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Abstract

We are concerned with geometric properties of transonic shocks as free bound-
aries in two-dimensional self-similar coordinates for compressible fluid flows,
which are not only important for the understanding of geometric structure and
stability of fluid motions in continuum mechanics, but are also fundamental in the
mathematical theory of multidimensional conservation laws. A transonic shock for
the Euler equations for self-similar potential flow separates elliptic (subsonic) and
hyperbolic (supersonic) phases of the self-similar solution of the corresponding
nonlinear partial differential equation in a domain under consideration, in which
the location of the transonic shock is apriori unknown. We first develop a general
frameworkunderwhich self-similar transonic shocks, as free boundaries, are proved
to be uniformly convex, and then apply this framework to prove the uniform convex-
ity of transonic shocks in the two longstanding fundamental shock problems—the
shock reflection–diffraction by wedges and the Prandtl–Meyer reflection for super-
sonic flows past solid ramps. To achieve this, our approach is to exploit underlying
nonlocal properties of the solution and the free boundary for the potential flow
equation.
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1. Introduction

We are concerned with geometric properties of transonic shocks as free bound-
aries in two-dimensional self-similar coordinates for compressible fluid flows,
which are not only important for the understanding of geometric structure and
stability of fluid motions in continuum mechanics, but are also fundamental in the
mathematical theory of multidimensional conservation laws (see [5,14,16]). Math-
ematically, a transonic shock for the Euler equations for potential flow separates
elliptic (subsonic) and hyperbolic (supersonic) phases of the self-similar solution of
the corresponding nonlinear partial differential equation (PDE) in a domain under
consideration, in which the location of the transonic shock is apriori unknown. The
Rankine-Hugoniot conditions on the shock, together with the nonlinear PDE in the
elliptic and hyperbolic regions, provide the sufficient overdeterminancy for finding
the shock location. This enforces a restriction to the shock and yields its fine proper-
ties, such as its possible geometric shapes, which is themain theme of this paper. For
this purpose, we formulate the transonic shock problem as a one-phase free bound-
ary problem for the nonlinear elliptic PDE in a domain with a part of the boundary
fixed, as illustrated in Fig. 1. More precisely, we first develop a general framework
under which self-similar transonic shock waves, as the free boundaries in the one-
phase problem, are proved to be uniformly convex, and then apply this framework
to prove the uniform convexity of transonic shocks in the two longstanding fun-
damental shock problems for potential flow—the shock reflection–diffraction by
wedges and the Prandtl–Meyer reflection for supersonic flows past solid ramps. In
particular, the convexity of transonic shocks is consistent with the geometric config-
urations of shocks observed in physical experiments and numerical simulations; see
e.g. [4,11,12,17,18,25–30,33,36,40,41], and the references cited therein. Also see
[9,10,32,34,35,37,39] for the geometric structure of numerical Riemann solutions
involving transonic shocks for the Euler equations for compressible fluids.

Oneof our keyobservations in this paper is that the convexity of transonic shocks
is not a local property. In fact, for the regular shock reflection–diffraction problem
as described in §7.1, the uniform convexity is a result of the interaction between
the cornered wedge and the incident shock, since the reflected shock remains flat
when the wedge is a flat wall. Therefore, any local argument is not sufficient to lead
to a proof of the uniform convexity. In this paper, we develop a global approach by
exploiting some nonlocal properties of transonic shocks in self-similar coordinates
and employ it to prove that the transonic shocks must be convex. Our approach is
based on two features related to the global and nonlinear phenomena. One is that
the convexity of transonic shocks is closely related to the monotonicity properties
of the solution, which is derived from the global structure in the applications. These
properties are also crucial in the proof of the existence of the two shock problems
in [3,14]. The other is that the Rankine-Hugoniot conditions, combined with the
monotonicity properties, enforce the nonlocal dependence between the values of
the velocity at the points of the transonic shock, as well as the nonlocal dependence
between the velocity and the geometric shape of the shock. Moreover, for this prob-
lem, it seems to be difficult to apply directly the methods as in [7,8,19], owing to
the difference and more complicated structure of the boundary conditions.
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The convexity of shock waves is not only an important geometric property
observed frequently in physical experiments and numerical simulations, but also
crucial in the analysis ofmultidimensional shockwaves. For example, the convexity
property of transonic shocks plays an essential role in the proof of the uniqueness
and stability of shock waves with large curvature in [15]. Therefore, our approach
can be useful for other nonlinear problems involving transonic shocks, especially
for the problems that cannot be handled by the perturbation methods.

In particular, as an application of our general framework for the convexity of
shocks, we prove the uniform convexity of transonic shocks in the two longstanding
fundamental shockproblems.Thefirst is the problemof shock reflection–diffraction
by concave cornered wedges as analyzed in §7.1. It has been analyzed in Chen-
Feldman [13,14], inwhichvonNeumann’s sonic anddetachment conjectures for the
existence of regular shock reflection–diffraction configurations have been solved
all the way up to the detachment wedge-angle for potential flow. The second is
the Prandtl–Meyer reflection problem for supersonic flow past a solid ramp as
analyzed in §7.2. Elling-Liu [20] made a first rigorous analysis of the problem for
which the steady supersonic weak shock solution is a large-time asymptotic limit
of an unsteady flow under certain assumptions for an important class of wedge
angles and potential fluids. Recently, in Bae-Chen-Feldman [2,3], the existence
theorem for the general case all the way up to the detachment wedge-angle has
been established via new techniques based on those developed in Chen-Feldman
[14]. For both problems, we apply the general framework developed in this paper
to prove the uniform convexity of the transonic shocks involved.

The study of geometric properties of free boundaries, such as the convexity of
the free boundaries and the monotonicity properties of the corresponding solutions
under consideration, is fundamental in the mathematical theory of free boundary
problems; see [6–8,19,21–24,38] and the references cited therein. Furthermore,
as mentioned earlier, the convexity of free boundaries has played an essential role
in the analysis of the uniqueness and stability of solutions of the free boundary
problems, as shown in [15].

The organization of this paper is as follows: in §2, we introduce the potential
flow equation and the Rankine-Hugoniot conditions on the shock, and set up a
framework as a general free boundary problem on which we focus in this paper,
and then we present the main theorem for this free boundary problem. In §3, we
show some useful lemmas. Thenwe develop our approach to prove first the uniform
convexity of the shock, i.e., Theorem 2.1 in §4, and to prove further the uniform
convexity of the shock on compact subsets of its relative interior, i.e., Theorem 2.3
in §5. In §6, we establish the relation between the strict convexity of the transonic
shock and the monotonicity properties of the solution, i.e., Theorem 2.2. Finally, in
§7, we apply the main theorems to prove the uniform convexity of transonic shocks
in the two shock problems—the shock reflection–diffraction by wedges and the
Prandtl–Meyer reflection for supersonic flows past solid ramps.

A note regarding terminology for simplicity: since our main concern is the
convexity of the elliptic (subsonic) region for which the transonic shock as a free
boundary is a part of the boundary of the region throughout this paper, we use the
term—convexity—for the free boundary, even though it corresponds to the con-
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cavity of the shock location function in a natural coordinate system. Moreover, we
use the term uniform convexity for a transonic shock to represent that the transonic
shock is of non-vanishing curvature on any compact subset of its relative interior.

2. The Potential Flow Equation and Free Boundary Problems

2.1. The Potential Flow Equation

As in [1,13], the Euler equations for potential flow consist of the conservation
law of mass for the density and the Bernoulli law for the velocity potential Ψ :

∂tρ + ∇x · (ρ∇xΨ ) = 0, (2.1)

∂tΨ + 1

2
|∇xΨ |2 + i(ρ) = B0, (2.2)

where B0 is the Bernoulli constant determined by the incoming flow and/or bound-
ary conditions, x = (x1, x2) ∈ R

2, i(ρ) = ∫ ρ

1
p′(τ )

τ
dτ for the pressure function

p = p(ρ), and v = ∇Ψ is the velocity.
For polytropic gas, by scaling,

p(ρ) = ργ

γ
, c2(ρ) = ργ−1, i(ρ) = ργ−1 − 1

γ − 1
for γ > 1,

where c(ρ) is the sound speed.
If the initial-boundary value problem is invariant under the self-similar scaling

(x, t) → (αx, αt), (ρ, Ψ ) → (ρ,
Ψ

α
) for α �= 0,

then we can seek self-similar solutions with the form

ρ(x, t) = ρ(ξ), Ψ (x, t) = t
(
ϕ(ξ) + 1

2
|ξ |2) for ξ = (ξ1, ξ2) = x

t
,

whereϕ is called a pseudo-velocity potential that satisfies Dϕ := (ϕξ1 , ϕξ2) = v−ξ ,
which is called a pseudo-velocity. The pseudo—potential function ϕ satisfies the
following potential flow equation in the self-similar coordinates:

div(ρDϕ) + 2ρ = 0, (2.3)

where the density function ρ = ρ(|Dϕ|2, ϕ) is determined by

ρ(|Dϕ|2, ϕ) = (
ρ

γ−1
0 − (γ − 1)

(
ϕ + 1

2
|Dϕ|2)) 1

γ−1 , (2.4)

with constant ρ0 > 0, and the divergence div and gradient D are with respect to
the self-similar variables ξ .

From (2.3)–(2.4), we see that the potential function ϕ is governed by the fol-
lowing potential flow equation of second order:

div
(
ρ(|Dϕ|2, ϕ)Dϕ

) + 2ρ(|Dϕ|2, ϕ) = 0. (2.5)
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Equation (2.5) written in the non-divergence form is

(c2 − ϕ2
ξ1

)ϕξ1ξ1 − 2ϕξ1ϕξ2ϕξ1ξ2 + (c2 − ϕ2
ξ2

)ϕξ2ξ2 + 2c2 − |Dϕ|2 = 0, (2.6)

where the sound speed c = c(|Dϕ|2, ϕ, ρ0) is determined by

c2(|Dϕ|2, ϕ, ρ0) = ργ−1(|Dϕ|2, ϕ, ρ
γ−1
0 ) = ρ

γ−1
0 −(γ −1)

(1

2
|Dϕ|2+ϕ

)
. (2.7)

Equation (2.5) is a second-order equation of mixed hyperbolic-elliptic type, as it
can be seen from (2.6): It is elliptic if and only if

|Dϕ| < c(|Dϕ|2, ϕ, ρ0), (2.8)

which is equivalent to

|Dϕ| < c
(ϕ, ρ0) :=
√

2

γ + 1

(
ρ

γ−1
0 − (γ − 1)ϕ

)
. (2.9)

Moreover, from (2.6)–(2.7), equation (2.5) satisfies the Galilean invariance prop-
erty: if ϕ(ξ) is a solution, then its shift ϕ(ξ − ξ0) for any constant vector ξ0 is also
a solution. Furthermore, ϕ(ξ)+ const. is a solution of (2.5) with adjusted constant
ρ0 correspondingly in (2.4).

One class of solutions of (2.5) is that of constant states that are the solutions
with constant velocity v = (u, v). This implies that the pseudo-potential ϕ of a
constant state satisfies Dϕ = v − ξ so that

ϕ(ξ) = −1

2
|ξ |2 + v · ξ + C, (2.10)

where C is a constant. For such ϕ, the expressions in (2.4)–(2.7) imply that the
density and sound speed are positive constants ρ and c, i.e., independent of ξ .
Then, from (2.8) and (2.10), the ellipticity condition for the constant state is

|ξ − v| < c.

Thus, for a constant state v, equation (2.5) is elliptic inside the sonic circle, with
center v and radius c.

2.2. Weak Solutions and the Rankine–Hugoniot Conditions

Since the problem involves transonic shocks, we define the notion of weak
solutions of equation (2.5), which admits shocks. As in [13], it is defined in the
distributional sense.

Definition 2.1. A function ϕ ∈ W 1,1
loc (Ω) is called a weak solution of (2.5) if

(i) ρ
γ−1
0 − (γ − 1)(ϕ + 1

2 |Dϕ|2) ≥ 0 a.e. in Ω;
(ii) (ρ(|Dϕ|2, ϕ), ρ(|Dϕ|2, ϕ)|Dϕ|) ∈ (L1

loc(Ω))2;
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(iii) For every ζ ∈ C∞
c (Ω),

∫

Ω

(
ρ(|Dϕ|2, ϕ)Dϕ · Dζ − 2ρ(|Dϕ|2, ϕ)ζ

)
dξ = 0. (2.11)

A piecewise C2 solution ϕ in Ω , which is C2 away from and C1 up to the
C1–shock curve S, satisfies the conditions of Definition 2.1 if and only if it is a C2–
solution of (2.5) in each subregion and satisfies the following Rankine-Hugoniot
conditions across curve S:

[ρ(|Dϕ|2, ϕ)Dϕ · ν]S = 0, (2.12)

[ϕ]S = 0, (2.13)

where the square bracket [ · ]S denotes the jump across S, and ν is the unit normal
vector to S. Condition (2.13) follows from the requirement: ϕ ∈ W 1,1

loc (Ω) for
piecewise-smooth ϕ, and condition (2.12) is obtained from (2.11) via integration by
parts and by using (2.13) and the piecewise-smoothness of ϕ. Physically, condition
(2.12) is owing to the conservation of mass across the shock, and (2.13) is owing to
the irrotationality. From now on, we denote Dϕ ·ν = ∂νϕ = ϕν when no confusion
arises.

It is well known that there are fairly many weak solutions to conservation
laws (2.5). In order to single out the physically relevant solutions, the entropy
condition is required. A discontinuity of Dϕ satisfying the Rankine-Hugoniot con-
ditions (2.12)–(2.13) is called a shock if it satisfies the following physical entropy
condition:

The density function ρ increases across the discontinuity

in the pseudo-flow direction. (2.14)

From (2.12), the entropy condition indicates that the normal derivative function ϕν

on a shock always decreases across the shock in the pseudo-flow direction. That
is, when the pseudo-flow direction and the unit normal vector ν are both from state
(0) to (1), then ρ1 > ρ0 and ϕ1ν < ϕ0ν .

2.3. General Framework and Free Boundary Problems

Now we develop a general framework for the transonic shocks as free bound-
aries, on which we will focus our analysis in this paper.

As in Fig. 1, let Ω be a bounded, open, and connected set, and ∂Ω = Γshock ∪
Γ1 ∪ Γ2, where the closed curve segment Γshock is a transonic shock that separates
a pseudo-supersonic constant state (0) outside Ω from a pseudo-subsonic (non-
constant) state (1) inside Ω , and Γ1 ∪ Γ2 is a fixed boundary whose structure will
be specified later. The dashed ball Bc0(O0) is the sonic circle of state (0)with center
O0 = (u0, v0) and radius c0. Note that Γshock is outside of Bc0(O0) because state
(0) is pseudo-supersonic on Γshock. A and B are the endpoints of the free boundary
Γshock, while τ A and τ B are the unit tangent vectors pointing into the interior of
Γshock at A and B, respectively.



Convexity of Self-Similar Transonic Shocks 53

.

Fig. 1. Free boundary problems

Denote v0 = (u0, v0). Then the pseudo-potential of constant state (0) with
density ρ0 > 0 has the form

ϕ0 = −1

2
(ξ − v0)2. (2.15)

Let

φ := ϕ − ϕ0.

Then we see from (2.6) that φ = ϕ − ϕ0 satisfies the following equation in Ω:

(c2 − ϕ2
ξ1

)φξ1ξ1 − 2ϕξ1ϕξ2φξ1ξ2 + (c2 − ϕ2
ξ2

)φξ2ξ2 = 0, (2.16)

where c = c(|Dϕ|2, ϕ, ρ0) is the sound speed, determined by (2.7). Along the
shock curve Γshock that separates the constant state (0) with pseudo-potential ϕ0
from the non-constant state ϕ in Ω , the boundary conditions for φ are

φ = 0, ρ(|Dφ + Dϕ0|2, φ + ϕ0)D(φ + ϕ0) · ν = ρ0Dϕ0 · ν on Γshock, (2.17)

from the Rankine-Hugoniot conditions (2.12)–(2.13).
Nowwe state the main results of this paper. We first layout the structural frame-

work for domain Ω under consideration.
From now on, Γ 0 denotes the relative interior of a curve segment Γ . In partic-

ular, Γ 0
shock is the relative interior of Γshock.

Framework (A)—The structural framework for domain Ω:

(i) Domain Ω is bounded. Its boundary ∂Ω is a continuous closed curve without
self-intersections, piecewise C1,α up to the endpoints of each smooth part for
some α ∈ (0, 1), and the number of smooth parts is finite.

(ii) At each corner point of ∂Ω , angle θ between the arcs meeting at that point
from the interior of Ω satisfies θ ∈ (0, π).
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(iii) ∂Ω = Γshock ∪ Γ1 ∪ Γ2, where Γshock, Γ1, and Γ2 are connected and disjoint,
and both Γ 0

shock and Γ1 ∪ Γ2 are non-empty. Moreover, if Γi �= ∅ for some
i ∈ {1, 2}, then its relative interior is nonempty, i.e., Γ 0

i �= ∅.
(iv) Γshock includes its endpoints A and B with corresponding unit tangent vectors

τ A and τ B pointing into the interior of Γshock respectively. If Γ1 �= ∅, then
A is a common endpoint of Γshock and Γ1. If Γ2 �= ∅, then B is a common
endpoint of Γshock and Γ2.

If τ A �= ±τ B , define the cone

Con := {rτ A + sτ B : r , s ∈ (0,∞)}.
Then we have

Theorem 2.1. Assume that domain Ω satisfies Framework (A). Assume that φ ∈
C1(Ω) ∩ C2(Ω ∪ Γ 0

shock) ∩ C3(Ω) is a solution of (2.16)–(2.17), which is not a
constant state in Ω . Moreover, let φ satisfy the following conditions:

(A1) The entropy condition holds across Γshock: ρ(|Dϕ|2, ϕ) > ρ0 and φν < 0
along Γshock , where ν is the interior normal vector to Γshock , i.e., pointing
into Ω;

(A2) There exist constants C1 > 0 and α1 ∈ (0, 1) such that ‖φ‖1+α1,Ω
≤ C1;

(A3) In Ω ∪ Γ 0
shock , equation (2.16) is strictly elliptic: c2 − |D(φ + ϕ0)|2 > 0;

(A4) Γshock is C2 in its relative interior;
(A5) τ A �= ±τ B, and {P + Con} ∩ Ω = ∅ for any point P ∈ Γshock;
(A6) There exists a vector e ∈ Con such that one of the following conditions holds:

(i) Γ1 �= ∅, and the directional derivative φe cannot have a local maximum
point on Γ 0

1 ∪ {A} and a local minimum point on Γ 0
2 ,

(ii) Γ2 �= ∅, and φe cannot have a local minimum point on Γ 0
1 and a local

maximum point on Γ 0
2 ∪ {B},

(iii) φe cannot have a local minimum point on Γ1 ∪ Γ2,
where all the local maximum or minimum points are relative to Ω .

Then the free boundary Γshock is a convex graph. That is, there exists a concave
function f ∈ C1,α(R) in some orthonormal coordinate system (S, T ) in R

2 such
that

Γshock = {(S, T ) : S = f (T ), TA < T < TB},
Ω ∩ {TA < T < TB} ⊂ {S < f (T )} (2.18)

with f ∈ C∞((TA, TB)), and shock Γshock is strictly convex in its relative interior
in the sense that, if P = (S, T ) ∈ Γ 0

shock and f ′′(T ) = 0, then there exists an
integer k > 1, independent of the choice of the coordinate system (S, T ), such that

f (n)(T ) = 0 for n = 2, . . . , 2k − 1, f (2k)(T ) < 0. (2.19)

The number of the points at which f ′′(T ) = 0 is at most finite on each compact
subset of Γ 0

shock . In particular, the free boundary Γshock cannot contain any straight
segment.
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Remark 2.2. Conditions (A2) and (A5)–(A6) of Theorem 2.1 are the requirements
on the global behavior of solutions. In fact, (A5) ensures that there is a coordinate
system in which the shock is a Lipschitz graph globally.

Remark 2.3. Condition (A6) allows us to deal with three different kinds of bound-
ary conditions. Moreover, at each of the endpoints of Γshock, the ellipticity can be
either uniform or degenerate. Some applications to each case can be found in §7.

Remark 2.4. The assumption that φ is not a constant state means that φ cannot be
of the form: φ = a1 + (a2, a3) · ξ in Ω , where a j , j = 1, 2, 3, are constants. In
fact, this assumption can be guaranteed by the boundary conditions assigned along
Γ1 ∪ Γ2 in the applications in §7.

In the next theorem, we show that, if assumptions (A1)–(A4) and (A6) hold,
then a monotonicity condition for φ near Γ 0

shock, which is slightly stronger than
condition (A5), is the necessary and sufficient condition for the strict convexity of
shock Γshock.

Theorem 2.2. Let Ω and φ be as in Theorem 2.1 except condition (A5). Then the
fact that the free boundary Γshock is a strictly convex graph in the sense of (2.18)–
(2.19) in Theorem 2.1 is the necessary and sufficient condition for the monotonicity
property that φe > 0 on Γ 0

shock for any unit vector e ∈ Con, where Γ 0
shock is the

relative interior of Γshock .

Remark 2.5. Let Ω and φ be as in Theorem 2.2, including that the monotonicity
property (or equivalently, the strict convexity of Γshock) holds. In addition, assume
that, for any unit vector e ∈ Con and any point ξ in the fixed boundary part Γ1∪Γ2,
φe satisfies that either φe(ξ) ≥ 0 or φe cannot attain its local minimum at ξ with
respect to Ω . Then φe > 0 in Ω ∪ Γ 0

shock for any unit vector e ∈ Con.

The proof ofRemark 2.5 is given after the proof of Theorem2.2 in §6.Moreover,
the assumptions of Remark 2.5 can be justified for the two applications: the regular
shock reflection problem and the Prandtl–Meyer reflection problem; see §7.

Furthermore, under some additional assumptions that are satisfied in the two
applications, the shock curve is uniformly convex in its relative interior in the sense
defined in the following theorem:

Theorem 2.3. Let Ω and φ be as in Theorem 2.1. Furthermore, assume that, for
any unit vector e ∈ R

2, the boundary part Γ1 ∪ Γ2 can be further decomposed so
that

(A7) Γ1∪Γ2 = Γ̂0∪ Γ̂1∪ Γ̂2∪ Γ̂3, where some of Γ̂i may be empty, Γ̂i is connected
for each i = 0, 1, 2, 3, and all curves Γ̂i are located along ∂Ω in the order of
their indices, i.e., non-empty sets Γ̂ j and Γ̂k , k > j , have a common endpoint
if and only if either k = j + 1 or Γi = ∅ for all i = j + 1, . . . , k − 1.
Also, the non-empty set Γ̂i with the smallest (resp. largest) index has the
common endpoint A (resp. B) with Γshock . Moreover, if Γ̂i �= ∅ for some
i ∈ {0, 1, 2, 3}, then its relative interior is nonempty: Γ̂ 0

i �= ∅;
(A8) φe is constant along Γ̂0 and Γ̂3;
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(A9) For i = 1, 2, if φe attains its local minimum or maximum relative to Ω on
Γ̂ 0

i , then φe is constant along Γ̂i ;
(A10) One of the following two conditions holds:

(i) Either Γ̂1 = ∅ or Γ̂2 = ∅;
(ii) Both Γ̂1 and Γ̂2 are non-empty, and Γ̂3 = ∅, so that Γ̂2 has the common

endpoint B with Γshock . At point B, the following conditions hold:
– If νsh(B) · e < 0, then φe cannot attain its local maximum relative to

Ω at B,
– If νsh(B) · e = 0, then φe(B) = φe(Q∗) for the common endpoint Q∗

of Γ̂1 and Γ̂2,
where νsh(B) := lim

Γ 0
shock�P→B

ν(P), which exists since Γshock is C1 up to B.

Then the shock function f (T ) in (2.18) satisfies that f ′′(T ) < 0 for all T ∈
(TA, TB); that is, Γshock is uniformly convex on closed subsets of its relative interior.

Remark 2.6. By (2.17) and condition (A1) of Theorem 2.1, it follows that φ < 0 in
Ω near Γshock. Since Γshock is the zero level set of φ, then the following statements
hold (see also Lemma 3.2(v)):

(i) The convexity of Γshock is equivalent to the fact that φττ ≥ 0 on Γshock. More-
over, by (2.19), if φττ = 0 at some P ∈ Γshock, then there exists an integer
k > 1 such that

∂n
τ φ = 0 for n = 2, . . . , 2k − 1, ∂(2k)

τ φ > 0 at P, (2.20)

where k is the same as in (2.19). In particular, this implies that k is independent
of the choice of the coordinate system (S, T ) used in (2.18);

(ii) The conclusion of Theorem 2.3 is equivalent to the following: φττ > 0 along
Γ 0
shock, where Γ 0

shock is the interior points of Γshock.

Remark 2.7. If the conclusion of Theorem 2.3 holds, then the curvature of Γshock:

κ = − f ′′(T )
(
1 + ( f ′(T ))2

)3/2

has a positive lower bound on any closed subset of (TA, TB).

Remark 2.8. The definition of Γ̂0 and Γ̂3 is motivated by the observation that φe
is constant along the sonic arcs in the two shock problems; see the applications in
§7 for more details.

Remark 2.9. We can simplify (2.15) as follows: By the Galilean invariance of the
potential flow equation (2.16) (i.e., invariance with respect to the shift of coor-
dinates), we assume without loss of generality that v0 = (0, 0); indeed, this can
be achieved by introducing the new coordinates ξ ′ = (ξ1 − u0, ξ2 − v0). Fur-
thermore, we choose constant ρ0 in (2.4) to be the density of state (0). Then the
pseudo-potential of state (0) is

ϕ0 = −1

2
|ξ |2. (2.21)

We will use this form in the proof of the main theorems.
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Remark 2.10. Rewrite the condition: φν < 0 in (A1), as Dϕ · ν < Dϕ0 · ν. Then,
replacing φ + ϕ0 by ϕ in the second equality in (2.17) and using that ρ > ρ0 by
(A1) for ρ0 > 0, we have

Dϕ0 · ν > Dϕ · ν > 0 on Γshock. (2.22)

The theorems stated above are proved in §3–§6. In §3, we first prove some
general properties of the free boundary Γshock, and then derive some additional
properties from the assumptions in the theorems. In §4–§6, we employ all of these
properties to prove Theorems 2.1–2.3. Specifically, we prove Theorem 2.1 in §4,
Theorem 2.3 in §5, and Theorem 2.2 in §6. Then, in §7, we apply the general
framework to show the convexity results for the two shock problems: the shock
reflection–diffraction problem and the Prandtl–Meyer reflection problem. In the
appendix, we construct paths in Ω satisfying certain properties—these paths are
used in the proof of the main results.

