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MULTIDIMENSIONAL TRANSONIC SHOCKS AND FREE
BOUNDARY PROBLEMS FOR NONLINEAR EQUATIONS

OF MIXED TYPE

GUI-QIANG CHEN AND MIKHAIL FELDMAN

1. Introduction

We are concerned with the existence and stability of multidimensional transonic
shocks for the Euler equations for steady potential compressible fluids. The Euler
equations, consisting of the conservation law of mass and the Bernoulli law for the
velocity, can be written as the following second-order nonlinear equation of mixed
elliptic-hyperbolic type for the velocity potential ϕ : Ω ⊂ Rn → R:

(1.1) div (ρ(|Dϕ|2)Dϕ) = 0,

where the density function ρ(q2) is

(1.2) ρ(q2) =
(
1− θq2

) 1
2θ

with θ = γ−1
2 > 0 for the adiabatic exponent γ > 1.

The second-order nonlinear equation (1.1) is strictly elliptic at Dϕ with |Dϕ| = q
if

(1.3) ρ(q2) + 2q2ρ′(q2) > 0

and is strictly hyperbolic if

(1.4) ρ(q2) + 2q2ρ′(q2) < 0.

The elliptic regions of equation (1.1) correspond to the subsonic flow, and the
hyperbolic regions of (1.1) correspond to the supersonic flow.

Some efforts have been made in solving the nonlinear equation (1.1) of mixed
type. Shiffman [30], Bers [5], and Finn-Gilbarg [16] proved the existence and unique-
ness of solutions for the problem of subsonic flows of (1.1) passing an obstacle and
showed that, if the uniform outflow speed at infinity is sufficiently subsonic, then
there exists a unique subsonic solution of this problem, in which the nonlinear
equation (1.1) is uniformly elliptic; also see Dong [15] for further results. When
the uniform outflow speed at infinity is near sonic, Morawetz in [27] showed that
the flows of (1.1) past the obstacle may contain transonic shocks in general. One
exception is that, when the obstacle forms a wedge or conical body with a sharp
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head and an angle smaller than a certain degree, the uniform outflow with su-
personic speed may produce a nontransonic shock (hyperbolic-hyperbolic shock)
attached to the sharp head; the existence and stability of such shocks can be found
in [11, 12, 19, 22, 25, 29, 32] and the references cited therein.

Transonic shocks also arise in many other situations of physical importance. For
example, when a plane shock hits a wedge head on, a self-similar pattern of regularly
reflected shock travels outward as the shock moves forward in time, provided either
the wedge angle is large or the strength of the plane shock is large; then some
part or all of the reflected shock may form a transonic shock dividing two regions of
smooth flow, which is hyperbolic outside the shock and elliptic inside it (see [18, 28]).
Steady transonic shocks are also very useful for constructing global solutions for
some time-dependent problems (see [10]).

In this paper, we prove the existence and stability of steady multidimensional
transonic shocks (hyperbolic-elliptic shocks) for (1.1) under a C2,α, α ∈ (0, 1),
steady perturbation of the upstream supersonic flow. We consider (1.1) in a
bounded domain Ω := Qn−1 × (−N1, N2) with Qn−1 = (0, a)n−1, with Neumann
boundary conditions ∂νu = 0 on ∂Qn−1 × (−N1, N2), and Dirichlet conditions on
xn = −N1 and xn = N2; that is, a flow in a channel (with quadratic cross-section if
n = 3). Our results indicate that, for any given upstream supersonic flow ϕ− which
is sufficiently close in C2,α to a uniform flow in the direction xn, there exists a unique
solution ϕ of (1.1) with boundary data described above such that ϕ = ϕ− in the
supersonic region Ω− of ϕ, and equation (1.1) is elliptic in Ω+ := Ω\Ω−. The shock
surface S dividing Ω+ and Ω− is C2,α; that is, S is a graph xn = f(x1, · · · , xn−1)
with f ∈ C2,α. The solution ϕ is stable under the C2,α steady perturbation of the
supersonic flow ϕ−.

The transonic shock problem can be formulated into a free boundary problem:
The free boundary is the location of the transonic shock, and the free boundary
condition is the Rankine-Hugoniot jump condition on the shock. The equation is
hyperbolic in the upstream region where the given C2,α perturbed flow is super-
sonic. We are looking for the location of free boundary such that the free boundary
condition holds and equation (1.1) is elliptic in the downstream region.

In order to solve this free boundary problem, we first consider a one-phase prob-
lem for a uniformly elliptic equation obtained by a modification of (1.1) away from
the elliptic region: A solution satisfies the modified equation in the downstream
region and the modified free boundary condition and coincides with the given hy-
perbolic phase in the upstream region. Then, by a gradient estimate, we show that
the solution in fact solves the original problem. In order to avoid the difficulties
related to the study of the free boundary up to the fixed boundary, we use a re-
flection technique to extend the domain so that the whole free boundary lies in the
interior of the extended domain.

One of the main difficulties of the modified free boundary problem (Problem C
below) is that it does not directly fit into the variational framework in Alt-Caffarelli
[1] and Alt-Caffarelli-Friedman [2]. Indeed, according to Remark 3.1, Problem C
can be reformulated into the following form: Find a nonnegative solution u ∈ C(Ω)
satisfying suitable boundary conditions on ∂Ω and

divA(x,Du) = f(x) in Ω+ := {u > 0},(1.5)
A(x,Du) · ν = G(x, ν) on S := ∂Ω+ \ ∂Ω,(1.6)

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



MULTIDIMENSIONAL TRANSONIC SHOCKS, FREE BOUNDARY PROBLEMS 463

where ν is the unit normal vector to S towards the unknown phase. The equa-
tion is quasilinear, uniformly elliptic, while the dependence on ν in the function
G(x, ν) has a certain structure. The methods of [1] and [2] are directly applicable if
A(x,Du) = a(x, |Du|)Du, where a(x, s) is a scalar function, and G is independent
of ν. However, both conditions do not hold in our problem. On the other hand,
the nonlinearity in our problem makes it difficult to apply the Harnack inequality
approach of Caffarelli [6]. In particular, a boundary comparison principle for pos-
itive solutions of elliptic equations in Lipschitz domains is still unavailable in the
case that nonlinear equations are not homogeneous with respect to D2u,Du and
u, which is our case.

The approach we develop here is an iteration scheme, which is based on the
nondegeneracy of the free boundary condition: The jump of the normal derivative
of a solution across the free boundary has a strictly positive lower bound. The
nondegeneracy is also essential in other approaches to free boundary problems, for
example, see Alt-Caffarelli [1], Alt-Caffarelli-Friedman [2, 3], and Caffarelli [6]. In
terms of the problem (1.5) and (1.6), the iteration process is the following: Let
the domain Ω+

i be given so that Si := ∂Ω+
i \ ∂Ω is in C2,α. We solve the oblique

derivative problem (1.5) and (1.6) in Ω+
i (where the fixed boundary conditions

on ∂Ω+
i ∩ ∂Ω are also used) to obtain the solution ui ∈ C2,α(Ω+

i ). However, ui
is not identically zero on Si in general. Using the nondegeneracy and geometry
of our problem, we extend ui to the whole domain Ω so that ui ∈ C2,α(Ω) and
∂xnui ≥ a > 0 in Ω. Thus, the level set Si+1 := {ui = 0} ∩ Ω is a C2,α surface.
We define Ω+

i+1 := {u > 0} for the next step. The fixed point Ω+ of this process
determines a solution of the free boundary problem, since the corresponding solution
u of (1.5) and (1.6) satisfies u > 0 on Ω+ and u = 0 on S. On the other hand, since
the right-hand side of the free boundary condition (1.6) depends on ν, the elliptic
estimates alone are not sufficient to get the existence of a fixed point. However, the
structure of our problem allows us to obtain better estimates for the iteration and
to prove the existence of a fixed point.

The uniqueness and stability of solutions of the free boundary problem are ob-
tained by using the regularity and nondegeneracy of solutions.

The nonlinear approach we develop here can be applied for solving other multidi-
mensional transonic shock problems. As a direct example, in Section 7, we establish
the existence and stability of multidimensional transonic shocks near spherical or
circular transonic shocks. Another advantage of this approach is that it can be ap-
plied to multidimensional free boundary problems with more general fixed boundary
conditions. Furthermore, our approach and results in this paper can extend to the
problems with a steady C1,α, α ∈ (0, 1), perturbation of the upstream supersonic
flow and/or the problem with unbounded domains (see Chen-Feldman [9]).

A similar problem was considered in Canić-Keyfitz-Lieberman [8] for the two-
dimensional transonic small-disturbance (TSD) equation, which governs the be-
havior of the first nontrivial term in the geometric optics expansion to (1.1) near a
certain physical point. The TSD model can be written as a second-order nonlinear
equation of mixed type in two dimensions with coefficients depending only upon
the unknown function itself. The main difference between the TSD model and (1.1)
is that the coefficients of (1.1) depend on the gradient of the unknown function,
while the coefficients of the TSD equation are independent of the gradient of the
unknown function that generates additional compactness on which the approach in
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[8] relies. For other related results, we refer the reader to Majda [26] on the exis-
tence and stability, locally in time, of multidimensional shock fronts for the Euler
equations for compressible fluids.

In Section 2, we formulate the multidimensional transonic shock problem into a
free boundary problem, and then we describe the main theorems of this paper. In
Section 3, we introduce a subsonic truncation procedure and an extension procedure
to reformulate the free boundary problem for the equation of mixed type into the
free boundary problem for a second-order, nonlinear, uniformly elliptic equation
with a nondegenerate free boundary condition and to resolve the difficulties for the
study of the free boundary up to the fixed boundary. In Section 4, we introduce an
iteration scheme and prove the existence of a fixed point, that is, the existence of a
solution of the truncated free boundary problem. By choosing the C2,α perturbation
small in the hyperbolic region, we obtain an a priori gradient estimate to ensure
that our solution is the solution of the original free boundary problem. We show the
stability and uniqueness of the solution of the free boundary problem in Sections
5 and 6. In Section 7, we give another application of our approach for establishing
the existence and stability of multidimensional transonic shocks near spherical or
circular transonic shocks.

2. Transonic shocks, free boundaries, and main theorems

In this section we formulate the multidimensional transonic shock problem into
a free boundary problem for (1.1), and then we describe the main theorems of this
paper.

A function ϕ ∈W 1,∞(Ω) is a weak solution of (1.1) if

(i) |Dϕ(x)| ≤ 1/
√
θ a.e. x ∈ Ω (physical region);

(ii) for any w ∈ C∞0 (Ω),

(2.1)
∫

Ω

ρ(|Dϕ|2)Dϕ ·Dw dx = 0.

We are interested in the weak solutions with shocks. Let Ω+ and Ω− be open
nonempty subsets of Ω such that

Ω+ ∩ Ω− = ∅, Ω+ ∪ Ω− = Ω,

and S = ∂Ω+ \ ∂Ω. Let ϕ ∈ W 1,∞(Ω) be a weak solution of (1.1) so that ϕ ∈
C2(Ω±) ∩ C1(Ω±) and Dϕ has a jump across S.

We first derive the conditions on S which is an (n − 1)-dimensional smooth
surface. First, the requirement ϕ ∈ W 1,∞(Ω) yields curl(Dϕ) = 0 in the sense of
distributions, which implies

(2.2) ϕ+
τ = ϕ−τ on S,

where
ϕ±τ := Dϕ± − (Dϕ± · ν)ν

are the tangential gradients of ϕ on S in the tangential space with (n−1)-dimension
on the Ω± sides, respectively, and ν is the unit normal vector to S from Ω− to Ω+.
Then we simply write ϕτ := ϕ±τ on S and assume

(2.3) ϕ+ = ϕ− on S.
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Now, for w ∈ C∞0 (Ω), we use (1.1) and (2.1) to compute

0 =
∫

Ω

ρ(|Dϕ|2)Dϕ ·Dw dx

=
(∫

Ω+
+
∫

Ω−

)
ρ(|Dϕ|2)Dϕ ·Dw dx

= −
∫
∂Ω+

ρ(|Dϕ|2)Dϕ · ν w dHn−1 +
∫
∂Ω−

ρ(|Dϕ|2)Dϕ · ν w dHn−1

=
∫
S

(
−ρ(|Dϕ+|2)Dϕ+ · ν + ρ(|Dϕ−|2)Dϕ− · ν

)
w dHn−1.

