) in the present case. We also note that the structure of F1(Ω) is as in
(13.1.3) in the present case, with gsh(0) = 0 for the subsonic/sonic wedge angle
θw. Then we follow the argument after (13.1.3) until (13.1.5).

Since (u, θw) ∈ K, it follows that ψ̂ = ϕ − ϕ(θw)
2 satisfies (17.4.17) in the

subsonic-sonic case, and (17.4.14) in the supersonic case. We note that (17.4.14)
implies

‖ψ̂‖(−1−α̂), Γsonic∪Γsym

2,α̂,Ω ≤ C, (ψ̂,Dψ̂) = (0,0) on Γsonic. (17.6.2)

The last estimate also holds in the subsonic-sonic case, when Γsonic = {P0}, since
it coincides with (17.4.17) in that case. Thus, (17.6.2) holds for any (u, θw) ∈ K.
Also, since the definition of v̂ in (13.1.1) can be written as v̂ = (ψ̂+ϕ2−ϕ̃2)◦F−1

1 ,
then, using Lemma 12.2.2(ii), and (12.2.35) and (12.2.38) from Lemma 17.2.3,
it follows that v̂ ∈ C(−1−α̂),F1(Γsonic)∪F1(Γsym)

2,α̂,F1(Ω) with

‖v̂‖(−1−α̂),F1(Γsonic)∪F1(Γsym)

2,α̂,F1(Ω) ≤ C,
(v̂, Dv̂) = (0,0) on F1(Γsonic).

(17.6.3)

The structure of domain F1(Ω) indicated in (13.1.3) allows us to apply Theorem
13.9.8 to extend v̂ defined on F1(Ω) to a function

E(ŝ(θw))
gsh

(v̂) ∈ C(−1−α̂),Γext
sonic∪Γext

sym

2,α̂,Dext ,

where

Dext = {(s, t) : 0 < s < ŝ(θw), 0 < t < (1 + σ)gsh(s)},
Γext

sonic = ∂Dext ∩ {(s, t) : s = 0},
Γext

sym = ∂Dext ∩ {(s, t) : s = ŝ(θw)},
(17.6.4)

and σ ∈ (0, 1) depends only on Lip[gsh], and hence on the data. Specifically, by
Theorem 13.9.8(ii)–(iii) and (17.6.3),

‖E(ŝ(θw))
gsh

(v̂)‖(−1−α̂),Γext
sonic∪Γext

sym

2,α̂,Dext ≤ C,
(v̂, Dv̂) = (0,0) on Γext

sonic.
(17.6.5)

This, combined with (13.1.5), implies that there exists ζ > 0 depending only on
the data and θ∗w such that

∂(v1 − E(ŝ(θw))
gsh

(v̂))

∂t
≤ − 1

2C
(17.6.6)

on Dext ∩
{

(s, t) : 0 < s < ŝ(θw), |t− gsh(s)| ≤ ζ
}
. Using (17.3.7) and (17.6.4),

we have
{

(s, t) : 0 < s < ŝ(θw), |t− gsh(s)| ≤ min(σ̂s, δ̂sh)
}
⊂ Dext, (17.6.7)
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where σ̂ =
σ

N2
> 0 and δ̂sh =

σ

2N2
> 0 depend only on the data and θ∗w.

Also, starting from (17.3.22) and following the argument for deriving (17.6.3)
from (17.6.2), we obtain

‖v‖1,α,F1(Ω) ≤ C, (v,Dv) = (0,0) on F1(Γsonic). (17.6.8)

By (17.6.3) and (17.6.8), we have

(v − v̂, D(v − v̂)) = (0,0) on F1(Γsonic).

Then, using (17.6.1), we have

|(v − v̂)(s, t)| ≤ Cδ3s1+α
2 in F1(Ω).

From this, since v = v1 on F1(Γshock) from the fact that ϕ = ϕ1 on Γshock

combined with (13.1.1), we have

|(v1 − E(ŝ(θw))
gsh

(v̂))(s, t)| = |(v1 − v̂)(s, t)| ≤ Cδ3s1+α
2 on F1(Γshock).

(17.6.9)

From (17.6.6)–(17.6.7) and (17.6.9), reducing δ3 depending only on the data
and θ∗w, we conclude that there exists a unique function ĝsh(s) on (0, ŝ(θw)) such
that

Nζ(F (θw)
1 (Γshock)) ∩

{
E(ŝ(θw))
gsh

(v̂) = v1

}

=
{

(s, ĝsh(s)) : 0 < s < ŝ(θw)
}
⊂ F (θw)

1 (Q(θw)
bd ).

(17.6.10)

Moreover, from (17.6.3) and (17.6.6) with smooth v1 (with uniform C3(Dext)–
estimates),

‖ĝsh‖(−1−α̂),{0,ŝ(θw)}
2,α̂,(0,ŝ(θw)) < C,

(ĝsh − gS1)(0) = (ĝ′sh − g′S1
)(0) = 0,

(17.6.11)

where we have used the definition of v̂ in (13.1.1) to obtain the properties of ĝsh

at s = 0. Now, using (17.6.1) and (17.6.6), we have

‖ĝsh − gsh‖1,α̂/2,(0,ŝ(θw)) ≤ Cδ3,
(ĝsh − gsh)(0) = (ĝ′sh − g′sh)(0) = 0.

(17.6.12)

From (17.6.12), further reducing δ3, we obtain that ĝsh satisfies (17.3.7) with
2N2 instead of N2. Now we define ũ by (13.1.13).

Lemma 17.6.2. If (u, θw) ∈ K, then ũ defined by (13.1.13) satisfies

‖ũ‖(∗∗)
2,α̂,Qiter ≤ C, (17.6.13)

where C depends only on the data and θ∗w.
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Proof. Since (u, θw) ∈ K, it follows that ψ̂ = ϕ− ϕ(θw)
2 satisfies (17.4.14) in the

supersonic case and (17.4.17) in the subsonic-sonic case.
Then, for the supersonic wedge angle θw, we start by following the proof of

Lemma 13.1.1. First, using (17.4.14) instead of (12.7.29), we obtain (13.1.6).
From this, using also (17.6.11) and Theorem 13.9.5, we obtain (13.1.8). Also,
we note that (17.6.11) is equivalent to (13.1.15) with δ∗ = α̂. Then, following
the proof of Lemma 13.1.1, we obtain (13.1.14) with C depending only on the
data and θ∗w. From this, using the expression of the norm in (13.1.14) given in
Definition 12.3.1(ii), and employing Lemma 17.2.11, we conclude (17.6.13) for
the supersonic wedge angle θw.

For the subsonic/sonic wedge angle θw, we employ (17.6.5). Also, we use the
fact that (17.6.12) with sufficiently small δ3 implies that ĝsh satisfies (17.3.7)
with 2N2 instead of N2. This, combined with gsh(0) = 0 for the subsonic/sonic
wedge angle θw so that ĝsh(0) = 0 by (17.6.12), shows that ĝsh satisfies (17.2.9)
with M = 2N2. Then, from (17.6.5), (17.6.11), and Definition 12.2.6(v), apply-
ing Lemma 17.2.5 with m = 2 and ε′ = ε′0 for ε′0 from (17.2.7), we have

‖ũ‖(1+α̂),(subs)
2,α̂,Qε′0

≤ C.

Applying Lemma 17.2.10, we have

‖ũ‖(1+α̂),(par)
2,α̂,Qε′0

≤ ‖ũ‖(1+α̂),(subs)
2,α̂,Qε′0

≤ C.

Also, using (17.6.5), (17.6.11), and the explicit expression (12.2.43) in (13.1.13),
we have

‖ũ‖(−1−α̂),{1}×(0,1)

2,α̂,Qiter\Qε′0/10

≤ ‖E(ŝ(θw))
gsh

(v̂)‖(−1−α̂),Γext
sym

2,α̂,Dext∩{s> ε′0
10 }
≤ C.

The last two displayed estimates imply (17.6.13) in the subsonic-sonic case.

Using Lemma 17.6.2, we have

Definition 17.6.3. The iteration map I : K 7→ C2,α
(∗∗)(Q

iter) is defined by

I(u, θw) = ũ,

where ũ is from (13.1.13). For each θw ∈ [θ∗w,
π
2 ], we define map I(θw) : K(θw) 7→

C2,α
(∗∗)(Q

iter) by

I(θw)(u) = I(u, θw).

Then Lemma 13.1.3, with space C2,α
∗,1+δ∗(Q

iter) replaced by C2,α
(∗∗)(Q

iter), holds
in the present case; its proof is independent of the detailed properties of the
spaces in the definition of I(θw) and now works without change.
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17.7 COMPACTNESS OF THE ITERATION MAP

We continue to follow the notational convention of Remark 17.6.1. Below we
use α̂ that is the smaller one of α̂ in Propositions 17.4.7 and 17.4.9, and define
α = α̂

2 as in Corollary 17.4.10, both depending only on the data and θ∗w. Then

α′ := α̂− α =
α̂

2
> 0.

Now we show the continuity and compactness.

Lemma 17.7.1. The iteration map I : K ⊂ C2,α
(∗∗)(Q

iter)×[θ∗w,
π
2 ] 7→ C2,α

(∗∗)(Q
iter)

is continuous and compact with

‖I(θw)(u)‖(∗∗)
2,α+α′,Qiter ≤ C. (17.7.1)

Proof. We divide the proof into two steps.
1. We first show the continuity of I. We follow the proof of Lemma 13.2.2,

replacing space C2,α
∗,1+δ∗(Q

iter) by space C2,α
(∗∗)(Q

iter) and using the results of
§17.4 instead of the corresponding results of §12.7.2. However, there are new
features introduced by the singular nature of the map from Ω(u,θw) to Qiter for
the subsonic wedge angle θw. Then our proof is as follows:

Let (u(j), θ
(j)
w ) ∈ K converge to (u, θw) ∈ K in the norm of C2,α

(∗∗)(Q
iter) ×

[θ∗w,
π
2 ]. Denote

(Γ
(j)
shock,Ω

(j)) := (Γshock(u(j), θ(j)
w ),Ω(u(j), θ(j)

w )),

(Γshock,Ω) := (Γshock(u, θw),Ω(u, θw)).

From Definition 12.2.6(i)–(iii) and (12.2.59) that holds by Lemma 17.2.13,
we have

h
(j)
sh → hsh in C1,α2 ([0, 1]). (17.7.2)

Fix a compact set K b F
(θw)
1 (Ω). Then K ⊂ F1(Ω) ∩ {s ≥ sK}, where sK > 0

depends only on the data andK. Thus, from (17.3.7), there exists CK depending
on the data and K such that, for any (u#, θ#) ∈ K,

1

CK
< g#

sh(s) < CK for all (s, t) ∈ K. (17.7.3)

Combining this with (17.7.2) and using (12.2.41), we have

F
(2,g

(j)
sh )
→ F(2,gsh) in C1,α2 (K). (17.7.4)

In particular, there exists a compact subset K̂ b Qiter such that F (j)
(2,gsh)(K) ⊂ K̂

for all j. Then, using that v̂ = û ◦ F(2,gsh), v̂(j) = û(j) ◦ F
(2,g

(j)
sh )

, and û(j) → û
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in C2 on compact subsets of Qiter by Lemma 12.7.5 (which holds by Lemma
17.4.3), we have

v̂(j) → v̂ in C1,α2 (K) for all K b F1(Ω), (17.7.5)

where we have used the property that K b F1(Ω) is an arbitrary set in the
argument above.

Next we consider functions ĥ
(j)
sh and ĥsh, determined by functions ĝ

(j)
sh and

ĝsh in (17.6.10) by the formulas from Definition 12.2.6(ii), and show that

ĥ
(j)
sh → ĥsh in C(−1−α),{0,1}

2,α,(0,1) . (17.7.6)

For that, we note that, for k = 1, 2, . . . , each ψ(j) satisfies (17.3.23) with τ = ε0
k .

Then, writing v in (13.1.1) as v := (ψ+ϕ2− ϕ̃2)◦F−1
1 and applying this to v(j)

for each j, we obtain that, for each j,

‖v(j)‖(−1−α),F
θ
(j)
w

1 (Γsym)

2,α,F
θ
(j)
w

1 (Ω(j))∩{s> ε0
k }
≤ Ck for k = 1, 2, . . . ,

where Ck depends only on the data and (θw, k). Restricting to a smaller region,
we find that, for each j,

‖v(j)‖
2,α,F

θ
(j)
w

1 (Ω(j))∩{ ε0k <s<ŝ(θ
(j)
w )− ε0k }

≤ Ck for k = 1, 2, . . . .

Combining this with (17.7.2) (which holds in the present case as we have dis-
cussed above), and using the continuity of ŝ(·), we can apply Theorem 13.9.5(iii),
which shows that, for

wj(s, t) := E(ŝ(θ(j)
w ))

g
(j)
sh

(v̂(j))(
ŝ(θw)

ŝ(θ
(j)
w )

s, t),

we obtain that, for each k = 1, 2, . . . ,

wj → E(ŝ(θw))
gsh

(v̂) in C2,α
(
Dext
σ/2 ∩ {

ε0

k
< s < ŝ(θw)− ε0

k
}
)
, (17.7.7)

where
Dext
σ/2 = {(s, t) : 0 < s < ŝ(θw), 0 < t < (1 +

σ

2
)gsh(s)},

and σ > 0 is from (17.6.4). From (17.3.7), (17.7.2), and (17.6.12) applied for
each j and the limiting function, it follows that, reducing δ3 depending only on
the data and θ∗w, then, for k = 1, 2, . . . ,

{(s, ĝ(j)
sh (

ŝ(θ
(j)
w )

ŝ(θw)
s)) :

ε0

k
< s < ŝ(θw)− ε0

k
} ⊂ Dext

σ/2 for j ≥ N(k),

and the same holds for {(s, ĝsh(s)) : ε0
k < s < ŝ(θw) − ε0

k }. Then, from
(17.6.6) and further reducing δ3 (depending on ζ, and hence on the data and
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θ∗w) in (17.6.12) applied for each j and the limiting function, the convergence
in (17.7.7) for each k = 1, 2, . . . implies that ĥ

(j)
sh → ĥsh in C2([ 1

m , 1 − 1
m ]) for

each m = 1, 2, . . . . In particular, ĥ(j)
sh → ĥsh pointwise on (0,1). Then, using

(17.6.11) for each j and recalling that α < α̂, we obtain (17.7.6).
From (17.6.13) for ũ(j) and ũ, using (17.7.6)–(17.7.7), we obtain that ũ(j) →

ũ pointwise in the open region Qiter. Then, using (17.6.13) for each ũ(j) and
Lemma 17.3.3 with α < α̂ = α+ α′, we find that ũ(j) → ũ in C2,α

(∗∗)(Q
iter). This

shows the continuity of the iteration map.