In the rest of the paper, we use the following terminology: a statement that a
function attains a local extremum at P ∈ ∂Ω means that the local extremum is
relative to Ω . In the case when the local extremum is along (or relative to) ∂Ω , we
always state that explicitly.

3. Basic Properties of Solutions

In this section, we list several lemmas for the solutions of the self-similar poten-
tial flow equation (2.16), which will be used in the subsequent development. Some
of them have been proved in Chen-Feldman [14] for a specific geometric situation
for the shock reflection–diffraction problem. Here we list these facts under the gen-
eral conditions of Theorem 2.1 and present them in the form convenient for the use
in the general situation considered here. For many of them, the proofs are similar
to the arguments in [14], in which cases we omit or sketch them only below for the
sake of brevity.

3.1. Additional Properties from (A1)–(A5)

Let φ ∈ C(Ω) ∩ C2(Ω ∪ Γ 0
shock) ∩ C3(Ω) be a solution of (2.16)–(2.17). In

this subsection, we use the results of [14, Lemma 6.1.4] to show some properties as
the consequences of conditions (A1)–(A5) of Theorem 2.1. First, for a given unit
constant vector e ∈ R

2, we derive the equation and the boundary conditions for φe.
Let e⊥ be the unit vector orthogonal to e, and let (S, T ) be the coordinates with

basis {e, e⊥}. Then equation (2.16) in the (S, T )–coordinates is

(c2 − ϕ2
S)φSS − 2ϕSϕT φST + (c2 − ϕ2

T )φT T = 0. (3.1)

Differentiating (3.1) with respect to S and using the Bernoulli law,

∂Sc2 = −(γ − 1)(ϕSφSS + ϕT φST ),
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we obtain the following equation for w = ∂Sφ = ∂eφ:

(c2 − ϕ2
S)wSS − 2ϕSϕT wST + (

c2 − ϕ2
T

)
wT T

+ (
∂S(c

2 − ϕ2
S) − (γ − 1)ϕSφT T

)
wS

− (
2∂S(ϕSϕT ) − 2ϕT φT T + (γ − 1)ϕT φT T

)
wT = 0. (3.2)

Since the coefficients of the second-order terms of (3.2) are the same as the ones
of (3.1), we find that (3.2) is strictly elliptic in Ω ∪ Γ 0

shock. Using the regularity of
φ above, we find that the coefficients of (3.2) are continuous on Ω ∪ Γ 0

shock. Thus,
(3.2) is uniformly elliptic on compact subsets of Ω ∪ Γ 0

shock.
For the boundary conditions along Γshock, we first have

φ = 0 along Γshock.

Thus, the unit normal vector ν and the tangent vector τ of Γshock are

ν = (ν1, ν2) = Dφ

|Dφ| , τ = (τ1, τ2) = (−∂ξ2φ, ∂ξ1φ)

|Dφ| . (3.3)

Notice that, from the entropy condition—condition (A1) of Theorem 2.1, we have

Dφ �= 0, ρ > ρ0 on Γshock,

so that (3.3) is well defined.
Taking the tangential derivative of the second equality in (2.17) along Γshock

and using (3.3), we have

(−∂ξ2φ ∂ξ1 + ∂ξ1φ ∂ξ2)
(
(ρDϕ − ρ0Dϕ0) · Dφ

) = 0 on Γshock.

From this, after a careful calculation by using equation (2.16) (see [14, Sect. 5.1.3]
for details), we have

D2φ[τ , h] = 0 on Γshock, (3.4)

where D2φ[a, b] := ∑2
i, j=1 ai b j∂i jφ and

h = −ρ − ρ0

ρ0c2
(
ρ(c2 − ϕ2

ν )ϕνν − (ρϕ2
ν + ρ0c2)ϕτ τ

)
. (3.5)

Using (2.22) and conditions (A1) and (A3) of Theorem 2.1, we obtain from (3.5)
that

h · ν = −ρ − ρ0

ρ0c2
ρ(c2 − ϕ2

ν )ϕν < 0 along Γ 0
shock. (3.6)

Based on equation (3.2) and the boundary condition (3.4), we have the following
lemma:
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Lemma 3.1. Let Ω be a domain with piecewise C1 boundary, and let Γshock ⊂ ∂Ω

be C2 in its relative interior. Let φ ∈ C2(Ω ∪ Γ 0
shock) ∩ C3(Ω) be a solution

of (2.16) in Ω and satisfy (2.17) on Γshock , and let φ be not a constant state in Ω .
Assume also that φ satisfies conditions (A1)–(A3) of Theorem 2.1. For a fixed unit
vector e ∈ R

2 with ν · e < 0, if a local minimum or maximum of w: = ∂eφ in Ω

is attained at P ∈ Γ 0
shock , then φττ > 0 or φττ < 0, respectively, where ν denotes

the interior unit normal vector on Γshock to Ω .

Proof. First, we note that the proof of [14, Lemma 8.2.4] applies to the present
case so that the conclusion of that lemma holds:

h(P) = ke at P for some k ∈ R.

Since ν · e < 0, we follow the proof of [14, Lemma 8.2.15] to obtain that k > 0
and

wν = c2

kρϕν(c2 − ϕ2
ν )

(
ρ2ϕ2

ν (c2 − |Dϕ|2) + ρ2
1c2ϕ2

τ

)
φττ at P.

Thus, by ellipticity and (2.22), φττ has the same sign as wν . Also, w satisfies
equation (3.2), which is strictly elliptic in Ω ∪ Γ 0

shock. Then, from Hopf’s lemma,
wν(P) < 0 if w attains its local maximum at P , while wν(P) > 0 if w attains its
local minimum at P . Then φττ (P) < 0 if w attains its local maximum at P , while
φττ (P) > 0 if w attains its local minimum at P . ��

Next we consider the geometric shape of Γshock under the conditions listed in
Theorem 2.1.

Lemma 3.2. Let Ω be a domain with piecewise C1 boundary, and let Γshock ⊂ ∂Ω

be C2 in its relative interior. Let φ ∈ C(Ω) ∩ C2(Ω ∪ Γ 0
shock) ∩ C3(Ω) be a

solution of (2.16)–(2.17). Assume also that conditions (A1)–(A5) of Theorem 2.1
are satisfied. For a unit vector e ∈ Con, which is defined in Theorem 2.1(A5), let e⊥
be the orthogonal unit vector to e with e⊥ · τ A > 0. Let (S, T ) be the coordinates
with respect to basis {e, e⊥}, and let (SP , TP ) be the coordinates of point P in
the (S, T )–coordinates. Note that TB > TA since e⊥ · τ A > 0. Then there exists
fe ∈ C1,α(R) such that

(i) Γshock = {S = fe(T ) : TA < T < TB}, Ω ⊂ {S < fe(T ) : T ∈ R},
A = ( fe(TA), TA), B = ( fe(TB), TB), and f ∈ C2((TA, TB));

(ii) The directions of the tangent lines to Γshock lie between τ A and τ B ; that is, in
the (S, T )–coordinates,

−∞ <
τ B · e
τ B · e⊥ = f ′

e(TB) ≤ f ′
e(T ) ≤ f ′

e(TA) = τ A · e
τ A · e⊥ < ∞

for any T ∈ (TA, TB);
(iii) ν(P) · e < 0 for any P ∈ Γshock;
(iv) φe > 0 on Γshock;



60 G.-Q. G. Chen et al.

(v) For any T ∈ (TA, TB),

φττ ( fe(T ), T ) < 0 ⇐⇒ f ′′
e (T ) > 0,

while

φττ ( fe(T ), T ) > 0 ⇐⇒ f ′′
e (T ) < 0.

Proof. By the first condition in (2.17) and the entropy condition (A1),

φ = 0, φν < 0 on Γshock. (3.7)

From this, we have the following two facts:

(a) Dφ �= (0, 0) on Γshock;
(b) Combining (3.7) with assumption (A5), Dφ ·e ≥ 0 on Γshock for each e ∈ Con.

Using facts (a)–(b) and recalling that Con denotes the open cone, we conclude that
Dφ · e > 0 on Γshock for any e ∈ Con. Then the implicit function theorem ensures
the existence of fe such that property (i) holds.

For property (ii), from the definition that e⊥ · τ A > 0 and the fact that {P +
Con}∩Ω = ∅, we find that, in the (S, T )–coordinates, for any given T ∈ (TA, TB)

and small σ > 0,

fe(T ) + τ A · e
τ A · e⊥ σ ≥ fe(T + σ) ≥ fe(T ) + τ B · e

τ B · e⊥ σ.

From this, noting that f ′
e(TA) = τ A·e

τ A·e⊥ and the similar expression for f ′
e(TB) follow

from the definition of f ′
e , we obtain (ii).

Next we show (iii). From (i), ν = ( f ′
e(T ),−1)√
1+( f ′

e(T ))2
, τ A = (1, f ′

e(TA))√
1+( f ′

e(TA))2
, and τ B =

− (1, f ′
e(TB ))√

1+( f ′
e(TB ))2

. Since e ∈ Con, then e = s1(1, f ′
e(TA)) − s2(1, f ′

e(TB)) for some

s1, s2 > 0. Also, the condition that τ A �= −τ B in (A5) implies that f ′
e(TA) �=

f ′
e(TB). Then

ν · e = 1
√
1 + ( f ′

e(T ))2

(
s1( f ′

e(T ) − f ′
e(TA)) + s2( f ′

e(TB) − f ′
e(T ))

)
< 0,

where we have used (ii) and the fact that f ′
e(TA) �= f ′

e(TB) to obtain the last
inequality. Now (iii) is proved.

To show property (iv), we notice that, along Γshock, φτ = 0, φν < 0 by assump-
tion (A1) of Theorem 2.1, and ν · e < 0 by (iii). Therefore, φe = (ν · e)φν > 0,
which is (iv).

Finally, property (v) follows from the boundary conditions along Γshock. More
precisely, in the (S, T )–coordinates, differentiating twice with respect to T in the
equation: φ( fe(T ), T ) = 0, and using that φτ = 0 and φe �= 0 along Γshock by
property (iv), we have

f ′′
e (T ) = − D2φ[D⊥φ, D⊥φ]

(φe)3
( fe(T ), T ) = −φ2

νφττ

φ3
e

( fe(T ), T ). (3.8)

Now property (v) directly follows from (v) and properties (iii)–(iv). This completes
the proof. ��
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In order to show Lemma 3.4 below, we first note the following property of
solutions of the potential flow equation:

Lemma 3.3. ([14], Lemma 6.1.4). Let Ω ⊂ R
2 be open, and let Ω be divided by

a smooth curve S into two subdomains Ω+ and Ω−. Let ϕ ∈ C0,1(Ω) be a weak
solution in Ω as defined in Definition 2.1 such that ϕ ∈ C2(Ω±) ∩ C1(Ω± ∪ S).
Denote ϕ± := ϕ

∣
∣
Ω± . Suppose that ϕ is a constant state in Ω− with density ρ− and

sound speed c−, that is,

ϕ−(ξ) = −1

2
|ξ |2 + v− · ξ + A−,

where v− is a constant vector and A− is a constant. Let Pk ∈ S, for k = 1, 2, be
such that

(i) ϕ− is supersonic at Pk : |Dϕ−| > c− := c(|Dϕ−|2, ϕ−, ρ0) at Pk ;
(ii) Dϕ− · ν > Dϕ+ · ν > 0 at Pk, where ν is the unit normal vector to S oriented

from Ω− to Ω+;
(iii) For the tangent line L Pk to S at Pk, k = 1, 2, L P1 is parallel to L P2 with

ν(P1) = ν(P2);
(iv) d(P1) > d(P2), where d(Pk) is the distance between line L Pk and center

O− = v− of the sonic circle of state ϕ− for each k = 1, 2.

Then

φ+
ν (P1) < φ+

ν (P2),

where φ+(ξ) = 1
2 |ξ |2 + ϕ+(ξ).

Now we prove a technical fact used in the main argument of the paper.

Lemma 3.4. Let Ω , Γshock , and φ be as in Lemma 3.2. For the unit vector e ∈ Con,
let (S, T ) be the coordinates defined in Lemma 3.2, and let fe be the function
from Lemma 3.2(i). Assume that, for two different points P = (T, fe(T )) and
P1 = (T1, fe(T1)) on Γshock ,

fe(T ) > fe(T1) + f ′
e(T )(T − T1), f ′

e(T ) = f ′
e(T1).

Then

(i) d(P) := dist(O0, L P ) > dist(O0, L P1) =: d(P1), where O0 is the center of
sonic circle of state (0), and L P and L P1 are the tangent lines of Γshock at P
and P1, respectively.

(ii) φe(P) > φe(P1).

Proof. First, since f ′
e(T ) = f ′

e(T1), denote ν := ν(P) = ν(P1) and τ := τ (P) =
τ (P1). In addition,

d(P) = dist(O0, L P ) = P O0 · ν, d(P1) = dist(O0, L P1) = P1O0 · ν.

Therefore, it suffices to find the expression of vector P O0 in terms of vector P1O0.
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From the definition of the (S, T )–coordinates and the shock function fe in the
previous lemmas, we have

(T, fe(T )) = (T1, fe(T1)) + (
fe(T ) − fe(T1)

)
e + (T − T1)e⊥,

so that

(T, fe(T )) = (T1, fe(T1)) + (
fe(T ) − fe(T1) − f ′

e(T1)(T − T1)
)
e

+ (T − T1)
(
e⊥ + f ′

e(T1)e
)
. (3.9)

Since
(
e⊥ + f ′

e(T1)e
) · ν = 0,

P O0 · ν=(
O0−(T, fe(T ))

) · ν=P1O0 · ν−(
fe(T )− fe(T1)− f ′

e(T1)(T − T1)
)
e · ν.

From Lemma 3.2(iii) and the fact that fe(T ) > fe(T1) + f ′
e(T1)(T − T1), we

conclude that P O0 · ν > P1O0 · ν. This implies

d(P) = dist(O0, L P ) > dist(O0, L P1) = d(P1).

Then (i) is proved.
Now we prove (ii). By (i) and Lemma 3.3,

φν(P) < φν(P1).

Also, ∂τφ = 0 on Γshock by the first condition in (2.17). Thus, ∂τφ(P) =
∂τφ(P1) = 0. Then, using e · ν < 0, we obtain

Dφ(P) · e = ∂νφ(P) ν · e > ∂νφ(P1) ν · e = Dφ(P1) · e,
which is (ii). ��

3.2. Real Analyticity of the Shock and Related Properties

In this subsection, we show that the shock, Γ 0
shock, is real analytic and φ is real

analytic in Ω ∪ Γ 0
shock. To see that, we note that the free boundary problem (2.5)

and (2.12)–(2.13) can be written in terms of φ = ϕ −ϕ0 with ν = Dφ
|Dφ| in the form

N (D2φ, Dφ, φ, ξ) = 0 in Ω, (3.10)

M(Dφ, φ, ξ) = 0 on Γshock, (3.11)

φ = 0 on Γshock, (3.12)

where, for (r,p, z, ξ ) ∈ S2×2 × R
2 × R × Ω with S2×2 as the set of symmetric

2 × 2 matrices,

N (r,p, z, ξ ) := (
c2 − (p1 − ξ1)

2)r11 − 2(p1 − ξ1)(p2 − ξ2)r12

+ (
c2 − (p2 − ξ2)

2)r22, (3.13)

M(p, z, ξ) := (
ρ(p, z, ξ )(p + Dϕ0) − ρ0Dϕ0

) · p
|p| (3.14)
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with

c2(p, z, ξ) = ρ
γ−1
0 − (γ − 1)

(
z − ξ · p + 1

2
|p|2), ρ(p, z, ξ) = c(p, z, ξ )

2
γ−1 .

Equation (3.10) is quasilinear, so that its ellipticity depends only on (p, z, ξ).
By assumption, the equation is strictly elliptic on solution φ, i.e., for (p, z, ξ) =
(Dφ(P), φ(P), P) for all P ∈ Ω ∪ Γ 0

shock.
Furthermore, it is easy to check by an explicit calculation that the ellipticity

of the equation and the fact that ν = Dφ
|Dφ| on Γ 0

shock imply the obliqueness of the

boundary condition (3.11) on Γ 0
shock for solution φ:

DpM(Dφ, φ, ξ) · ν > 0 on Γ 0
shock.

Moreover, from the explicit expressions, N (r,p, z, ξ ) is real analytic on S2×2×
R
2 × R × Ω , and M(p, z, ξ) is real analytic on

{(p, z, ξ) : ρ
γ−1
0 − (γ − 1)

(
z − ξ · p + 1

2
|p|2) > 0}.

Since ϕ0 is pseudo-supersonic, ϕ is pseudo-subsonic on Γshock, and conditions
(2.12)–(2.13) hold, we have

ρ(Dφ, φ, ξ) > ρ0 for all ξ ∈ Γshock,

so that

ρ
γ−1
0 − (γ − 1)

(
z − ξ · p + 1

2
|p|2) > ρ

γ−1
0

for all (p, z, ξ ) = (Dφ(ξ), φ(ξ), ξ) with ξ ∈ Γshock. That is, M(p, z, ξ) is real
analytic in an open set containing (p, z, ξ) = (Dφ(ξ), φ(ξ), ξ) for all ξ ∈ Γshock.

Then, by Theorem 2 in Kinderlehrer-Nirenberg [31], we have the following
lemma:

Lemma 3.5. Let Ω , Γshock , and φ be as in Lemma 3.2. Then Γ 0
shock is real analytic

in its relative interior; in particular, fe is real analytic on (TA, TB) for any e ∈ Con.
Moreover, φ is real analytic in Ω up to Γ 0

shock .

We remark here that the assertion on the analyticity of the solution up to the
free boundary is not listed in the formulation of Theorem 2 in [31], but is shown in
its proof.

Now we show the following fact that will be repeatedly used for subsequent
development.

Lemma 3.6. Let Ω , Γshock , and φ be as in Lemma 3.2. Assume that φ is not a
constant state in Ω . Let e ∈ Con, and let TA, TB, and fe be from Lemma 3.2(i).
Then, for any TP ∈ (TA, TB), there exists an integer k ≥ 2 such that f (k)

e (TP ) �= 0.
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Proof. In this proof, we use equation (3.4) in the (S, T )–coordinates with basis
{ν, τ } = {ν(P), τ (P)} (constant vectors).

We argue by a contradiction. Assume that P = ( fe(TP ), TP ) ∈ Γ 0
shock is such

that f (i)
e (TP ) = 0 for all i > 1. From (v) and its derivatives with respect to T , we

use assumption (A1) of Theorem 2.1 to obtain

∂ i
τφ(P) = 0 for all i > 1.

Writing (3.4) in the coordinateswith the basis of the normal vector ν and tangent
vector τ on Γshock at P , and writing vector h given in (3.5) as h = hνν + hτ τ , we
have

hτφττ + hνφντ = 0 at P. (3.15)

From (3.6), hν = h · ν < 0 at P so that φττ = 0 implies that φντ = 0. Now, from
equation (3.1) and assumption (A3) of Theorem 2.1, we obtain that φνν = 0, so
that

φττ = φντ = φνν = 0 at P. (3.16)

Continuing inductively with respect to order k of differentiation, we fix k > 2,
and assume that D jφ(P) = 0 for j = 2, . . . , k −1. With this, taking the (k −1)-th
tangential derivative of (3.4), we obtain

hτ ∂k
τ φ + hν∂

k−1
τ ∂νφ = 0 at P.

Thus, from ∂k
τ φ(P) = 0, we have

∂k−1
τ ∂νφ = 0 at P.

Then, using the ∂k−2
T –derivative of equation (3.1), we see that ∂k−2

τ ∂2ν φ(P) =
0. Furthermore, using the ∂k−3

T ∂S–derivative of equation (3.1), we see that
∂k−3
τ ∂3ν φ(P) = 0, etc. Thus, we obtain that all the derivatives of φ of order two and
higher are zero at P . Now, from the analyticity of φ up to Γ 0

shock � P , we conclude
that φ is linear in the whole domain Ω , which is a contradiction to the condition of
Theorem 2.1 that ϕ is not a constant state. ��

3.3. Minimal and Maximal Chains: Existence and Properties

In this subsection, we assume that Ω ⊂ R
2 is open, bounded, and connected,

and that ∂Ω is a continuous curve, piecewise C1,α up to the endpoints of each
smooth part and has a finite number of smooth parts. Moreover, at each corner
point of ∂Ω , angle θ between the arcs meeting at that point from the interior of Ω

satisfies θ ∈ (0, π). Note that Theorem 2.1 requires all these conditions.
Let φ ∈ C(Ω) ∩ C2(Ω ∪ Γ 0

shock) ∩ C3(Ω) be a solution of equation (2.16) in
Ω satisfying conditions (A2)–(A3) of Theorem 2.1. Let e ∈ R

2 be a unit vector.

Definition 3.7. Let E1, E2 ∈ ∂Ω . We say that points E1 and E2 are connected by
a minimal (resp. maximal) chain with radius r if there exist r > 0, integer k1 ≥ 1,
and a chain of balls {Br (Ci )}k1

i=0 such that
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(a) C0 = E1, Ck1 = E2, and Ci ∈ Ω for i = 0, . . . , k1;
(b) Ci+1 ∈ Br (Ci ) ∩ Ω for i = 0, . . . , k1 − 1;
(c) φe(Ci+1) = min

Br (Ci )∩Ω

φe < φe(C
i ) (resp. φe(Ci+1) = max

Br (Ci )∩Ω

φe > φe(C
i ))

for i = 0, . . . , k1 − 1;
(d) φe(Ck1) = min

Br (Ck1 )∩Ω

φe (resp. φe(Ck1) = max
Br (Ck1 )∩Ω

φe).

For such a chain, we also use the following terminology: The chain starts at E1 and
ends at E2, or the chain is from E1 to E2.

Remark 3.8. This definition does not rule out the possibility that Br (Ci )∩∂Ω �= ∅,
or even Ci ∈ ∂Ω , for some or all i = 0, . . . , k1 − 1.

Remark 3.9. Radius r is a parameter in the definition of minimal or maximal
chains. We do not fix r at this point. In the proof of Theorems 2.1–2.3, the radii
will be determined for various chains in such a way that Lemmas 3.14–3.18 below
can be applied.

We now consider the minimal and maximal chains for φe in Ω . In the results
of these subsections, all the constants depend on the parameters in the conditions
listed above, i.e., the C1,α–norm of the smooth parts of ∂Ω , the angles at the corner
points, and ‖φ‖C1,α(Ω), in addition to the further parameters listed in the statements.

We first show that the chains with sufficiently small radius are connected sets.

Lemma 3.10. There exists r∗ > 0, depending only on the C1,α–norms of the smooth
parts of ∂Ω and angles θ ∈ (0, π) in the corner points, such that, for any E ∈ Ω

and r ∈ (0, r∗],
(i) Br (E) ∩ Ω is connected;
(ii) For any G ∈ Br (E) ∩ Ω , Br (E) ∩ Br (G) ∩ Ω is nonempty.

Proof. We only sketch the argument, since the details are standard.
We first prove (i). Denote Qr := (−Lr, Lr) × (−r, r). The conditions on ∂Ω

imply that there exist L , N > 4 such that, for any sufficiently small r > 0, the
following facts hold:

(a) If P ∈ ∂Ω has the distance at least Nr from the corner points of ∂Ω , then, in
some orthonormal coordinate system in R

2 with the origin at P ,

Ω ∩ Q2r = {(s, t) ∈ Q2r : s > g(t)},
∂Ω ∩ Q2r = {(s, t) ∈ Q2r : s = g(t)} (3.17)

for some g ∈ C1,α(R) with g(0) = g′(0) = 0;
(b) If P ∈ ∂Ω is a corner point, then, in some orthonormal coordinate system in

R
2 with the origin at P ,

Ω ∩ Q4Nr = {(s, t) ∈ Q4Nr : s > max(g1(t), g2(t))},
∂Ω ∩ Q4Nr = {(s, t) ∈ Q4Nr : s = max(g1(t), g2(t))} (3.18)
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for some g1 and g2 satisfying

g1, g2 ∈ C1,α(R), g1(0) = g2(0) = 0, g′
1(0) < 0, g′

2(0) > 0,

g1(t) > g2(t) for t < 0, g1(t) < g2(t) for t > 0. (3.19)

Note that, in order to obtain (3.18)–(3.19), we use the condition that angle θ at
P satisfies θ ∈ (0, π).

Let E ∈ Ω . Without loss of generality, we assume that dist(E, ∂Ω) < r ;
otherwise, (i) already holds.

The first case is that the distance from E to the corner points is at least 2Nr .
Then, denoting by P the nearest point on ∂Ω to E , it follows that P satisfies the
condition for Case (a) above, so that P is the unique nearest point on ∂Ω to E , and
E = (s∗, 0)with s∗ ∈ [0, r) in the coordinate system described in (a) above. Then,
denoting f ±(t) := s∗ ± √

r2 − t2 on [−r, r ], and using that |g′(t)| ≤ Ctα and
|g(t)| ≤ Ct1+α on [−r, r ] for C depending on the C1,α–norm of the smooth parts
of ∂Ω , we obtain that, if r is small, there exist t+ ∈ ( 9

10r, r ] and t− ∈ [−r,− 9
10r)

such that

f + > g on (t−, t+), f + < g on [−r, r ] \ [t−, t+], (3.20)

where the last set is empty if t± = ±r , and

Ω ∩ Br (E) = {(s, t) : max( f −(t), g(t)) < s < f +(t), t− < t < t+}, (3.21)

which is a connected set, by the first inequality in (3.20) and the fact that f − < f +
in (−r, r).

In the other case, when the distance from E to the corner points is smaller than
2Nr , we argue similarly by using the coordinates described in Case (b) above,
related to the corner point P that is the nearest to E . The existence of such a
coordinate system and the fact that dist(E, P) < 2Nr also imply that the nearest
corner P is unique for E . Then, in these coordinates,

E = (s∗, t∗) ∈ Ω ∩ Q2Nr .

Let

Ω(k) := {s > g(k)(t), t ∈ R}, Γ (k) := {s = g(k)(t), t ∈ R} for k = 1, 2.

Then, by (3.18),
Ω ∩ Q4Nr = Ω(1) ∩ Ω(2) ∩ Q4Nr . (3.22)

If r is sufficiently small, we deduce from (3.19) that there exists λ ∈ (0, 1) such
that

−λ−1 ≤ g′
1(t) ≤ −λ, λ ≤ g′

2(t) ≤ λ−1 for all t ∈ (−4Nr, 4Nr). (3.23)

Let P(k) = (s(k), t (k)) be the nearest point to E on Γ (k). Then P(k) ∈ Γ (k) ∩
Q2Nr .