Thus, another condition on S, which measures the jump of the normal derivative
of ϕ across S, is

(2.4)
[
ρ(|Dϕ|2)Dϕ · ν

]
S

= 0,

where the bracket denotes the difference between the values of the function along
S on the Ω+ and Ω− sides, respectively. That is,

(2.5) ρ(|Dϕ+|2)ϕ+
ν = ρ(|Dϕ−|2)ϕ−ν on S,

where ϕ±ν = Dϕ± · ν are the values of the normal derivative of ϕ on the Ω± sides,
and

ρ(|Dϕ±|2) =
(
1− θ|ϕ±τ |2 − θ|ϕ±ν |2

) 1
2θ ,

respectively.

Lemma 2.1. Let K > 0. Then the function

ΦK(p) :=
(
K − θp2

) 1
2θ p,

defined for p ∈
[
0,
√
K/θ

]
, satisfies

(i) lim
p→0

ΦK(p) = lim
p→
√
K/θ

ΦK(p) = 0;

(ii) ΦK(p) > 0 for p ∈
(

0,
√
K/θ

)
;

(iii) 0 < Φ′K(p) ≤ K
1
2θ for p ∈ (0, pKsonic), and Φ′K(p) < 0 for

p ∈
(
pKsonic,

√
K/θ

)
;

(iv) Φ
′′

K(p) < 0 for p ∈ (0, pKsonic],

where

(2.6) pKsonic :=
√
K/(θ + 1).

Proof. Properties (i) and (ii) are obvious. For p ∈
(

0,
√
K/θ

)
, we compute

Φ
′

K(p) =
(
K − θp2

) 1
2θ−1 (

K − (θ + 1)p2
)
,

Φ
′′

K(p) = p
(
K − θp2

) 1
2θ−2 (

(θ + 1)p2 − 3K
)
,

and note that pKsonic =
√
K/(θ + 1) ∈

(
0,
√
K/θ

)
. Then (iii) and (iv) follow. �
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Suppose that ϕ is a solution satisfying

(2.7) |Dϕ| < p1
sonic := 1/

√
θ + 1 in Ω+, |Dϕ| > p1

sonic in Ω−,

and

(2.8) Dϕ± · ν > 0 on S,

besides (2.2) and (2.4). Then ϕ is a transonic shock solution with transonic shock
S, which divides the subsonic region Ω+ and the supersonic region Ω−. In addition,
ϕ satisfies the physical entropy condition (see Courant-Friedrichs [13]; also see Lax
[21]):

(2.9) ρ(|Dϕ−|2) < ρ(|Dϕ+|2)

which implies, by (2.8), that the density ρ increases in the flow direction.
Note that equation (1.1) is elliptic in the subsonic region Ω+ and hyperbolic in

the supersonic region Ω−.
Let (x′, xn) be the coordinates of Rn with xn ∈ R and x′ = (x1, · · · , xn−1) ∈

Rn−1. From now on, we denote Ω := (0, a)n−1 × (−N1, N2).
Let q− ∈

(
p1
sonic, 1/

√
θ
)

and ϕ−0 (x) := q−xn. Then ϕ−0 is a supersonic solution

in Ω. According to Lemma 2.1, there exists a unique q+ ∈ (0, p1
sonic) such that

(2.10)
(
1− θ(q+)2

) 1
2θ q+ =

(
1− θ(q−)2

) 1
2θ q−.

Define ϕ+
0 (x) := q+xn in Ω. Then the function

(2.11) ϕ0(x) = min(ϕ+
0 (x), ϕ−0 (x)) for x ∈ Ω

is a transonic shock solution in Ω, in which Ω±0 = {±xn > 0} ∩ Ω are the sub-
sonic and supersonic regions of ϕ0, respectively. Also note that, on ∂(0, a)n−1 ×
(−N1, N2), the boundary condition (ϕ0)ν = 0 holds.

We study perturbations of the solution (2.11). We use the following Hölder
norms: For α ∈ (0, 1) and any nonnegative integer k,

[u]k,0,Ω =
∑
|β|=k

sup
x∈Ω
|Dβu(x)|,

[u]k,α,Ω =
∑
|β|=k

sup
x,y∈Ω,x 6=y

|Dβu(x)−Dβu(y)|
|x− y|α ,(2.12)

‖u‖k,0,Ω =
k∑
j=0

[u]j,0,Ω, ‖u‖k,α,Ω = ‖u‖k,0,Ω + [u]k,α,Ω,

where β = (β1, · · · , βn), βl ≥ 0 integers, Dβ = ∂β1
x1
· · · ∂βnxn , and |β| = β1 + · · ·+ βn.

Our transonic shock problem is the following.
Problem A. Given a supersonic solution ϕ− of (1.1) in Ω, which
is a C2,α perturbation of ϕ−0 , for some α > 0:

(2.13) ‖ϕ− − ϕ−0 ‖2,α,Ω ≤ σ,
with σ > 0 small, and satisfies

(2.14) ϕ−ν = 0 on ∂(0, a)n−1 × (−N1, N2),

find a transonic shock solution ϕ in Ω such that

ϕ = ϕ− in Ω−,
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where Ω− is the supersonic region of ϕ in Ω, defined by Ω− := Ω\Ω+

with Ω+ := {x ∈ Ω : |Dϕ(x)| < p1
sonic} which is the subsonic

region of ϕ, and

(2.15)
ϕ = ϕ−, ϕxn = ϕ−xn on (0, a)n−1 × {−N1},
ϕ = ϕ+

0 on (0, a)n−1 × {N2},
ϕν = 0 on ∂(0, a)n−1 × (−N1, N2).

In order to construct a solution of Problem A, we reformulate it into a more general
free boundary problem for the subsonic part of the solution. The following heuristic
observation motivates our formulation: Since ϕ = ϕ− in Ω−, |Dϕ| < p1

sonic < |Dϕ−|
in Ω+, |Dϕ−| ∼ ∂xnϕ

− > p1
sonic in Ω, and we expect that Ω+ = {xn > f(x′)} ∩ Ω

and |Dϕ| ∼ ∂xnϕ < p1
sonic in Ω+ with (2.3) across the free boundary, then ϕ should

satisfy

(2.16) ϕ(x) ≤ ϕ−(x) for x ∈ Ω.

Now we can formulate the following free boundary problem:
Problem B. Find ϕ ∈ C(Ω) such that
(i) ϕ satisfies (2.16) in Ω and (2.15) on ∂Ω;
(ii) ϕ ∈ C2,α(Ω+) is a solution of (1.1) in Ω+ := {x ∈ Ω : ϕ(x) <

ϕ−(x)}, the noncoincidence set;
(iii) the free boundary S = ∂Ω+ ∩Ω is given by the equation xn =

f(x′) for x′ ∈ (0, a)n−1 so that Ω+ = {xn > f(x′)} ∩Ω, where
f ∈ C2,α([0, a]n−1);

(iv) the free boundary condition (2.4) holds on S.
Note that the definitions of the regions Ω± in Problems A and B are a priori
different, since the formula of Ω+ given in the formulation of Problem B is a new
definition, rather than an expression of the region Ω+ defined in Problem A above.
In particular, in the free boundary problem (Problem B), we do not require that
the phase ϕ− be a solution of (1.1) and that ϕ be subsonic in Ω+, although we
require it in Problem A so that the free boundary is a transonic shock.

We will show that, if the perturbation ϕ− − ϕ−0 is small enough in C2,α, then
the free boundary problem (Problem B) has a solution which is a transonic shock
solution to Problem A. Furthermore, the transonic shock is stable under any small
C2,α perturbation of ϕ−. Precisely, we have the following theorem.

Theorem 2.1. Let q+ ∈ (0, p1
sonic) and q− ∈

(
p1
sonic, 1/

√
θ
)

satisfy (2.10), and let
ϕ0 be the transonic shock solution (2.11). Then there exist positive constants σ0,
C1, and C2 depending only on n, γ, q+, and Ω such that, for every σ ≤ σ0 and
any supersonic solution ϕ− of (1.1) satisfying the conditions stated in Problem A,
there exists a unique solution ϕ of Problem A satisfying

‖ϕ− ϕ+
0 ‖2,α,Ω+ ≤ C1σ.

In addition, Ω+ = {xn > f(x′)} ∩Ω where f : Rn−1 → R satisfies

‖f‖2,α,Rn−1 ≤ C2σ,

Dx′f = 0 on ∂(0, a)n−1,

that is, the shock surface S = {(x′, xn) : xn = f(x′), x′ ∈ Rn−1} ∩ Ω is in C2,α

and S is orthogonal to ∂Ω at their intersection points.
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Theorem 2.1 is a corollary of the following corresponding theorem for Problem
B.

Theorem 2.2. Let q+ and q− be as in Theorem 2.1. Then there exist positive
constants σ0, C1, and C2 depending only on n, γ, q+, and Ω such that, for every
σ ≤ σ0 and any function ϕ− satisfying (2.13) and (2.14), there exists a unique
solution ϕ of Problem B satisfying

‖ϕ− ϕ+
0 ‖2,α,Ω+ ≤ C1σ.

In addition, Ω+ = {xn > f(x′)} ∩Ω where f : Rn−1 → R satisfies

‖f‖2,α,Rn−1 ≤ C2σ,

Dx′f = 0 on ∂(0, a)n−1.

Remark 2.1. If the hyperbolic phase is C∞, then the solution and the corresponding
free boundary in Theorem 2.2 are also C∞. Furthermore, our results can extend to
the problem with a steady C1,α, α ∈ (0, 1), perturbation of the upstream supersonic
flow and/or general Dirichlet data h(x′), x′ ∈ Rn−1, at xn = N2 satisfying

‖h− ϕ+
0 ‖1,α,Rn−1 ≤ Cσ.

Also, the Dirichlet data in Problem B may be replaced by the corresponding Neu-
mann data satisfying the global solvability condition. Furthermore, the bounded
domain in the problem can be replaced by unbounded domains, especially the un-
bounded cylinder up to xn =∞. See Chen-Feldman [9] for the details.

The following features of equation (1.1) and the free boundary condition (2.5)
will be employed in the proof of Theorems 2.1 and 2.2. The nonlinear equation (1.1)
is uniformly elliptic only if |Dϕ| < p1

sonic − ε in Ω+ for some ε > 0; the quantity
|Dϕ+| =

(
(ϕ+
ν )2 + |ϕτ |2

)1/2 on S is subsonic only if ϕτ is sufficiently small; and the
free boundary condition (2.5) is uniformly nondegenerate (i.e., ϕ−ν −ϕ+

ν is bounded
from below by a positive constant on S) only if ϕ−ν > pKsonic+ε on S for some ε > 0
with K = 1 − θ|ϕτ |2. By (2.13), these conditions hold if, for any x ∈ S, the unit
normal vector ν(x) to S is sufficiently close to being orthogonal to {xn = 0}.

To establish Theorem 2.2 (hence Theorem 2.1), we first introduce and solve a
truncated problem, by modifying both the nonlinear equation (1.1) and the free
boundary condition (2.5), in order to make the equation uniformly elliptic and the
free boundary condition nondegenerate. Then, for small σ, a gradient bound for the
solution implies that it indeed solves the original free boundary problem, Problem
B, hence Problem A.

3. Subsonic truncations

In this section, we introduce a truncated free boundary problem, by modifying
both the nonlinear equation (1.1) and the free boundary condition (2.5), to make
the equation uniformly elliptic and the free boundary condition nondegenerate; we
also extend the domain Ω to the domain Ωe to overcome the difficulties for the
study of the free boundary up to the fixed boundary for Problem B.
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3.1. Truncation of equation (1.1). The truncation procedure below is motivated
by the argument in [3, pp. 87–90].