2. Now we prove the compactness of I and (17.7.1). Lemma 17.6.2 and
Definition 17.6.3 imply (17.7.1), where α + α′ = α̂. Then Lemma 17.3.3 with
α < α̂ and the continuity proved in Step 1 imply the compactness of the iteration
map I : K 7→ C2,α

(∗∗)(Q
iter).

17.8 NORMAL REFLECTION AND THE ITERATION MAP
FOR θw = π

2

We recall that the normal reflection ϕ = ϕ2 in Ω for θw = π
2 corresponds to

u(norm) ≡ 0 in Qiter,

by (12.2.34) and (12.2.44).
The results in §13.3 and their proofs hold without change in the present case.

Then we have

Proposition 17.8.1. For any (u, π2 ) ∈ K,

I(π2 )(u) = u(norm) ≡ 0.

17.9 FIXED POINTS OF THE ITERATION MAP FOR θw < π
2

ARE ADMISSIBLE SOLUTIONS

We continue to follow the notational convention in Remark 17.6.1. The main
result of this section is the following:

Proposition 17.9.1. If the parameters in Definition 17.3.4 are chosen so that
δ1 and ε are small, depending on the data and θ∗w, and if N1 ≥ 8, then the
following holds: Let (u, θw) ∈ K for θw ∈ [θ∗w,

π
2 ), and let u be a fixed point of

map I(θw). Let ϕ be determined by (u, θw) as in Definition 12.2.6(v). Then ϕ is
an admissible solution of Problem 2.6.1 in the sense of Definition 15.1.1 if θw

is supersonic, and in the sense of Definition 15.1.2 if θw is subsonic or sonic.

Before proving Proposition 17.9.1, we prove the following preliminary prop-
erty:
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Lemma 17.9.2. In the conditions of Proposition 17.9.1, reducing ε further
depending on the data and θ∗w if necessary, then the following holds: Let (u, θw) ∈
K and let u be a fixed point of map I(θw). Let θw be subsonic or sonic, i.e.,
|Dϕ2(P0)|

c2
(θw) ≤ 1. Let (Ω, ψ) be determined by (u, θw). Then ψ satisfies the

potential flow equation (12.4.2) in Ω. Moreover, equation (12.4.2) is strictly
elliptic for ψ in Ω \ Γsonic.

Proof. Let δ̂P0
∈ (0,

δP0

4 ] be the constant determined in Proposition 17.4.8. Let

εeq ∈ (0, ε02 ) be the constant determined in Lemma 17.3.22 for δe =
δ̂P0

2 . We
choose ε ∈ (0, εeq].

If θw satisfies that
|Dϕ2(P0)|

c2
(θw) ∈ [1 − δ̂P0

2
, 1], we can apply Proposition

17.4.8 to obtain (17.4.16) with σ = α̂ for ψ, since ψ̂ = ψ. From the choice of σ, it
follows that C in (17.4.16) depends on the data and θ∗w. Choosing ε sufficiently
small, depending on the data and θ∗w, we find from (17.4.16) that

|ψx| ≤
2− µ0

5

1 + γ
x, |ψy| ≤ N3x in Ω ∩ D0,ε/2 if

|Dϕ2(P0)|
c2

(θw) ∈ [1− δ̂P0

2
, 1].

Then, applying Lemma 17.3.22 with δe =
δ̂P0

2 and using assertion (b′) of Lemma

17.3.21(viii′) to handle the wedge angles satisfying that
|Dϕ2(P0)|

c2
(θw) ≤ 1 −

δP0

2
, we conclude the proof for all the fixed points with the wedge angles θw

satisfying that
|Dϕ2(P0)|

c2
(θw) ≤ 1.

We follow the argument in §13.4 with the adjustments specified below.
We recall that α = α̂

2 is fixed as defined in Corollary 12.7.11, where α̂ is
defined in Proposition 12.7.10. Thus, α depends only on the data and θ∗w.

We note that, in order to prove Proposition 17.9.1, it suffices to show the
following properties of ϕ:

ϕ2 ≤ ϕ ≤ ϕ1 in Ω, (17.9.1)
∂eS1

(ϕ1 − ϕ) ≤ 0 and ∂ξ2(ϕ1 − ϕ) ≤ 0 in Ω, (17.9.2)

|ψx| ≤
2− µ0

5

1 + γ
x in Ω ∩ Dε/4 if

|Dϕ2(P0)|
c2

(θw) > 1. (17.9.3)

The argument that properties (17.9.1)–(17.9.3) imply Proposition 17.9.1 re-
peats the corresponding argument after (13.4.1)–(13.4.3) by using Definition
17.3.4 instead of Definition 12.3.2 with obvious adjustments for the structure of
subsonic-sonic solutions, and space C2,α

∗,1+δ∗(Ω) instead of space C2,α
(∗∗)(Ω) in item

(e) of the argument. We only give the modified version of item (c):



SOLUTIONS UP TO THE DETACHMENT ANGLE 749

(c’) ϕ satisfies the potential flow equation (2.2.8) in Ω, which is elliptic for ϕ
in Ω \ Γsonic.

Indeed, by Lemma 17.9.2 , this is also true when θw is subsonic or sonic,

i.e.,
|Dϕ2(P0)|

c2
(θw) ≤ 1. It remains to consider the supersonic wedge angle θw

satisfying that
|Dϕ2(P0)|

c2
(θw) > 1. In that case, by Proposition 17.4.7, estimate

(17.4.14) holds. Since ψ̂ = ψ in the present case, we find from (17.4.14) that
|ψy| ≤ Cx

3
2 in Ω ∩ Dε0 , with C depending only on the data and θ∗w. Choosing

ε small, we have
|ψy| ≤ N3x in Ω ∩ Dε/4.

Combining this with (17.9.3) and applying Lemma 17.3.22, we obtain that ϕ
satisfies the potential flow equation (2.2.8) in Ω, and equation (2.2.8) is elliptic
for ϕ in Ω \ Γsonic.

Then we prove (17.9.1)–(17.9.3) in the remaining part of this section.
We first notice the following fact.

Lemma 17.9.3. If ε > 0 in the definition of K is sufficiently small, depending
only on the data and θ∗w, then, for any (u, θw) ∈ K such that u is a fixed point
of map I(θw) and θw is a supersonic wedge angle, the corresponding function ψ
satisfies assertions (a)–(c) in Lemma 12.4.5(viii).

Proof. Fix (u, θw) ∈ K for which u is a fixed point and θw is a supersonic wedge
angle. Let ψ̂ be the unique solution of (12.3.25)–(12.3.29) defined by (u, θw).

By Lemma 13.1.3, u = û. Using Definition 12.2.6(v) and (12.3.15), then
ϕ = ϕ̂ so that ψ = ψ̂. From this, since θw is supersonic, estimate (17.4.14) of
Proposition 17.4.7 implies that ψ satisfies (12.4.7). Now the assertion follows
from assertions (a′) and (c′) of Lemma 17.3.21(viii′).

Lemma 17.9.4. Let (u, θw) ∈ K be such that u is a fixed point of map I(θw).
Then the corresponding function ψ satisfies (13.4.4).

Proof. From Propositions 17.4.7 and 17.4.9, for any fixed point (u, θw) ∈ K,
ψ = ψ̂ satisfies ψ ∈ C1,α(Ω) ∩ C2,α(Ω \ (Γsonic ∪ Γsym)), where Γsonic = {P0} in
the subsonic/sonic case. Then we can follow the proof of Lemma 13.4.3.

17.9.1 ϕ ≥ ϕ2 for fixed points

Lemma 17.9.5. The result of Lemma 13.4.4 holds without change.

Proof. We can follow the proof of Lemma 13.4.4, since Lemmas 13.1.3 and 12.7.7
are available (the last one from Lemma 17.4.3).
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17.9.2 Directional monotonicity for ϕ1 − ϕ for fixed points

We first note that estimate (13.4.24) is available in the present case by (17.3.22).
Also, estimate (12.3.22) is available by (17.3.21).

We first show that the result of Lemma 13.4.6 holds in the present case.

Lemma 17.9.6. If the parameters in Definition 17.3.4 are chosen so that δ1
and ε are small, depending only on the data and θ∗w, and if N1 ≥ 8, then, for
every (u, θw) ∈ K such that θw ∈ [θ∗w,

π
2 ) and u is a fixed point of map I(θw), the

corresponding function ϕ satisfies

∂eS1
(ϕ1 − ϕ) ≤ 0 in Ω.

Proof. Let (u, θw) ∈ K be a fixed point of the iteration map. Then ψ = ψ̂ as we
have shown above.

By Lemmas 17.9.2 and 17.9.3, ψ satisfies an equation of structure (12.4.45)
in Ω.

Then we follow the proof of Lemma 13.4.6 by using estimates (17.3.21)–
(17.3.22) instead of (12.3.22) and (13.4.24). Also, the proof of Lemma 13.4.6
uses that (ψ,Dψ) = (0,0) on Γsonic. In the present case, this holds by (17.3.22),
where Γsonic = {P0} for the subsonic/sonic wedge angles so that the proof works
without change.

The only point we need to verify is the following: In Step 2 of the proof of
Lemma 13.4.6, we have shown that P1O2 and νS1 are not parallel to each other.
The proof uses the fact that P1 lies on the sonic circle ∂Bc2(O2) of state (2). In
the present case, that proof works in the supersonic case.

Now consider the subsonic/sonic case. Then P1 = P0, so that we need to
show that, for the subsonic/sonic wedge angle θw, vectors P0O2 and νS1

are not
parallel to each other. Since Dϕk(P0) = P0Ok for k = 1, 2, and S1 is the shock
line between the uniform states ϕ1 and ϕ2 on which they satisfy the Rankine-
Hugoniot conditions, then, from (6.1.6) in Lemma 6.1.2 applied with ϕ− = ϕ1

and ϕ+ = ϕ2, we find that O1O2 ⊥ S1. However, if P0O2 is parallel to νS1
,

then P0O2 ⊥ S1 so that O1O2 ⊥ S1 implies that P0O2 is parallel to O1O2,
which means that these lines coincide. From that, since O1 = (u1, 0) /∈ {ξ2 =
ξ1 tan θw}, while both O2 and P0 lie on Γwedge ⊂ {ξ2 = ξ1 tan θw}, it follows
that O2 = P0 so that O2 ∈ S1. This contradicts (6.1.5). Therefore, P0O2 and
νS1

are not parallel to each other.
The rest of the proof of Lemma 13.4.6 works without change.

Next we show that the result of Lemma 13.4.9 holds in the present case.

Lemma 17.9.7. If the parameters in Definition 17.3.4 are chosen so that δ1
and ε are small, depending on the data and θ∗w, and if N1 ≥ 8, then, for every
(u, θw) ∈ K such that θw ∈ [θ∗w,

π
2 ) and u is a fixed point of map I(θw), the

corresponding function ϕ satisfies

∂ξ2(ϕ1 − ϕ) ≤ 0 in Ω.
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Proof. We argue in the same way as in the proof of Lemma 17.9.6, by showing
that the proof of Lemma 13.4.9 works in the present case.

Then it suffices to check the argument in Step 2 of the proof of Lemma
13.4.9, which shows that (1, 0) is not parallel to P1O2 for all the wedge angles
θw ∈ [θ∗w,

π
2 ]. That argument works without change in the supersonic reflection

case.
In the subsonic/sonic reflection case, P1 = P0 so that we need to show that,

for the subsonic/sonic wedge angle θw, vectors P0O2 and (1, 0) are not parallel
to each other. This immediately follows from the fact that segment P0O2 lies
on Γwedge ⊂ {ξ2 = ξ1 tan θw} with θw ∈ [θ∗w, θ

s
w] ⊂ (0, π2 ).

The rest of the proof of Lemma 13.4.9 works without change.

17.9.3 Removing the cutoff in the equation for supersonic fixed
points

It remains to show that (17.9.3) holds. Thus, we focus on the supersonic wedge
angle θw. We then have the following analogue of Lemmas 13.4.10–13.4.11.

Lemma 17.9.8. If the parameters in Definition 12.3.2 are chosen so that the
conditions of Proposition 17.4.7 are satisfied, and if ε is further reduced if neces-
sary, depending on the data and θ∗w, then the following holds: Let (u, θw) ∈ K be
such that θw ∈ [θ∗w,

π
2 ) is a supersonic wedge angle, i.e., satisfying (17.4.10), and

let u be a fixed point of map I(θw). Then the corresponding function ψ = ϕ−ϕ2

satisfies

|ψx| ≤
2− µ0

5

1 + γ
x in Ω ∩ {x ≤ ε

4
}. (17.9.4)

Proof. We follow the argument in the proof of Lemmas 13.4.10–13.4.11 to es-
tablish the upper and lower bounds of ψx in Ω ∩ {x ≤ ε

4}. We note that the
supersonic reflection solutions satisfy the same iteration equation as in Lemmas
13.4.10–13.4.11, which follows from Lemma 17.3.21(v′), Lemma 17.3.20(i), and
Lemma 17.3.17(a). Also, the supersonic reflection solutions satisfy the same it-
eration boundary condition on Γshock as in Lemmas 13.4.10–13.4.11, by Lemma
17.3.23. Furthermore, the monotonicity property used in the proof of Lemma
13.4.11 is extended to the present case in Lemma 17.9.6.

