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Abstract

We are concerned with geometric properties of transonic shocks as free bound-
aries in two-dimensional self-similar coordinates for compressible fluid flows,
which are not only important for the understanding of geometric structure and
stability of fluid motions in continuum mechanics, but are also fundamental in the
mathematical theory of multidimensional conservation laws. A transonic shock for
the Euler equations for self-similar potential flow separates elliptic (subsonic) and
hyperbolic (supersonic) phases of the self-similar solution of the corresponding
nonlinear partial differential equation in a domain under consideration, in which
the location of the transonic shock is apriori unknown. We first develop a general
framework under which self-similar transonic shocks, as free boundaries, are proved
to be uniformly convex, and then apply this framework to prove the uniform convex-
ity of transonic shocks in the two longstanding fundamental shock problems—the
shock reflection—diffraction by wedges and the Prandtl-Meyer reflection for super-
sonic flows past solid ramps. To achieve this, our approach is to exploit underlying
nonlocal properties of the solution and the free boundary for the potential flow
equation.
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1. Introduction

We are concerned with geometric properties of transonic shocks as free bound-
aries in two-dimensional self-similar coordinates for compressible fluid flows,
which are not only important for the understanding of geometric structure and
stability of fluid motions in continuum mechanics, but are also fundamental in the
mathematical theory of multidimensional conservation laws (see [5, 14, 16]). Math-
ematically, a transonic shock for the Euler equations for potential flow separates
elliptic (subsonic) and hyperbolic (supersonic) phases of the self-similar solution of
the corresponding nonlinear partial differential equation (PDE) in a domain under
consideration, in which the location of the transonic shock is apriori unknown. The
Rankine-Hugoniot conditions on the shock, together with the nonlinear PDE in the
elliptic and hyperbolic regions, provide the sufficient overdeterminancy for finding
the shock location. This enforces a restriction to the shock and yields its fine proper-
ties, such as its possible geometric shapes, which is the main theme of this paper. For
this purpose, we formulate the transonic shock problem as a one-phase free bound-
ary problem for the nonlinear elliptic PDE in a domain with a part of the boundary
fixed, as illustrated in Fig. 1. More precisely, we first develop a general framework
under which self-similar transonic shock waves, as the free boundaries in the one-
phase problem, are proved to be uniformly convex, and then apply this framework
to prove the uniform convexity of transonic shocks in the two longstanding fun-
damental shock problems for potential flow—the shock reflection—diffraction by
wedges and the Prandtl-Meyer reflection for supersonic flows past solid ramps. In
particular, the convexity of transonic shocks is consistent with the geometric config-
urations of shocks observed in physical experiments and numerical simulations; see
e.g. [4,11,12,17,18,25-30,33,36,40,41], and the references cited therein. Also see
[9,10,32,34,35,37,39] for the geometric structure of numerical Riemann solutions
involving transonic shocks for the Euler equations for compressible fluids.

One of our key observations in this paper is that the convexity of transonic shocks
is not a local property. In fact, for the regular shock reflection—diffraction problem
as described in §7.1, the uniform convexity is a result of the interaction between
the cornered wedge and the incident shock, since the reflected shock remains flat
when the wedge is a flat wall. Therefore, any local argument is not sufficient to lead
to a proof of the uniform convexity. In this paper, we develop a global approach by
exploiting some nonlocal properties of transonic shocks in self-similar coordinates
and employ it to prove that the transonic shocks must be convex. Our approach is
based on two features related to the global and nonlinear phenomena. One is that
the convexity of transonic shocks is closely related to the monotonicity properties
of the solution, which is derived from the global structure in the applications. These
properties are also crucial in the proof of the existence of the two shock problems
in [3,14]. The other is that the Rankine-Hugoniot conditions, combined with the
monotonicity properties, enforce the nonlocal dependence between the values of
the velocity at the points of the transonic shock, as well as the nonlocal dependence
between the velocity and the geometric shape of the shock. Moreover, for this prob-
lem, it seems to be difficult to apply directly the methods as in [7,8,19], owing to
the difference and more complicated structure of the boundary conditions.
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The convexity of shock waves is not only an important geometric property
observed frequently in physical experiments and numerical simulations, but also
crucial in the analysis of multidimensional shock waves. For example, the convexity
property of transonic shocks plays an essential role in the proof of the uniqueness
and stability of shock waves with large curvature in [15]. Therefore, our approach
can be useful for other nonlinear problems involving transonic shocks, especially
for the problems that cannot be handled by the perturbation methods.

In particular, as an application of our general framework for the convexity of
shocks, we prove the uniform convexity of transonic shocks in the two longstanding
fundamental shock problems. The first is the problem of shock reflection—diffraction
by concave cornered wedges as analyzed in §7.1. It has been analyzed in Chen-
Feldman [13, 14],in which von Neumann’s sonic and detachment conjectures for the
existence of regular shock reflection—diffraction configurations have been solved
all the way up to the detachment wedge-angle for potential flow. The second is
the Prandtl-Meyer reflection problem for supersonic flow past a solid ramp as
analyzed in §7.2. Elling-Liu [20] made a first rigorous analysis of the problem for
which the steady supersonic weak shock solution is a large-time asymptotic limit
of an unsteady flow under certain assumptions for an important class of wedge
angles and potential fluids. Recently, in Bae-Chen-Feldman [2,3], the existence
theorem for the general case all the way up to the detachment wedge-angle has
been established via new techniques based on those developed in Chen-Feldman
[14]. For both problems, we apply the general framework developed in this paper
to prove the uniform convexity of the transonic shocks involved.

The study of geometric properties of free boundaries, such as the convexity of
the free boundaries and the monotonicity properties of the corresponding solutions
under consideration, is fundamental in the mathematical theory of free boundary
problems; see [6-8,19,21-24,38] and the references cited therein. Furthermore,
as mentioned earlier, the convexity of free boundaries has played an essential role
in the analysis of the uniqueness and stability of solutions of the free boundary
problems, as shown in [15].

The organization of this paper is as follows: in §2, we introduce the potential
flow equation and the Rankine-Hugoniot conditions on the shock, and set up a
framework as a general free boundary problem on which we focus in this paper,
and then we present the main theorem for this free boundary problem. In §3, we
show some useful lemmas. Then we develop our approach to prove first the uniform
convexity of the shock, i.e., Theorem 2.1 in §4, and to prove further the uniform
convexity of the shock on compact subsets of its relative interior, i.e., Theorem 2.3
in §5. In §6, we establish the relation between the strict convexity of the transonic
shock and the monotonicity properties of the solution, i.e., Theorem 2.2. Finally, in
§7, we apply the main theorems to prove the uniform convexity of transonic shocks
in the two shock problems—the shock reflection—diffraction by wedges and the
Prandtl-Meyer reflection for supersonic flows past solid ramps.

A note regarding terminology for simplicity: since our main concern is the
convexity of the elliptic (subsonic) region for which the transonic shock as a free
boundary is a part of the boundary of the region throughout this paper, we use the
term—convexity—for the free boundary, even though it corresponds to the con-
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cavity of the shock location function in a natural coordinate system. Moreover, we
use the term uniform convexity for a transonic shock to represent that the transonic
shock is of non-vanishing curvature on any compact subset of its relative interior.

2. The Potential Flow Equation and Free Boundary Problems

2.1. The Potential Flow Equation

As in [1,13], the Euler equations for potential flow consist of the conservation
law of mass for the density and the Bernoulli law for the velocity potential ¥:

9o+ Vx - (pVx¥) =0, (2.1)
1
W + SIVKW I +i(p) = Bo, (2.2)
where By is the Bernoulli constant determined by the incoming flow and/or bound-
ary conditions, X = (x1, xp) € R, i(p) = f lp @dr for the pressure function

p = p(p), and v = V¥ is the velocity.
For polytropic gas, by scaling,

oY y—1 _

. P 1
p(p)=7, A(p) =p’ 1, 1(,0)=T fory > 1,

1

where c(p) is the sound speed.
If the initial-boundary value problem is invariant under the self-similar scaling

4
(x,1) — (ax,at), (0,¥)— (p, —) fora #0,
o
then we can seek self-similar solutions with the form
I 5 X
px, 1) =pE), W& 1)=1(pE&) + EIEI ) for§ = (&1, 6) = n

where ¢ is called a pseudo-velocity potential that satisfies Do := (¢¢,, ¢g,) = V—§,
which is called a pseudo-velocity. The pseudo—potential function ¢ satisfies the
following potential flow equation in the self-similar coordinates:

div(p Do) +2p =0, (2.3)

where the density function p = p(IDy|?, @) is determined by

_ 1 1
p(De, ) = (o) ' = (v = D(p + 51DeP)) 7. 2.4)

with constant py > 0, and the divergence div and gradient D are with respect to
the self-similar variables &.

From (2.3)-(2.4), we see that the potential function ¢ is governed by the fol-
lowing potential flow equation of second order:

div(o(IDgI*, 9)Dg) +2p(I1Dgl*, ¢) = 0. 2.5)
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Equation (2.5) written in the non-divergence form is
(€ — 02)pere, — 208,906,056 + (¢ — 05005 + 205 —|Dol> =0, (2.6)

where the sound speed ¢ = c(|Dg|?, @, po) is determined by

_ -1 -1 1
A(IDgl%, ¢, po) = p” " (ID@ %, @, 0} ™) = pY —(y—l)(5|D<p|2+<p). 2.7)

Equation (2.5) is a second-order equation of mixed hyperbolic-elliptic type, as it
can be seen from (2.6): It is elliptic if and only if

|Dg| < c(ID¢|*, ¢, po), (2.8)

which is equivalent to

(of ™" = (v = Do). (2.9)

Dol < c. (o, = |—
[Dg| (¥, po) \/y+1

Moreover, from (2.6)—(2.7), equation (2.5) satisfies the Galilean invariance prop-
erty: if ¢ (&) is a solution, then its shift ¢ (§ — &) for any constant vector & is also
a solution. Furthermore, ¢ (&) 4 const. is a solution of (2.5) with adjusted constant
po correspondingly in (2.4).

One class of solutions of (2.5) is that of constant states that are the solutions
with constant velocity v = (u, v). This implies that the pseudo-potential ¢ of a
constant state satisfies Do = v — & so that

1
¢(6)=—5|£|2+v-§+c, (2.10)

where C is a constant. For such ¢, the expressions in (2.4)—(2.7) imply that the
density and sound speed are positive constants p and c, i.e., independent of &.
Then, from (2.8) and (2.10), the ellipticity condition for the constant state is

& —v| <c.
Thus, for a constant state v, equation (2.5) is elliptic inside the sonic circle, with
center v and radius c.

2.2. Weak Solutions and the Rankine—Hugoniot Conditions

Since the problem involves transonic shocks, we define the notion of weak
solutions of equation (2.5), which admits shocks. As in [13], it is defined in the
distributional sense.

Definition 2.1. A function ¢ € W, (£2) is called a weak solution of (2.5) if

i) oy~ = (v = Dig+ 31Dl 2 0 ae.in 2;
(i) (p(ID¢l?, @), p(ID@|*, 9)|Dg|) € (L] .(£2))%
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(iil) For every ¢ € C°(£2),
/Q (PP, 9)Dg - D —2p(1Dgl%, 9)0)dE =0, (2.11)

A piecewise C? solution ¢ in £2, which is C? away from and C' up to the
Cl—shock curve S, satisfies the conditions of Definition 2.1 if and onlyifitisa C z_
solution of (2.5) in each subregion and satisfies the following Rankine-Hugoniot
conditions across curve S:

[p(IDg|?, ¢) Dy - v]s = 0, (2.12)
[pls =0, (2.13)

where the square bracket [ - ] denotes the jump across S, and v is the unit normal
vector to S. Condition (2.13) follows from the requirement: ¢ € WIL’CI (£2) for
piecewise-smooth ¢, and condition (2.12) is obtained from (2.11) via integration by
parts and by using (2.13) and the piecewise-smoothness of ¢. Physically, condition
(2.12) is owing to the conservation of mass across the shock, and (2.13) is owing to
the irrotationality. From now on, we denote D¢ - v = d,¢ = ¢, when no confusion
arises.

It is well known that there are fairly many weak solutions to conservation
laws (2.5). In order to single out the physically relevant solutions, the entropy
condition is required. A discontinuity of D¢ satisfying the Rankine-Hugoniot con-
ditions (2.12)—(2.13) is called a shock if it satisfies the following physical entropy
condition:

The density function p increases across the discontinuity

in the pseudo-flow direction. (2.14)

From (2.12), the entropy condition indicates that the normal derivative function ¢,
on a shock always decreases across the shock in the pseudo-flow direction. That
is, when the pseudo-flow direction and the unit normal vector v are both from state
(0) to (1), then p; > pp and @1y < @oy.

2.3. General Framework and Free Boundary Problems

Now we develop a general framework for the transonic shocks as free bound-
aries, on which we will focus our analysis in this paper.

As in Fig. 1, let §£2 be a bounded, open, and connected set, and 952 = gk U
I't U I';, where the closed curve segment [ pock 1S a transonic shock that separates
a pseudo-supersonic constant state (0) outside §2 from a pseudo-subsonic (non-
constant) state (1) inside £2, and I'7 U I is a fixed boundary whose structure will
be specified later. The dashed ball B, (Og) is the sonic circle of state (0) with center
Op = (1o, vo) and radius cg. Note that Ishock is outside of B, (Op) because state
(0) is pseudo-supersonic on I ghock- A and B are the endpoints of the free boundary
Tshock, While T4 and T p are the unit tangent vectors pointing into the interior of
Tihock at A and B, respectively.
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\\B\CU<00) _ //
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Fig. 1. Free boundary problems

Denote vo = (ug, vo). Then the pseudo-potential of constant state (0) with
density pg > 0 has the form

1
go=—(& - v0)2. (2.15)
Let

¢ =9 —¢o.

Then we see from (2.6) that ¢ = ¢ — ¢ satisfies the following equation in £2:
(€ = ¢2)%e6s — 2606000 + ( — 05)bos =0, (216)

where ¢ = c(|D<p|2, @, po) is the sound speed, determined by (2.7). Along the
shock curve gk that separates the constant state (0) with pseudo-potential ¢y
from the non-constant state ¢ in £2, the boundary conditions for ¢ are

¢ =0, p(IDp+ Dgol*, ¢ +¢0) D+ @) - v = poDgo-v on lpock, (2.17)

from the Rankine-Hugoniot conditions (2.12)—(2.13).

Now we state the main results of this paper. We first layout the structural frame-
work for domain £2 under consideration.

From now on, I"? denotes the relative interior of a curve segment I". In partic-
ular, Fs(l)mck is the relative interior of Ighock.

Framework (A)—The structural framework for domain £2:

(i) Domain §2 is bounded. Its boundary 952 is a continuous closed curve without
self-intersections, piecewise C* up to the endpoints of each smooth part for
some « € (0, 1), and the number of smooth parts is finite.

(i1) At each corner point of 952, angle 0 between the arcs meeting at that point
from the interior of 2 satisfies 6 € (0, ).
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(i) 982 = Ishock U I'1 U I, where Ishock, 11, and I are connected and disjoint,
and both Fs(})mck and '] U I are non-empty. Moreover, if I; # ( for some
i € {1, 2}, then its relative interior is nonempty, i.e., Fio # 0.

(iv) TIghock includes its endpoints A and B with corresponding unit tangent vectors
T4 and T p pointing into the interior of [yhock respectively. If Iy # @, then
A is a common endpoint of Ighock and 7. If I # @, then B is a common

endpoint of Igpock and 1.

If T4 # £t p, define the cone
Con:={rtpa+stp : r,s € (0,00)}.
Then we have

Theorem 2.1. Assume that domain §2 satisfies Framework (A). Assume that ¢ €
Cl(R2)NC*RUTY 4) NC3(R2) is a solution of (2.16)~(2.17), which is not a
constant state in §2. Moreover, let ¢ satisfy the following conditions:

(A1) The entropy condition holds across I'shock: ,0(|D(p|2, @) > poand ¢, < 0
along I'ghock, Where v is the interior normal vector to I'yhock, i-€., pointing
into §2;
(A2) There exist constants C1 > 0 and a1 € (0, 1) such that ||¢”1+a1,§ <Cy;
(A3) In 2 U FS?I o equation (2.16) is strictly elliptic: 2 —|D(@ + ¢o)* > 0;
(A4) Tshock Is C~ in its relative interior;
(AS) T4 # £1B, and {P + Con} N 2 = @ for any point P € [ghock;
(A6) There exists a vector e € Con such that one of the following conditions holds:
(1) It # O, and the directional derivative ¢e cannot have a local maximum
point on FIO U {A} and a local minimum point on I'?,
(i) Iy # O, and ¢e cannot have a local minimum point on I 10 and a local
maximum point on on U {B},
(i) ¢e cannot have a local minimum point on Iy U I,
where all the local maximum or minimum points are relative to 2.

Then the free boundary I'shock is a convex graph. That is, there exists a concave
function f € C La(R) in some orthonormal coordinate system (S, T) in R? such
that

Tshock ={(S,T): S= f(T), Ta <T < Tg},
QO{Ty<T <Tg} C (S < £(T)) (2.18)

with f € C*® (T4, Tg)), and shock I'gock is strictly convex in its relative interior
in the sense that, if P = (S, T) € I"S?mk and f"(T) = O, then there exists an

integer k > 1, independent of the choice of the coordinate system (S, T), such that
Ty =0 forn=2,...,2k—1, FeR(T) < 0. (2.19)

The number of the points at which f"(T) = 0 is at most finite on each compact
subset of Fs(l)mck' In particular, the free boundary I'yhock cannot contain any straight
segment.
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Remark 2.2. Conditions (A2) and (A5)—(A6) of Theorem 2.1 are the requirements
on the global behavior of solutions. In fact, (A5) ensures that there is a coordinate
system in which the shock is a Lipschitz graph globally.

Remark 2.3. Condition (A6) allows us to deal with three different kinds of bound-
ary conditions. Moreover, at each of the endpoints of I'yhock, the ellipticity can be
either uniform or degenerate. Some applications to each case can be found in §7.

Remark 2.4. The assumption that ¢ is not a constant state means that ¢ cannot be
of the form: ¢ = a; + (az,a3) - & in 2, where a;, j = 1, 2, 3, are constants. In
fact, this assumption can be guaranteed by the boundary conditions assigned along
I't U I3 in the applications in §7.

In the next theorem, we show that, if assumptions (A1)—(A4) and (A6) hold,
then a monotonicity condition for ¢ near Fshock, which is slightly stronger than
condition (A5), is the necessary and sufficient condition for the strict convexity of

shock [ ghock-

Theorem 2.2. Let §2 and ¢ be as in Theorem 2.1 except condition (AS). Then the
fact that the free boundary Ighock is a strictly convex graph in the sense of (2.18)—
(2.19) in Theorem 2.1 is the necessary and sufficient condition for the monotomczty
property that e > 0 on 1"shOCk for any unit vector e € Con, where T K IS the
relative interior of I shock-

shoc

Remark 2.5. Let £2 and ¢ be as in Theorem 2.2, including that the monotonicity
property (or equivalently, the strict convexity of Ighock) holds. In addition, assume
that, for any unit vector e € Con and any point & in the fixed boundary part Iy U I3,
¢e satisfies that either ¢e(§) > 0 or @ cannot attain its local minimum at & with
respect to £2. Then ¢e > 0in 2 U Fs(})mck for any unit vector e € Con.

The proof of Remark 2.5 is given after the proof of Theorem 2.2 in §6. Moreover,
the assumptions of Remark 2.5 can be justified for the two applications: the regular
shock reflection problem and the Prandtl-Meyer reflection problem; see §7.

Furthermore, under some additional assumptions that are satisfied in the two
applications, the shock curve is uniformly convex in its relative interior in the sense
defined in the following theorem:

Theorem 2.3. Let 2 and ¢ be as in Theorem 2.1. Furthermore, assume that, for
any unit vector e € R?, the boundary part I't U I'y can be further decomposed so
that

(A7) MU = ﬁo ur 1 U ﬁz U ﬁ3, where some of f, may be empty, 1:', is connected
foreachi =0, 1, 2, 3, and all curves f', are located along 952 in the order of
their indices, i.e., non-empty sets r '} and f'k, k > j, have a common endpoint
if and only if either k = j+ 1orI; = @ foralli = j+1,....,k— 1.
Also, the non-empty set I; with the smallest (resp. largest) index has the
common endpoint A (resp. B) with I'yhock. Moreover, if I; # 0 for some
i €{0, 1,2, 3}, then its relative interior is nonempty: FO # 0;

(A8) ¢e is constant along I 0 and r kK
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(A9) For i = 1,2, if e attains its local minimum or maximum relative to §2 on
0 then e is constant along 1", ;
(A10) One of the following two conditions holds:
(1)EltherF1 —Viorfz =0,
(ii) Both I | and I h are non-empty, and I 3 = @, so that I 5 has the common
endpoint B with I'shock. At point B, the following conditions hold:
—Ifvsh(B) - e < O, then ¢ cannot attain its local maximum relative to
Q2 at B,
—Ifvgh(B) - e = 0, then ¢pe(B) = ¢e(Q¥) for the common endpoint Q*
of I3 | and fz,
where vgh(B) = lim v(P), which exists since [ghock IS c! up to B.

0
Lyock>P— B

Then the shock function f(T) in (2.18) satisfies that f"(T) < O for all T €
(T4, Tp); that is, I'shock is uniformly convex on closed subsets of its relative interior.

Remark 2.6. By (2.17) and condition (A1) of Theorem 2.1, it follows that ¢ < O in
§2 near I'gpock. Since Ighock 1S the zero level set of ¢, then the following statements
hold (see also Lemma 3.2(v)):

(i) The convexity of Iyhock 1S equivalent to the fact that ¢ > 0 on [gpock. More-
over, by (2.19), if ¢y = 0 at some P € Ihock, then there exists an integer
k > 1 such that

ap=0 forn=2,...,2k—1, 3¢ >0 at P, (2.20)

where k is the same as in (2.19). In particular, this implies that k is independent
of the choice of the coordinate system (S, 7') used in (2.18);

(i1) The conclusion of Theorem 2.3 is equivalent to the following: ¢, > 0 along
I“S(})lock, where "9 shock 18 the interior points of [ghock-

Remark 2.7. If the conclusion of Theorem 2.3 holds, then the curvature of Igpock:
f//(T)
3/2
(1+ (f/(1)2)

has a positive lower bound on any closed subset of (T4, Tp).

Remark 2.8. The definition of fo and fg is motivated by the observation that ¢,
is constant along the sonic arcs in the two shock problems; see the applications in
§7 for more details.

Remark 2.9. We can simplify (2.15) as follows: By the Galilean invariance of the
potential flow equation (2.16) (i.e., invariance with respect to the shift of coor-
dinates), we assume without loss of generality that vo = (0, 0); indeed, this can
be achieved by introducing the new coordinates §& = (£; — ug, & — vp). Fur-
thermore, we choose constant pg in (2.4) to be the density of state (0). Then the
pseudo-potential of state (0) is

1
Qo0 = —EIEIZ- 2.21)

We will use this form in the proof of the main theorems.
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Remark 2.10. Rewrite the condition: ¢, < 0in (Al), as D¢ - v < Dgq - v. Then,
replacing ¢ + ¢p by ¢ in the second equality in (2.17) and using that p > pg by
(A1) for pg > 0, we have

Dyo-v>Dyp-v>0 on Ishock- (2.22)

The theorems stated above are proved in §3-§6. In §3, we first prove some
general properties of the free boundary Iyhock, and then derive some additional
properties from the assumptions in the theorems. In §4-§6, we employ all of these
properties to prove Theorems 2.1-2.3. Specifically, we prove Theorem 2.1 in §4,
Theorem 2.3 in §5, and Theorem 2.2 in §6. Then, in §7, we apply the general
framework to show the convexity results for the two shock problems: the shock
reflection—diffraction problem and the Prandtl-Meyer reflection problem. In the
appendix, we construct paths in £2 satisfying certain properties—these paths are
used in the proof of the main results.

