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07.03.2021, a Mathematical Educator Par Excellence” in 
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Vladimir Tikhomirov.”
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Listening to I. M. Singer with I. M. Singer
The year was 1974, the city Vancouver, B. C. Canada. The 
occasion: ICM 1974. During a break, I went looking for a 
restroom. I opened a door to a small room and there sat 
a gentleman listening intently to a lecture on a small TV 
screen. I recognized the man. I had listened to the same talk 
live with him as the speaker. As I was about to duck away, 
he said “No, join me.” Together, we watched and listened 
to his talk as if in prayer. At the end of the talk, we shook 
hands silently and went our separate ways. The speaker 
was I. M. Singer. 

Sincerely, 
Frank Okoh

Department of Mathematics 
Wayne State University

Letter to the Editor
On August 23, 2022, this letter went to 2,176 department chairs 
and faculty of mathematics in the United States and was featured 
on AMS social media on September 1, 2022.

Dear Colleague:
This week, we received a letter of concern from multi-

ple faculty, including several of whom are directing REU 
programs. It seems that several of their students have en-
countered problems accessing the Math GRE Subject Test 
this fall.   The exam is not offered in several states and even 
when it is offered, the spots are filling up quickly.  If there 
is a test center within 125 miles (as the crow flies), students 
are expected to travel there to take the exam; otherwise, 
students can seek permission to have their home campus 
designated as an alternative test site. We even heard of one 
student who had arranged with ETS to have their school 
administer their test, but subsequently ETS added a new test 
center 110 miles away from campus so now the student has 
to pivot and figure out how to get to this new site.

We understand that for some graduate programs in 
mathematics, the GRE Subject Test provides useful in-
formation, but we are alarmed to learn that many of our 
students are finding scheduling and traveling to the exam 
to be a serious obstacle.

We want to bring this issue to your attention, and request 
that you be understanding in reviewing applications from 
students who may ultimately be unable to take the exam. 
We also ask that you please alert your faculty to this issue 
so they can take it into consideration when writing their 
letters of recommendation.

Sincerely, 
Ruth Charney, AMS President

Catherine Roberts, AMS Executive Director
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A WORD FROM...
Trena L. Wilkerson, President of the  

National Council of Teachers of Mathematics
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The opinions expressed here are not necessarily those of the Notices or the AMS.

Who is a mathematician? Are we facilitating the development and support for individuals 
to explore and engage in the wonder, joy, and beauty of mathematics? The National Council 
of Teachers of Mathematics (NCTM) advocates for high-quality mathematics teaching and 
learning for each and every student. This aligns with the American Mathematical Society’s 
mission of encouraging and promoting the transmission of mathematical understanding 
and skills, and fostering an awareness and appreciation of mathematics and its connections 
to other disciplines and everyday life. These are important directions for our mathematics 
community. If we are to expand opportunities for all students in mathematics we must be 
committed to actions that support all students in doing mathematics across PK–12, post-
secondary, and beyond. We must work to develop individuals so that they see themselves 
as confident, capable, lifelong learners of mathematics and statistics. This is vital to our 
future as a democratic society and for our place in the world community. I want to focus 
on actions we must commit to if we are to prepare students to successfully engage and 

lead in their world.
In 2018 NCTM released Catalyzing Change in High School Mathematics: Initiating Critical Conversations with the 

purpose of challenging stakeholders in PK–12 education to engage in essential conversations to examine current 
beliefs, policies, and practices that have had significant negative consequences both for students and the math-
ematical community as a whole. These conversations then should lead to plans to provide opportunities for all 
students to engage in mathematics in significant depth to prepare them to not only meet the needs of society but 
to be leaders in our world. It was apparent that it would be important to also have these critical conversations 
across early childhood, elementary and middle grades so that as students transition to high school they are fully 
prepared. To that end in 2020 NCTM released Catalyzing Change in Early Childhood and Elementary Mathematics and 
Catalyzing Change in Middle School Mathematics. Across all three publications there are four proposed recommenda-
tions that span the grade levels so that all learners have a “successful life-long journey with mathematics” [2, p. 9].
1.	 Broaden the Purposes of Learning Mathematics. Each and every individual should develop deep mathematical 

understanding as confident and capable learners; understand and critique the world through mathematics; 
and experience the wonder, joy, and beauty of mathematics.

2.	 Create Equitable Structures in Mathematics. PK–12 mathematics should dismantle inequitable structures, 
including ability grouping and tracking students into qualitatively different learning experiences and dead-end 
course pathways, and challenge spaces of marginality and privilege.

3.	 Implement Equitable Mathematics Instruction. Mathematics instruction should be consistent with re-
search-informed and equitable teaching practices that foster students’ positive mathematical identities and 
strong sense of agency.

4.	 Develop Deep Mathematical Understanding. Early childhood settings and elementary schools should build a 
strong foundation of deep mathematical understanding within middle school and at least the first two years of 
high school offering a common shared pathway with all students having a continuous four-year mathematics 
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pathway. These should be grounded in the use of mathematical practices and process to coherently develop deep 
mathematical understanding ensuring the highest quality mathematics education for each and every student [1–3].

As you read and reflect on these recommendations, you may wonder what tracking is and if there is room for appro-
priate acceleration in mathematics? Catalyzing Change in High School Mathematics [1] distinguishes between tracking and 
acceleration. “Tracking is the practice of placing students into qualitatively different course pathways or qualitatively dif-
ferent mathematical learning experiences” [3, p. 29]. Tracking often reinforces the notion that some are capable of doing 
mathematics and others are not and becomes a system for labeling students in terms of perceived mathematical ability 
or potential. This often results in those labeled has having lower ability or potential being placed in mathematics classes 
that do not prepare them for continued study of mathematics, thus limiting their opportunities. Each and every student 
has the ability to learn significant mathematics when provided appropriate learning opportunities with an emphasis on 
reasoning, sense-making, and problem solving. Opportunities to expand understanding and explore mathematics should 
be open to a wide range of students, and if there are structural barriers that inhibit access to students these should be 
addressed and removed.

But what of acceleration? In 2016, NCTM’s position statement Providing Opportunities for Students with Exceptional Promise, 
stated that “Students with exceptional mathematical promise must be engaged in enriching learning opportunities during 
and outside the school day to allow them to pursue their interests, develop their talent, and maintain their passion for 
mathematics.” Acceleration can enable students with exceptional mathematical promise and interest to move ahead in the 
curriculum. It can support students who show skills, insights, or interests to be challenged to go deeper into mathematics, 
but we need to be cautious that acceleration practices do not set up mathematics learning as a race with winners and losers. 

Rather than perpetuating a system based on moving as quickly as possible through a set of courses, we should work 
to develop a system that allows every student the opportunity to think deeply about mathematics and values sense-mak-
ing and application. We want to grow the varied fields of mathematics, which I am fairly certain are not at capacity! 
We want and need more mathematicians. To do this, we need to ensure that multiple opportunities are available to all 
students and that critical concepts are not skipped or addressed in a rushed manner. We do not want students to believe 
that mathematics is about memorizing a process and that they should move faster at all costs, as this could lead them 
to dislike mathematics and all that the system represents. I believe that working together to support a system that values 
understanding over speed, values an experience where most if not all leave seeing the importance of mathematics, and 
cultivates within each student a belief that they can do, understand, and apply mathematics, will help to sustain the field 
of mathematics and a society that values the work that mathematicians do. 

It is essential that a deep understanding is developed across mathematical concepts. For some, calculus may be a 
goal in high school. According to a joint Calculus position statement of NCTM and MAA “A high school calculus course 
should not be the singular end goal of the PK–12 mathematics curriculum at the expense of providing a broad spectrum 
of mathematical preparation.” Thus, it is imperative that students have additional opportunities through pathways that 
include areas such as statistics, mathematical modeling, or data science which are important for students to understand 
and critique their world. These critical conversations and collaborations called for in Catalyzing Change are needed across 
PK–16 to ensure that all students are prepared for their future. 

What does this mean for postsecondary mathematics education? Catalyzing Change in High School [1, p. 92–93] iden-
tifies five beginning actions for postsecondary educators.

•	 Ensuring strong articulation and seamless pathways between the high school and the postsecondary mathematics 
curricula; 

•	 Collaborating with school- and district-based mathematics educators;
•	 Working with in-service and preservice teachers to support research-informed and equitable instructional practices 

focused on essential concepts across content domains of number, algebra and functions, statistics and probability, 
and geometry and measurement (See Catalyzing Change in High School for specifics related to these concepts);

•	 Collaborating with school and district educators to develop additional mathematics pathways and populating 
courses with essential concepts across content domains of number, algebra and functions, statistics and proba-
bility, and geometry and measurement;

•	 Collaborating with school and district educators to challenge and dismantle system structures that impede stu-
dents’ access to and success in mathematics.
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Consider Maryam Mirzakhani’s journey into mathematics. You know her as the first female and first Iranian to win the 
Fields Medal, mathematics’ highest award. Initially she did not see herself as a mathematician. She loved stories, reading 
novels, writing, and doodling her thoughts. In middle school her math teacher told her that she was not particularly 
talented in mathematics. The following year, she had a teacher who encouraged her and introduced her to geometry, 
which she saw as different from any mathematics she had known before. It changed the direction of her journey into 
mathematics. One teacher’s encouragement made her aware of the beauty of mathematics and opened opportunities for 
her to engage in rich mathematics, and our world has been forever changed.