Thus, the argument works without change for each supersonic wedge angle
θw so that (17.9.4) is obtained for sufficiently small ε. We need to check that a
uniform constant ε > 0 can be chosen for all the fixed points of the iteration map,
corresponding to the supersonic wedge angles. In Lemmas 13.4.10–13.4.11, the
smallness of ε depends only on constant C in estimate (12.7.29) in Proposition
12.7.10. In the present case, a similar estimate (17.4.14) as in Proposition 17.4.7,
with C depending only on the data and θ∗w, holds for any supersonic wedge angle.
Therefore, ε can be chosen uniformly in the present case.
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Corollary 17.9.9. Corollary 13.4.13 holds in the present case.

Proof. We follow the proof of Corollary 13.4.13. By Lemma 17.9.8, we conclude
that ϕ satisfies the potential flow equation (2.2.8) in Ω. Then we follow the
argument for Lemma 8.3.2. This argument uses the property that ϕ1 − ϕ =
ϕ1−ϕ2 ≥ 0 on Γsonic. This property holds in the present case for the supersonic,
sonic, and subsonic wedge angles, where Γsonic = {P0} in the last two cases, and
ϕ1 = ϕ2 = ϕ at P0 in the subsonic/sonic cases. The rest of the argument follows
without change.

17.9.4 Completion of the proof of Proposition 17.9.1

Note that

• (17.9.1) follows from Lemma 17.9.5 and Corollary 17.9.9;

• (17.9.2) follows from Lemmas 17.9.6 and 17.9.7;

• (17.9.3) follows from Lemma 17.9.8.

Then the proof of Proposition 17.9.1 is completed.

17.10 FIXED POINTS CANNOT LIE ON THE BOUNDARY OF
THE ITERATION SET

We assume that the parameters of the iteration set satisfy the conditions of
Proposition 17.9.1. Then the fixed points are admissible solutions of Problem
2.6.1 in the sense of Definitions 15.1.1–15.1.2.

We first note the following preliminary results:

Lemma 17.10.1. The assertions of Lemmas 12.6.1–12.6.2 hold in the present
setting, where (12.6.1) is replaced by

‖u− u(norm)‖(∗∗)
2,α,Qiter < µ. (17.10.1)

Proof. We first follow the proof of Lemma 12.6.1, replacing Definition 12.3.2
by Definition 17.3.4. Then we follow the proof of Lemma 12.6.2, replacing
spaces C2,α

∗,1+δ∗(Q
iter) and C2,ᾱ

∗,2 (Qiter) by spaces C2,α
(∗∗)(Q

iter) and C2,ᾱ
(∗∗)(Q

iter),
respectively, and using Lemma 17.3.3, to obtain (17.10.1).

Now we prove the main result of this section.

Lemma 17.10.2. If the parameters in Definition 17.3.4 are chosen to satisfy
the conditions of Proposition 17.9.1, N1 is further increased (depending on the
data and θ∗w), and δ2 is chosen sufficiently small (depending on (ε, δ1)), then,
for any θw ∈ [θ∗w,

π
2 ],

I(u, θw) 6= u for all (u, θw) ∈ ∂K,
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where boundary ∂K is considered relative to space C2,α
(∗∗)(Q

iter)× [θ∗w,
π
2 ]; in par-

ticular, both (u, π2 ) and (u, θ∗w) may lie in the interior of K.
Proof. We follow the proof of Lemma 13.5.1 by using the results of this chap-
ter (instead of the corresponding results of Chapter 13) and the fact that the
constants in the estimates in Definition 17.3.4 are chosen such that the admis-
sible solutions satisfy these estimates with the strict inequalities by the a priori
estimates cited when these constants are introduced in Definition 17.3.4.

17.11 PROOF OF THE EXISTENCE OF SOLUTIONS UP TO
THE CRITICAL ANGLE

From Proposition 17.8.1 and Theorem 3.4.7(i), it follows that the fixed point
index of map I(π2 ) on set K(π2 ) is nonzero. Specifically,

Ind(I(π2 ),K(
π

2
)) = 1.

From Proposition 17.5.3, and Lemmas 17.7.1 and 17.10.2, we see that the con-
ditions of Theorem 3.4.8 are satisfied, which implies

Ind(I(θw),K(θw)) = 1 for all θw ∈ [θ∗w,
π

2
].

Then, from Theorem 3.4.7(ii), a fixed point of map I(θw) on domain K(θw) exists
for any θw ∈ [θ∗w,

π
2 ]. By Proposition 17.9.1, the fixed points are admissible

solutions. Thus, the admissible solutions exist for all θw ∈ [θ∗w,
π
2 ]. This holds

for any θ∗w ∈ (θc
w,

π
2 ). Then the proof of Proposition 17.1.1 is completed.

17.12 PROOF OF THEOREM 2.6.6: EXISTENCE OF GLOBAL
SOLUTIONS UP TO THE DETACHMENT ANGLE
WHEN u1 ≤ c1

We now prove Theorem 2.6.7. The existence follows from Proposition 17.1.1.
The regularity follows from the a priori estimates in the supersonic/subsonic
cases, and Corollary 16.4.8, 16.5.4, and 16.6.12.

The property that the corresponding (ρ,Φ)(t,x) is a weak solution of Prob-
lem 2.2.1 in the sense of Definition 2.3.3 satisfying the entropy condition is
proved in the same way as in §13.7, where we note that, for the subsonic and
sonic regular reflections, the argument works without changes.

17.13 PROOF OF THEOREM 2.6.8: EXISTENCE OF GLOBAL
SOLUTIONS WHEN u1 > c1

We now prove Theorem 2.6.9. We follow the argument in §13.8 by using Propo-
sition 17.1.1 and Corollaries 16.4.8, 16.5.4, and 16.6.12 to prove the existence
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and regularity for θw > θc
w. If θc

w > θd
w, we argue as in §13.8, by employing

Lemma 15.7.4(iii) and Proposition 15.4.3 (instead of Proposition 9.4.8) with the
corresponding straightforward (and mostly notational) changes in the argument,
and the regularity results near Γsonic or the reflection point, Corollary 16.4.7,
and Propositions 16.5.3 and 16.6.11.



Part V

Connections and Open Problems





Chapter Eighteen

The Full Euler Equations and the Potential Flow

Equation

In this chapter, we first analyze the system of full Euler equations and its pla-
nar shock-front solutions, and formulate the shock reflection-diffraction problem
into an initial-boundary value problem for the system. Then we employ the
self-similarity of the problem to reformulate the initial-boundary value problem
into a boundary value problem for a system of first-order nonlinear PDEs of
composite-mixed hyperbolic-elliptic type. We also present the local theory and
von Neumann’s conjectures for shock reflection-diffraction. Finally, we discuss
the role of the potential flow equation in the shock reflection-diffraction problem
even in the realm of the full Euler equations.

18.1 THE FULL EULER EQUATIONS

As described in Chapter 1, the full Euler equations for compressible fluids in
R3

+ = R+ × R2, t ∈ R+ := (0,∞) and x ∈ R2, are of the following form:





∂t ρ+∇x · (ρv) = 0,

∂t(ρv) +∇x · (ρv ⊗ v) +∇xp = 0,

∂t(
1

2
ρ|v|2 + ρe) +∇x ·

(
(
1

2
ρ|v|2 + ρe+ p)v

)
= 0,

(18.1.1)

where ρ is the density, v = (u, v) the fluid velocity, p the pressure, and e the
internal energy. Two other important thermodynamic variables are temperature
θ and entropy S. Also, a⊗ b denotes the tensor product of vectors a and b.

For a polytropic gas,

p = (γ − 1)ρe, e = cvθ, γ = 1 +
R

cv
, (18.1.2)

or equivalently,

p = p(ρ, S) = κργeS/cv , e = e(ρ, S) =
κ

γ − 1
ργ−1eS/cv , (18.1.3)

where R > 0, cv > 0, γ > 1, and κ > 0 are some constants given.



758 CHAPTER 18

System (18.1.1) can be written as the following general form as a hyperbolic
system of conservation laws (cf. Dafermos [100], Glimm-Majda [139], and Lax
[171]):

∂tu +∇x · f(u) = 0, x ∈ R2, (18.1.4)

where u = (ρ, ρv, 1
2ρ|v|2 + ρe)> and f(u) : R4 7→ R4 is a nonlinear mapping.

Definition 18.1.1 (Weak Solutions). A function (v, p, ρ) ∈ L∞loc(R+ × R2) is
called a weak solution of (18.1.1) in a domain D ⊂ R+ × R2, provided that

∫

D

(
u ∂tζ + f(u) · ∇xζ

)
dx dt = 0 (18.1.5)

for any ζ ∈ C1
0 (D).

As physically required, we focus on entropy solutions – the weak solutions
satisfying the entropy condition. To motivate the entropy condition, we note
that, for smooth solutions, system (18.1.1) implies the following conservation
property of entropy:

∂t(ρS) +∇x · (ρSv) = 0; (18.1.6)

that is, any smooth solution of (18.1.1) satisfies (18.1.6). Moreover, from (18.1.3),
one can check that the function: u 7→ −ρS is convex. Then we define that a
weak solution (v, ρ, p) satisfies the entropy condition if

∂t(ρS) +∇x · (ρSv) ≥ 0 (18.1.7)

in the distributional sense:
∫

D

(
ρS ∂tζ + ρSv · ∇xζ

)
dx dt ≤ 0 (18.1.8)

for any ζ ∈ C1
0 (D) with ζ ≥ 0.

In the study of a piecewise smooth weak solution of (18.1.2) with jump
for (v, p, ρ) across an oriented surface S with unit normal n = (nt,nx),nx =
(n1, n2), in the (t,x)–coordinates, the requirement of the weak solution of (18.1.2)
in the sense of Definition 18.1.1 implies the Rankine-Hugoniot conditions across
S:

[ρ]nt + [ρv] · nx = 0,

[ρv]nt + [ρv ⊗ v] · nx + [p]nx = 0,

[
1

2
ρ|v|2 + ρe]nt + [(

1

2
ρ|v|2 + ρe+ p)v] · nx = 0,

(18.1.9)

where [w] denotes the jump of quantity w across the oriented surface S. Con-
ditions (18.1.9) can be rewritten/simplied in several ways (cf. [38, 236]).

Given any direction η ∈ S1, i.e., |η| = 1, the characteristic equation of
system (18.1.1) for eigenvalues λ in the direction η is

ρ2(λ− v · η)2
(
(λ− v · η)2 − c2

)
= 0,
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where c =
√

γp
ρ is the sonic speed. This implies that the four eigenvalues in the

direction η are
λ2 = λ3 = v · η (repeated), (18.1.10)

and
λj = v · η + (−1)jc, j = 1, 4. (18.1.11)

Thus, system (18.1.1) is always hyperbolic in the unbounded domain {p > 0, ρ >
0} in the phase space (v, p, ρ), but not strictly hyperbolic.

The right eigenvectors rj corresponding to λj , j = 1, 2, 3, 4, are respectively:

r2 = (−η2, η1, 0, 0)>, r3 = (−η2, η1, 0, 1)>, (18.1.12)

and
rj = (η, (−1)jρc, (−1)jρc−1)>, j = 1, 4, (18.1.13)

so that
∇(v,p,ρ)λj · rj ≡ 0, j = 2, 3, (18.1.14)

and
∇(v,p,ρ)λj · rj =

γ + 1

2
6= 0, j = 1, 4. (18.1.15)

This means that the characteristic fields corresponding to λj , j = 2, 3, are always
linearly degenerate (for which corresponding vortex sheets and entropy waves
may be formed), while the characteristic fields corresponding to λj , j = 1, 4, are
always genuinely nonlinear (for which corresponding shock waves and rarefaction
waves may be formed). For more on this, see Dafermos [100], Glimm-Majda
[139], and Lax [171]; also [35, 72, 181, 286].

For any fixed direction η ∈ S1, since λj = v · η, j = 2, 3, are repeated eigen-
values with two linearly independent right eigenvectors, there are two different
types of discontinuity waves in the (t,x)–coordinates with a state (v0, p0, ρ0)
that is connected to possible other states (v, p, ρ) in the phase space given by

[v] · η = 0, (18.1.16)
[p] = 0, (18.1.17)

forming a two-dimensional manifold in the phase space, where we have denoted
that [w] := w − w0 for any quantity w across the discontinuity wave from now
on. Notice that the discontinuity waves are surfaces with co-dimension one in
the (t,x)–coordinates across which the physical state (v, p, ρ) has a jump. This
yields two fundamental waves:

Vortex sheets: Planar waves λ2t−η·x = 0 in the (t,x)–coordinates connect
two physical states (v0, p0, ρ0) and (v, p, ρ) with

[v · η⊥] 6= 0, v · η = v0 · η = 0, [p] = [S] = 0.