In the rest of the paper, we use the following terminology: a statement that a
function attains a local extremum at P € 92 means that the local extremum is
relative to £2. In the case when the local extremum is along (or relative to) 352, we
always state that explicitly.

3. Basic Properties of Solutions

In this section, we list several lemmas for the solutions of the self-similar poten-
tial flow equation (2.16), which will be used in the subsequent development. Some
of them have been proved in Chen-Feldman [14] for a specific geometric situation
for the shock reflection—diffraction problem. Here we list these facts under the gen-
eral conditions of Theorem 2.1 and present them in the form convenient for the use
in the general situation considered here. For many of them, the proofs are similar
to the arguments in [14], in which cases we omit or sketch them only below for the
sake of brevity.

3.1. Additional Properties from (A1)—(AS)

Let ¢ € C(2) N C*(2 U T ) N C3(£2) be a solution of (2.16)~(2.17). In
this subsection, we use the results of [ 14, Lemma 6.1.4] to show some properties as
the consequences of conditions (A1)—(AS) of Theorem 2.1. First, for a given unit
constant vector e € R?, we derive the equation and the boundary conditions for ¢e.

Let e be the unit vector orthogonal to e, and let (S, T') be the coordinates with
basis {e, e-}. Then equation (2.16) in the (S, T')—coordinates is

(2 — 02)pss — 2psprdsT + (> — pF)dprT = 0. (3.1)

Differentiating (3.1) with respect to S and using the Bernoulli law,

dsc? = —(y — D(gps¢ss + orosT),
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we obtain the following equation for w = dg¢ = Je¢p:

(* — pPwss — 2¢sprwst + (2 — ¢F)wrr
+ (3s(c* = ¢3) — (v — Dosorr)ws
— (205(pser) — 20rd7r7 + (v — Dordrr)wr = 0. (3.2)

Since the coefficients of the second-order terms of (3.2) are the same as the ones
of (3.1), we find that (3.2) is strictly elliptic in £2 U Fs?lock. Using the regularity of
¢ above, we find that the coefficients of (3.2) are continuous on £2 U FS%OCk. Thus,
(3.2) is uniformly elliptic on compact subsets of £2 U Fsgock.

For the boundary conditions along Iyhock, We first have

¢=0 along I'ghock -
Thus, the unit normal vector v and the tangent vector T of [yhock are

T = (T], _L,z) — (_8§2¢’ 8§1¢)

D_ (3.3)
|Dg|’ |D@| '

v= (v, )=

Notice that, from the entropy condition—condition (A1) of Theorem 2.1, we have

D¢ #0, p>po on Ihock

so that (3.3) is well defined.
Taking the tangential derivative of the second equality in (2.17) along [ghock
and using (3.3), we have

(—05,¢ 05, + 05,4 05,) ((0 D@ — poDgo) - DY) =0 on Iyhock-

From this, after a careful calculation by using equation (2.16) (see [14, Sect. 5.1.3]
for details), we have

D*¢lt,h1=0  on Iipock, (3.4)

where D%¢[a, b] := Ziz‘j=l a;ib;d;j¢ and

)

h=—
poc?

(p(c* = o))pwv — (pgy + Poc™) P T). 3.5)

Using (2.22) and conditions (A1) and (A3) of Theorem 2.1, we obtain from (3.5)

that

L — Po
poc?

h-v=— p(C2 - @5)@1} <0 along Fs?wck‘ (3.6)

Based on equation (3.2) and the boundary condition (3.4), we have the following
lemma:
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Lemma 3.1. Let §2 be a domain with piecewise C 1 boundary, and let I'shock C 052
be C? in its relative interior. Let ¢ € CX( U Fs(f)lock) N C3(2) be a solution
of (2.16) in 2 and satisfy (2.17) on I'shock, and let ¢ be not a constant state in 2.
Assume also that ¢ satisfies conditions (A1)—(A3) of Theorem 2.1. For a fixed unit
vector e € R? with v - e < 0, if a local minimum or maximum of w: = de¢ in §2
is attained at P € T, S%OCk, then ¢ > 0 or ¢r¢ < 0, respectively, where v denotes
the interior unit normal vector on [ghock to 2.

Proof. First, we note that the proof of [14, Lemma 8.2.4] applies to the present
case so that the conclusion of that lemma holds:

h(P) =ke at P forsomek € R.

Since v - e < 0, we follow the proof of [14, Lemma 8.2.15] to obtain that k > 0
and
2
Wy = —— (pzwf(cz — D) + p1262<p3> ¢re  at P.
kpgy(c* — ¢y)

Thus, by ellipticity and (2.22), ¢, has the same sign as w,. Also, w satisfies
equation (3.2), which is strictly elliptic in £2 U Fs(l)lock' Then, from Hopf’s lemma,
wy(P) < 0if w attains its local maximum at P, while w,(P) > 0 if w attains its
local minimum at P. Then ¢;;(P) < 0 if w attains its local maximum at P, while
¢z (P) > 0 if w attains its local minimum at P. 0O

Next we consider the geometric shape of I'yhock under the conditions listed in
Theorem 2.1.

Lemma 3.2. Let §2 be a domain with piecewise C 1 boundary, and let I'shock C 052
be C? in its relative interior. Let ¢ € C(£2) N C*(R2 U T ) N C3 () be a
solution of (2.16)—(2.17). Assume also that conditions (A1)—(AS) of Theorem 2.1
are satisfied. For a unit vector e € Con, which is defined in Theorem 2.1(A5), let e+
be the orthogonal unit vector to e with el .14 >0.Let (S, T) be the coordinates
with respect to basis {e, e}, and let (Sp, Tp) be the coordinates of point P in
the (S, T)—coordinates. Note that Tg > Ty since el .74 > 0. Then there exists
fe € CHY(R) such that

() Fhock = {S = fe(T) : Ta < T < Tp}, 2 C{S < fe(T): T € R},
A = (fe(Ta), Ta), B = (fe(Tp), Tp), and f € C*((Tx, Tp));

(i) The directions of the tangent lines to I'shock lie between T 4 and T p; that is, in
the (S, T)—coordinates,

TR - € TA-€

—00 < fo(TB) < fo(T) < fi(Ta) =

Tp-el Th-el

< 0

forany T € (Ta, Tp);
(iii) v(P) - e < O for any P € [ghock;
(iv) ¢e > 0 on I'shock;



60 G.-Q. G. CHEN ET AL.

(v) Forany T € (Ta, Tp),
bee(fe(T),T) <0 = f/(T) >0,
while
Gre(fe(T),T) >0 — [f(T)<O.
Proof. By the first condition in (2.17) and the entropy condition (A1),
¢$=0, ¢ <0 on [hock- (3.7

From this, we have the following two facts:

(@) D¢ # (0,0) on Ihocks
(b) Combining (3.7) with assumption (AS), D¢ -e > 0 on [ yhock foreach e € Con.

Using facts (a)—(b) and recalling that Con denotes the open cone, we conclude that
D¢ -e > 0on I'ghock for any e € Con. Then the implicit function theorem ensures
the existence of f, such that property (i) holds.

For property (ii), from the definition that e - 74 > 0 and the fact that {P +
Con}N§2 = @, we find that, in the (S, T')—coordinates, for any given T € (T4, Tp)
and small o > 0,

Je(T) +

TpA-€ Tp €
J_G Zfe(T+U) Zfe(T)+ 1
TR - €

o.

TpA-€
From this, noting that f{(T4) = T’::’l and the similar expression for f;(7) follow
from the definition of f, we obtain (ii).

(fe(T),=1) T4 = (1, fi(Ta))
N VIHRTA)?
__WfeTB) _ Gince e € Con, then e = s1(1, f1(Ta)) — sa(1, f.(Tg)) for some

T , 11, FUTa) = 21, f(Tp))

51,52 > 0. Also, the condition that T4 # —tp in (AS) implies that fe’(TA) *
fi(Tp). Then

Next we show (iii). From (i), v = and T =

1 / / / /
e= W(n(ﬁ,(ﬁ — fe(Ta) + s2(fo(TB) — fo(T))) <O,
where we have used (ii) and the fact that f{(T4) # fJ(Tp) to obtain the last
inequality. Now (iii) is proved.

To show property (iv), we notice that, along I shock, $r = 0, ¢, < 0 by assump-
tion (A1) of Theorem 2.1, and v - e < 0 by (iii). Therefore, pe = (v - €)¢p, > 0,
which is (iv).

Finally, property (v) follows from the boundary conditions along I shock. More
precisely, in the (S, T')—coordinates, differentiating twice with respect to 7T in the
equation: ¢ (fe(T), T) = 0, and using that ¢ = 0 and ¢e # 0 along [ghock bY
property (iv), we have

D2 DJ_ ,DJ' 2 rr
sy = -2 : ¢")’3 ¢]<fe<T),T>=—"’“¢"’3 FeT), 7). (8

Now property (v) directly follows from (v) and properties (iii)—(iv). This completes
the proof. O
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In order to show Lemma 3.4 below, we first note the following property of
solutions of the potential flow equation:

Lemma 3.3. ([14], Lemma 6.1.4). Let 2 C R? be open, and let 2 be divided by
a smooth curve S into two subdomains 2% and 2~. Let ¢ € cO! (82) be a weak
solution in 2 as defined in Definition 2.1 such that ¢ € C*(2F) N CL(2*F U S).
Denote & := <p| o+ Suppose that ¢ is a constant state in §2~ with density p— and
sound speed c_, that is,

1
o (&) = —5|§|2 +V_E+ AT,

where V_ is a constant vector and A~ is a constant. Let Py € S, fork = 1, 2, be
such that

(1) ¢~ is supersonic at Py: |Do™| > c— := c(|Dg0_|2, ©~, po) at Py;
(i) Do~ -v > Dot - v > 0at P, where v is the unit normal vector to S oriented
from 27 to 27;
(iii) For the tangent line Lp, to S at Py, k = 1,2, Lp, is parallel to L p, with
v(P1) = v(P);
(iv) d(Py) > d(P2), where d(Py) is the distance between line Lp, and center
O~ = v_ of the sonic circle of state ¢~ for each k = 1, 2.

Then
¢y (P1) < ¢y (Py),
where % (§) = 31§ + ¢ (§).
Now we prove a technical fact used in the main argument of the paper.

Lemma 3.4. Let 2, I'shock, and ¢ be as in Lemma 3.2. For the unit vectore € Con,
let (S, T) be the coordinates defined in Lemma 3.2, and let fo be the function
Jfrom Lemma 3.2(1). Assume that, for two different points P = (T, fe(T)) and
Py = (T, fe(T1)) on Ishock,

Je(T) > fe(T) + fo(TYT —T1),  fo(T) = f{(T1).
Then

(i) d(P) := dist(Og, Lp) > dist(Op, Lp,) =: d(P1), where Oy is the center of
sonic circle of state (0), and Lp and L p, are the tangent lines of I'shock at P
and P, respectively.

(ii) ¢e(P) > ¢e(P1).

Proof. First, since f{(T) = f{(T1), denote v := v(P) = v(P)) and T := 7(P) =
7(Py). In addition,

d(P) =dist(Ogp, Lp) = POy - v, d(P1) =dist(Op, Lp,)) = P1Og - v.

Therefore, it suffices to find the expression of vector P Oy in terms of vector P; Oy.
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From the definition of the (S, T')—coordinates and the shock function f, in the
previous lemmas, we have

(T, fe(T)) = (T1, fe(T1) + (fe(T) — fe(T1))e + (T — Ty)e™,
so that
(T, fe(T)) = (T, fe(T1)) + (fe(T) — fe(T1) — fo(T1)(T — Tp))e
+(T — Ty (e" + fl(Tr)e). 3.9)
Since (et + fJ(T1)e) - v =0,
POg - v=(00—(T, fe(T))) - v=P1 00 - v—(fe(T)— fe(T1)— fe(T1 (T — T1))e - v.

From Lemma 3.2(iii) and the fact that fo(T) > fe(T7) + fe/(Tl)(T —T1), we
conclude that POq - v > POy - v. This implies

d(P) = dist(0g, Lp) > dist(0g, Lp,) = d(Py).

Then (i) is proved.
Now we prove (ii). By (i) and Lemma 3.3,

Dv(P) < ¢y (P1).

Also, ;¢ = 0 on Ik by the first condition in (2.17). Thus, 9;¢(P) =
dz¢ (P1) = 0. Then, using e - v < 0, we obtain

D¢(P)-e=0yp(P)v-e> dyp(P)v-e=Dp(P)-e,

which is (ii). O

3.2. Real Analyticity of the Shock and Related Properties

In this subsection, we show that the shock, I“S(l)mk, is real analytic and ¢ is real
analytic in 2 U Fs(l)lock. To see that, we note that the free boundary problem (2.5)

and (2.12)—(2.13) can be written in terms of ¢ = ¢ — @9 withv = % in the form

N(D2¢,D¢,¢,E) =0 in £2, (3.10)
M(D¢,¢p,8) =0 on [shock, (3.11)
$»=0 on Ihock (3.12)

where, for (r, p, z, &) € §2%2 o R? x R x §2 with §2%2 as the set of symmetric
2 x 2 matrices,

N(x,p,z, &) = (2 — (p1 — &D*)rit — 2(p1 — ED)(p2 — E)r12
+ (c* = (p2 — &) 22, (3.13)

M. 2. §) == (p(p. 2. £)(p + Dgo) — poDepo) - % (3.14)
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with

Cz(pv 2, g) = :()())/71

1 2
~(=DE=&p+5PP), p@.2E=cp 2,867
Equation (3.10) is quasilinear, so that its ellipticity depends only on (p, z, &).
By assumption, the equation is strictly elliptic on solution ¢, i.e., for (p, z, &) =
(Dp(P), p(P), P)forall P € QUTY ..
Furthermore, it is easy to check by an explicit calculation that the ellipticity
of the equation and the fact that v = % on FS%OCk imply the obliqueness of the

boundary condition (3.11) on FS%OCk for solution ¢:
DpyM (D¢, ¢, &) -v>0  on e

Moreover, from the explicit expressions, N (r, p, z, §) isreal analyticon § 2x2 %
R? x R x §2, and M(p, z, &) is real analytic on

. 1
(@28 : p ' (= D—&p+5lpF) >0}

Since ¢q is pseudo-supersonic, ¢ is pseudo-subsonic on [ ghock, and conditions
(2.12)—(2.13) hold, we have

p(Do, ¢, &) > po for all § € I'shock,

so that

) 1 -
oy~ =D(E—& p+ 5|p|2) > p

for all (p,z,§) = (D¢(§), #(&), &) with § € Inock. That is, M(p, z, §) is real
analytic in an open set containing (p, z, &) = (D¢ (&), ¢ (&), &) for all & € gock-

Then, by Theorem 2 in Kinderlehrer-Nirenberg [31], we have the following
lemma:

Lemma 3.5. Let §2, shock, and ¢ be as in Lemma 3.2. Then I;(})mk is real analytic
in its relative interior; in particular, fe is real analytic on (Tx, Tp) for anye € Con.
Moreover, ¢ is real analytic in 2 up to 1"5(})1061(.

We remark here that the assertion on the analyticity of the solution up to the
free boundary is not listed in the formulation of Theorem 2 in [31], but is shown in
its proof.

Now we show the following fact that will be repeatedly used for subsequent
development.

Lemma 3.6. Let 2, Ishock, and ¢ be as in Lemma 3.2. Assume that ¢ is not a
constant state in §2. Let ¢ € Con, and let Ty, Tp, and fe be from Lemma 3.2(i).
Then, for any Tp € (T4, Tp), there exists an integer k > 2 such that fe(k)(Tp) # 0.
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Proof. In this proof, we use equation (3.4) in the (S, T')—coordinates with basis
{v, T} = {v(P), T(P)} (constant vectors).

We argue by a contradiction. Assume that P = (fe(Tp), Tp) € Q%OCk is such
that fe(l)(Tp) = 0 for all i > 1. From (v) and its derivatives with respect to 7', we
use assumption (A1) of Theorem 2.1 to obtain

3Lp(P)=0 foralli > I.

Writing (3.4) in the coordinates with the basis of the normal vector v and tangent
vector T on [ghock at P, and writing vector h given in (3.5) as b = hyv + h, T, we
have

heprr +hypyr =0 at P. (3.15)

From (3.6), hy = h-v < 0 at P so that ¢, = 0 implies that ¢, = 0. Now, from
equation (3.1) and assumption (A3) of Theorem 2.1, we obtain that ¢,, = 0, so
that

Grr = Pyr = Ppy =0 at P. (3.16)

Continuing inductively with respect to order k of differentiation, we fix k > 2,
and assume that D/ ¢ (P) = Ofor j =2, ..., k— 1. With this, taking the (k — 1)-th
tangential derivative of (3.4), we obtain

hedkp +n, 0 19,0 =0  atP.
Thus, from 8],‘¢>(P) = 0, we have
#*1a,0=0  atp.

Then, using the Bi_z—derivative of equation (3.1), we see that 8’;_283¢ (P) =
0. Furthermore, using the 8;738 s—derivative of equation (3.1), we see that
3’,‘_383 ¢ (P) = 0, etc. Thus, we obtain that all the derivatives of ¢ of order two and
higher are zero at P. Now, from the analyticity of ¢ up to I“S(})lock > P, we conclude
that ¢ is linear in the whole domain §2, which is a contradiction to the condition of
Theorem 2.1 that ¢ is not a constant state. 0O

3.3. Minimal and Maximal Chains: Existence and Properties

In this subsection, we assume that 2 C R2 is open, bounded, and connected,
and that 9£2 is a continuous curve, piecewise C'** up to the endpoints of each
smooth part and has a finite number of smooth parts. Moreover, at each corner
point of 952, angle 6 between the arcs meeting at that point from the interior of 2
satisfies @ € (0, ). Note that Theorem 2.1 requires all these conditions.

Let¢ € C(2) N CHR2 U T ) N C3(£2) be a solution of equation (2.16) in

§2 satisfying conditions (A2)—(A3) of Theorem 2.1. Let e € RR? be a unit vector.

Definition 3.7. Let £, E; € 952. We say that points £ and E» are connected by
a minimal (resp. maximal) chain with radius r if there exist r > 0, integer k1 > 1,
and a chain of balls { B, (Ci)}flz o such that
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(@) CO=E|,Ch = Ey,and C' € 2 fori =0, ... kp;
(b) C'*tl e B.(CHYN Q2 fori =0, ... k5 —I;

(©) ¢e(CTH) = _min ¢ < pe(C') (resp. ¢e(C'F') = max  ¢e > ¢e(C'))
B, (CHNS B, (CHNS
fori =0,...,k; —1;

(d) ¢e(CK) = min e (resp. ge(C) =  max_ ¢e).

B (Ck)HYnR2 B (Ck)HnR2

For such a chain, we also use the following terminology: The chain starts at £ and
ends at E5, or the chain is from E; to E>.

Remark 3.8. This definition does not rule out the possibility that B, (CHNIR # 0,
oreven C' € 082, forsomeoralli =0,...,k; — 1.

Remark 3.9. Radius r is a parameter in the definition of minimal or maximal
chains. We do not fix r at this point. In the proof of Theorems 2.1-2.3, the radii
will be determined for various chains in such a way that Lemmas 3.14-3.18 below
can be applied.

We now consider the minimal and maximal chains for ¢, in £2. In the results
of these subsections, all the constants depend on the parameters in the conditions
listed above, i.e., the C*—norm of the smooth parts of 952, the angles at the corner
points, and [|[@ || -1« @) in addition to the further parameters listed in the statements.

We first show that the chains with sufficiently small radius are connected sets.

Lemma 3.10. There existsr* > 0, depending only on the C1*—norms of the smooth
parts of 052 and angles 6 € (0, ) in the corner points, such that, for any E € 2
andr € (0, r*],

(1) B,(E) N $2 is connected,
(ii) Forany G € B.(E) N 2, B.(E) N B, (G) N $2 is nonempty.

Proof. We only sketch the argument, since the details are standard.

We first prove (i). Denote Q, := (—Lr, Lr) x (—r, r). The conditions on 952
imply that there exist L, N > 4 such that, for any sufficiently small r > 0, the
following facts hold:

(a) If P € 052 has the distance at least Nr from the corner points of 952, then, in
some orthonormal coordinate system in R? with the origin at P,

200y ={(s,1) € Qo = 5> g},
082N Qo ={(s,1) € Q2 : s =g(1)} (3.17)
for some g € C1*(R) with g(0) = g’(0) = 0;

(b) If P € 042 is a corner point, then, in some orthonormal coordinate system in
R? with the origin at P,

20 Qanr ={(s,1) € Qunr : s > max(g1(1), g2(1)},
9820 Qanr = {(s,1) € Qanr : s = max(g1(1), g2(1))} (3.18)
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for some g1 and g; satisfying

g1.82 € CH*R), g1(0) = g2(0) =0, g{(0) <0, g5(0) >0,
g1(t) > go(t) fort <0, g1(t) < g2(t) fort > 0. (3.19)

Note that, in order to obtain (3.18)—(3.19), we use the condition that angle 6 at
P satisfies 6 € (0, 7).

Let E € £2. Without loss of generality, we assume that dist(E, 32) < r;
otherwise, (i) already holds.

The first case is that the distance from E to the corner points is at least 2Nr.
Then, denoting by P the nearest point on 952 to E, it follows that P satisfies the
condition for Case (a) above, so that P is the unique nearest point on 952 to E, and
E = (s*, 0) with s* € [0, r) in the coordinate system described in (a) above. Then,
denoting f*(t) := s* & +/r2 —t2 on [—r, r], and using that |g(¢)] < Ct* and
lg(t)| < Ct'*% on [—r, r] for C depending on the C!*—norm of the smooth parts
of 352, we obtain that, if r is small, there exist t+ € (%r, rland ¢t~ € [—r, —%r)
such that

ff>gon@ 1", f*<gon[—rr]\[, 1], (3.20)
where the last set is empty if r* = £, and
QNB.(E)={(s,t) : max(f (1), g(t)) <s < fT(t), t~ <t <tt}, 3.21)

which is a connected set, by the first inequality in (3.20) and the fact that f~ < f+
in(—r,r).

In the other case, when the distance from E to the corner points is smaller than
2Nr, we argue similarly by using the coordinates described in Case (b) above,
related to the corner point P that is the nearest to E. The existence of such a
coordinate system and the fact that dist(E, P) < 2Nr also imply that the nearest
corner P is unique for E. Then, in these coordinates,

E=(s"1" e 2N Qanr.
Let
20 =(s>¢P@), teR}, TW :=(s=5®@), reR} fork=1,2.