If Maryam had not been supported in seeing mathematics with many purposes, think what would have been lost to 
her and to us. Every student who comes through our door is capable of doing mathematics, of learning and expanding 
their understanding of their world through mathematics. Are we providing learning spaces to unearth the mathematician 
in each student and foster in all this love of mathematics that we have? I challenge us to have these needed conversations 
among and across our organizations, in our mathematics and education departments, with PK–16 educators, and all 
stakeholders. Where will you start?

References 
[1] National Council of Teachers of Mathematics, Catalyzing Change in High School Mathematics: Initiating Critical Conversations, 

NCTM, Reston, VA, 2018.
[2] National Council of Teachers of Mathematics, Catalyzing Change in Early Childhood and Elementary Mathematics: Initiating 

Critical Conversations, NCTM, Reston, VA, 2020.
[3] National Council of Teachers of Mathematics, Catalyzing Change in Middle School Mathematics: Initiating Critical Conversa-

tions, NCTM, Reston, VA, 2020.
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Partial Differential Equations
of Mixed Type
—Analysis and Applications

Gui-Qiang G. Chen
Partial differential equations (PDEs) are at the heart of
many mathematical and scientific advances. While great
progress has been made on the theory of PDEs of standard
types during the last eight decades, the analysis of nonlin-
ear PDEs ofmixed type is still in its infancy. The aim of this
expository paper is to show – through several longstand-
ing fundamental problems in fluid mechanics, differential

Gui-Qiang G. Chen is Statutory Professor in the Analysis of Partial Differential
Equations and Director of the Oxford Centre for Nonlinear Partial Differential
Equations (OxPDE) at the Mathematical Institute of the University of Oxford,
where he is also a Professorial Fellow of Keble College. His email address is
Gui-Qiang.Chen@maths.ox.ac.uk.

Communicated by Notices Associate Editor Reza Malek-Madani.

For permission to reprint this article, please contact:
reprint-permission@ams.org.

DOI: https://doi.org/10.1090/noti2609

geometry, and other areas – thatmany nonlinear PDEs aris-
ing in these areas are no longer of standard types, but lie
at the boundaries of the classification of PDEs or, indeed,
go beyond the classification and are of mixed type. Some
interrelated connections, historical perspectives, recent de-
velopments, and current trends in the analysis of nonlinear
PDEs of mixed type are also presented.

1. Linear Partial Differential Equations
of Mixed Type

Three of the basic types of PDEs are elliptic, hyperbolic,
and parabolic, following the classification introduced by
Jacques Salomon Hadamard in 1923 (see Figure 1).
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The prototype of second-order elliptic equations is the
Laplace equation:

Δ𝐱𝑢 ≔
𝑛
∑
𝑗=1

𝜕𝑥𝑗𝑥𝑗𝑢 = 0 for 𝐱 = (𝑥1, … , 𝑥𝑛) ∈ ℝ𝑛. (1.1)

This equation often describes physical equilibrium states
whose solutions are also called harmonic functions or po-
tential functions, where 𝜕𝑥𝑗𝑥𝑗 is the second-order partial
derivative in the 𝑥𝑗-variable, 𝑗 = 1, … , 𝑛. The simplest rep-
resentative of hyperbolic equations is the wave equation:

𝜕𝑡𝑡𝑢 − Δ𝐱𝑢 = 0 for (𝑡, 𝐱) ∈ ℝ𝑛+1, (1.2)

which governs the propagation of linear waves (such as
acoustic waves and electromagnetic waves). The prototype
of second-order parabolic equations is the heat equation:

𝜕𝑡𝑢 − Δ𝐱𝑢 = 0 for (𝑡, 𝐱) ∈ ℝ𝑛+1, (1.3)

which often describes the dynamics of temperature and dif-
fusion/stochastic processes.

Figure 1. Jacques Salomon
Hadamard (December 8,
1865–October 17, 1963) first
introduced the classification of
PDEs in [16].

At first glance, the forms
of the Laplace/heat equa-
tions and the wave equa-
tion look quite similar. In
particular, any steady solu-
tion of the wave/heat equa-
tions is a solution of the
Laplace equation, and a so-
lution of the Laplace equa-
tion often determines an as-
ymptotic state of the time-
dependent solutions of the
wave/heat equations. How-
ever, the properties of the
solutions of the Laplace/
heat equations and the
wave equation are signifi-
cantly different. One im-
portant difference is in

terms of the infinite versus finite speed of propagation of the
solution, while another pertains to the gain versus loss of reg-
ularity of the solution; see [14,16] and the references cited
therein. Since the solutions of elliptic/parabolic PDEs
share many common features, we focus mainly on PDEs
of mixed elliptic-hyperbolic type from now on.

The distinction between the elliptic and hyperbolic
types can be seen more clearly from the classification of
two-dimensional (2-D) constant-coefficient second-order
PDEs:

𝑎11𝜕𝑥1𝑥1𝑢 + 2𝑎12𝜕𝑥1𝑥2𝑢 + 𝑎22𝜕𝑥2𝑥2𝑢 = 𝑓(𝐱) (1.4)

for 𝐱 = (𝑥1, 𝑥2) ∈ ℝ2. Let 𝜆1 ≤ 𝜆2 be the two con-
stant eigenvalues of the 2 × 2 symmetric coefficient matrix

(𝑎𝑖𝑗)2×2. Then Equation (1.4) is classified as elliptic if

det(𝑎𝑖𝑗) > 0 ⟺ 𝜆1𝜆2 > 0 ⟺ 𝑎212 − 𝑎11𝑎22 < 0, (1.5)

while it is classified as hyperbolic if

det(𝑎𝑖𝑗) < 0 ⟺ 𝜆1𝜆2 < 0 ⟺ 𝑎212 − 𝑎11𝑎22 > 0. (1.6)

Notice that the left-hand side of Equation (1.4) is analo-
gous to the quadratic (homogeneous) form:

𝑎11𝜉21 + 2𝑎12𝜉1𝜉2 + 𝑎22𝜉22
for conic sections. Thus, the classification of Equation
(1.4) is consistent with the classification of conic sections
and quadratic forms in algebraic geometry, based on the
sign of the discriminant: 𝑎212 − 𝑎11𝑎22. The correspond-
ing quadratic curves are ellipses (incl. circles), hyperbolas,
and parabolas (see Figure 2).

Figure 2. Types of conic sections: parabolas, ellipses, and
hyperbolas.

This classification can also be seen by taking the Fourier
transform on both sides of Equation (1.4):

(𝑎11𝜉21 + 2𝑎12𝜉1𝜉2 + 𝑎22𝜉22)𝑢̂(𝜉) = − ̂𝑓(𝜉) (1.7)

for 𝜉 = (𝜉1, 𝜉2) ∈ ℝ2. Here 𝑤̂(𝜉) = 1
2𝜋
∫ℝ2 𝑤(𝐱)𝑒−𝑖𝐱⋅𝜉 d𝐱 is

the Fourier transform of a function 𝑤(𝐱), such as 𝑢(𝐱) and
𝑓(𝐱) for (1.7). When Equation (1.4) is elliptic, the Fourier
transform 𝑢̂(𝜉) of solution 𝑢(𝐱) gains two orders of decay
for the high Fourier frequencies (i.e., |𝜉| ≫ 1) so that the so-
lution gains the regularity of two orders from 𝑓(𝐱). When
Equation (1.4) is hyperbolic, 𝑢̂(𝜉) fails to gain two orders of
decay for the high Fourier frequencies along the two char-
acteristic directions in which 𝑎11𝜉21 + 2𝑎12𝜉1𝜉2 + 𝑎22𝜉22 = 0,
even though it still gains two orders of decay for the high
Fourier frequencies away from these two characteristic di-
rections.