Assume that dist(E, Γ (1)) < r , which implies that E ∈ Br (P(1)). Using (3.23),
g′
1(t

(1)) < 0. Then, reducing r depending on the C1,α–norm of g1, rotating the
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coordinate system (s, t) by angle arctan(|g′
1(t

(1))|) clockwise, and shifting the
origin into P(1), we conclude that, in the resulting coordinate system (S, T ),

Ω(1) ∩ Qr = {(S, T ) ∈ Qr : S > G(T )},
Γ (1) ∩ Qr = {(S, T ) ∈ Qr : S = G(T )},

for some G ∈ C1,α(R) with G(0) = G ′(0) = 0, which is similar to (3.17). Then,
arguing as in Case (a), we obtain an expression similar to (3.21) for Ω(1) ∩ Br (E)

in the (S, T )–coordinates. Changing back to the (s, t)–coordinates and possibly
further reducing r depending on λ, we obtain the existence of t− ∈ [t∗ −r, t∗) such
that

f + > g1 on (t−, t∗ + r), f + < g1 on [t∗ − r, t∗ + r ] \ [t−, t∗ + r ], (3.24)

where the last set is empty if t− = t∗ − r , and

Ω(1) ∩ Br (E) = {(s, t) : max( f −(t), g1(t)) < s < f +(t), t− < t < t∗ + r},
(3.25)

where f ±(t) := s∗ ± √
r2 − (t − t∗)2 on [t∗ − r, t∗ + r ]. Note that (3.25) also

holds if dist(E, Γ (1)) ≥ r : Indeed, in this case, Ω(1) ∩ Br (E) = Br (E) and
g1(t) ≤ f −(t) on [t∗ − r, t∗ + r ], so that (3.25) holds with t− = t∗ − r .

By a similar argument, we show the existence of t+ ∈ (t∗, t∗ + r ] such that
f + > g2 on (t∗ − r, t+), f + < g2 on [t∗ − r, t∗ + r ] \ [t∗ − r, t+], (3.26)

where the last set is empty if t+ = t∗ + r , and

Ω(2) ∩ Br (E) = {(s, t) : max( f −(t), g2(t)) < s < f +(t), t∗ − r < t < t+}.
(3.27)

From (3.22), (3.25), and (3.27), we obtain

Ω ∩ Br (E) = {(s, t) : max( f −(t), g1(t), g2(t)) < s < f +(t), t− < t < t+},
(3.28)

which is a connected set, by the first inequalities in (3.24) and (3.26) and the fact
that f − < f + in (t∗ − r, t∗ + r).

Now we prove assertion (ii). We can assume that G ∈ Br (E) ∩ ∂Ω; otherwise,
(ii) already holds. Then we again consider two cases, as above, and use expressions
(3.21) and (3.28) to conclude the proof. ��
Remark 3.11. The condition that the interior angles θ at the corner points of ∂Ω

satisfy θ ∈ (0, π) is necessary for Lemma 3.10. Indeed, let θ ∈ (π, 2π) at some
corner Q ∈ ∂Ω . For simplicity, consider first the case when ∂Ω ∩ B5R(Q) consists
of two straight lines intersecting at Q for some R > 0. Then it is easy to see that,
for any E ∈ ∂Ω with d := dist(E, Q) ∈ (0, R], Br (E) ∩ Ω is not connected for
all r ∈ (d sin(2π − θ), d). With the assumption that ∂Ω is piecewise C1,α up to
the corner points (without assumption that ∂Ω ∩ B5R(Q) is piecewise-linear), the
same is true for all r ∈ (d1, d) for some d1 ∈ (d sin(2π − θ), d) if d is sufficiently
small.
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Lemma 3.12. There exists r∗ > 0 such that any chain in Definition 3.7 with r ∈
(0, r∗) satisfies

(i)
k1⋃

i=0

(
Br (C

i ) ∩ Ω
)

is connected;

(ii) There exists a continuous curve S with endpoints C0 and Ck1 such that

S0 ⊂
k1⋃

i=0

(
Br (C

i ) ∩ Ω
)
, dist(Sr , ∂Ω) > 0 for all r > 0,

where Sr = S \ (
Br (C0) ∪ Br (Ck1)

)
, and S0 denotes the open curve that

does not include the endpoints. More precisely, S = g([0, 1]), where g ∈
C([0, 1];R2) and is locally Lipschitz on (0, 1) with g(0) = C0, g(1) = Ck1 ,

and g(t) ∈
k1⋃

i=0

(
Br (C

i ) ∩ Ω
)

for all t ∈ (0, 1).

Proof. We use r∗ in Lemma 3.10. We prove (i) by induction: We first note that
Br (C1)∩Ω is connected by Lemma 3.10(i). Suppose that, for m ∈ {1, 2, . . . , k1 −
1}, Am = ⋃m

i=0

(
Br (Ci ) ∩ Ω

)
is connected. We note that Am has a nonempty

intersection with Br (Cm+1) ∩ Ω by Definition 3.7(b) and Lemma 3.10(ii). Also,
Br (Cm+1) ∩ Ω is a connected set. Then it follows that

⋃m+1
i=0

(
Br (Ci ) ∩ Ω

)
is

connected. This proves (i).
Assertion (ii) with reduced r∗ follows from Lemmas A.1 and A.3. ��

Remark 3.13. Lemma 3.12(ii) implies that S0 lies in the interior of Ω .

Nowwe show the existence of minimal (resp. maximal) chains. We use r∗ from
Lemma 3.12 from now on.

Lemma 3.14. If E1 ∈ ∂Ω and is not a local minimum point (resp. maximum point)
of φe with respect to Ω , then, for any r ∈ (0, r∗), there exists a minimal (resp.
maximal) chain {Gi }k1

i=0 for φe of radius r in the sense of Definition 3.7, starting
at E1, i.e., G0 = E1. Moreover, Gk1 ∈ ∂Ω is a local minimum (resp. maximum)
point of φe with respect to Ω , and φe(Gk1) < φe(E1) (resp. φe(Gk1) > φe(E1)).

Proof. Wediscuss only the case of theminimal chain, since the case of themaximal
chain can be considered similarly. Thus, E1 is not a local minimum point of φe with
respect to Ω .

Let G0 = E1. Choose Gi+1 to be the point such that the minimum of w = φe

in Br (Gi ) ∩ Ω is attained at Gi+1, provided that w(Gi+1) < w(Gi ); otherwise
(i.e., if the minimum of w = φe in Br1(G

i )∩Ω is attained at Gi itself), the process
ends and we set k1 := i .

In order to show that {Gi }k1
i=0 is a minimal chain for r ∈ (0, r∗), it suffices to

show that Gk1 ∈ ∂Ω and that k1 is positive and finite. These can be seen as follows:
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(i) Since G0 = E1 is not a local minimum point relative to Ω , it follows that
G1 �= G0 so that k1 ≥ 1 and φe(G0) < φe(G1).

(ii) There is only a finite number of {Gi }. Indeed, on the contrary, since domainΩ

is bounded, there exists a subsequence {Gim } such that Gim → Ĉ as m → ∞,
where Ĉ is a point lying in Ω . Thus, for any ε < r , there is a large number
N such that, for any j, m > N , dist{Gi j , Gim } < ε. On the other hand, by
construction, for any j < i − 1, Gi cannot lie in the ball centering at G j with
radius r so that dist{Gi , G j } ≥ r for any j < i − 1. This is a contradiction.

(iii) Gk1 ∈ ∂Ω . Otherwise, Gk1 ∈ Ω is an interior local minimum point of φe,
which contradicts the strong maximum principle, since φe satisfies equation
(3.2) that is strictly elliptic inΩ , and φe is not constant inΩ by the assumption
that ϕ is not a uniform state.

Therefore, {Gi }k1
i=0 is a minimal chain with Gk1 ∈ ∂Ω . Also, from the construc-

tion, Gk1 is a local minimum point of w with respect to Ω with w(Gk1) < w(E1).
��

Lemma 3.15. For any δ > 0, there exists r∗
1 ∈ (0, r∗] such that the following holds:

Let C ⊂ ∂Ω be connected, let E1 and E2 be the endpoints of C, and let there be
a minimal chain {Ei }k1

i=0 of radius r1 ∈ (0, r∗
1 ] which starts at E1 and ends at E2,

and H1 ∈ C0 = C \ {E1, E2} such that

φe(H1) ≥ φe(E1) + δ.

Then, for any r2 ∈ (0, r1], any maximal chain {H j }k2
j=0 of radius r2 starting from

H1 satisfies Hk2 ∈ C0, where C0 denotes the relative interior of curve C as before.

Proof. Using the bound: ‖φ‖1+α1,Ω
≤ C by condition (A2) of Theorem 2.1, we

can find a radius r∗
1 ∈ (0, r∗] small enough such that

osc
Br∗

1
(P)∩Ω

φe ≤ δ

4
for allP ∈ Ω.

We fix this r∗
1 and assume that the minimal chain {Ei }k1

i=0 from E1 to E2 is of radius
r1 ∈ (0, r∗

1 ].
Recall that, from Definition 3.7 for the minimal and maximal chains, φe(E1) >

φe(Ei ) for i = 1, . . . , k1, and φe(H1) < φe(H j ) for j = 1, . . . , k2. Then, for each
i = 0, . . . , k1, and j = 0, . . . , k2,

min
Br1 (H j )∩Ω

φe > φe(H j ) − δ

2
≥ φe(H1) − δ

2

≥ φe(E1) + δ

2
≥ φe(Ei ) + δ

2
> max

Br1 (Ei )∩Ω

φe + δ

4
,

where we have used that E1 = E0, H1 = H0, and 0 < r1 ≤ r∗
1 . Then

Br1(H j ) ∩ Ω ∩ Br1(Ei ) ∩ Ω = ∅ for each i = 0, . . . , k1, and j = 0, . . . , k2.
(3.29)
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From this, we have

Br1(H j ) ∩ Ω ⊂ Ω \ Λ for each j = 1, . . . , k2,

where Λ := ⋃k1
i=0 Br1(Ei ) ∩ Ω .

Since Br1(H1) ∩ Ω is a connected set, then one of connected components of
set Ω \ Λ contains Br1(H1) ∩ Ω . We denote this component by K1. Since Ω is
a connected set, then it follows from (3.29) and Lemma 3.12(i) applied to chain
{H j } that

k2⋃

j=0

Br2(H j ) ∩ Ω ⊂ K1.

Thus, Hk2 ∈ ∂K1 ∩ ∂Ω . It remains to show that ∂K1 ∩ ∂Ω lies within C.
Notice that H1 ∈ ∂K1 ∩ C so that ∂K1 ∩ C �= ∅. Also, K1 is a connected

set with K1 ∩ Λ = ∅. From Lemma 3.12(ii) applied to chain {Ei }, we obtain the
existence of a continuous curve S ⊂ Λ connecting E1 to E2 with the properties
listed in Lemma 3.12(ii). Combining these properties with Remark 3.13, we see
that K1 ⊂ Ω1, whereΩ1 is the open region bounded by curves S and C. Notice that
Ω1 ⊂ Ω . Thus, ∂K1∩∂Ω lies within ∂Ω1∩∂Ω = C, which implies that Hk2 ∈ C.
Moreover, the definition of minimal and maximal chains and our assumptions in
this lemma imply that

φe(Hk2) > φe(H1) > φe(E1) > φe(E2).

Thus, Hk2 ∈ C0. ��
Remark 3.16. In Lemma 3.15, we have not discussed the existence of the maximal
chain {H j }k2

j=0 of radius r2 starting from H1. If H1 is not a local maximum point

of φe with respect to Ω , such an existence follows from Lemma 3.14.

We also have a version of Lemma 3.15 in which the roles of minimal and
maximal chains are interchanged.

Lemma 3.17. For any δ > 0, there exists r∗
1 ∈ (0, r∗] such that the following holds:

Let C ⊂ ∂Ω be connected, let E1 and E2 be the endpoints of C, and let there exist
a maximal chain {Ei }k1

i=0 of radius r1 ∈ (0, r∗
1 ] which starts at E1 and ends at E2,

and H1 ∈ C0 such that

φe(H1) ≤ φe(E1) − δ.

Then, for any r2 ∈ (0, r1], any minimal chain {H j }k2
j=0 of radius r2, starting from

H1, satisfies that Hk2 ∈ C0.

The proof follows the argument of Lemma 3.15 with the changes resulting
from switching between the minimal and maximal chains and the correspondingly
reversed signs in the inequalities.
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Lemma 3.18. For any r1 ∈ (0, r∗], there exists r∗
2 = r∗

2 (r1) ∈ (0, r∗] such that the
following holds: Let C ⊂ ∂Ω be connected, let E1 and E2 be the endpoints of C, let
there exist a minimal chain {Ei }k1

i=0 of radius r1 ∈ (0, r∗] which starts at E1 and
ends at E2, and let there exist H1 ∈ C0 such that

φe(H1) < φe(E2).

Then, for any r2 ∈ (0, r∗
2 ], any minimal chain {H j }k2

j=0 of radius r2, starting from

H1, satisfies that Hk2 ∈ C0.

Proof. As in the proof of Lemma 3.15, we need to show (3.29). Set δ := φe(E2)−
φe(H1). Then δ > 0.

Using condition (A2) of Theorem 2.1, we can find a radius r∗
2 ∈ (0, r∗] small

enough such that osc
Br∗

2
(P)∩Ω

φe ≤ δ
4 for all P ∈ Ω . We fix this r∗

2 and assume that

the minimal chain {H j }k2
j=0 starting at H1 is of radius r2 ∈ (0, r∗

2 ]. Then, using
properties (c)–(d) in Definition 3.7 for the minimal chains, we have

φe(E2) = φe(Ek1) = min
Br1 (Ek1 )∩Ω

φe < φe(Ek1−1) = min
Br1 (Ek1−1)∩Ω

φe < · · · ,

that is,

φe(E2) ≤ min
Br1 (Ei )∩Ω

φe for i = 0, . . . , k1.

Then, for i = 0, . . . , k1 and j = 0, . . . , k2,

max
Br2 (H j )∩Ω

φe ≤ φe(H j ) + δ

2
≤ φe(H1) + δ

2
= φe(E2) − δ

2
≤ min

Br1 (Ei )∩Ω

φe − δ

2
.

This implies (3.29). Then the rest of the proof of Lemma 3.15 applies without
changes. ��

4. Proof of Theorem 2.1

In this section, we first prove Theorem 2.1, based on the lemmas obtained in
§3.

We use the (S, T )–coordinates from Lemma 3.2 for a unit vector e ∈ Con
chosen below so that it suffices to prove that the graph of f ′′

e is concave:

f ′′
e (T ) ≤ 0 for all T ∈ (TA, TB),

and satisfies the strict convexity in the sense of Theorem 2.1.
In that follows, we denote all the points on Γshock with respect to T ; that is,

for any point P ∈ Γshock, there exists TP such that P = ( fe(TP ), TP ) in the
(S, T )–coordinates.

The proof of Theorem 2.1 consists of the following four steps, where the non-
strict concavity of f ′′

e is shown in Steps 1–3, while the strict convexity is shown in
Step 4:
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Step 1. For any fixed e ∈ Con, if there exists P̂ ∈ Γ 0
shock with f ′′

e (TP̂ ) > 0,
we prove the existence of a point C ∈ Γ 0

shock, depending on e, such that
f ′′
e (TC ) ≥ 0, and C is a local minimum point of φe along Γshock, but C is

not a local minimum point of φe relative to Ω .
Step 2. We fix e ∈ Con to be the vector from condition (A6). Then we prove the

existence of C1 ∈ Γ 0
shock such that there exists a minimal chain with radius

r1 from C to C1.
Step 3. Let e ∈ Con be the same as in Step 2. We show that the existence of points

C and C1 described above yields a contradiction, from which we conclude
that there is no P̂ ∈ Γ 0

shock with f ′′
e (TP̂ ) > 0. More precisely, it will be

proved by showing the following facts:
– Let A2 be a maximum point of φe along Γshock lying between points

C and C1. Then A2 is a local maximum point of φe relative to Ω , and
there is no point between C and C1 on Γshock such that the tangent line
at this point is parallel to the one at A2.

– BetweenC and A2, or betweenC1 and A2, there exists a local minimum
point C2 of φe along Γshock such that C2 �= C , or C2 �= C1, and C2 is
not a local minimum point of φe relative to domain Ω .

– Then, by applying the results on the minimal chains obtained in §3.3
and the facts obtained above in this step, and iterating these arguments,
we can conclude our contradiction argument.

Step 4. Fix e ∈ Con. We show that, for every P ∈ Γ 0
shock, either f ′′

e (TP ) < 0

or there exists an even integer k > 2 such that f (i)
e (TP ) = 0 for all

i = 2, . . . , k − 1, and f (k)
e (TP ) < 0. This proves the strict convexity of

the shock. We also note that k is independent of the choice of e ∈ Con,
since, by Lemma 3.2, the above property is equivalent to the facts that
∂ i
τφ(P) = 0 for all i = 2, . . . , k − 1, and ∂k

τ φ(P) > 0.

Now we follow these steps to prove Theorem 2.1 in the rest of this section.

4.1. Step 1: Existence of a Local Minimum Point C ∈ Γ 0
shock along Γshock in the

Convex Part

We choose any e ∈ Con and keep it fixed through Step 1. Assume that

There exists a point P̂ ∈ Γ 0
shock such that f ′′

e (TP̂ ) > 0. (4.1)

Then, in this step, we prove that there exist points Â, B̂, C ∈ Γ 0
shock such that

TC ∈ (TÂ, TB̂) with f ′′
e (TC ) ≥ 0, f ′′

e (T ) < 0 for all T ∈ (TÂ, TB̂) which are
sufficiently close to TÂ and TB̂ , and

φe(C) = min
T ∈[TÂ,TB̂ ] φe( fe(T ), T ).

Moreover, the minimum at C is strict in the sense that

φe( fe(T ), T ) > φe(C) for all T ∈ (TÂ, TB̂) with f ′′
e (T ) < 0.
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Lemma 4.1. Let

I + := I +(P̂) = (TA+ , TB+)

be the maximal interval satisfying

– I + ⊂ (TA, TB),
– TP̂ ∈ I +,
– f ′′

e (TP ) ≥ 0 for all TP ∈ I +,
– Maximality: If (TP1 , TP2) ⊂ (TA, TB) such that P̂ ∈ (TP1 , TP2) and f ′′

e (TP ) ≥
0 for all TP ∈ (TP1 , TP2), then (TP1 , TP2) ⊂ I +.

Note that such I + exists and is nonempty because P̂ ∈ Γ 0
shock and f ′′

e (TP̂ ) > 0.
Then

(i) TA < TA+ < TB+ < TB ,
(ii) f ′

e(TA+) < f ′
e(TP̂ ) < f ′

e(TB+) and f ′
e(TA+) ≤ f ′

e(T ) ≤ f ′
e(TB+) for all

T ∈ I +,
(iii) There exists an open interval J+ ⊂ (TA, TB) such that [TA+ , TB+] ⊂ J+ and

f ′′
e (T ) < 0, f ′

e(TA+) ≤ f ′
e(T ) ≤ f ′

e(TB+) for all T ∈ J+ \ I +, (4.2)

where J+\I + is non-empty, since I + ⊂ J+ and J+ is open.

Proof. Assume that TA+ = TA. By the definition of I +, fe is convex on I +. From
condition (A4) of Theorem 2.1, fe ∈ C2((TA, TB)) ∩ C1,α([TA, TB]). Combining
these facts with f ′′

e (TP̂ ) > 0, we have

fe(TP̂ ) > fe(TA) + f ′
e(TA)(TP̂ − TA).

By Lemma 3.2(i), this implies that (A + Con) ∩ Ω �= ∅, which contradicts (A5).
Then TA+ > TA. Similarly, TB+ < TB . This proves (i).

Property (ii) follows directly from the definition of I + and the fact that
f ′′
e (TP̂ ) > 0, by combining with regularity fe ∈ C2((TA, TB)).
It remains to show (iii). We first show that

there exists TÂ1
∈ [TA, TA+) such that f ′′

e < 0 on (TÂ1
, TA+), (4.3)

where TA < TA+ by (i). If (4.3) is false, then there exists a sequence {T +
i } ⊂

(TA, TA+) such that limi→∞ T +
i = TA+ and f ′′

e (T +
i ) ≥ 0 for all i . Also, from the

maximality part in the definition of I +, there exists a sequence {T −
i } ⊂ (TA, TA+)

such that limi→∞ T −
i = TA+ and f ′′

e (T −
i ) < 0 for all i . From this, using the

regularity of fe in Lemma 3.5, it is easy to see that f (k)
e (A+) = 0 for k = 2, 3, . . . ,

which contradicts Lemma 3.6. This proves (4.3).
Moreover, by property (ii), there exists TÂ ∈ [TÂ1

, TA+) satisfying f ′
e(TÂ) ≤

f ′
e(TB+). Now, since f ′′

e < 0 on (TÂ1
, TA+), we obtain that f ′′

e (T ) < 0 and
f ′
e(TA+) < f ′

e(T ) ≤ f ′
e(TB+) for all T ∈ (TÂ, TA+).

Similarly, we show that there exists TB̂ ∈ (TB+ , TB] such that f ′′
e (T ) < 0 and

f ′
e(TA+) ≤ f ′

e(T ) < f ′
e(TB+) for all T ∈ (TB+ , TB̂).

Now (iii) is proved with J+ = (TÂ, TB̂). ��
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Clearly, the interval, J+, satisfying the properties in Lemma 4.1(iii) is non-
unique. From now on, we choose and fix an interval:

J+ = (TÂ, TB̂) (4.4)

satisfying the properties stated in Lemma 4.1(iii).
Now we show the existence of a local minimum point C ∈ I + along Γshock.

Proposition 4.2. Set

w := φe.

Then

(i) There exists TC ∈ I + such that

w(C) = min[TÂ,TB̂ ] w( fe(T ), T );

(ii) C ∈ Γ 0
shock with f ′′

e (TC ) ≥ 0;
(iii) Furthermore,

w(P) > w(C) for all TP ∈ (TÂ, TB̂) \ [TA+ , TB+].
Proof. Let J+ be the open interval from (4.4), which satisfies the properties in
Lemma 4.1(iii). Also, recall that I + = [TA+, TB+]. Then, from (i) and (iii) of
Lemma 4.1, we obtain that TÂ < TA+ < TB+ < TB̂ .

Fix TP ∈ J+ \ I +. Then f ′
e(TA+) ≤ f ′

e(TP ) ≤ f ′
e(TB+) by Lemma 4.1(iii).

Thus, there exists TP1 ∈ I + = [TA+, TB+] such that f ′
e(TP1) = f ′

e(TP ). In addi-
tion, since f ′′

e ≥ 0 in I + by the definition of I +, and f ′′
e < 0 in J+ \ [TA+, TB+]

by Lemma 4.1(iii), then

– If TP ∈ [TB+ , TB̂], f ′
e(T ) ≥ f ′

e(TP1) for all T ∈ [TP1, TP ],with strict inequality
f ′
e(T ) > f ′

e(TP1) for T ∈ (TB+ , TP ),
– If TP ∈ [TÂ, TA+], f ′

e(T ) ≤ f ′
e(TP1) for all T ∈ [TP , TP1 ], with strict inequality

f ′
e(T ) < f ′

e(TP1) for T ∈ (TP , TA+).

Thus, defining the function

g(T ) := fe(T ) − fe(TP1) − f ′
e(TP1)(T − TP1),

we obtain in the two cases considered above that

– If TP ∈ [TB+ , TB̂], then

g′(T )

{
≥ 0 for T ∈ [TP1, TP ],
> 0 for T ∈ (TB+ , TP ).

– If TP ∈ [TÂ, TA+], then

g′(T )

{
≤ 0 for T ∈ [TP , TP1 ],
< 0 for T ∈ (TP , TA+).
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Therefore, in both cases, g(TP) > g(TP1), which implies

fe(TP ) > fe(TP1) + f ′
e(TP1)(TP − TP1).

Now, by Lemma 3.4,
w(P) > w(P1). (4.5)

Thus we have proved that, for any TP ∈ J+ \ I +, there exists TP1 ∈ I + such that
(4.5) holds for P = ( fe(TP ), TP ) and P1 = ( fe(TP1), TP1). This implies that there
exists TC ∈ I + such that w( fe(T ), T ) attains its minimum over J+ = [TÂ, TB̂] at
TC . This proves assertion (i).

Moreover, we find from TC ∈ I + ⊂ J+ that C ∈ Γ 0
shock. Also, from (i) and

I + ⊂ J+ = (TÂ, TB̂), f ′′
e (TC ) ≥ 0. This proves assertion (ii).

Assertion (iii) for all TP ∈ (TÂ, TB̂)\[TA+ , TB+] follows from the strict inequal-
ity in (4.5). ��

We derive a corollary of Lemma 4.2(ii). The property, C ∈ Γ 0
shock, guarantees

the strict ellipticity of equation (2.16) atC , where we have used assumption (A3) of
Theorem2.1. Combining f ′′

e (TC ) ≥ 0with Lemma3.2(v) implies thatφττ (C) ≤ 0.
Thus, from Lemma 3.1 and Lemma 3.2(iii), we obtain

Corollary 4.3. C is not a local minimum point of φe with respect to Ω .

This means that, for any radius r > 0, there is a point Cr ∈ Br (C) ∩ Ω such
that w(Cr ) < w(C).

4.2. Step 2: Existence of TC1 ∈ (TA, TB) \ [TÂ, TB̂] Such That C1 and C Are
Connected by a Minimal Chain with Radius r1, for Vector e from Condition (A6)

In the argument, we use the minimal and maximal chains in the sense of Defi-
nition 3.7.

Through §4.2–§4.3, we fix e ∈ Con to be the vector from condition (A6) of
Theorem 2.1, and use points Â, B̂, C ∈ Γ 0

shock from Step 1 (which correspond to
this vector e) and constant r∗ fromLemma 3.10. In this step, we prove the following
proposition:

Proposition 4.4. Let e ∈ Con be the vector from condition (A6) of Theorem 2.1,
and let C be the corresponding point obtained in Proposition 4.2. Then there exists
r̂1 ∈ (0, r∗] such that, for any r1 ∈ (0, r̂1) and any minimal chain {Ci }k1

i=0 of radius
r1 for w = φe starting from point C, its endpoint C1 := Ck1 is in Γ 0

shock , i.e.,
C1 ∈ Γ 0

shock . Moreover, C1 is a local minimum point of w relative to Ω such that

w(C1) < w(C).