Then, by (3.18),
20 0uny =20 N2 N O, (3.22)

If r is sufficiently small, we deduce from (3.19) that there exists A € (0, 1) such
that
Al <gl) < —x, a<gh)y<r™!  forallr e (—4Nr, 4Nr). (3.23)

Let P® = (s® %)) be the nearest point to E on Ir'® Then P® e r® N

Q2Nr-
Assume that dist(E, I'V) < r, which implies that E € B,(P1"). Using (3.23),

I (tM) < 0. Then, reducing r depending on the C'**—norm of g, rotating the
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coordinate system (s, t) by angle arctan(|g’1(t(1))|) clockwise, and shifting the
origin into P we conclude that, in the resulting coordinate system (S, T'),

2VNnQ, =(S,THeQ, : $>GT),
r'Yng, =(s.T)eQ, : S=G()),

for some G € CH%(R) with G(0) = G'(0) = 0, which is similar to (3.17). Then,
arguing as in Case (a), we obtain an expression similar to (3.21) for 2V N B, (E)
in the (S, T')—coordinates. Changing back to the (s, #)—coordinates and possibly
further reducing r depending on A, we obtain the existence of t ~ € [t* —r, t*) such
that

ff>gion(t ,t*+r), fT<gron[t*—rt*+r]\[t",t* +r], (3.24)
where the last set is empty if t~ = t* — r, and

2UWAB.(E)={(s,1) : max(f~ (1), g1(1)) <s < fH(t), t~ <t <t*+r},
(3.25)
where fE(1) 1= s* + /r2 — (t — t*)2 on [t* — r, t* + r]. Note that (3.25) also
holds if dist(E, I'V) > r: Indeed, in this case, 2V N B,(E) = B,(E) and
g1(t) < f~(@) on[t* —r, t* 4+ r], so that (3.25) holds with t~ = t* — r.
By a similar argument, we show the existence of t* € (¢+*, t* + r] such that

ff>gon@* —rth), ff<gonlt"—rt*+r]\[t*—r1tt], (3.26)
where the last set is empty if 1+ = * 4 r, and

RO NB(E)={(s,1) : max(f~ (1), g2(1)) <s < fH(0), t* —r <t <17}
(3.27)
From (3.22), (3.25), and (3.27), we obtain

RN B(E) ={(s,1) : max(f~ (1), g1(1), g2(t)) <s < fT(1), 17 <t <1},
(3.28)
which is a connected set, by the first inequalities in (3.24) and (3.26) and the fact
that f~ < fTin (¢* —r, t* 4+ r).
Now we prove assertion (ii). We can assume that G € B, (E) N 052; otherwise,
(i) already holds. Then we again consider two cases, as above, and use expressions
(3.21) and (3.28) to conclude the proof. O

Remark 3.11. The condition that the interior angles 6 at the corner points of 92
satisfy 6 € (0, m) is necessary for Lemma 3.10. Indeed, let 6 € (i, 27) at some
corner Q € d52. For simplicity, consider first the case when 92 N Bsg(Q) consists
of two straight lines intersecting at Q for some R > 0. Then it is easy to see that,
for any E € 952 with d := dist(E, Q) € (0, R], B,(E) N §2 is not connected for
all r € (dsin(2w — 0), d). With the assumption that 952 is piecewise C Le up to
the corner points (without assumption that §2 N Bsg(Q) is piecewise-linear), the
same is true for all ¥ € (dy, d) for some d; € (dsin(2mw — 0), d) if d is sufficiently
small.
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Lemma 3.12. There exists r* > 0 such that any chain in Definition 3.7 with r €
(0, r*) satisfies

ki
(1) U (Br (cHn (2) is connected,
i=0
(ii) There exists a continuous curve S with endpoints C O and C* such that

ki
S'c | J(B(CHng), disS,.092)>0  forallr >0,
i=0

where S, = S\ (Br(CO) U Br(Ck’)), and S° denotes the open curve that
does not include the endpoints. More precisely, S = g([0, 1]), where g €
C([0, 1]; Rz) and is locally Lipschitz on (0, 1) with g(0) = CY, g(H) = chi,
ki
and g(1) € | J (B(C") N R2) forall t € (0, 1).
i=0

Proof. We use r* in Lemma 3.10. We prove (i) by induction: We first note that
B,(C')N 2 is connected by Lemma 3.10(i). Suppose that, form € {1,2, ... k| —
1}, A = ULy (B (C") N £2) is connected. We note that A,, has a nonempty
intersection with B,(C™"t1) N by Definition 3.7(b) and Lemma 3.10(ii). Also,
B,(C™t1y N £ is a connected set. Then it follows that U?’:'Bl (Br cHn .Q) is
connected. This proves (i).

Assertion (ii) with reduced r* follows from Lemmas A.1 and A.3. O

Remark 3.13. Lemma 3.12(ii) implies that S lies in the interior of £2.

Now we show the existence of minimal (resp. maximal) chains. We use r* from
Lemma 3.12 from now on.

Lemma 3.14. If E| € 082 and is not a local minimum point (resp. maximum point)
of ¢e with respect to 2, then, for any r € (0, r*), there exists a minimal (resp.
maximal) chain {G' }f-qzo for ¢e of radius r in the sense of Definition 3.7, starting
at Eq, i.e., GO = E;. Moreﬁve;; Gk € 982 is a local minimum (resp. maximum)
point of ¢ with respect to 2, and e(G*) < ¢e(E1) (resp. ¢e(GK1) > ¢e(E1)).

Proof. We discuss only the case of the minimal chain, since the case of the maximal
chain can be considered similarly. Thus, E is not a local minimum point of ¢, with
respect to £2.

Let G = E;. Choose G'*! to be the point such that the minimum of w = ¢
in B,(G?) N 2 is attained at G'*!, provided that w(G'*!) < w(G?); otherwise
(i.e., if the minimum of w = ¢ in By, (G') N §2 is attained at G' itself), the process
ends and we set kj :=1i.

In order to show that {G’ }f':O is a minimal chain for € (0, r*), it suffices to
show that G¥! € 92 and that k; is positive and finite. These can be seen as follows:
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(i) Since G* = E| is not a local minimum point relative to £2, it follows that
G' # G%sothat ky > 1 and ¢ (G?) < ¢e(G).

(i1) There is only a finite number of { G'}. Indeed, on the contrary, since domain £2
is bounded, there exists a subsequence { Gi’"} such that Gin — C asm — 00,
where C is a point lying in £2. Thus, for any € < r, there is a large number
N such that, for any j, m > N, dist{G'/, G} < €. On the other hand, by
construction, forany j <i — 1, G' cannot lie in the ball centering at G/ with
radius  so that dist{G’, G/} > r for any j < i — 1. This is a contradiction.

(iii) GM e 9£2. Otherwise, G¥' € £ is an interior local minimum point of ¢e,
which contradicts the strong maximum principle, since ¢, satisfies equation
(3.2) that s strictly elliptic in £2, and ¢, is not constant in £2 by the assumption
that ¢ is not a uniform state.

Therefore, {G' }f”: o is aminimal chain with G" € 9£2. Also, from the construc-
tion, G¥1 is a local minimum point of w with respect to £2 with w(G*') < w(Ey).
O

Lemma 3.15. Forany § > 0, there exists r{ € (0, r*] such that the following holds:
Let C C 082 be connected, let E| and E; be the endpoints of C, and let there be
a minimal chain {Ei}f': of radius ry € (0, r{'] which starts at E\ and ends at E»,
and Hy € C° = C\ {E\, E»} such that

Pe(H1) > ¢e(E1) + 6.

Then, for any ry € (0, r1], any maximal chain {H/ }1;2:0 of radius ry starting from

H, satisfies H*2 € C°, where C° denotes the relative interior of curve C as before.

Proof. Using the bound: ||¢]|, to 2 =C by condition (A2) of Theorem 2.1, we
can find a radius rf € (0, r*] small enough such that

1) _
0SC e < — for allP € £2.
B,T(P)H.Q 4

‘We fix this r]* and assume that the minimal chain { £ i f‘zo from E| to E» is of radius
r1 € (0, r{].

Recall that, from Definition 3.7 for the minimal and maximal chains, ¢e(E1) >
de(EN fori =1,..., ki, and ¢pe(Hy) < ¢e(H') for j =1, ..., k. Then, for each
i=0,...,k;,and j =0, ..., ko,

. ; 8 8
min__@e > pe(H') — 5 > ¢e(H1) — 5
By (H)NS2 2 2

8 ; 8 8
> ¢e(E1) + 5 = ¢e(E') + 5 > max e+ -,
2 2 B,I(Ei)ﬂ.Q 4

where we have used that £; = EO, H = HC and 0 < r < rik. Then

B, (H)N2M B, (E)N2=¢ foreachi =0,...,k;, and j =0, ..., ka.
(3.29)
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From this, we have
B,I(Hj)ﬂ.Q c 2\ A foreachj=1,..., ko,

where A = UfI:O B, (Eh)N $2.
Since B, (H') N £2 is a connected set, then one of connected components of
set £2 \ A contains By, (H') N £2. We denote this component by K. Since 2 is

a connected set, then it follows from (3.29) and Lemma 3.12(i) applied to chain
{H/} that

ka
| Bn(H)HN2 K.
j=0

Thus, Hk e 0K N d£2. It remains to show that 9 K| N 942 lies within C.

Notice that H; € dK; N C so that 9K1 N C # @. Also, K is a connected
set with K1 N A = ). From Lemma 3.12(ii) applied to chain {E’}, we obtain the
existence of a continuous curve S C A connecting E| to E, with the properties
listed in Lemma 3.12(ii). Combining these properties with Remark 3.13, we see
that K| C £21, where £2; is the open region bounded by curves S and C. Notice that
£21 C §2.Thus, 0K N2 lies within 9£2; NdS2 = C, which implies that Hk e C.
Moreover, the definition of minimal and maximal chains and our assumptions in
this lemma imply that

Pe(H®) > ¢pe(H") > e(E1) > pe(En).
Thus, H®2 € 0. O

Remark 3.16. In Lemma 3.15, we have not discussed the existence of the maximal
chain {H’/ }];2:0 of radius r; starting from H;. If H| is not a local maximum point

of ¢e with respect to 2, such an existence follows from Lemma 3.14.

We also have a version of Lemma 3.15 in which the roles of minimal and
maximal chains are interchanged.

Lemma 3.17. Forany § > 0, there exists r{ € (0, r*]such that the following holds:
LetC C 052 be Connected, let E1 and E» be the endpoints of C, and let there exist
a maximal chain {E" f.”:O of radius ry € (0, r{'] which starts at E\ and ends at E»,

and H, € C° such that

Pe(H1) < ¢e(E1) — 6.

Then, for any r € (0, r1], any minimal chain {H’ }1;2:0 of radius ry, starting from
H\, satisfies that H* e Y.

The proof follows the argument of Lemma 3.15 with the changes resulting
from switching between the minimal and maximal chains and the correspondingly
reversed signs in the inequalities.
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Lemma 3.18. For any r € (0, r*], there exists r5 = ry(r1) € (0, r*] such that the
Sfollowing holds: Let C C 052 be connected, let E1 and E be the endpoints of C, let
there exist a minimal chain {Ei f‘zo of radius r1 € (0, r*] which starts at E| and
ends at E», and let there exist H| € CY such that

Pe(H1) < pe(En).

Then, for any ry € (0, r5], any minimal chain {H Y }1;220 of radius r, starting from
H,, satisfies that H* e Y.

Proof. As in the proof of Lemma 3.15, we need to show (3.29). Set § := ¢e(E2) —
¢e(Hy). Then § > 0.
Using condition (A2) of Theorem 2.1, we can find a radius ré‘ € (0, r*] small

enough such that osc ¢ < S forall P € 2. We fix this 7 and assume that
By (PN 4 2

the minimal chain {H/ }';2:0 starting at Ay is of radius r» € (0, r]. Then, using

properties (c)—(d) in Definition 3.7 for the minimal chains, we have

be(E2) = pe(EX) = min e < pe(EM "= min e <,
By (EF)NS2 By (EMI~Hng2

that is,

¢e(Ez) <  min e fori =0,..., k.

By (ENNR
Then, fori =0,...,kjand j =0, ..., ko,

. k) 1) 8 . )
max ¢e§¢e(Hj)+§ §¢e(H1)+_=¢e(E2)_E <_ min_ ¢e — =.

By, (HHNS2 2 By (EDNR 2
This implies (3.29). Then the rest of the proof of Lemma 3.15 applies without
changes. O

4. Proof of Theorem 2.1

In this section, we first prove Theorem 2.1, based on the lemmas obtained in
§3.

We use the (S, T')—coordinates from Lemma 3.2 for a unit vector e € Con
chosen below so that it suffices to prove that the graph of f is concave:

J(T) <0 forall T € (Ta, Tp),

and satisfies the strict convexity in the sense of Theorem 2.1.

In that follows, we denote all the points on Ighock With respect to T'; that is,
for any point P € Iyhock, there exists Tp such that P = (fe(Tp), Tp) in the
(S, T)—coordinates.

The proof of Theorem 2.1 consists of the following four steps, where the non-
strict concavity of f is shown in Steps 1-3, while the strict convexity is shown in
Step 4:
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Step 1.

Step 2.

Step 3.

Step 4.
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For any fixed e € Con, if there exists P € I“S%OCk with f/(T) > 0,
we prove the existence of a point C € I s?mck, depending on e, such that

J(Tc) > 0, and C is a local minimum point of ¢e along Inock, but C is
not a local minimum point of ¢, relative to 2.

We fix e € Con to be the vector from condition (A6). Then we prove the

existence of Cy € I S(l)mck such that there exists a minimal chain with radius

ry from C to C.

Lete € Con be the same as in Step 2. We show that the existence of points

C and C described above yields a contradiction, from which we conclude

that there is no P € I 0 o With fe (Tp) > 0. More precisely, it will be

proved by showing the following facts:

— Let A, be a maximum point of ¢e along I'ghock lying between points
C and Cj. Then A; is a local maximum point of ¢ relative to 2, and
there is no point between C and C1 on [ghock Such that the tangent line
at this point is parallel to the one at A».

— Between C and A,, or between C and A, there exists a local minimum
point C3 of ¢e along I'yhock such that C» # C, or C2» # Cyq, and C3 is
not a local minimum point of ¢, relative to domain £2.

— Then, by applying the results on the minimal chains obtained in §3.3
and the facts obtained above in this step, and iterating these arguments,
we can conclude our contradiction argument.

Fix e € Con. We show that, for every P € FS%OCk, either fe”(Tp) <0

or there exists an even integer k > 2 such that fe(i)(Tp) = 0 for all

i=2,...,k—1,and fe(k)(Tp) < 0. This proves the strict convexity of
the shock. We also note that k is independent of the choice of e € Con,
since, by Lemma 3.2, the above property is equivalent to the facts that

84¢(P) =O0foralli =2,...,k—1,and 8’,‘¢(P) > 0.

Now we follow these steps to prove Theorem 2.1 in the rest of this section.

4.1. Step 1: Existence of a Local Minimum Point C € I“S(l)lock along ghock in the

We

Convex Part

choose any e € Con and keep it fixed through Step 1. Assume that

There exists a point Pe Fs(})wck such that fe”(T};) > 0. 4.1)

Then, in this step, we prove that there exist points A, é, C € FS%OCk such that
Tc € (T;, Tp) with f'(Tc) = 0, f(T) < 0 forall T e (T4, Ty) which are
sufficiently close to 7; and T, and

$e(C) = Te[mTiI,lTA]¢e(fe(T)’ T).

Moreover, the minimum at C is strict in the sense that

Ge(fe(T), T) > ¢e(C) forall T € (T}, Tp) with f(T) < 0.
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Lemma 4.1. Let
It = I11(P) = (Ty+, Tp+)
be the maximal interval satisfying
-Tpel™,
~ fU(Tp) =0 forall Tp € I,

— Maximality: If (Tp,, Tp,) C (Ta, Tg) such that P € (Tp,, Tp,) and f!'(Tp) >
0 forall Tp € (Tp,, Tp,), then (Tp,, Tp,) C I

Note that such I exists and is nonempty because Per?

whock and fo'(Tp) > 0.
Then

(1) Tp < Ty+ < Tp+ < T,
(i) f{(Ta) < fUTp) < fiTpe) and fU(Tpe) < fUT) < fU(Tgs) for all
Tel™,
(iii) There exists an open interval JT C (Ta, Tg) such that [Ty+, Tg+] C JT and

J(T) <0, fiTyr) < fUT) < f{(Tp+)  forallT € JF\TT, (4.2)
where JY\I¥ is non-empty, since IT C JT and J* is open.

Proof. Assume that T4+ = Ta. By the definition of I ™, f, is convex on I*. From
condition (A4) of Theorem 2.1, f, € C2((TA, Tg)) N Cl’“([TA, Tg]). Combining
these facts with f.'(T) > 0, we have

fe(Tp) > fe(Ta) + fo(Ta)(Tp — Ta).

By Lemma 3.2(i), this implies that (A 4+ Con) N 2 # @, which contradicts (AS5).
Then Tx+ > Ty4. Similarly, Tg+ < Tp. This proves (i).
Property (ii) follows directly from the definition of I™ and the fact that
¢ (Ts) > 0, by combining with regularity fe € C2((Ty, Tp)).
It remains to show (iii). We first show that

there exists T € [T4, Tp+) such that fl <0on (T3, Ta®), 4.3)

where T4 < Ty+ by (). If (4.3) is false, then there exists a sequence {Ti+} C
(Ta, Tp+) such that lim; o0 7, = Ta+ and f(T;") > 0 for all i. Also, from the
maximality part in the definition of /T, there exists a sequence {7, } C (T4, T4+)
such that lim; oo 7,7 = Ts+ and f.'(T;7) < O for all i. From this, using the
regularity of fe in Lemma 3.5, it is easy to see that fe(k)(A+) =0fork=2,3,...,
which contradicts Lemma 3.6. This proves (4.3).

Moreover, by property (ii), there exists T; € [TAI’ T+) satisfying f (T =<
fi(Tg+). Now, since f < 0 on (T, Ta+), we obtain that f/(T) < 0 and
fe(Ta+) < f(T) < fi(Tp+) forall T € (Ty, Ty+).

Similarly, we show that there exists T e (Tg+, Tg] such that f/(T) < 0 and
Ji(Tp+) < fUT) < f{(Tp+) forall T € (TB+, Tp).

Now (iii) is proved with J© = =(T;,Tz). O
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Clearly, the interval, J T, satisfying the properties in Lemma 4.1(iii) is non-
unique. From now on, we choose and fix an interval:

J+ = (TA’ Té) 4.4
satisfying the properties stated in Lemma 4.1(iii). L
Now we show the existence of a local minimum point C € I+ along I'yhock-

Proposition 4.2. Set

w = ge.
Then

(1) There exists Tc € 17 such that
w(C) = min w(fe(T), T);
[T;.T5]
(i) C € 1Y with f/(Tc) = 0;
(iii) Furthermore,

w(P) > w(C)  forall Tp € (Ty, Ty) \ [Ta+, Tp+1.

Proof. Let JT be the open interval from (4.4), which satisfies the properties in
Lemma 4.1(iii). Also, recall that /T = [Ty, Tg+]. Then, from (i) and (iii) of
Lemma 4.1, we obtain that T; < Ta4 < Tp+ < Tj.

Fix Tp € J* \ I+. Then fi(Tpa+) < fi(Tp) < f{(Tp+) by Lemma 4.1(iii).
Thus, there exists Tp, € It = [Tay, Tp+] such that fd(Tp) = f{(Tp). In addi-
tion, since f/ > 0in I+ by the definition of I+, and f < 0in J*\ [Tay, Ti+]
by Lemma 4.1(iii), then

- IfTp € [T+, Tg), fo(T) = fo(Tp)) forallT € [Tp, Tp], withsstrictinequality
f(T) > f{(Tp) for T € (Tg+, Tp),

— IfTp € [T, Tp+], f(T) < fo(Tp)forallT € [Tp, Tp, ], withstrictinequality
f(T) < f(Tp) for T € (Tp, Ty+).

Thus, defining the function
8(T) := fe(T) — fe(Tp) — f(Tp (T — Tp)),
we obtain in the two cases considered above that

- If Tp € [T+, Ty, then

forT € [TPI, Tp],

/ =0
g (T)
>0 forT e (Tg+, Tp).
= If Tp € [T}, Ty+], then

/ <0 forT e [TP,TPI],
g (T)
<0 forT € (Tp, Ty+).
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Therefore, in both cases, g(Tp) > g(Tp,), which implies

fe(Tp) > fe(Tp) + fo(Tp)(Tp — Tp,).

Now, by Lemma 3.4,
w(P) > w(Py). 4.5)

Thus we have proved that, for any 7p € J T \I_+, there exists Tp, € 1+ such that
(4.5) holds for P = (fe(Tp), Tp) and P; = (fe(Tp,), Tp,). This implies that there
exists Tc € 1 17+ such that w(fe(T), T) attains its minimum over J Jt = = [T}, Tg] at
Tc. This proves assertion (i). s

Moreover, we find from Tc € It C J* that C € I S(l)lock. Also, from (i) and
ITcJt= (T4, Ty), fo'(Tc) = 0. This proves assertion (ii).

Assertion (iii) forall Tp € (T4, T)\[T s+, Tp+]follows from the strict inequal-
ityin (4.5). O

We derive a corollary of Lemma 4.2(ii). The property, C € I S?wck, guarantees
the strict ellipticity of equation (2.16) at C, where we have used assumption (A3) of
Theorem 2.1. Combining f'(T¢) > 0 with Lemma 3.2(v) implies that ¢, (C) < 0.
Thus, from Lemma 3.1 and Lemma 3.2(iii), we obtain

Corollary 4.3. C is not a local minimum point of ¢e with respect to §2.

This means that, for any radius » > 0, there is a point C, € B,(C) N £2 such
that w(C,) < w(C).

4.2. Step 2: Existence of Tc, € (Ta, Tp) \ [T/i’ Té] Such That Cy and C Are
Connected by a Minimal Chain with Radius ry, for Vector e from Condition (A6)

In the argument, we use the minimal and maximal chains in the sense of Defi-
nition 3.7.

Through §4.2-§4.3, we fix e € Con to be the vector from condition (A6) of
Theorem 2.1, and use points A, 1§, C e Fs(flock from Step 1 (which correspond to
this vector e) and constant r* from Lemma 3.10. In this step, we prove the following

proposition:

Proposition 4.4. Let e € Con be the vector from condition (A6) of Theorem 2.1,
and let C be the corresponding point obtained in Proposition 4.2. Then there exists
71 € (0, r*] such that, for any ry € (0, r1) and any minimal chain {C’ o of radius
r1 for w = ¢e starting from point C, its endpoint C; = Ck is in Fshock’ ie.,
C e Fhock Moreover; Cy is a local minimum point of w relative to 2 such that

w(Cq) < w(C).

In order to prove Proposition 4.4, we first notice that, by Corollary 4.3 and
Lemma 3.14, for any r; € (0, r*), there exists a minimal chain {C ’} L, of radius
r1 for w = ¢, in the sense of Definition 3.7, starting at C, i.e., C 0 = C. Moreover,
CK € 342 is a local minimum point of w with respect to £2, and w(CK) < w(C).

Now, in order to complete the proof of Proposition 4.4, it suffices to prove the
following lemma:
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Lemma 4.5. There exists 71 > 0 such that, if ry € (0, 71], then C*' € Q?lock.