For the classification above, a general homogeneous
constant-coefficient second-order PDE (i.e., 𝑓(𝐱) = 0) with
(1.5) or (1.6) can be transformed correspondingly into the
Laplace equation (1.1) with 𝑛 = 2, or the wave equation
(1.2) with 𝑛 = 1, via the corresponding coordinate trans-
formations. This reveals the beauty of the classification
theory that was first introduced by Hadamard in [16].
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On the other hand, for general variable-coefficient
second-order PDEs:

𝑎11(𝐱)𝜕𝑥1𝑥1𝑢+2𝑎12(𝐱)𝜕𝑥1𝑥2𝑢+𝑎22(𝐱)𝜕𝑥2𝑥2𝑢 = 𝑓(𝐱), (1.8)

the situation is different. The classification depends upon
the signature of the eigenvalues 𝜆𝑗(𝐱), 𝑗 = 1, 2, of the
coefficient matrix (𝑎𝑖𝑗(𝐱)). In general, 𝜆1(𝐱)𝜆2(𝐱) may
change its sign as a function of 𝐱, which leads to the mixed
elliptic-hyperbolic type of (1.8). Equation (1.8) is elliptic
when 𝜆1(𝐱)𝜆2(𝐱) > 0 and hyperbolic when 𝜆1(𝐱)𝜆2(𝐱) < 0
with a transition boundary/region where 𝜆1(𝐱)𝜆2(𝐱) = 0.

Three of the classical prototypes for linear PDEs of
mixed elliptic-hyperbolic type are as follows:

(i) The Lavrentyev-Bitsadze equation:

𝜕𝑥1𝑥1𝑢 + sign(𝑥1)𝜕𝑥2𝑥2𝑢 = 0.
This equation exhibits a jump transition at 𝑥1 = 0. It be-
comes the Laplace equation (1.1) in the half-plane 𝑥1 > 0
and the wave equation (1.2) in the half-plane 𝑥1 < 0,
and changes its type from elliptic to hyperbolic via the jump-
discontinuous coefficient sign(𝑥1).
(ii) The Tricomi equation: 𝜕𝑥1𝑥1𝑢 + 𝑥1𝜕𝑥2𝑥2𝑢 = 0.
This equation is of hyperbolic degeneracy at 𝑥1 = 0. It is
elliptic in the half-plane 𝑥1 > 0 and hyperbolic in the half-
plane 𝑥1 < 0, and changes its type from elliptic to hyperbolic
through the degenerate line 𝑥1 = 0. This equation is of
hyperbolic degeneracy in the domain 𝑥1 ≤ 0, where the
two characteristic families coincide perpendicularly to the
line 𝑥1 = 0. The degeneracy of the equation is determined
by the classical elliptic or hyperbolic Euler-Poisson-Darboux
equation:1

𝜕𝜏𝜏𝑢 ± 𝜕𝑥2𝑥2𝑢 +
𝛽
𝜏 𝜕𝜏𝑢 = 0, (1.9)

with 𝛽 = 1
3
for 𝜏 = 2

3
|𝑥1|

3
2 , and signs “±” corresponding to

the half-planes ±𝑥1 > 0 for 𝐱 to lie in.

(iii) The Keldysh equation: 𝑥1𝜕𝑥1𝑥1𝑢 + 𝜕𝑥2𝑥2𝑢 = 0.
This equation is of parabolic degeneracy at 𝑥1 = 0. It is
elliptic in the half-plane 𝑥1 > 0 and hyperbolic in the half-
plane 𝑥1 < 0, and changes its type from elliptic to hyper-
bolic through the degenerate line 𝑥1 = 0. This equation is
of parabolic degeneracy in the domain 𝑥1 ≤ 0, in which
the two characteristic families are quadratic parabolas ly-
ing in the half-plane 𝑥1 < 0, and tangential at contact
points to the degenerate line 𝑥1 = 0. Its degeneracy is
also determined by the classical elliptic or hyperbolic Euler-

Poisson-Darboux equation (1.9) with 𝛽 = − 1
4
for 𝜏 = 1

2
|𝑥1|

1
2 .

For such a linear PDE, the transition boundary (i.e., the
boundary between the elliptic and hyperbolic domains)
is known a priori. Thus, one traditional approach is

1J. Hadamard, La Théorie des Équations aux Dérivées Partielles, in French,
Éditions Scientifiques, Peking; Gauthier-Villars Éditeur, Paris, 1964.

to regard such a PDE as a degenerate elliptic or hyper-
bolic PDE in the corresponding domain, and then to ana-
lyze the solution behavior of these degenerate PDEs sepa-
rately in the elliptic and hyperbolic domains with degen-
eracy on the transition boundary, determined, say, by the
Euler-Poisson-Darboux type equations as (1.9). Another
successful approach for dealing with such a PDE is the
fundamental solution approach. With this approach, we
first understand the behavior of the fundamental solu-
tion of the mixed-type PDE, especially its singularity, from
which analytical/geometric properties of the solutions can
then be revealed, since the fundamental solution is a gen-
erator of all of the solutions of the linear PDE. Great ef-
fort and progress have been made in the analysis of linear
PDEs ofmixed type bymany leadingmathematicians since
the early 20th century (cf. [4, 6, 16,18] and the references
cited therein). Still, there are many important problems
regarding linear PDEs of mixed type which require further
understanding.

In the sections to come, we show, through several
longstanding fundamental problems in fluid mechanics,
differential geometry, and other areas, that many non-
linear PDEs arising in mathematics and science are no
longer of standard type, but are in fact of mixed type.
In contrast to the linear case, the transition boundary
for a nonlinear PDE of mixed type is often a priori un-
known, and the nonlinearity generates additional singu-
larities in general. Thus, many classical methods and tech-
niques for linear PDEs no longer work directly for non-
linear PDEs of mixed type. The lack of effective unified
approaches is one of the main obstacles for tackling the
elliptic/hyperbolic phases together for nonlinear PDEs of
mixed type. Over the course of the last eight decades, the
PDE research community has been largely partitioned ac-
cording to the approaches taken to the analysis of differ-
ent classes of PDEs (elliptic/hyperbolic/parabolic). How-
ever, advances in the analysis of nonlinear PDEs over the
last several decades have made it increasingly clear that
many difficult questions faced by the community lay at
the boundaries of this classification or, indeed, go be-
yond this classification. In particular, many important
nonlinear PDEs that arise in longstanding fundamental
problems across diverse areas are of mixed type. As we
will show in §2–§4, below, these problems include steady
transonic flow problems and shock reflection/diffraction
problems in gas dynamics, high-speed flow, and related
areas (cf. [2, 3, 6, 12, 13, 15, 18–20]), and isometric em-
bedding problems with optimal target dimensions and as-
signed regularity/curvatures in elasticity, geometric anal-
ysis, materials science, and other areas (cf. [11, 17]).
The solution to these problems will advance our under-
standing of shock reflection/diffraction phenomena, tran-
sonic flows, properties/classifications of elastic/biological
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surfaces/bodies/manifolds, and other scientific issues, and
lead to significant developments of these areas and related
mathematics. To achieve these goals, a deep understand-
ing of the underlying nonlinear PDEs of mixed type (for
instance, the solvability, the properties of solutions, etc.)
is key.

2. Nonlinear PDEs of Mixed Type and Steady
Transonic Flow Problems in Fluid Mechanics

In many applications, fluid flows are often regarded as
time-independent; this is the case for some longstanding
fundamental problems, such as that of transonic flows past
multi-dimensional (M-D) obstacles (wedges/conic bodies,
airfoils, etc.), or de Laval nozzles; see Figures 3–4. Fur-
thermore, steady-state solutions are often global attractors
as time-asymptotic equilibrium states, and serve as build-
ing blocks for constructing time-dependent solutions (cf.
[6,12,13,15]). The underlying nonlinear PDEs governing
these fluid flows are generically of mixed type.

Figure 3. NASA’s first Schlieren photo of shock waves
interacting between two aircraft (taken in March 2019).

Figure 4. Diagram of a de Laval nozzle for the approximate
flow velocity.

Our first example is steady potential fluid flows gov-
erned by the steady Euler equations of the conservation
law of mass and Bernoulli’s law:

div(𝜌∇𝜑) = 0, 12 |∇𝜑|
2 + 1

𝛾 − 1𝜌
𝛾−1 = 𝐵0

𝛾 − 1 (2.1)

for 𝐱 ∈ ℝ𝑛 after scaling, where 𝜌 is the density, 𝜑 is the
velocity potential (i.e., 𝑣 = ∇𝜑 is the velocity), 𝛾 > 1

Figure 5. Leonhard Euler
(April 15, 1707–September
18, 1783) formulated the
Euler equations for fluid
mechanics; these are
among the first PDEs to be
written down.