First, we note that the ellipticity condition for (1.1) at |Dϕ| = q is (1.3), which
is equivalent to

(3.1) Φ′1(q) > 0,

where ΦK(p) is the function introduced in Lemma 2.1.
By Lemma 2.1(iii), the inequality (3.1) holds for q ∈ (0, p1

sonic). We modify the
function Φ1(q) so that the new function Φ̃1(q) satisfies (3.1) uniformly for all q > 0
and, around q+, the function Φ̃1(q) = Φ1(q).

Let

(3.2) ε =
p1
sonic − q+

2
.

Let y = c0q + c1 be the tangent line of the graph of y = Φ1(q) at q = p1
sonic − ε.

Then, using Lemma 2.1(iii), we obtain

c0 = Φ′1(p1
sonic − ε) > 0.

Now the function Φ̃1 : [0,∞)→ R, defined by

(3.3) Φ̃1(q) =
{

Φ1(q) if 0 ≤ q < p1
sonic − ε,

c0q + c1 if q > p1
sonic − ε,

satisfies Φ̃1 ∈ C1,1([0,∞)).
Define

(3.4) ρ̃(q2) =
Φ̃1(q)
q

for q ∈ [0,∞),

that is,

ρ̃(s) =

{
ρ(s) if 0 ≤ s < (p1

sonic − ε)2,

c0 +
c1√
s

if s > (p1
sonic − ε)2.

Then ρ̃ ∈ C1,1([0,∞)), and

(3.5) ρ̃(q2) = ρ(q2) if 0 ≤ q < p1
sonic − ε.

By Lemma 2.1(iii)–(iv) and the definition (3.3) of Φ̃1,

0 < c0 ≤ Φ̃′1(q) = ρ̃(q2) + 2q2ρ̃′(q2) ≤ C, for q ∈ (0,∞),

for some constant C > 0. Thus, the equation

(3.6) L̃ϕ := div (ρ̃(|Dϕ|2)Dϕ) = 0

is uniformly elliptic, with ellipticity constants depending only on q+ and γ.
We also perform the corresponding truncation of the free boundary condition

(2.5):

(3.7) ρ̃(|Dϕ|2)ϕν = ρ(|Dϕ−|2)Dϕ− · ν on S.

On the right-hand side of (3.7), we use the nontruncated function ρ since ρ 6= ρ̃
on the range of |Dϕ−|2. Note that (3.7), with the right-hand side considered as
a known function, is the conormal boundary condition for the uniformly elliptic
equation (3.6).

Thus, we solve the following free boundary problem, which is a truncated version
of Problem B.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



470 GUI-QIANG CHEN AND MIKHAIL FELDMAN

Problem C. Find ϕ ∈ C(Ω) such that
(i) ϕ satisfies (2.16) in Ω and (2.15) on ∂Ω;
(ii) ϕ ∈ C2,α(Ω+) is a solution of (3.6) in Ω+ := {ϕ(x) < ϕ−(x)} ∩ Ω, the

noncoincidence set;
(iii) the free boundary S = ∂Ω+ ∩ Ω is given by the equation xn = f(x′) for

x′ ∈ (0, a)n−1 so that Ω+ = {xn > f(x′)} ∩ Ω, where f ∈ C2,α([0, a]n−1)
and Dx′f = 0 on ∂((0, a)n−1 × (−N1, N2));

(iv) the free boundary condition (3.7) holds on S.

Remark 3.1. Introduce the function

u := ϕ− − ϕ,
and rewrite Problem C in terms of the function u(x). Then, by (2.16), the problem
is to find a nonnegative u ∈ C(Ω), with boundary conditions determined by (2.15)
and ϕ−, satisfying (1.5) and (1.6) with

A(x, P ) = ρ̃(|Dϕ−(x)− P |2)(Dϕ−(x)− P )− ρ̃(|Dϕ−(x)|2)Dϕ−(x), P ∈ Rn,

f(x) = −div (ρ̃(|Dϕ−(x)|2)Dϕ−(x)),
G(x, ν) = (ρ(|Dϕ−(x)|2)− ρ̃(|Dϕ−(x)|2))Dϕ−(x) · ν.

3.2. Extension to the domain Ωe = Tn−1 × (−N1, N2). We now extend the
domain Ω of the free boundary problem to the domain Ωe to overcome the difficulties
for the study of the free boundary up to the fixed boundary.

Observe that, if a function φ ∈ C2,α(Ω) with Ω := (0, a)n−1 × (−N1, N2) and

(3.8) φν = 0 on ∂(0, a)n−1 × (−N1, N2),

then φ can be extended to Rn−1 × [−N1, N2] so that the extension (still denoted)
φ satisfies

φ ∈ C2,α(Rn−1 × [−N1, N2]),

and, for every m = 1, · · · , n− 1 and k = 0,±1,±2, · · · ,
(3.9)
φ(x1, · · · , xm−1, ka− z, xm+1, · · · , xn) = φ(x1, · · · , xm−1, ka+ z, xm+1, · · · , xn),

that is, φ is symmetric with respect to every hyperplane {xm = ka}. Indeed, for
k = (k1, · · · , kn−1, 0) with k1, · · · , kn−1 integers, we define

φ(x + ak) = φ(η(x1, k1), · · · , η(xn−1, kn−1), xn) for x ∈ (0, a)n−1 × [−N1, N2],

with

η(t, k) =
{
t if k is even,
a− t if k is odd.

It follows from (3.9) that φ(x′, xn) is 2a-periodic in the directions x1, · · · , xn−1:

φ(x + 2aem) = φ(x), for x ∈ Rn−1 × [−N1, N2], m = 1, · · · , n− 1,

where em is the unit vector in the direction of xm.
Thus, with respect to this 2a-periodicity, we can consider φ as a function on

Ωe := Tn−1 × [−N1, N2], where Tn−1 is an (n − 1)-dimensional flat torus with
its coordinates given by the cube (0, 2a)n−1. Note that (3.9) represents an extra
symmetry condition, in addition to φ ∈ C2,α(Tn−1 × [−N1, N2]), and (3.9) implies
(3.8).
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Thus we can extend ϕ− in this way, that is, ϕ− ∈ C2,α(Ωe) satisfies (3.9). Also,
ϕ±0 can be considered as the functions in Ωe satisfying (3.9), since ϕ±0 (x) = q±xn
in Rn−1 × [−N1, N2], which are independent of x′.

Then we focus on the free boundary problem, Problem C, on Ωe.

4. Existence of solutions

In this section, we develop a nonlinear approach to prove the existence of solu-
tions of the free boundary problem. Our approach is an iteration scheme, which is
based on the nondegeneracy of the free boundary condition: The jump of the nor-
mal derivative of solutions across the free boundary has a strict lower bound. The
iteration procedure in §4.1 has no additional compactness effect, which is different
from that in [8]; the elliptic estimates in §4.2 alone do not produce what we require
to get the existence of a fixed point. We use certain cancellations in order to get
(4.20) and thus to close the argument for the existence of a fixed point.

4.1. Iteration procedure. Let M ≥ 1. We set

(4.1) KM := {ψ ∈ C2,α(Ωe) : ‖ψ − ϕ+
0 ‖2,α,Ωe ≤Mσ, ψ satisfies (3.9)},

where ϕ+
0 (x) = q+xn. According to the definition, KM is convex and compact in

C2,β(Ωe), 0 < β < α.
Let ψ ∈ KM . Since q− > q+, it follows that, if

(4.2) σ ≤ q− − q+

C(M + 1)
,

with large C depending only on n, then (4.1) and (2.13) imply

(4.3) (ϕ− − ψ)xn(x) ≥ q− − q+

2
> 0.

Then, by the implicit function theorem, the set Ω+(ψ) := {ψ(x) < ϕ−(x)}∩Ωe has
the form:

(4.4) Ω+(ψ) = {xn > f(x′)} ∩ Ωe, ‖f‖2,α,Tn−1 ≤ CMσ,

with C depending upon q− − q+. The corresponding unit normal vector

ν(x′) =
(−Dx′f(x′), 1)√
1 + |Dx′f(x′)|2

∈ C1,α(Tn−1; Sn−1),

and

(4.5) ‖ν − ν0‖1,α,Rn−1 ≤ CMσ,

where ν0 is defined by

(4.6) ν0 :=
Dϕ+

0

|Dϕ+
0 |

= (0, · · · , 0, 1)>.

Also, ν(·) can be considered as a function on Sψ := {xn = f(x′)}. From the
definition of f(x′), it follows that, for x ∈ Sψ,

(4.7) ν(x) =
Dϕ−(x)−Dψ(x)
|Dϕ−(x)−Dψ(x)| .

By the definition of KM and (4.2), the formula (4.7) defines ν on Ωe, and

(4.8) ‖ν − ν0‖1,α,Ωe ≤ CMσ, C = C(q+, q−).
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Motivated by the free boundary condition (3.7), we define the function Gψ on Ωe:

(4.9) Gψ(x) := ρ(|Dϕ−(x)|2)Dϕ−(x) · ν(x),

where ν(·) is defined by (4.7).
We now solve the following fixed-boundary value problem in the domain Ω+(ψ):

div (ρ̃(|Dϕ|2)Dϕ) = 0 in Ω+(ψ),(4.10)
ρ̃(|Dϕ|2)ϕν = Gψ on Sψ,(4.11)

ϕ = N2q
+ on {xn = N2} = ∂Ω+(ψ) \ Sψ,(4.12)

and we show that the solution ϕ can be extended to the whole domain Ωe so that
ϕ ∈ KM .

4.2. Existence and uniqueness of the solution for the fixed boundary
value problem (4.10)–(4.12). Now we show the existence and uniqueness of the
solution ϕ for the problem (4.10)–(4.12) and show that ϕ is close in C2,α(Ω+(ψ))
to the unperturbed subsonic solution ϕ+

0 .

Proposition 4.1. Let M ≥ 1. There exists σ0 > 0, depending only on n, γ, q+,
Ω, and M such that, if σ ∈ (0, σ0) so that ϕ− satisfies (2.13) and ψ ∈ KM , then
there exists a unique solution ϕ ∈ C2,α(Ω+(ψ)) of the problem (4.10)–(4.12) that
satisfies (3.9) and

(4.13) ‖ϕ− ϕ+
0 ‖2,α,Ω+(ψ) ≤ Cσ,

where C depends only on n, γ, q+, and Ω, and is independent of M , ψ ∈ KM , and
σ ∈ (0, σ0).

Proof. In the argument below, the constants C and C1 depend only on n, γ, q+, and
Ω, and are independent of M , ψ ∈ KM , and σ ∈ (0, σ0), unless other dependence
is specified. We divide the proof into four steps.

Step 1. We first rewrite the problem (4.10)–(4.12) in terms of the function
v := ϕ− ϕ+

0 . The problem then takes the form:

divA(Dv) = 0 in Ω+(ψ),(4.14)
A(Dv) · ν = gψ on Sψ ,(4.15)

v = 0 on Γ1 := Tn−1 × {N2} ≡ ∂Ω+(ψ) \ Sψ ,(4.16)

where

A(P ) = ρ̃(|P + q+ν0|2)(P + q+ν0)− ρ((q+)2)q+ν0 for P ∈ Rn,

gψ(x) = Gψ(x) − ρ((q+)2)q+ ν(x) · ν0.

Thus, v(x) satisfies the uniformly elliptic equation with the same ellipticity con-
stants as those in (3.6). Note that

(4.17) A(0) = 0.

Now we show the crucial (but simple) estimate of gψ(x), based on a cancellation.
We first note that

(4.18) gψ(x) =
(
ρ(|Dϕ−(x)|2)Dϕ−(x)− ρ(|Dϕ+

0 (x)|2)Dϕ+
0 (x)

)
· ν(x).