Proof. On the contrary, if C kieT 1 U I, we derive a contradiction for sufficiently
small 1 > 0. Now we divide the proof into five steps.

1. We first determine how small »; > 0 should be in the minimal chain {C'}.
Choose points A1, By € Ighock such that

Tay €[Ta, Tcl,  ¢e(A)) = romax, Ge(fe(T). T),

T, € [Tc, Tl,  ¢e(B1) = romax Ge(fe(T), T).

Note that the deﬁr_ﬁtion of points A; and B; is independent of the choice of the
minimal chain {C'} and its radius. Also, from Proposition 4.2(iii), it follows that

Pe(A1) > $e(C) and ¢e(B1) > ¢e(C). Let
8 :=min {¢e(A1) — $e(C), pe(B1) — ¢e(C)}.

Then § > 0. Lemma 3.15 determines r{(8), so that r; € (0, r{(8)) is assumed in
the minimal chain {C'}.
2. We start from Case (i) of condition (A6).

Claim: Under the condition of Case (i), A cannot be a local maximum point
of w = ¢, relative to £2.

In fact, for Case (i), if A; = A, then A cannot be a local maximum point. On
the other hand, if A} # A, and A is a local maximum point, then

f(Ta,) >0 inthe (S, T)—coordinates,
by Lemmas 3.1-3.2. Thus, we consider the function

F(T) = fe(T) = fe(Ta)) — fe(Ta) (T — Ta)).

Then F(Ta,) =0, F'(T4,) = 0,and F"(T4,) > Osothat F(T) > Onear Ty,. Let
the maximum of F(T) on [T4, Ta,] be attained at T4«. Then F(T4+) > 0, which
implies that T4« # T4, .

If Tpx # Ty, then F'(T4+) = 0, which implies that f{(Ta*) — f{(T4,) = 0.
If Tax = T, then, using f{(Ta) > f{(Ta,), condition (A5), and F'(T4) < 0
(since Tp = T+ is a maximum point of F(T') on [T4, T4,]), we conclude that
Ji(Tax) = f{(Ta) = f{(Ta,). Thus, in both cases,

fe(Tpx) — fo(Ta,) = 0.
Also, F(Tx+) > 0 implies that
fe(Tax) > fe(Ta)) + fo(Ta)(Tax — Ty,).

Then, from Lemma 3.4, ¢pe (A*) > ¢pe(A1), which contradicts the definition of Aj.
Now the claim is proved.

3. In this step, for Case (i) of condition (A6), we obtain a contradiction to the
assumption that ch e UT.
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Since C*1 € Ty U T is a local minimum point of ¢, the condition for Case (i)
implies that C¥1 € T U {B}.

We first consider the case that C¥! € ﬁ\ {A}. Since A1 is not a local maximum
point of w = ¢, and r; € (0, r*], then, by Lemma 3.14, there exists a maximal
chain {AJ} k2 o of radius 1 for w in the sense of Definition 3.7, starting at Ay, i.e.,

io = Aj. Moreover, AR2 ¢ 942 is a local maximum point of w with respect to
2, and w(A*?) > w(A;). Furthermore, by Lemma 3.15 and the restriction for r|
described in Step 1, it follows that one of the following three cases occurs:

(a) A% lieson I 10 between C¥! and A;
(b) ARz = A;

(c) A% lieson I, strictly between A and C.

shoc!
Since AX2 is a local maximum point of ¢, then it cannot lie on Flo U {A} by
the condition of Case (i). Thus, only case (c) can occur, i.e., A*2 lies on FS%OCk
between A and C. However, the property that w(A*) > w(A;) contradicts the fact
that T4, is the maximum point of ¢e(fe(T), T) on [T4, Tc]. Thus, the case that
C*' e Ty \ {A} is not possible.
Next, consider the case that C¥' = A. Then

$e(C) > de(CH1) = ¢e(A),

so that the definition of A implies that A; # A. Combining with the fact that
A1 # C proved above, we conclude that Aj lies on Fhock strictly between C and
C*1 = A.Then we obtain a contradiction by following the same argument as above.

The remaining case, C¥! = B, is considered similarly to the case that C¥1 = A.
Indeed, in that argument, we have not used the condition that A cannot be a local
maximum point. Thus, the argument applies to the case that C¥! = B, with only
notational change: points B and Bj are used, instead of A and Aj.

This completes the proof for Case (i) of condition (A6) of Theorem 2.1.

4. The proof for Case (ii) of condition (A6) of Theorem 2.1 is similar to Case
(1). The only difference is to replace both A and A in the argument by B and Bj.

5. Consider Case (iii) of condition (A6) of Theorem 2.1, i.e., when ¢, cannot
have alocal minimum pointon Iy UI. For the local minimum point C ke 1 U,
this implies that C¥1 € {A, B}. Then the argument is the same as for the cases:
Ck = A and Ck = B, at the end of Step 3.

This completes the proof of Lemma 4.5.

Proposition 4.4 with C; = C¥! follows directly from Lemma 4.5. O

4.3. Step 3: Existence of Points C and C| Yields a Contradiction

In this section, we continue to denote by e € Con the vector from condition (A6)
of Theorem 2.1, and use points A B,Cer? shock from Step 1 which correspond
to this vector e. Then, for each r; € (0, 1], the corresponding point C; is defined
in Proposition 4.4. In this step, we will arrive at a contradiction to the existence of
such C and C if r is sufficiently small. This implies that (4.1) cannot hold for e
from condition (A6), which means that fe(-) is concave, i.e., Ighock 1S convex.
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For E1, E> € Ighock, denote by Ighock[E1, E2] the part of Iypock between points
E1 and E, including the endpoints.

Fix r1 € (0, 71]. This choice determines Cy. Let Ay € Isnock[C, C1] be such
that

Pe(A2) = Persﬂi)[(c,cl]%(m' (4.6)

Lemma 4.6. There exists § > 0 such that, for any r1 € (0, 7], the corresponding
points C, C1, and A, defined above satisfy

Pe(A2) = ¢e(C) + 8 > ¢e(C1) + 6. 4.7)

Proof. We employ Proposition 4.2 for vector e from condition (A6). Then, using
that ¢e(C) > ¢e(C1) by Proposition 4.4, it follows from Proposition 4.2(i) that
Tc, ¢ [T, Tyl

Using this and (4.6), we conclude that (4.7) holds with

§=min{ max_ ¢e(P), max  ¢e(P)} — ¢e(C), (4.3)
Pe&Tlhock[A,C] PeTlshock[B,C]

where 6 > 0 by Proposition 4.2(iii). Notice that the definition of points A, B, and
C is independent of ry; see (4.4) and Proposition 4.2(i). Then the right-hand side
of (4.8) is independent of r; > 0, so that § > 0 is independent of r{. O

The rest of the argument in this section involves only part ghock[C, C1] of the
shock curve, independent of the other parts of d£2. Without loss of generality, we
assume that C| € Iyhock[A, C] so that

Tc, € [Ta, Ic]. 4.9)
Indeed, if C1 € Ighock[B, C1, we re-parameterize the shock curve by
Fihock = {(fe(T). T) : =T < T < —Ty},

where fe(T) = fe(=T), and T4 and Tp are the T—coordinates of A and B with
respect to the original parameterization, and then switch the notations for points A
and B. Thus, (4.9) holds in the new parametrization.

Now (4.6) has the form:

Pe(A2) = re[“%g“f,‘rc]"’e(fe(“’ T). (4.10)

In particular, T4, € (T¢,, Tc). See also Fig. 2.
From Lemma 4.6 and Proposition 4.4, we obtain that, for any r; € (0, 7],

$e(A2) > ¢e(C) +6 > ¢e(C1) + 6. (4.11)
Now we prove

Lemma 4.7. If ry is sufficiently small, then

() Ay is a local maximum point of ¢e with respect to 2,
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Tahock Lshock

T Tq Ta, Tc T01 Ta 2 Tc

Fig. 2. The graphs of function f/(T)

(i) There is no point Q # Ay between C and C| along the shock such that the
tangent line at Q is parallel to the one at A».

Proof. The proof consists of two steps.

1. In this step, we prove (i). We first fix r; > 0. Let § be from Lemma 4.6, and
let rl* > 0 be the constant from Lemma 3.15 for this §. We fix r{ = r;" , and denote
C1 and A3 as the corresponding points for this choice of 1. Suppose that A, is not
a local maximum point of ¢, with respect to £2. Using (4.11) and the existence of
a minimal chain of radius | from C to C1, we can apply Lemma 3.15 to obtain the
existence of a maximal chain {A/ }1;2:0 of radius ry starting from A, (i.e., Ay = AO)

such that A*2 is on Iiock between C and Cy. Since Pe(Ar) < ¢e(Ak2), we obtain
a contradiction to (4.6). Thus, A; is a local maximum point with respect to 2.

2. Now we prove (ii). We use (4.9). Assume that there is a point Q # A
between C and Cj such that the tangent line at Q is parallel to the one at A,. Since
A, is a local maximum point of ¢, with respect to £2 as shown in Step 1 in this
proof, we find that f'(74,) > 0, by Lemmas 3.1-3.2. Define

F(T) = fe(T) = fe(Ta,) — fe(Ta (T — Ta,).

Then
F(Ta,)) = F'(Ta,) =0, F"(Ta,) >0, (4.12)

and there is a point Tp € (T¢,. Ta,) U (Ta,, Tc) such that F'(Tp) = 0.

If F(Tg) > 0, then, by Lemma 3.4, we conclude that ¢¢(Q) > ¢e(A2), which
contradicts (4.10).

If F(Tp) < 0, we first consider the case that Q € (T¢,, Ta,). Using

max F(T) > 0 by (4.12) so that this maximum is attained at some point
TE[TQ,TAZ]

To, € (Tg, Ta,), we obtain
F(TQl) > 07 F/(TQl) = 0,
so that Lemma 3.4 can be applied to obtain that ¢e(Q1) > ¢Pe(A2), Which is a

contradiction. The case that Q € (T4,, Tc) is considered similarly.
Therefore, point Q does not exist. O
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Fig. 3. Proof of Step 3 of Theorem 2.1

With the facts established in Lemma 4.7, we can conclude the proof of the main
assertion of Step 3 by a contradiction for sufficiently small r; > 0. The main idea of
the remaining argument is illustrated in Fig. 3. We first notice the following facts:

Lemma 4.8. f.(T) satisfies the following properties:

fl(Te) <0, fl(Ta) >0, (4.13)
Jo(T) = fi(Tay)  forany T € [Tc,., Ty, ), (4.14)
f(T) = fi(Tay)  forany T € [Ty, Tc]. (4.15)

Proof. Property (4.13) follows from Lemmas 3.1-3.2, since A and C| are the local
maximum and minimum points of ¢, with respect to £2, respectively.

To show (4.14), we note from f{'(T4,) > O that f{(T) < f{(Ta,) in (T, —
e, Ta,) for some & > 0. Then, if f{(Tp) > f{(Ta,) for some Ty € [Tc,, Ta,),
there exists 7p € (Tg, Ta,) with f{(Tp) = f{(Ta,), which contradicts Lemma
4.7(ii). Thus, (4.14) holds. Finally, (4.15) is proved by similar argument. O

Now we choose T¢, € [Tc¢,, Ta,] such that

Pe(C2) = TG[%ICliI’ITAz]cbe(fe(T), T). (4.16)

‘We show that
Pe(C2) < ¢e(C1),

_ 4.17
C> is not a local minimum point of ¢, relative to domain £2. ( )

To prove (4.17), we first establish the following more general property of [hock
(which will also be used in the subsequent development):

Lemma 4.9. Assume that there exist points E|, E;, and E3 on [shock sSuch that
() Tg, < Tg, and Tg, € [Tg,, Tk, ],

(i) fo'(Tg,) <O,

(il) fo(TE,) < f(TE,),

(iv) ¢e(E1) < ¢e(E2),

W) ge(E3) = | _min  ge(fe(T). T).

E>TE, ]
Then Pe(E3) < ¢e(E1), and E3 is not a local minimum point of ¢e relative to
domain S2.

Proof. We divide the proof into two steps.
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1. We first show that ¢e(E3) < ¢e(E1). By condition (v), this is equivalent to
the inequality:
E i T),T).
¢e(E1) > repmin, ]¢e(fe( ), T)

€E| 1Ey

Thus, it suffices to show that it is impossible that

Pe(E1) = TG[;HEI;I}TEZ]%(fe(T), T). (4.18)

Assume that (4.18) holds. Consider the function:

F(T) = fe(T) — fe(Te,) — fo(Te)(T — TE)).

Then F(Tg,) = F'(Tg,) = 0,and F"(Tg,) = f{(Tg,) < 0by condition (ii). This
implies that F(T) < 0in (Tg,, Tg, + 8) for some small § > 0. Denoting by T a
minimum point of F(T)in [Tg,, Tg,], then F(Tp) < 0. This implies that Q # Ej.
Now we consider two cases:

If Q0 # Es, then F'(Tp) =0, i.e., f{(Tg) = f{(TE,). With this, F(Tp) < 0
can be rewritten as

fe(TE)) > fe(To) + fo(To)(TE, — To).

Then, by Lemma 3.4(ii), we obtain that ¢¢ (E'1) > ¢e(Q), which contradicts (4.18).
If Q = E», then F'(Tg,) < 0. Notice that F'(Tg,) = f{(Tg,) — f{(Tg,) >0
by condition (iii). Thus, F'(Tg,) = 0, which means that f;(Tg,) = f{(TE,). Then,
using F'(Tg,) = F(Tp) < 0 and arguing similar to the previous case, we employ
Lemma 3.4(ii) to obtain that ¢pe (E1) > ¢p¢(E2), a contradiction to (4.18).
Therefore, we have proved that (4.18) is false. This implies that ¢e(E3) <
¢e(E1), as we have shown above.

2. We now show that E3 cannot be a local minimum point of ¢, relative to
domain £2. We have shown in Step 1 that E3 # E;. Also, E3 # E; by conditions
(iv)—(v). Thus, Tg, € (Tk,, TE,), i.e., E3 € 1;(1)10ck' If E3 is a local minimum point
of ¢ relative to §2, we obtain by Lemmas 3.1 and 3.2(v) that f'(Tkg,) < 0. Let

G(T) = fe(T) — fe(Tg;) = fo(Te (T — TEs).

Then G(Tg;) = G'(Tg,) = 0 and G"(Tg,) = f/(Tg;) < 0. This implies that
G(T) < 0in (Tg,, Tg, + 6) for some § > 0. Assume that T, is a minimum point
of G(T) in [TE,, TE,]. Then, repeating the argument in Step 1 (with E3, G, and
To, instead of Ey, F, and Ty, respectively), we obtain that ¢e(E3) > ¢e(Q1),
which contradicts condition (v). 0O

Lemma 4.9 also holds if Tg, > Tg,, with only change in the condition that
fd(Tg,)) < fi(Tg,) that is now replaced by f/(Tg,) > f¢(TE,). More precisely,
we have
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Corollary 4.10. Assume that there exist points E1, E>, and E3 on shock such that

(1) TE1 > TE2 and TE3 € [TEZ’ TEI],
(i) f'(Tg,) <0,
(i) fo(TE)) = fo(TEy),
(iv) ¢e(E1) < ¢e(Er),
(V) ¢e(E3) = minreiry, 7,1 Pe(fe(T), T).

Then ¢e(_E3) < ¢e(E1), and E3 is not a local minimum point of ¢e relative to
domain S2.

Proof. We prove this by directly repeating the argument in the proof of Lemma 4.9
with some obvious changes. Alternatively, by re-parameterizing the shock curve
by

Fock = {(fe(T), T) : =T < T < —Ty}

so that fe(T) = fe(—T), and T4 and Tp are the T—coordinates of A and B with
respect to the original parameterization, then we are under the conditions of Lemma
4.9 in the new parameterization. 0O

Proof of (4.17). Using (4.9)-(4.11), (4.13)—(4.14), and (4.16), we can apply
Lemma 4.9 with E; = Cy, E» = A», and E3 = C, to obtain (4.17). O

Let r; be the constant from Lemma 4.7, and r, € (0, rq). Since C is not a local
minimum point by (4.17), we use Lemma 3.14 to obtain the existence of a minimal
chain {Cg }’;.2:0 with radius r;; see Fig. 3. Next, we restrict r; to be smaller than r}
from Lemma 3.18 defined by r| fixed above. Then, recalling that there is a minimal
chain of radius 1 which starts at C and ends at C1, and noting that ¢¢ (C2) < ¢e(C1)
by (4.16)—(4.17), we obtain that Clz<2 lies on ghock between C and Cp. Now, using
(4.16) and noting that qﬁe(C'zQ) < ¢e(Cg) = ¢e(C2), we conclude that C12‘2 lies on
the part [T4,, Tc] of Ishock; see Fig. 3. Denote C3 := C12‘2 and notice that C3 is a
local minimum point of ¢, relative to 2.

From this construction, point A; (defined by equation (4.6) so that (4.10) holds)
satisfies T4, € (Tc,, Tcy) C (I, Tc). Then

Pe(A2) = Te[r?aXTdcbe(fe(T), =, [hax Pe(fe(T), T).

Cp € TC2>TC3]

Also, from (4.11), (4.16), and the definition of C3 as the endpoint of the minimal
chain from C,, we have

$e(A2) > ¢e(C2) > ¢e(C3), f'(C3) <0,

where the last property holds by Lemmas 3.1-3.2, since C3 is a local minimum
point of ¢ with respect to £2. Moreover, from (4.15),
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Choosing T¢, € [Ta,, Tc;] such that

Pe(Cq) = TE[ITI:iZI}TC3]¢e(fe(T), T), (4.19)

we can apply Corollary 4.10 with E; = C3, E; = A, and E3 = C4 to show that
®e(Cs) < ¢e(C3) and C4 cannot be a local minimum point.

Then we repeat the same argument as those for the minimal chain starting from
C». Specifically, for any r3 € (0, 2], we use Lemma 3.14 to obtain the existence
of a minimal chain {Cf{’}fifzo with radius r3 starting from Cy, i.e., C‘? = (Cy; see
Fig. 3. Next, we restrict r3 to be smaller than ri‘(rz) from Lemma 3.18, i.e., rr fixed
above is used as 1 in Lemma 3.18 to determine rJ (r2). Then, recalling that there
is a minimal chain of radius r» which starts at C> and ends at C3, and noting that
®e(Cs) < ¢e(C3) as we have shown above, we obtain by Lemma 3.18 that

Cff lies on I'yhock between C, and Cs. (4.20)

However, combining the properties shown above, we have

Pe(Cy) = T min ](be(fe(T)v T) < ¢e(C3)

€lTa, Ty

< ¢e(Cr) = TG[;TCI?}TAZ](be(fe(T): 1),

so that

$e(Cs) Te[rTrCllll}TC3]¢e(fe(T),T)-
Then the property that qbe(Cf?) < e(C4) implies that Cff cannot lie on
[Tc,, Tc,] C [Tc,, Tc,]. This contradicts (4.20).

This contradiction shows that (4.1) cannot hold if e is the vector from condition
(A6) of Theorem 2.1. Therefore, in the (S, T')—coordinates from Lemma 3.2 for
this vector e, we conclude that

J(T) <0 forall T € (Ta, Tp).
We have thus completed the proof of the following fact:

Proposition 4.11. Suppose that conditions (A1)—-(A6) of Theorem 2.1 hold. Then
the free boundary [shock is a convex graph as described in Theorem 2.1.

4.4. Step 4: Strict Convexity of I'shock

In this step, we show the strict convexity in the sense that, for any fixed e € Con,
using the coordinates and function f, from Lemma 3.2(i), for every P € Fs(})lock,

either f'(Tp) < 0 or there exists an even integer k > 2 such that fe(i)(T 'p) = 0 for

alli=2,....,k—1,and fF(Tp) < 0.
Note that f; < 0 on (T4, Tg) by Proposition 4.11.
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Let Tp € (T4, Tp) be such that f(Tp) = 0. By Lemma 3.6, there exists an
integer k such that

fOTp)y=0 fori=2,....k—1,  f®(Tp) is nonzero.

The convexity of the shock in Proposition 4.11 implies that k£ must be even and
fe(k)(Tp) < 0. This shows (2.19) in the coordinate system with basis {e, e’}
Moreover, using Remark 2.6, we have

Proposition 4.12. Suppose that conditions (A1)—(A6) of Theorem 2.1 hold. Then
the free boundary I'shock is Strictly convex in the sense that (2.19) holds at every
T € (Tya, Tg) with f"(T) = 0. Moreover, (2.20) holds at every point ofll?lock, at
which ¢y = O.

Furthermore, we note the following fact:

Lemma 4.13. Suppose that conditions (A1)—(A6) of Theorem 2.1 hold. Then, for
any ¢ > 0, there is no more than a finite set of points P = (f(T), T) € I'shock With
T €[Ts+ ¢, Tg — &) such that " (T) = 0 (or equivalently, ¢y (P) = 0).

Proof. SupposethatT; € [Ta+¢, Tg—elfori =1,2,...,aresuchthat f(T;) =
0. Then a subsequence of T; converges to T* € [T4 +¢, Tp —¢], and f(")(T*) =0
foreachn =2,3,...,and P* = (f(T*),T*) € FS%OCk. It follows that 97 ¢ (P*) =
0 for eachn = 2, 3, .... This contradicts (2.20). 0O

By Propositions 4.11-4.12 and Lemma 4.13, the proof of Theorem 2.1 is com-
pleted.

5. Proof of Theorem 2.3: Uniform Convexity of Transonic Shocks

In this section, we show the uniform convexity of I s?lock in the sense that
f"(Tp) < Oforevery P € Fs(l)iock for f(-) in (2.18), or equivalently, fJ(T) < 0
on (T4, Tp) for any e € Con.

The outline of the proof is the following: By Theorem 2.1 and Remark 2.6,
¢z7z = 0 on Fs(l)lock' Thus, we need to show that ¢ > 0 on FS%OCk. Assume that
¢z = 0at Pg € ' .. Then we obtain a contradiction by proving that there exists
aunit vectore € ]R§ such that Py is a local minimum point of ¢, along Q% ock» DUt Pg
is not a local minimum point of ¢, relative to £2. Then we can construct a minimal
chain for ¢, connecting Py to C*1 € 92. We show that

- Ch ¢ yu I3,
- Cch ¢ Ui,
- Ckl ¢ Fshock -

This implies that ¢ > 0 on FS%OCk so that f”(T) < O on (T4, Tp); see Remark
2.6.

Now we follow the procedure outlined above to prove Theorem 2.3. In the
proof, we use the (S, T')—coordinates in (2.18). Then we have
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Fhock ={S=f(T) : Tao <T <Tg}, £2C{S<f(I):TEeR}

(@ v = _CELAT) f(T) <0 on(Ta, Tp), (5.1)

T = —, )
V(T +1 V) +1
where we have used the convexity of Ighock proved in Theorem 2.1. Note that the
orientation of the tangent vector T(P) at P € I'ghock has been chosen to be towards
endpoint B.
First, from the convexity and Lemma 3.1, we have

Lemma 5.1. Let ¢ be a solution as in Theorem 2.1. For any unit vector e € R?, if
e-v<O(resp.e-v>0)at P e Fs(l)wck, then ¢e cannot attain its local maximum
(resp. minimum) with respect to 2 at this point.