Figure 6. In 1936, Ludwig
Prandtl (February 4,
1875–August 15, 1953)
identified, via the shock
polar analysis, two oblique
shock configurations when
a steady uniform
supersonic gas flow
passes a solid wedge.

is the adiabatic exponent for the ideal gas, 𝐵0/(𝛾 − 1) is
the Bernoulli constant, and ∇ is the gradient in 𝐱. System
(2.1), along with its time-dependent version (see (3.1) be-
low), is one of the first PDEs to be written down by Eu-
ler (cf. Figure 5), and has been employed widely in aero-
dynamics and other areas in instances when the vorticity
waves are weak in the fluid flow under consideration (cf.
[3, 6, 12, 13, 15]). System (2.1) for the steady velocity po-
tential 𝜑 can be rewritten as

div (𝜌𝐵(|∇𝜑|)∇𝜑) = 0 (2.2)

with 𝜌𝐵(𝑞) = (𝐵0 − (𝛾 − 1)𝑞2/2)1/(𝛾−1). Equation (2.2) is a
nonlinear conservation law of mixed elliptic-hyperbolic type:

• strictly elliptic (subsonic) if |∇𝜑| < 𝑐∗ ≔ √2𝐵0/(𝛾 + 1);
• strictly hyperbolic (supersonic) if |∇𝜑| > 𝑐∗.

The transition boundary here is |∇𝜑| = 𝑐∗ (sonic), a de-
generate set of (2.2), which is a priori unknown, since it is
determined by the solution itself.

Similarly, the time-independent full Euler flows are gov-
erned by the steady Euler equations:

div(𝜌𝑣) = 0, div(𝜌𝑣⊗𝑣)+∇𝑝 = 0, div (𝜌𝑣(𝐸+ 𝑝
𝜌 )) = 0,

(2.3)
where 𝑝 is the pressure, 𝑣 is the velocity, and 𝐸 = 1

2
|𝑣|2 + 𝑒

is the energy with 𝑒 = 𝑝
(𝛾−1)𝜌

as the internal energy de-

termined by the thermodynamic constitutive equation of
state. System (2.3) is a system of conservation laws of mixed-
composite hyperbolic-elliptic type:

• strictly hyperbolic when |𝑣| > 𝑐 (supersonic);
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Figure 7. Two steady solutions with shocks around the solid
wedge with an angle 𝜃w ∈ (0, 𝜃sw) or even 𝜃w ∈ [𝜃sw, 𝜃dw).

• mixed-composite elliptic-hyperbolic (two of these are el-
liptic and the others are hyperbolic) when |𝑣| < 𝑐 (sub-
sonic),

where 𝑐 = √𝛾𝑝/𝜌 is the sonic speed. The transition bound-
ary between the supersonic/subsonic phase is |𝑣| = 𝑐, a
degenerate set of the solution of System (2.3), which is a
priori unknown.

Many fundamental transonic flowproblems in fluidme-
chanics involve these nonlinear PDEs of mixed type. One
of these is a classical shock problem in which an upstream
steady uniform supersonic gas flow passes a symmetric
straight-sided solid wedge

𝑊 ≔ {𝐱 = (𝑥1, 𝑥2) ∈ ℝ2 ∶ |𝑥2| < 𝑥1 tan 𝜃w, 𝑥1 > 0}, (2.4)

whose (half-wedge) angle 𝜃w is less than the detachment
angle 𝜃dw (cf. Figure 7).

Since this problem involves shocks, its global solution
should be a weak solution of Equation (2.2) or System
(2.3) in the distributional sense (which admits shocks)2

in the domain under consideration (see [7]). For exam-
ple, for Equation (2.2), a shock is a curve across which
∇𝜑 is discontinuous. If Λ+ and Λ−(≔ Λ ⧵ Λ+) are two
nonempty open subsets of a domain Λ ⊂ ℝ2, and 𝒮 ≔
𝜕Λ+ ∩ Λ is a 𝐶1-curve across which ∇𝜑 has a jump, then
𝜑 ∈ 𝐶1(Λ± ∪𝒮) ∩𝐶2(Λ±) is a global weak solution of (2.2)
in Λ if and only if 𝜑 is in 𝑊1,∞

loc (Λ)3 and satisfies Equation
(2.2) in Λ± and the Rankine-Hugoniot conditions on 𝒮:

𝜑Λ+∩𝒮 = 𝜑Λ−∩𝒮,
𝜌𝐵(|∇𝜑|2)∇𝜑 ⋅ 𝜈|Λ+∩𝒮 = 𝜌𝐵(|∇𝜑|2)∇𝜑 ⋅ 𝜈|Λ−∩𝒮,

(2.5)

where 𝜈 is the unit normal to 𝒮 in the flow direction; i.e.,
∇𝜑 ⋅ 𝜈|Λ±∩𝒮 > 0. A piecewise smooth solution with dis-
continuities satisfying (2.5) is called an entropy solution of
(2.2) if it satisfies the following entropy condition: The
density 𝜌 increases in the flow direction of ∇𝜑Λ+∩𝒮 across any

2P. D. Lax, Hyperbolic Systems of Conservation Laws and the Mathemat-
ical Theory of Shock Waves, CBMS-RCSAM, No. 11, SIAM, Philadelphia,
Pennsylvania, 1973.
3A𝑊 𝑘,𝑝 function, for 1 ≤ 𝑝 ≤ ∞ and 𝑘 ≥ 1 integer, is a real-valued function
such that itself and its (weak) derivatives up to order 𝑘 are all 𝐿𝑝 functions.

Figure 8. Richard Courant (January 8, 1888–January 27, 1972)
and Kurt Otto Friedrichs (September 28, 1901–December 31,
1982); their monumental book [12] has had a great impact
upon the development of the M-D theory of shock waves and
nonlinear PDEs of hyperbolic/mixed types.

discontinuity. Then such a discontinuity is called a shock
(see [12]); see also Figure 8.4

For this problem, there are two configurations: theweak
oblique shock reflection with supersonic/subsonic down-
stream flow (determined by the sonic angle 𝜃sw), and the
strong oblique shock reflectionwith subsonic downstream
flow; both of these satisfy the entropy condition, as was
discovered by Prandtl (cf. Figure 6). The weak oblique
shock is transonic with subsonic downstream flow for
𝜃w ∈ (𝜃sw, 𝜃dw), while the weak oblique shock is supersonic
with supersonic downstream flow for 𝜃w ∈ (0, 𝜃sw). How-
ever, the strong oblique shock is always transonic with
subsonic downstream flow. The question of physical ad-
missibility of one or both of the strong/weak shock reflec-
tion configurations was hotly debated for eight decades in
the wake of Courant-Friedrichs [12] and von Neumann
[20], and has only recently been better understood (cf.
[7] and the references cited therein). There are two nat-
ural approaches to understanding this phenomenon: One
is to examine whether these configurations are stable un-
der steady perturbations, and the other is to determine
whether these configurations are attainable as large-time
asymptotic states (i.e., the Prandtl-Meyer problem); both ap-
proaches involve the analysis of nonlinear PDEs (2.2) or
(2.3) of mixed type.

Mathematically, the steady stability problem can be for-
mulated as a free boundary problem with the perturbed
shock-front:

𝒮 = {𝐱 ∶ 𝑥2 = 𝜎(𝑥1), 𝑥1 ≥ 0} (2.6)

with 𝜎(0) = 0 and 𝜎(𝑥1) > 0 for 𝑥1 > 0 as a free boundary

4Author of the picture: Konrad Jacobs. Source: Archives of the Mathematisches
Forschungsinstitut Oberwolfach.
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Figure 9. The leading steady shock 𝑥2 = 𝜎(𝑥1) as a free
boundary under the perturbation.

(with the Rankine-Hugoniot conditions, say (2.5), as free
boundary conditions) to determine the domain behind 𝒮:

Ω = {𝐱 ∈ ℝ2 ∶ 𝑏(𝑥1) < 𝑥2 < 𝜎(𝑥1), 𝑥1 > 0}, (2.7)

and the downstream flow in Ω for Equation (2.2) or Sys-
tem (2.3) of mixed elliptic-hyperbolic type, where 𝑥2 =
𝑏(𝑥1) is the perturbation of the flat wedge boundary 𝑥2 =
𝑥1 tan 𝜃w. Such a global solution of the free boundary
problem provides not only the global structural stability
of the steady oblique shock, but also a more detailed struc-
ture of the solution.

Supersonic (i.e., supersonic-supersonic) shocks corre-
spond to the case when 𝜃w ∈ (0, 𝜃sw); these are shocks of
weak strength. The local stability of such shocks was first
established in the 1960s. The global stability and unique-
ness of the supersonic oblique shocks for both Equation
(2.2) and System (2.3) have been solved for more gen-
eral perturbations of both the upstream steady flow and
the wedge boundary, even in 𝐵𝑉 ,5 by purely hyperbolic
methods and techniques (cf. [7] and the references cited
therein).