In order to prove Proposition 4.4, we first notice that, by Corollary 4.3 and
Lemma 3.14, for any r1 ∈ (0, r∗), there exists a minimal chain {Ci }k1

i=0 of radius
r1 for w = φe in the sense of Definition 3.7, starting at C , i.e., C0 = C . Moreover,
Ck1 ∈ ∂Ω is a local minimum point of w with respect to Ω , and w(Ck1) < w(C).

Now, in order to complete the proof of Proposition 4.4, it suffices to prove the
following lemma:
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Lemma 4.5. There exists r̂1 > 0 such that, if r1 ∈ (0, r̂1], then Ck1 ∈ Γ 0
shock .

Proof. On the contrary, if Ck1 ∈ Γ1 ∪ Γ2, we derive a contradiction for sufficiently
small r1 > 0. Now we divide the proof into five steps.

1. We first determine how small r1 > 0 should be in the minimal chain {Ci }.
Choose points A1, B1 ∈ Γshock such that

TA1 ∈ [TA, TC ], φe(A1) = max
T ∈[TA, TC ] φe( fe(T ), T ),

TB1 ∈ [TC , TB], φe(B1) = max
T ∈[TC , TB ] φe( fe(T ), T ).

Note that the definition of points A1 and B1 is independent of the choice of the
minimal chain {Ci } and its radius. Also, from Proposition 4.2(iii), it follows that
φe(A1) > φe(C) and φe(B1) > φe(C). Let

δ := min
{
φe(A1) − φe(C), φe(B1) − φe(C)

}
.

Then δ > 0. Lemma 3.15 determines r∗
1 (δ), so that r1 ∈ (0, r∗

1 (δ)) is assumed in
the minimal chain {Ci }.

2. We start from Case (i) of condition (A6).

Claim: Under the condition of Case (i), A1 cannot be a local maximum point
of w = φe relative to Ω .

In fact, for Case (i), if A1 = A, then A1 cannot be a local maximum point. On
the other hand, if A1 �= A, and A1 is a local maximum point, then

f ′′
e (TA1) > 0 in the (S, T )–coordinates,

by Lemmas 3.1–3.2. Thus, we consider the function

F(T ) := fe(T ) − fe(TA1) − f ′
e(TA1)(T − TA1).

Then F(TA1) = 0, F ′(TA1) = 0, and F ′′(TA1) > 0 so that F(T ) > 0 near TA1 . Let
the maximum of F(T ) on [TA, TA1 ] be attained at TA∗ . Then F(TA∗) > 0, which
implies that TA∗ �= TA1 .

If TA∗ �= TA, then F ′(TA∗) = 0, which implies that f ′
e(TA∗) − f ′

e(TA1) = 0.
If TA∗ = TA, then, using f ′

e(TA) ≥ f ′
e(TA1), condition (A5), and F ′(TA) ≤ 0

(since TA = TA∗ is a maximum point of F(T ) on [TA, TA1 ]), we conclude that
f ′
e(TA∗) = f ′

e(TA) = f ′
e(TA1). Thus, in both cases,

f ′
e(TA∗) − f ′

e(TA1) = 0.

Also, F(TA∗) > 0 implies that

fe(TA∗) > fe(TA1) + f ′
e(TA1)(TA∗ − TA1).

Then, from Lemma 3.4, φe(A∗) > φe(A1), which contradicts the definition of A1.
Now the claim is proved.

3. In this step, for Case (i) of condition (A6), we obtain a contradiction to the
assumption that Ck1 ∈ Γ1 ∪ Γ2.
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Since Ck1 ∈ Γ1 ∪ Γ2 is a local minimum point of φe, the condition for Case (i)
implies that Ck1 ∈ Γ1 ∪ {B}.

We first consider the case that Ck1 ∈ Γ1 \{A}. Since A1 is not a local maximum
point of w = φe, and r1 ∈ (0, r∗], then, by Lemma 3.14, there exists a maximal
chain {A j }k2

j=0 of radius r1 for w in the sense of Definition 3.7, starting at A1, i.e.,

A0 = A1. Moreover, Ak2 ∈ ∂Ω is a local maximum point of w with respect to
Ω , and w(Ak2) > w(A1). Furthermore, by Lemma 3.15 and the restriction for r1
described in Step 1, it follows that one of the following three cases occurs:

(a) Ak2 lies on Γ 0
1 between Ck1 and A;

(b) Ak2 = A;
(c) Ak2 lies on Γ 0

shock strictly between A and C .

Since Ak2 is a local maximum point of φe, then it cannot lie on Γ 0
1 ∪ {A} by

the condition of Case (i). Thus, only case (c) can occur, i.e., Ak2 lies on Γ 0
shock

between A and C . However, the property thatw(Ak2) > w(A1) contradicts the fact
that TA1 is the maximum point of φe( fe(T ), T ) on [TA, TC ]. Thus, the case that
Ck1 ∈ Γ1 \ {A} is not possible.

Next, consider the case that Ck1 = A. Then

φe(C) > φe(C
k1) = φe(A),

so that the definition of A1 implies that A1 �= A. Combining with the fact that
A1 �= C proved above, we conclude that A1 lies on Γ 0

shock strictly between C and
Ck1 = A. Thenwe obtain a contradiction by following the same argument as above.

The remaining case, Ck1 = B, is considered similarly to the case that Ck1 = A.
Indeed, in that argument, we have not used the condition that A cannot be a local
maximum point. Thus, the argument applies to the case that Ck1 = B, with only
notational change: points B and B1 are used, instead of A and A1.

This completes the proof for Case (i) of condition (A6) of Theorem 2.1.

4. The proof for Case (ii) of condition (A6) of Theorem 2.1 is similar to Case
(i). The only difference is to replace both A and A1 in the argument by B and B1.

5. Consider Case (iii) of condition (A6) of Theorem 2.1, i.e., when φe cannot
have a localminimumpoint onΓ1∪Γ2. For the localminimumpointCk1 ∈ Γ1 ∪ Γ2,
this implies that Ck1 ∈ {A, B}. Then the argument is the same as for the cases:
Ck1 = A and Ck1 = B, at the end of Step 3.

This completes the proof of Lemma 4.5.

Proposition 4.4 with C1 = Ck1 follows directly from Lemma 4.5. ��

4.3. Step 3: Existence of Points C and C1 Yields a Contradiction

In this section,we continue to denote by e ∈ Con the vector fromcondition (A6)
of Theorem 2.1, and use points Â, B̂, C ∈ Γ 0

shock from Step 1 which correspond
to this vector e. Then, for each r1 ∈ (0, r̂1], the corresponding point C1 is defined
in Proposition 4.4. In this step, we will arrive at a contradiction to the existence of
such C and C1 if r1 is sufficiently small. This implies that (4.1) cannot hold for e
from condition (A6), which means that fe(·) is concave, i.e., Γshock is convex.
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For E1, E2 ∈ Γshock, denote byΓshock[E1, E2] the part ofΓshock between points
E1 and E2, including the endpoints.

Fix r1 ∈ (0, r̂1]. This choice determines C1. Let A2 ∈ Γshock[C, C1] be such
that

φe(A2) = max
P∈Γshock[C,C1]

φe(P). (4.6)

Lemma 4.6. There exists δ > 0 such that, for any r1 ∈ (0, r̂1], the corresponding
points C, C1, and A2 defined above satisfy

φe(A2) ≥ φe(C) + δ > φe(C1) + δ. (4.7)

Proof. We employ Proposition 4.2 for vector e from condition (A6). Then, using
that φe(C) > φe(C1) by Proposition 4.4, it follows from Proposition 4.2(i) that
TC1 /∈ [TÂ, TB̂].

Using this and (4.6), we conclude that (4.7) holds with

δ = min
{

max
P∈Γshock[ Â,C]

φe(P), max
P∈Γshock[B̂,C]

φe(P)
} − φe(C), (4.8)

where δ > 0 by Proposition 4.2(iii). Notice that the definition of points Â, B̂, and
C is independent of r1; see (4.4) and Proposition 4.2(i). Then the right-hand side
of (4.8) is independent of r1 > 0, so that δ > 0 is independent of r1. ��

The rest of the argument in this section involves only part Γshock[C, C1] of the
shock curve, independent of the other parts of ∂Ω . Without loss of generality, we
assume that C1 ∈ Γshock[A, C] so that

TC1 ∈ [TA, TC ]. (4.9)

Indeed, if C1 ∈ Γshock[B, C], we re-parameterize the shock curve by

Γshock = {( f̃e(T ), T ) : −TB ≤ T ≤ −TA},
where f̃e(T ) = fe(−T ), and TA and TB are the T –coordinates of A and B with
respect to the original parameterization, and then switch the notations for points A
and B. Thus, (4.9) holds in the new parametrization.

Now (4.6) has the form:

φe(A2) = max
T ∈[TC1 ,TC ] φe( fe(T ), T ). (4.10)

In particular, TA2 ∈ (TC1 , TC ). See also Fig. 2.
From Lemma 4.6 and Proposition 4.4, we obtain that, for any r1 ∈ (0, r̂1],

φe(A2) > φe(C) + δ > φe(C1) + δ. (4.11)

Now we prove

Lemma 4.7. If r1 is sufficiently small, then

(i) A2 is a local maximum point of φe with respect to Ω;
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Fig. 2. The graphs of function f ′
e(T )

(ii) There is no point Q �= A2 between C and C1 along the shock such that the
tangent line at Q is parallel to the one at A2.

Proof. The proof consists of two steps.

1. In this step, we prove (i). We first fix r1 > 0. Let δ be from Lemma 4.6, and
let r∗

1 > 0 be the constant from Lemma 3.15 for this δ. We fix r1 = r∗
1 , and denote

C1 and A2 as the corresponding points for this choice of r1. Suppose that A2 is not
a local maximum point of φe with respect to Ω . Using (4.11) and the existence of
a minimal chain of radius r1 from C to C1, we can apply Lemma 3.15 to obtain the
existence of a maximal chain {A j }k2

j=0 of radius r1 starting from A2 (i.e., A2 = A0)

such that Ak2 is on Γshock between C and C1. Since φe(A2) < φe(Ak2), we obtain
a contradiction to (4.6). Thus, A2 is a local maximum point with respect to Ω .

2. Now we prove (ii). We use (4.9). Assume that there is a point Q �= A2
between C and C1 such that the tangent line at Q is parallel to the one at A2. Since
A2 is a local maximum point of φe with respect to Ω as shown in Step 1 in this
proof, we find that f ′′

e (TA2) > 0, by Lemmas 3.1–3.2. Define

F(T ) := fe(T ) − fe(TA2) − f ′
e(TA2)(T − TA2).

Then

F(TA2) = F ′(TA2) = 0, F ′′(TA2) > 0, (4.12)

and there is a point TQ ∈ (TC1 , TA2) ∪ (TA2 , TC ) such that F ′(TQ) = 0.
If F(TQ) > 0, then, by Lemma 3.4, we conclude that φe(Q) > φe(A2), which

contradicts (4.10).
If F(TQ) ≤ 0, we first consider the case that Q ∈ (TC1 , TA2). Using
max

T ∈[TQ ,TA2 ] F(T ) > 0 by (4.12) so that this maximum is attained at some point

TQ1 ∈ (TQ, TA2), we obtain

F(TQ1) > 0, F ′(TQ1) = 0,

so that Lemma 3.4 can be applied to obtain that φe(Q1) > φe(A2), which is a
contradiction. The case that Q ∈ (TA2 , TC ) is considered similarly.

Therefore, point Q does not exist. ��



80 G.-Q. G. Chen et al.

Fig. 3. Proof of Step 3 of Theorem 2.1

With the facts established in Lemma 4.7, we can conclude the proof of the main
assertion of Step 3 by a contradiction for sufficiently small r1 > 0. Themain idea of
the remaining argument is illustrated in Fig. 3. We first notice the following facts:

Lemma 4.8. fe(T ) satisfies the following properties:

f ′′
e (TC1) < 0, f ′′

e (TA2) > 0, (4.13)

f ′
e(T ) ≤ f ′

e(TA2) for any T ∈ [TC1 , TA2 ], (4.14)

f ′
e(T ) ≥ f ′

e(TA2) for any T ∈ [TA2 , TC ]. (4.15)

Proof. Property (4.13) follows fromLemmas 3.1–3.2, since A2 andC1 are the local
maximum and minimum points of φe with respect to Ω , respectively.

To show (4.14), we note from f ′′
e (TA2) > 0 that f ′

e(T ) < f ′
e(TA2) in (TA2 −

ε, TA2) for some ε > 0. Then, if f ′
e(TQ) > f ′

e(TA2) for some TQ ∈ [TC1, TA2),
there exists TP ∈ (TQ, TA2) with f ′

e(TP ) = f ′
e(TA2), which contradicts Lemma

4.7(ii). Thus, (4.14) holds. Finally, (4.15) is proved by similar argument. ��
Now we choose TC2 ∈ [TC1, TA2 ] such that

φe(C2) = min
T ∈[TC1 ,TA2 ] φe( fe(T ), T ). (4.16)

We show that
{

φe(C2) < φe(C1),

C2 is not a local minimum point of φe relative to domain Ω.
(4.17)

To prove (4.17), we first establish the following more general property of Γshock
(which will also be used in the subsequent development):

Lemma 4.9. Assume that there exist points E1, E2, and E3 on Γshock such that

(i) TE1 < TE2 and TE3 ∈ [TE1, TE2 ],
(ii) f ′′

e (TE1) < 0,
(iii) f ′

e(TE1) ≤ f ′
e(TE2),

(iv) φe(E1) < φe(E2),
(v) φe(E3) = min

T ∈[TE1 ,TE2 ] φe( fe(T ), T ).

Then φe(E3) < φe(E1), and E3 is not a local minimum point of φe relative to
domain Ω .

Proof. We divide the proof into two steps.
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1. We first show that φe(E3) < φe(E1). By condition (v), this is equivalent to
the inequality:

φe(E1) > min
T ∈[TE1 ,TE2 ] φe( fe(T ), T ).

Thus, it suffices to show that it is impossible that

φe(E1) = min
T ∈[TE1 ,TE2 ] φe( fe(T ), T ). (4.18)

Assume that (4.18) holds. Consider the function:

F(T ) = fe(T ) − fe(TE1) − f ′
e(TE1)(T − TE1).

Then F(TE1) = F ′(TE1) = 0, and F ′′(TE1) = f ′′
e (TE1) < 0 by condition (ii). This

implies that F(T ) < 0 in (TE1, TE1 + δ) for some small δ > 0. Denoting by TQ a
minimum point of F(T ) in [TE1, TE2 ], then F(TQ) < 0. This implies that Q �= E1.
Now we consider two cases:

If Q �= E2, then F ′(TQ) = 0, i.e., f ′
e(TQ) = f ′

e(TE1). With this, F(TQ) < 0
can be rewritten as

fe(TE1) > fe(TQ) + f ′
e(TQ)(TE1 − TQ).

Then, by Lemma 3.4(ii), we obtain that φe(E1) > φe(Q), which contradicts (4.18).
If Q = E2, then F ′(TE2) ≤ 0. Notice that F ′(TE2) = f ′

e(TE2) − f ′
e(TE1) ≥ 0

by condition (iii). Thus, F ′(TE2) = 0, which means that f ′
e(TE2) = f ′

e(TE1). Then,
using F(TE2) = F(TQ) < 0 and arguing similar to the previous case, we employ
Lemma 3.4(ii) to obtain that φe(E1) > φe(E2), a contradiction to (4.18).

Therefore, we have proved that (4.18) is false. This implies that φe(E3) <

φe(E1), as we have shown above.

2. We now show that E3 cannot be a local minimum point of φe relative to
domain Ω . We have shown in Step 1 that E3 �= E1. Also, E3 �= E2 by conditions
(iv)–(v). Thus, TE3 ∈ (TE1, TE2), i.e., E3 ∈ Γ 0

shock. If E3 is a local minimum point
of φe relative to Ω , we obtain by Lemmas 3.1 and 3.2(v) that f ′′

e (TE3) < 0. Let

G(T ) := fe(T ) − fe(TE3) − f ′
e(TE3)(T − TE3).

Then G(TE3) = G ′(TE3) = 0 and G ′′(TE3) = f ′′
e (TE3) < 0. This implies that

G(T ) < 0 in (TE3, TE3 + δ) for some δ > 0. Assume that TQ1 is a minimum point
of G(T ) in [TE3, TE2 ]. Then, repeating the argument in Step 1 (with E3, G, and
TQ1 instead of E1, F , and TQ , respectively), we obtain that φe(E3) > φe(Q1),
which contradicts condition (v). ��

Lemma 4.9 also holds if TE1 > TE2 , with only change in the condition that
f ′
e(TE1) ≤ f ′

e(TE2) that is now replaced by f ′
e(TE1) ≥ f ′

e(TE2). More precisely,
we have
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Corollary 4.10. Assume that there exist points E1, E2, and E3 on Γshock such that

(i) TE1 > TE2 and TE3 ∈ [TE2 , TE1 ],
(ii) f ′′

e (TE1) < 0,
(iii) f ′

e(TE1) ≥ f ′
e(TE2),

(iv) φe(E1) < φe(E2),
(v) φe(E3) = minT ∈[TE2 ,TE1 ] φe( fe(T ), T ).

Then φe(E3) < φe(E1), and E3 is not a local minimum point of φe relative to
domain Ω .

Proof. We prove this by directly repeating the argument in the proof of Lemma 4.9
with some obvious changes. Alternatively, by re-parameterizing the shock curve
by

Γshock = {( f̃e(T ), T ) : −TB ≤ T ≤ −TA}
so that f̃e(T ) = fe(−T ), and TA and TB are the T –coordinates of A and B with
respect to the original parameterization, thenwe are under the conditions of Lemma
4.9 in the new parameterization. ��
Proof of (4.17). Using (4.9)–(4.11), (4.13)–(4.14), and (4.16), we can apply
Lemma 4.9 with E1 = C1, E2 = A2, and E3 = C2 to obtain (4.17). ��

Let r1 be the constant from Lemma 4.7, and r2 ∈ (0, r1). Since C2 is not a local
minimum point by (4.17), we use Lemma 3.14 to obtain the existence of a minimal
chain {C j

2 }k2
j=0 with radius r2; see Fig. 3. Next, we restrict r2 to be smaller than r∗

2
from Lemma 3.18 defined by r1 fixed above. Then, recalling that there is a minimal
chain of radius r1 which starts atC and ends atC1, and noting thatφe(C2) < φe(C1)

by (4.16)–(4.17), we obtain that Ck2
2 lies on Γshock between C and C1. Now, using

(4.16) and noting that φe(C
k2
2 ) < φe(C0

2 ) = φe(C2), we conclude that Ck2
2 lies on

the part [TA2 , TC ] of Γshock; see Fig. 3. Denote C3 := Ck2
2 and notice that C3 is a

local minimum point of φe relative to Ω .
From this construction, point A2 (defined by equation (4.6) so that (4.10) holds)

satisfies TA2 ∈ (TC2 , TC3) ⊂ (TC1, TC ). Then

φe(A2) = max
T ∈[TC1 ,TC ] φe( fe(T ), T ) = max

T ∈[TC2 ,TC3 ] φe( fe(T ), T ).

Also, from (4.11), (4.16), and the definition of C3 as the endpoint of the minimal
chain from C2, we have

φe(A2) > φe(C2) > φe(C3), f ′′
e (C3) ≤ 0,

where the last property holds by Lemmas 3.1–3.2, since C3 is a local minimum
point of φe with respect to Ω . Moreover, from (4.15),

f ′
e(TC3) ≥ f ′

e(TA2).
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Choosing TC4 ∈ [TA2 , TC3 ] such that
φe(C4) = min

T ∈[TA2 ,TC3 ] φe( fe(T ), T ), (4.19)

we can apply Corollary 4.10 with E1 = C3, E2 = A2, and E3 = C4 to show that
φe(C4) < φe(C3) and C4 cannot be a local minimum point.

Then we repeat the same argument as those for the minimal chain starting from
C2. Specifically, for any r3 ∈ (0, r2], we use Lemma 3.14 to obtain the existence
of a minimal chain {Cm

4 }k3
m=0 with radius r3 starting from C4, i.e., C0

4 = C4; see
Fig. 3. Next, we restrict r3 to be smaller than r∗

2 (r2) from Lemma 3.18, i.e., r2 fixed
above is used as r1 in Lemma 3.18 to determine r∗

2 (r2). Then, recalling that there
is a minimal chain of radius r2 which starts at C2 and ends at C3, and noting that
φe(C4) < φe(C3) as we have shown above, we obtain by Lemma 3.18 that

Ck3
4 lies on Γshock between C2 and C3. (4.20)

However, combining the properties shown above, we have

φe(C4) = min
T ∈[TA2 ,TC3 ] φe( fe(T ), T ) < φe(C3)

< φe(C2) = min
T ∈[TC1 ,TA2 ] φe( fe(T ), T ),

so that

φe(C4) = min
T ∈[TC1 ,TC3 ] φe( fe(T ), T ).

Then the property that φe(C
k3
4 ) < φe(C4) implies that Ck3

4 cannot lie on
[TC2 , TC3 ] ⊂ [TC1 , TC3 ]. This contradicts (4.20).

This contradiction shows that (4.1) cannot hold if e is the vector from condition
(A6) of Theorem 2.1. Therefore, in the (S, T )–coordinates from Lemma 3.2 for
this vector e, we conclude that

f ′′
e (T ) ≤ 0 for all T ∈ (TA, TB).

We have thus completed the proof of the following fact:

Proposition 4.11. Suppose that conditions (A1)–(A6) of Theorem 2.1 hold. Then
the free boundary Γshock is a convex graph as described in Theorem 2.1.

4.4. Step 4: Strict Convexity of Γshock

In this step, we show the strict convexity in the sense that, for any fixed e ∈ Con,
using the coordinates and function fe from Lemma 3.2(i), for every P ∈ Γ 0

shock,

either f ′′
e (TP ) < 0 or there exists an even integer k > 2 such that f (i)

e (TP ) = 0 for
all i = 2, . . . , k − 1, and f (k)

e (TP ) < 0.
Note that f ′′

e ≤ 0 on (TA, TB) by Proposition 4.11.
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Let TP ∈ (TA, TB) be such that f ′′
e (TP ) = 0. By Lemma 3.6, there exists an

integer k such that

f (i)
e (TP ) = 0 for i = 2, . . . , k − 1, f (k)

e (TP ) is nonzero.

The convexity of the shock in Proposition 4.11 implies that k must be even and
f (k)
e (TP ) < 0. This shows (2.19) in the coordinate system with basis {e, e⊥}.

Moreover, using Remark 2.6, we have

Proposition 4.12. Suppose that conditions (A1)–(A6) of Theorem 2.1 hold. Then
the free boundary Γshock is strictly convex in the sense that (2.19) holds at every
T ∈ (TA, TB) with f ′′(T ) = 0. Moreover, (2.20) holds at every point of Γ 0

shock , at
which φττ = 0.

Furthermore, we note the following fact:

Lemma 4.13. Suppose that conditions (A1)–(A6) of Theorem 2.1 hold. Then, for
any ε > 0, there is no more than a finite set of points P = ( f (T ), T ) ∈ Γshock with
T ∈ [TA + ε, TB − ε] such that f ′′(T ) = 0 (or equivalently, φττ (P) = 0).

Proof. Suppose that Ti ∈ [TA +ε, TB −ε] for i = 1, 2, . . . , are such that f ′′(Ti ) =
0. Then a subsequence of Ti converges to T ∗ ∈ [TA +ε, TB −ε], and f (n)(T ∗) = 0
for each n = 2, 3, . . . , and P∗ = ( f (T ∗), T ∗) ∈ Γ 0

shock. It follows that ∂
n
τ φ(P∗) =

0 for each n = 2, 3, . . . . This contradicts (2.20). ��
By Propositions 4.11–4.12 and Lemma 4.13, the proof of Theorem 2.1 is com-

pleted.

5. Proof of Theorem 2.3: Uniform Convexity of Transonic Shocks

In this section, we show the uniform convexity of Γ 0
shock in the sense that

f ′′(TP ) < 0 for every P ∈ Γ 0
shock for f (·) in (2.18), or equivalently, f ′′

e (T ) < 0
on (TA, TB) for any e ∈ Con.

The outline of the proof is the following: By Theorem 2.1 and Remark 2.6,
φττ ≥ 0 on Γ 0

shock. Thus, we need to show that φττ > 0 on Γ 0
shock. Assume that

φττ = 0 at Pd ∈ Γ 0
shock. Then we obtain a contradiction by proving that there exists

a unit vector e ∈ R
2 such that Pd is a local minimumpoint ofφe alongΓ 0

shock, but Pd

is not a local minimum point of φe relative to Ω . Then we can construct a minimal
chain for φe connecting Pd to Ck1 ∈ ∂Ω . We show that

– Ck1 /∈ Γ0 ∪ Γ3,
– Ck1 /∈ Γ1 ∪ Γ2,
– Ck1 /∈ Γshock.

This implies that φττ > 0 on Γ 0
shock so that f ′′(T ) < 0 on (TA, TB); see Remark

2.6.
Now we follow the procedure outlined above to prove Theorem 2.3. In the

proof, we use the (S, T )–coordinates in (2.18). Then we have
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Γshock = {S = f (T ) : TA < T < TB}, Ω ⊂ {S < f (T ) : T ∈ R},
τ = ( f ′(T ), 1)

√
( f ′(T ))2 + 1

, ν = (−1, f ′(T ))
√

( f ′(T ))2 + 1
, f ′′(T ) ≤ 0 on (TA, TB), (5.1)

where we have used the convexity of Γshock proved in Theorem 2.1. Note that the
orientation of the tangent vector τ (P) at P ∈ Γshock has been chosen to be towards
endpoint B.

First, from the convexity and Lemma 3.1, we have

Lemma 5.1. Let φ be a solution as in Theorem 2.1. For any unit vector e ∈ R
2, if

e · ν < 0 (resp. e · ν > 0) at P ∈ Γ 0
shock , then φe cannot attain its local maximum

(resp. minimum) with respect to Ω at this point.

We now prove the uniform convexity by a contradiction argument. From The-
orem 2.1 and Remark 2.6, we know that (2.20) holds so that, if f ′′(TPd ) = 0 at
some interior point Pd of Γshock, then

φττ (Pd) = 0,

φττ (P) > 0 for all P ∈ Γshock ∩ Nε(Pd) with P �= Pd, (5.2)

for some ε > 0. First we choose a unit vector e ∈ R
2 via the following lemma.