Furthermore,

(4.19) ρ(|Dϕ+
0 |2)Dϕ+

0 = ρ(|Dϕ−0 |2)Dϕ−0
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in Ωe, since both sides of (4.19) are equal to ρ((q+)2)q+ν0. Thus,

gψ(x) =
(
ρ(|Dϕ−(x)|2)Dϕ−(x)− ρ(|Dϕ−0 (x)|2)Dϕ−0 (x)

)
· ν(x).

Using (2.13) and (4.8), we obtain

‖gψ‖1,α,Ωe ≤ C‖Dϕ− −Dϕ−0 ‖1,α,Ωe‖ν‖1,α,Ωe ≤ Cσ(1 +Mσ).

Therefore, choosing σ ≤ 1
M , we have

(4.20) ‖gψ‖1,α,Ωe ≤ Cσ.
Step 2. In order to study the problem (4.14)–(4.16), we now consider the corre-

sponding linear problem:

(4.21)



L[u] :=
n∑

i,j=1

aij(x)uxixj = r(x) in Ω+(ψ),

n∑
i=1

bi(x)uxi = g(x) on Sψ,

u = 0 on Γ1.

Here aij ∈ Cα(Ωe) satisfy the ellipticity condition:

λ|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ Λ|ξ|2 for any x ∈ Ωe, ξ ∈ Rn,

with 0 < λ < Λ, and bi ∈ C1,α(Ωe) satisfy

|bi(x)| ≤ Λ

and the strict obliqueness condition:

b(x) · ν(x) ≥ κ > 0 for any x ∈ Sψ,
where b(x) denotes the vector (b1, · · · , bn)(x).

Lemma 4.2. Let M ≥ 1 and ψ ∈ KM . Then there exists σ0 depending only
on n, γ, q+, Ω, and M such that, if σ ∈ (0, σ0) so that ϕ− satisfy (2.13) and
u ∈ C1(Ω+(ψ)) ∩ C2(Ω+(ψ)) is a solution of (4.21) with r ∈ Cα(Ωe), then

(i) there exists C depending only on λ, Λ, κ, and Ω such that

(4.22) ‖u‖0,Ω+(ψ) ≤ C(‖r‖0,Ω+(ψ) + ‖g‖0,Ω+(ψ));

(ii) there exists C depending only on λ, Λ, κ, ‖aij‖0,α,Ωe , ‖bi‖1,α,Ωe , and Ω
such that

(4.23) ‖u‖2,α,Ω+(ψ) ≤ C(‖r‖0,α,Ω+(ψ) + ‖g‖1,α,Ω+(ψ)).

We now prove this lemma. Consider the functions

(4.24) u(x) := K
(
exn − eN2

)
, u(x) := −K

(
exn − eN2

)
,

with K = C1(‖g‖0,Ω+(ψ) + ‖r‖0,Ω+(ψ)), where C1 will be chosen below depending
only on the data as in (i). Then, using (4.4) and the ellipticity of L, we get

L[u] = annKe
xn ≥ C1λe

−CMσ‖r‖0,Ω+(ψ) ≥ ‖r‖0,Ω+(ψ),
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if Mσ ≤ 1 and C1 ≥ eC . Similarly, for such σ and C1,

L[u] ≤ −‖r‖0,Ω+(ψ).

In addition,
u = u = 0 on Γ1.

Let w := u− u. Then

Lw ≥ ‖r‖0,Ω+(ψ) − r ≥ 0 in Ω+(ψ),

i.e., w is a subsolution of L. Thus, by the strong maximum principle, if the maxi-
mum of w is achieved in the interior of Ω+(ψ), then w = const. in Ω+(ψ), and thus
w ≡ 0 in Ω+(ψ) since w|Γ1 = 0.

Let the maximum of w be attained at x0 ∈ Sψ. Then wτ (x0) = 0 and thus, since
b(x0) · ν(x0) > 0, we get

wν(x0) =
1

b(x0) · ν(x0)
b(x0) ·Dw(x0) =

1
b(x0) · ν(x0)

(b(x0) ·Du(x0)− g(x0)) .

Using (4.8) and choosing σ small, depending only on n, γ, q+, Ω, and M , and
choosing C1 sufficiently large, depending only upon the data as in (i), we obtain,
on Sψ,

b ·Du = Kexnb · ν0 ≥ Kexn (b · ν + b · (ν0 − ν))

≥ C1e
−CMσ(κ− ΛCMσ)‖g‖0,Ω+(ψ) ≥ ‖g‖0,Ω+(ψ).

Then

wν(x0) ≥ 1
b(x0) · ν(x0)

(
‖g‖0,Ω+(ψ) − g(x0)

)
≥ 0,

which contradicts the Hopf Lemma. Thus,

sup
Ω+(ψ)

(u − u) = sup
Γ1

(u − u) = 0.

This and similar argument for u imply

u(x) ≤ u(x) ≤ u(x), for any x ∈ Ω+(ψ),

which implies (4.22). This also implies the uniqueness of classical solutions of (4.21).
Furthermore, let

Ω+
0 := Tn−1 × (0, 1).

Define a flattening map Φ : Ω+(ψ)→ Ω+
0 , which maps Sψ to {xn = 0}, by

(4.25) Φ(x′, xn) =
(
x′,

xn − f(x′)
N2 − f(x′)

)
for the function f(x′) in (4.4). Note that, from the estimate for f(x′) in (4.4),

(4.26) ‖Φ− Id‖2,α,Ω+(ψ), ‖Φ−1 − Id‖2,α,Ω+
0
≤ 1

10
,

if σ is small. Now, consider u(x) as a periodic solution with respect to the x′

variables in Rn−1 × [−N1, N2] ∩ {xn > f(x′)}. Then, (4.23) follows from the
Schauder estimates (see Theorem 6.2, Corollary 6.7, and Lemma 6.29 in [17]) and
from (4.22); the fact that C is independent of M,σ, and ψ follows from (4.26). This
completes the proof of Lemma 4.2.

From Lemma 4.2, we easily have
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Lemma 4.3. Let σ be sufficiently small, depending only on n, γ, q+, Ω, and M .
Then there exists a unique solution u ∈ C2,α(Ω+(ψ)) of (4.21) satisfying (4.23)
with C depending only on λ, Λ, κ, ‖aij‖0,α,Ωe , and ‖bi‖1,α,Ωe .

The proof is based on some standard existence argument for elliptic equations;
we sketch it in Appendix A.

Step 3. Now we turn to the nonlinear problem (4.14)–(4.16). Rewrite equation
(4.14) in the nondivergence form:

(4.27) N [v] :=
n∑

i,j=1

Aij(Dv)vxixj = 0,

where Aij(P ) := AiPj (P ), P ∈ Rn. From the definition of A(P ), (3.3), and (3.4),

Aij(P ) = Aji(P ),(4.28)

(1 + |P |)|DPAij(P )| ≤ Ĉ,(4.29)

for any P ∈ Rn, i, j = 1, · · · , n.
The unique solvability of the linear problem (4.21) allows us to use the nonlinear

method of continuity to solve (4.27), (4.15), and (4.16). Namely, in order to show
the existence and uniqueness of a solution v ∈ C2,α(Ω+(ψ)) of (4.27), (4.15), and
(4.16), by Lemma 17.29 and Theorem 17.7 in [17], it suffices to verify the following
estimate.

Lemma 4.4. For any solution u ∈ C2,α(Ω+(ψ)) of the problem:
n∑

i,j=1

Aij(Du(x))uxixj = 0 in Ω+(ψ),(4.30)

n∑
i=1

Ai(Du)νi = tgψ on Sψ,(4.31)

u = 0 on Γ1,(4.32)

the estimate

(4.33) ‖u‖1,δ,Ω+(ψ) ≤ C
holds with some δ > 0 for any t ∈ [0, 1], where C and δ depend only on n, λ, Λ,
the constant Ĉ from (4.29), ‖g‖1,α,Ω+(ψ), Sψ, and Ω, but are independent of t.

The proof of Lemma 4.4 follows from some well-known estimates for nonlinear
elliptic equations of second order; we outline the proof in Appendix B.

Note that the constants C and δ in (4.33) and (4.34) are independent of M
and ψ ∈ KM , if Mσ is small. Indeed, the dependence of C and δ in (4.33) on
Sψ is through the estimates of derivatives of the regularized distance function ρ(x)
described in [24, page 522]. These are estimated in terms of the C2,α-norm of Sψ
[24, page 522], which, in our case, is determined by the C2,α norm of f(x′) from
(4.4) and estimated by CMσ. Thus, if ψ ∈ KM and Mσ ≤ 1, then C and δ in
(4.33) depend only on n, γ, q+, Ω, and ‖gψ‖1,α,Ωe .

Moreover, it follows from [23, Theorem 2] that the solution v ∈ C2(Ω+(ψ)) of
(4.27), (4.15), and (4.16) satisfies v ∈ C2,α(Ω+(ψ)), and

(4.34) ‖v‖2,α,Ω+(ψ) ≤ C,
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where C depends only on the same quantities as the constants in (4.33), i.e., on n,
γ, q+, Ω, and ‖gψ‖1,α,Ωe .

By (4.17), the solution v(x) of (4.27), (4.15), and (4.16) satisfies a linear problem
of the form (4.21) with

aij(x) = AiPj (Dv(x)),

bi(x) =
n∑
j=1

∫ 1

0

AjPi(sDv(x))ds νj(x),(4.35)

r(x) ≡ 0.

Then, using (4.20) and (4.34), we conclude that the functions defined by (4.35)
satisfy ‖aij‖1,α,Ω+(ψ) + ‖bi‖1,α,Ω+(ψ) ≤ C, where C depends only on n, γ, q+, and
Ω if Mσ ≤ 1. Thus, using (4.23) for v(x), with r(x) = 0 and g = gψ, and recalling
(4.20), we obtain

‖v‖2,α,Ω+(ψ) ≤ Cσ.
Thus, ϕ(x) = v(x) + ϕ+

0 (x) is the unique solution of (4.10)–(4.12) and satisfies
(4.13).

Step 4. Now we show that ϕ(x) satisfies (3.9). Since ψ(x) satisfies (3.9), it
follows that Gψ(x) and Ω+(ψ), i.e., the function f(x) in (4.4), satisfy (3.9). Fix
any m ∈ {1, · · · , n− 1} and k ∈ {0,±1,±2, · · · }, and let

v(x) := ϕ(x1, · · · , xm−1, 2ka− xm, xm+1, · · · , xn).

Then v(x) is a solution of (4.10)–(4.12): Indeed, since Gψ(x) and Ω+(ψ) satisfy
(3.9), the only fact we should check is that, if ϕ(x) is a solution of (4.10), then
v(x) also satisfies (4.10). This follows from the structure of (4.10) and is readily
checked by a direct calculation. Thus, by the uniqueness of solutions of the problem
(4.10)–(4.12), we obtain ϕ(x) ≡ v(x), and so ϕ(x) satisfies (3.9). �

4.3. Construction and continuity of the iteration map. Now we first con-
struct the iteration map by an extension of the unique solution of (4.10)–(4.12)
satisfying (4.13). Then we show the continuity of the iteration map.

Proposition 4.5. Let M ≥ 1. Let σ > 0, ϕ−, and ψ be as those in Proposition
4.1. Let ϕ be a solution of the problem (4.10)–(4.12) in the domain Ω+(ψ). Then ϕ
can be extended to the whole domain Ωe such that the extension, denoted by Pψϕ,
satisfies the following two properties:

(i) There exists C0 > 0, which depends only on n, γ, q+, and Ω, and is inde-
pendent of M , σ, and ψ, such that

(4.36) ‖Pψϕ− ϕ+
0 ‖2,α,Ωe ≤ C0σ.

(ii) Let β ∈ (0, α). Let a sequence ψj ∈ KM converge in C2,β(Ωe) to ψ ∈
KM . Let ϕj ∈ C2,α(Ω+(ψj)) and ϕ ∈ C2,α(Ω+(ψ)) be the solutions of the
problems (4.10)–(4.12) for ψj and ψ, respectively. Then Pψjϕj → Pψϕ in
C2,β(Ωe).