For transonic (i.e., supersonic-subsonic) shocks, it has
been proved that the oblique shock of weak strength is
always stable under general steady perturbations. How-
ever, the oblique shock of strong strength is stable only
conditionally for a certain class of steady perturbations
that require the exact match of the steady perturbations
near the wedge-vertex and the downstream condition at
infinity, which reveals one of the reasons why the strong
oblique shock solutions have not been observed experi-
mentally. In these stability problems for transonic shocks,
the PDEs (or parts of the systems) are expected to be ellip-
tic for global solutions in the domains determined by the
corresponding free boundary problems; that is, we solve
an expected elliptic free boundary problem. However, the
earlier methods and approaches for elliptic free boundary
problems do not directly apply to these problems, such as
the variational methods, the Harnack inequality approach,
and other elliptic methods/approaches. The main reason
for this is that the type of equations needs to be controlled

5A 𝐵𝑉 function is a real-valued function whose total variation is bounded.

before we can apply thesemethods, and this requires some
strong a priori estimates. To overcome these difficulties, the
global structure of the problems is exploited, which allows
us to derive certain properties of the solution so that the
type of equations and the geometry of the problem can be
controlled. With this, the free boundary problem, as de-
scribed above, has been solved by an iteration procedure;
see Chen-Feldman [7] and the references cited therein for
more details.

When a subsonic flow passes through a de Laval nozzle,
the flow may form a supersonic bubble with a transonic
shock (see Figure 4); full understanding of how the geom-
etry of the nozzle helps to create/stabilize/destabilize the
transonic shock requires a deep understanding of the non-
linear PDEs of mixed type. Likewise, for the Morawetz prob-
lem for a steady subsonic flow past an airfoil, experimen-
tal results show that a supersonic bubble may be formed
around the airfoil (see Figures 10–11), and the flow behav-
ior is determined by the solution of a nonlinear PDE of
mixed type.

Some fundamental problems for transonic flow posed
in the 1950s–60s (e.g., [3, 6, 12,15,19]) remain unsolved,
though some progress has been made in recent years (e.g.,
[6,7,13] and the references cited therein).

3. Nonlinear PDEs of Mixed Type and Shock
Reflection/Diffraction Problems in Fluid
Mechanics and Related Areas

In general, fluid flows are time-dependent. We now de-
scribe how some longstanding M-D time-dependent fun-
damental shock problems in fluidmechanics can naturally
be formulated as problems for nonlinear PDEs of mixed
type through a prototype: the shock reflection-diffraction
problem.

When a planar shock separating two constant states (0)
and (1), with constant velocities and densities 𝜌0 < 𝜌1
(state (0) is ahead or to the right of the shock, and state
(1) is behind the shock), moves in the flow direction (i.e.,
𝑣1 > 0) and hits a symmetric wedge (2.4) with (a half-
wedge) angle 𝜃w head-on at time 𝑡 = 0, a reflection-
diffraction process takes place for 𝑡 > 0. A fundamen-
tal question that arises is which types of wave patterns of
shock reflection-diffraction configurations may be formed
around the wedge. The complexity of these configura-
tions was first reported by Ernst Mach (cf. Figure 12),
who observed two patterns of shock reflection-diffraction
configurations: Regular reflection (two-shock configura-
tion) and Mach reflection (three-shock/one-vortex-sheet
configuration); these are shown in Figure 14, below.6

The issue remained dormant until the 1940s, when John
von Neumann [19, 20] (also cf. Figure 13) and other

6M. Van Dyke, An Album of Fluid Motion, The Parabolic Press, Stanford,
1982.
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Figure 10. Transonic flow patterns on an airfoil showing flow
patterns at and above the critical Mach number.

Figure 11. Aerodynamic condensation evidences of
supersonic expansion fans around a transonic aircraft.

mathematical/experimental scientists (cf. [2,6,12,15] and
the references cited therein) began extensive research into
all aspects of shock reflection-diffraction phenomena. It
has been found that the situation is much more compli-
cated than that which Mach originally observed; the shock
reflection can be divided into more specific subpatterns,
and various other patterns of shock reflection-diffraction
configurations such as supersonic regular reflection, sub-
sonic regular reflection, attached regular reflection, double
Mach reflection, von Neumann reflection, and Guderley
reflection may occur; see [2, 6, 12, 15] and the references
cited therein (also see Figures 14–19, below). Then the
fundamental scientific issues include:

(i) the structures of the shock reflection-diffraction con-
figurations;

(ii) the transition criteria between the different patterns of
the configurations;

Figure 12. Ernst Waldfried
Josef Wenzel Mach (18
February 1838 – 19
February 1916), who first
observed the complexity
of shock
reflection-diffraction
configurations (1878).

Figure 13. John von
Neumann (December 28,
1903–February 8, 1957),
who proposed the sonic
conjecture and the
detachment conjecture for
shock reflection-diffraction
configurations.

(iii) the dependence of the patterns upon physical param-
eters such as the wedge angle 𝜃w, the incident-shock-
wave Mach number (i.e., the strength of the incident
shock), and the adiabatic exponent 𝛾 > 1.

In particular, several transition criteria between the
different patterns of shock reflection-diffraction config-
urations have been proposed; these include the sonic
conjecture and the detachment conjecture, both put forward
by von Neumann [19] (see also [2,6]).

To present this more clearly, we now focus on the Eu-
ler equations for time-dependent compressible potential
flow, which consist of the conservation law of mass and
Bernoulli’s law:

𝜕𝑡𝜌 + div(𝜌∇Φ) = 0, 𝜕𝑡Φ + 1
2|∇Φ|

2 + 1
𝛾 − 1𝜌

𝛾−1 = 𝜌𝛾−10
𝛾 − 1
(3.1)

for (𝑡, 𝐱) ∈ ℝ+ × ℝ2 after scaling, where Φ is the time-
dependent velocity potential (i.e., 𝑣 = ∇Φ is the velocity).
Equivalently, System (3.1) can be reduced to the nonlinear
wave equation of second-order:

𝜕𝑡𝜌(𝜕𝑡Φ,∇𝐱Φ) + ∇𝐱 ⋅ (𝜌(𝜕𝑡Φ,∇𝐱Φ)∇𝐱Φ) = 0, (3.2)

with 𝜌(𝜕𝑡Φ,∇𝐱Φ) = (𝜌𝛾−10 − (𝛾 − 1)(𝜕𝑡Φ + 1
2
|∇𝐱Φ|2))

1
𝛾−1 ,

which is one of the original motivations for the extensive
study of nonlinear wave equations.

Mathematically, the shock reflection-diffraction prob-
lem is a 2-D lateral Riemann problem for (3.1) or (3.2)
in domain ℝ2 ⧵ 𝑊 with 𝜌0, 𝜌1, 𝑣1 > 0 satisfying

𝜌1 > 𝜌0, 𝑣1 = (𝜌1 − 𝜌0)
√√
√

2(𝜌𝛾−11 − 𝜌𝛾−10 )
𝜌21 − 𝜌20

. (3.3)

Problem 3.1 (Shock Reflection-Diffraction Problem).
Piecewise constant initial data, consisting of state (0) with
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Figure 14. Three patterns of shock reflection-diffraction configurations.

velocity 𝐯0 = (0, 0) and density 𝜌0 > 0 on {𝑥1 > 0} ⧵ 𝑊
and state (1) with velocity 𝐯1 = (𝑣1, 0) and density 𝜌1 > 0 on
{𝑥1 < 0} connected by a shock at 𝑥1 = 0, are prescribed at 𝑡 = 0,
satisfying (3.3). Seek a solution of the Euler system (3.1), or
Equation (3.2), for 𝑡 ≥ 0, subject to the initial data and the
boundary condition ∇Φ ⋅ 𝜈w = 0 on 𝜕𝑊 , where 𝜈w is the unit
outward normal to 𝜕𝑊 .

Problem 3.1 is invariant under scaling: (𝑡, 𝐱, Φ) →
(𝛼𝑡, 𝛼𝐱, Φ

𝛼
) for any 𝛼 ≠ 0. Thus the problem admits self-

similar solutions in the form:

Φ(𝑡, 𝐱) = 𝑡𝜙(𝜉) for 𝜉 = 𝐱
𝑡 . (3.4)

Then the pseudo-potential function 𝜑(𝜉) = 𝜙(𝜉) − 1
2
|𝜉|2

satisfies the equation:

div(𝜌𝐵(|D𝜑|2, 𝜑)D𝜑) + 2𝜌𝐵(|D𝜑|2, 𝜑) = 0, (3.5)

with 𝜌𝐵(|D𝜑|, 𝜑) = (𝜌𝛾−10 −(𝛾−1)( 1
2
|D𝜑|2+𝜑))

1
𝛾−1 ,where the

divergence div and gradient D are with respect to 𝜉 ∈ ℝ2.
Define the pseudo-sonic speed 𝑐 = 𝑐(|D𝜑|, 𝜑) by

𝑐2(|D𝜑|, 𝜑) = 𝜌𝛾−1(|D𝜑|2, 𝜑) = 𝐵0 − (𝛾 − 1)(12 |D𝜑|
2 + 𝜑).

(3.6)
Equation (3.5) is of mixed elliptic-hyperbolic type:

• strictly elliptic if |D𝜑| < 𝑐(|D𝜑|, 𝜑) (pseudo-subsonic);
• strictly hyperbolic if |D𝜑| > 𝑐(|D𝜑|, 𝜑) (pseudo-

supersonic).