Lemma 5.2. There exists a unit vector e ∈ R
2 such that, for any local minimum

point Pd of φe along Γ 0
shock , e ·ν(Pd) < 0. In addition, Pd is a strict local minimum

point along Γ 0
shock in the following sense: For the unit tangent vector τ = τ (P)

to Γshock at P defined by (5.1), φeτ is strictly positive on Γshock near Pd in the
direction of τ , and φeτ is strictly negative on Γshock near Pd in the direction opposite
to τ . More precisely, in the coordinates from (5.1), there exists ε > 0 such that
TA < TPd − ε < TPd + ε < TB and

φeτ ( f (T ), T ) < 0 on (TPd − ε, TPd ),

φeτ ( f (T ), T ) > 0 on (TPd , TPd + ε). (5.3)

Proof. Recall thatφττ (Pd) = 0. Nowwe first use (3.15) at Pd with hν �= 0 by (3.6),
and then use the strictly elliptic equation (3.1) at Pd in the (S, T )–coordinates with
basis {ν(Pd), τ (Pd)} to obtain

φνν(Pd) = φντ (Pd) = φττ (Pd) = 0. (5.4)

For any unit vector e ∈ R
2, define a function g(·) ≡ g(e)(·) on Γ 0

shock by

g(e)(ξ) := (
ρ(c2 − ϕ2

ν )ϕν(e · τ ) + (ρϕ2
ν + ρ0c2)ϕτ (e · ν)

)
(ξ). (5.5)

Then, at any point of Γ 0
shock, we see from (3.15) with (3.5) that, for any unit vector

e ∈ R
2,

φeτ = φττ (e · τ ) + φτν(e · ν) = φττ g(e)
ρ(c2 − ϕ2

ν )ϕν
. (5.6)
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Notice that, from the expression of g(e)(·) and assumption (A3) of Theorem
2.1,

g(τ ) > 0, g(−τ ) < 0 on Γ 0
shock. (5.7)

Then we can choose a unit vector e such that e · ν < 0 and g(e) = 0 at Pd. We fix
this vector e for the rest of this proof. From (5.4), we have

ϕττ = ϕνν = −1, ϕντ = 0 at Pd. (5.8)

Below we use the (S, T )–coordinates from (5.1). From (2.17) and (5.1), we use
condition (A1) in Theorem 2.1 to obtain that φS > 0 on Γshock so that

τ = (−φT , φS)

|Dφ| , ν = − Dφ

|Dφ| .

Then we can use these expressions to define τ and ν in Ω near Γshock, which
allows to extend function g(e)(·) defined by expression (5.5) into this region. Since
φ ∈ C2(Ω ∪ Γ 0

shock), the extended τ , ν, and g(e)(·) are C1 up to Γ 0
shock. Then,

from (5.4), D(S,T )τ = 0 and D(S,T )ν = 0 at point Pd. Moreover, differentiating
(2.4) and (2.7), and using (5.4) yield that D(S,T )ρ = 0 and D(S,T )c2 = 0 at point
Pd. Therefore, differentiating (5.5), using (5.8), and writing g(·) for g(e)(·), we
have

gτ (Pd) = −(e · ν)(ρϕ2
ν + ρ0c2)

∣
∣
∣

Pd
> 0.

Then, by (5.1),

dg( f (T ), T )

dT

∣
∣
∣
T =TPd

=
√

( f ′(TPd ))
2 + 1 gτ (Pd) > 0.

Thus, g( f (T ), T ) < 0 on (TPd − ε, TPd ) and g( f (T ), T ) > 0 on (TPd , TPd + ε)

for some ε > 0. By (5.2) and (5.6), the same is true for φeτ .
Then Pd is a local minimum point of φe along Γshock, and φeτ has the properties

asserted. ��
Remark 5.3. The unit vector e is not necessarily in the cone introduced in condition
(A5) of Theorem 2.1.

Lemma 5.4. Pd is not a local minimum point of φe with respect to Ω .

Proof. If Pd is a local minimum point, it follows from Lemma 3.1 and e ·ν(Pd) < 0
that φττ (Pd) > 0, which contradicts to the fact that φττ (Pd) = 0. ��

Now we consider a minimal chain starting at Pd. In the following argument,
we use the (S, T )–coordinates in (5.1).

To choose the radius for this chain, we note the following:

Lemma 5.5. There exist points P±
d ∈ Γ 0

shock such that

(i) Pd lies on Γshock strictly between P+
d and P−

d :

TA < TP−
d

< TPd < TP+
d

< TB;
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(ii) Denoting by Γshock[P, Q] the segment of Γshock with endpoints P and Q, then

φe(Pd) < φe(P) < φe(P−
d ) if P ∈ Γshock[P−

d , Pd] \ {P−
d , Pd},

φe(Pd) < φe(P) < φe(P+
d ) if P ∈ Γshock[P+

d , Pd] \ {P+
d , Pd}; (5.9)

(iii) e · ν(P) < 0 for all P ∈ Γshock[P−
d , P+

d ].
Proof. Recall the definition of τ in (5.1). Then we use (5.3) in Lemma 5.2 to find
that, for ε > 0 defined there,

dφe( f (T ), T )

dT

{
< 0 if T ∈ (TPd − ε, TPd ),

> 0 if T ∈ (TPd , TPd + ε).

Thus, for points P±
d := ( f (TPd ±ε), TPd ±ε), assertions (i)–(ii) hold. Furthermore,

since e · ν < 0 at Pd, then, reducing ε if necessary, we obtain property (iii). ��
Denote

δ = min
{

max
P∈Γshock[P−

d , Pd]
φe(P), max

P∈Γshock[Pd, P+
d ]

φe(P)
} − φe(Pd). (5.10)

Note that δ > 0 by (5.9). Now let r1 be constant r∗
1 from Lemma 3.15 determined

by δ from (5.10).
By Lemmas 3.14 and 5.4, there exists a minimal chain with radius r1 which

starts at Pd. Denote its endpoint by Ck . Then

Ck ∈ ∂Ω, (5.11)

and Ck is a local minimum point of φe relative to Ω . Moreover,

φe(Pd) > φe(C
k). (5.12)

Now we consider case by case all parts of the decomposition

∂Ω = Γshock

⋃ ( 3⋃

i=0

Γ̂i
)

defined in Framework (A)(iii) and assumption (A7) of Theorem 2.3, and show that
Ck cannot lie on the corresponding part. Eventually, we reach a contradiction by
showing that Ck cannot lie anywhere on ∂Ω .

In the proof below, we note the following:

Remark 5.6. We use condition (A10) of Theorem 2.3 only in the proof of Lemma
5.10. The other conditions of Theorem 2.3 to be used in the proof below include
Framework (A), conditions (A1)–(A6) of Theorem 2.1, and (A7)–(A9) of Theorem
2.3. These conditions are symmetric for Γ̂0 and Γ̂3, for Γ̂1 and Γ̂2, and for points A
and B. Also, δ in (5.10) is defined in a symmetric way with respect to the change of
direction of T in (5.1). This allows without loss of generality to make a particular
choice between points A and B, and the corresponding boundary segments in order
to fix the notations, as detailed in several places below.
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minimal chain

maximal chain

Fig. 4. Proof of Claim 5.7.1

Now we consider all the cases for the location of Ck on ∂Ω .

Lemma 5.7. Ck /∈ Γ̂0 ∪ Γ̂3.

Proof. On the contrary, if Ck ∈ Γ̂0 ∪ Γ̂3, we now show in the next four steps that
it leads to a contradiction.

1. We first fix the notations. In this proof, we do not use condition (A10) of
Theorem 2.3. Thus, as discussed in Remark 5.6, we can assume without loss of

generality that Ck ∈ Γ̂3 and B = Γshock ∩ Γ̂3.

From (5.12) and condition (A8) of Theorem 2.3,

φe(Pd) > φe(C
k) = φe(B). (5.13)

We now prove Lemma 5.7 by showing the two claims below: Claims 5.7.1–
5.7.2.

2. Claim 5.7.1. It is impossible that e · ν(B) ≤ 0 at B; see Fig. 4 for the
illustration of the argument below.

We first show that, if e ·ν(B) ≤ 0, then, since e ·ν(Pd) < 0, the strict convexity
of Γshock (as in Lemma 4.13) and the graph structure (5.1) imply that ν · e < 0
at any point lying strictly between Pd and B along Γshock. Indeed, using (5.1) and
writing e = (e1, e2) in the (S, T )–coordinates, we have

ν(P) · e = f ′(T )e2 − e1√
( f ′(T ))2 + 1

for P = ( f (T ), T ). (5.14)

Thus,

f ′(TPd )e2 − e1 < 0, f ′(TB)e2 − e1 ≤ 0.

Using f ′′(T ) ≤ 0 and Lemma 4.13, we have

f ′(TPd ) < f ′(T ) < f ′(TB) for all T ∈ (TPd , TB).
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Then it follows that

f ′(T )e2 − e1 < 0 if T ∈ [TPd , TB).

Therefore, we have

ν( f (T ), T ) · e < 0 for all T ∈ [TPd , TB). (5.15)

Now we show that (5.15) leads to a contradiction. Let P1 ∈ Γshock[Pd, B] be
such that

φe(P1) = max
P∈Γshock[Pd, B] φe(P). (5.16)

Since Γshock[Pd, P+
d ] ⊂ Γshock[Pd, B] by Lemma 5.5(i), we obtain from (5.10)

that
φe(P1) ≥ φe(Pd) + δ, (5.17)

so that P1 �= Pd. Also, by (5.13) and (5.17), we see that P1 �= B. Thus, ν(P1)·e < 0
by (5.15). Now, by Lemma 5.1, P1 cannot be a local maximum point of φe relative
toΩ . Therefore, by Lemma 3.14, there exists a maximal chain of radius r1, starting
from P1 and ending at some point P2 ∈ ∂Ω which is a local maximumpoint relative
to Ω , and φe(P1) < φe(P2).

Next, we show that

P2 lies on Γ 0
shock strictly between Pd and B. (5.18)

Indeed, recall that there exists a minimal chain of radius r1 from Pd to Ck ∈ Γ̂3.
Also, P1 lies on Γ 0

shock strictly between Pd and B. Then, from (5.17) and the choice
of r1 (see the lines after (5.10)), we obtain from Lemma 3.15 that either (5.18)

holds or P2 lies on Γ̂3 between B and Ck (possibly including B). However, we use

condition (A8) of Theorem 2.3, (5.13), and (5.17) to obtain that, for any P ∈ Γ̂3,

φe(P) = φe(B) < φe(Pd) < φe(P1) < φe(P2),

which implies that P2 �= P . This proves (5.18).
However, (5.18) contradicts (5.16) since φe(P1) < φe(P2). Now Claim 5.7.1 is

proved.

3.Claim5.7.2. It is impossible that e·ν(B) > 0; see Figs. 5–6 for the illustration
of the argument below.

If e ·ν(B) > 0, then, using e ·ν(Pd) < 0, there exists a point P0 ∈ Γshock[Pd, B]
so that e · ν(P0) = 0.

Then, from (5.14),

−e1 + f ′(T )e2 = 0 at T = TP0 .

Now, since f ′′(T ) ≤ 0 by the convexity of Γshock, we use Lemma 4.13 to find that
the function: T → −e1 + f ′(T )e2 is strictly monotone on (TA, TB), which implies
that point P0 is unique.
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Fig. 5. Proof of Claim 5.7.2: The initial step of the iteration procedure

Recall that e ·ν(Pd) < 0 and e ·ν(P0) = 0. Then, following the proof of (5.15),
we have

ν( f (T ), T ) · e < 0 for all T ∈ [TPd , TP0). (5.19)

Similarly, using e · ν(P0) = 0 and e · ν(B) > 0, and arguing similar to the proof of
(5.15), we have

ν( f (T ), T ) · e > 0 for all T ∈ (TP0 , TB]. (5.20)

From (5.19)–(5.20) and Lemma 5.1, we conclude that

If P ∈ ∂Ω is a local maximum (resp. minimum) point of φe relative

to Ω, then P /∈ (Γshock[Pd, P0])0(resp. P /∈ (Γshock[P0, B])0). (5.21)

Next, since e · ν(P0) = 0, then e = ±τ (P0). Moreover, by (5.1), we have

ν(Pd) · τ (P0) = f ′(TPd ) − f ′(TP0)√(
( f ′(TPd ))

2 + 1
)(

( f ′(TP0))
2 + 1

) ≥ 0,

because f ′′(T ) ≤ 0 and TPd ≤ TP0 ≤ TB . Then, since ν(Pd) · e < 0, we conclude

e = −τ (P0). (5.22)

With this, recalling that φττ ≥ 0 on Γshock, we use (5.6)–(5.7) and Lemma 4.13 to
obtain the existence of two points P−

0 and P+
0 such that P±

0 = ( f (TP±
0

), TP±
0

) ∈
Γshock([Pd, B])0 and

TPd < TP−
0

< TP0 < TP+
0

< TB, (5.23)
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φeτ (P) < 0 for all P ∈ Γshock[P−
0 , P+

0 ] and P �= P0. (5.24)

Then there exists δ̂ > 0 such that

φe(P−
0 ) − δ̂ ≥ φe(P0) ≥ φe(P+

0 ) + δ̂. (5.25)

Moreover, combining (5.21) with (5.24), we conclude

If P ∈ ∂Ω is a local maximum (resp. minimum) point of φe relative

to Ω, then P /∈ Γshock[Pd, P+
0 ] \ {Pd}(resp. P /∈ Γshock[P−

0 , B] \ {B}). (5.26)

Note that (5.26) improves (5.21), which follows from (5.23).
Let P1 ∈ Γshock[Pd, P0] such that

φe(P1) = max
P∈Γshock[Pd, P0]

φe(P).

By Lemma 5.5(i)–(ii) and (5.10),

TPd < TP+
d

≤ TP1, φe(P1) ≥ φe(Pd) + δ.

Moreover, from (5.23) and (5.25), we obtain

φe(P1) ≥ φe(P−
0 ) ≥ φe(P0) + δ̂.

Also, by (5.24), TP1 ≤ TP−
0
. Combining all these facts, we have

TPd < TP+
d

≤ TP1 ≤ TP−
0

, (5.27)

φe(P1) ≥ φe(Pd) + δ, φe(P1) ≥ φe(P0) + δ̂. (5.28)

From (5.26) with (5.23) and (5.27), P1 cannot be a local maximum point of φe with
respect to Ω .

Therefore, by Lemma 3.14, we can construct a maximal chain of any radius
r2 ∈ (0, r1] starting from P1. We choose r2 so that it works in the argument below.
For this, we use constant δ̂ from (5.25), choose r̃2 the smaller constant r∗

1 from
Lemmas 3.15–3.17 determined by δ̂, and then define

r2 := min{r1, r̃2}.
Fix amaximal chain of radius r2 starting from P1. It ends at some point P2 ∈ ∂Ω

that is a local maximum point of φe relative to Ω . Moreover, by (5.28), φe(P1) ≥
φe(Pd)+ δ; that is, (5.17) holds in the present case. Since r2 ≤ r1, then the proof of
(5.18) works in the present case so that P2 lies on Γ 0

shock strictly between Pd and B.
Since P2 is a local maximum point of φe relative to Ω , we obtain from (5.26) with
(5.23) that P2 lies strictly between P+

0 and B on Γshock. Combining with (5.28),
we have

TP2 ∈ (TP+
0

, TB) ⊂ (TP0 , TB), φe(P2) > φe(P1) > φe(P0). (5.29)
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Fig. 6. Proof of Claim 5.7.2: The k-th step of the iteration procedure

Let P3 be such that

TP3 ∈ [TP0 , TP2 ], φe(P3) = min
TP∈[TP0 ,TP2 ] φe(P).

By (5.24)–(5.25) and (5.28)–(5.29),

TP3 ∈ (TP+
0

, TP2 ], (5.30)

φe(P3) < φe(P+
0 ) ≤ φe(P0) − δ̂ < φe(P1) − δ̂ < φe(P2) − δ̂. (5.31)

Then, from (5.26) combined with (5.23) and (5.29), P3 cannot be a local minimum
point of φe relative to Ω .

Therefore, there exists a minimal chain of radius r2 starting from P3 and ending
at P4 ∈ ∂Ω . Recall that there exists a maximal chain of radius r2 from P1 to P2.
Also, it follows from (5.31) that P3 �= P2 so that P3 lies in (Γshock[P1, P2])0.
Moreover, φe(P3) ≤ φe(P1) − δ̂ by (5.31). Using the choice of r2 and Lemma
3.17, we conclude that P4 ∈ (Γshock[P1, P2])0 and is a local minimum point of
φe relative to Ω . Then, from (5.26) combined with (5.23), (5.27), and (5.29), we
obtain

P4 ∈ (Γshock[P1, P−
0 ])0. (5.32)

Moreover, combining the facts about the locations of points discussed above
together, we have

TPd < TP+
d

≤ TP1 < TP4 < TP−
0

< TP+
0

< TP3 < TP2 < TB . (5.33)

Nowwe follow the previous argument for defining points P1,…, P4 inductively
to construct points P4k+1, …, P4k+4 for k = 1, 2, . . . , as follows (cf. Fig. 6):

Fix integer k ≥ 1 and assume that points P4k−1 and P4k have been constructed
with the following properties:

P4k−1 ∈ (Γshock[P+
0 , B])0, P4k ∈ (Γshock[Pd, P−

0 ])0, (5.34)

φe(P4k−1) ≤ φe(P0) − δ̂, (5.35)

There exists a minimal chain of radius r2 from P4k−1 to P4k . (5.36)
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From (5.23), it follows that (5.34) can be written as

TPd < TP4k < TP−
0

< TP0 < TP+
0

< TP4k−1 < TB . (5.37)

We first notice that, for k = 1, points P3 = P4k−1 and P4 = P4k satisfy
conditions (5.34)–(5.36). Indeed, for (5.34), the first inclusion follows from (5.30)
combined with (5.29), while the second inclusion follows from (5.32) combined
with (5.27). Property (5.36) for P3 and P4 follows directly from the definition of
these points above, and (5.35) for P3 follows from (5.31). Thus, we have the starting
point for the induction.

Now, for k = 1, 2, . . . , given P4k−1 and P4k , we construct P4k+1, …, P4k+4.
Choose

P4k+1 ∈ Γshock[P4k, P0] so that φe(P4k+1) = max
P∈Γshock[P4k ,P0]

φe(P).

Combining (5.25) with (5.35)–(5.37), we obtain

φe(P4k+1) ≥ φe(P−
0 ) ≥ φe(P0) + δ̂ ≥ φe(P4k−1) + 2δ̂ > φe(P4k) + 2δ̂. (5.38)

In particular, P4k+1 �= P4k . Then, from (5.24) and (5.37),

TP4k+1 ∈ (TP4k , TP−
0

). (5.39)

From (5.26),

P4k+1 is not a local maximum point of φe relative to Ω. (5.40)

Thus, there exists a maximal chain of radius r2 starting at P4k+1 and ending at some
point P4k+2 ∈ ∂Ω , which is a local maximum point of φe relative to Ω . Moreover,

φe(P4k+2) > φe(P4k+1). (5.41)

By (5.38), φe(P4k+1) ≥ φe(P4k−1)+2δ̂. With this, using (5.36)–(5.37), (5.39),
the choice of r2, and Lemma 3.15, we obtain

P4k+2 ∈ (Γshock[P4k, P4k−1])0.
Since P4k+2 is a local maximum point of φe relative to Ω , we use (5.26) and (5.37)
to obtain

TP4k+2 ∈ (TP+
0

, TP4k−1). (5.42)

Now choose

P4k+3 ∈ Γshock[P0, P4k+2] so that φe(P4k+3) = min
P∈Γshock[P0,P4k+2]

φe(P).

Note that TP+
0

∈ (TP0 , TP4k+2) by (5.37) and (5.42). Then, from the definition of
P4k+3, (5.25), and (5.38),

φe(P4k+3) ≤ φe(P+
0 ) ≤ φe(P0) − δ̂ ≤ φe(P4k+1) − 2δ̂. (5.43)
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By (5.41) and (5.43), φe(P4k+3) < φe(P4k+2) so that P4k+3 �= P4k+2. Also, by
(5.23)–(5.24), P4k+3 /∈ Γshock[P0, P+

0 ]. Then, using (5.39), we have
TP4k+3 ∈ (TP+

0
, TP4k+2) ⊂ (TP4k+1, TP4k+2). (5.44)

In particular, TP4k+3 ∈ (TP0 , TB). Thus, by (5.26) and (5.37), TP4k+3 is not a
local minimum point of φe relative to Ω . Then there exists a minimal chain of
radius r2 starting at P4k+3 and ending at some point P4k+4 ∈ ∂Ω that is a local
minimum point of φe relative to Ω . Since there exists a maximal chain of radius
r2 from P4k+1 to P4k+2, we use (5.43)–(5.44) and Lemma 3.17 to conclude that
P4k+4 ∈ (Γshock[P4k+1, P4k+2])0. Since P4k+4 is a local minimum point of φe
relative to Ω , we use (5.26), (5.37), and (5.39) to obtain

TP4k+4 ∈ (TP4k+1 , TP−
0

) ⊂ (TPd , TP−
0

). (5.45)

From (5.44) combined with (5.37) and (5.42), TP4k+3 ∈ (TP+
0

, TB). From this and
(5.45), we see that points P4k+3 and P4k+4 satisfy (5.34) with k + 1 instead of k.
Also, from (5.37), (5.39), and (5.45),

TPd < T4k < TP4k+4 < TP−
0

. (5.46)

Therefore, we obtain local minimum points P4k ∈ Γ 0
shock, k = 1, 2, . . . , of φe

which satisfy (5.46) for each k. Then there exists a limit P∗ = limk→∞ P4k with
TP∗ ∈ [TPd , TP−

0
], which implies

P∗ ∈ Γ 0
shock.

Since P4k ∈ Γshock is a local minimum point of φe, ∂τφe(P4k) = 0, so that

dφe( f (T ), T )

dT

∣
∣
∣
T =TP4k

= 0 for k = 1, 2, . . . .

From this, since {TP4k } is a strictly increasing sequence by (5.46), we obtain

dnφe( f (T ), T )

dT n

∣
∣
∣
T =TP∗

= 0 for n = 1, 2, . . . . (5.47)

The analyticity of functions φe and f (T ), shown in Lemma 3.5, implies that the
function: T �→ φe( f (T ), T ) is real analytic on (TA, TB). Then we conclude from
(5.47) that φe( f (T ), T ) ≡ const. on (TA, TB). By (5.22), we see that e = −τ (P0),
so that φe(P0) = φτ (P0) = 0, where the last equality holds by the first condition
in (2.17). That is,

φe ≡ 0 on Γshock.

Then, using that φτ ≡ 0 along Γshock by the first condition in (2.17) and that
e · ν < 0 at Pd by Lemma 5.2, we obtain that Dφ = 0 at Pd. This, combined with
(2.21) and the first condition in (2.17), implies that ρ = ρ0 at Pd, which contradicts
condition (A1) of Theorem 2.1. Therefore, Claim 5.7.2 is proved.
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4. Combining Claim 5.7.1 with Claim 5.7.2, we finally conclude Lemma 5.7.

��
Lemma 5.8. Ck /∈ Γ̂ 0

i for i = 1, 2.

Proof. SinceCk is a localminimumpoint ofφe, then condition (A9) of Theorem2.3

and the regularity property φ ∈ C1,α(Ω) imply that φe = const. on Γ̂i . Combining

this with (A7)–(A8), we obtain that φe = const. on Γ̂0 ∪ Γ̂1 (resp. on Γ̂2 ∪ Γ̂3) if
i = 1 (resp. i = 2), where one or both of Γ̂0 and Γ̂3 may be empty. Then, following

Remark 5.6, we can assume without loss of generality that Ck ∈ Γ̂2 (i.e., i = 2).

In this case, B ∈ Γ̂2 ∪ Γ̂3 so that φe(P) = φe(B) for any P ∈ Γ̂2 ∪ Γ̂3. From this
and (5.12), we obtain that (5.13) holds in the present case.

Then we are in the same situation as in Lemma 5.7. Therefore, the proof of
Lemma 5.7 applies, which yields a contradiction. ��
Remark 5.9. Combining Lemmas 5.7–5.8, we obtain that, if condition (i) of
assumption (A10) holds, the only remaining possible location of Ck is on Γshock.
On the other hand, if condition (ii) of assumption (A10) holds, then the remaining
possible locations of Ck are either on Γshock or at the common endpoint Q∗ of Γ̂1
and Γ̂2.

Lemma 5.10. Assume that condition (ii) of assumption (A10) holds, and let Q∗ be
the point defined there. Then Ck �= Q∗.

Proof. Assume Ck = Q∗. If φe attains a local minimum or maximum relative toΩ

on Γ̂ 0
2 , then condition (A9) of Theorem2.3 and the regularity propertyφ ∈ C1,α(Ω)

imply that φe = const. on Γ̂2. Since B ∈ Γ̂2 by condition (ii) of assumption (A10),

we obtain that φe(P) = φe(B) for all P ∈ Γ̂2. Because of Ck = Q∗ ∈ Γ̂2, we can
complete the proof as in Lemma 5.8 above.

Thus, we can assume that

φe does not attain its local minimum or maximum relative to Ω on Γ̂ 0
2 . (5.48)

Then we consider three cases, depending on whether e ·νsh(B) is positive, negative,
or zero. In the argument, we take into account that Γ̂3 = ∅ by condition (ii) of (A10)
so that Γ̂2 has endpoints Q∗ and B.

If e ·νsh(B) < 0, then we argue similar to the proof of Claim 5.7.1, replacing Γ̂3
by Γ̂2, with the differences described below. First, we show (5.15) without changes
in the argument. Next, we choose P1 ∈ Γshock[Pd, B] satisfying (5.16) so that
the proof of (5.17) holds without changes in the present case, which implies that
P1 �= Pd. However, since (5.13) is not available in the present case, we cannot
conclude that P1 �= B. That is, we now obtain that P1 ∈ Γshock[Pd, B] \ {Pd}.
If P1 ∈ (Γshock[Pd, B])0, then, by (5.15) and Lemma 5.1, P1 cannot be a local
maximum point of φe relative to Ω . If P1 = B, then the same conclusion follows
from condition (ii) of (A10) since e · νsh(B) < 0. Thus, there exists a maximal
chain of radius r2, starting from P1 and ending at some point P2 ∈ ∂Ω which is a
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local maximum point relative to Ω , and φe(P1) < φe(P2). Now, instead of (5.18),
we show a weaker statement,

P2 ∈ Γshock[Pd, B]. (5.49)

To prove (5.49), recall that there exists a minimal chain of radius r1 from Pd to

Ck = Q∗ ∈ Γ̂2. Also, P1 ∈ Γshock[Pd, B] \ {Pd}. Then, from (5.17) and the choice
of r2, we obtain from Lemma 3.15 that either (5.49) holds or P2 lies on Γ 0

2 between
B and Ck . On the other hand, the last case is ruled out by (5.48) since P2 is a local
maximum point of φe relative toΩ . Thus, (5.49) holds. However, (5.49) contradicts
(5.16) since φe(P1) < φe(P2). Therefore, we reach a contradiction in the case that
e · ν(B) < 0.