Entropy waves: Planar waves λ3t−η ·x = 0 connect two states (v0, p0, ρ0)
and (v, p, ρ) with

[S] 6= 0, [v] = 0, [p] = 0.
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The other nonlinear waves are rarefaction waves and shock waves.
Rarefaction waves: Given η ∈ S1 and a state (v0, p0, ρ0), any state

(v, p, ρ) ∈ Rj(v0, p0, ρ0;η), j = 1, 4, of a plane rarefaction wave connecting
to state (v0, p0, ρ0) can be expressed by

Rj(v0, p0, ρ0;η) :

{
[S] = 0,

[v] = (−1)j 2c0
γ−1

(
( ρρ0

)
γ−1

2 − 1
)
η,

j = 1, 4. (18.1.18)

Eliminating η, all possible states (v, p, ρ) that connect to (v0, p0, ρ0) form a
wave-cone Rj(v0, p0, ρ0) in the phase space as follows:

Rj(v0, p0, ρ0) :

{
(v − v0)2 = ( 2

γ−1 )2(c− c0)2,

pρ−γ = p0ρ
−γ
0 ,

j = 1, 4. (18.1.19)

It is easy to check that, along Rj(v0, p0, ρ0;η),

(−1)j
dλj
dρ

> 0 for j = 1, 4.

This shows that (v, p, ρ) can be connected to (v0, p0, ρ0) by a first or fourth
family of planar centered rarefaction wave if and only if

(v, p, ρ) ∈ R1(v0, p0, ρ0), ρ < ρ0, (18.1.20)

or
(v, p, ρ) ∈ R4(v0, p0, ρ0), ρ > ρ0. (18.1.21)

Shock waves: Given a state (v0, p0, ρ0), a planar shock-front σjt = η · x
for j = 1, 4, in the (t,x)–coordinates connecting a physical state (v, p, ρ) to
state (v0, p0, ρ0) requires that (v, p, ρ) ∈ Sj(v0, p0, ρ0;η) be determined by the
Rankine-Hugoniot conditions of the form:

Sj(v0, p0, ρ0;η) :





p
p0

= ρ−µ2ρ0

ρ0−µ2ρ ,

v − v0 = (−1)j(ρ− ρ0)
√

1
ρ0ρ

p−p0

ρ−ρ0
η

(18.1.22)

with the shock speed:

σj = v0 · η + (−1)j
√

ρ

ρ0

p− p0

ρ− ρ0
, j = 1, 4, (18.1.23)

where µ2 = γ−1
γ+1 . Then state (v, p, ρ) must be on the circular cone:

Sj(v0, p0, ρ0) :





(v − v0)2 = 1
ρρ0

(p− p0)(ρ− ρ0),

p
p0

= ρ−µ2ρ0

ρ0−µ2ρ .
(18.1.24)
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It can be checked that any state (v, p, ρ) ∈ Sj(v0, p0, ρ0) satisfies the Lax geo-
metric entropy inequalities:

λj(v, p, ρ;η) < σj(ρ;v0, p0, ρ0,η) < λj(v0, p0, ρ0;η)

if and only if
(−1)j(ρ− ρ0) < 0, j = 1, 4, (18.1.25)

which is the entropy condition for shock waves Sj(v0, p0, ρ0), j = 1, 4. That is,
(v, p, ρ) can be connected to (v0, p0, ρ0) by a planar shock-front of the first or
fourth field if and only if

(v, p, ρ) ∈ S1(v0, p0, ρ0), ρ > ρ0, (18.1.26)

or
(v, p, ρ) ∈ S4(v0, p0, ρ0), ρ < ρ0. (18.1.27)

18.2 MATHEMATICAL FORMULATION I:
INITIAL-BOUNDARY VALUE PROBLEM

Using (18.1.22)–(18.1.25), we can formulate the problem of shock reflection-
diffraction by a wedge for the full Euler equations (18.1.1) in R3

+ in the following
way:

Problem 18.1 (Initial-Boundary Value Problem). Seek a solution of system
(18.1.1) satisfying the initial condition at t = 0:

(v, p, ρ) =

{
(0, 0, p0, ρ0), |x2| > x1 tan θw, x1 > 0,

(u1, 0, p1, ρ1), x1 < 0,
(18.2.1)

and the slip boundary condition along the wedge boundary:

v · ν = 0, (18.2.2)

where ν is the outward normal to the wedge boundary, and states (0) and (1)
satisfy

u1 =

√
(p1 − p0)(ρ1 − ρ0)

ρ0ρ1
,

p1

p0
=
ρ1 − µ2ρ0

ρ0 − µ2ρ1
, ρ1 > ρ0. (18.2.3)

That is, given (ρ0, p0, ρ1) and γ > 1, the other variables (u1, p1) are uniquely
determined by (18.2.3). In particular, the incident-shock Mach number MI :=
u1

c1
is determined by

M2
I =

2(nI − 1)2

(γ + 1)
(
nI − µ2

) , (18.2.4)
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where c1 =
√

γp1

ρ1
is the sonic speed of state (1), and nI = ρ1

ρ0
, which means that

the incident-shock strength can be represented by either the incident-shock Mach
numberMI or the ratio nI of the densities of the incident shock; see Fig. 18.1.

This problem is a two-dimensional lateral Riemann problem with physical
Riemann data.

x1

=
0

·v

ν

wθ

x2

(1) (0)

ν

Incident 
   shock

Figure 18.1: Initial-boundary value problem

18.3 MATHEMATICAL FORMULATION II: BOUNDARY
VALUE PROBLEM

Notice that the initial-boundary value problem (Problem 18.1) is invariant
under the self-similar scaling:

(t,x) 7−→ (αt, αx) for any α 6= 0.

Therefore, we seek self-similar solutions:

(v, p, ρ)(t,x) = (v, p, ρ)(ξ), ξ =
x

t
.

Then the self-similar solutions are governed by the following system:




div(ρU) + 2ρ = 0,

div(ρU⊗U) +Dp+ 3ρU = 0,

div
(
(
1

2
ρ|U|2 +

γp

γ − 1
)U
)

+ 2
(1

2
ρ|U|2 +

γp

γ − 1

)
= 0,

(18.3.1)

where U = v − ξ = (U, V ) is the pseudo-velocity and D = (∂ξ1 , ∂ξ2) is the
gradient with respect to the self-similar variables ξ = (ξ1, ξ2).

Similarly, system (18.3.1) can be written as the following general form as a
system of balance laws:

divA(w) + B(w) = 0, (18.3.2)
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where w = (U, p, ρ) is unknown, while A : R4 7→ (R4)2 and B : R4 7→ R4 are
given nonlinear mappings.

The eigenvalues of system (18.3.1) are

λ2 = λ3 =
V

U
(repeated), λj =

UV + (−1)jc
√
|U|2 − c2

U2 − c2 , j = 1, 4,

where c =
√

γp
ρ is the sonic speed.

When the flow is pseudo-subsonic, i.e., |U| < c, eigenvalues λj , j = 1, 4,
become complex so that the system consists of two transport-type equations
and two nonlinear equations of mixed hyperbolic-elliptic type. Therefore, system
(18.3.1) is, in general, of composite-mixed hyperbolic-elliptic type.

Definition 18.3.1 (Weak Solutions). A function w ∈ L∞loc(Ω) for an open
region Ω ⊂ R2 is a weak solution of (18.3.1) in Ω, provided that

∫

Ω

(
A(w(ξ)) · ∇ζ(ξ) + B(w(ξ)) ζ(ξ)

)
dξ = 0 (18.3.3)

for any ζ ∈ C1
0 (Ω).

As before, we focus on entropy solutions – the weak solutions satisfying the
entropy condition. Rewriting condition (18.1.7) and its weak form (18.1.8) in the
self-similar variables ξ in terms of functions (U, ρ, p), we arrive at the following
definition: A weak self-similar solution (U, ρ, p) of (18.3.1) satisfies the entropy
condition if

div(ρSU) + 2ρS ≥ 0 (18.3.4)

in a weak sense; that is,
∫

Ω

(
ρSU · ∇ζ − 2ρSζ

)
dξ ≤ 0 (18.3.5)

for any ζ ∈ C1
0 (Ω) with ζ ≥ 0. We note that, if a weak self-similar solution

(U, ρ, p) of (18.3.1) satisfies the entropy condition (18.3.5), then the correspond-
ing solution (v, ρ, p) of (18.1.1) in the (t,x)–coordinates satisfies the entropy
condition (18.1.8).

In the study of a piecewise smooth weak solutions of (18.3.1) with jump
for (U, p, ρ) across an oriented surface S with unit normal ν = (ν1, ν2), in the
ξ–coordinates, the requirement of the weak solution of (18.3.1) in the sense of
(18.3.3) implies the Rankine-Hugoniot conditions across S:

[ρU] · ν = 0,

[ρU⊗U] · ν + [p]ν = 0,

[(
1

2
ρ|U|2 +

γp

γ − 1
)U] · ν = 0.

(18.3.6)
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Note that the first line in (18.3.6) implies that ρU · ν is well-defined on S by
taking a limit to S from either side. Then (18.3.6) can be simplified to the
following:

[ρU] · ν = 0,

(ρU · ν)[U · ν] + [p] = 0,

(ρU · ν)[U · τ ] = 0,

(ρU · ν)[
1

2
ρ|U|2 +

γp

γ − 1
] = 0,

(18.3.7)

where τ is the unit tangent vector on S.
Then, for a given state (U0, p0, ρ0), the states of the discontinuity waves

connecting to this state in the self-similar coordinates are the following:
Vortex sheets:

[p] = 0, U · ν = U0 · ν = 0, [U · τ ] 6= 0, [S] = 0

with speed σ2 = V
U = V0

U0
, where ν and τ are the unit normal and tangent

vectors on the waves.
Entropy waves:

[p] = 0, [U] = 0, [S] 6= 0

with the same speed σ3 = σ2.
Shock waves Sj(U0, p0, ρ0), j = 1, 4, are the curves determined by





[U ]
[V ] = −σj ,

[p] =
2ρ0c

2
0

(γ+1)(ρ0−µ2ρ1) [ρ],

[V ] =
2c20

(γ+1)(ρ0−µ2ρ1)(U0σj−V0) [ρ]

(18.3.8)

with the shock speeds:

σj =
U0V0 + (−1)j

√
c̄2(|U0|2 − c̄2)

U2
0 − c̄2

(18.3.9)

for c̄2 = ρ
ρ0

[p]
[ρ] .

The Rankine-Hugoniot conditions may be rewritten in a different form. For
a shock connecting two states (U0, p0, ρ0) and (U, p, ρ), let L and N be the
tangent and normal components of pseudo-velocity U to the discontinuity wave
with |U|2 = L2 +N2. Then the Rankine-Hugoniot conditions are equivalent to

[ρN ] = 0, (18.3.10)

[ρLN ] = 0, (18.3.11)

[ρN2 + p] = 0, (18.3.12)

[
ρN(h+

N2 + L2

2
)
]

= 0, (18.3.13)
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where h = γp
(γ−1)ρ .

If N0 = 0, (18.3.10) implies that N = 0, so that (18.3.11) and (18.3.13)
are satisfied, and (18.3.12) is equivalent to [p] = 0. This discontinuity wave
corresponds to either a vortex sheet or an entropy wave.

If N0 6= 0, then N 6= 0 from (18.3.10) so that (18.3.11) and (18.3.13) become

[L] = 0, (18.3.14)

[h+
N2

2
] = 0. (18.3.15)

In this case, when the pseudo-flow passes through the wave, the tangential
pseudo-velocity L is continuous, while the normal pseudo-velocity N experiences
a jump.

If the pseudo-flow passes the wave from the front with state (U0, p0, ρ0) to
the back with state (U, p, ρ), the entropy condition for a shock is

ρ0 < ρ. (18.3.16)

From (18.3.10)–(18.3.12), it follows that

N2
0 =

ρ

ρ0

p− p0

ρ− ρ0
, (18.3.17)

N2 =
ρ0

ρ

p− p0

ρ− ρ0
. (18.3.18)

Substituting these into (18.3.15), we obtain

m :=
p

p0
=

n− µ2

1− µ2n
, (18.3.19)

where
n :=

ρ

ρ0
> 1, µ2 :=

γ − 1

γ + 1
.

Then (18.3.17)–(18.3.18) imply that

N2
0

c20
=
n

γ

m− 1

n− 1
,

N2

c2
=

1

γn

m− 1

n− 1
,

that is,

|U0|2
c20

cos2 τ =
n

γ

m− 1

n− 1
,

|U|2
c2

cos2(τ + δ) =
1

γn

m− 1

n− 1
, (18.3.20)

where τ is the angle from the normal of the shock-front to velocity U0 in front
of the wave, and δ is the angle from velocity U0 to U behind the wave; see Fig.
18.2.
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τ
0q

N0L

LN
q

δ

0

Figure 18.2: The pseudo-flow passes the shock from the front to the back

Let
z = tan τ. (18.3.21)

Then
cos2 τ =

1

1 + z2
,

hence
tan(τ + δ) =

L

N
=
nL0

N0
= nz,

which implies

cos2(τ + δ) =
1

1 + n2z2
. (18.3.22)

Substituting (18.3.21)–(18.3.22) into (18.3.20), we have

M2
0 =

2(1 + z2)n

(γ + 1)(1− µ2n)
, (18.3.23)

M2 =
2(1 + z2n2)

(γ + 1)(n− µ2)
, (18.3.24)

where M0 and M are the Mach numbers of the pseudo-flow in front of and
behind the shock, respectively.

As in the potential flow case, the problem is symmetric with respect to the
ξ1–axis. Thus, it suffices to consider the problem in half-plane ξ2 > 0 outside
the following half-wedge:

Λ := {ξ1 < 0, ξ2 > 0} ∪ {ξ2 > ξ1 tan θw, ξ1 > 0}.