The transition boundary between the pseudo-supersonic
and pseudo-subsonic phases is |D𝜑| = 𝑐(|D𝜑|, 𝜑) (i.e.,

|D𝜑| = √
2

𝛾+1
(𝐵0 − (𝛾 − 1)𝜑)), a degenerate set of the so-

lution of Equation (3.5), which is a priori unknown and
more delicate than that of Equation (2.2).

One class of solutions of (3.5) is that of constant states;
these are solutions with constant velocity 𝐯∗ ∈ ℝ2. Then
the pseudo-potential of a constant state satisfiesD𝜑 = 𝐯∗−
𝜉 so that

𝜑(𝜉) = −12 |𝜉|
2 + 𝐯∗ ⋅ 𝜉 + 𝐶, (3.7)

where 𝐶 is a constant. For this 𝜑, the density 𝜌 and sonic
speed 𝑐 = 𝜌(𝛾−1)/2 are positive constants, independent of 𝜉.
Then, from (3.7), the ellipticity condition for the constant
state is |𝜉 − 𝐯∗| < 𝑐. Thus, for a constant state 𝐯∗, Equation
(3.5) is elliptic inside the sonic circle, with center 𝐯∗ and
radius 𝑐, and it is hyperbolic outside this circle. Moreover, if
the density 𝜌 is a constant, then the solution is a constant
state; that is, the corresponding pseudo-potential 𝜑 is of
form (3.7).

Problem 3.1 involves transonic shocks such that its
global solution should be a weak solution of Equation
(3.5) in the distributional sense within the domain in the
𝜉–coordinates (see [7]). If Λ+ and Λ−(≔ Λ ⧵ Λ+) are
two nonempty open subsets of a domain Λ ⊂ ℝ2, and
𝒮 ≔ 𝜕Λ+ ∩ Λ is a 𝐶1-curve with a normal 𝜈 across which
D𝜑 has a jump, then 𝜑 ∈ 𝐶1(Λ± ∪ 𝒮) ∩ 𝐶2(Λ±) is a global
entropy solution of (3.5) in Λ with 𝒮 as a shock if and only
if 𝜑 is in 𝑊1,∞

loc (Λ) and satisfies Equation (3.5) in Λ±, the
Rankine-Hugoniot conditions on 𝒮:

𝜑Λ+∩𝒮 = 𝜑Λ−∩𝒮, (3.8)

𝜌(|D𝜑|2, 𝜑)D𝜑 ⋅ 𝜈|Λ+∩𝒮 = 𝜌(|D𝜑|2, 𝜑)D𝜑 ⋅ 𝜈|Λ−∩𝒮, (3.9)

and the entropy condition stating that the density 𝜌 increases
in the pseudo-flow direction of D𝜑Λ+∩𝒮 across any discontinuity.

We now show how such solutions of the nonlinear PDE
(3.5) of mixed elliptic-hyperbolic type in self-similar coor-
dinates 𝜉 = 𝐱

𝑡
can be constructed.

First, by the symmetry of the problem with respect to
the 𝜉1–axis, it suffices for us to focus only on the upper
half-plane {𝜉2 > 0}, and to prescribe the following slip
boundary condition: D𝜑 ⋅ 𝜈sym = 0 on the symmetry line
Γsym ≔ {𝜉2 = 0} for the interior unit normal 𝜈sym = (0, 1).
Then Problem3.1 can be reformulated as a boundary value
problem in the unbounded domain:

Λ ≔ ℝ2
+ ⧵ {𝜉 ∶ |𝜉2| ≤ 𝜉1 tan 𝜃w, 𝜉1 > 0}

in the self-similar coordinates 𝜉 = (𝜉1, 𝜉2), where ℝ2
+ ≔

ℝ2 ∩ {𝜉2 > 0}.

Problem 3.2 (Boundary Value Problem). Seek a solution
𝜑 of Equation (3.5) in the self-similar domain Λ with the slip
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Figure 15. Normal reflection configuration.

boundary condition: D𝜑 ⋅ 𝜈|𝜕Λ = 0 for the interior unit normal
𝜈 on 𝜕Λ, and the asymptotic boundary condition at infinity:

𝜑⟶ ̄𝜑={𝜑0 for 𝜉1>𝜉01 , 𝜉2>𝜉1 tan 𝜃w,
𝜑1 for 𝜉1<𝜉01 , 𝜉2>0,

when |𝜉|!∞,

where 𝜑0 = − 1
2
|𝜉|2 and 𝜑1 = − 1

2
|𝜉|2 + 𝑣1(𝜉1 − 𝜉01 ) with

𝜉01 = 𝜌1𝑣1
𝜌1−𝜌0

, which is the location of the incident shock

𝒮0 = {𝜉1 = 𝜉01 } ∩ Λ determined by the Rankine-Hugoniot con-
ditions (3.8)–(3.9) between states (0) and (1) on 𝒮0.

The simplest case is when 𝜃w = 𝜋
2
; this is called normal

reflection (see Figure 15). In this case, the incident shock
normally reflects from the flat wall to become the flat re-
flected shock 𝜉1 = ̄𝜉1 < 0.

When 𝜃w ∈ (0, 𝜋
2
), a necessary condition for the exis-

tence of a regular reflection solution, whose configurations
are as shown in Figures 16–19, is the existence of the uni-
form state (2) with pseudo-potential 𝜑2 at 𝑃0, determined
by the three conditions at 𝑃0:
D𝜑2 ⋅ 𝜈w = 0, 𝜑2 = 𝜑1, 𝜌(|D𝜑2|2, 𝜑2)D𝜑2 ⋅ 𝜈𝒮1 = 𝜌1D𝜑1 ⋅ 𝜈𝒮1

(3.10)

for 𝜈𝒮1 = D(𝜑1−𝜑2)
|D(𝜑1−𝜑2)|

across the flat shock 𝒮1 = {𝜑1 = 𝜑2}
that separates state (2) from state (1) and satisfies the en-
tropy condition: 𝜌2 > 𝜌1. These conditions lead to the sys-
tem of algebraic equations (3.10) for the constant velocity
𝐯2 and the density 𝜌2 of state (2). For any fixed densities
0 < 𝜌0 < 𝜌1 of states (0) and (1), there exist a sonic angle
𝜃sw and a detachment angle 𝜃dw satisfying that

0 < 𝜃dw < 𝜃sw < 𝜋
2

such that the algebraic system (3.10) has two solutions for
each 𝜃w ∈ (𝜃dw,

𝜋
2
) which become equal when 𝜃w = 𝜃dw.

Thus, for each 𝜃w ∈ (𝜃dw,
𝜋
2
), there exist two states (2),

called weak and strong, with densities 0 < 𝜌1 < 𝜌weak2 <
𝜌strong2 (the entropy condition). The weak state (2) is su-
personic at the reflection point 𝑃0 for 𝜃w ∈ (𝜃sw,

𝜋
2
), sonic

for 𝜃w = 𝜃sw, and subsonic for 𝜃w ∈ (𝜃dw, ̂𝜃sw) for some
̂𝜃sw ∈ (𝜃dw, 𝜃sw]. The strong state (2) is always subsonic at 𝑃0

for all 𝜃w ∈ (𝜃dw,
𝜋
2
).

There had been a long debate to determine which of
the two states (2) for 𝜃w ∈ (𝜃dw,

𝜋
2
), the weak or the

strong, is physical for the local theory; see [2, 7, 12]. In-
deed, it has been shown in Chen-Feldman [5, 7] that the
weak shock reflection-diffraction configuration tends to
the unique normal reflection in Figure 15, but that the
strong one does not, when the wedge angle 𝜃w tends to
𝜋
2
. The strength of the corresponding reflected shock near

𝑃0 in the weak shock reflection-diffraction configuration
is relatively weak, compared to the shock given by the
strong state (2). From now on, for the given wedge angle
𝜃w ∈ (𝜃dw,

𝜋
2
), state (2) represents the unique weak state

(2), and 𝜑2 is its pseudo-potential.
If the weak state (2) is supersonic, the speeds of prop-

agation of the solution are finite, and state (2) is deter-
mined completely by the local information: state (1), state
(0), and the location of point 𝑃0. That is, any information
from the reflection-diffraction domain, particularly the dis-
turbance at corner 𝑃3, cannot travel towards the reflection
point 𝑃0. However, if it is subsonic, the information can
reach 𝑃0 and interact with it, potentially altering the sub-
sonic reflection-diffraction configuration. This argument
motivated the following conjectures by von Neumann in
[19] (see also [2,6]):

The von Neumann Sonic Conjecture: There exists a su-
personic regular shock reflection-diffraction configuration when
𝜃w ∈ (𝜃sw,

𝜋
2
) for 𝜃sw > 𝜃dw. That is, the supersonicity of the

weak state (2) implies the existence of a supersonic regular re-
flection solution, as shown in Figure 16.