Proof. We divide the proof into four steps.
Step 1. Let

κ =
N1

N2
.
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Denote
Ω0 := Tn−1 × (−2κ, 1), Ω+

0 := Tn−1 × (0, 1).
We first employ the extension map in [17, pp. 136–137] to define an extension
operator E2 : C2,β(Ω+

0 ) → C2,β(Ω0) for any β ∈ (0, 1). Let v ∈ C2,β(Ω+
0 ). Define

E2v = v in Ω+
0 . For (x′, xn) ∈ Tn−1 × (−2κ, 0), define

E2v(x′, xn) =
3∑
i=1

civ(x′,− xn
2κi

),

where c1, c2, and c3 are constants determined by the system of equations
3∑
i=1

ci

(
− 1

2κi

)m
= 1, m = 0, 1, 2.

It is easy to see that E2v ∈ C2,β(Ω0) and

(4.37) ‖E2v‖2,β,Ω0 ≤ C‖v‖2,β,Ω+
0
,

with a uniform constant C. Since E2 is a linear operator, it follows that E2 :
C2,β(Ω+

0 )→ C2,β(Ω0) is continuous.
The extension map E2 has also the following properties:
(1) If v satisfies (3.9), then so does E2v.
(2) Let vj ∈ C2,β(Ω+

0 ) and E2vj → v in C2,β(Ω0) as j →∞. Then

v = E2
(
v|Ω+

0

)
in Ω0.

Assertion (1) follows directly from the definition of E2. Assertion (2) follows
from the continuity of E2. Indeed, since vj → v|Ω+

0
, then E2vj → E2

(
v|Ω+

0

)
, which

implies (2).
Step 2. We first point out the following elementary fact, whose proof can be

readily obtained by explicit calculations.

Lemma 4.6. Let Ω1,Ω2 ⊂ Rn be bounded, open sets. Let f ∈ C2,β(Ω2) and
Φ : Ω1 → Ω2 satisfy Φ ∈ C2,β(Ω1; Rn). Then f ◦ Φ ∈ C2,β(Ω1) and

‖f ◦ Φ‖2,β,Ω1 ≤ C‖f‖2,β,Ω2,

where C = C(n, ‖Φ‖2,β,Ω1). Also, if fj → f in C2,β(Ω2) and if Φj → Φ in
C2,β(Ω1; Rn), then

fj ◦ Φj → f ◦ Φ in C2,β(Ω1).

Now let ψ ∈ KM . We define the extension operator Eψ : C2,β(Ω+(ψ)) →
C2,β(Ωe) for any β ∈ (0, α] as follows. Let Φ : Ω+(ψ) → Ω+

0 be a map that
flattens Sψ and is defined by (4.25), which in fact defines Φ : Ωe → Tn−1×R. This
map is C2,α and, if Mσ is small enough, then

(4.38) Tn−1 × [−κ
2
, 1] ⊂ Φ(Ωe) ⊂ Tn−1 × [−3κ

2
, 1].

Also, if Mσ is small, then the inverse Φ−1 : Φ(Ωe) → Ωe exists and, similar to
(4.26),

(4.39) ‖Φ− Id‖2,α,Ωe , ‖Φ−1 − Id‖2,α,Φ(Ωe) ≤
1
10
.
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Then, for v ∈ C2,β(Ω+(ψ)), we define

(4.40) Eψv =
[
E2(v ◦ Φ−1)

]
◦ Φ.

This is well defined by the right inclusion in (4.38). From (4.37), (4.39), and Lemma
4.6, we obtain that, if σ is so small that (4.38) and (4.39) hold, then, for any ψ ∈ KM
and v ∈ C2,β(Ωe),

(4.41) ‖Eψv‖2,β,Ωe ≤ C‖v‖2,β,Ω+(ψ)

with C depending only on n and Ω. Since the map Eψ : C2,β(Ω+(ψ)) → C2,β(Ωe)
is linear, it follows that this map is continuous.

Step 3. The map Eψ satisfies the following properties.

Lemma 4.7. Assume that Mσ is small and β ∈ (0, α].

(i) If ψ ∈ KM and v ∈ C2,β(Ω+(ψ)) satisfies (3.9), then Eψv also satisfies
(3.9).

(ii) Let ψj ∈ KM and ψj → ψ in C2,β(Ωe) as j → ∞. Let vj ∈ C2,β(Ω+(ψj))
and Eψjvj → v in C2,β(Ωe) as j →∞. Then

v = Eψ
(
v|Ω+(ψ)

)
in Ωe.

These can be seen as follows. Assertion (i) follows from the definition of Eψ and
the property (i) of E2 in Step 1, since the maps Φ and Φ−1 satisfy (3.9), which
follows from (4.25) because ψ satisfies (3.9).

Now we prove (ii). Since ψj ∈ KM and ψj → ψ in C2,β , then ψ ∈ KM . Let fj
and f be the functions from (4.4) for ψj and ψ, respectively. Since ψj → ψ in C2,β

and (4.3) holds, then

(4.42) fj → f in C2,β(Tn−1).

Let Φj : Ωe → Tn−1 × R be the flattening map (4.25) corresponding to ψj . It
follows that

Φj → Φ in C2,β(Ωe; Tn−1 ×R).

Also, by (4.38), it follows that

Φ−1
j → Φ−1 in C2,β(Tn−1 × [−κ

2
, 1]; Ωe).

Let w ∈ C2,β(Φ(Ωe)) and wj ∈ C2,β(Ω+
0 ) be defined by w = v ◦ Φ−1 and wj =

vj ◦ Φ−1
j , which is well defined since Φj(Ω+(ψj)) = Ω+

0 . Then, using the first
inclusion in (4.38) and the second assertion of Lemma 4.6, we have

wj → w in C2,β(Ω+
0 ).

Thus, using the continuity of E2, we have

E2wj → E2(w|Ω+
0

) in C2,β(Ω0).

Using the second inclusion in (4.38) for Φ and Φj , we get

(E2wj) ◦ Φj → E2(w|Ω+
0

) ◦ Φ in C2,β(Ωe),

which is
Eψjvj → Eψ(v|Ω+(ψ)) in C2,β(Ωe).

This implies (ii). �
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Step 4. Finally, we define the following extension operator Pψ : C2,β(Ω+(ψ))→
C2,β(Ωe) for ψ ∈ KM and β ∈ (0, α]:

(4.43) Pψv = Eψ(v − ϕ+
0 ) + ϕ+

0 , where v ∈ C2,α(Ω+(ψ)).

The estimate (4.36) follows from (4.13), (4.41), and (4.43).
Now we prove the assertion (ii) of Proposition 4.5. Let 0 < β < α. By (4.36),

‖Pψjϕj‖2,α,Ωe ≤ C.

Thus, there exists a subsequence (still denoted) ϕj such that

(4.44) Pψjϕj → v in C2,β(Ωe),

for some v ∈ C2,α(Ωe).
Denoting fj as the function from (4.4) for ψj as above and using (4.42) yield that

v satisfies equation (4.10) in Ω+(ψ). Also, v obviously satisfies condition (4.12).
Now we show that v(x) also satisfies condition (4.11) on Sψ. Denote νj as the
function (4.7) corresponding to ψj . Then

(4.45) νj → ν in C1,β(Ωe).

Let x′ ∈ Tn−1. Denote xj = (x′, fj(x′)) and x = (x′, f(x′)). By (4.42), xj → x.
Since ϕj satisfies (4.11) on Sψj , we have

ρ̃(|Dϕj(xj)|2)Dϕj(xj) · νj(xj) = Gψj (xj).

By (4.9) and (4.45),

(4.46) Gψj → Gψ in C1,β(Ωe).

Then we have

ρ̃(|Dϕ(x)|2)Dv(x) · ν(x) = lim
j→∞

ρ̃(|Dϕj(xj)|2)Dϕj(xj) · νj(xj)

= lim
j→∞

Gψj (xj)

= Gψ(x).

Since Sψ = {(x′, f(x′)) : x′ ∈ Tn−1}, we conclude that v satisfies (4.11).
Thus, v is a solution of (4.10)–(4.12) in Ω+(ψ). By the uniqueness in Proposition

4.1,

v|Ω+(ψ) = ϕ.

Then, by (4.43), (4.44), and Lemma 4.7(ii), we have

v = Eψ
(
(v − ϕ+

0 )|Ω+(ψ)

)
+ ϕ+

0 = Eψ(ϕ− ϕ+
0 ) + ϕ+

0 = Pψϕ in Ωe.

We have thus proved that a subsequence of Pψjϕj converges to Pψϕ in C2,β(Ωe).
Moreover, by the same argument, from any subsequence of Pψjϕj we can extract
a further subsequence, converging in C2,β(Ωe) to the same limit Pψϕ. Thus the
whole sequence Pψjϕj converges to Pψϕ. Proposition 4.5 is proved.
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4.4. Existence of solutions of the free boundary problem. With Sections
4.1–4.3, we can now prove the existence of solutions of the free boundary problem.

Define the iteration map J : KM → C2,α(Ωe) by

(4.47) Jψ := Pψϕ,
where ϕ is the unique solution of the problem (4.10)–(4.12) for ψ. By Proposition
4.5(ii), J is continuous in the C2,β(Ωe)-norm for any positive β < α.

Now we denote by ϕ both the function ϕ in Ω+(ψ) and its extension Pψϕ.
Choose M to be the constant C0 from (4.36). Then, for ψ ∈ KM , we have from

Proposition 4.5(i) that ϕ := Jψ ∈ KM if σ > 0 is sufficiently small depending
only on n, γ, q+, and Ω, since M is now fixed. Thus, (4.47) defines the iteration
map J : KM → KM and, from Proposition 4.5(ii), J is continuous on KM in the
C2,β(Ωe)-norm for any positive β < α.

In order to find a classical solution of Problem C, we seek a fixed point of the
map J . We use the Schauder Fixed Point Theorem (cf. [17, Theorem 11.1]) in the
following setting:

Let σ > 0 satisfy the conditions of Proposition 4.5. Let β ∈ (0, α). Since Ωe
is a compact manifold with boundary, the set KM is a compact convex subset of
C2,β(Ωe). We have shown that J(KM ) ⊂ KM , and J is continuous in the C2,β(Ωe)-
norm. Then, by the Schauder Fixed Point Theorem, J has a fixed point ϕ ∈ KM .

If ϕ is such a fixed point, then

ϕ̃(x) := min(ϕ−(x), ϕ(x))

is a classical solution of Problem C, and Sϕ is its free boundary.
It follows that ϕ̃ is a solution of Problem B, provided that σ is small enough so

that (4.13) implies that |Dϕ| < p1
sonic− ε, where ε is defined by (3.2). Indeed, then

(3.5) implies that ϕ lies in the nontruncated region for the equation (3.6).
For such values of σ, the function ϕ̃ is a solution of Problem A. Indeed, |Dϕ̃| <

p1
sonic − ε on Ω+(ϕ̃) := {ϕ̃ < ϕ−} since ϕ̃ = ϕ on Ω+(ϕ̃).

This completes the existence proof for Theorems 2.1 and 2.2.

5. Uniqueness of solutions

In this section, we prove the uniqueness of solutions of Problem B (hence, Prob-
lem A) that we have constructed in Section 4.

Theorem 5.1. Let q+, q−, and ϕ− be as in Theorem 2.1. Let M > 0. If σ > 0
is a sufficiently small constant depending only on M , n, q+, γ, and Ω, then there
exists at most one solution ϕ of Problem B satisfying

(5.1) ‖ϕ− ϕ+
0 ‖2,α,Ω+(ϕ) ≤Mσ.

Proof. In this proof, the constants σ, C, and c depend only on M , n, q+, γ, and
Ω, unless other dependence is specified. The proof consists of seven steps.

Step 1. We consider Problem B extended to the domain Ωe. Let ϕ 6= ϕ̂ be two
solutions of Problem B satisfying (5.1). Define

u := ϕ− − ϕ, û := ϕ− − ϕ̂ in Ωe.