Then the initial-boundary value problem (Problem 18.1) in the (t,x)–coordi-
nates can be formulated as the following boundary value problem in the self-
similar coordinates ξ:
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Problem 18.2 (Boundary Value Problem). Seek a solution to system (18.3.1)
satisfying the slip boundary condition on the wedge boundary and the matching
condition on the symmetry line ξ2 = 0:

U · ν = 0 on ∂Λ = {ξ1 ≤ 0, ξ2 = 0} ∪ {ξ1 > 0, ξ2 ≥ ξ1 tan θw},

and the asymptotic boundary condition as |ξ| → ∞:

(U + ξ, p, ρ) 7−→
{

(0, 0, p0, ρ0), ξ1 > ξ0
1 , ξ2 > ξ1 tan θw,

(u1, 0, p1, ρ1), ξ1 < ξ0
1 , ξ2 > 0,

where

ξ0
1 = u1 +

√
ρ0(p1 − p0)

ρ1(ρ1 − ρ0)
=

√
ρ1(p1 − p0)

ρ0(ρ1 − ρ0)
. (18.3.25)

wθ

1ξ

ν)1ρ1p01u(

, p, ρ)2ξ+, V1ξ+(U

, ,,

0ρ−1ρ
1u1ρ=1

0ξ

= 0V

2ξ )0ρ0p0(

2ξ+, V1ξ+(U

, ,,

, p, ρ)

0

=
0

·)
U
,V

(

ν

Figure 18.3: Boundary value problem in the unbounded domain Λ

Two of the main features of this problem are the wedge corner along the
solid boundary and the jump of the asymptotic boundary data, which are not
conventional for the unbounded boundary value problems. It is expected that
the solutions of Problem 18.2 contain all possible patterns of shock reflection-
diffraction configurations as observed in physical and numerical experiments; cf.
[12, 99, 139, 143, 166, 205, 206, 243, 259] and the references cited therein.

Observe that, for any solution with bounded physical variables (u, p, ρ), sys-
tem (18.3.1) must be hyperbolic when |ξ| is large enough so that |U| > c, that
is, system (18.3.1) is always hyperbolic in the far field and becomes composite-
mixed elliptic-hyperbolic around the wedge corner in the ξ–coordinates.
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18.4 NORMAL REFLECTION

The simplest case of Problem 18.2 is when the wedge angle θw = π
2 . In this

case, Problem 18.2 simply becomes the normal reflection problem, for which
the incident shock normally reflects, and the reflected-diffracted shock becomes
a plane. It can be shown that there exist a unique state (p̄2, ρ̄2) with ρ̄2 > ρ1

and a unique location of the reflected shock:

ξ̄1 = − ρ1u1

ρ̄2 − ρ1
with u1 =

√
(p̄2 − p1)(ρ̄2 − ρ1)

ρ1ρ̄2
(18.4.1)

such that state (2) = (−ξ, p̄2, ρ̄2) is subsonic inside the sonic circle with its
center at the origin and radius c2 =

√
γp̄2

ρ̄2
, and supersonic outside the sonic

circle (see Fig. 18.4).

Location of
incident shock

Reflected
  shock

Sonic circle

2

1

(1)

(2)

0

)ξ−(

1ρ−
1u1ρ=

0ρ−1ρ
1u1ρ=

1
0ξ1̄ −

2ρ̄, ,2p̄

2ρ̄
ξ

ξ

ξ

Figure 18.4: The normal reflection solution

In this case,

M2
I =

2(n2 − 1)2

1− µ2n2
,

p̄2

p1
=

n2 − µ2

1− µ2n2
, (18.4.2)

and n2 = ρ̄2

ρ1
> 1 is the unique root of
(
2c21 + (γ − 1)u2

1

)
n2

2 −
(
4c21 + (γ + 1)u2

1

)
n2 + 2c21 = 0,

that is,

n2 =
4c21 + (γ + 1)u2

1 + u1

√
16c21 + (γ + 1)2u2

1

2
(
2c21 + (γ − 1)u2

1

) , (18.4.3)

where c1 =
√

γp1

ρ1
is the sonic speed of state (1).

In other words, given MI , p0, ρ0, and γ > 1, state (2) = (−ξ, p̄2, ρ̄2) is
uniquely determined through (18.2.3)–(18.2.4) and (18.4.1)–(18.4.3).
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18.5 LOCAL THEORY FOR REGULAR REFLECTION NEAR
THE REFLECTION POINT

The necessary condition for regular reflection-diffraction configurations to exist
is the existence of two-shock configurations (one is the incident shock and the
other is a reflected shock) formed locally around point P0 (see Fig. 18.5).

Theorem 18.5.1 (Local Theory). There exist a unique detachment angle θd
w =

θd
w(MI , γ) ∈ (0, π2 ) and a unique sonic angle θs

w = θs
w(MI , γ) ∈ (0, π2 ) with

θd
w < θs

w such that

(i) There are two states (2), (Ua
2 , p

a
2 , ρ

a
2) and (Ub

2, p
b
2, ρ

b
2), such that

|Ua
2 | > |Ub

2| and |Ub
2| < cb2

if and only if θw ∈ (θd
w,

π
2 );

(ii) In particular,
|Ua

2 | > ca2

if and only if the wedge angle θw ∈ (θs
w,

π
2 ),

where ca2 =
√

γpa2
ρa2

and cb2 =

√
γpb2
ρb2

are the sonic speeds, and MI = u1

c1
is the

incident-shock Mach number that can be expressed by nI = ρ1

ρ0
and γ > 1 through

(18.2.4).

Theorem 18.5.1 directly follows from Theorems 18.5.2–18.5.3 below. As in-
dicated in Theorem 18.5.1, the detachment angle θd

w and the sonic angle θs
w

can be expressed explicitly in terms of nI = ρ1

ρ0
and γ > 1, equivalently, the

incident-shock Mach number MI = u1

c1
and γ > 1, as indicated in Theorems

18.5.2–18.5.3.

Theorem 18.5.2. The necessary and sufficient condition for the existence of
the two-shock configuration at P0 is that the wedge angle θw is larger than the
detachment angle θd

w determined by

θd
w =

π

2
− arccot

( 1

nI

√
2

3

√
b2 + 3c cos(

β

3
) +

b

3
− 1
)
, (18.5.1)

where

nI =
ρ1

ρ0
, a =

2

1− µ2
(nI − 1)(nI − µ2), b = 1 +

2µ2

1− µ2
a,

d =
( 1

n− 1
+

µ2

n− µ2

)
a2, β = arccos

(27a2 + 2b2 + 9bd

2(b2 + 3d)1/3

)
∈ (0,

π

2
).
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Proof. We divide the proof into four steps.

1. From (18.3.8), the two states (u0, v0, p0, ρ0) and (u1, v1, p1, ρ1) can be
connected by the incident shock I located at ξ1 = ξ0

1 in the self-similar plane
ξ = (ξ1, ξ2):

S0 :





ξ0
1 = u1 +

√
ρ0(p1−p0)
ρ1(ρ1−ρ0) =

√
ρ1(p1−p0)
ρ0(ρ1−ρ0) ,

u1

ρ1−ρ0
=
√

1
ρ0ρ1

p1−p0

ρ1−ρ0
,

p1

p0
= ρ1−µ2ρ0

ρ0−µ2ρ1
,

p1 > p0 ⇐⇒ ρ1 > ρ0 ⇐⇒ u1 > 0,

(18.5.2)

where µ2 = γ−1
γ+1 .

The necessary condition for the existence of the regular reflection-diffraction
configuration is that S0 intersects with the wedge boundary at point P0 and
produces a reflected shock S1.

(1)

(0)

(2)

1δ

1τ

1q

0q

2δ

2τ 1q

2q

0S

1S

wθ

2ξ

1ξ

0P

Figure 18.5: Two-shock reflection configuration

2. In Fig. 18.5, τi denotes the angle between the normal of the shock-front
and the velocity on the shock, and δi is the angle of deflection of the flow across
the shock, where i = 1 and 2 correspond to the incident and reflected shock,
respectively.

For convenience, we denote

mi =
pi
pi−1

> 0, ni =
ρi
ρi−1

, zi = tan τi, Mi =
|Ui|
ci

, i = 1, 2,
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where τ1 = θw. Then we have




mi = ni−µ2

1−µ2ni
,

tan δi = (ni−1)zi
niz2

i+1
,

M2
i−1 =

(1−µ2)(z2
i+1)ni

1−µ2ni
,

M2
i =

(1−µ2)(z2
i n

2
i+1)

ni−µ2 ,

1 < ni <
1
µ2 , 0 < z1 <∞.

(18.5.3)

From the boundary condition, we find that δ1 + δ2 = 0, that is,

tan δ1 + tan δ2
1− tan δ1 tan δ2

= 0. (18.5.4)

Denoting (n, z) := (n1, z1) as independent parameters, we now examine the
case that there exists a solution satisfying

1 < n2 <
1

µ2
(18.5.5)

in domain {(n, z) : 1 < n < 1
µ2 , 0 < z <∞}.

From (18.5.3)–(18.5.4), we have

n2 =
n2z2 + 1

n(z2
2 + 1) + µ2(n2z2 − z2

2)
. (18.5.6)

Substituting (18.5.6) into (18.5.4), we have

(z2−nz)
(
(n−µ2)(nz2 + 1)z2

2 + (1−µ2)z(n2z2 + 1)z2 + (n− 1)(µ2nz2 + 1)
)

= 0.
(18.5.7)

Then we conclude that either
z2 = nz (18.5.8)

or

z2 =
−(1− µ2)z(n2z2 + 1)±

√
Θ(n, z2)

2(n− µ2)(nz2 + 1)
, (18.5.9)

where

Θ(n, z2) = (1−µ2)2z2(n2z2+1)2−4(n−1)(n−µ2)(nz2+1)(µ2nz2+1). (18.5.10)

Substituting (18.5.8) into (18.5.6), we have

n2 =
1

n
< 1,

which is not the solution we want, since it does not satisfy the entropy condition.
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On the other hand, (18.5.9) has provided two real solutions of z2. Now
we examine the issue of which one is a physical solution. This requires the
physical stability: State (2), i.e., (u2, p2, ρ2), should tend to the constant state
(u0, p0, ρ0) when n→ 1, and shocks I and R through (ξ0

1 , ξ
0
1 tan θw) should tend

to two characteristic lines. Since τ1 = −τ2, then

z2(n, z)|n=1 = −z < 0.

Substituting n = 1 into (18.5.9), we have

z2|n=1 =
−z(z2 + 1)± z(z2 + 1)

2(z2 + 1)
=

{
0 for “ + ” sign,
−z for “− ” sign.

Based on this, we must take z2 with the “− ” sign in (18.5.9), that is,

z2 =
−(1− µ2)z(n2z2 + 1)−

√
Θ(n, z2)

2(n− µ2)(nz2 + 1)
. (18.5.11)

Then the necessary and sufficient condition for the existence of a real root
z2 is

Θ(n, z2) ≥ 0. (18.5.12)

3. We now check (18.5.5) under the assumption that (18.5.12) holds. Sub-
stituting (18.5.6) into (18.5.5), it requires that

µ2(n−µ2)(z2
2 +1)+µ4(n2z2+1) < µ2(n2z2+1) < µ2(n2z2+1)+(n−µ2)(z2

2 +1).

The second inequality above holds automatically. The first one is equivalent
to

z2
2 + 1 <

(1− µ2)(z2n2 + 1)

n− µ2
. (18.5.13)

By (18.5.11), inequality (18.5.13) is equivalent to
√

Θ(n, z2)

< −(1− µ2)z(n2z2 + 1) + 2(n− µ2)(nz2 + 1)

√
(1− µ2)(z2n2 + 1)

n− µ2
− 1,

(18.5.14)

that is,

J(n, z) := (1− µ2)(n2z2 + 1)(nz2 + 1)− (n− µ2)(nz2 + 1)

− (1− µ2)(n2z2 + 1)z

√
(1− µ2)(z2n2 + 1)

n− µ2
− 1

+ (n− 1)(µ2nz2 + 1) > 0. (18.5.15)
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Since √
(1− µ2)(z2n2 + 1)

n− µ2
− 1 < nz,

we have

J(n, z) > (1− µ2)(n2z2 + 1)(nz2 + 1)− (n− µ2)(nz2 + 1)

− (1− µ2)(n2z2 + 1)nz2 + (n− 1)(µ2nz2 + 1) = 0,
(18.5.16)

which implies that (18.5.13) holds. This shows that, under assumption (18.5.12),
(n2, z2) determined by (18.5.6) and (18.5.11) is the solution that we seek.

4. Rewrite Θ(n, z2) as

Θ(n,Z) =
(1− µ2)2

n2

(
Z3 −

(
1 +

2µ2a

1− µ2

)
Z2 −

( 1

n− 1
+

µ2

n− µ2

)
a2Z − a2

)

with Z = n2z2 + 1 and

a =
2

1− µ2
(n− 1)(n− µ2). (18.5.17)

Then (18.5.12) is equivalent to

F (Z) = Z3 − bZ2 − dZ − a2 ≥ 0 (18.5.18)

with

b = 1 +
2µ2

1− µ2
a, d =

( 1

n− 1
+

µ2

n− µ2

)
a2. (18.5.19)

Let Z = y + b
3 . Then (18.5.18) becomes

f(y) = y3 + ky + l ≥ 0, (18.5.20)

where
k = −d− 1

3
b2 < 0, l = −a2 − 2

27
b3 − 1

3
bd < 0.

The discriminant for f(y) = 0 is

l2

4
+
k3

27
=

a3

54(1− µ2)3
∆(n),

where

∆(n) :=− 16µ4n4 +
(
40µ4 + 24µ2 − 16

)
n3 −

(
37µ4 + 38µ2 − 27

)
n2

−
(
µ6 − 17µ4 − 9µ2 + 9

)
n− (1− µ2)4(n+ 1)

n− µ2
− µ2(1− µ2)2.