We now prove the uniform convexity by a contradiction argument. From The-
orem 2.1 and Remark 2.6, we know that (2.20) holds so that, if f”(Tp,) = 0 at
some interior point Pq of I'ghock, then

(brt(Pd) =0,
¢z (P) >0 forall P € I'shock NN (Pg) with P #£ Py, (5.2)

for some & > 0. First we choose a unit vector e € R? via the following lemma.

Lemma 5.2. There exists a unit vector e € R? such that, for any local minimum
point Py of ¢e along Fs?mck, e-v(Pq) < 0. In addition, Py is a strict local minimum
point along Fs(f)lock in the following sense: For the unit tangent vector T = t(P)
t0 I'yhock at P defined by (5.1), ¢er is strictly positive on 'ghock near Py in the
direction of T, and ¢ey is strictly negative on I'ghock near Py in the direction opposite
to T. More precisely, in the coordinates from (5.1), there exists ¢ > 0 such that
Ty <Tpy—e <Tp,+€ < Tpand

Gex (f(T),T) <0 on(Tpy — &, Tpy),
Ger (f(T), T) >0 on(Tpy, Tpy + ¢). (5.3)

Proof. Recall that ¢, (Pgq) = 0. Now we firstuse (3.15) at Py with i, # 0 by (3.6),
and then use the strictly elliptic equation (3.1) at Pq in the (S, T')—coordinates with
basis {v(Py), T(Pg)} to obtain

Gvv(Pa) = Py (Pa) = ¢z (Pa) = 0. (5.4)

For any unit vector e € IR?, define a function g(-) = g(e)(-) on I’ s(})mk by

g@)(&) = (0(c* — ey (e - T) + (02 + pocHgz (e - v)) (). (5.5)

Then, at any point of Q(ﬂock, we see from (3.15) with (3.5) that, for any unit vector
e € R,
Prrg(e)

et = Prr(€-T) + Prp(e-v) = m

(5.6)
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Notice that, from the expression of g(e)(-) and assumption (A3) of Theorem
2.1,
g(r) >0, g(—-1)<0 on Fs(})lock' 5.7

Then we can choose a unit vector e such thate - v < 0 and g(e) = 0 at Pgq. We fix
this vector e for the rest of this proof. From (5.4), we have
Yz =@ =—1, @y =0 at Py. (5.8)

Below we use the (S, T')—coordinates from (5.1). From (2.17) and (5.1), we use
condition (A1) in Theorem 2.1 to obtain that ¢g > 0 on Ighock SO that

_ (o) Do

|Dg| Do’

Then we can use these expressions to define T and v in £2 near [ghock, Which
allows to extend function g(e)(-) defined by expression (5.5) into this region. Since
¢ € CH(RU FS%OCk), the extended 7, v, and g(e)(-) are C! up to Fs(})lock' Then,
from (5.4), D¢s,7yt = 0 and D(s ryv = 0 at point Pyq. Moreover, differentiating
(2.4) and (2.7), and using (5.4) yield that D(s 7yp = 0 and D(S,T)c2 = 0 at point
Py. Therefore, differentiating (5.5), using (5.8), and writing g(-) for g(e)(-), we
have

gr(P0) = —(e - v)(p9} + poc?)| > 0.
d

Then, by (5.1),

dg(f(T),T) B /
d—T)T=TPd =/ (f"(Tp))?* + 1 gz (Pa) > 0.

Thus, g(f(T),T) <Oon (Tp; — ¢, Tpy) and g(f(T),T) > Oon (Tp,, Tpy + €)
for some ¢ > 0. By (5.2) and (5.6), the same is true for ¢e;.

Then Py is a local minimum point of @, along I'shock, and ¢e; has the properties
asserted. O

Remark 5.3. The unit vector e is not necessarily in the cone introduced in condition
(A5) of Theorem 2.1.

Lemma 5.4. Py is not a local minimum point of ¢e with respect to $2.

Proof. If P4 is alocal minimum point, it follows from Lemma 3.1 and e -v(Pg) < O
that ¢pz7 (Pg) > 0, which contradicts to the fact that ¢, (Pg) =0. O

Now we consider a minimal chain starting at Pq. In the following argument,
we use the (S, T)—coordinates in (5.1).
To choose the radius for this chain, we note the following:

Lemma 5.5. There exist points Pdi € I—'S(l?lock such that

(1) Py lies on I'yhock Strictly between PdJr and Py :

TA<T(;<Tpd<TPd+<TB;
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(i1) Denoting by I'shock[ P, Q] the segment of I'shock With endpoints P and Q, then

Pe(Pa) < ¢e(P) < ¢e(P;) if P € I'hock[ Py, Pal\ {Py, Pa}.
Pe(Pa) < ¢e(P) < ¢e(P]) if P € Fhock[ Py, PAI\{PS, Pal;  (5.9)

(iii) e - v(P) < 0 for all P € ok Py, Py,

Proof. Recall the definition of 7 in (5.1). Then we use (5.3) in Lemma 5.2 to find
that, for ¢ > 0 defined there,

dge(f(T),T) | <0 ifT € (Tp, — &, Tpy),
ar >0 ifT e (Tp, Tp, +¢).

Thus, for points PdjE = (f(Tpyxe), TpyEe), assertions (1)—(ii) hold. Furthermore,
since e - v < (0 at Py, then, reducing ¢ if necessary, we obtain property (iii). O

Denote

4 = min { max de(P), max ¢e(P)} — ¢e(Py). (5.10)
Pelhock[ Py, Pal Pelnockl Pa. P

Note that § > 0 by (5.9). Now let r| be constant r{ from Lemma 3.15 determined
by § from (5.10).

By Lemmas 3.14 and 5.4, there exists a minimal chain with radius r; which
starts at Py. Denote its endpoint by C¥. Then

ckeag, (5.11)

and C* is a local minimum point of ¢, relative to 2. Moreover,

de(Pa) > pe(CF). (5.12)

Now we consider case by case all parts of the decomposition

3
082 = FshockU (Uﬁz)
i=0

defined in Framework (A)(iii) and assumption (A7) of Theorem 2.3, and show that
Ck cannot lie on the corresponding part. Eventually, we reach a contradiction by
showing that C¥ cannot lie anywhere on 952.

In the proof below, we note the following:

Remark 5.6. We use condition (A10) of Theorem 2.3 only in the proof of Lemma
5.10. The other conditions of Theorem 2.3 to be used in the proof below include
Framework (A), conditions (A1)—-(A6) of Theorem 2.1, and (A7)—(A9) of Theorem
2.3. These conditions are symmetric for I 0 and I 3, for ﬁ1 and ﬁz, and for points A
and B. Also, § in (5.10) is defined in a symmetric way with respect to the change of
direction of T in (5.1). This allows without loss of generality to make a particular
choice between points A and B, and the corresponding boundary segments in order
to fix the notations, as detailed in several places below.
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Py Py Py B

maximal chain

minimal chain

Fig. 4. Proof of Claim 5.7.1

Now we consider all the cases for the location of C¥ on 952.
Lemma 5.7. C* ¢ I U I3,
Proof. On the contrary, if ck e fo U fg, we now show in the next four steps that
it leads to a contradiction.

1. We first fix the notations. In this proof, we do not use condition (A10) of
Theorem 2.3. Thus, as discussed in Remaﬁ 5.6, we can assume without loss of

generality that C¥ € fg and B = [ghock N fg
From (5.12) and condition (A8) of Theorem 2.3,

Pe(Pa) > $e(C*) = de(B). (5.13)

We now prove Lemma 5.7 by showing the two claims below: Claims 5.7.1—
5.7.2.

2. Claim 5.7.1. It is impossible that e - v(B) < 0 at B; see Fig. 4 for the
illustration of the argument below.

We first show that, if e - v(B) < 0, then, since e - v(Py) < 0, the strict convexity
of I'hock (as in Lemma 4.13) and the graph structure (5.1) imply that v - ¢ < 0
at any point lying strictly between Py and B along I yhock- Indeed, using (5.1) and
writing e = (e, e2) in the (S, T)—coordinates, we have

v(P)-e= JDea—ea o p (f(T),T). (5.14)

V() +1

Thus,
f'(Tppes —er <0,  f'(Tg)ex —e1 <0O.
Using f”(T) < 0 and Lemma 4.13, we have

f'(Tp) < f'(T) < f(Tg)  forall T € (Tp,, Tp).
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Then it follows that
f(Tyey —e; <0 it T e [Tp,, Tp).
Therefore, we have
v(f(T), T)-e<0 forall T € [Tp,, Tp). (5.15)

Now we show that (5.15) leads to a contradiction. Let P; € Ishock[ Py, B] be
such that

Pe(P1) = per M, Pe(P). (5.16)

Since shock[ Pd, Pd+ 1 C Tghock[Pa, B] by Lemma 5.5(i), we obtain from (5.10)
that

de(P1) = ¢e(Pa) + 9, 5.17)

sothat Py # Py.Also,by (5.13) and (5.17), we see that P; # B.Thus,v(P;)-e <0
by (5.15). Now, by Lemma 5.1, Py cannot be a local maximum point of ¢ relative
to £2. Therefore, by Lemma 3.14, there exists a maximal chain of radius r, starting
from Pj and ending at some point P, € 92 which is alocal maximum point relative
to £2, and ge(P1) < e(P2).

Next, we show that

P, lies on Fs(})]ock strictly between Pq and B. (5.18)

Indeed, recall that there exists a minimal chain of radius r; from Py to C¥ € fg.
Also, Py lieson I S?lock strictly between Py and B. Then, from (5.17) and the choice
of ry (see the lines after (5.10)), we obtain from Lemma 3.15 that either (5.18)
holds or P; lies on I3 between B and C* (possibly including B). However, we use

condition (A8) of Theorem 2.3, (5.13), and (5.17) to obtain that, for any P € fg,

Pe(P) = ¢e(B) < ¢e(Pa) < ¢pe(P1) < de(P2),

which implies that P, # P. This proves (5.18).
However, (5.18) contradicts (5.16) since ¢e(P1) < ¢e(P2). Now Claim 5.7.1 is
proved.

3. Claim 5.7.2.Itis impossible thate-v(B) > 0; see Figs. 5-6 for the illustration
of the argument below.

Ife-v(B) > 0, then, usinge-v(Py) < 0, there exists a point Py € [shock[Pa, Bl
so thate - v(Py) = 0.
Then, from (5.14),

—e1 + f/(T)ez =0 atT = TPO-

Now, since f”(T) < 0 by the convexity of I'yhock, We use Lemma 4.13 to find that
the function: T — —ej + f/(T)ey is strictly monotone on (T4, Tg), which implies
that point Py is unique.
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e-v<0 e-v>0
Tp, no max Tp, no min TB

Py P,1+ P p B R P P B B

minimal chain

maximal chain

minimal chain

Fig. 5. Proof of Claim 5.7.2: The initial step of the iteration procedure

Recall thate-v(Pg) < Oand e-v(Py) = 0. Then, following the proof of (5.15),
we have
v(f(T), T)-e<0 forall T € [Tp,, Th,). (5.19)

Similarly, using e - v(Py) = O and e - v(B) > 0, and arguing similar to the proof of
(5.15), we have

v(f(T), T)-e>0 forall T € (Tp,, Tg]. (5.20)
From (5.19)—(5.20) and Lemma 5.1, we conclude that
If P € 082 is a local maximum (resp. minimum) point of ¢, relative
to 2, then P ¢ (Inock[Pa. Po))°(resp. P & (Isnoek[Po. BD).  (5.21)
Next, since e - v(Py) = 0, then e = 7 (Py). Moreover, by (5.1), we have
f'(Tp) — f'(Try)

v(Pg) - T(Py) =
S/ @) + (/T +1)

>0,

because f”(T) < 0and Tp, < Tp, < Tp. Then, since v(Py) - € < 0, we conclude
e=—1(FP). (5.22)

With this, recalling that ¢;; > 0 on ghock, We use (5.6)—(5.7) and Lemma 4.13 to
obtain the existence of two points P, and PO+ such that PofE =(f (TPOi), TPOi) €

Tshoek ([Pa, BD)? and

Tp, < TP(; <Tpy < TPO+ < Tg, (5.23)
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per(P) <0  forall P € Ipock[ Py , Py 1and P # Py. (5.24)
Then there exists 8 > 0 such that
$e(Pg) =8 = ¢e(Po) = ¢e(P) +3. (5.25)
Moreover, combining (5.21) with (5.24), we conclude
If P € 052 is a local maximum (resp. minimum) point of ¢, relative
to 2, then P ¢ Inock[Pa, Py'1\ {Pa}(resp. P & Inoek [Py . B\ {B)). (5.26)

Note that (5.26) improves (5.21), which follows from (5.23).
Let Py € Ishock[Pd, Po] such that

Py) = P).
Pe(P1) Pefshrgfg}gd,PO]¢e( )

By Lemma 5.5(i)—(ii) and (5.10),
TPd < TP;' =< TP19 (be(Pl) 2¢C(Pd)+8
Moreover, from (5.23) and (5.25), we obtain

Pe(P1) = ¢e(Py) = de(Po) + .

Also, by (5.24), Tp, < TP(;. Combining all these facts, we have

Tp, < TPd+ <Tp =< TPO—, 5.27)
Ge(P1) = dpe(Pa) + 8, ¢e(P1) > pe(Po) + 4. (5.28)

From (5.26) with (5.23) and (5.27), Py cannot be a local maximum point of ¢ with
respect to £2.

Therefore, by Lemma 3.14, we can construct a maximal chain of any radius
rp € (0, r1] starting from Pj. We choose r; so that it works in the argument below.
For this, we use constant § from (5.25), choose 7, the smaller constant r{ from

Lemmas 3.15-3.17 determined by 5 , and then define
ry = min{r1 , fz}.

Fix a maximal chain of radius r; starting from P;. Itends at some point P, € 952
that is a local maximum point of ¢, relative to 2. Moreover, by (5.28), ¢e(P1) >
de(Pq) + §; that is, (5.17) holds in the present case. Since r» < r1, then the proof of
(5.18) works in the present case so that P, lieson I, s?]ock strictly between Py and B.
Since P; is a local maximum point of ¢, relative to 2, we obtain from (5.26) with
(5.23) that P, lies strictly between POJr and B on [hock. Combining with (5.28),
we have

Tp, € (Tps, Tp) C(Try, Tp),  Pe(P2) > ¢e(P1) > de(Fo). (5.29)
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Fig. 6. Proof of Claim 5.7.2: The k-th step of the iteration procedure

Let P3 be such that

Tp, € [Tpy, Tp,], (P3) = min (P).
’ v Iel e roctin i 7

By (5.24)—(5.25) and (5.28)—(5.29),

TP3 € (TPO+’ TPz]v (530)
Pe(P3) < Pe(Py) < pe(Po) — 8 < de(P1) — & < ¢e(P2) — 6. (5.31)

Then, from (5.26) combined with (5.23) and (5.29), P3 cannot be a local minimum
point of @, relative to £2.

Therefore, there exists a minimal chain of radius 7, starting from P3 and ending
at P4 € 052. Recall that there exists a maximal chain of radius r, from P; to P».
Also, it follows from (5.31) that P3; # P, so that P3 lies in (Ishock[P1, Pz])o.
Moreover, ¢e(P3) < ¢e(P1) — $ by (5.31). Using the choice of r, and Lemma
3.17, we conclude that Py € (Ishock[P1, Pz])0 and is a local minimum point of
¢e relative to £2. Then, from (5.26) combined with (5.23), (5.27), and (5.29), we
obtain

Py € (Typhoek [ P1, Py 1) (5.32)
Moreover, combining the facts about the locations of points discussed above
together, we have

Tp, < TPd+ <Tp <Tp, < TP(; < TPO+ <Tp, <Tp, < Tg. (5.33)

Now we follow the previous argument for defining points Py, ..., P4 inductively
to construct points P+, ..., Paga fork = 1,2, ..., as follows (cf. Fig. 6):

Fix integer k > 1 and assume that points Ps;_1 and P4 have been constructed
with the following properties:

Pyi—1 € (Tpock[ Py, BD®,  Pax € (Ishoek[Pa, Py 1), (5.34)

be(Pak—1) < ¢e(Po) — 4, (5.35)
There exists a minimal chain of radius r, from Pgr_1 to Pyy. (5.36)
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From (5.23), it follows that (5.34) can be written as
Tpd < Tp4k < TPO— < TP() < TPJ' < Tp4k_] < TB. (537)

We first notice that, for k = 1, points P3 = Psr—1 and P4 = Py satisfy
conditions (5.34)—(5.36). Indeed, for (5.34), the first inclusion follows from (5.30)
combined with (5.29), while the second inclusion follows from (5.32) combined
with (5.27). Property (5.36) for P; and P, follows directly from the definition of
these points above, and (5.35) for P3 follows from (5.31). Thus, we have the starting
point for the induction.

Now, for k = 1,2, ..., given Ps_1 and Pyi, we construct Pai1, ..., Pagya.
Choose

Pajy1 € Tshock[Pak, Po] so that ge(Pags1) = max Pe(P).
€Tl snock [ Pak, Pol

Combining (5.25) with (5.35)—(5.37), we obtain
Pe(Pari1) = pe(Py) = Ge(Po) + 8 > de(Par—1) +26 > pe(Pu) +28. (5.38)
In particular, Psxy1 # Pak. Then, from (5.24) and (5.37),
Tpyyr € (Tpy> Tpr)- (5.39)
From (5.26),
P4j4 1 is not a local maximum point of ¢, relative to £2. (5.40)

Thus, there exists a maximal chain of radius r; starting at P41 and ending at some
point P4 € 952, which is a local maximum point of ¢, relative to £2. Moreover,

Pe(Par12) > ¢e(Par+1). (5.41)

By (5.38), e (Pag+1) > ¢e(Par—1) + 2. With this, using (5.36)—(5.37), (5.39),
the choice of r;, and Lemma 3.15, we obtain

Paiy2 € (Tshoek[ Paks Pax—11)°.

Since Paj47 is a local maximum point of ¢ relative to 2, we use (5.26) and (5.37)
to obtain

Tryiy € (Tpo+, Tpy_,)- (5.42)

Now choose

Pe(P).

Paiy3 € Tshock[Po, Paky2]  s0 that e (Pygi3) = min
Pelhock [P0, Pak+2]

Note that TP0+ € (Tpy, Tpy,,) by (5.37) and (5.42). Then, from the definition of
Pyx 3, (5.25), and (5.38),

be(Pari3) < Pe(Py) < pe(Po) — 6 < e(Pars1) — 28. (5.43)
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By (5.41) and (5.43), ¢e(Par+3) < Pe(Par+2) s0 that Pygy3 # Pagyo. Also, by
(5.23)—(5.24), Paj+3 ¢ I'shock[ Po, P0+]. Then, using (5.39), we have

TP4k+3 € (TPO*" TP4k+2) - (TP4/<+|’ TP4k+2)' (5.44)

In particular, Tp,, € (Tp,, Tp). Thus, by (5.26) and (5.37), Tp,, is not a
local minimum point of ¢ relative to £2. Then there exists a minimal chain of
radius r, starting at Ps;4+3 and ending at some point Pyry4 € 062 that is a local
minimum point of ¢, relative to £2. Since there exists a maximal chain of radius
rp from Pajy1 to Paxy2, we use (5.43)—(5.44) and Lemma 3.17 to conclude that
Pajya € (Lshock [ Pak+1, P4k+2])0. Since Pai44 is a local minimum point of e
relative to £2, we use (5.26), (5.37), and (5.39) to obtain

Trys € (Tpyyrs Tp) C (Toy, Tpo). (5.45)

From (5.44) combined with (5.37) and (5.42), Tp,, . € (TPO+, Tp). From this and
(5.45), we see that points Par4+3 and Paj44 satisfy (5.34) with k + 1 instead of k.
Also, from (5.37), (5.39), and (5.45),

Tpy < Tap < Tpy,, < TPO—. (5.46)

Therefore, we obtain local minimum points Ps; € Fs(l)mck, k=1,2,...,0f ¢e
which satisfy (5.46) for each k. Then there exists a limit P* = limg_, o, Psx With
Tp+ € [Tp,, TP(;], which implies

* 0
P" e Fshock .

Since P € Ighock 1s @ local minimum point of ¢e, 07 Pe (Par) = 0, so that

doe (f(T). T)

=0 fork=1,2,....
dT T=Tp,,

From this, since {Tp,, } is a strictly increasing sequence by (5.46), we obtain

d"¢e(f(T), T)

=0 forn=1,2,.... 5.47)
drn T=Tpx

The analyticity of functions ¢ and f(7), shown in Lemma 3.5, implies that the
function: T+ ¢e(f(T), T) is real analytic on (T4, Tp). Then we conclude from
(5.47) that ¢pe (f(T), T) = const.on (T4, Tp). By (5.22), we see thate = —t(Fp),
so that ¢e(Py) = ¢ (Pp) = 0, where the last equality holds by the first condition
in (2.17). That is,

Pe =0 on Ighock-

Then, using that ¢, = 0 along ok by the first condition in (2.17) and that
e-v < 0at Py by Lemma 5.2, we obtain that D¢ = 0 at Pg4. This, combined with
(2.21) and the first condition in (2.17), implies that p = pg at Py, which contradicts
condition (A1) of Theorem 2.1. Therefore, Claim 5.7.2 is proved.
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4. Combining Claim 5.7.1 with Claim 5.7.2, we finally conclude Lemma 5.7.

O
Lemma 5.8. CK ¢ 10 fori = 1,2.

Proof. Since C¥ is alocal minimum point of ¢, then condition (A9) of Theorem 2.3
and the regularity property ¢ € C'%(£2) imply that ¢ = const. on I Combining
this with (A7)~(A8), we obtain that ¢ = const. on [y U I (resp. on I3 U I3) if
i = 1 (resp.i = 2), where one or both of Iy and I'3 may be empty. Then, following
Remark 5.6, we can assume without loss of generality that C¥ e I (e, i =2).

In this case, B € fz U f3 so that ¢pe(P) = ¢e(B) for any P € ﬁz U ﬁg. From this
and (5.12), we obtain that (5.13) holds in the present case.

Then we are in the same situation as in Lemma 5.7. Therefore, the proof of
Lemma 5.7 applies, which yields a contradiction. 0O

Remark 5.9. Combining Lemmas 5.7-5.8, we obtain that, if condition (i) of
assumption (A10) holds, the only remaining possible location of C kis on T shock -
On the other hand, if condition (ii) of assumption (A10) holds, then the remaining
possiple locations of C* are either on Iypock O at the common endpoint Q* of fl
and .

Lemma 5.10. Assume that condition (ii) of assumption (A10) holds, and let Q* be
the point defined there. Then C* # Q*.

Proof Assume CK = Q*. If ¢, attains a local minimum or maximum relative to 2
on F2 , then condition (A9) of Theorem 2. 3 and the regularity property ¢ € C1%(2)

imply that ¢ = const. on I 5. Since B € F ) by condition (ii) of assumptlon (A10),

we obtain that ¢e(P) = ¢pe(B) for all P € Fz. Because of Ck = 0* e Fz, we can
complete the proof as in Lemma 5.8 above.
Thus, we can assume that

¢e does not attain its local minimum or maximum relative to §2 on fzo. (5.48)

Then we consider three cases, depending on whether e - vy, (B) is positive, negative,
or zero. In the argument, we take into account that f3 = () by condition (ii) of (A10)
so that I has endpoints Q* and B.