If e · ν(B) = 0, we use condition (ii) of (A10) and the fact that Ck = Q∗ to
conclude

φe(Pd) > φe(C
k) = φe(Q∗) = φe(B),

which implies (5.13). Now we follow the argument of the proof of Claim 5.7.1
via replacing Γ̂3 by Γ̂2, up to (5.18). Instead of (5.18), we can show (5.49) whose
proof, given above, still works in the present case without changes. Then, as shown
above, (5.49) contradicts (5.16). Therefore, we reach a contradiction in the case
that e · ν(B) = 0.

If e · ν(B) > 0, then we argue as in Claim 5.7.2, via replacing Γ̂3 by Γ̂2, and
with modifications similar to the ones described above. Specifically, (5.48) is used
to conclude that P2 /∈ Γ̂ 0

2 . From this, we conclude that P2 lies on Γshock between
P+
0 and B, possibly including B. However, we now cannot rule out the possibility

that P2 = B as in the proof of Claim 5.7.2 (again, since (5.13) is not available).
Thus, instead of (5.29), we have

TP2 ∈ (TP+
0

, TB] ⊂ (TP0 , TB], φe(P2) > φe(P1) > φe(P0). (5.50)

From this, using (5.24)–(5.25) and (5.28), it follows that (5.30)–(5.31) hold. From
(5.31), P3 �= P2, and then (5.30) implies that

TP3 ∈ (TP+
0

, TP2) ⊂ (TP0 , TB).

Then, from (5.26) combined with (5.23), P3 cannot be a local minimum point of
φe relative to Ω . Thus, there exists a minimal chain of radius r2 starting from P3.
The rest of the proof of Claim 5.7.2 applies without changes. Therefore, we obtain
a contradiction in the case that e · ν(B) > 0. This completes the proof. ��
Remark 5.11. Combining Lemmas 5.8 and 5.10, we obtain that, if condition (ii)
of assumption (A10) holds, then Ck cannot lie within Γ̂ 0

1 ∪{Q∗}∪ Γ̂ 0
2 . Combining

this with Lemma 5.7, we see that, if condition (ii) of assumption (A10) holds, the
only remaining possible location of Ck is at Γshock.

From Remarks 5.9 and 5.11, in order to complete the proof of Theorem 2.3, it
remains to show
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Lemma 5.12. Ck /∈ Γshock .

Proof. The proof consists of two steps.

1. Recall that Γshock includes its endpoints A and B. Thus, we first consider the
case that Ck is either A or B. Note that Lemma 5.7 does not cover this case if either
Γ̂0 or Γ̂3, or both, are empty.

The argument below does not use condition (A10) of Theorem 2.3. Thus, as
discussed in Remark 5.6, we can assume without loss of generality that Ck = B.
Then, since there is a minimal chain from Pd to Ck = B, we conclude that (5.13)
holds. Now the proofs of Claims 5.7.1–5.7.2 apply, with the following simplifica-
tion: From Lemma 3.15 and the definition of point P2 in each of these claims, we
conclude that (5.18) holds. The rest of the proofs of Claims 5.7.1–5.7.2 work with-
out changes. Therefore, we reach a contradiction, which shows that Ck is neither
A nor B.

2. It remains to consider the case that Ck ∈ Γ 0
shock. Notice that Ck is a local

minimum point of φe. Then, from Lemma 5.1, we see that e · ν ≤ 0 at C1. Now
the argument as in Claim 5.7.1, with point B replaced by point Ck , works without
change. This yields a contradiction. Therefore, Ck /∈ Γ 0

shock. ��
Proof of Theorem 2.3. Combining Lemmas 5.7–5.8 with Lemma 5.12, we obtain
that Ck cannot lie on the set

G := Γ̂0 ∪ Γ 0
1 ∪ Γ 0

2 ∪ Γ̂3 ∪ Γshock.

Since Γshock includes its endpoints, G covers all ∂Ω except point Q∗ defined in
Case (ii) of (A10), if Q∗ exists. In Case (i) of (A10), point Q∗ does not exist, so
that G = ∂Ω , which implies that Ck /∈ ∂Ω . In Case (ii) of (A10), point Q∗ exists,
and Lemma 5.10 implies that Ck �= Q∗, so that Ck /∈ ∂Ω in this case as well.
However, the fact that Ck /∈ ∂Ω contradicts (5.11). This completes the proof of
Theorem 2.3. ��

6. Proof of Theorem 2.2: Equivalence Between the Strict Convexity and the
Monotonicity

Proof of Theorem 2.2. By the boundary condition (2.17), φτ = 0 on Γshock. Also,
by assumption (A1), φν < 0 on Γshock for the interior normal vector ν. Then the
monotonicity property φe > 0 in Γ 0

shock for any unit vector e ∈ Con implies that
assumption (A5) in Theorem 2.1 holds. Now it follows from Theorem 2.1 that,
under the assumptions of Theorem 2.2, the monotonicity property is the sufficient
condition for the strict convexity of the free boundary Γshock in the sense of (2.18)–
(2.19).

On the other hand, if the shock graph is strictly convex in the sense of Theorem
2.1, then, at any point on Γ 0

shock, the tangent vector τ is not in Con, where we have
used the strict convexity in the sense of (2.19) to have this property for the boundary
directions of the cone. Then, using again that φτ = 0 and φν < 0 onΓshock in (2.17)
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and condition (A1) in Theorem 2.1, it follows that φe > 0 on Γ 0
shock for any unit

vector e ∈ Con; that is, the monotonicity property holds. This completes the proof
of Theorem 2.2. ��
Proof of the Assertion in Remark 2.5. By equation (3.2) and condition (A3) in
Theorem 2.1, φe satisfies the strong minimum principle in Ω . This implies

φe > min{min
Γshock

φe, min
Γ1∪Γ2

φe} in Ω,

where we have used the assumption in Theorem 2.1 that φ is not a constant state.
Note that, by the assumption of Theorem 2.2, φe > 0 on Γshock, and φe on Γ1 ∪ Γ2
satisfies that either φe ≥ 0 or φe cannot attain its local minimum with respect to
Ω . Thus, φe > 0 in Ω ∪ Γ 0

shock. ��

7. Applications to Multidimensional Transonic Shock Problems

In this section, we apply Theorem 2.1 to prove the convexity of multidimen-
sional transonic shocks for two longstanding shock problems.

7.1. Shock Reflection–Diffraction Problem

When a plane incident shock hits a two-dimensional wedge, shock reflection–
diffraction configurations take shape; also see Chen-Feldman [14].

The wedge is of the shape: {|x2| < x1 tan θw} with θw ∈ (0, π
2 ). Then the

positive x1–axis is the symmetry axis of the wedge, the wedge vertex is at the
origin, and θw is the (half) angle of the wedge. The incident shock S0 separates two
constant states: state (0) with velocity v0 = (0, 0) and density ρ0 ahead of S0, and
state (1) with velocity v1 = (u1, 0) and density ρ1 behind S0, where ρ1 > ρ0, and
u1 > 0 is determined by (ρ0, ρ1, γ ) through the Rankine-Hugoniot conditions on
S0. The shock, S0, moves in the direction of the x1–axis and hits the wedge vertex
at the initial time. Also, the slip boundary condition: v · ν = 0 is prescribed on the
solid wedge boundary, where v is the velocity of gas. Since state (1) does not satisfy
the slip boundary condition, the shock reflection–diffraction configurations form
at later time, which are self-similar so that the problem can be reformulated in the
self-similar coordinates ξ = (ξ1, ξ2) = ( x1

t , x2
t ). Depending on the flow parameters

and wedge angle, there may be various patterns of shock reflection–diffraction
configurations, including Regular Reflection and Mach Reflection. Because of the
symmetry of the problem with respect to the ξ1–axis, it suffices to consider the
problem only on the upper half-plane {ξ2 > 0}.

The regular reflection configuration is characterized by the fact that the reflec-
tion occurs at the intersection point P0 of the incident shock with the wedge bound-
ary. Figure 7(a)–(b) show the structure of regular reflection configurations in self-
similar coordinates. The regular reflection solutions are piecewise-smooth; that is,
they are smooth away from the incident and reflected-diffracted shocks, as well as
the sonic circle P1P4 for the supersonic regular reflection case across which v is
only Lipschitz.
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From the description of state (1) above, its pseudo-potential is

ϕ1(ξ) = −|ξ |2
2

+ u1ξ1 + C1.

A necessary condition for the existence of piecewise-smooth regular reflection
configurations is the existence of the constant state (2)with pseudo-potentialϕ2 that
satisfies both the slip boundary condition on the wedge boundary and the Rankine-
Hugoniot conditions with state (1) across the reflected shock S1 := {ϕ1 = ϕ2}.
Owing to the constant state structure (2.10), it suffices to require these conditions
at P0. Thus, the conditions at P0 are

Dϕ2 · νw = 0,

ϕ2 = ϕ1,

ρ(|Dϕ2|2, ϕ2)Dϕ2 · νS1 = ρ1Dϕ1 · νS1 , (7.1)

where νw is the outward (with respect to the wedge) normal vector to the wedge
boundary, θw is the wedge angle in the upper half-plane, and νS1 = D(ϕ1−ϕ2)|D(ϕ1−ϕ2)| .
Therefore, we have three algebraic equations for parameters (u2, v2, C2) in expres-
sion (2.10) for ϕ2. Since the piecewise-smooth regular reflection solution must
satisfy (7.1) at P0 with ϕ replaced by ϕ2, then (ϕ, Dϕ) = (ϕ2, Dϕ2) at P0, if ϕ2
exists.

It is well-known (see e.g. [14, Chapter 7]) that, given the parameters of states
(0) and (1), there exists a detachment angle θdw ∈ (0, π

2 ) such that equations (7.1)
have two solutions for each wedge angle θw ∈ (θdw, π

2 ), which become equal when
θw = θdw. Thus, two types of two-shock configurations occur at P0 in the wedge
interval θw ∈ (θdw, π

2 ). For each such θw, state (2) with the smaller density is
called a weak state (2). The global existence of regular reflection solutions for
all θw ∈ (θdw, π

2 ) with (ϕ, Dϕ) at P0 determined by the weak states (2) has been
established in [13,14]. Below, state (2) always refers to the weak state (2).

If state (2) exists, its pseudo-potential is

ϕ2(ξ) = −|ξ |2
2

+ u2ξ1 + v2ξ2 + C2,

where v2 = u2 tan θw. In particular, state (2) satisfies the first condition in (7.1) on
the whole wedge boundary (in the upper half-plane {ξ2 > 0}):

Dϕ2 · νw = 0 on {ξ2 = ξ1 tan θw, ξ1 > 0}. (7.2)

Depending on the wedge angle, state (2) can be either supersonic or subsonic at
P0. Moreover, for θw near π

2 (resp. for θw near θdw), state (2) is supersonic (resp.
subsonic) at P0; see [14, Chapter 7]. The type of state (2) at P0 for a given wedge
angle θw determines the type of reflection, supersonic or subsonic, as shown in Fig.
7(a) or 7(b) respectively, when u1 < c1.

When u1 > c1, besides the configurations shown in Fig. 7(a)–(b), there is an
additional possibility that the reflected-diffracted shock is attached to the wedge
vertex P3, i.e., P2 = P3; see Fig. 8(a)–(b).
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(a) (b)

Fig. 7. (a) Supersonic regular reflection; (b) Subsonic regular reflection

(b)(a)

Fig. 8. (a) Attached supersonic regular reflection; (b) Attached subsonic regular reflection

The regular reflection problem is posed in the region:

Λ = R
2+ \ {ξ : ξ1 > 0, 0 < ξ2 < ξ1 tan θw},

where R2+ := R
2 ∩ {ξ1 > 0}.

Definition 7.1. ϕ ∈ C0,1(Λ) is a weak solution of the shock reflection–diffraction
problem if ϕ satisfies equation (2.5) in Λ, the boundary conditions:

∂νϕ = 0 on ∂Λ (7.3)

in the weak sense (defined below), and the asymptotic conditions:

lim
R→∞ ‖ϕ − ϕ‖0,Λ\BR(0) = 0, (7.4)

where

ϕ̄ =
{

ϕ0 for ξ1 > ξ01 , ξ2 > ξ1 tan θw,

ϕ1 for ξ1 < ξ01 , ξ2 > 0,

and ξ01 > 0 is the location of the incident shock S0.
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In Definition 7.1, the solution is understood in the following weak sense: We
consider solutions with a positive lower bound for the density, so that (7.3) is
equivalent to the conormal condition

ρ(|Dϕ|2, ϕ)∂νϕ = 0.

Thus, a weak solution of problem (2.5) and (7.3) is given by Definition 2.1 in
region Λ, with the following change: (2.11) is satisfied for any ζ ∈ C∞

c (R2)

(whose support does not have to be in Λ).
Next, we define the points and lines on Fig. 7(a)–(b). The incident shock is line

S0 := {ξ1 = ξ01 } with ξ01 = ρ1u1
ρ1−ρ0

> 0. The center, O2 = (u2, v2), of the sonic
circle Bc2(O2) of state (2) lies on the wedge boundary between the reflection point
P0 and the wedge vertex P3 for both the supersonic and subsonic cases.

Then, for the supersonic case, i.e., when |Dϕ2(P0)| = |P0O2| > c2 with
P0 /∈ Bc2(O2), we denote by P4 the upper point of intersection of ∂ Bc2(O2) with
the wedge boundary so that O2 ∈ P3P4. Also, ∂ Bc2(O2) of state (2) intersects
line S1, and one of the points of intersection, P1 ∈ Λ, is such that segment P0P1 is
outside Bc2(O2). We denote the arc of ∂ Bc2(O2) byΓsonic = P1P4. The curved part
of the reflected-diffracted shock is Γshock = P1P2, where P2 ∈ {ξ2 = 0}. Denote
the line segments Γsym := P2P3 and Γwedge := P3P4. The lines and curves Γshock,
Γsonic, Γsym, and Γwedge do not have common points, except their endpoints P1, …,
P4. Thus, Γshock∪Γsonic∪Γsym∪Γwedge is a closed curve without self-intersection.
Denote by Ω the domain bounded by this curve.

For the subsonic/sonic case, i.e., when |Dϕ2(P0)| = |P0O2| ≤ c2 so that P0 ∈
Bc2(O2), the curved reflected-diffracted shock is Γshock = P0P2 that does not have
common interior points with the line segments Γsym = P2P3 and Γwedge = P0P3.
Then Γshock ∪ Γsym ∪ Γwedge is a closed curve without self-intersection, and Ω is
the domain bounded by this curve.

Furthermore, in some parts of the argument below, it is convenient to extend
problem (2.5) and (7.3), given inΛby even reflection about the ξ1–axis, i.e., defining
ϕext(−ξ1, ξ2) := ϕ(ξ1, ξ2) for any ξ = (ξ1, ξ2) ∈ Λ. Then ϕext is defined in region
Λext obtained fromΛ by adding the reflected regionΛ−, i.e.,Λext = Λ∪{(ξ1, 0) :
ξ1 < 0} ∪ Λ−. In a similar way, region Ω and curve Γshock ⊂ ∂Ω can be extended
into the corresponding region Ωext and curve Γ ext

shock ⊂ ∂Ωext.
Now we define a class of solutions, with structure as shown on Fig. 7(a)–(b).

Definition 7.2. Let θw ∈ (θdw, π
2 ). A functionϕ ∈ C0,1(Λ) is an admissible solution

of the regular reflection problem (2.5) and (7.3)–(7.4) if ϕ is a solution in the sense
of Definition 7.1 and satisfies the following properties:

(i) The structure of solutions is as follows:
– If |Dϕ2(P0)| > c2, then ϕ is of the supersonic regular shock reflection–
diffraction configuration shown on Fig. 7(a) and satisfies:
The reflected-diffracted shock Γshock is C2 in its relative interior. Curves
Γshock, Γsonic, Γwedge, and Γsym do not have common points except their
endpoints.
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ϕ satisfies the following properties:

ϕ ∈ C0,1(Λ) ∩ C1(Λ \ (S0 ∪ P0P1P2)),

ϕ ∈ C1(Ω) ∩ C3(Ω \ (Γsonic ∪ {P2, P3})),

ϕ =
⎧
⎨

⎩

ϕ0 for ξ1 > ξ01 and ξ2 > ξ1 tan θw,

ϕ1 for ξ1 < ξ01 and above curve P0P1P2,

ϕ2 in region P0P1P4.

(7.5)

– If |Dϕ2(P0)| ≤ c2, then ϕ is of the subsonic regular shock reflection–
diffraction configuration shown on Fig. 7(b) and satisfies:
The reflected-diffracted shock Γshock is C2 in its relative interior. Curves
Γshock,Γwedge, andΓsym do not have common points except their endpoints.
ϕ satisfies the following properties:

ϕ ∈ C0,1(Λ) ∩ C1(Λ \ Γshock),

ϕ ∈ C1(Ω) ∩ C3(Ω \ {P0, P2, P3}),

ϕ =
⎧
⎨

⎩

ϕ0 for ξ1 > ξ01 and ξ2 > ξ1 tan θw,

ϕ1 for ξ1 < ξ01 and above curve P0P2,

ϕ2(P0) at P0,

Dϕ(P0) = Dϕ2(P0). (7.6)

Furthermore, in both supersonic and subsonic cases,

Γ ext
shock is C1 in its relative interior. (7.7)

(ii) Equation (2.5) is strictly elliptic in Ω \ Γsonic:

|Dϕ| < c(|Dϕ|2, ϕ) in Ω \ Γsonic,

where, for the subsonic and sonic cases, we have used notation Γsonic = {P0}.
(iii) ∂νϕ1 > ∂νϕ > 0 on Γshock, where ν is the normal vector to Γshock pointing into

Ω .
(iv) ϕ2 ≤ ϕ ≤ ϕ1 in Ω .
(v) Let eS1 be the unit vector parallel to S1 := {ϕ1 = ϕ2}, oriented so that eS1 ·

Dϕ2(P0) > 0:

eS1 = − (v2, u1 − u2)√
(u1 − u2)2 + v22

. (7.8)

Let eξ2 = (0, 1). Then

∂eS1
(ϕ1 − ϕ) ≤ 0, ∂ξ2(ϕ1 − ϕ) ≤ 0 on Γshock. (7.9)

Below we continue to use the notational convention

Γsonic := {P0}, P1 := P0, P4 := P0 for the subsonic and sonic cases. (7.10)
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Remark 7.3. Since the admissible solution ϕ in Definition 7.2 is a weak solution
in the sense of Definition 7.1 and has the regularity as in Definition 7.2(i), it sat-
isfies (2.16) classically in Ω with φ = ϕ − ϕ1, the Rankine-Hugoniot conditions

ϕ = ϕ1, ρ(|Dϕ|2, ϕ)Dϕ · ν = ρ1Dϕ1 · ν on Γshock, (7.11)

and the boundary conditions

∂νϕ = 0 on Γwedge ∪ Γsym. (7.12)

Note also that, rewriting (7.12) in terms of φ = ϕ − ϕ1, we have

∂νφ = −u1 sin θw on Γwedge,

∂νφ = 0 on Γsym. (7.13)

Remark 7.4. An admissible solution ϕ is not a constant state in Ω (recall that
θw < π

2 ). Indeed, if ϕ is a constant state inΩ , then ϕ = ϕ2 inΩ: This follows from
(7.5) for the supersonic case since ϕ is C1 across Γsonic, and from the property that
(ϕ, Dϕ) = (ϕ2, Dϕ2) at P0 for the subsonic case. However, ϕ2 does not satisfy
(7.12) on Γsym since v2 = (u2, v2) = (u2, u2 tan θw)with u2 > 0 and θw ∈ (0, π

2 ).

Remark 7.5. Let ϕ be an admissible solution and φ := ϕ − ϕ1. For a unit vector
e ∈ R

2, denote

w = φe.

Then, from the regularity in Definition 7.2(i),

w ∈ C(Ω) ∩ C2(Ω \ (Γsonic ∪ {P3})),

where we have used (7.10) for the subsonic and sonic cases.
We first notice that w satisfies equation (3.2) in the (S, T )–coordinates with

basis {e, e⊥}. Equation (3.2) has the same coefficients of the second-order terms as
equation (2.6), so that (3.2) is strictly elliptic in Ω \ Γsonic by Definition 7.2(ii).

Furthermore, by [14, Lemma 5.1.3], w satisfies the following boundary condi-
tions on the straight segments Γwedge and Γsym: If e ·τ �= 0 for a unit tangent vector
τ on Γwedge (resp. Γsym), then

wν + (e · ν)(c2 − ϕ2
τ )

(e · τ )(c2 − ϕ2
ν )

wτ = 0 on Γ 0
wedge(resp. Γ

0
sym). (7.14)

The coefficients are continuous and hence locally bounded, which implies that these
boundary conditions are oblique on Γ 0

wedge (resp. Γ
0
sym).

Lemma 7.6. Definition 7.2 is equivalent to the definition of admissible solutions in
[14]; see Definitions 15.1.1–15.1.2 there.
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Proof. In order to show that the solutions in Definition 7.2 satisfy all the properties
in Definitions 15.1.1–15.1.2 of Chen-Feldman [14], it requires to show that they
satisfy:

ξ1P2 ≤ ξ1P1, Γshock ⊂ (Λ \ Bc1(O1)) ∩ {ξ1P2 ≤ ξ1 ≤ ξ1P1}, (7.15)

∂eS1
(ϕ1 − ϕ) ≤ 0, ∂ξ2(ϕ1 − ϕ) ≤ 0 in Ω, (7.16)

where O1 = (u1, 0) is the center of sonic circle of state (1) and, in the sub-
sonic reflection case (see Fig. 7(b)), we have used the notational convention (7.10).
Moreover, note that the inequalities in (7.9) hold on Γshock, while these inequalities
in (7.16) hold in the larger domain Ω .

We first show both (7.16) and the stronger property

∂eS1
(ϕ1 − ϕ) < 0, ∂ξ2(ϕ1 − ϕ) < 0 in Ω. (7.17)

The argument is the same as the one in the proof of Remark 2.5 (see §6) for
φ = ϕ − ϕ1 in the present case. We only need to check for e = eS1 and e = eξ2

that, for any point ξ ∈ ∂Ω \ Γ 0
shock, φe satisfies that

either φe(ξ) ≥ 0 or φe cannot attain its local minimum at ξ . (7.18)

Note that ∂Ω \ Γ 0
shock = Γsonic ∪ Γwedge ∪ Γsymm ∪ {P3}.

Consider first e = eS1 . Since Dϕ(P3) = (0, 0) by (7.12) and ϕ ∈ C1(Ω), we
conclude that w(P3) = 0. Next, eS1 · τ �= 0 on Γwedge ∪ Γsym by [14, Lemma
7.5.12]. Then, by Remark 7.5, φe satisfies a homogeneous elliptic equation in Ω

and the oblique boundary conditions (7.14) on Γ 0
wedge ∪ Γ 0

sym, so that w cannot

attain its local minimum on Γ 0
wedge ∪Γ 0

sym, unless w is constant in Ω in which case

w ≡ w(P3) = 0 in Ω . On Γsonic, (ϕ, Dϕ) = (ϕ2, Dϕ2) as shown in Remark 7.4,
where we have used notation (7.10). Also, eS1 · D(ϕ2 − ϕ1) = 0 by (7.8). Thus,
φeS1

= eS1 · D(ϕ2 − ϕ1) = 0 on Γsonic, which implies (7.18) for e = eS1 .
Now we show (7.18) for e = eξ2 , i.e., w = φξ2 . The argument is similar to the

previous case, with the following differences: First, eξ2 · τ = 0 on Γsym so that,
instead of (7.14), we obtain that w = 0 on Γsym by (7.13). Also, on Γsonic, we use
again that Dϕ = Dϕ2 to obtain that w = φξ2 = (ϕ2 − ϕ1)ξ2 = v2 ≥ 0. The rest of
the argument is the same as above, which leads to (7.18) for e = eξ2 .

Repeating the proof of Remark 2.5 (see §6), in which φ is not a constant state
by Remark 7.4, we obtain (7.17). With this, (7.16) is proved.

Next we show (7.15). Since Γshock ⊂ Λ \ Bc1(O1), then ϕ1 is supersonic on
Γshock. This is a standard consequence of the Rankine-Hugoniot conditions (7.11),
combined with the entropy condition of Definition 7.2(iii).

It remains to show that ξ1P2 ≤ ξ1P1 and Γshock ⊂ {ξ1P2 ≤ ξ1 ≤ ξ1P1}. From
(7.17), φξ2 > 0 in Ω . Also, φ = 0 on Γshock and φ ≤ 0 in Ω by (iv). From these
properties and the regularity of curve Γshock, it follows that any vertical line that
has a non-empty intersection with Γshock intersects Γshock either at one point or on
a closed interval. Moreover,

If (ξ∗
1 , ξ∗

2 ) ∈ Γshock, then Ω ∩ {(ξ1, ξ2) : ξ1 = ξ∗
1 } ⊂ {(ξ1, ξ2) : ξ2 < ξ∗

2 }.
(7.19)
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From these properties, we conclude that

Γshock ⊂ {min(ξ1P1, ξ1P2) ≤ ξ1 ≤ max(ξ1P1, ξ1P2)}.
It remains to show that ξ1P2 ≤ ξ1P1 . Assume that ξ1P2 > ξ1P1 . Then, from (7.19)
and the structure of Ω described in Definition 7.2(i), we conclude that Γshock is
contained within the following subregion of {ξ1P1 ≤ ξ1 ≤ ξ1P2}: Above Γsonic
on {ξ1P1 ≤ ξ1 ≤ min(ξ1P2 , ξ1P4)}, and above Γwedge on {ξ1P4 ≤ ξ1 ≤ ξ1P2} if
ξ1P2 ≥ ξ1P4 . This implies that Γshock ⊂ {ξ2 > 0}. This contradicts the fact that
endpoint P2 of Γshock lies on {ξ2 = 0}. Now (7.15) is proved.

Therefore, we have shown that the solutions in Definition 7.2 satisfy all the
properties in Definitions 15.1.1–15.1.2 of [14].