(18.5.21)
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3
k−

√
−

3y2y

)y(f

1y

y

Figure 18.6: The behavior of function f(y)

From

∆(1) < 0, ∆′(1) < 0, ∆′′(1) < 0, ∆′′′(1) < 0, ∆(4) < 0,

we have
∆(n) < ∆(1) < 0.

It follows that f(y) = 0 has three real roots:

y1,2,3 =
3

√√√√− l
2

+
a

3

√
−a

6

∆(n)

1− µ2
i+

3

√√√√− l
2
− a

3

√
−a

6

∆(n)

1− µ2
i.

That is,

y1 =
2

3

√
b2 + 3d cos(

β

3
), (18.5.22)

y2 =
2

3

√
b2 + 3d cos(

β + 2π

3
), (18.5.23)

y3 =
2

3

√
b2 + 3d cos(

β + 4π

3
), (18.5.24)

where

β = arccos(
27a2 + 2b2 + 9bd

2(b2 + 3d)
√
b2 + 3d

) ∈ (0,
π

2
). (18.5.25)

Then we have
y1 > 0 > y3 > y2.

It follows that
f(y) ≥ 0 for y ≥ y1 or y2 ≤ y ≤ y3;

see Fig. 18.6.
Furthermore, we find that f(1− b

3 ) < 0 and 1− b
3 > −

√
−k3 , so that

y3 < 1− b

3
< y1.
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Therefore, we conclude from Z = n2z2 + 1 > 1 that

f(y) ≥ 0 if and only if y ≥ y1.

That is, the necessary and sufficient condition for the existence of the two-shock
configuration at P0 is that the wedge angle θw is larger than the detachment
angle θd

w determined by (18.5.1). This completes the proof.

Now we determine the sonic angle θs
w.

Theorem 18.5.3. The weak state (2) at point P0 is supersonic if and only if
the wedge angle θw is larger than the sonic angle θs

w determined by

θs
w = arctan

( 1

n

√
Z0 − 1

)
(18.5.26)

with
Z0 =

1

2

(√
Z1 +

√
Z2 +

√
Z3

)
+

1

4
(b+ 1), (18.5.27)

where

Z1 =
3

√

−s
2

+

√
s2

4
+
r3

27
+

3

√

−s
2

+

√
s2

4
− r3

27
− 2

3
a1 +

1

4
(b+ 1)2,

Z2 = ω
3

√

−s
2

+

√
s2

4
+
r3

27
+ ω2 3

√

−s
2

+

√
s2

4
− r3

27
− 2

3
a1 +

1

4
(b+ 1)2,

Z3 = ω2 3

√

−s
2

+

√
s2

4
+
r3

27
+ ω

3

√

−s
2

+

√
s2

4
− r3

27
− 2

3
a1 +

1

4
(b+ 1)2,

and

ω = −1

2
+

√
3

2
i,

a1 = b− d− µ2(n− 1)2

(1− µ2)2
,

b1 = d− a2 −
(
µ2(n2 − 2) + n

)
(n− 1)2

(1− µ2)2
,

d1 = a2 − (n− µ2)(n+ 1)(n− 1)3

(1− µ2)2
,

r = −4d1 − (b+ 1)b1 −
1

3
a2

1,

s =
8

3
a1d1 −

1

3
(b+ 1)a1b1 − (b+ 1)2d1 − b21 −

2

27
a3

1.
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Proof. From (18.5.3), we have

M2
2 − 1 =

1

n2 − µ2

(
(1− µ2)n2

2z
2
2 + 1− n2

)

=
1

(n2 − µ2)
(
(n− µ2)z2

2 + n(µ2nz2 + 1)
)2G(z2

2), (18.5.28)

where

G(z2
2) := (n− µ2)2z4

2

+
(
(1− µ2)(n2z2 + 1)2 + 2n(n− µ2)(µ2nz2 + 1)

− (n− µ2)(n2z2 + 1)
)
z2

2

+ n2(µ2nz2 + 1)2 − n(n2z2 + 1)(µ2nz2 + 1). (18.5.29)

The equation: G(z2
2) = 0 has two distinct roots: r− < 0 < r+. We then see

that
(z2

2 − r+)G(z2
2) > 0 for z2

2 6= r+.

Thus, the weak state (2) is supersonic if and only if

z2
2 ≥ r+.

Notice that equation: z2
2 = r+ is equivalent to the following equation:

nz2Θ = (n− 1)2(µ2nz2 + 1)(z2 + 1), (18.5.30)

which is from (18.5.9).
We rewrite (18.5.30) as

H(Z) := (Z − 1)h(Z)− (n− 1)2n3

(1− µ2)2
= 0, (18.5.31)

where Z = 1 + n2z2 and

h(Z) := Z3−bZ2−
(
d+

µ2(n− 1)2

(1− nu2)2

)
−a2− (n− 1)2

(
µ2(n2 − 1) + n

)

(1− µ2)2
. (18.5.32)

Similarly to the argument for Theorem 18.5.2, we conclude that the equation:

(Z − 1)h(Z) = 0

has two roots: 1 and Z̄ ≥ 1.
Since (n−1)2n3

(1−µ2)2 ≥ 0, there exists a unique solution Z0 > Z̄ ≥ 1 of (18.5.31);
the other solutions are less than 1. Then the solution of equation (18.5.31) is
(18.5.27), which implies that

z0 =
1

n

√
Z0 − 1 (18.5.33)
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is the solution of (18.5.30). Furthermore, we have

(z2)z =− 1

2(n− µ2)(nz2 + 1)2
√

Θ

×
(

(1− µ2)(n3z4 + 3n2z2 − nz2 + 1)
√

Θ

+ (1− µ2)2z(nz2 + 1)(n2z2 + 1)2

+ 2nz3(1− µ2)2(n− 1)(n2z2 + 1)

+ 4nz(1− µ2)(n− 1)(n− µ2)(nz2 + 1)
)
< 0.

Combining z2 < 0 together with (18.5.30) yields

(z2
2)z = 2z2(z2)z > 0.

Thus, we have
(z2

2 − r+)(z − z0) > 0 when z 6= z0.

It follows that

G(z2
2)





> 0 for z > z0,

= 0 for z = z0,

< 0 for tan θd
w < z < z0.

Then, for

θs
w = arctan z0 = arctan(

1

n

√
Z0 − 1),

we conclude

M2
2 − 1





> 0 for θw > θs
w,

= 0 for θw = θs
w,

< 0 for θd
w < θw < θs

w.

This completes the proof.

Fig. 18.7 shows the results in Theorems 18.5.2–18.5.3 for γ = 1.4 (air). In
Fig. 18.7, the incident angle α = π

2 − θw is a function of the ratio of pressures,
p0

p , the thick curve is the curve of the detachment incident angle αd = π
2 −θd

w for
the existence of the two-shock configuration, and the dashed curve is the curve
that provides the relative weak outflow behind the reflected-diffracted shock to
be sonic. In the region between these two curves, state (2) is subsonic. In the
region under the dashed curve, state (2) is supersonic.

18.6 VON NEUMANN’S CONJECTURES

As in the potential flow case, for the wedge angle θw ∈ (0, π2 ), different patterns
of reflected-diffracted configurations may occur for the full Euler case. Several
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Figure 18.7: The sonic conjecture vs the detachment conjecture θs
w > θd

w when
γ = 1.4. Courtesy of Sheng-Yin [241].

criteria and conjectures have been proposed for the existence of different con-
figurations for the patterns (cf. Ben-Dor [12]). As indicated in Chapter 2, one
of the most important conjectures made by von Neumann [267, 268] in 1943 is
the detachment conjecture, which states that the regular reflection-diffraction
configuration may exist globally whenever the two-shock configuration (one is
the incident shock and the other is a reflected shock) exists locally around point
P0 (also see Figs. 2.3–2.6).

Similarly, von Neumann’s detachment conjecture for the full Euler equations
can be stated as follows:

von Neumann’s Detachment Conjecture: There exists a global regular
reflection-diffraction configuration whenever the wedge angle θw is in (θd

w,
π
2 ), as

shown in Figs. 2.3–2.6. That is, the existence of state (2) implies the existence
of a regular reflection-diffraction solution of Problem 18.2.

It is clear that the regular reflection-diffraction configuration is impossible
without a local two-shock configuration at the reflection point P0 on the wedge,
and it is expected that the Mach reflection-diffraction configurations occur when
the wedge angle θw is smaller than the detachment angle θd

w. Similarly, when
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the wedge angle θw is larger than the detachment angle θd
w, the local theory

indicates that there are two possible states for state (2), and there has long
been a debate as to which one is physically admissible; see Courant-Friedrichs
[99], Ben-Dor [12], and the references cited therein.

Since the reflection-diffraction problem is not a local problem, we take a dif-
ferent point of view, as in §7.5, for the potential flow case. The selection of state
(2) should be determined by not only the local feature of the problem but also the
global features of the problem, and more precisely, by the stability/continuity
of the configuration with respect to the wedge angle θw as θw → π

2 .
Stability/Continuity Criterion to Select the Correct State (2): Since

the solution is uniquely determined when the wedge angle θw = π
2 , it is necessary

that the global regular reflection-diffraction configurations should converge to
the unique normal reflection solution when θw → π

2 , provided that such global
configurations can be constructed.

As for the potential flow equation, we employ this stability criterion to con-
clude that the choice for state (2) should be (Ua2 , V

a
2 , p

a
2 , ρ

a
2), which is a weaker

state (i.e., the jump of the corresponding shock is smaller), if such a global
configuration can be constructed.

In general, (Ua2 , V
a
2 , p

a
2 , ρ

a
2) may be supersonic or subsonic. If it is supersonic,

the characteristic propagation speeds are finite, and state (2) is completely de-
termined by the local information: state (1), state (0), and the location of point
P0. That is, any information from the reflection region, especially the distur-
bance at corner P3, cannot travel towards the reflection point P0. However, if
it is subsonic, the information can reach P0 and interact with it, potentially
creating a new type of shock reflection-diffraction configurations. In particular,
it is clear that no supersonic reflection configurations exist beyond the sonic
angle. This argument motivated the following conjecture:

von Neumann’s Sonic Conjecture: There exists a supersonic regular
reflection-diffraction configuration when θw ∈ (θs

w,
π
2 ) for θs

w > θd
w, as shown

in Figs. 2.3 and 2.5. This is, the supersonicity of the weak state (2) (i.e.,
|(Ua2 , V a2 )| > ca2) at P0 implies the existence of a supersonic regular reflection-
diffraction solution of Problem 18.2.

There has been a long debate in the literature as to whether there still ex-
ists a global regular reflection-diffraction configuration beyond the sonic angle
up to the detachment angle; see Ben-Dor [12] and the references cited therein.
As shown in Fig. 18.7, the difference between the wedge angles of the sonic
conjecture and the detachment conjecture is only fractions of a degree; a reso-
lution has greatly challenged even sophisticated modern numerical and labora-
tory experiments. In Part IV, we have rigorously proved that the global regular
reflection-diffraction configuration does exist beyond the sonic angle up to the
detachment angle for potential flow.

Similarly, to solve von Neumann’s conjectures, we can also reformulateProb-
lem 18.2 into the following free boundary problem:
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Problem 18.3 (Free Boundary Problem). For θw ∈ (θd
w,

π
2 ), find a free bound-

ary (curved reflected-diffracted shock) Γshock and a vector function (U, p, ρ) de-
fined in region Ω, as shown in Figs. 2.3–2.6, such that ϕ satisfies:

(i) Equation (18.3.1) in Ω;

(ii) On the free boundary Γshock,

U · τ = U1 · τ , ρU · ν = ρ1U1 · ν, p+ ρ(U · ν)2 = p1 + ρ1(U1 · ν)2,

γp

(γ − 1)ρ
+

1

2
(U · ν)2 =

γp1

(γ − 1)ρ1
+

1

2
(U1 · ν)2,

ρ > ρ1,

where ν and τ are the unit normal and tangent vectors of the free boundary
Γshock;

(iii) (U, p, ρ) = (U2, p2, ρ2) on Γsonic in the supersonic reflection case as shown
in Figs. 2.3 and 2.5, and at P0 in the subsonic reflection case as shown in
Figs. 2.4 and 2.6;

(iv) U · ν = 0 on Γwedge ∪ Γsym,

where ν is the interior unit normal to Ω on Γwedge ∪ Γsym.

If the free boundary can be written as Γshock = {ξ2 = fsh(ξ1)} with fsh(ξ0
1) =

ξ0
1 tan θw, then the free boundary conditions can be written as

dfsh

dξ1
=
U1V1 − c̄1

√
|U1|2 − c̄21

U2
1 − c̄21

= −u− u1

v − v1
,

p

p1
=
ρ− µ2ρ1

ρ1 − µ2ρ
,

p− p1 = −ρ1

(
U1
u− u1

v − v1
+ V1

)
(v − v1),

ρ > ρ1,

where c̄21 = ρ
ρ1

p−p1

ρ−ρ1
and µ2 = γ−1

γ+1 .
The boundary condition (U, V, p, ρ) along the sonic circle is the Dirichlet

boundary condition, so that (U, V, p, ρ) is continuous across the sonic circle.
Similarly, we notice that the key obstacle to the existence of regular reflection-

diffraction configurations is a new additional possibility that, for some wedge
angle θc

w ∈ (θd
w,

π
2 ), the reflected-diffracted shock P0P2 may attach to the wedge

vertex P3, as observed by experimental results (cf. [263, Fig. 238]).
On the other hand, solutions with an attached shock do not exist when the

initial data of Problem 18.1 (or equivalently, the parameters of state (1) in
Problem 18.2) satisfyMI ≤ 1, or equivalently, u1 ≤ c1, since the front state
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of the shock must be supersonic. Moreover, in this case, the regular reflection-
diffraction solution of Problem 18.2 should exist for each θw ∈ (θd

w,
π
2 ), as von

Neumann conjectured [267, 268].
In the other case, MI > 1, there is a possibility that there exists θc

w ∈
(θd

w,
π
2 ) such that a regular reflection-diffraction solution with an attached shock

of Problem 18.2 exists for each θw ∈ (θc
w,

π
2 ) in the sense that a solution with

P2 = P3 exists for θw = θc
w.