Ife-vsh(B) < 0, then we argue similar to the proof of Claim 5.7.1, replacing I3
by r 5, with the differences described below. First, we show (5.15) without changes
in the argument. Next, we choose P; € Ighock[Pg, B] satisfying (5.16) so that
the proof of (5.17) holds without changes in the present case, which implies that
P1 # P4. However, since (5.13) is not available in the present case, we cannot
conclude that P; # B. That is, we now obtain that P; € Iyhock[Pa, Bl \ {Pa}-
If Pi € (LTshoek[Pa, B])O, then, by (5.15) and Lemma 5.1, P; cannot be a local
maximum point of ¢ relative to Q.1f P; = B, then the same conclusion follows
from condition (ii) of (A10) since e - vsy(B) < 0. Thus, there exists a maximal
chain of radius r, starting from P; and ending at some point P> € 352 which is a
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local maximum point relative to 2, and ¢e(P)) < ¢e(P>). Now, instead of (5.18),
we show a weaker statement,

P> € Tgnock[ Pa, Bl. (5.49)

To prove (5.49), recall that there exists a minimal chain of radius r; from Pq to

ck = 0* e fz. Also, P1 € Ighock[Pd, B]\ {Pq}. Then, from (5.17) and the choice
of rp, we obtain from Lemma 3.15 that either (5.49) holds or P lies on I~ 20 between
B and CK. On the other hand, the last case is ruled out by (5.48) since P; is a local
maximum point of ¢, relative to £2. Thus, (5.49) holds. However, (5.49) contradicts
(5.16) since ¢e(P1) < ¢e(P5). Therefore, we reach a contradiction in the case that
e-v(B) <O.

If e - v(B) = 0, we use condition (ii) of (A10) and the fact that ck = 0* to
conclude

Pe(Pa) > ¢e(C) = ¢e(0*) = Pe(B),

which implies (5.13). Now we follow the argument of the proof of Claim 5.7.1
via replacing I3 by D, up to (5.18). Instead of (5.18), we can show (5.49) whose
proof, given above, still works in the present case without changes. Then, as shown
above, (5.49) contradicts (5.16). Therefore, we reach a contradiction in the case
thate - v(B) = 0.

Ife-v(B) > 0, then we argue as in Claim 5.7.2, via replacing I3 by I», and
with modifications similar to the ones described above. Specifically, (5.48) is used
to conclude that P, ¢ fzo. From this, we conclude that P, lies on Iyhock between
P0+ and B, possibly including B. However, we now cannot rule out the possibility
that P, = B as in the proof of Claim 5.7.2 (again, since (5.13) is not available).
Thus, instead of (5.29), we have

Tp, € (Tpr, Tgl C(Tpy, Tgl,  de(P2) > $e(P1) > ¢e(Pp). (5.50)

From this, using (5.24)—(5.25) and (5.28), it follows that (5.30)—(5.31) hold. From
(5.31), P3 # P», and then (5.30) implies that

Tpy € (Tps. Tpy) C (Tpy, Tp).

Then, from (5.26) combined with (5.23), P3 cannot be a local minimum point of
¢e relative to 2. Thus, there exists a minimal chain of radius r» starting from Ps.
The rest of the proof of Claim 5.7.2 applies without changes. Therefore, we obtain
a contradiction in the case that e - v(B) > 0. This completes the proof. 0O

Remark 5.11. Combining Lemmas 5.8 and 5.10, we obtain that, if condition (ii)
of assumption (A10) holds, then C k cannot lie within I 10 u{o*tu I 20. Combining
this with Lemma 5.7, we see that, if condition (ii) of assumption (A10) holds, the
only remaining possible location of Ck is at Tipock.

From Remarks 5.9 and 5.11, in order to complete the proof of Theorem 2.3, it
remains to show
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Lemma 5.12. C¥ ¢ I'shock-

Proof. The proof consists of two steps.

1. Recall that Ighock includes its endpoints A and B. Thus, we first consider the
case that C* is either A or B. Note that Lemma 5.7 does not cover this case if either
Iy or I3, or both, are empty.

The argument below does not use condition (A10) of Theorem 2.3. Thus, as
discussed in Remark 5.6, we can assume without loss of generality that C¥ = B.
Then, since there is a minimal chain from P4 to C k — B, we conclude that (5.13)
holds. Now the proofs of Claims 5.7.1-5.7.2 apply, with the following simplifica-
tion: From Lemma 3.15 and the definition of point P, in each of these claims, we
conclude that (5.18) holds. The rest of the proofs of Claims 5.7.1-5.7.2 work with-
out changes. Therefore, we reach a contradiction, which shows that C k is neither
A nor B.

2. It remains to consider the case that C* e FS%OCk. Notice that C¥ is a local
minimum point of ¢e. Then, from Lemma 5.1, we see that e - v < 0 at C;. Now
the argument as in Claim 5.7.1, with point B replaced by point C¥, works without

change. This yields a contradiction. Therefore, C* ¢ I' S?lock. O

Proof of Theorem 2.3. Combining Lemmas 5.7-5.8 with Lemma 5.12, we obtain
that C¥ cannot lie on the set

G ;:[‘TOUFPUFzOUITgU Tshock -

Since I'yhock includes its endpoints, G covers all 32 except point Q* defined in
Case (ii) of (A10), if Q* exists. In Case (i) of (A10), point Q* does not exist, so
that G = 902, which implies that C k'¢ 352.1In Case (ii) of (A10), point Q* exists,
and Lemma 5.10 implies that C*¥ # Q*, so that C¥ ¢ 92 in this case as well.
However, the fact that C¥ ¢ 92 contradicts (5.11). This completes the proof of
Theorem 2.3. 0O

6. Proof of Theorem 2.2: Equivalence Between the Strict Convexity and the
Monotonicity

Proof of Theorem 2.2. By the boundary condition (2.17), ¢ = 0 on ['ghock. Also,
by assumption (A1), ¢y, < 0 on [k for the interior normal vector v. Then the
monotonicity property ¢e > 0 in Fs?mck for any unit vector e € Con implies that
assumption (AS5) in Theorem 2.1 holds. Now it follows from Theorem 2.1 that,
under the assumptions of Theorem 2.2, the monotonicity property is the sufficient
condition for the strict convexity of the free boundary ghock in the sense of (2.18)—
(2.19).

On the other hand, if the shock graph is strictly convex in the sense of Theorem
2.1, then, at any point on FS%OCk, the tangent vector t is not in Con, where we have
used the strict convexity in the sense of (2.19) to have this property for the boundary
directions of the cone. Then, using again that ¢; = O and ¢, < 0 on I'ghock in (2.17)
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and condition (A1) in Theorem 2.1, it follows that ¢ > 0 on T s(t)lock for any unit
vector e € Con; that is, the monotonicity property holds. This completes the proof
of Theorem 2.2. O

Proof of the Assertion in Remark 2.5. By equation (3.2) and condition (A3) in
Theorem 2.1, ¢ satisfies the strong minimum principle in §2. This implies

¢e > min{ min ¢e, min ¢e} in §2,
Tshock m
where we have used the assumption in Theorem 2.1 that ¢ is not a constant state.
Note that, by the assumption of Theorem 2.2, ¢e > 0 on [gpock, and ¢pe on Iy U I
satisfies that either ¢e > 0 or ¢ cannot attain its local minimum with respect to
2. Thus, ¢pe > 0in QUTY . O

7. Applications to Multidimensional Transonic Shock Problems

In this section, we apply Theorem 2.1 to prove the convexity of multidimen-
sional transonic shocks for two longstanding shock problems.

7.1. Shock Reflection—Diffraction Problem

When a plane incident shock hits a two-dimensional wedge, shock reflection—
diffraction configurations take shape; also see Chen-Feldman [14].

The wedge is of the shape: {|x2| < xjtanfy} with 8y € (0, Z). Then the
positive xj—axis is the symmetry axis of the wedge, the wedge vertex is at the
origin, and 0y, is the (half) angle of the wedge. The incident shock Sy separates two
constant states: state (0) with velocity vo = (0, 0) and density pg ahead of Sy, and
state (1) with velocity vi = (11, 0) and density p; behind Sp, where p; > pg, and
u1 > 0 1is determined by (po, p1, y) through the Rankine-Hugoniot conditions on
So. The shock, Sp, moves in the direction of the x;—axis and hits the wedge vertex
at the initial time. Also, the slip boundary condition: v - v = 0 is prescribed on the
solid wedge boundary, where v is the velocity of gas. Since state (1) does not satisfy
the slip boundary condition, the shock reflection—diffraction configurations form
at later time, which are self-similar so that the problem can be reformulated in the
self-similar coordinates & = (&1, &) = ("t—l, "t—z). Depending on the flow parameters
and wedge angle, there may be various patterns of shock reflection—diffraction
configurations, including Regular Reflection and Mach Reflection. Because of the
symmetry of the problem with respect to the &—axis, it suffices to consider the
problem only on the upper half-plane {£& > 0}.

The regular reflection configuration is characterized by the fact that the reflec-
tion occurs at the intersection point Py of the incident shock with the wedge bound-
ary. Figure 7(a)—(b) show the structure of regular reflection configurations in self-
similar coordinates. The regular reflection solutions are piecewise-smooth; that is,
they are smooth away from the incident and reflected-diffracted shocks, as well as
the sonic circle Pj P4 for the supersonic regular reflection case across which v is
only Lipschitz.
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From the description of state (1) above, its pseudo-potential is
|2

p1(§) = —% +u1& + Cy.

A necessary condition for the existence of piecewise-smooth regular reflection
configurations is the existence of the constant state (2) with pseudo-potential ¢; that
satisfies both the slip boundary condition on the wedge boundary and the Rankine-
Hugoniot conditions with state (1) across the reflected shock S; := {¢; = ¢2}.
Owing to the constant state structure (2.10), it suffices to require these conditions
at Py. Thus, the conditions at Py are

Dg; - vy =0,
2 = Y1,
(D@2, 92)Dga - vs, = p1Dgy - vs,, (7.1)

where vy, is the outward (with respect to the wedge) normal vector to the wedge
boundary, 6y, is the wedge angle in the upper half-plane, and vs, = %.
Therefore, we have three algebraic equations for parameters (12, v, C) in expres-
sion (2.10) for ¢,. Since the piecewise-smooth regular reflection solution must
satisfy (7.1) at Py with ¢ replaced by @2, then (¢, Dp) = (@2, Dyy) at Py, if ¢
exists.

It is well-known (see e.g. [14, Chapter 7]) that, given the parameters of states
(0) and (1), there exists a detachment angle 93 € (0, %) such that equations (7.1)
have two solutions for each wedge angle 6, € (93, 7), which become equal when
Oy = 93. Thus, two types of two-shock configurations occur at Py in the wedge
interval 6y, € (93, %). For each such 6y, state (2) with the smaller density is
called a weak state (2). The global existence of regular reflection solutions for
all 6y, € (03,, %) with (¢, Dy) at Py determined by the weak states (2) has been
established in [13, 14]. Below, state (2) always refers to the weak state (2).

If state (2) exists, its pseudo-potential is

&1
2 (8) = -t uzé) + v262 + Ca,

where vy = u» tan 6,,. In particular, state (2) satisfies the first condition in (7.1) on
the whole wedge boundary (in the upper half-plane {&; > 0}):

Doy -vy, =0 on {& = & tan Oy, & > 0}. (7.2)

Depending on the wedge angle, state (2) can be either supersonic or subsonic at
Py. Moreover, for 6y, near % (resp. for 6y near 0“},), state (2) is supersonic (resp.
subsonic) at Py; see [14, Chapter 7]. The type of state (2) at Py for a given wedge
angle 6y, determines the type of reflection, supersonic or subsonic, as shown in Fig.
7(a) or 7(b) respectively, when u; < cy.

When u; > ¢y, besides the configurations shown in Fig. 7(a)—(b), there is an
additional possibility that the reflected-diffracted shock is attached to the wedge
vertex P3, i.e., P, = P3; see Fig. 8(a)—(b).
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(a) (b)

Incident Shock

Incident Shock

P Py

Py P

Fig. 7. (a) Supersonic regular reflection; (b) Subsonic regular reflection

Reflected Shock

&1

Ps

Fig. 8. (a) Attached supersonic regular reflection; (b) Attached subsonic regular reflection

The regular reflection problem is posed in the region:
A=RI\{§ : & >0,0<& <& tanby),
where R_%_ =R>N{& > 0}.

Definition 7.1. ¢ € C%!(A) is a weak solution of the shock reflection—diffraction
problem if ¢ satisfies equation (2.5) in A, the boundary conditions:

oy =0 ondA (7.3)
in the weak sense (defined below), and the asymptotic conditions:
lim [l¢ —@llo,a\Bz) =0, (7.4)
R—o0

where
5= go for& > £, & > & tanby,
g1 for& <&, & >0,

and E? > ( is the location of the incident shock Sp.
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In Definition 7.1, the solution is understood in the following weak sense: We
consider solutions with a positive lower bound for the density, so that (7.3) is
equivalent to the conormal condition

p(IDy|*, 9)d,p = 0.

Thus, a weak solution of problem (2.5) and (7.3) is given by Definition 2.1 in
region A, with the following change: (2.11) is satisfied for any ¢ € CSO(IRZ)
(whose support does not have to be in A).

Next, we define the points and lines on Fig. 7(a)—(b). The incident shock is line
So = {& = g?} with E? = ’;'T”/‘) > 0. The center, Oy = (up, vy), of the sonic
circle B, (0>) of state (2) lies on the wedge boundary between the reflection point
Py and the wedge vertex Ps for both the supersonic and subsonic cases.

Then, for the supersonic case, i.e., when |D@y(Py)| = |PoO2| > ¢ with
Py ¢ B¢,(02), we denote by P4 the upper point of intersection of 9 B, (02) with
the wedge boundary so that Oy € P3Py4. Also, 0B,(0>) of state (2) intersects
line S1, and one of the points of intersection, P; € A, is such that segment Py Pj is
outside B, (O2). We denote the arc of 9 B¢, (O2) by I'sonic = P1 P4. The curved part
of the reflected-diffracted shock is I'shock = P1 P2, where P, € {&, = 0}. Denote
the line segments [y := P> P3 and I'yedge := P3 P4. The lines and curves Ihock,
Fsonics sym, and I'yedge do not have common points, except their endpoints Py, ...,
Py. Thus, Ispock U sonic U L sym U T'wedge 18 a closed curve without self-intersection.
Denote by £2 the domain bounded by this curve.

For the subsonic/sonic case, i.e., when | D (Py)| = |PyO2| < ¢> so that Py €
B.,(03), the curved reflected-diffracted shock is I'shock = Po P> that does not have
common interior points with the line segments Isym = P2 P3 and ['yedge = PoP3.
Then Ishock U Isym U I'wedge 18 a closed curve without self-intersection, and £2 is
the domain bounded by this curve.

Furthermore, in some parts of the argument below, it is convenient to extend
problem (2.5) and (7.3), given in A by even reflection about the §;—axis, i.e., defining
e (—&1, &) = ¢(&1, &) forany § = (&1, &) € A. Then ¢! is defined in region
A% obtained from A by adding the reflected region A ™, i.e., A = AU{(&1,0) :
&1 < 0}U A~ In a similar way, region §2 and curve [yhock C 052 can be extended
into the corresponding region 2" and curve I'jx, C 982,

Now we define a class of solutions, with structure as shown on Fig. 7(a)—(b).

Definition 7.2. Let6,, € (03,, %). A function ¢ € C%!(A) is an admissible solution
of the regular reflection problem (2.5) and (7.3)—(7.4) if ¢ is a solution in the sense

of Definition 7.1 and satisfies the following properties:

(i) The structure of solutions is as follows:
—1If | D2 (Py)| > c2, then ¢ is of the supersonic regular shock reflection—
diffraction configuration shown on Fig. 7(a) and satisfies:
The reflected-diffracted shock Ninock 1S C2 in its relative interior. Curves
Tshocks Tsonics Iwedge, and I'sym do not have common points except their
endpoints.
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¢ satisfies the following properties:

g e ChA)yNCl (AN (SoU PP P2)),
9 e CH2)NC3(2\ (Tonic U (P2, P3))),

@9 for& > S{) and & > & tan 6y,
o =13 ¢ for &1 < 5{) and above curve Py P P, (7.5)
¢y inregion PyP; Py.

—1If |Dga(Py)| < c2, then ¢ is of the subsonic regular shock reflection—
diffraction configuration shown on Fig. 7(b) and satisfies:
The reflected-diffracted shock Iinock is C2 in its relative interior. Curves
Tshock > T'wedge» and I'sym do not have common points except their endpoints.
¢ satisfies the following properties:

g € CON(A) N CHAN\ Tihook),
g e CH(2)NC3(2\ {Py, P, P3)),
©o for & > E? and & > & tan Oy,

0 =1 ¢ for & < E? and above curve Py Ps,
@2(Po) at Po,
Do(Py) = Dpa(Po). (7.6)

Furthermore, in both supersonic and subsonic cases,

g, is Clinits relative interior. (7.7)

(ii) Equation (2.5) is strictly elliptic in £ \ Tsonic:
IDg| < c(IDgl*, ) in 2\ Tionic,

where, for the subsonic and sonic cases, we have used notation I onic = {Po}.

(iii) dpe1 > dpe > 0 on [gheck, Where v is the normal vector to [yhock pointing into
2.

(iv) g2 <9 < @1 in 2.

(v) Let eg, be the unit vector parallel to S| := {¢1 = ¢2}, oriented so that eg, -
Doy (Py) > 0:

(v2, uy —uz)

es, = — . (7.8)
V@ —u2)? +v3
Let ez, = (0, 1). Then
des, (91 — @) =0, 35 (1 —¢) <0 on Ihock- (7.9)

Below we continue to use the notational convention

Tsonic := {Po}, P := Py, P4 := Py for the subsonic and sonic cases. (7.10)
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Remark 7.3. Since the admissible solution ¢ in Definition 7.2 is a weak solution
in the sense of Definition 7.1 and has the regularity as in Definition 7.2(i), it sat-
isfies (2.16) classically in §2 with ¢ = ¢ — ¢, the Rankine-Hugoniot conditions

9 =91, p(ID*,9)D¢-v=piDei-v  on [inock, (7.11)

and the boundary conditions
oy =0 on Iyedge U Lsym. (7.12)
Note also that, rewriting (7.12) in terms of ¢ = ¢ — ¢, we have

Oy = —uy sin by on Fwedgm
dyp =0 on Igym. (7.13)

Remark 7.4. An admissible solution ¢ is not a constant state in §2 (recall that
Oy < %). Indeed, if ¢ is a constant state in §2, then ¢ = ¢; in §2: This follows from
(7.5) for the supersonic case since ¢ is C L across Tsonic, and from the property that
(¢, Do) = (92, Dgy) at Py for the subsonic case. However, ¢> does not satisfy
(7.12) on I'sym since v = (u2, v2) = (u2, us tan Oy) withup > 0and 6y, € (0, %).

Remark 7.5. Let ¢ be an admissible solution and ¢ := ¢ — ¢;. For a unit vector
e € R?, denote

W = Pe.
Then, from the regularity in Definition 7.2(i),
w € C(2) N C* 82\ (Tsonic U {P3)),

where we have used (7.10) for the subsonic and sonic cases.

We first notice that w satisfies equation (3.2) in the (S, T)—coordinates with
basis {e, e'}. Equation (3.2) has the same coefficients of the second-order terms as
equation (2.6), so that (3.2) is strictly elliptic in £2 \ Tyonic by Definition 7.2(ii).

Furthermore, by [14, Lemma 5.1.3], w satisfies the following boundary condi-
tions on the straight segments I'yedge and Isym: If € - T # 0 for a unit tangent vector
T on Iyedge (1€SP. I5ym), then

(e v)(c* — ¢2)

v e D@ =g wr; =0 on F\gedge(resp. FSO (7.14)
v

ym)-

The coefficients are continuous and hence locally bounded, which implies that these
boundary conditions are oblique on F\gedge (resp. Fsgm).

Lemma 7.6. Definition 7.2 is equivalent to the definition of admissible solutions in
[14]; see Definitions 15.1.1-15.1.2 there.
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Proof. In order to show that the solutions in Definition 7.2 satisfy all the properties
in Definitions 15.1.1-15.1.2 of Chen-Feldman [14], it requires to show that they
satisfy:

&1p, <81, Tshock C (AN B¢ (01) N{é1p, < &1 < &1p}, (7.15)
des, (91 —9) <0, (91 —9) <0 ing2, (7.16)
where O; = (uq,0) is the center of sonic circle of state (1) and, in the sub-

sonic reflection case (see Fig. 7(b)), we have used the notational convention (7.10).
Moreover, note that the inequalities in (7.9) hold on [gock, While these inequalities
in (7.16) hold in the larger domain £2.

We first show both (7.16) and the stronger property

8esl (1 —¢) <0, Og(pr—¢) <0 in 2. (7.17)

The argument is the same as the one in the proof of Remark 2.5 (see §6) for
¢ = ¢ — @1 in the present case. We only need to check for e = eg, and e = e,
that, for any point & € 82 \ I'. s(l)lock’ @e satisfies that

either ¢e (&) > 0 or ¢ cannot attain its local minimum at &. (7.18)

Note that 32 \ I’ = Tsonic U Nvedge U Teymm U {P3}.

Consider first e = eg,. Since Dp(P3) = (0,0) by (7.12) and ¢ € Ccl(2), we
conclude that w(P3) = 0. Next, es; - T # 0 on Iyedge U Isym by [14, Lemma
7.5.12]. Then, by Remark 7.5, ¢ satisfies a homogeneous elliptic equation in £2
and the oblique boundary conditions (7.14) on F‘Sedge u FS(;m, so that w cannot
attain its local minimum on F\gedge U I’S(;m, unless w is constant in £2 in which case
w = w(P3) = 0in £2. On Tyonic, (¢, Dp) = (¢2, De>) as shown in Remark 7.4,
where we have used notation (7.10). Also, es; - D(¢2 — ¢1) = 0 by (7.8). Thus,
des, = €5, - D(¢2 —¢1) =0on Tonic, which implies (7.18) for e = e, .

Now we show (7.18) for e = eg,, i.e., w = ¢¢,. The argument is similar to the
previous case, with the following differences: First, e, - T = 0 on [y, so that,
instead of (7.14), we obtain that w = 0 on I'sym by (7.13). Also, on [sonic, We use
again that Do = D> to obtain that w = ¢¢, = (92 — ¢1)g, = v2 > 0. The rest of
the argument is the same as above, which leads to (7.18) for e = eg,.

Repeating the proof of Remark 2.5 (see §6), in which ¢ is not a constant state
by Remark 7.4, we obtain (7.17). With this, (7.16) is proved.

Next we show (7.15). Since Ishock € A \ B, (01), then ¢ is supersonic on
Ishock - This is a standard consequence of the Rankine-Hugoniot conditions (7.11),
combined with the entropy condition of Definition 7.2(iii).