Another conjecture is that the global regular shock
reflection-diffraction configuration is still possible when-
ever the local regular reflection at the reflection point is
possible; this is known as

The von Neumann Detachment Conjecture: There ex-
ists a subsonic regular shock reflection-diffraction configuration
for any wedge angle 𝜃w ∈ (𝜃dw, 𝜃sw). That is, the existence
of subsonic weak state (2) beyond the sonic angle implies the
existence of a subsonic regular reflection solution, as shown in
Figure 17.

State (2) determines the straight shock 𝒮1 and the sonic
arc Γsonic ≔ 𝑃1𝑃4 when state (2) is supersonic at 𝑃0, and
the slope of Γshock at 𝑃0 (arc Γsonic on the boundary of Ω
becomes a corner point 𝑃0) when state (2) is subsonic at
𝑃0. Thus, the unknowns are the domainΩ (or equivalently,
the curved part of the reflected-diffracted shock Γshock) and
the pseudo-potential 𝜑 in Ω. Then, from (3.8)–(3.9), in
order to construct a solution of Problem 3.2 for the super-
sonic/subsonic regular shock reflection-diffraction config-
urations, it suffices to solve the following problem:
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Figure 16. Supersonic regular reflection-diffraction
configuration [6].

Figure 17. Subsonic regular reflection-diffraction
configuration [6].

Problem 3.3 (Free Boundary Problem). For 𝜃w ∈ (𝜃dw,
𝜋
2
),

find a free boundary (curved reflected shock) Γshock ⊂ Λ∩{𝜉1 <
𝜉1𝑃1 } (Γshock = 𝑃1𝑃2 on Figure 16 and Γshock = 𝑃0𝑃2 on Figure
17) and a function 𝜑 defined in the domain Ω as shown in
Figures 16–17 such that

(i) Equation (3.5) is satisfied inΩ, and the equation is strictly
elliptic for 𝜑 in Ω ⧵ Γsonic;

(ii) 𝜑 = 𝜑1 and 𝜌D𝜑 ⋅ 𝜈s = 𝜌1D𝜑1 ⋅ 𝜈s on the free boundary
Γshock;

(iii) 𝜑 = 𝜑2 and D𝜑 = D𝜑2 on Γsonic in the supersonic case
as shown in Figure 16 and at 𝑃0 in the subsonic case as
shown in Figure 17;

(iv) D𝜑 ⋅ 𝜈w = 0 on Γwedge = 𝑃0𝑃3, and D𝜑 ⋅ 𝜈sym = 0 on
Γsym,

where 𝜈s is the interior unit normal to Ω on Γshock.

Indeed, if 𝜑 is a solution of Problem 3.3, we extend 𝜑
from Ω to Λ to become a global entropy solution (see Fig-
ures 16–17) by defining that

𝜑 =
⎧
⎨
⎩

𝜑0 for 𝜉1 > 𝜉01 and 𝜉2 > 𝜉1 tan 𝜃w,
𝜑1 for 𝜉1 < 𝜉01 and above curve 𝑃0𝑃1𝑃2,
𝜑2 in region 𝑃0𝑃1𝑃4.

(3.11)
For the subsonic reflection case, domain 𝑃0𝑃1𝑃4 is one

point, and curve 𝑃0𝑃1𝑃2 is 𝑃0𝑃2. Then the global solutions
involve two types of transonic (hyperbolic-elliptic) transi-
tion: One is from the hyperbolic to the elliptic phases via
Γshock, and the other is from the hyperbolic to the elliptic
phases via Γsonic.

The conditions in Problem 3.3(ii) are the Rankine-
Hugoniot conditions (3.8)–(3.9) on Γshock between 𝜑|Ω
and 𝜑1. Since Γshock is a free boundary and Equation (3.5)
is strictly elliptic for 𝜑 inΩ⧵Γsonic, then two conditions on
Γshock —theDirichlet and oblique derivative conditions—
are consistent with one-phase free boundary problems for
nonlinear elliptic PDEs of second order.

In the supersonic case, the conditions in Problem
3.3(iii) are the Rankine-Hugoniot conditions on Γsonic
(weak discontinuity) between 𝜑|Ω and 𝜑2 so that, if 𝜑 is
a solution of Problem 3.3, its extension by (3.11) is a weak
solution of Problem 3.2. Since Γsonic is not a free bound-
ary (its location is fixed), it is impossible in general to
prescribe the two conditions given in Problem 3.3(iii) on
Γsonic for a second-order elliptic PDE. In the iteration prob-
lem, we prescribe the condition that 𝜑 = 𝜑2 on Γsonic, and
then prove that D𝜑 = D𝜑2 on Γsonic by exploiting the ellip-
tic degeneracy on Γsonic.

We observe that there is an additional possibility to
the regular shock reflection-diffraction configurations (be-
yond the conjectures by von Neumann [19]): For some
wedge angle 𝜃aw ∈ (𝜃dw,

𝜋
2
), Γshock may attach to the wedge

vertex 𝑃3, as observed by experimental results (cf. [6]); see
Figs. 18–19. To describe the conditions of such an attach-
ment, we use the explicit expressions of (3.3) to see that,
for each 𝜌0, there exists 𝜌c > 𝜌0 such that

𝑣1 ≤ 𝑐1 if 𝜌1 ∈ (𝜌0, 𝜌c]; 𝑣1 > 𝑐1 if 𝜌1 ∈ (𝜌c,∞).
If 𝑣1 ≤ 𝑐1, we can rule out the solution with a shock at-
tached to 𝑃3 = (0, 0). This is based on the fact that, if
𝑣1 ≤ 𝑐1, then 𝑃3 lies within the sonic circle 𝐵𝑐1(𝐯1) of state
(1), and Γshock does not intersect with 𝐵𝑐1(𝐯1), as we show
below. If 𝑣1 > 𝑐1, there would be a possibility that Γshock
could be attached to 𝑃3, as the experiments show. Given
these facts, the following results have been obtained:

Theorem 3.4 (Chen-Feldman [5,6]). There are two cases:

(i) If 𝜌0 and 𝜌1 are such that 𝑣1 ≤ 𝑐1, then the super-
sonic/subsonic regular reflection solution exists for each
(half-wedge) angle 𝜃w ∈ (𝜃dw,

𝜋
2
). That is, for each

𝜃w ∈ (𝜃dw,
𝜋
2
), there exists a solution 𝜑 of Problem 3.3

such that

Φ(𝑡, 𝐱) = 𝑡𝜑(𝐱𝑡 ) +
|𝐱|2
2𝑡 for

𝐱
𝑡 ∈ Λ, 𝑡 > 0,

with 𝜌(𝑡, 𝐱) = (𝜌𝛾−10 − (𝛾 − 1)(𝜕𝑡Φ + 1
2
|∇𝐱Φ|2))

1
𝛾−1 , is a

global weak solution of Problem 3.1 satisfying the entropy
condition; that is, Φ(𝑡, 𝐱) is an entropy solution.
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Figure 18. The attached supersonic regular
reflection-diffraction configuration [6].

Figure 19. The attached subsonic regular reflection-diffraction
configuration [6].

(ii) If 𝜌0 and 𝜌1 are such that 𝑣1 > 𝑐1, then there exists 𝜃aw ∈
[𝜃dw,

𝜋
2
) so that the regular reflection solution exists for each

angle 𝜃w ∈ (𝜃aw,
𝜋
2
), and the solution is of the self-similar

structure described in (i), above. Moreover, if 𝜃aw > 𝜃dw,
then, for the wedge angle 𝜃w = 𝜃aw, there exists an attached
solution; that is, 𝜑 is a solution of Problem 3.3 with 𝑃2 =
𝑃3.

The type of regular shock reflection-diffraction configurations
(supersonic as in Figure 16 and Figure 18, or subsonic as in
Figure 17 and Figure 19) is determined by the type of state (2)
at 𝑃0:
(a) For the supersonic/sonic reflection case, the reflected-

diffracted shock 𝑃0𝑃2 is 𝐶2,𝛼–smooth for some 𝛼 ∈ (0, 1)
and its curved part Γsonic is 𝐶∞ away from 𝑃1. The solu-
tion 𝜑 is in 𝐶1,𝛼(Ω) ∩ 𝐶∞(Ω), and is 𝐶1,1 across Γsonic
which is optimal; that is, 𝜑 is not 𝐶2 across Γsonic.

(b) For the subsonic reflection case (as in Figure 17 and Figure
19), the reflected-diffracted shock 𝑃0𝑃2 and solution 𝜑 inΩ
are in 𝐶1,𝛼 near 𝑃0 and 𝑃3 for some 𝛼 ∈ (0, 1), and 𝐶∞

away from {𝑃0, 𝑃3}.