Nowwe show that the admissible solutions defined inDefinitions 15.1.1–15.1.2
of [14] satisfy all the properties of Definition 7.2. For that, we need to show that
the admissible solutions in Definitions 15.1.1–15.1.2 of [14] satisfy property (iii)
of Definition 7.2. This is proved in [14, Lemma 8.1.7 and Proposition 15.2.1]. ��

FromLemma7.6, all the estimates and properties of admissible solutions shown
in [14] hold for the admissible solutions defined above. We list some of these
properties in the next theorem.

Below we use the notation that, for two unit vectors e, f ∈ R
2 with e �= ±f ,

Con(e, f) := {ae + bf : a, b > 0}. (7.20)

Theorem 7.1. (Properties of admissible solutions). There exits a constant α =
α(ρ0, ρ1, γ ) ∈ (0, 1

2 ) such that any admissible solution in the sense of Definition
7.2 with wedge angle θw ∈ (θdw, π

2 ) has the following properties:

(i) Additional regularity:
– If |Dϕ2(P0)| > c2, i.e., when ϕ is of the supersonic regular shock reflection–

diffraction configuration as in Fig. 7(a), it satisfies

ϕ ∈ C∞(Ω\(Γsonic ∪ {P3})) ∩ C1,1(Ω\{P3}) ∩ C1,α(Ω).

The reflected-diffracted shock P0P1P2 (where P0P1 is the straight segment
and P1P2 = Γshock) is C2,β up to its endpoints for any β ∈ [0, 1

2 ) and C∞
except P1.

– If |Dϕ2(P0)| ≤ c2, i.e., when ϕ is of the subsonic regular shock reflection–
diffraction configuration as in Fig. 7(b), it satisfies

ϕ ∈ C1,β(Ω) ∩ C1,α(Ω \ {P0}) ∩ C∞(Ω \ {P0, P3})
for some β = β(ρ0, ρ1, γ, θw) ∈ (0, α] which is non-decreasing with
respect to θw, and the reflected-diffracted shock Γshock is C1,β up to its
endpoints and C∞ except P0.

Furthermore, in both supersonic and subsonic cases,

ϕext ∈ C∞(Ωext ∪ (Γ ext
shock)

0).
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(ii) For each e ∈ Con(eS1 , eξ2),

∂e(ϕ1 − ϕ) < 0 in Ω, (7.21)

where vectors eS1 and eξ2 are introduced in Definition 7.2(v).
(iii) Denote by νw the unit interior normal vector to Γwedge (pointing into Ω), i.e.,

νw = (− sin θw, cos θw). Then ∂νw(ϕ − ϕ2) ≤ 0 in Ω .

Proof. Below we use the equivalence shown in Lemma 7.6.
Assertion (i) follows from Definition 7.2(i) and [14, Corollary 11.4.7, Proposi-

tion 11.5.1, Corollary 16.6.12]. Assertion (ii) is obtained in [14, Corollary 8.2.10,
Proposition 15.2.1]. Assertion (iii) follows from [14, Lemma 8.2.19, Proposition
15.2.1], where nw = −νw. ��
Remark 7.7. We note that νw ∈ Con(eS1 , eξ2) for any wedge angle θw ∈ (θdw, π

2 ),
which is proved in [14, Lemma 8.2.11].

Now we state the results on the existence of admissible solutions.

Theorem 7.2. (Global solutions up to the detachment angle for the case: u1 ≤ c1).
Let the initial data (ρ0, ρ1, γ ) satisfy that u1 ≤ c1. Then, for each θw ∈ (θdw, π

2 ),
there exists an admissible solution of the regular reflection problem in the sense of
Definition 7.2, which satisfies the properties stated in Theorem 7.1.

Proof. The existence of admissible solutions directly follows from Lemma 7.6 and
[14, Theorem 2.6.7 and Remark 2.6.8]. ��

When u1 > c1, the results of Theorem 7.2 hold for any wedge angle θw from
π
2 until either θdw or θcw ∈ (θdw, π

2 ) when the shock hits the wedge vertex P3.

Theorem 7.3. (Global solutions up to the detachment angle for the case: u1 > c1.)
Let the initial data (ρ0, ρ1, γ ) satisfy that u1 > c1. Then there is θcw ∈ [θdw, π

2 )

such that, for each θw ∈ (θcw, π
2 ), there exists an admissible solution of the regular

reflection problem in the sense of Definition 7.2, which satisfies the properties stated
in Theorem 7.1.

If θcw > θdw, then, for the wedge angle θw = θcw, there exists an attached shock
solution ϕ with all the properties listed in Definition 7.2 and Theorem 7.1(ii)–(iii)
except that P3 = P2 (we denote P3 for that point below). In addition, for the
regularity of solution ϕ, we have

– For the supersonic case with θw = θcw,

ϕ ∈ C∞(Ω\(Γsonic ∪ {P3})) ∩ C1,1(Ω\{P3}) ∩ C0,1(Ω),

and the reflected shock P0P1P3 is Lipschitz up to the endpoints, C2,β for any
β ∈ [0, 1

2 ) except point P3, and C∞ except points P1 and P3.
– For the subsonic case with θw = θcw,

ϕ ∈ C∞(Ω\{P0, P3}) ∩ C1,β(Ω\{P3}) ∩ C0,1(Ω)

for β as in Theorem 7.1, and the reflected shock P0P3 is Lipschitz up to the
endpoints, C1,β except point P3, and C∞ except points P0 and P3.
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Proof. The existence of admissible solutions directly follows from Lemma 7.6 and
[14, Theorem 2.6.9 and Remark 2.6.8], where we note that [14, Remark 2.6.8]
applies to the case: u1 > c1 as well, although this is not stated explicitly. ��

Now we show that the admissible solutions satisfy the conditions of Theorems
2.1–2.3.

Lemma 7.8. The following statements hold:

(i) Any admissible solution in the sense of Definition 7.2 satisfies the conditions of
Theorems 2.1 and 2.3.

(ii) Any regular reflection–diffraction solution in the sense of Definition 7.1 with
properties (i)–(iv) of Definition 7.2 and with shock Γshock being a strictly convex
graph in the sense of (2.18)–(2.19) satisfies property (v) of Definition 7.2.

Proof. We divide the proof into seven steps: Assertion (i) is proved in Steps 1–6,
while assertion (ii) is proved in Step 7.

1. We use Λext, Γ ext
shock, and ϕext defined before Definition 7.2. Combining

the structure of equation (2.5) with the boundary conditions (7.3) on the negative
ξ1–axis yields that the reflected/extended function ϕext is a weak solution of equa-
tion (2.5) in Λext. By the boundary conditions (7.3), state (1) satisfies ∂νϕ1 = 0
on the ξ1–axis. Then the structure of the constant state (see §2.1) implies that
ϕ1(−ξ1, ξ2) = ϕ1(ξ1, ξ2) in R

2 so that ϕext
1 = ϕ1. We also note the regularity

of ϕext in Theorem 7.1(i). Thus, the extended shock Γ ext
shock separates the constant

state ϕ1 from the smooth solution ϕext of equation (2.5) in Ωext, and the Rankine-
Hugoniot conditions (7.11) are satisfied for ϕext and ϕ1 on Γ ext

shock.
2. Region Ω satisfies the conditions in Framework (A). Indeed, for the super-

sonic reflection case (see Fig. 7(a)), the required piecewise-regularity holds, since
Γwedge and Γsym are straight segments, Γsonic is an arc of circle, and Γshock has the
regularity stated in Theorem 7.1(i). The fact that all the angles of the corners of Ω

are less than π is verified as follows:

Consider first the supersonic case. Since curve P0P1P2 is C2 at P1, and P0P1 is
a straight segment, we use that the center of sonic circle of state (2) is onΓ 0

wedge and
P0 is outside that circle to conclude that the angle at P1 is between (π

2 , π), and the
angle at P4 is π

2 . Also, since (7.7) shows that Γ ext
shock is smooth near P2, it follows

that the interior angle to Ω at P2 is π
2 . Finally, the angle at P3 is π − θ ∈ (π

2 , π).
For the subsonic reflection case, the angles at P2 and P3 are handled similarly.

The angle at P0 is in (0, π
2 ) for the following reason: By [14, Lemma 8.2.11,

Proposition 15.2.1], for any θw ∈ (θdw, π
2 ), νw ∈ Con(eS1 , eξ2) so that, using the

regularity of Γshock in Theorem 7.2(i), property (iii) in Theorem 7.2, and ϕ = ϕ1
on Γshock, we conclude that Γshock is a graph

Γshock = {( f (T ), T ) : TP2 ≤ T ≤ TP0}
of a function f (T ) ∈ C2([TP2 , TP0)) ∩ C1,β([TP2 , TP0 ]), where the (S, T )–
coordinates are along the normal and tangent directions to Γwedge.
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3. The entropy condition (A1) of Theorem 2.1 follows directly from property
(iii) of Definition 7.2, where state (0) in Theorem 2.1 is state (1) in the regular
shock reflection problem.

From the regularity of ϕ and Γshock in Theorem 7.1(i), we see that conditions
(A2) and (A4) of Theorem 2.1 hold.

Property (ii) of Definition 7.2 implies that condition (A3) of Theorem 2.1 holds.

4. Using the notations of the endpoints of Γshock as in Framework (A) by A :=
P1 and B := P2, we see from the properties of Definition 7.2(i) that

τ A = eS1 , τ B = eξ2 .

As we discussed in Step 2, Γshock is orthogonal to the ξ1–axis at P2. From this and
[14, Lemma7.5.12], eξ1 �= ±eS1 . Also, combining property (ii) of Theorem7.1with
the fact that Γshock is the level set ϕ − ϕ1 = 0, we obtain that {P + Con} ∩ Ω = ∅
for all P ∈ Γshock. Thus, condition (A5) of Theorem 2.1 is satisfied.

5.Next, we discuss condition (A6) of Theorem 2.1. We recall that φ := ϕ −ϕ1.
All the localminimaandmaximadiscussedbeloware relative toΩ .Also,wediscuss
the supersonic and subsonic/sonic cases together below, and use notations (7.10)
for the subsonic/sonic case. Furthermore, since conditions (A1)–(A5) have been
verified, we can use Lemma 3.2 in the argument below.

Fix e = νw, where νw is defined in Theorem 7.1(iii). By Remark 7.7, e ∈ Con.
We first notice that, by Remark 7.5,w = φe satisfies equation (3.2), which is strictly
elliptic in Ω ∪ Γ 0

shock ∪ Γsym ∪ Γ 0
wedge. Furthermore, since τ = eξ1 on Γsym so that

e · τ = − sin θw �= 0 on Γsym, then w satisfies (7.14) on Γ 0
sym, and this boundary

condition is oblique. Thus, by Hopf’s lemma, the local maximum and minimum of
φe relative to Ω cannot be attained on Γ 0

sym, unless φe is constant.

We now show the similar property on Γwedge ∪ Γsonic. From (7.2) and (7.12),
∂e(ϕ − ϕ2) = ∂ν(ϕ − ϕ2) = 0 on Γwedge. Also, Dϕ = Dϕ2 on Γsonic by Definition
7.2(i). Thus, ∂e(ϕ −ϕ2) = 0 on Γwedge ∪Γsonic, which is the global maximum over
Ω by Theorem 7.1(i). Then ∂e(ϕ − ϕ2) cannot attain its local minimum at some
P ∈ Γwedge ∪ Γsonic unless ∂e(ϕ − ϕ2) ≡ 0 in Ω . Indeed, if P ∈ Γwedge ∪ Γsonic
is a point of local minimum of ∂e(ϕ − ϕ2), then, since P is also a point of global
maximum and ∂e(ϕ − ϕ2)(P) = 0 as shown above, we obtain that ∂e(ϕ − ϕ2) ≡ 0
in Br (P) ∩ Ω for some r > 0. Since ∂e(ϕ − ϕ2) = ∂e(ϕ − ϕ1) + ∂e(ϕ1 − ϕ2) =
∂eφ +u1 sin θw (where we have used that Dϕ2 ·νw = 0) so that ∂e(ϕ −ϕ2) satisfies
the strictly elliptic equation (3.2) in Ω , the strong maximum principle implies that
∂e(ϕ−ϕ2) ≡ 0 inΩ . Recalling that ∂eφ = ∂e(ϕ−ϕ2)−u1 sin θw, we conclude that
φe ≡ −u1 sin θw in Ω if φe attains its local minimum at some P ∈ Γwedge ∪Γsonic.

Combining the two cases discussed above, we conclude that, if φe attains its
local minimum at some point P ∈ Γwedge ∪ Γsonic ∪ Γ 0

sym, then φe is constant in
Ω , specifically φe ≡ −u1 sin θw =: a.

Now we show that, if φe ≡ a in Ω for an admissible solution ϕ, then ϕ is a
uniform state in Ω . To fix notations, we consider first the supersonic case. We use
the (S, T )–coordinates with basis {e, e⊥} and the origin at P3 for e⊥ determined as
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in Lemma 3.2 for e = νw, i.e., e⊥ = −(cos θw, sin θw). We recall that A = P1 and
B = P2; see Step 4. Then TB = TP2 > TP3 = 0 > TP1 = TA > TP4 . Also,

Γsonic = {S = fso(T ), T ∈ (TP4 , TP1)}, Γ 0
sym = {S = T tan θw, T ∈ (TP3 , TP2)},

where fso ∈ C∞((TP4 , TP1)) and fso > 0 on (TP4 , TP1). The function, fe, from
Lemma 3.2(i) for e = νw satisfies that fe(T ) > max(T tan θw, 0) on (TP1, TP2).
Also,

Ω = {(S, T ) : T ∈ (TP4 , TP2), max(T tan θw, 0) < S < f̂ (T )},
where f̂ ∈ C(TP4 , TP2) satisfies

f̂ = fso on (TP4 , TP1), f̂ = fe on (TP1 , TP2).

Let φe ≡ a in Ω . Then, from the structure of Ω described above, φ(S, T ) =
aS + g(T ) in Ω for some g ∈ C1(R). Since φξ2 = 0 on Γsym by (7.13), we
see that a e · eξ2 + g′(T ) e⊥ · eξ2 = 0 for all T ∈ (TP3, TP2), where we have
used the expression of Γ 0

sym in the (S, T )–coordinates given above. Note that e⊥ ·
eξ2 = − sin θw �= 0. Thus, g′(T ) is constant on (TP3, TP2), which implies that
φ(S, T ) = aS + bT + c in Ω̂ for some b, c ∈ R, where

Ω̂ := {(S, T ) : T ∈ (TP3, TP2), max(T tan θw, 0) < S < f̂ (T )} ⊂ Ω.

Since φ is real analytic in Ω by Lemma 3.5, it follows that φ(S, T ) = aS +bT + c
in Ω . That is, ϕ = ϕ2 + φ is a constant state in Ω , which contradicts Remark 7.4.

For the subsonic/sonic case, the argument is the same, except that the structure
of Ω now becomes

Ω = {(S, T ) : T ∈ (TP0 , TP2), max(T tan θw, 0) < S < fe(T )}.
Therefore, we have shown that φ cannot attain its local minimum on Γwedge ∪
Γsonic ∪ Γ 0

sym.

Then we define Γ1 := (Γwedge ∪ Γsonic ∪ Γ 0
sym) \ {P1} = ∂Ω \ Γshock, and

Γ2 := ∅ in both the supersonic and subsonic/sonic cases. Clearly, Γ1 is connected.
Now Case (iii) of condition (A6) of Theorem 2.1 holds in both the supersonic and
subsonic/sonic cases.

6. We now check the conditions of Theorem 2.3. Since the conditions of The-
orem 2.1 have been checked, the conclusions of that theorem hold; in particular,
ϕττ ≥ 0 on Γshock.

Let Γ̂0 := Γ 0
sonic ∪ {P4} in the supersonic case, and Γ̂0 := ∅ in the subsonic

case. Let Γ̂1 := Γ 0
wedge ∪ {P3}, Γ̂2 := Γ 0

sym, and Γ̂3 := ∅. In the supersonic case,

for any nonzero e ∈ R
2, φe = D(ϕ2 − ϕ1) · e on Γsonic, i.e., φe is constant on Γ̂0.

Then (A7)–(A8) hold.
Let e ∈ R

2 be a unit vector. We have shown in Step 5 that φe is not a constant
in Ω . Then, by (7.14), φe can attain a local minimum or maximum on Γ 0

wedge only

if e · τw = 0, i.e., e = ±νw. In that case, by (7.13), φe is constant on Γwedge.
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This verifies (A9) on Γ̂1 := Γ 0
wedge ∪ {P3}. On Γ̂2 := Γ 0

sym, (A9) is checked

similarly. On Γ̂0 := Γ 0
sonic ∪ {P4} in the supersonic case, Dϕ = Dϕ2 so that

φe = (Dϕ2 − Dϕ1) · e = const. Now (A9) is proved.
To check condition (ii) of (A10) at point B = P2, we note that, by Step 1,

φext := ϕext − ϕ1 satisfies equation (2.16) in Ωext and conditions (2.17) on Γ ext
shock.

Also, we have shown above that the original problem in Ω satisfies hypotheses
(A1)–(A3) of Theorem 2.1. It follows that the problem for φext in Ωext satisfies
(A1)–(A3) of Theorem 2.1.

Now it follows that the extended problem in Ωext satisfies the conditions of
Lemma 3.1. Also, P2 is an interior point of the extended shockΓ ext

shock. Furthermore,
using (7.7), we have

νext(P2) = νsh(P2),

where νsh(P2) is defined in (A10). Since φττ ≥ 0 on Γshock as noted above, which
implies that φττ (P2) ≥ 0 from the regularity of ϕ in Theorem 7.2, we apply Lemma
3.1 for the extended problem to conclude that, if νsh(P2) · e < 0, then φe cannot
attain its local maximum at P2. If νsh(P2)·e = 0, we use that νsh(P2) = eξ1 by (7.7)
to conclude that e = ±eξ2 in that case. Then we use the C1(Ω)–regularity of φ to
conclude that φe = 0 on Γ sym by (7.13). Thus, φe(P2) = φe(P3) if ν(P2) · e = 0,
so that condition (ii) of (A10) holds.

7. Now we show assertion (ii). Any admissible solution has a strictly convex
shock by Theorems 2.1 and 2.3, since we have verified the conditions of these
theorems in Steps 1–6 of this proof. Then it remains to show that any regular
reflection–diffraction solution in the sense of Definition 7.1, with properties (i)–
(iv) of Definition 7.2 and with shock Γshock being a strictly convex graph in the
sense of (2.18)–(2.19), satisfies property (v) of Definition 7.2.

Recall that (2.18) holds in the present case with A = P1 and B = P2 as
discussed in Steps 2 and 4. Then, using the properties of Definition 7.2(i), we find
that, in the coordinates of (2.18),

eS1 = (1, f ′(TA))

|(1, f ′(TA))| , eξ2 = − (1, f ′(TB))

|(1, f ′(TB))| .

Also, from the strict concavity of f in the sense of (2.19), we obtain that f ′(TA) >

f ′(T ) > f ′(TB) and f (T ) < f (T1) + f ′(T1)(T − T1) for all T, T1 ∈ (TA, TB).
From this, we see that {P + Con} ∩ Ω = ∅ for any P ∈ Γshock. Then, since
ϕ ≤ ϕ1 in Ω from Definition 7.2(iv) and ϕ = ϕ1 on Γshock by (7.11), we obtain
that ∂eϕ ≥ ∂eϕ1 for any e ∈ Con, which implies (7.9). ��

From Lemma 7.8 and Theorems 2.1–2.3, we have

Theorem 7.4. If ϕ is an admissible solution of the shock reflection–diffraction
problem, then its shock curve Γshock is uniformly convex in the sense described
in Theorem 2.3.

Furthermore, if a weak solution in the sense of Definition 7.1 satisfies properties
(i)–(iv) of Definition 7.2, then the transonic shock Γshock is a strictly convex graph
in the sense of (2.18)–(2.19) if and only if property (v) of Definition 7.2 holds.
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(b)(a)

Fig. 9. (a) Supersonic Prandtl–Meyer reflection; (b) Subsonic Prandtl–Meyer reflection

Proof. The uniform convexity of Γshock for admissible solutions follows from
Lemma 7.8 and Theorems 2.1 and 2.3.

Moreover, if a shock solution in the sense of Definition 7.1 satisfies properties
(i)–(iv) of Definition 7.2, and its shock is a strictly convex graph, then, by Lemma
7.8(ii), the solution satisfies property (v) of Definition 7.2. ��

7.2. Reflection Problem for Supersonic Flows Past a Solid Ramp

The second example is the Prandtl–Meyer reflection problem. This is a self-
similar reflection that occurs when a two-dimensional supersonic flowwith velocity
v∞ = (u∞, 0), u∞ > 0, in the direction along the wedge axis hits the wedge at
t = 0. The slip boundary condition on the wedge boundary yields a self-similar
reflection pattern; see Fig. 9(a)–(b). Also see Bae-Chen-Feldman [2,3].

We consider this problem in the self-similar coordinates. Using the symmetry
with respect to the ξ1–axis, the problem can be posed in the region:

Λ = R
2+ \ {ξ : ξ2 > max(0, ξ1 tan θw)}.

Denote by ϕ∞ the pseudo-potential of the incoming state.

Definition 7.9. ϕ ∈ C0,1(Λ) is a weak solution of the Prandtl–Meyer reflection
problem if ϕ satisfies equation (2.5) in Λ, the boundary conditions (7.3) on ∂Λ,
and the asymptotic conditions:

lim
R→∞ ‖ϕ − ϕ∞‖C(Lθ \BR(0)) = 0

along ray Lθ := {ξ1 = ξ2 cot θ, ξ2 > 0} for each θ ∈ (θw, π) in the weak sense (as
in Definition 7.1).

We consider the solutions with the structure shown in Fig. 9(a)–(b). These
solutions are piecewise-smooth and equal to the constant states outside region Ω

described below.
The constant states are defined as follows (see [3, §2] for the details and proofs):

Given the constant self-similar state with velocity v∞ = (u∞, 0) and density ρ∞
which is supersonic at the origin (the wedge vertex), there exist the detachment
wedge angle θdw ∈ (0, π

2 ) and the sonic wedge angle θ sw ∈ (0, θdw), which depend
only on (ρ∞, u∞), such that, for any wedge angle θw ∈ (0, θdw),
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(i) There exists a unique constant state ϕN , which determines the normal reflection
state of ϕ∞ from the wedge boundary ∂W := {ξ1 > 0, ξ2 = ξ1 tan θw}; that is,
ϕN satisfies that ∂νϕN = 0 on ∂W , half-line SN := {ξ : ϕN = ϕ∞} ∩ {ξ2 >

0} lies in Λ and is parallel to ∂W , and the Rankine-Hugoniot condition holds
on SN :

ρ∞∂νϕ∞ = ρN ∂νϕN on SN .

(ii) There exists a constant state ϕO such that ∂νϕO = 0 on ∂W , half-line SO :=
{ξ : ϕO = ϕ∞}∩{ξ2 > 0} lies in Λ, the wedge vertex is on SO (i.e., 0 ∈ SO),
and the Rankine-Hugoniot condition holds on SO:

ρ∞∂νϕ∞ = ρO∂νϕO on SO.

In fact, there exist two states for ϕO, weak and strong, and we always choose
the weak one with the smaller density (so that the unique state ϕO is often
referred).

(iii) ϕO is supersonic (resp. subsonic) at the origin for all θw ∈ (0, θ sw) (resp.
θw ∈ (θ sw, θdw)). This determines the supersonic and subsonic Prandtl–Meyer
reflection configurations below.

Next, we define the points, lines, and regions in Fig. 9(a)–(b) for a given wedge
angle θw ∈ (0, θdw) as follows:

(a) The sonic arcs Γ N
sonic and Γ O

sonic are the arcs (defined below) of the sonic circles
of the constant states ϕN and ϕO, respectively, with the centers on ∂W , since
these states satisfy the slip boundary condition on ∂W :
– Γ N

sonic is the upper arc of ∂ BcN (ON ) between lines ∂W and SN . It follows
that Γ N

sonic ⊂ Λ, since ∂ BcN (ON ) intersects the full line SN at two points.
Denote the endpoints of Γ N

sonic by P2 and P3, which lie on SN and ∂W ,
respectively.

– Arc Γ O
sonic is defined only for the supersonic reflection configurations, i.e.,

for θw ∈ (0, θ sw). In this case, ∂ BcO (OO) intersects half-line SO at two
points within Λ, and Γ O

sonic is the lower arc of ∂ BcO (OO) between lines
∂W and SO. Then Γ O

sonic ⊂ Λ. Denote the endpoints of Γ O
sonic by P1 and

P4, which lie on SO and ∂W , respectively.
– For the supersonic configurations, SO,seg is segment O P1. Note that

SO,seg ⊂ SO.
– SN ,seg is the portion of SN with the left endpoint P2, i.e., SN ,seg = SN ∩

{ξ1 > ξ1,P2}.
(b) Γwedge is the segment of ∂W between points P3 and P4 for the supersonic case

(resp. between 0 and P3 for the subsonic case).
(c) There exists a smooth shock curve Γshock with the following properties:

– For the supersonic reflection configurations, Γshock has endpoints P1 and
P2;

– For the subsonic reflection configurations, Γshock has endpoints P2 and O;
– Γshock, Γ N

sonic, Γwedge, and Γ O
sonic do not have common points except at their

end points.
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(d) Ω is the domain bounded by the curve formed by Γshock, Γ N
sonic, Γwedge, and

Γ O
sonic.

(e) For the supersonic reflection configurations, ΩO is the region bounded by arc

Γ O
sonic and the straight segments O P1 and O P4.

(f) ΩN is the unbounded region with the boundary consisting of arc Γ N
sonic, and

the straight half-lines ∂W ∩ {ξ1 ≥ ξ1P3} and SN ∩ {ξ1 ≥ ξ1P2}.
(g) Ω∞ := Λ \ΩO ∪ Ω ∪ ΩN for the supersonic case, and Ω∞ := Λ \Ω ∪ ΩN

for the subsonic case.

Now we define a class of solutions of the Prandtl–Meyer reflection problem
with the structure as in Fig. 9(a)–(b).