SinceMI is a function of nI = ρ1

ρ0
for fixed γ > 1, determined by (18.2.4), the

condition thatMI ≤ 1 orMI > 1 is equivalent to the corresponding condition
on nI ; that is to say, there exists n∗ > nI such that

(i) MI < 1 for any nI ∈ (1, n∗);

(ii) MI = 1 for nI = n∗;

(iii) MI > 1 for any nI ∈ (n∗,∞).

Thus, Case (i) corresponds to the case of a relatively weaker incident shock,
while Case (iii) corresponds to the case of a relatively stronger incident shock.

In fact, the regime between angles θs
w and θd

w is very narrow and only frac-
tions of a degree apart; see Fig. 18.7 from Sheng-Yin [241], where the solid
curve is the detachment angle curve with respect to p0

p1
and the dash curve is

the sonic angle curve with respect to p0

p1
. This shows that the difference between

the two conjectures is only fractions of a degree. Therefore, a complete un-
derstanding of the behavior of the two different configurations requires further
rigorous mathematical analysis.

18.7 CONNECTIONS WITH THE POTENTIAL FLOW
EQUATION

In this section, we discuss the role of the potential flow equation for shock
reflection-diffraction, even in the realm of the full Euler equations.

Under the Hodge-Helmoltz decomposition:

U = Dϕ+ W, divW = 0

for some function ϕ and vector W, the Euler equations (18.3.1) become

div(ρDϕ) + 2ρ = −div(ρW), (18.7.1)

D
(1

2
|Dϕ|2 + ϕ

)
+
Dp

ρ
= (Dϕ+ W) ·DW + (D2ϕ+ I)W, (18.7.2)

(Dϕ+ W) ·Dω + (1 + ∆ϕ)ω = −curl
(Dp
ρ

)
, (18.7.3)

(Dϕ+ W) ·DS = 0, (18.7.4)

divW = 0, (18.7.5)
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where ω = curlW = curlU is the vorticity of the fluid, S = cv ln(pρ−γ) the
entropy, and D the gradient with respect to the self-similar variables ξ.

When ω = 0, S = const., and W = 0 on a curve Γ transverse to the fluid
direction, we conclude from (18.7.4) that, in domain ΩE formed by the fluid
trajectories past Γ:

d

dt
ξ = (Dϕ+ W)(ξ),

we have
S = const.

This implies
p = const. ργ in ΩE ,

so that
curl

(Dp
ρ

)
= const. curl(Dργ−1) = 0 in ΩE .

Notice that, if U = Dϕ+W ∈ C0,1, the theory of ordinary differential equations
implies that ΩE has an open interior, as long as curve Γ has a relatively open
interior.

Then equation (18.7.3) becomes

(Dϕ+ W) ·Dω + (1 + ∆ϕ)ω = 0,

which implies that

ω = 0, i.e., curlW = 0 in ΩE .

This yields that W = const. in ΩE , since divW = 0. Then we conclude

W = 0 in ΩE ,

since W|Γ = 0, which yields that the right-hand side of equation (18.7.2) van-
ishes.

By scaling, we finally conclude that any solution of system (18.7.1)–(18.7.4)
in domain ΩE is determined by the potential flow equation (2.2.8) with (2.2.9)
for self-similar solutions.

In our case, when θw ∈ (θs
w,

π
2 ), the weak state (2) is supersonic and satisfies

ω = 0, W = 0, S = S2. (18.7.6)

If our solution (U, p, ρ) is C0,1 in domain P0P1P2P3 (as shown in Figs. 2.3 and
2.5) and the tangential derivative of U is continuous across the sonic arc Γsonic,
(18.7.6) still holds along Γsonic on the side of Ω. Therefore, we conclude by
asserting the following theorem:

Theorem 18.7.1. Let (U, p, ρ) be a solution of Problem 18.2 such that (U, p, ρ)
is C0,1 in the open domain P0P1P2P3 and the tangential derivative of U is con-
tinuous across the sonic arc Γsonic. Let ΩE be the subdomain of Ω formed by the
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Figure 18.8: The potential flow equation coincides with the full Euler equations
in an important domain ΩE

fluid trajectories past the sonic arc Γsonic. Then, in ΩE, the full Euler equations
(18.7.1)–(18.7.4) coincide with the potential flow equation (2.2.8) with (2.2.9) for
self-similar solutions, that is, equation (2.2.8) with (2.2.9) is exact in domain
ΩE for Problem 18.2; see Fig. 18.8.

Remark 18.7.2. The domains like ΩE also exist in several Mach reflection-
diffraction configurations. Theorem 18.7.1 applies to such domains whenever
solution (U, p, ρ) is C0,1 and the tangential derivative of U is continuous. In
fact, Theorem 18.7.1 indicates that, for any solution ϕ of the potential flow
equation (2.2.8) with (2.2.9), the C1,1–regularity of ϕ and the continuity of the
tangential component of the velocity field U = Dϕ are optimal across the sonic
arc Γsonic in general.

Remark 18.7.3. The importance of the potential flow equation (1.5) with (1.4)
in the time-dependent Euler flows was also observed by Hadamard [146] through a
different argument. Moreover, as indicated in §2.1, for the solutions containing
a weak shock, especially in many aerodynamic applications, the potential flow
model (2.2.8)–(2.2.9) and the full Euler flow model (18.7.1)–(18.7.4) match each
other well up to the third order of the shock strength. For more on this, see Bers
[16], Glimm-Majda [139], and Morawetz [221].

Remark 18.7.4. Since two eigenvalues of system (18.7.1)–(18.7.4) are always
real and repeated, with two linearly independent eigenvectors, system (18.7.1)–
(18.7.4) can be decomposed of two transport-type equations and two nonlinear
equations of mixed hyperbolic-elliptic type. While we have developed essential
techniques in Parts I–IV to handle two mixed-type nonlinear equations with sim-
ilar difficulties as for the potential flow equation (2.2.8) with (2.2.9), there may
be an additional new difficulty for the two coupled transport-type equations in the
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other domain Ω \ ΩE containing the stagnation points U = 0 at which pressure
p and vorticity ω may have additional singularity (cf. Serre [236]).

Notes: Theorem 18.5.2 was rigorously proved in Chang-Chen [31] based on
the work by Bleakney-Taub [18] and von Neumann [267, 268], while Theorem
18.5.3 is due to Sheng-Yin [241]. Theorem 18.7.1 and related analysis for the
role of the potential flow equation are due to Chen-Feldman [55].



Chapter Nineteen

Shock Reflection-Diffraction and

New Mathematical Challenges

As demonstrated in Chapters 1–18, the analysis of shock reflection-diffraction
has advanced the development of new mathematical approaches, techniques, and
ideas that will be useful for solving further problems involving shock reflection
and/or diffraction, as well as other related problems involving similar analytical
difficulties. Nevertheless, further understanding of these phenomena requires
the development of ever more powerful new mathematics.

19.1 MATHEMATICAL THEORY FOR MULTIDIMENSIONAL
CONSERVATION LAWS

As we have indicated, shock reflection-diffraction configurations are a funda-
mental class of structural patterns of solutions of the two-dimensional Riemann
problem for the Euler equations for compressible fluids. In addition, the Euler
equations are core fundamental nonlinear PDEs in the multidimensional hyper-
bolic systems of conservation laws, and the Riemann solutions are expected to be
the global attractors and determine the local structure of general entropy solu-
tions of the Cauchy problem (the initial value problem). Therefore, any further
understanding of the shock reflection-diffraction configurations will advance our
understanding of the behavior of general entropy solutions of multidimensional
hyperbolic systems of conservation laws, which plays an important role in the
multidimensional mathematical theory of hyperbolic conservation laws.

In this book, we have established the global existence, regularity, and struc-
tural stability of regular reflection-diffraction configurations for potential flow
up to the detachment angle or the critical angle. Further fundamental mathe-
matical problems include the following:

Problem 19.1. Establish a mathematical theory for shock reflection-diffraction
for the two-dimensional isentropic and/or full Euler equations.

As seen in Chapters 1–18, we have understood the mathematical difficulties
relatively well for the transonic shocks, the Kelydsh degeneracy near the sonic
arc, the singularities of solutions near the wedge vertex and the corner between
the transonic shock and the sonic arc for the nonlinear second-order elliptic
equations (cf. Theorem 18.7.1), as well as a one-point singularity at the corner
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Figure 19.1: Different types of Mach reflection-diffraction configurations

between the reflected shock and the wedge at the reflection point for the tran-
sition from the supersonic to subsonic reflection configurations when the wedge
angle decreases across the sonic angle up to the detachment angle or the critical
angle. On the other hand, the following two new features of the problem for the
isentropic and/or full Euler equations still need to be understood:

(i) Solutions of transport-type equations with rough coefficients and station-
ary transport velocity;

(ii) Estimates of the vorticity of the pseudo-velocity.
Indeed, the calculations in Serre [236] have shown difficulties in estimating

vorticity ω = ∇×U. It is possible that the vorticity will have some singularities
in the region, perhaps near the wedge boundary and/or corner. In fact, even
for potential flow, the second derivatives of the velocity potential, i.e., the first
derivatives of the velocity, may blow up at the wedge corner.

Problem 19.2. Analyze Mach reflection-diffraction configurations for the two-
dimensional isentropic and/or full Euler equations.

When the wedge angle θw decreases across the detachment angle θd
w, or

the incident-shock strength decreases, there is a transition from the Regular
Reflection (RR) to a Mach Reflection (MR). The MR configurations include the
Simple Mach Reflection and become increasingly complex when they include
the Complex Mach Reflection, the Double Mach Reflection, the von Neumann
Reflection, and the Guderley Reflection, among others, as the wedge angle θw

decreases; see Fig. 19.1, as well as Figs. 1.2–1.6, for the types of the Mach
Reflection and the Guderley Reflection. A detailed analysis based on the shock
polar can be found in [12, 13, 31, 151], while [96, 159, 230, 233, 257, 258, 259]
and the references cited therein provide supportive numerical experiments.

There are several additional difficulties for the Mach reflection-diffraction
configurations, including:

(i) A priori understanding of the location of the triple-point where the inci-
dent shock and the reflected-diffracted shock meet;

(ii) At the triple-point of the Mach reflection, an additional shock called a
Mach stem connects this point to the wedge. Since a pure three-shock pattern
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Figure 19.2: Vorticity waves in the Mach reflection-diffraction configurations

is not normally possible, as indicated in Courant-Friedrichs [99] and Serre [236],
a fourth wave – vortex sheet, or other types of waves, must originate from
this triple-point generally. See Fig. 19.2 for a possible vorticity wave formed
by the vortex sheet originating from the triple-point in the Mach reflection
configuration as observed experimentally. The stability of vortex sheets is a very
sensitive issue, as indicated by Artola-Majda [2, 3]; for example, such waves are
known to be nonlinearly unstable dynamically in general, unless the jump of
the tangential velocity exceeds 2

√
2c (see [97, 98]). The question is whether

the self-similarity stabilizes such vortex sheets. In particular, it is important to
identify the right function space for the vorticity function ω = ∇×U, especially
to examine whether the vortex sheet for the vorticity wave is a chord-arc with
the form:

z(s) = z0 + a(s)

∫ s

0

eib(τ)dτ, b ∈ BMO,

or a similar form.

Problem 19.3. Study the shock reflection-diffraction configurations for the
higher dimensional potential flow equations and isentropic/full Euler equations.

When a planar shock hits an n-dimensional cone, n ≥ 3, higher dimensional
shock reflection-diffraction phenomena occur. Then the supersonic part of the
reflection-diffraction region, corresponding to state (2) in the two-dimensional
case, is no longer a constant physical state, and the reflected-diffracted shock is
no longer a straight cone. In particular, for the higher dimensional potential flow
equation, the pseudo-potential function is no longer a quadratic function and the
supersonic part of the reflected-diffracted shock should also be treated as a free
boundary. The supersonic state is determined by the degenerate second-order
hyperbolic equations, which has to be solved first.
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Another additional difficulty is that the boundary of the physical domain has
a more delicate singularity at the origin, i.e., the cone vertex. It is important
to understand how the pseudo-velocity vanishes in the subsonic domain in the
self-similar coordinates. Further points to understand include the degeneracy
of solutions across the sonic surface (in the RR case) and the singularity of
solutions near the curved wedge-like corner between the transonic shock and
the sonic surface in the higher dimensional case.

It is also important to study the problem for higher dimensional isentropic
and/or full Euler equations.

19.2 NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS OF
MIXED ELLIPTIC-HYPERBOLIC TYPE

As we have known from the previous chapters, nonlinear PDEs of mixed elliptic-
hyperbolic type arise naturally from the shock reflection-diffraction problem.
Such mixed equations also arise naturally in many other fundamental prob-
lems in fluid mechanics, differential geometry, elasticity, relativity, calculus of
variations, and related areas. The mathematical approaches and techniques
developed in this book will be useful for solving a variety of nonlinear PDEs
involving similar analytical difficulties. Nevertheless, further new mathematical
ideas, techniques, and approaches need to be developed for solving these PDEs.

Problem 19.4. Study further elliptic free boundary problems for nonlinear
equations of mixed type, and the corresponding nonlinear degenerate elliptic
equations and systems.