Then
u ≥ 0, û ≥ 0 in Ωe,

and
Ω+(ϕ) = {u(x) > 0} ∩Ωe, Ω+(ϕ̂) = {û(x) > 0} ∩ Ωe.
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Below, Ω+(u), S(u), Ω+(û), and S(û) stand for Ω+(ϕ), S(ϕ), Ω+(ϕ̂), and S(ϕ̂),
respectively. Note that

S(u) = ∂{u(x) > 0} ∩Ωe, S(û) = ∂{û(x) > 0} ∩ Ωe.

The definition of u and û with (5.1) implies

(5.2) ‖u− (q− − q+)xn‖2,α,Ω+(u) ≤Mσ, ‖û− (q− − q+)xn‖2,α,Ω+(û) ≤Mσ.

If (4.2) holds with large enough C, then the regions Ω+(u) and Ω+(û) have the
form (4.4) with the functions f and f̂ , respectively. To see this, we use (5.2) and
extend u from Ω+(u), which we consider now as a subset of Rn, into Rn so that
the extension Eu satisfies

(5.3) ‖Eu− (q− − q+)xn‖2,α,Rn ≤ CMσ,

where C depends only on n (see, e.g., [31, Chapter 6, Theorem 4]). Then, by (4.2),

(Eu)xn(x) ≥ q− − q+ − CMσ ≥ q− − q+

2
≥ 0.

Thus, Ω+(u) = {Eu(x) > 0} ∩ Ωe, and (4.4) holds for u by the implicit function
theorem; and the corresponding results hold for û.

Step 2. Rewrite the problem (4.10)–(4.12) in terms of u = ϕ− − ϕ. It follows
from (3.5) and (5.2) that, if σ > 0 is sufficiently small, then u in Ω+(u) is the
solution of the following problem:

divA(x,Du) = 0 in Ω+(u),(5.4)
uν = Gf on S(u),(5.5)

u = ϕ− − q+N2 on Γ1 := Tn−1 × {N2},(5.6)

where

(5.7) A(y, P ) = ρ̃(|Dϕ−(y)− P |2)(Dϕ−(y)− P ) for y ∈ Ωe, P ∈ Rn,

with ρ̃ defined by (3.4).
The function Gf (x′) is defined as follows. Using (2.2), we can rewrite (2.5) as

(5.8) ρ(|ϕ−τ |2 + (ϕ+
ν )2)ϕ+

ν = ρ(|Dϕ−|2)ϕ−ν on S(u).

We intend to solve (5.8) for ϕ+
ν . Note that, by (2.13),∣∣Dϕ− − q−ν0

∣∣ ≤ σ in Ω,

and, by (5.3), the unit normal vector ν(x) to S(u) satisfies

(5.9) |ν(x)− ν0| ≤ Cσ.
Thus, noting that

(5.10) ϕ−ν = Dϕ− · ν, |ϕ−τ |2 = |Dϕ−|2 − (ϕ−ν )2 = |Dϕ−|2 − (Dϕ− · ν)2,

we get
|ϕ−ν − q−| ≤ Cσ, |ϕτ |2 ≤ Cσ.

Denoting

(5.11) K := 1− θ|ϕ−τ |2,
we rewrite (5.8) as the equation:

(5.12) ΦK(p) = ΦK(Dϕ− · ν),
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where ΦK(·) is the function in Lemma 2.1. Now we solve (5.12) for p. For this
purpose, based on (5.10) and (5.11), we define

eν = e · ν, |eτ |2 = |e|2 − (eν)2 = |e|2 − (e · ν)2,

and
K(s, t) := 1− θ(s− t2), s, t ∈ R.

Then

K(|e|2, e · ν) = 1− θ(|e|2 − (e · ν)2) = 1− θ|eτ |2 for e ∈ Rn, ν ∈ Sn−1.

Now, (5.12) can be written as

F (p; |Dϕ−|2, Dϕ− · ν) = 0,

where F ∈ C∞ in the neighborhood of (q+; (q−)2, q−) under consideration is defined
by

F (p; s, t) := ΦK(s,t)(p)− ΦK(s,t)(t), p, s, t ∈ R.

Moreover, by the definition of q+ and q− and Lemma 2.1(iii), we have

F (q+; (q−)2, q−) = 0, Fp(q+; (q−)2, q−) = Φ′1(q+) > 0.

Thus, by the Implicit Function Theorem, there exists a C∞ function G(s, t) defined
on a neighborhood:

Or0(q−, q−) = {(s, t) : |s− (q−)2| < δ0, |t− q−| < δ0},
where δ0 depends only on q+, q−, and γ such that

G((q−)2, q−) = q+,

and
F (G(s, t); s, t) = 0.

This means that (5.8) can be rewritten as

ϕ+
ν = G(|Dϕ−|2, Dϕ− · ν),

provided that, on S(u),

|Dϕ− · ν − q−| < δ0, ||Dϕ−|2 − (q−)2| < δ0,

which can be achieved by choosing σ small depending only on n, γ, q+, Ω, and M .
Thus, for u = ϕ− − ϕ, (5.5) holds with

(5.13) Gf (x′) := Dϕ−(x) · νf (x)−G(|Dϕ−(x)|2, Dϕ−(x) · νf (x)),

for x′ ∈ Tn−1, x = (x′, f(x′)) ∈ S(u), and νf (x) is the inward unit normal vector
to S(u) at x.

Note that (5.4) is uniformly elliptic with the same ellipticity constants as those
for (3.6).

The function û is a solution of the similar problem in Ω+(û), i.e., û satisfies
equation (5.4) in Ω+(û), (5.6) on Γ1, and

ûν = Gf̂ on S(û),

where
Gf̂ (x′) = Dϕ−(x) · νf̂ (x) −G(|Dϕ−(x)|2, Dϕ−(x) · νf̂ (x)),

for x′ ∈ Tn−1, x = (x′, f̂(x′)) ∈ S(û), and the inward unit normal vector νf̂ (x) to
S(û) at x.
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Step 3. We may assume f 6= f̂ ; otherwise ϕ = ϕ̂ by the uniqueness of solutions
to the problem (4.10)–(4.12) in the domain Ω+(ϕ) = Ω+(u) by Proposition 4.1.
Thus we may assume that f̂(x̂′) > f(x̂′) for some x̂′ ∈ Rn−1, since the opposite
inequality can be handled similarly.

We shift the domain Ω+(û) in the direction −ν0 by a distance δ > 0 so that the
resulting domain B contains Ω+(u) ∩ {xn < N2 − δ} and ∂B ∩ S(u) 6= ∅. Precisely,
for positive y < N2, define vy : Ωe ∩ {xn < N2 − y} → R by

vy(x′, xn) = û(x′, xn + y).

Let
δ = sup{y ≥ 0 : S(u) ∩ S(vy) 6= ∅}.

By the above assumption, δ > 0. Applying (4.4) to both f(x′) and f̂(x′), we have
δ ≤ CMσ. We assume CMσ < N2/10.

We denote vδ(x) by v(x) and denote h(x′) := f̂(x′)− δ. Clearly,

Ω+(v) = {(x′, xn) : h(x′) < xn < N2 − δ} ∩ Ωe.

It follows that Ω+(u) ∩ {xn < N2 − δ} ⊂ Ω+(v). By construction, f(x′) ≥ h(x′),
and there exists x′∗ ∈ Tn−1 such that f(x′∗) = h(x′∗). Denote x∗ := (x′∗, f(x′∗)) ∈
Tn−1 ×R. Then the smooth surface S(u) touches the smooth surface S(v) at x∗.
Denote the common unit normal vector to S(u) and S(v) at x∗ in the direction of
Ω+(v) by ν(x∗). Since S(û) = S(v) + δν0, it follows that the inward unit normal
vector νf̂ (x∗ + δν0) to S(û) at x∗ + δν0 = (x′, f(x′) + δ) is equal to ν(x∗). Then,
from the definition of Gf and Gf̂ ,

|Gf (x′∗)−Gf̂ (x′∗)| ≤ C|Dϕ−(x′∗, f(x′∗))−Dϕ−(x′∗, f(x′∗) + δ)| ≤ Cδσ,
where we used (2.13) in the last inequality. Also, since û(x) satisfies the free
boundary condition ûν(x′, f̂(x′)) = Gf̂ (x′) and v(x) = û(x + δν0) for any x, we
have

vν(x∗) := Dv(x∗) · ν(x∗) = Dû(x∗ + δν0) · νf̂ (x∗ + δν0) = Gf̂ (x′∗).

Since u(x) satisfies uν(x∗) := Du(x∗) · ν(x∗) = Gf (x′∗), we have

(5.14) |vν(x∗)− uν(x∗)| = |Gf (x′∗)−Gf̂ (x′∗)| ≤ Cσδ.
We will come to a contradiction for small σ by showing that vν(x∗)− uν(x∗) ≥ cδ
with c > 0.

Step 4. Denote D := Ω+(u) ∩ {xn < N2 − δ}. Then

(5.15) ∂D = S(u) ∪ {xn = N2 − δ} = {xn = f(x′)} ∪ {xn = N2 − δ}.
Then x∗ ∈ ∂D, and ν(x∗) is the inward normal vector to ∂D at x∗. Also

(5.16) v|∂D ≥ u|∂D.
Indeed, v ≥ 0 = u on S(u) from the definition of D and v. On {xn = N2 − δ}, we
apply (5.2) to u and use the fact that v|{xn=N2−δ} = u|{xn=N2} to have

(5.17) v ≥ u+ (q− − q+ −Mσ)δ ≥ u+
q− − q+

2
δ on {xn = N2 − δ},

if σ is sufficiently small.
Since û satisfies (5.4) in Ω+(û), then v satisfies

divA(x+ δν0, Dv) = 0 in D.
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We write this equation in the form:

(5.18) divA(x,Dv) = divψ(x) in D,
where A(y, P ) is the function (5.7) and

ψ(x) := A(x,Dv(x)) −A(x+ δν0, Dv(x)) = −δ
∫ 1

0

DyA(x+ δtν0, Dv(x)) · ν0 dt.

By (5.7) and (2.13), for any L0 > 0,

sup
|P |≤L0

‖DyA(·, P )‖0,α,Ωe ≤ C(L0)σ, sup
|P |≤L0

‖D2
yPA(·, P )‖0,0,Ωe ≤ C(L0)σ.

From this, we use |Dv| ≤ q− − q+ + CMσ with Mσ ≤ 1 to conclude

|ψ| ≤ Cδσ in Ωe,

and

|ψ(x)− ψ(x̂)| ≤ δ

∣∣∣∣∫ 1

0

(DyA(x+ δsν0, Dv(x)) −DyA(x̂+ δsν0, Dv(x))) · ν0 ds

∣∣∣∣
+δ
∣∣∣∣∫ 1

0

(DyA(x̂ + δsν0, Dv(x)) −DyA(x̂ + δsν0, Dv(x̂))) · ν0 ds

∣∣∣∣
≤ Cδσ|x − x̂|α + Cδ|Dv(x) −Dv(x̂)|
≤ CMδσ|x− x̂|α,

where we used (5.2) and v(x) = û(x+ δν0) in the last inequality. Thus, we have

(5.19) ‖ψ‖0,α,Ωe ≤ CMδσ.

Then, denoting w := v − u,

div (A(x,Dv) −A(x,Du)) = divψ(x) in D
can be rewritten as

(5.20)
n∑

i,j=1

Di(aij(x)Djw) = divψ(x) in D,

where aij(x) =
∫ 1

0

AiPj (x, sDv(x) + (1− s)Du(x))ds. Thus, equation (5.20) is uni-

formly elliptic with the ellipticity constants and norms of aij ∈ C1,α(D) depending
only on n, q+, γ, and Ω.