Definition 7.10. Let (ρ∞, (u∞, 0)) be a supersonic state in Ω∞, and let θdw and θ sw
be the corresponding detachment and sonic angles. Let θw ∈ (θdw, π

2 ). A function
ϕ ∈ C0,1(Λ) is an admissible solution of the Prandtl–Meyer reflection problem if
ϕ is a solution in the sense of Definition 7.9 and satisfies the following properties:

(i) The structure of solution is the following:
– If θw ∈ (0, θ sw), then the solution is of supersonic reflection configuration
as in Fig. 9(a) and satisfies

ϕ ∈ C1(Λ \ SO,seg ∪ Γshock ∪ SN ,seg), (7.22)

ϕ ∈ C3(Ω) ∩ C2(Ω \ Γ O
sonic ∪ Γ N

sonic) ∩ C1(Ω), (7.23)

ϕ =

⎧
⎪⎨

⎪⎩

ϕ∞ in Ω∞,

ϕO in ΩO,

ϕN in ΩN ;
(7.24)

– If θw ∈ [θ sw, θdw), then the solution is of subsonic reflection configuration as
in Fig. 9(b) and satisfies

ϕ ∈ C1(Λ \ Γshock ∪ SN ,seg), (7.25)

ϕ ∈ C3(Ω) ∩ C2(Ω \ ({O} ∪ Γ N
sonic)) ∩ C1(Ω), (7.26)

ϕ =

⎧
⎪⎨

⎪⎩

ϕ∞ in Ω∞,

ϕO(O) at O,

ϕN in ΩN ,

(7.27)

Dϕ(O) = DϕO(O). (7.28)

(ii) The shock curve Γshock is C2 in its relative interior.

(iii) Equation (2.5) is strictly elliptic in Ω\(Γ N
sonic ∪ Γ O

sonic) for the supersonic case

and in Ω\(Γ N
sonic ∪ {O}) for the subsonic case.

(iv) ∂νϕ∞ > ∂νϕ > 0 on Γshock, where ν is the normal vector to Γshock pointing
into Ω .
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(v) ∂eSO (ϕ∞ − ϕ) ≤ 0 and ∂eSN (ϕ∞ − ϕ) ≤ 0 in Ω , where vectors eSO and eSN
are parallel to lines SO and SN , respectively, oriented towards the interior of
Γshock from points P1 and P2, respectively;

Remark 7.11. A version of Remark 7.3 holds in the present case, with the only
difference that the potential function of the incoming state is ϕ∞ here, instead of
ϕ1.

Remark 7.12. ϕ in Ω is not a constant state. Indeed, if ϕ is a constant state in Ω ,
then ϕ = ϕN in Ω , which follows from (7.24) and (7.27) in the supersonic and
subsonic cases, respectively. On the other hand, we obtain that ϕ = ϕO inΩ , which
follows from both (7.24) for the supersonic case (since ϕ is C1 across Γ O

sonic) and
the property that (ϕ, Dϕ) = (ϕ2, Dϕ2) at O for the subsonic case. However, ϕO
and ϕN are two different states, which can be seen from their definitions, since line
SN is parallel to ∂W (so that these lines do not coincide), while SO intersects ∂W
at point O .

Lemma 7.13. Definition 7.10 is equivalent to the definition of admissible solutions
in [3]; see Definition 2.14 there.

The proof of Lemma 7.13 follows closely the proof of Lemma 7.6 with mostly
notational changes, so we skip this proof here.

FromLemma 7.13, the results of [2,3] for the existence and properties of admis-
sible solutions apply to the solutions in the sense of Definition 7.2. We list some of
these properties in the following theorem:

Theorem 7.5. Let (ρ∞, (u∞, 0)) be a supersonic state in Ω∞, and let θdw and θ sw
be the corresponding detachment and sonic angles. Then any admissible solution
of the Prandtl–Meyer reflection problem with wedge angle θw ∈ (0, θdw) has the
following properties:

(i) Additional regularity:
– If θw ∈ (0, θ sw), i.e., when the solution is of supersonic reflection con-

figuration as in Fig. 9(a), then ϕ ∈ C1,1(ΩO ∪ Ω ∪ ΩN ) and ϕ ∈
C∞(Ω \ Γ O

sonic ∪ Γ N
sonic);

– If θw ∈ [θ sw, θdw), i.e., when the solution is of subsonic reflection configu-
ration as in Fig. 9(b), then ϕ ∈ C1,α(Ω ∪ ΩN ) ∩ C1,1(Ω ∪ ΩN \ {O})
and ϕ ∈ C∞(Ω \ ({O} ∪ Γ N

sonic)) for some α ∈ (0, 1), depending on
(ρ∞, u∞, θw) and non-increasing with respect to θw.

(ii) The shock curve Γshock is C∞ in its relative interior.
(iii) Γshock has the following regularity up to the endpoints: In the supersonic case,

the whole shock curve SO,seg ∪ Γshock ∪ SN ,seg is C2,β for any β ∈ (0, 1). In
the subsonic case, curve Γshock ∪ SN ,seg is C1,α with α as in (i).

(iv) For each e ∈ Con(eSO , eSN ),

∂e(ϕ∞ − ϕ) < 0 in Ω, (7.29)

where vectors eSO and eSN are introduced in Definition 7.10(v), and nota-
tion (7.20) has been used.
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(v) Denote by νw the unit normal vector to Γwedge, interior with respect to Ω , i.e.,
νw = (− sin θw, cos θw). Then

∂νw(ϕ − ϕO) ≤ 0, ∂νw(ϕ − ϕN ) ≤ 0 in Ω.

Proof. Properties (i)–(iii) are from [3, Theorem 2.16]. Properties (iv) and (v) are
shown in [3, Lemmas 3.2 and 3.6],where the results are stated in a rotated coordinate
system, in which the ξ2–variable is in the direction of νw. ��
Theorem 7.6. Let (ρ∞, (u∞, 0)) be a supersonic state in Ω∞, and let θdw be the
corresponding detachment angle. Then, for any θw ∈ (0, θdw), there exists an admis-
sible solution of the Prandtl–Meyer reflection problem.

The existence of solutions follows from [3, Theorem 2.15].
Now, similar to Lemma 7.8, we have

Lemma 7.14. The following statements hold:

(i) Any admissible solution in the sense of Definition 7.10 satisfies the conditions
of Theorems 2.1 and 2.3.

(ii) Any global weak solution of the Prandtl–Meyer reflection problem in the sense
of Definition 7.9with properties (i)–(iv) of Definition 7.10 and with shock Γshock
being a strictly convex graph in the sense of (2.18)–(2.19) satisfies property (v)
of Definition 7.10.

Proof. We first discuss the proof of assertion (i).
Conditions (A1)–(A5) follow directly as in Lemma 7.8. In particular, in (A5),

Con = Con(eSO , eSN ), where we have used (7.20). Also, A = P1 and B = P2,
where P1 := O in the subsonic/sonic case.

For condition (A6), we choose e = νw, where νw is defined in Theorem 7.5(v).
Then e ∈ Con, which can be seen from the fact that uO > 0 and vO > 0 with
vO
uO > tan θw, and eN = −(cos θw, sin θw).

In the argument below, the local extrema are relative to Ω . Also, we discuss

the supersonic and subsonic/sonic cases together and define Γ O
sonic := {O} and

P1 := O for the subsonic/sonic case.
Recall the boundary conditions:

∂νϕ = 0, ∂νϕO = 0, ∂νϕN = 0 on Γwedge.

Also, Dϕ = DϕO on Γ O
sonic by Definition 7.10(i). Thus, ∂e(ϕ − ϕO) = 0 on

Γwedge ∪ Γ O
sonic, which is the global maximum over Ω by Theorem 7.5(v). Since

ϕ is not a constant state, arguing as in Step 5 of the proof of Lemma 7.8, we find

that, if φe attains its local minimum on Γwedge ∪ Γ O
sonic, then φe is constant in Ω .

Similarly, using that Dϕ = DϕN on Γ N
sonic and arguing as above, we conclude

that φe cannot attain its local minimum on Γ N
sonic, unless φe is constant in Ω .

Combining all the facts together, we conclude that, if φe attains its local minimum

on Γ N
sonic ∪ Γwedge ∪ Γ O

sonic, then φe is constant in Ω .
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We now show that, if φe is constant in Ω , then ϕ is a constant state in Ω . To fix
notations, we consider first the supersonic case. Since conditions (A1)–(A5) have
been verified, we can apply Lemma 3.2. We work in the (S, T )–coordinates with
basis {e, e⊥} and origin O , where the orientation of e⊥ is as in Lemma 3.2. Then
TP4 < TP1 < TP2 < TP3 , where we have used that A = P1 and B = P2. Also,

Γ O
sonic = {S = fO(T ), T ∈ (TP4 , TP1)}, Γ N

sonic = {S = fN (T ), T ∈ (TP2 , TP3)},
where fO ∈ C∞((TP4 , TP1)) and fN ∈ C∞((TP2 , TP3)) are positive. With this,
we obtain

Ω = {(S, T ) : T ∈ (TP4 , TP3), S ∈ (0, f̂ (T ))},
where f̂ ∈ C(TP4 , TP3) satisfies

f̂ = fO on (TP4 , TP1), f̂ = fe on (TP1 , TP2), f̂ = fN on (TP2 , TP3). (7.30)

Let φe ≡ a in Ω . Then, from the structure of Ω described above, φ(S, T ) =
aS + g(T ) in Ω for some g ∈ C1(R). Then, noting that Dϕ = DϕN on Γ N

sonic, we
obtain

g′(T ) = ∂e⊥φ( fN (T ), T ) = D(ϕN − ϕ∞) · e⊥ for all T ∈ (TP2 , TP3),

where we have used that D(ϕN − ϕ∞) is a constant vector. Thus, g′(T ) is con-
stant on (TP2 , TP3) so that φ(S, T ) = aS + bT + c in Ω̂ := {(S, T ) : T ∈
(TP2 , TP3), S ∈ (0, fN (T ))} ⊂ Ω . Then, arguing as in Step 5 of the proof of
Lemma 7.8, we conclude that ϕ is a constant state in Ω , which is a contradiction.
For the subsonic/sonic case, the argument is the same, except the structure of Ω ,
where now P4 = P1 = O , and fO is not present in (7.30).

Therefore, Case (iii) of (A6) holds with e = νw, Γ1 := Γ N
sonic ∪ Γwedge ∪ Γ O

sonic
for the supersonic case (resp. Γ1 := Γ N

sonic ∪ Γwedge \ {P2} for the subsonic case),
and Γ2 = ∅.

We now show that conditions (A7)–(A10) are satisfied with Γ̂0 = Γ N
sonic \ {P2},

Γ̂1 = Γ 0
wedge, Γ̂2 = ∅, and Γ̂3 = Γ O

sonic \ {P1} for the supersonic case (resp. Γ̂3 = ∅
for the subsonic case). Indeed, then (A7) clearly holds. Also, (A8) holds since

Dϕ = DϕN on Γ N
sonic, and Dϕ = DϕO on Γ O

sonic for the supersonic case.
Condition (A9) on Γ̂1 = Γ 0

wedge can be checked as follows: If e · τ �= 0 on

Γ 0
wedge, then the argument of Step 5 in the proof of Lemma 7.8 applies here to yield

that φe cannot attain the local minima or maxima on Γ 0
wedge. In the other case, when

e = ±νw, we use the boundary condition:

∂νϕ = 0 on Γ 0
wedge

to derive that ∂νφ = −u∞ sin θw on Γwedge, similar to (7.13). Also, on Γ̂0 =
Γ N
sonic \ {P2}, Dϕ = DϕN so that φe = ∂e(ϕN − ϕ∞) = const . The argument on

Γ̂3 = Γ O
sonic \ {P1} in the supersonic case is similar. This verifies (A9). Case (i) of

(A10) clearly holds here.
To prove assertion (ii), we follow directly the argument of Step 7 in the proof

of Lemma 7.8 with mostly notational changes, e.g., now ϕ∞ replaces ϕ1. ��
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Therefore, we have

Theorem 7.7. If ϕ is an admissible solution of the Prandtl–Meyer reflection prob-
lem, then its shock curve Γshock is uniformly convex in the sense described in Theo-
rem 2.3. Moreover, for a weak solution of the Prandtl–Meyer reflection problem in
the sense of Definition 7.9 with properties (i)–(iv) of Definition 7.10, the transonic
shock Γshock is a strictly convex graph as in (2.18)–(2.19) if and only if property
(v) of Definition 7.10 holds.
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Appendix A. Paths Connecting Endpoints of the Minimal and Maximal
Chains

For Λ ⊂ R
n , we denote

Λr := {ξ ∈ Λ : dist(ξ , ∂Λ) > r}. (A.1)

Lemma A.1. Let Λ ⊂ R
n be an open set such that Λr is connected for each

r ∈ [0, r0] with given r0 > 0. Let P, Q ∈ Λ be such that Br (P) ∩ Λρ and
Br (Q)∩Λρ are connected for each 0 ≤ ρ < r ≤ r0. Then there exists a continuous
curve S with endpoints P and Q such that S0 ⊂ Λ. More precisely, S = g([0, 1]),
where g ∈ C([0, 1];Rn), g is locally Lipschitz on (0, 1), g(0) = P, g(1) = Q,
and g(t) ∈ Λ for all t ∈ (0, 1).

Proof. We first note that, after points P and Q are fixed, we can assume that Λ is
a bounded set; otherwise, we replace Λ by Λ ∩ B, where B is an open ball and
P, Q ∈ B.
We divide the proof into three steps.

1.Wenotice that, if P, Q ∈ Λr for some r ∈ [0, r0), then there exists a piecewise-
linear path S with a finite number of corner points connecting P to Q such that
S ⊂ Λr/2. This is obtained via covering Λr by balls Br/2(ξi ), i = 1, . . . , N , with
each ξi ∈ Λr and via noting that, since Λr is connected, then any ξi and ξ j can be
connected by a piecewise-linear path with at most N corners, each section of which
is a straight segment connecting centers of two intersecting balls of the cover.
Thus, the path connecting ξi to ξ j lies in ∪N

k=1Br/2(ξk) ⊂ Λr/2. Then we connect
P to Q by first connecting P (resp. Q) to the nearest center of ball ξi (resp. ξ j )
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via a straight segment that lies in Br2(ξi ) (resp. Br2(ξ j )), and next connect ξi to ξ j

as above. In this way, the whole path S between P and Q is Lipschitz up to the
endpoints and lies inΛr/2. Clearly, there exists g ∈ C0,1([0, 1];Rn)with g(0) = P ,
g(1) = Q, and g(t) ∈ Λr/2 for all t ∈ [0, 1] such that S = g([0, 1]. Therefore,
this lemma is proved for any P, Q ∈ Λ.

2. Now we consider the case when P ∈ ∂Λ and Q ∈ Λ. Since Λ is open, there
exists a sequence Pm → P with Pm ∈ Λ for m = 1, 2, . . . . Then Pm ∈ Λrm with
rm > 0 and rm → 0. Thus, taking a subsequence, we can assume without loss of
generality that 0 < rm < r0

m for all m.
As proved in Step 1, P1 can be connected to Q by a Lipschitz curve that is param-
eterized by g ∈ C0,1([ 12 , 1];Rn) with

g(
1

2
) = P1, g(1) = Q, g(t) ∈ Λr̃ for all t ∈ [0, 1],

where r̃ > 0. Since (Br (P) ∩ Λ)ε = Br−ε(P) ∩ Λε for all ε ∈ [0, r
2 ), then the

assumptions of this lemma allow to apply the result of Step 1 to sets Br0/m(P) ∩
Λ for m = 1, 2, . . . . Thus, for each m = 1, 2, . . . , we obtain a Lipschitz path
between Pm and Pm+1 which lies in Br0/m(P) ∩ Λ and is parameterized by g ∈
C0,1([ 1

m + 2
,

1

m + 1
];Rn) with

g(
1

m + 1
) = Pm, g(

1

m + 2
) = Pm+1,

g(t) ∈ B r0
m

(P) ∩ Λr̃m for all t ∈ [ 1

m + 2
,

1

m + 1

]
.

Combining the above together, we obtain a function g : (0, 1] → R
n such that

g ∈ C([0, 1];Rn) ∩ C0,1
loc ((0, 1];Rn) with

lim
t→0+ g(t) = P, g(1) = Q, g(t) ∈ Λ for all t ∈ (0, 1].

This completes the proof for the case when P ∈ ∂Λ and Q ∈ Λ.

3. The remaining case for both P, Q ∈ ∂Λ now readily follows, by connecting
each of P and Q to some C ∈ Λ and taking the union of the paths. ��
Lemma A.2. Let Ω ⊂ R

2 satisfy the conditions stated at the beginning of §3.3,
and let r∗ be the constant from Lemma 3.10. Let Ωρ be defined as in (A.1). Then
there exists r0 ∈ (0, r∗

10 ] such that sets Ωρ are connected for all ρ ∈ [0, r0], and
sets Br (E) ∩ Ωρ are connected for any E ∈ Ω and 0 ≤ ρ < r ≤ r0. Moreover, if
0 ≤ ρ < r ≤ 2r0, P ∈ Ω , and dist(P, ∂Ω) < r , then

dist(E, ∂Ω ∩ Br (P)) ≤ Cρ for each E ∈ ∂Ωρ ∩ Br (P), (A.2)

where C depends only on the constants in the assumptions on Ω .
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Proof. Throughout this proof, C denotes a universal constant, depending only on
Ω . We divide the proof into two steps.

1. We first describe the structure of ∂Ωρ for sufficiently small ρ > 0 and show
that Ωρ is connected for such ρ and (A.2) holds.
Denote by Γi , i = 1, . . . , m, the smooth regions of ∂Ω up to the corner points.
Then, for P ∈ Ω , we have

dist(P, ∂Ω) = min
i=1,...,m

dist(P, Γi ).

Denote

Ωi = {P ∈ Ω : dist(P, ∂Ω) = dist(P, Γi )}.
Using that each Γi is C1,α up to the corner points, and the angles at the corner
points are between (0, π), we now show that there exists r0 > 0 such that, for any
ρ ∈ (0, r0) and i = 1, . . . , m, the set:

Γ
ρ

i := {P ∈ Ωi : dist(P, ∂Ω) = ρ}
is a Lipschitz curve. In addition, Γ ρ

i is close to Γi in the Lipschitz norm in the sense
described bellow.
Consider first a curve Γ = {(s, t) ∈ R

2 : s = g(t)} for some g ∈ C1,α(R). Let
ρ > 0 and Γ ρ = {(s, t) ∈ R

2 : s > g(t), dist((s, t), Γ ) = ρ}. Fix t0 ∈ R

and r > 10ρ, and denote L := ‖g‖C0,1([t0−2r,t0+2r ]). Then we find that, for any

t1 ∈ [t0 − r, t0 + r ], there exists s1 ∈ [g(t1) + ρ, g(t1) + ρ
√

L2 + 1] such that
(s1, t1) ∈ Γ ρ and

Γ ρ ∩ {(s, t) ∈ R
2 : |t − t0| ≤ r, s > s1 + L|t − t1|} = ∅

by noting that Bρ(s1, t1) ∩ Γ = ∅. From this,

Γ ρ = {(s, t) ∈ R
2 : s = gρ(t)}

with gρ ∈ C0,1
loc (R) and ‖g − gρ‖L∞([−r,r ]) ≤ ρ

√
L2 + 1. Moreover, fix P ∈ Γ ρ .

Then there exists Q ∈ Γ such that dist(P, Q) = ρ. It follows that

Bρ(P) ∩ Γ = ∅, Bρ(Q) ∩ Γ ρ = ∅.

From this, for any r ∈ (0, 1), we find that there exists r0 ∈ (0, r
10 ] depending

only on r , α, and L̂ := ‖g‖C1,α([3r,3r ]) such that, if ρ ∈ (0, r0], then, for any
P = (gρ(tP ), tP ) ∈ Γ ρ ∩ {t ∈ [−r, r ]}, we have

gρ(t) ≥ gρ(tP ) + g′(tQ)(t − tP ) − L̂rα|t − tP |
≥ gρ(tP ) + g′(tP )(t − tP ) − L̂(rα + ρα)|t − tP |

for any t ∈ [−2r, 2r ], where Q := (g(tQ), tQ) a point such that dist(P, Q) = ρ.
Then, noting that

|g(t) − g(tP) − g′(tP )(t − tP )| ≤ Lrα|t − tP | for any t ∈ [−2r, 2r ],
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and ‖g − gρ‖L∞([−r,r ]) ≤ ρ
√

L̂2 + 1, we have

‖g − gρ‖C0,1([−r,r ]) ≤ L̂ρα + ρ

√

L̂2 + 1.

Thus, for any ε ∈ (0, 1), reducing r0, we obtain

‖g − gρ‖C0,1([−r,r ]) ≤ ε if ρ ≤ r0. (A.3)

From this, under the conditions of Case (a) in the proof of Lemma 3.10, when
(3.17) holds, we follow the argument in the proof of Lemma 3.10 and choosing
sufficiently small r0 and ε in (A.3) to obtain that, for any positive ρ < min{r, r0},

Ωρ ∩ Q 3r
2

= {(s, t) ∈ Q 3r
2

: s > gρ(t)},
∂Ωρ ∩ Q 3r

2
= {(s, t) ∈ Q 3r

2
: s = gρ(t)}. (A.4)

Furthermore, under the conditions of Case (b) in the proof of Lemma 3.10, when
(3.18)–(3.19) hold, we repeat the argument there by choosing small r0 and ε, and
conclude that, for any positive ρ < min{r, r0},

Ωρ ∩ Q3Nr = {(s, t) ∈ Q3Nr : s > max(gρ
1 (t), gρ

2 (t))},
∂Ωρ ∩ Q3Nr = {(s, t) ∈ Q3Nr : s = max(gρ

1 (t), gρ
2 (t))}, (A.5)

where gρ
1 and gρ

2 satisfy (A.3) with g1 and g2, respectively, and that there exists
tρ ∈ (−Cρ, Cρ) such that

gρ
1 (t) > gρ

2 (t) for t < tρ, gρ
1 (t) < gρ

2 (t) for t > tρ. (A.6)

We adjust r0 so that r0 ≤ r∗
10 . Then, from (A.4)–(A.6) with r = r∗, we obtain that,

for each ρ ∈ (0, r0], ∂Ωρ is a Lipschitz curve without self-intersection. It follows
that Ωρ is simply-connected.
Also, combining (A.4) with (3.17) and (A.5)–(A.6) with (3.18)–(3.19) for r = r0,
choosing ε small in (A.3) for g, g1, and g2, and adjusting r0, we have

dist(∂Ωρ, ∂Ω) ≤ Cρ for each ρ ∈ (0, r0).

Then we conclude (A.2).

2. Now we show that Br (E) ∩ Ωρ is connected for any E ∈ Ω and 0 ≤ ρ <

r ≤ r0.
Assume that dist(E, ∂Ω) < 2r (otherwise, the result already holds). Since r0 ≤ r∗

10 ,
we obtain (3.17)–(3.19) for 2r instead of r , so that (A.4)–(A.6) hold for 2r instead
of r . Then, arguing as in the proof of Lemma 3.10 and possibly reducing r0, we
obtain the following:

– If Br (E) ∩ Ω has expression (3.21), then

Ωρ ∩ Br (E) = {(s, t) : t ∈ (t−ρ , t+ρ ), max( f −(t), gρ(t)) < s < f +(t)},
where t+ρ ∈ ( 9r

10 , r ] and t−ρ ∈ [−r,− 9r
10 ) with |t±ρ − t±| ≤ Cρ, f + > gρ on

(t−ρ , t+ρ ), and f + < gρ on [−r, r ] \ [t−ρ , t+ρ ];
– If Br (E) ∩ Ω has expression (3.28), then

Ωρ ∩ Br (E)={(s, t) : t ∈ (t−ρ , t+ρ ), max( f −(t), gρ
1 (t), gρ

2 (t)) < s < f +(t)},
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where t−ρ ∈ [t∗ − r, t∗) and t+ρ ∈ (t∗, t∗ + r ] with |t±ρ − t±| ≤ Cρ, and
f +(t) > max(gρ

1 (t), gρ
2 (t)) on (t−ρ , t+ρ ).

The facts above imply that sets Br (E) ∩ Ωρ are connected. ��
In the next lemma,we use theminimal andmaximal chains in the sense ofDefinition
3.7.

Lemma A.3. Let Ω ⊂ R
2 satisfy the conditions stated at the beginning of §3.3,

and let r0 be the constant from Lemma A.2. Let E1, E2 ∈ Ω , and let there exist a
minimal or maximal chain {Ei }N

i=1 of radius r1 ∈ (0, r0] connecting E1 to E2 in
Ω , i.e., E0 = E1 and E N = E2. Denote

Λ =
N⋃

i=0

Br1(Ei ) ∩ Ω

so that E1, E2 ∈ ∂Λ. Then there exists r̂0 > 0 such that set Λ and points {E1, E2}
satisfy the conditions of Lemma A.1 with radius r̂0.

Proof. We divide the proof into two steps.

1.We first show the existence of r̂0 ∈ (0, r1) such that Λρ is connected for each
ρ ∈ (0, r̂0]. We recall that r1 ≤ r0 ≤ r∗ so that the conclusions of Lemma 3.10
hold for Br1(Ei ).
Since, for each P ∈ Λ,

dist(P, ∂Λ) = min
{
dist

(
P, ∂

( N⋃

i=0

Br1(Ei )
))

, dist(P, ∂Ω)
}
,

then

Λρ =
N⋃

i=0

Br1−ρ(Ei ) ∩ Ωρ. (A.7)

By Lemma 3.10(ii) and property (b) of Definition 3.7, we see that, if r1 ≤ r∗, then
Br1(Ei ) ∩ Br1(Ei+1) ∩ Ω �= ∅ for i = 0, . . . , N − 1. Note that all the sets in the
last intersection are open. Then, recalling that r1 ≤ r0 and using (A.2) in Lemma
A.2, we obtain that there exists r̂0 ∈ (0, r1) such that, for any ρ ∈ (0, r̂0),

Br1−ρ(Ei ) ∩ Br1−ρ(Ei+1) ∩ Ωρ �= ∅ for i = 0, . . . , N − 1.

Also, from Lemma A.2, sets Br1−ρ(Ei ) ∩ Ωρ are connected, since r1 ≤ r0. Then

we obtain that
N⋃

i=0

Br1−ρ(Ei ) ∩ Ωρ is connected by using the argument in the

proof of Lemma 3.12(i). Thus, by (A.7), we conclude that Λρ is connected for all
ρ ∈ (0, r̂0).

2. Since Br1(E0) ∩ Ω ⊂ Λ, then we use (A.7) to obtain

Br (E0) ∩ Λρ = Br (E0) ∩ Ωρ for all r ∈ (0,
r1
10

] and ρ ∈ (0, r).
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Sets Br (E0) ∩ Ωρ with r and ρ as above are connected by Lemma A.2. Thus,
the assumptions of Lemma A.1 with radius r1

10 hold for point E1 = E0. For point
E2 = E N , the argument is similar. ��
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