From our solution of the regular shock reflection-diffraction problem for the
potential flow equation, the physical problem has been formulated into a free
boundary problem for a nonlinear second-order degenerate elliptic equation with
ellipticity degenerating on a part of the fixed boundary (the sonic curve), and
mathematical techniques have been developed for this specific form of elliptic
degeneracy. Our analysis has the following features:

(i) The problem is global. In particular, even the local regularity estimates
for the nonlinear degenerate elliptic equation near the sonic arc require some
global properties of the solutions, including the positivity of ψ in §11.4. Sim-
ilarly, in the subsonic reflection case, the estimates for the uniformly elliptic
equation in the domain with free boundary near the reflection point in §16.6
also rely on a global property – the monotonicity cone of ϕ1 − ϕ. Furthermore,
the use of global properties is essential in the other estimates; for example, the
estimates in §11.4 do not hold definitely if ψ is negative or changes its sign. For
more on this, see the estimates in §9.5.

(ii) In order to obtain the elliptic solution of a mixed-type nonlinear equation,
the formulation of the free boundary problem should match with the nonlinear
equation naturally.
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(iii) Our regularity estimates near the sonic arc, where the equation is degen-
erate elliptic, are obtained by using a comparison function (which utilizes the
Keldysh-type elliptic degeneracy and depends on the detailed structure of the
self-similar potential flow equation), combined with rescaling techniques whose
scaling is determined by both the equation and the structure of the domain.
Indeed, we have developed three different scalings; see §11.4 and §16.4–§16.5.

Since nonlinear degenerate elliptic problems for PDEs of mixed type arise
in many applications, it is important to obtain a deeper understanding of the
different types of elliptic degeneracy and the natural global settings for such
problems.

Problem 19.5. Study further nonlinear degenerate hyperbolic equations and
systems.

Nonlinear degenerate hyperbolic equations/systems also arise in many shock
reflection/diffraction problems, especially in the high dimensional case with
sonic boundaries, as described in Problem 19.3. There are two types of de-
generacy near the degenerate sets: hyperbolic degeneracy (Tricomi-type) and
parabolic degeneracy (Keldysh-type). The prototype for linear degenerate hy-
perbolic equations is the celebrated Euler-Poisson-Darboux equation (cf. [37,
38, 41]), which has been successfully applied in solving some important one-
dimensional nonlinear problems involving nonlinear degenerate hyperbolic sys-
tems (cf. [38, 61, 62, 63, 64] and the references cited therein). The degeneracy
behavior of self-similar flow for the two-dimensional Euler equations near the
vacuum has been exhibited through the characteristic decompositions in Zheng
[289]; see also [182, 180, 161]. Further understanding of nonlinear degenerate
hyperbolic equations and systems in the multidimensional case deserves special
attention.

Problem 19.6. Develop further new ideas, techniques, and approaches to ana-
lyze nonlinear PDEs of mixed elliptic-hyperbolic type

The study of degenerate hyperbolic equations and degenerate elliptic equa-
tions as proposed in Problems 19.4–19.5 will be very helpful for developing
further new ideas for nonlinear PDEs that change the type from hyperbolic to
elliptic. The unification of the mathematical theory for these two classes of non-
linear PDEs is at the cutting edge of modern mathematical research, and has
important implications for the parts of the wider scientific community which use
nonlinear PDEs. Despite this, nonlinear mixed-type PDEs still remain poorly
understood and are exceedingly challenging from both the theoretical and nu-
merical point of view. The mathematics of nonlinear mixed-type PDEs is largely
uncharted territory. Any advance in this direction can be expected to fertilize
and provide deeper insights into the theory of nonlinear PDEs in general, to
lead to efficient new algorithms for the computation of solutions, and to impact
upon developments in other branches of mathematics.

The mathematical methods expected for further development may include
weak convergence methods, entropy methods, energy estimate techniques, pos-
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itive symmetrization techniques, and measure-theoretical methods, among oth-
ers. These methods are largely independent of the types of PDEs under consid-
eration (cf. [54, 69, 70, 115, 126]) and will therefore work well within a unified
framework of nonlinear mixed-type PDEs.

19.3 FREE BOUNDARY PROBLEMS AND TECHNIQUES

As presented in this book, the shock reflection-diffraction problem can be for-
mulated as free boundary problems involving nonlinear PDEs of mixed elliptic-
hyperbolic type. Similarly, many other transonic problems can also be formu-
lated as free boundary problems involving nonlinear PDEs of mixed type (cf.
[38, 58] and the references cited therein). The understanding of these tran-
sonic problems requires a complete mathematical solution of the correspond-
ing free boundary problems for nonlinear mixed PDEs, such as what we have
done for the shock reflection-diffraction problem in this book. These problems
are not only longstanding open problems in fluid mechanics, but also funda-
mental in the mathematical theory of multidimensional conservation laws; see
[58, 139, 236, 286] and the references cited therein. In this sense, we have to
understand these free boundary problems in order to fully understand global
entropy solutions to multidimensional hyperbolic systems of conservation laws.

Problem 19.7. Develop further free boundary techniques for solving transonic
shock problems.

As we have shown, the shock reflection-diffraction problem has been for-
mulated as a one-phase free boundary problem for nonlinear degenerate ellip-
tic PDEs. Similarly, other shock reflection/diffraction problems such as the
Prandtl-Meyer problem for supersonic flow impinging onto solid wedges can be
formulated as one-phase free boundary problems involving other mathematical
difficulties (cf. [5, 6]). Similar one-phase, or even two-phase, free boundary prob-
lems also arise in many other transonic flow problems, such as steady transonic
flow problems including transonic nozzle flow problems (cf. [7, 38, 53, 179]),
steady transonic flows past obstacles (cf. [38, 43, 47, 85]), and the local stabil-
ity of Mach configurations (cf. [81, 82]), as well as higher dimensional versions of
Problem 19.3 (shock reflection-diffraction by a solid cone). Some of these involve
various types of degeneracy of free boundaries (i.e., the strength of jump tends
to zero at some points or singularities along the free boundary). In Chapters
1–18, we have discussed recently developed mathematical approaches and tech-
niques for solving some of these free boundary problems. On the other hand,
the analysis of other types of transonic problems demands further development
of mathematical ideas, techniques, and approaches.

Problem 19.8. Develop mathematical techniques for continuous transition be-
tween the supersonic and subsonic phases.

Consider, for example, transonic flow problems involving supersonic bubbles
in subsonic flow (cf. [95, 159, 217, 218, 219, 257, 258, 259]) and steady transonic
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flows past obstacles and nozzles (cf. [7, 38, 43, 47, 53, 85, 179]). Some recent
experimental and numerical results have shown that supersonic bubbles may oc-
cur even in the shock reflection-diffraction configurations, such as the Guderley
reflection-diffraction configurations (cf. [243, 257, 258, 259]). The common fea-
ture of these problems is the involvement of the continuous transition between
the supersonic and subsonic phases. Many of these problems can be formulated
as free boundary problems for nonlinear PDEs of mixed elliptic-hyperbolic type,
whose free boundary is the phase boundary between the elliptic and hyperbolic
phases, which degenerate at least on some part of the transition set. There have
not yet emerged mathematical techniques and approaches efficient enough to
tackle such free boundary problems. One of the strategies is to deal first with
some fundamental, concrete physical transonic problems involving supersonic
bubbles in subsonic flow.

Problem 19.9. Develop mathematical techniques to understand the behavior of
solutions near a point or set where a free boundary meets a fixed boundary, es-
pecially when the free and/or fixed boundaries are transition boundaries between
the hyperbolic and elliptic phases.

As we have presented in this book, the free boundary problem formulated
from the shock reflection-diffraction problem involves the corner between the
free boundary and a fixed boundary that is a degenerate sonic curve for the
nonlinear PDE. In this book, as well as in earlier papers [4, 54], we have devel-
oped mathematical techniques for handling the optimal regularity of both the
free boundary and the corresponding solution at corner P1 on Fig. 2.3. The
reflected shock P0P2 is C2 near P1, so that the curved free boundary Γshock

matches at P1 not only the slope but also the curvature of the straight reflected
shock P0P1. The corresponding solution in Ω is C1,1 near P1, but not C2 up to
P1. Our techniques have been developed based on the features of the underly-
ing nonlinear PDE. It would be interesting to develop further the mathematical
techniques and approaches for understanding the behavior of solutions near the
point or set where a free boundary meets a fixed boundary, especially when the
free and/or fixed boundaries are transition boundaries between the hyperbolic
and elliptic phases for general second-order PDEs of mixed type.

19.4 NUMERICAL METHODS FOR MULTIDIMENSIONAL
CONSERVATION LAWS

The main challenge in designing numerical algorithms for hyperbolic conserva-
tion laws is that weak solutions are not unique, and multidimensional waves
such as vortex sheets and entropy waves are often sensitive with perturbations,
so that the numerical schemes should be consistent with the Clausius inequality
(the entropy inequality), as well as other physical requirements to capture the
sensitivity of multidimensional waves. Excellent numerical schemes should also
be numerically simple, robust, fast, and low cost, and have sharp oscillation-free
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resolutions and high accuracy in the domains where the solution is smooth. It
is also desirable that the schemes capture vortex sheets, vorticity waves, and
entropy waves, as they appear in the shock reflection-diffraction configurations,
and are coordinate invariant, among other features. The main difficulty in cal-
culating fluid flows with discontinuities is that it is very hard to predict, even in
the process of a flow calculation, when and where new discontinuities arise and
interact. Moreover, tracking the discontinuities, especially their interactions, is
numerically burdensome (see [20, 100, 150, 174]).

Problem 19.10. Develop more efficient numerical methods for further under-
standing shock reflection-diffraction phenomena.

Since its fundamental importance in fluid mechanics and the mathemati-
cal theory of multidimensional conservation laws with rich structure, the shock
reflection-diffraction problem has become a standard test problem for multidi-
mensional numerical methods; see [12, 104, 105, 120, 133, 134, 135, 137, 138,
139, 141, 149, 151, 152, 159, 160, 170, 174, 177, 221, 232, 236, 240, 256, 257,
258, 259, 264, 273, 282] and the references cited therein. On the other hand,
the sensitivity with respect to the wedge angle and the strength of the inci-
dent shock, and the complexity of the shock reflection-diffraction configurations
urgently ask for more efficient numerical methods.

Problem 19.11. Develop more efficient numerical methods for multidimen-
sional conservation laws.

Shock waves, vorticity waves, and entropy waves are, by nature, fundamental
discontinuity waves, and they arise in supersonic or transonic gas flow, or from
a very sudden release (explosion) of chemical, nuclear, electrical, radiate, or
mechanical energy in a limited space. Tracking these discontinuities and their
interactions, especially when and where new waves arise and interact in the
motion of gases, is one of the main motivations for numerical computation for
the gas dynamics equations.

An efficient numerical approach is shock capturing algorithms for general hy-
perbolic conservation laws with form (1.10) or (1.11). Modern numerical ideas
of shock capturing for computational fluid dynamics date back to 1944 when von
Neumann first proposed a new numerical method, a centered difference scheme,
to treat the hydrodynamical shock problem, for which numerical calculations
showed oscillations on the mesh scale (see Lax [173]). In 1950, von Neumann’s
dream of capturing shocks was first realized when he and Richtmyer [271] intro-
duced the ingenious idea of adding a numerical viscous term of the same size as
the truncation error into the hydrodynamic equations. Their numerical viscosity
guarantees that the scheme is consistent with the Clausius inequality, i.e., the
entropy inequality. The shock jump conditions – the Rankine-Hugoniot condi-
tions – are satisfied, provided that the Euler equations of gas dynamics are dis-
cretized in conservation form. Then oscillations are eliminated by the judicious
use of the artificial viscosity; the solutions constructed by this method converge
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uniformly, except in a neighborhood of shocks where they remain bounded and
are spread out over a few mesh intervals.

In the one-dimensional case, further examples of success include the Lax-
Friedrichs scheme (1954), the Glimm scheme (1965), the Godunov scheme (1959)
and related high order shock capturing schemes; for example, van Leer’s MUSCL
(1981), Colella-Wooward’s PPM (1984), Harten-Engquist-Osher-Chakravarthy’s
ENO (1987), the more recent WENO (1994, 1996), the Lax-Wendroff scheme
(1960) and its two-step version, the Richtmyer scheme (1967), as well as the
MacCormick scheme (1969). See also [66, 71, 100, 120, 141, 178, 256, 261] and
the references cited therein.

In the multidimensional case, one approach is to generalize directly the one-
dimensional methods for solving multidimensional problems; such an approach
has led to several useful numerical methods including semi-discrete methods and
Strang’s dimension-dimension splitting methods.

Observe that multidimensional effects do play a significant role in the behav-
ior of the solution locally, as shown in the shock reflection-diffraction configura-
tions. Also note that the approach that only solves one-dimensional Riemann
problems in the coordinate directions clearly lacks the use of all the multidi-
mensional information. The development of fully multidimensional methods
requires a good mathematical theory in order to understand the multidimen-
sional behavior of entropy solutions, especially the shock reflection-diffraction
configurations that have been analyzed in this book. However, further under-
standing of the shock reflection-diffraction configurations requires more efficient
numerical methods. Current efforts in this direction include employing more
information about the multidimensional behavior of solutions, determining the
direction of primary wave propagation and applying wave propagation in other
directions, and using transport techniques, upwind techniques, finite volume
techniques, relaxation techniques, and kinetic techniques from the microscopic
level; see [33, 169, 203, 256], [120, 139, 141, 178, 261], and the references cited
therein.

Other useful methods for calculating sharp fronts for gas dynamics equations
include front-tracking algorithms [91, 138] and level set methods [223, 239].
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