It remains to show that &1p, < &;p, and Ishock C {§1p, < &1 < &1p,}. From
(7.17), ¢pg, > 01in £2. Also, ¢ = 0 on [pock and ¢ < 0 in §2 by (iv). From these
properties and the regularity of curve [ghock, it follows that any vertical line that
has a non-empty intersection with Igpock intersects Igpock €ither at one point or on
a closed interval. Moreover,

If (61, &) € Iihock, then 2 N{(&1, &) : & =&} C{(&1,&) @ & < &)
(7.19)
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From these properties, we conclude that

Tshock C {min(&1p,, &1p,) < & < max(&1p;, &1p,)}

It remains to show that &y p, < &;p,. Assume that & p, > & p,. Then, from (7.19)
and the structure of £2 described in Definition 7.2(i), we conclude that pock iS
contained within the following subregion of {§1p, < & < &(p,}: Above Ionic
on {&1p, < & < min(§1p,,&1p,)}, and above Iyedge On {§1p, < &1 < &1p,} if
&1p, > &1p,. This implies that I'shock C {§2 > 0}. This contradicts the fact that
endpoint P> of I'ghock lies on {£&; = 0}. Now (7.15) is proved.

Therefore, we have shown that the solutions in Definition 7.2 satisfy all the
properties in Definitions 15.1.1-15.1.2 of [14].

Now we show that the admissible solutions defined in Definitions 15.1.1-15.1.2
of [14] satisty all the properties of Definition 7.2. For that, we need to show that
the admissible solutions in Definitions 15.1.1-15.1.2 of [14] satisfy property (iii)
of Definition 7.2. This is proved in [14, Lemma 8.1.7 and Proposition 15.2.1]. O

From Lemma 7.6, all the estimates and properties of admissible solutions shown
in [14] hold for the admissible solutions defined above. We list some of these
properties in the next theorem.

Below we use the notation that, for two unit vectors e, f € R? with e #* +f,

Con(e,f) :={ae+bf : a,b > 0}. (7.20)

Theorem 7.1. (Properties of admissible solutions). There exits a constant a« =
a(po, p1,¥y) € (0, %) such that any admissible solution in the sense of Definition

7.2 with wedge angle 0, € (95, 7) has the following properties:

(i) Additional regularity:
—If|Dga(Py)| > ¢, i.e., when ¢ is of the supersonic regular shock reflection—
diffraction configuration as in Fig. 7(a), it satisfies

@ € C®(2\(Tsonic U {P3))) N CH1(2\(P3}) N C1(2).

The reflected-diffracted shock PyP1 Py (where Py P, is the straight segment
and Py P> = [ghock) IS cP up to its endpoints for any B € [0, %) and C*®
except Py.

—If|Dp2(Py)| < ¢y, i.e., when ¢ is of the subsonic regular shock reflection—
diffraction configuration as in Fig. 7(b), it satisfies

g e CHP(@)NCH 2\ (Po}) NC®(2\ (P, P3})

for some B = B(po, p1,¥,0w) € (0,a] which is non-decreasing with
respect to Oy, and the reflected-diffracted shock I'yock is CP up to its
endpoints and C* except P.
Furthermore, in both supersonic and subsonic cases,
(pext c COO(QeXt U (F%)ng)O)

S.
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(ii) For each e € Con(es,, eg,),
de(pr —9) <0 in L2, (7.21)

where vectors eg, and eg, are introduced in Definition 7.2(v).
(iii) Denote by vy, the unit interior normal vector to I'yedge (pointing into §2), i.e.,

vy = (—sin Oy, cos Oy). Then dy, (¢ — ¢2) < 0in 2.

Proof. Below we use the equivalence shown in Lemma 7.6.

Assertion (i) follows from Definition 7.2(i) and [14, Corollary 11.4.7, Proposi-
tion 11.5.1, Corollary 16.6.12]. Assertion (ii) is obtained in [14, Corollary 8.2.10,
Proposition 15.2.1]. Assertion (iii) follows from [14, Lemma 8.2.19, Proposition
15.2.1], where ny, = —vy,. 0O

Remark 7.7. We note that vy, € Con(egs,, ez,) for any wedge angle 0y, € (dev, %),
which is proved in [14, Lemma 8.2.11].

Now we state the results on the existence of admissible solutions.

Theorem 7.2. (Global solutions up to the detachment angle for the case: u; < cy).
Let the initial data (pg, p1, v) satisfy that uy < c1. Then, for each 0y, € (Gg, %),
there exists an admissible solution of the regular reflection problem in the sense of

Definition 7.2, which satisfies the properties stated in Theorem 7.1.

Proof. The existence of admissible solutions directly follows from Lemma 7.6 and
[14, Theorem 2.6.7 and Remark 2.6.8]. O

When u| > ¢y, the results of Theorem 7.2 hold for any wedge angle 6, from
Z until either 63 or 6, € (63, %) when the shock hits the wedge vertex Ps.

Theorem 7.3. (Global solutions up to the detachment angle for the case: u; > cj.)
Let the initial data (po, p1, y) satisfy that uy > cy. Then there is 6, € [9{},, %)
such that, for each 0y, € (05, %), there exists an admissible solution of the regular
reflection problem in the sense of Definition 7.2, which satisfies the properties stated
in Theorem 7.1.

If o5, > 9\‘3,, then, for the wedge angle 0, = 65, there exists an attached shock
solution ¢ with all the properties listed in Definition 7.2 and Theorem 7.1(i1)—(iii)
except that Py = P> (we denote P3 for that point below). In addition, for the

regularity of solution ¢, we have
— For the supersonic case with 0y, = 63,
¢ € C(@\(Tonic U (Ps)) N CH1(@\(P3)) N € (),

and the reflected shock PyPy P3 is Lipschitz up to the endpoints, C*# for any
B €0, %) except point P3, and C* except points Py and P;3.
— For the subsonic case with 0y, = 65,

@ € C®(R2\[Py, P3) N CHP@\(PsH N (2)

for B as in Theorem 7.1, and the reflected shock PyPs is Lipschitz up to the
endpoints, C1-P except point P3, and C* except points Py and P;.
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Proof. The existence of admissible solutions directly follows from Lemma 7.6 and
[14, Theorem 2.6.9 and Remark 2.6.8], where we note that [14, Remark 2.6.8]
applies to the case: u > c1 as well, although this is not stated explicitly. O

Now we show that the admissible solutions satisfy the conditions of Theorems
2.1-2.3.

Lemma 7.8. The following statements hold:

(i) Any admissible solution in the sense of Definition 7.2 satisfies the conditions of
Theorems 2.1 and 2.3.

(i) Any regular reflection—diffraction solution in the sense of Definition 7.1 with
properties (1)—(iv) of Definition 7.2 and with shock I'shock being a strictly convex
graph in the sense of (2.18)—(2.19) satisfies property (v) of Definition 7.2.

Proof. We divide the proof into seven steps: Assertion (i) is proved in Steps 1-6,
while assertion (ii) is proved in Step 7.

1. We use A%, I'**t and ¢! defined before Definition 7.2. Combining

the structure of equatiosrlio(c;.S) with the boundary conditions (7.3) on the negative
&1—axis yields that the reflected/extended function ¢! is a weak solution of equa-
tion (2.5) in A®', By the boundary conditions (7.3), state (1) satisfies 9,1 = O
on the &;—axis. Then the structure of the constant state (see §2.1) implies that
01(—=&1,8&) = ¢1(&1,&) in R2 so that <pf’“ = ¢1. We also note the regularity
of ¢ in Theorem 7.1(i). Thus, the extended shock Fsi’gck separates the constant
state ¢| from the smooth solution ¢®*' of equation (2.5) in £2°*!, and the Rankine-
Hugoniot conditions (7.11) are satisfied for ¢**" and ¢ on I'$X , .

2. Region 2 satisfies the conditions in Framework (A). Indeed, for the super-
sonic reflection case (see Fig. 7(a)), the required piecewise-regularity holds, since
Iyedge and Iy are straight segments, Ionic 1s an arc of circle, and Ihock has the
regularity stated in Theorem 7.1(i). The fact that all the angles of the corners of §2

are less than 7 is verified as follows:

Consider first the supersonic case. Since curve Py Py P> is C 2at Py, and Py P is
a straight segment, we use that the center of sonic circle of state (2) is on Fv(v)edge and
Py is outside that circle to conclude that the angle at Pj is between (%, ), and the
angle at Py is % Also, since (7.7) shows that Fsi’gck is smooth near P, it follows
that the interior angle to £2 at P, is 7. Finally, the angle at Py is 7 — 6 € (3, 7).

For the subsonic reflection case, the angles at P> and P; are handled similarly.
The angle at Py is in (0, %) for the following reason: By [14, Lemma 8.2.11,
Proposition 15.2.1], for any 6y, € (GSV, %), vy € Con(es,, eg,) so that, using the
regularity of I'shock in Theorem 7.2(i), property (iii) in Theorem 7.2, and ¢ = ¢
on [ ghock, We conclude that Igpock iS a graph

Fihock = {(f(T), T) TP2 <T< TPO}

of a function f(T) € C*([Tp,, Tr,)) N C“P([Tp,, Tp,]1), where the (S, T)-
coordinates are along the normal and tangent directions to ['yedge-
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3. The entropy condition (A1) of Theorem 2.1 follows directly from property
(iii) of Definition 7.2, where state (0) in Theorem 2.1 is state (1) in the regular
shock reflection problem.

From the regularity of ¢ and I'yhock in Theorem 7.1(i), we see that conditions
(A2) and (A4) of Theorem 2.1 hold.
Property (ii) of Definition 7.2 implies that condition (A3) of Theorem 2.1 holds.

4. Using the notations of the endpoints of Igpock as in Framework (A) by A :=
P; and B := P,, we see from the properties of Definition 7.2(i) that

TA = €5, Tp = €.

As we discussed in Step 2, 'hock 1s orthogonal to the &£1—axis at P>. From this and
[14,Lemma7.5.12], e, # %eg,.Also,combining property (ii) of Theorem 7.1 with
the fact that I'gpock is the level set ¢ — ¢ = 0, we obtain that {P 4+ Con}N 2 =0
for all P € [ihock. Thus, condition (AS5) of Theorem 2.1 is satisfied.

5. Next, we discuss condition (A6) of Theorem 2.1. We recall that ¢ := ¢ — ¢.
All the local minima and maxima discussed below are relative to §2. Also, we discuss
the supersonic and subsonic/sonic cases together below, and use notations (7.10)
for the subsonic/sonic case. Furthermore, since conditions (A1)-(AS5) have been
verified, we can use Lemma 3.2 in the argument below.

Fix e = v,,, where v, is defined in Theorem 7.1(iii). By Remark 7.7, e € Con.
We first notice that, by Remark 7.5, w = ¢, satisfies equation (3.2), which is strictly

elliptic in 2 U I 4 U Toym U [0y, Furthermore, since T = ez, on Iy, so that
e-7T = —sinfy # 0 on [gyn, then w satisfies (7.14) on Fs(g,m, and this boundary

condition is oblique. Thus, by Hopf’s lemma, the local maximum and minimum of
¢e relative to 2 cannot be attained on Fsgm, unless ¢, is constant.

We now show the similar property on I'yedge U Isonic. From (7.2) and (7.12),
Oe(¢ — ¢2) = dy(p —¢2) =0on Tyedge- Also, D = Dg> on I'sonic by Definition
7.2(i). Thus, de (¢ — ¢2) = 0 0on I'yedge U Tsonic» Which is the global maximum over
2 by Theorem 7.1(i). Then de(¢ — @2) cannot attain its local minimum at some
P € Tyedge U Tsonic unless de(¢ — ¢2) = 0in £2. Indeed, if P € Iyedge U Tsonic
is a point of local minimum of d¢(¢ — ¢2), then, since P is also a point of global
maximum and de (¢ — ¢2)(P) = 0 as shown above, we obtain that de (¢ — ¢2) =0
in B, (P) N 2 for some r > 0. Since 9e(¢ — @2) = de(@ — @1) + 0e(@1 — @2) =
0e® +u1 sin Oy, (where we have used that D¢, - vy, = 0) so that 9 (¢ — ) satisfies
the strictly elliptic equation (3.2) in £2, the strong maximum principle implies that
de(@ —¢2) = 01n £2. Recalling that de¢p = 9¢ (¢ — ¢2) — u1 sin By, we conclude that
$e = —u; sin Oy, in 2 if e attains its local minimum at some P € Iyedge U Tsonic-

Combining the two cases discussed above, we conclude that, if ¢, attains its
local minimum at some point P € I'yedge U Isonic U I S?,m, then ¢, is constant in
£2, specifically ¢ = —uj sin 6y =: a.

Now we show that, if ¢¢ = a in §2 for an admissible solution ¢, then ¢ is a
uniform state in £2. To fix notations, we consider first the supersonic case. We use
the (S, T')—coordinates with basis {e, e} and the origin at P; for e determined as
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in Lemma 3.2 for e = vy, i.e., e = —(cos Oy, sin 0y,). We recall that A = P; and
B = Py;see Step4. Then Tg = Tp, > Tp, =0 > Tp, = T4 > Tp,. Also,

Fsonic = {S = foo(T), T € (Tp,, Tp)}, Fs(;m ={S=Ttanby, T € (Tp,, Tp,)},

where fi, € C*°((Tp,, Tp,)) and fi, > 0 on (Tp,, Tp,). The function, fe, from
Lemma 3.2(i) for e = vy, satisfies that fe(7) > max(7 tan 6y, 0) on (Tp,, Tp,).
Also,

Q={(S,T):T e (Tp,, Tp,), max(T tanby, 0) < S < f(T)},

where f € C(Tp,, Tp,) satisfies

A

f = fso on(Tp,, Tp), f = feon (Tp,, Tp,).

Let ¢¢ = a in §2. Then, from the structure of §2 described above, ¢ (S, T) =
aS + g(T) in £2 for some g € C'(R). Since ¢s, = 0 on Iy, by (7.13), we
see that ae - ez, + g (T) el - ez, = O forall T € (Tp,, Tp,), where we have
used the expression of FS(}),m in the (S, T)—coordinates given above. Note that e -
e, = —sinby # 0. Thus, g'(T) is constant on (Tp,, Tp,), which implies that
¢(S,T)=aS +bT +cin 2 for some b, c € R, where

2:={(S,T):T e (Tp,, Tp,), max(T tanby, 0) < S < f(T)} C 2.

Since ¢ is real analytic in £2 by Lemma 3.5, it follows that ¢ (S, T) = aS+bT +¢
in £2. That is, ¢ = ¢» + ¢ is a constant state in £2, which contradicts Remark 7.4.

For the subsonic/sonic case, the argument is the same, except that the structure
of £2 now becomes

2={ST):T e (Tp, Tp,), max(T tanby, 0) < S < fe(T)}.

Therefore, we have shown that ¢ cannot attain its local minimum on [yedge U
I sonic U Fs(})/m

Then we define I := (Twedge U Tsonic U Tgm) \ {P1} = 952 \ Tihock, and
I, := () in both the supersonic and subsonic/sonic cases. Clearly, I'| is connected.
Now Case (iii) of condition (A6) of Theorem 2.1 holds in both the supersonic and

subsonic/sonic cases.

6. We now check the conditions of Theorem 2.3. Since the conditions of The-
orem 2.1 have been checked, the conclusions of that theorem hold; in particular,
@rz = 0on ghock-

Let fo = FS%nic U { P4} in the supersonic case, and fo := {J in the subsonic

case. Let ﬁl = F“(/)edge U {Ps}, ﬁz = Fs(;m’ and ﬁ3 := {J. In the supersonic case,

for any nonzero e € R2, de = D(p2 — ¢1) - € on gonic, I.€., (e 1S constant on fo.
Then (A7)—-(AS8) hold.
Let e € R? be a unit vector. We have shown in Step 5 that ¢, is not a constant

in £2. Then, by (7.14), ¢e can attain a local minimum or maximum on I V(V)edge only

ife-7y =0, ie, e = Lvy. In that case, by (7.13), ¢e is constant on ['yedge-
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U{P3}. On I5 := I'° | (A9) is checked

sym?

This verifies (A9) on f‘l =19

wedge
similarly. On I 0 = I“S(())nic U {P4} in the supersonic case, Do = D¢, so that
¢e = (Dpo — Dgy) - € = const. Now (A9) is proved.

To check condition (ii) of (A10) at point B = P,, we note that, by Step 1,
P 1= ' — @y satisfies equation (2.16) in £2°*' and conditions (2.17) on I'§X .
Also, we have shown above that the original problem in £2 satisfies hypotheses
(A1)—(A3) of Theorem 2.1. It follows that the problem for ¢°*' in £2°*' satisfies
(A1)-(A3) of Theorem 2.1.

Now it follows that the extended problem in 2% satisfies the conditions of
Lemma 3.1. Also, P is an interior point of the extended shock Fsi’gck. Furthermore,

using (7.7), we have
vU(Py) = v (Py),

where vy, (P2) is defined in (A10). Since ¢ > 0 on Iyhock as noted above, which
implies that ¢, (P2) > 0 from the regularity of ¢ in Theorem 7.2, we apply Lemma
3.1 for the extended problem to conclude that, if vg,(P2) - € < 0, then ¢, cannot
attain its local maximum at P. If v, (P2)-e = 0, we use that vg, (P2) = eg, by (7.7)
to conclude that e = e, in that case. Then we use the C! (£2)-regularity of ¢ to
conclude that ge = 0 on I'sym by (7.13). Thus, ¢e(P2) = ¢e(P3) if v(P2) - € =0,
so that condition (ii) of (A10) holds.

7. Now we show assertion (ii). Any admissible solution has a strictly convex
shock by Theorems 2.1 and 2.3, since we have verified the conditions of these
theorems in Steps 1-6 of this proof. Then it remains to show that any regular
reflection—diffraction solution in the sense of Definition 7.1, with properties (i)—
(iv) of Definition 7.2 and with shock I'yhockx being a strictly convex graph in the
sense of (2.18)—(2.19), satisfies property (v) of Definition 7.2.

Recall that (2.18) holds in the present case with A = P; and B = P, as
discussed in Steps 2 and 4. Then, using the properties of Definition 7.2(i), we find
that, in the coordinates of (2.18),

o o ST A fT)
CTI @l T I @)l

Also, from the strict concavity of f in the sense of (2.19), we obtain that f'(T4) >
f(T) > f(Tg) and f(T) < f(T1) + f/(T))(T — Ty) forall T, Ty € (T4, Tg).
From this, we see that {P + Con} N 2 = () for any P € [ghock- Then, since
¢ < ¢ in £2 from Definition 7.2(iv) and ¢ = @1 on gk by (7.11), we obtain
that dep > 01 for any e € Con, which implies (7.9). O

From Lemma 7.8 and Theorems 2.1-2.3, we have

Theorem 7.4. If ¢ is an admissible solution of the shock reflection—diffraction
problem, then its shock curve I'ghock is uniformly convex in the sense described
in Theorem 2.3.

Furthermore, if a weak solution in the sense of Definition 7.1 satisfies properties
(1)—(@v) of Definition 7.2, then the transonic shock I'shock is a strictly convex graph
in the sense of (2.18)—(2.19) if and only if property (v) of Definition 7.2 holds.
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Fig. 9. (a) Supersonic Prandtl-Meyer reflection; (b) Subsonic Prandtl-Meyer reflection

Proof. The uniform convexity of Iyocx for admissible solutions follows from
Lemma 7.8 and Theorems 2.1 and 2.3.

Moreover, if a shock solution in the sense of Definition 7.1 satisfies properties
(1)—(iv) of Definition 7.2, and its shock is a strictly convex graph, then, by Lemma
7.8(ii), the solution satisfies property (v) of Definition 7.2. O

7.2. Reflection Problem for Supersonic Flows Past a Solid Ramp

The second example is the Prandtl-Meyer reflection problem. This is a self-
similar reflection that occurs when a two-dimensional supersonic flow with velocity
Voo = (Uoo, 0), Uso > 0, in the direction along the wedge axis hits the wedge at
t = 0. The slip boundary condition on the wedge boundary yields a self-similar
reflection pattern; see Fig. 9(a)—(b). Also see Bae-Chen-Feldman [2,3].

We consider this problem in the self-similar coordinates. Using the symmetry
with respect to the £;—axis, the problem can be posed in the region:

A=RI\{£ : & > max(0, & tanby)).
Denote by ¢ the pseudo-potential of the incoming state.

Definition 7.9. ¢ € C%!(A) is a weak solution of the Prandtl-Meyer reflection
problem if ¢ satisfies equation (2.5) in A, the boundary conditions (7.3) on 9 A,
and the asymptotic conditions:

lim ||¢ — ¢eollc(re\Br0) =0
R—o0

alongray Ly := {& = & cot 0, & > 0} foreach 6 € (6, m) in the weak sense (as
in Definition 7.1).

We consider the solutions with the structure shown in Fig. 9(a)—(b). These
solutions are piecewise-smooth and equal to the constant states outside region 2
described below.

The constant states are defined as follows (see [3, §2] for the details and proofs):
Given the constant self-similar state with velocity Voo = (4oo, 0) and density pso
which is supersonic at the origin (the wedge vertex), there exist the detachment
wedge angle 93 € (0, %) and the sonic wedge angle 65, € (0, 93), which depend
only on (peo, Uso), such that, for any wedge angle 6y, € (0, 9\%),
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(i) There exists a unique constant state ¢ A7, which determines the normal reflection
state of ¢, from the wedge boundary oW := {&; > 0, & = &) tan 6y, }; that is,
@ satisfies that 9,7 = 0 on W, half-line Spr :={§ : on = 0o} N {E2 >
0} lies in A and is parallel to d W, and the Rankine-Hugoniot condition holds
on Snr:

PooOvPoo = PA/Ov@PN O Sp/

(ii) There exists a constant state ¢ such that dypo = 0 on dW, half-line Sp :=
{& : 0o = Po}N{& > 0} liesin A, the wedge vertex is on Sp (i.e., 0 € Sp),
and the Rankine-Hugoniot condition holds on Sp:

PoodvPoo = PO PO on So.

In fact, there exist two states for ¢, weak and strong, and we always choose
the weak one with the smaller density (so that the unique state ¢ is often
referred).

(iii) @ is supersonic (resp. subsonic) at the origin for all 6y, € (0, 65) (resp.
Ow € (65, 0‘%)). This determines the supersonic and subsonic Prandtl-Meyer
reflection configurations below.

Next, we define the points, lines, and regions in Fig. 9(a)—(b) for a given wedge
angle 6y, € (0, 93,) as follows:

(a) The sonic arcs Fs%ic and Fs((?nic are the arcs (defined below) of the sonic circles
of the constant states ¢ and @@, respectively, with the centers on d W, since
these states satisfy the slip boundary condition on 0 W:

- I"Sﬁic is the upper arc of 9 B..,, (O ) between lines dW and Sys. It follows
C A, since 0B, (O) intersects the full line Sps at two points.

that IV
v by P, and Pz, which lie on Syr and 0W,

sonic
Denote the endpoints of I7 .
respectively.

— Arc Fs(gnic is defined only for the supersonic reflection configurations, i.e.,
for Oy € (0,6;). In this case, dB.,, (Op) intersects half-line S at two
points within A, and Fs?nic is the lower arc of 0B, (O») between lines
oW and Sp. Then Fs(gnic C A. Denote the endpoints of Fsg]ic by P; and
P4, which lie on Sp and dW, respectively.

— For the supersonic configurations, S s is segment O P;. Note that
SO,seg C So.