Step 5. We write w := w1 + w2, where w1 and w2 are the solutions of

n∑
i,j=1

Di(aij(x)Djw1) = 0 in D,(5.21)

w1 = w on ∂D,

and
n∑

i,j=1

Di(aij(x)Djw2) = divψ(x) in D,(5.22)

w2 = 0 on ∂D.
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Indeed, we obtain the solution w1 ∈ C2,α(D) of (5.21) in the periodic case D ⊂
Tn−1× [−N1, N2] by the argument similar to the proof of Step 2 in §4.2. Note that
∂Ωe ∈ C∞, w = v − u ∈ C2,α, and the maximum principle:

sup
D
w1 = sup

∂D
w1,

which follows from the ellipticity and structure of equation (5.21). As long as w1

is obtained, w2 = w − w1 is a solution of (5.22).
By Theorems 8.16, 8.32, and 8.33 in [17], which can be adapted to the periodic

case D ⊂ Tn−1 × [−N1, N2] without change in the proofs, we have

‖w2‖1,α,D ≤ C‖ψ‖0,α,Ωe ,

where C depends only on the ellipticity constants and D. Furthermore, using
(5.15) and ‖f‖2,α,Tn−1 ≤ CMσ and choosing σ ≤ min(N2/100, 1) yield that the
dependence of C on D becomes the dependence only on N2. Thus, we use (5.19)
to obtain

(5.23) ‖w2‖1,α,D ≤ CMδσ.

Step 6. Now we estimate (w1)ν(x∗) from below. By (5.16), w1 ≥ 0 on ∂D. Thus,
w1 ≥ 0 in D by the maximum principle. Also, w1(x∗) = 0. Moreover, by (5.17),

w1 ≥
q− − q+

2
δ on {xn = N2 − δ}.

We first show that

(5.24) w1

(
0,
N2

2

)
≥ c(q− − q+)δ,

where c > 0 depends only on the ellipticity constants λ and Λ of equation (5.21),
i.e., on q+, q−, γ, n, and Ω.

Since aij ∈ C1,α(D), equation (5.21) can be rewritten in the nondivergence form:

(5.25)
n∑

i,j=1

aijDijw1 +
n∑
i=1

biDiw1 = 0 in D,

where bi :=
∑n
j=1 aij,xi ∈ Cα(D), and B :=

(∑n
i=1 ‖bi‖2L∞(D)

)1/2

depends only

on q+, γ, n, Ω, and M . In the rest of the proof, we consider D as a subset of
Rn−1× [−N1, N2] and the functions w1, aij , and bi in (5.25) as the functions on D,
2a-periodic with respect to x1, · · · , xn−1. Define a domain D0 := (−3a, 3a)n−1 ×(N2

4
, N2 − δ

)
⊂ D, and let W ∈ C2,α(D0) ∩ C(D0) be a solution of

(5.26)
P−Λ,λ(D2W )−B|DW | = 0 in D0,

W |∂D0 = φ,

where P−Λ,λ is the extremal Pucci operator (e.g., [7]), and φ ∈ Cα(D0) is a function
satisfying

0 ≤ φ ≤ 1 on ∂D0,

φ = 0 on ∂D0 \ {xn = N2 − δ},
φ = 1 on {xn = N2 − δ, |x′| ≤ a}.
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The existence and regularity of W follow from Chapter 9 in [7], with standard
modifications, to take into account the dependence on DW in the equation. Also,
W > 0 in D0, by the strong maximum principle.

Now w1, as a solution of (5.25), satisfies

P−Λ,λ(D2w1)−B|Dw1| ≤ 0 in D,

i.e., w1 is a supersolution. Also, w1 ≥
q− − q+

2
Wδ on ∂D0. Thus, by the homo-

geneity of equation (5.26) and the maximum principle, w1 ≥
q− − q+

2
Wδ in D0.

Thus, (5.24) is proved with c = W (N2
2 , 0)/2 > 0 depending only on λ,Λ, n, and Ω.

Step 7. By (5.24) and the interior Harnack inequality applied in D0 ⊂ D, there
exists c > 0 such that

w1 ≥ cδ in D0 ∩ {N2/4 ≤ xn ≤ 3N2/4}.

By the periodicity of w1 with respect to x1, · · · , xn−1, we conclude that the above
inequality holds in D ∩ {N2/4 ≤ xn ≤ 3N2/4}.

Since S(u) = {xn = f(x′)} and ‖f‖2,α,Tn−1 ≤ CMσ, it follows that, if Mσ is
small, every point of S(u) has a tangent ball with radius R ≥ N2/4 and center
within {N2/4 ≤ xn ≤ 3N2/4}. Let x0 be the center of such a ball, tangent to S(u)
at x∗, i.e., BR(x0) ⊂ D and x∗ ∈ ∂BR(x0)∩∂D. Then, x0 ∈ {N2/4 ≤ xn ≤ 3N2/4},
and thus

w1(x0) ≥ cδ.
Now the Harnack inequality, applied to w1 in BR(x0), implies

inf
BR/2(x0)

w1 ≥ cδ.

By the proof of the Hopf Lemma in [17, Lemma 3.4],

(w1)ν(x∗) ≥ c1 inf
BR/2(x0)

w1,

where c1 > 0 depends only on R > 0,Λ, λ, and the L∞-norm of the coefficients of
(5.25).

Thus,

(5.27) (w1)ν(x∗) ≥ cδ,

where c > 0 depends only on n, γ, q+, Ω, and M .
Combining (5.27) with (5.23), we obtain

(v − u)ν(x∗) = ∂ν(w1 + w2)(x∗) ≥ (c− CMσ)δ ≥ c

2
δ,

if Mσ is small. If δ > 0 and σ is small, this contradicts (5.14). Thus δ = 0, which
implies Theorem 5.1. �

6. Stability of free boundaries

As a consequence of the uniqueness, nondegeneracy, and regularity of solutions
of the free boundary problem, we have the following stability theorem.
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Theorem 6.1. Let M > 0. There exist a nonnegative function Ψ ∈ C(R+),
satisfying Ψ(0) = 0, and σ0 > 0, depending only on M, q+, q−, γ, and Ω, such that,
if σ < σ0, ϕ− satisfies (2.13), and ϕ̂− satisfies

(6.1) ‖ϕ− − ϕ̂−‖2,α,Ωe ≤ κ,
with κ < σ, then the unique solutions ϕ and ϕ̂ of Problem B with (5.1) for ϕ− and
ϕ̂−, respectively, satisfy

(6.2) ‖fϕ − fϕ̂‖2,α,Tn−1 ≤ Ψ(κ),

where fϕ and fϕ̂ are the “free boundary” functions in (4.4) with ϕ and ϕ̂, respec-
tively.

Proof. Let σ0 be such that Theorem 5.1 holds for 2σ0. If the assertion is false, then
there exist ϕ−k and ϕ̂−k for k = 1, · · · , such that

ϕ−k satisfy (2.13) with σ ≤ σ0;

‖ϕ−k − ϕ̂
−
k ‖2,α,Ωe ≤

1
k

;

‖fk − f̂k‖2,α,Tn−1 ≥ ε > 0.

Here fk and f̂k are the “free boundary” functions in (4.4) for ϕk and ϕ̂k, respec-
tively, where ϕk and ϕ̂k are the unique solutions of Problem B for ϕ−k and ϕ̂−k ,
respectively, satisfying (5.1).

By selecting a subsequence (for which we do not change notation), we have

ϕ−k → ϕ− in C2,α2 (Ωe),(6.3)

ϕ̂−k → ϕ− in C2,α2 (Ωe),(6.4)

fk → f in C2,α2 (Tn−1),(6.5)

f̂k → f̂ in C2,α2 (Tn−1),(6.6)

f 6= f̂ ,(6.7)

and ϕ− ∈ C2,α(Ωe) satisfies (2.13) with σ ≤ σ0 and f, f̂ ∈ C2,α(Tn−1).
Also, the argument similar to the proof of Proposition 4.5(ii) yields that

Pϕk
(
ϕk|Ω+(ϕk)

)
→ Pϕ

(
ϕ|Ω+(ϕ)

)
in C2,α2 (Ωe),

Pϕ̂k
(
ϕ̂k|Ω+(ϕ̂k)

)
→ Pϕ̂

(
ϕ̂|Ω+(ϕ̂)

)
in C2,α2 (Ωe).

Here ϕ ∈ C(Ωe)∩C2,α(Ω+(ϕ)) is a solution of Problem B for the limiting function
ϕ− in (6.3) and (6.4), and the “free boundary” function of ϕ is the limiting function
f in (6.5); it also follows that ϕ satisfies (5.1). Similarly, ϕ̂ ∈ C(Ωe)∩C2,α(Ω+(ϕ))
is a solution of Problem B for the limiting function ϕ− in (6.3) and (6.4), and the
“free boundary” function of ϕ̂ is the limiting function f̂ in (6.6); it also follows that
ϕ̂ satisfies (5.1). By (6.7), this contradicts the uniqueness result of Theorem 5.1 for
ϕ−. �

7. Multidimensional transonic shocks

near spherical and circular shocks

In this section we are concerned with applications of our approach to the con-
struction of multidimensional transonic shocks with more complex geometries. As
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an example, we focus on multidimensional transonic shocks near spherical (n ≥ 3)
or circular (n = 2) transonic shocks.

We first show the existence of spherical and circular transonic shocks. That is,
choosing any

0 < R1 < R0 < R2 <∞,
we consider the domain Ω = {x ∈ Rn : R1 < |x| < R2} and show that there
exists a weak solution ϕ0 ∈ W 1,∞(Ω) of (1.1) and (1.2) in the sense of (2.1) with
ϕ0(x) = w(|x|) for some w : R→ R such that ϕ0 ∈ C∞(Ω±0 ) and

Ω−0 = {x ∈ Rn : R1 < |x| < R0} and Ω+
0 = {x ∈ Rn : R0 < |x| < R2}

are respectively supersonic and subsonic regions of ϕ0, i.e.,

(7.1)
|Dϕ0| > p1

sonic in Ω−0 ,

|Dϕ0| < p1
sonic in Ω+

0 ,

and |Dϕ0| has a jump across S0 := {|x| = R0}.
It is easy to see that a function ϕ0(x) = w(|x|) satisfies (2.1) in Ω if and only if,

for any ζ ∈ C∞0 (R1, R2),∫ R2

R1

ρ(|w′(r)|2)w′(r)ζ′(r)rn−1dr = 0.

It follows that w(|x|) is a smooth solution of (1.1) if(
ρ(|w′(r)|2)w′(r)rn−1

)′
= 0.

Thus,

ρ(|w′(r)|2)w′(r) =
c

rn−1
,

which can be written as

(7.2) Φ1(w′(r)) =
c

rn−1
,

where Φ1(·) is defined in Lemma 2.1. From Lemma 2.1, it follows that there exist
smooth functions

Φ−1
+ : (0,Φ1(p1

sonic))→ (0, p1
sonic),

Φ−1
− : (0,Φ1(p1

sonic))→ (p1
sonic,

√
1/θ),

which are the inverse functions of Φ1(·) in the sense that Φ1(Φ−1
± (τ)) = τ for any τ ∈

(0,Φ1(p1
sonic)), such that (Φ−1

+ )′(τ) > 0 and (Φ−1
− )′(τ) < 0 for τ ∈ (0,Φ1(p1

sonic)).
Thus, in order to satisfy (7.1) and (7.2), we have to choose c > 0 such that

0 <
c

Rn−1
2

<
c

Rn−1
0

<
c

Rn−1
1

< Φ1(p1
sonic),

and set

w′(r) = Φ−1
−

( c

rn−1

)
for R1 < r < R0,

w′(r) = Φ−1
+

( c

rn−1

)
for R0 < r < R2.
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Thus, we obtain a weak solution ϕ0(x) = w(|x|) of (1.1) in Ω, satisfying (7.1), by
setting

w(r) = −
∫ R0

r

Φ−1
−

( c

τn−1

)
dτ < 0 for R1 < r < R0,

w(r) =
∫ r

R0

Φ−1
+

( c

τn−1

)
dτ > 0 for R0 < r < R2.