— SN seg 18 the portion of Sy, with the left endpoint P, i.e., SA7,seg = SAr N
{61 > &1.p,}-

(b) TI'wedge is the segment of 9 W between points P3 and P4 for the supersonic case
(resp. between 0 and P3 for the subsonic case).
(c) There exists a smooth shock curve Ighock With the following properties:

— For the supersonic reflection configurations, Iyhock has endpoints P; and
P,

— For the subsonic reflection configurations, I'yhock has endpoints P, and O;

— Thocks Fsﬁic, Iyedge, and Fsg)nic do not have common points except at their
end points.
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(d) £2 is the domain bounded by the curve formed by [ghock, Fsﬁflic,
O .
sonic’
(e) For the supersonic reflection configurations, §2¢ is the region bounded by arc

r9. andthe straight segments O P and O Py.

sonic

Fwedge, and

(f) 2, is the unbounded region with the boundary consisting of arc st{lic, and
the straight half-lines dW N {&; > &1p,} and Syr N {&1 > &1p,).
(2) 20 1= A\ 20 U 2 U §2)s for the supersonic case, and 2o := A\ 2 U 2,7

for the subsonic case.

Now we define a class of solutions of the Prandtl-Meyer reflection problem
with the structure as in Fig. 9(a)-(b).

Definition 7.10. Let (poo, (00, 0)) be a supersonic state in £2,, and let 0&1, and 65,
be the corresponding detachment and sonic angles. Let 6,, € (93, 7). A function

¢ € C%1(A) is an admissible solution of the Prandtl-Meyer reflection problem if
¢ is a solution in the sense of Definition 7.9 and satisfies the following properties:

(i) The structure of solution is the following:
—1If 0y € (0, 65,), then the solution is of supersonic reflection configuration
as in Fig. 9(a) and satisfies

¢ € C'(A\ 50 5eg U Tshock U SN/ seg) (7.22)
3 275\ 0O Wy

pecinci@\ro. . urN. ync'(@), (7.23)
9000 in ‘QOO’

¢ =190 inLo, (7.24)
oN In 20

-1t 6, € [6;, 0\‘3,), then the solution is of subsonic reflection configuration as
in Fig. 9(b) and satisfies

@ € Cwl(z \ mhock U S_/\/,seg), (725)

peCi@)nck@\(oyurd. nncl), (7.26)
(pOO in QOO:

=1 90(0) at O, (7.27)
N in 2,

D¢(0) = Dpo(0). (7.28)

(i1) The shock curve Ighock 18 C? in its relative interior.
. . . e =N 12)
(iii) Equation (2.5) is strictly elliptic in £\ (L. YU Tionic
and in 5\(1“3{)\1/]iC U {0}) for the subsonic case.
(1v) 0y@so > Iy > 0 on Iyhock, Where v is the normal vector to gpock pointing

into 2.

) for the supersonic case
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) BeSO (Yoo — @) < 0and 8esN (¢oo — @) < 01in £2, where vectors eg,, and eg,,
are parallel to lines S and Sas, respectively, oriented towards the interior of
TIshock from points P and Pa, respectively;

Remark 7.11. A version of Remark 7.3 holds in the present case, with the only
difference that the potential function of the incoming state is ¢, here, instead of

@1-

Remark 7.12. ¢ in £2 is not a constant state. Indeed, if ¢ is a constant state in £2,
then ¢ = @ in §2, which follows from (7.24) and (7.27) in the supersonic and
subsonic cases, respectively. On the other hand, we obtain that ¢ = ¢ in §2, which
follows from both (7.24) for the supersonic case (since ¢ is C! across I’ s?nic) and
the property that (¢, Dg) = (g2, Dg;) at O for the subsonic case. However, ¢
and g s are two different states, which can be seen from their definitions, since line
Sy is parallel to 9W (so that these lines do not coincide), while Sp intersects 0 W

at point O.

Lemma 7.13. Definition 7.10 is equivalent to the definition of admissible solutions
in [3]; see Definition 2.14 there.

The proof of Lemma 7.13 follows closely the proof of Lemma 7.6 with mostly
notational changes, so we skip this proof here.

From Lemma 7.13, the results of [2,3] for the existence and properties of admis-
sible solutions apply to the solutions in the sense of Definition 7.2. We list some of
these properties in the following theorem:

Theorem 7.5. Let (pxo, (o, 0)) be a supersonic state in §2+0, and let 93 and 65,
be the corresponding detachment and sonic angles. Then any admissible solution
of the Prandtl-Meyer reflection problem with wedge angle 6y, € (0, 93,) has the
following properties:

(i) Additional regularity:

—If 0y € (0,65), i.e, when the solution is of supersonic reflection con-

figuration as in Fig. 9(a), then ¢ € CY' (2o URURN) and ¢ €
o\ 70 N .
C2(82\ F‘sonic U Fsonic)’

—If 0y € 165, Gg), i.e., when the solution is of subsonic reflection configu-
ration as in Fig. 9(b), then ¢ € C1*(2 U 2y) N CH1(Q U2\ (0D
and ¢ € C°°(§\ o} u I"sﬁic)) for some o € (0, 1), depending on
(Poo, Uso, Bw) and non-increasing with respect to Oy,.

(ii) The shock curve I'gock is C™ in its relative interior.

(i) Tshock has the following regularity up to the endpoints: In the supersonic case,
the whole shock curve S seg U I'shock U SN/ seg iS CcZp forany B € (0,1). In
the subsonic case, curve I'shock U SN/ seg is C Lo yith o as in (D).

(iv) For each e € Con(es,, €sy,),

Oe(¢oo — @) <0 in 2, (7.29)

where vectors es,, and egs,, are introduced in Definition 7.10(v), and nota-
tion (7.20) has been used.
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(v) Denote by vy, the unit normal vector to I'yedge, interior with respect to §2, i.e.,
vy = (—sin Oy, cos by,). Then

Iy (@ —900) <0, (9 —gN) <0 ing.

Proof. Properties (i)—(iii) are from [3, Theorem 2.16]. Properties (iv) and (v) are
shownin [3, Lemmas 3.2 and 3.6], where the results are stated in a rotated coordinate
system, in which the &—variable is in the direction of vy,. O

Theorem 7.6. Let (poo, (o, 0)) be a supersonic state in 2+, and let 93 be the
corresponding detachment angle. Then, for any 6, € (0, Q\d,v), there exists an admis-
sible solution of the Prandtl-Meyer reflection problem.

The existence of solutions follows from [3, Theorem 2.15].
Now, similar to Lemma 7.8, we have

Lemma 7.14. The following statements hold:

(1) Any admissible solution in the sense of Definition 7.10 satisfies the conditions
of Theorems 2.1 and 2.3.

(1) Any global weak solution of the Prandtl-Meyer reflection problem in the sense
of Definition 7.9 with properties (1)—(iv) of Definition 7.10 and with shock I ghock
being a strictly convex graph in the sense of (2.18)—(2.19) satisfies property (v)
of Definition 7.10.

Proof. We first discuss the proof of assertion (i).

Conditions (A1)—(A5) follow directly as in Lemma 7.8. In particular, in (AS5),
Con = Con(es,, es,,), where we have used (7.20). Also, A = Pj and B = P,,
where P; := O in the subsonic/sonic case.

For condition (A6), we choose e = vy,, where vy, is defined in Theorem 7.5(v).
Then e € Con, which can be seen from the fact that up > 0 and vp > 0 with
Z—g > tan Oy, and enr = —(Cos By, Sin by,). B

In the argument below, the local extrema are relative to £2. Also, we discuss
:= {0} and

the supersonic and subsonic/sonic cases together and define st?nic
Py := O for the subsonic/sonic case.
Recall the boundary conditions:

e =0, o =0, oy =0 on I'yedge-

Also, D¢ = Dgo on Fsg)nic by Definition 7.10(i). Thus, de(¢ — ¢») = 0 on
Fwedge U FO

vonic» Which is the global maximum over Q by Theorem 7.5(v). Since
@ is not a constant state, arguing as in Step 5 of the proof of Lemma 7.8, we find

that, if ¢, attains its local minimum on [yedge U Fsglic,
N

sonic

then ¢, is constant in 2.

Similarly, using that Dgp = Dgas on and arguing as above, we conclude

that ¢e cannot attain its local minimum on Fsﬁ(lic, unless ¢, is constant in £2.

Combining all the facts together, we conclude that, if ¢, attains its local minimum
on I'N. U Tyedge U TS

sonic sonic’

then ¢e is constant in £2.



116 G.-Q. G. CHEN ET AL.

We now show that, if ¢ is constant in £2, then ¢ is a constant state in £2. To fix
notations, we consider first the supersonic case. Since conditions (A1)—(AS) have
been verified, we can apply Lemma 3.2. We work in the (S, T))—coordinates with
basis {e, eJ-} and origin O, where the orientation of el is as in Lemma 3.2. Then
Tp, < Tp, < Tp, < Tp,, where we have used that A = Py and B = P>. Also,

IS =18 = fo(T). T € (Tp,, Tp)}. Thye = (S = fi (D). T € (Tpy. Ty}

where fo € C*((Tp,, Tp,)) and fyr € C*°((Tp,, Tp,)) are positive. With this,
we obtain

Q={(S,T): Te(Tp, Tp,), SO, (I},
where f € C(Tp,, Tp,) satisfies

f: fO on (TP43 TP])? f: fe on (TP11 TPz)s f: fN on (TP27 TP3)~ (730)

Let ¢¢ = a in §2. Then, from the structure of §2 described above, ¢ (S, T) =
aS + g(T) in £2 for some g € C'(R). Then, noting that Dy = D¢ on FS/(}(HC,
obtain

§(T) =81 ¢(fN(T), T) = D(pn — 9oc) - € forall T € (Tp,, Tp,),

where we have used that D(gar — @) is a constant vector. Thus, g/(T') is con-
stant on (Tp,, Tpy) so that ¢(S,T) = aS + bT + c in Q2 = {(5,T) : T e
(Tp,, Tpy), S € (0, far(T))} C £2. Then, arguing as in Step 5 of the proof of
Lemma 7.8, we conclude that ¢ is a constant state in 2, which is a contradiction.
For the subsonic/sonic case, the argument is the same, except the structure of £2,
where now P4 = P; = O, and fp is not present in (7.30).

Therefore, Case (iii) of (A6) holds with € = vy, I := 'Y U Tyeqge U TS

sonic sonic
for the supersonic case (resp. '] := ™. u Fwedge \ { P»} for the subsonic case),

sonic
and Ih = 0.
We now show that conditions (A7) (A10) are satisfied with 1"0 = Fsﬁl A\ P,

ﬁl = Fwed o F2 =, and F3 somc \ { P1} for the supersonic case (resp. F3 ]

for the subsonlc case). Indeed, then (A7) clearly holds. Also, (A8) holds since

Dy = Dyps on Fs/(}(nc, and Dgp = Dpp on I,

Condition (A9) on F1 =719

wedge
then the argument of Step 5 in the proof of Lemma 7.8 applies here to yield

Somc for the supersonic case.

can be checked as follows: If e - 7 # 0 on
ro

wedge’
that ¢, cannot attain the local minima or maxima on Fwedge.
e = vy, we use the boundary condition:

dyp =0 on Fveedge

In the other case, when

to derive that 3¢ = —ucoSinby, On Iyedge, similar to (7.13). Also, on fo =
FN \ {Pz} D¢ = Dgys so that ¢pe = de (N — Poo) = const. The argument on

sonic
5= somc \ {P1} in the supersonic case is similar. This verifies (A9). Case (i) of
(A10) clearly holds here.
To prove assertion (ii), we follow directly the argument of Step 7 in the proof
of Lemma 7.8 with mostly notational changes, e.g., now ¢ replaces ¢1. O
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Therefore, we have

Theorem 7.7. If ¢ is an admissible solution of the Prandtl-Meyer reflection prob-
lem, then its shock curve I'ghock is uniformly convex in the sense described in Theo-
rem 2.3. Moreover, for a weak solution of the Prandtl-Meyer reflection problem in
the sense of Definition 7.9 with properties (1)—(iv) of Definition 7.10, the transonic
shock I'shock is a strictly convex graph as in (2.18)—(2.19) if and only if property
(v) of Definition 7.10 holds.
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Appendix A. Paths Connecting Endpoints of the Minimal and Maximal
Chains

For A Cc R", we denote

A= {E e A : distE,dA) > r). (A.1)

Lemma A.1. Let A C R" be an open set such that A, is connected for each
r € [0, rg] with given ro > 0. Let P, Q € A be such that B,(P) N A, and
B.(Q)NA, are connected for each0 < p < r < rq. Then there exists a continuous
curve S with endpoints P and Q such that S° C A. More precisely, S = g([0, 1),
where g € C([0, 1]; R"), g is locally Lipschitz on (0, 1), g(0) = P, g(1) = Q,
and g(t) € Aforallt € (0, 1).

Proof. We first note that, after points P and Q are fixed, we can assume that A is
a bounded set; otherwise, we replace A by A N B, where B is an open ball and
P, Q e B.

We divide the proof into three steps.

1. We notice that,if P, Q € A, forsomer € [0, rp), then there exists a piecewise-
linear path S with a finite number of corner points connecting P to Q such that
S C A, . This is obtained via covering A, by balls B,/2(§;),i =1,..., N, with
each & € A, and via noting that, since A, is connected, then any &; and &; can be
connected by a piecewise-linear path with at most N corners, each section of which
is a straight segment connecting centers of two intersecting balls of the cover.
Thus, the path connecting &; to &; lies in U,ZCVZIB, /2(6x) C Ay 2. Then we connect
P to Q by first connecting P (resp. Q) to the nearest center of ball &; (resp. &;)
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via a straight segment that lies in By, (§;) (resp. By, (§;)), and next connect &; to &;
as above. In this way, the whole path S between P and Q is Lipschitz up to the
endpoints and liesin A, ». Clearly, there exists g € C 0.1([0, 1]; R?) with g(0) =P,
g(l) = Q,and g(t) € Aypp forall t € [0, 1] such that S = g([0, 1]. Therefore,
this lemma is proved for any P, Q € A.

2. Now we consider the case when P € dA and Q € A. Since A is open, there
exists a sequence P, — P with P, € Aform =1,2,.... Then P, € A,, with
rm > 0and r,, — 0. Thus, taking a subsequence, we can assume without loss of
generality that 0 < r,, < 22 for all m.

As proved in Step 1, P can be connected to Q by a Lipschitz curve that is param-
eterized by g € CO'l([%, 1]; R™) with

g(%) =P, g(H)=0, g@) e Asforallte[0,1],

where 7 > 0. Since (B,(P) N A), = B,_.(P) N A, for all ¢ € [0, %), then the
assumptions of this lemma allow to apply the result of Step 1 to sets By,/m (P) N
Aform = 1,2,.... Thus, for each m = 1,2,..., we obtain a Lipschitz path

between P, and P, which lies in B, (P) N A and is parameterized by g €

1 1
C*'([——, ——1: R") with
([erz erl] ) wi

1 1
—) =P, s —) =P s
g(m+1) m g(m+2) m+1

1 1

g(l‘)EBLo(P)ﬂA;m forallte[m—H,m—H].

Combining the above together, we obtain a function g : (0, 1] — R” such that
g € C([0, 1; Ry N CXL((0, 17; R") with

lim gt) =P, g()=0, g(t)e A forallt e (0,1].
t—0+

This completes the proof for the case when P € A and Q € A.

3. The remaining case for both P, Q € 9 A now readily follows, by connecting
each of P and Q to some C € A and taking the union of the paths. O

Lemma A.2. Let 2 C R? satisfy the conditions stated at the beginning of §3.3,
and let r* be the constant from Lemma 3.10. Let $2,, be defined as in (A.1). Then

there exists ro € (0, %] such that sets §2,, are connected for all p € [0, rol, and

sets B, (E) N §2,, are coinectedfor any E € Qand0 < p < r <ryg. Moreover, if
0<p<r <2r P €S2, and dist(P, 0§2) < r, then

dist(E, 082 N B,.(P)) < Cp foreach E € 082, N B, (P), (A.2)

where C depends only on the constants in the assumptions on 2.
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Proof. Throughout this proof, C denotes a universal constant, depending only on
£2. We divide the proof into two steps.

1. We first describe the structure of 952, for sufficiently small p > 0 and show
that £2, is connected for such p and (A.2) holds.
Denote by I;,i = 1, ..., m, the smooth regions of d§2 up to the corner points.
Then, for P € §2, we have

dist(P, 082) = r{lin dist(P, I37).
= m

i=1,...,
Denote
2; ={P € £2 : dist(P,082) = dist(P, I;)}.

Using that each I is C'** up to the corner points, and the angles at the corner
points are between (0, ), we now show that there exists 7o > 0 such that, for any
p€,rg)andi =1, ..., m, the set:

7 :={P e : dist(P,d2) = p}

is a Lipschitz curve. In addition, Fl.p is close to I in the Lipschitz norm in the sense
described bellow.

Consider first a curve I' = {(s, 1) € R2 : 5= g(t)} for some g € CLe(R). Let
o> 0and I'’ = {(s,1) € R : s > g(®), dist((s,1),I') = p}. Fixtp e R
and r > 10p, and denote L := [[g||co.1(;y—2r.19+2r7)- Then we find that, for any

t1 € [to — r, to + r], there exists s1 € [g(t]) + p, g(t1) + p~/L? + 1] such that
(s1,t) € I'? and

I’N{s,0)eR> . [t—to|<r, s>s1+Lit—t]}=0
by noting that B,(s1, 1) N I" = @. From this,
P ={(s,1) e R* : s =g (1)}

with g” € CIOO’C1 (R) and ||g — g”llLoo(j—r.rp < pv/'L? + 1. Moreover, fix P € I'P.
Then there exists Q € I" such that dist(P, Q) = p. It follows that

B,(P)NT =9, B,(Q)NT" =40.

From this, for any r € (0, 1), we find that there exists ro € (0, 1’—0] depending

only on r, o, and L= g llcre a3, such that, if p € (0, rol, then, for any
P = (gf(tp),tp) € '’ N{t € [—r, r]}, we have

g°(t) = g"(tp) + &'(tp)(t — tp) — Lr®|t — 1p|
> gP(tp) + & (tp)(t —tp) — L(r® + p*)|t — tp|

for any t € [—2r, 2r], where Q := (g(tg), to) a point such that dist(P, Q) = p.
Then, noting that

lg(t) — g(tp) — g'(tp)(t —tp)| < Lr®|t —tp|  foranyt € [—2r,2r],
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and ||lg — g°llLo(—rrp) < oV L2 + 1, we have

g = 8" llcorqor,rp = Lo* + ,0\/74-1_

Thus, for any ¢ € (0, 1), reducing r¢, we obtain

lg = & lcorgrmy <€ ifp < ro. (A3)

From this, under the conditions of Case (a) in the proof of Lemma 3.10, when
(3.17) holds, we follow the argument in the proof of Lemma 3.10 and choosing
sufficiently small ry and ¢ in (A.3) to obtain that, for any positive p < min{r, ro},

2N 0y ={(s,0) €0y 5 >g" 0},
027 N Q%r ={(s,1) € Q%r s =g (). (A4)

Furthermore, under the conditions of Case (b) in the proof of Lemma 3.10, when
(3.18)—(3.19) hold, we repeat the argument there by choosing small ry and ¢, and
conclude that, for any positive p < min{r, ro},

2N Q3ny = {(5,1) € Q3ny & 5 > max(gy (1), g5 (1)},
92PN Q3N = {(5,1) € Q3ny 1 s = max(gy (1), g5 (1)}, (A.5)

where g']o and gé’ satisfy (A.3) with g1 and g, respectively, and that there exists
t, € (—Cp, Cp) such that

gr(t) > gyt) fort <t,,  gl(t) <gh(t) fort >t,. (A.6)

We adjust rg so that ry < %. Then, from (A.4)-(A.6) with r = r*, we obtain that,
for each p € (0, rol, 082, is a Lipschitz curve without self-intersection. It follows
that §2, is simply-connected.

Also, combining (A.4) with (3.17) and (A.5)—(A.6) with (3.18)—(3.19) for r = ry,
choosing ¢ small in (A.3) for g, g1, and g», and adjusting o, we have

dist(0£2,,062) < Cp  foreach p € (0, r0).
Then we conclude (A.2).

2. Now we show that B, (E) N §2, is connected forany £ € £2 and 0 < p <
r <rgp.
Assume thatdist(E, 9§2) < 2r (otherwise, the result already holds). Since ry < %,
we obtain (3.17)—(3.19) for 2r instead of r, so that (A.4)—(A.6) hold for 2r instead
of r. Then, arguing as in the proof of Lemma 3.10 and possibly reducing rg, we

obtain the following:
— If B.(E) N £2 has expression (3.21), then

R, N B(E) ={(s,1) : t €(t,, 1)), max(f~ (1), 8" (1) <s < fF @)},
where 17 € (?—g,r] and 1, € [-r, —?—6) with |tff — % < Cp, f* > g” on

(t, . t5),and fT < gfon[—r,r]\[1,,1]];

— If B,(E) N $£2 has expression (3.28), then
2, N BA(E)=((s,1) : 1 € (t;, 1), max(f~ (1), g{ (1), g5(1) <s < (0},
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where 1 € [1* — r,1*) and 1} € (t*,1* + r] with |t — 1| < Cp, and
@) > max(g] (1), g5 (1)) on (1, 1).

The facts above imply that sets B, (E) N £2,, are connected. O

In the next lemma, we use the minimal and maximal chains in the sense of Definition
3.7.

Lemma A.3. Let 2 C R? satisfy the conditions stated at the beginning of §3.3,
and let ro be the constant from Lemma A.2. Let E1, E> € §2, and let there exist a
minimal or maximal chain {E' zN=1 of radius r1 € (0, ro] connecting E1 to E3 in

2, i.e, EY = E| and EN = E,. Denote

N
A= UBrl(Ei)ﬂQ
i=0
so that E1, Ey € 0 A. Then there exists ro > 0 such that set A and points {E1, E>}
satisfy the conditions of Lemma A.1 with radius Fy.

Proof. We divide the proof into two steps.

1. We first show the existence of 7y € (0, r1) such that A, is connected for each
o € (0, 7y]. We recall that r; < rp < r* so that the conclusions of Lemma 3.10
hold for B, (E').
Since, for each P € A,

N
dist(P, dA) = min {dist(P, 3(|_J B, (E"))). dist(P, 382)}.
i=0
then
N .
A, = U B, ,(ENN$2,. (A7)

i=0
By Lemma 3.10(ii) and property (b) of Definition 3.7, we see that, if | < r*, then
B, (E)N B, (EFY)Y N2 # @fori =0,...,N — 1. Note that all the sets in the
last intersection are open. Then, recalling that r; < ro and using (A.2) in Lemma
A.2, we obtain that there exists 70 € (0, r1) such that, for any p € (0, rp),

By _p(ENN By _,(E"YNQ,#0  fori=0,...,N—1.

Also, from Lemma A.2, sets B, _,(E i) N §2,, are connected, since r; < ry. Then
N

we obtain that U Brl_p(Ei) N £2, is connected by using the argument in the

i=0
proof of Lemma 3.12(i). Thus, by (A.7), we conclude that A, is connected for all
p € (0, 7o).
2. Since By, (E% N £2 C A, then we use (A.7) to obtain

B.(EYYNnA,=B,(E%NQ, forallre (0, %] and p € (0, 7).
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Sets B,(E%) N £2, with r and p as above are connected by Lemma A.2. Thus,

the assumptions of Lemma A.1 with radius f; hold for point E| = E°. For point

E; = EN, the argument is similar. O
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