On the other hand, we can switch subsonic and supersonic regions of the solution
with a spherical or circular shock. Precisely, we can construct another weak solution
ϕ̃0(x) = w̃(|x|) of (1.1) in Ω such that

(7.3) |Dϕ̃0| > p1
sonic in Ω̃−0 := {x ∈ Rn : R0 < |x| < R2},

|Dϕ̃0| < p1
sonic in Ω̃+

0 := {x ∈ Rn : R1 < |x| < R0}.

Indeed, extend Φ1 to (−∞, 0] by Φ1(−p) = −Φ1(p) for p > 0. Then we have the
inverse functions

Φ̃−1
+ : (−Φ1(p1

sonic), 0)→ (−p1
sonic, 0),

Φ̃−1
− : (−Φ1(p1

sonic), 0)→ (−
√

1/θ,−p1
sonic);

and, following the above argument, we can obtain a solution satisfying (7.3) by
defining

w̃(r) =
∫ r

R0

Φ̃−1
−

(
− c

τn−1

)
dτ < 0 for R0 < r < R2,

w̃(r) = −
∫ R0

r

Φ̃−1
+

(
− c

τn−1

)
dτ > 0 for R1 < r < R0,

where c > 0 is as above.
We can express the function ϕ0 as

ϕ0(x) = min(ϕ+
0 (x), ϕ−0 (x)) for x ∈ Ω̄,

where ϕ±0 ∈ C∞(Ω) are defined as

(7.4) ϕ±0 (x) = w±(|x|), w±(r) =
∫ r

R0

Φ−1
±

( c

τn−1

)
dτ, for R1 < r < R2.

The solution ϕ0 containing the spherical or circular transonic shock satisfies the
entropy condition:

ρ(|Dϕ−0 |2) < ρ(|Dϕ+
0 |2),

across the transonic shock from the hyperbolic phase to the elliptic phase, which is
the direction of fluid motions.

The function ϕ̃0 has the same properties as ϕ0.
We now state our results on the existence and stability of multidimensional

transonic shocks that are close to the solution ϕ0; similar results for ϕ̃0 hold.

Problem A′. Given a supersonic solution ϕ− of (1.1) in Ω, which
is a C2,α perturbation of ϕ−0 , for some α > 0:

(7.5) ‖ϕ− − ϕ−0 ‖C2,α(Ω) ≤ σ,

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



490 GUI-QIANG CHEN AND MIKHAIL FELDMAN

with σ > 0 small, find a transonic shock solution ϕ in Ω such that
ϕ = ϕ− in Ω−, where Ω− is the supersonic region of ϕ, and

(7.6)
ϕ = ϕ− on {|x| = R1},
ϕ = ϕ+

0 on {|x| = R2}.

Theorem 7.1. There exist positive constants σ0, C1, and C2, depending only on
n, γ, c, and Ω, such that, for every σ ≤ σ0 and any supersonic solution ϕ− of (1.1)
satisfying the conditions stated in Problem A′, there exists a unique solution ϕ of
Problem A′ satisfying

‖ϕ− ϕ+
0 ‖2,α,Ω+ ≤ C1σ,

and Ω+ = {|x| > f( x
|x|)} ∩Ω, where f : Sn−1 → R, and

‖f −R0‖2,α,Sn−1 ≤ C2σ.

The proof of Theorem 7.1 closely follows the proof of Theorem 2.1. We will only
point out some details.

First, we reformulate Problem A′ into a free boundary problem. Following the
heuristic discussion preceding the statement of Problem B and taking into account
the geometry of the present case, we expect that the solution of Problem A′ satisfies

(7.7) ϕ(x) ≤ ϕ−(x), for x ∈ Ω.

Then our free boundary problem is

Problem B′. Find ϕ ∈ C(Ω) such that
(i) ϕ satisfies (7.7) in Ω and (7.6) on ∂Ω;
(ii) ϕ ∈ C2,α(Ω+) is a solution of (1.1) in Ω+ = {ϕ(x) < ϕ−(x)}∩

Ω, the noncoincidence set;
(iii) the free boundary S = ∂Ω+ ∩Ω is given by the equation |x| =

f( x
|x|) so that Ω+ = {|x| > f( x

|x|)} ∩ Ω, where f : Sn−1 → R
satisfies f ∈ C2,α(Sn−1);

(iv) the free boundary conditions (2.3) and (2.4) hold on S.

We now solve Problem B′, similarly to Problem B above. Namely, we consider
the problem with the truncated equation (3.6) and the free boundary condition
(3.7). We do not need to extend our domain Ω here, since we expect that the free
boundary should lie in the interior of Ω.

Similar to (4.6), we define

(7.8) ν0(x) :=
Dϕ+

0 (x)
|Dϕ+

0 (x)|
=

x

|x| .

Now we can follow the argument of Section 4. We clarify the following three points.
First, the nondegeneracy estimate (4.3) is now

(ϕ− − ψ)ν0(x) ≥ 1
2

(
Φ−1
−

(
c

Rn−1
2

)
− Φ−1

+

(
c

Rn−1
1

))
> 0,
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if σ is sufficiently small which depends only on n, q+, γ, and Ω. We obtain this
estimate since, for any x ∈ Ω,

(ϕ−0 )ν0(x) = w′−(|x|) ≥ Φ−1
−

(
c

Rn−1
2

)
> p1

sonic

> Φ−1
+

(
c

Rn−1
1

)
≥ w′+(|x|)

= (ϕ+
0 )ν0(x),

where we used that Φ−1
+ (·) is increasing and Φ−1

− (·) decreasing, and R1 ≤ |x| ≤ R2.
Second, A(P ) in the argument of Section 4.2 is now replaced by A(x, P ) with

the formula:

A(x, P ) = ρ̃(|P+Dϕ+
0 (x)|2)(P+q+Dϕ+

0 (x))−ρ(|Dϕ+
0 (x)|2)Dϕ+

0 (x) for P ∈ Rn,

and gψ(x) is defined by (4.18), where ϕ+
0 (x) is now defined by (7.4).

Third, (4.19) still holds in Ω. Indeed, since Dϕ±0 (x) = w′±(|x|)ν0(x), we use the
function Φ1(·) from Lemma 2.1 to obtain

ρ(|Dϕ±0 (x)|2)Dϕ±0 (x) = Φ1(|w′±(|x|)|)ν0(x) = Φ1

(
Φ−1
±

(
c

|x|n−1

))
x

|x| = c
x

|x|n .

The uniqueness and stability results, similar to Theorem 6.1, can also be estab-
lished (see [9]).

Appendix A. Proof of Lemma 4.3

Consider first the case of the Laplace equation with the Neumann condition on
Sψ:

(A.1)


∆u = r in Ω+(ψ),
uν = g on Sψ,
u = 0 on Γ1.

Let ψ ∈ C∞(Ωe) ∩ KM and r, g ∈ C∞(Ω+(ψ)). We can easily construct g̃ ∈
C∞(Ω+(ψ)) satisfying g̃ = g near Sψ and g̃ = 0 on Γ1. Then the function v := u− g̃
satisfies

(A.2)


∆v = h := r −∆g̃ in Ω+(ψ),
vν = 0 on Sψ,
v = 0 on Γ1.

We construct a variational solution of (A.2), that is, we minimize a functional

I[w] =
∫

Ω+(ψ)

(|∇w|2 − hw)dx

over the set {w ∈ H1(Ω+(ψ)) : w|Γ1 = 0}, where Ω+(ψ) ⊂ Tn−1 × [−N1, N2]
is a compact Riemannian manifold with boundary, and H1(Ω+(ψ)) is the Sobolev
space, and the condition w|Γ1 = 0 is understood in the sense of traces. The existence
of a solution v follows from the argument similar to the proof of Theorem 4.8 in
[4], with the aid of Lemma 4.2. Now a standard regularity theory implies that
v ∈ C∞(Ω+(ψ)) and v satisfies (A.2): Indeed, since we can consider v(x) as a
periodic solution with respect to the x′ variables in Rn−1×[−N1, N2]∩{xn > f(x′)},
then the interior regularity follows from Theorem 8.10 in [17] and the regularity
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near Γ1 from Section 8.4 in [17]; and the regularity near Sψ follows from the interior
regularity by the local flattening of Sψ and then by the reflection.

Now u = v+g̃ is a C∞ solution of (A.1). Then u satisfies (4.23) with C depending
only on the domain Ω.

If ψ ∈ KM , r ∈ Cα(Ω+(ψ)), and g ∈ C1,α(Ω+(ψ)), we approximate them by
smooth functions ψj , rj , and gi, and we use (4.23) to pass to the limit.

Thus we have shown that (A.1) is uniquely solvable for r ∈ Cα(Ω+(ψ)) and
g ∈ C1,α(Ω+(ψ)), and the solution satisfies (4.23).

The proof of the existence of a solution for the general problem (4.21) can be
achieved via the method of continuity by considering the following problem for
t ∈ [0, 1]: 

Lt[u] = tLu+ (1 − t)∆u = r in Ω+(ψ),
tb ·Du+ (1− t)uν = g on Sψ,

v = 0 on Γ1,

which has the structure of (4.21) with the same ellipticity and obliqueness constants.
The argument just repeats the proof of Theorem 6.8 in [17], with the aid of Lemma
4.2 and (4.23).

Appendix B. Proof of Lemma 4.4

We now prove Lemma 4.4 for the estimate (4.33) in several steps. Denote g :=
tgψ.

First, we note that u(x) is a solution of the problem (4.21) with r(x) ≡ 0,

aij(x) = Aij(Du(x)), and bi(x) =
n∑
j=1

∫ 1

0

AjPi(sDu(x))ds νj(x), where we used

that A(0) = 0. Then aij , bi ∈ C1,α. Also the uniform ellipticity of aij(x) is obvious,
and the strict obliqueness of bi(x) follows from

b(x) · ν(x) =
n∑

i,j=1

∫ 1

0

AjPi(sDu(x))νi(x)νj(x)ds ≥ λ > 0,

where λ and Λ are the ellipticity constants of (3.6). Then, by Lemma 4.2(i),

(B.1) ‖u‖0,Ω+(ψ) ≤ C‖g‖0,Ω+(ψ),

where C depends only on λ, Λ, and Ω. Noting also that u(x) and u(x) constructed
in the proof of Lemma 4.2 are the barriers for u(x) on Γ1, we have

(B.2) |Du| ≤ C‖g‖0,Ω+(ψ) on Γ1.

Thus we can combine the estimates for the oblique derivative problem with the
estimates for the Dirichlet problem from Chapters 8 and 14 in [17] to prove (4.33).

For the oblique derivative problem, we use the estimates from Sections 2–4 in [24].
Note that (4.29) is the structure condition which allows us to apply these estimates.
Also note that the conormal boundary condition on Sψ satisfies the nonlinear strict
obliqueness property of [24]: Indeed, denoting G(x, P ) :=

∑n
i=1A

i(P )νi(x) for
x ∈ Sψ and P ∈ Rn, we obtain χ := GP · ν =

∑n
i,j=1 A

i
Pj
νiνj ≥ λ > 0, and this

with the properties (4.17) and (4.29) implies that G(x, P ) satisfies the conditions
(G2) and (G3) of [24]. Thus, using the regularized distance to Sψ described in [24,
page 522], and using Lemmas 3.1 and 3.3 in [24] (with modifications outlined on
pages 522–523) and Theorem 4.1 in [24] (with the aid of Lemma 2.2 in [24]), we

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



MULTIDIMENSIONAL TRANSONIC SHOCKS, FREE BOUNDARY PROBLEMS 493

obtain (4.33) in a boundary neighborhood of Sψ, where δ > 0 is from Theorem 4.1
in [24]. The interior gradient bound follows from Lemma 3.1 in [24].

These estimates combined with (B.1), (B.2), and the estimates of Chapter 13 in
[17] yield (4.33) with C depending only on ‖g‖1,α,Ω+(ψ), Sψ, and Ω.
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