Moreover, the regular reflection solution tends to the unique nor-
mal reflection (as in Figure 15) when the wedge angle 𝜃w tends
to

𝜋
2
. In addition, for both supersonic and subsonic reflection

cases,

𝜑2 < 𝜑 < 𝜑1 in Ω,
D(𝜑1 − 𝜑) ⋅ 𝐞 ≤ 0 in Ω for all 𝐞 ∈ 𝐶𝑜𝑛𝑒(𝐞𝜉2 , 𝐞𝒮1),

where 𝐶𝑜𝑛𝑒(𝐞𝜉2 , 𝐞𝒮1) ≔ {𝑎𝐞𝜉2 + 𝑏𝐞𝒮1 ∶ 𝑎, 𝑏 > 0} with 𝐞𝜉2 =
(0, 1) and with 𝐞𝒮1 as the tangent unit vector to 𝒮1.

Theorem 3.4 was established by solving Problem 3.3.
The first results on the existence of global solutions of the
free boundary problem (Problem 3.3) were obtained for
the wedge angles sufficiently close to

𝜋
2

in Chen-Feldman
[5]. Later, in Chen-Feldman [6], these results were ex-
tended up to the detachment angle, as stated in Theorem
3.4. For this extension, the techniques developed in [5],
notably the estimates near Γsonic, were the starting point.

To establish Theorem 3.4, a theory for free boundary
problems for nonlinear PDEs of mixed elliptic-hyperbolic
type has been developed, including new methods, tech-
niques, and related ideas. Some features of these methods
and techniques include:

(i) exploitation of the global structure of solutions to
ensure that the nonlinear PDE (3.5) is elliptic for the regu-
lar reflection solution in Ω enclosed by the free boundary
Γshock and the fixed boundary for all wedge angles 𝜃w up to
the detachment angle 𝜃dw for all physical cases (see Figures
16–19);

(ii) optimal regularity estimates for the solutions of the
degenerate elliptic PDE (3.5) both near Γsonic and at corner
𝑃1 between the free boundary Γshock and the elliptic de-
generate fixed boundary Γsonic for the supersonic reflection
case (see Figure 16 and Figure 18);

(iii) for fixed incident shock strength and 𝛾 > 1, the de-
pendence of the structural transition of the global solution
configurations on the wedge angle 𝜃w from the supersonic
to subsonic reflection cases, i.e., from the degenerate ellip-
tic to the uniformly elliptic Equation (3.5) near a part of
the boundary;

(iv) uniform a priori estimates required for all stages of
the structural transition between the different configura-
tions.

Based on the methods and techniques used to establish
Theorem 3.4, further approaches and related techniques
have been developed to prove that the steady weak oblique
transonic shocks (discussed in §2) are attainable as large-
time asymptotic states by constructing the global Prandtl-
Meyer reflection configurations in self-similar coordinates
in Bae-Chen-Feldman [1] and the references cited therein,
and that all of the self-similar transonic shocks and related
free boundaries in these problems are always convex in
Chen-Feldman-Xiang [8].
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These types of questions also arise in other shock re-
flection/diffraction problems, which can be formulated as
free boundary problems for transonic shocks for nonlinear
PDEs of mixed type. These problems have the following
important attributes: They are physically fundamental and
are supported by a wealth of experimental/numerical data
indicating diverse patterns of complicated configurations
(cf. Figures 14–19), and their solutions are building blocks
and asymptotic attractors of general solutions of M-D hy-
perbolic conservation laws whose mathematical theory is
also in its infancy (cf. [2,6,13,15]).

Similarly, for the full Euler case, a self-similar solution is
a solution of the form: (𝐕, 𝑝, 𝜌)(𝑡, 𝐱) = (𝑣 − 𝜉, 𝑝, 𝜌)(𝜉), 𝜉 =
𝐱/𝑡, governed by

⎧
⎨
⎩

∇ ⋅ (𝜌𝐕) + 𝑛𝜌 = 0,
∇ ⋅ (𝜌𝐕 ⊗ 𝐕) + ∇𝑝 + (𝑛 + 1)𝜌𝐕 = 0,
∇ ⋅ (𝜌𝐕(𝐸 + 𝑝

𝜌
)) + 𝑛𝜌(𝐸 + 𝑝

𝜌
) = 0.

(3.12)

System (3.12) is a system of conservation laws of mixed-
composite elliptic-hyperbolic type:

• strictly hyperbolic when |𝐕| > 𝑐 ≔ √𝛾𝑝/𝜌 (pseudo-
supersonic);

• mixed-composite elliptic-hyperbolic (two of them are el-
liptic and the others are hyperbolic) when |𝐕| < 𝑐 ≔
√𝛾𝑝/𝜌 (pseudo-subsonic).

The transition boundary between the pseudo-supersonic
and pseudo-subsonic phases is |𝐕| = 𝑐, a degenerate set of
the solution of System (3.12), which is unknown a priori.

Similar fundamental mixed problems arise in other ap-
plications, where nonlinear PDEs of mixed type are the
core parts of even more sophisticated systems; examples
include the relativistic Euler equations, the Euler-Poisson
equations, and the Euler-Maxwell equations.

4. Nonlinear PDEs of Mixed Type and Isometric
Embedding Problems in Differential
Geometry and Related Areas

Nonlinear PDEs of mixed type also arise naturally from
many longstanding problems in differential geometry and
related areas. In this section, we first show how the fun-
damental problem – the isometric embedding problem – in
differential geometry can be formulated in terms of prob-
lems for nonlinear PDEs of mixed type, or even of no type.

The isometric embedding problem can be stated as fol-
lows: Seek an embedding/immersion of an 𝑛-D (semi-) Rie-
mannian manifold (ℳ𝑛, 𝑔) with metric 𝑔 = (𝑔𝑖𝑗) > 0 into
an 𝑁-D (semi-) Euclidean space so that the metric, often along
with assigned regularity/curvatures, is preserved.

This problem has assumed a position of funda-
mental conceptual importance in differential geometry,
thanks in part to the works of Darboux (1894), Weyl
(1916), Janet (1926), and Cartan (1927). A classical

Figure 20. The Gauss curvature 𝐾 of a torus with mixed sign.

question is whether a smooth Riemannian manifold
(ℳ𝑛, 𝑔) can be embedded into ℝ𝑁 with sufficiently large
𝑁; for more on this, see Nash (1956), Gromov (1986),
and Günther (1989). A further fundamental issue is
whether (ℳ𝑛, 𝑔) can be embedded/immersed in ℝ𝑠𝑛

with the critical Janet dimension 𝑠𝑛 = 𝑛(𝑛+1)
2

and as-
signed regularity/curvatures. The solution to this issue
promises to advance our understanding of the properties
of (semi-)Riemannian manifolds and to provide frame-
works/approaches for real applications, including the
problems for realization/stability/rigidity/classification of
isometric embeddings in many important application ar-
eas (e.g. elasticity, materials science, optimal design, thin
shell/biological leaf growth, protein folding, cell/tissue or-
ganization, and manifold data analysis).

When 𝑛 = 2, following Darboux,7 the isometric embed-
ding problem on a chart can be reduced to finding a func-
tion 𝑢 that solves the nonlinear Monge-Ampère equation
(cf. [17]):

det(∇2𝑢) = |𝑔|(1 − |∇𝑢|2𝑔)𝐾, (4.1)

with |𝑔| = det(𝑔), |∇𝑢|𝑔 ≔ 1
|𝑔|
(𝑔22|𝜕𝑥1𝑢|2 − 2𝑔12𝜕𝑥1𝜕𝑥2𝑢 +

𝑔11|𝜕𝑥2𝑢|2) < 1 as required, and the Gauss curvature 𝐾 =
𝐾(𝑔) of metric 𝑔. Equation (4.1) is elliptic if 𝐾 > 0, hyper-
bolic if 𝐾 < 0, and degenerate when 𝐾 = 0. The sign change
of 𝐾 is very common for surfaces and is necessary for many
important cases; the simplest example of such a surface is
the torus shown in Figure 20.

Nirenberg (1953) first solved the Weyl problem, estab-
lishing that any smooth metric 𝑔 on 𝕊2 can be globally
embedded into ℝ3 smoothly if the Gauss curvature 𝐾 > 0.
One could then ask whether any 2-D Riemannian surface
is always embeddable into ℝ3. The answer is no if 𝐾 ≤ 0.
The embedding problem is still largely open for global re-
sults for general 𝐾, even though some local results have
been obtained; see [17] and the references therein.

7G. Darboux, Leçons sur la Théorie des Surface, Vol. 3, Gauthier-Villars,
Paris, 1894.
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Figure 21. Johann Carl Friedrich Gauss
(April 30, 1777–February 23, 1855)
introduced the notion of Gauss (or
Gaussian) curvature and the Theorema
Egregium.

Figure 22. Jean-Gaston Darboux
(August 14, 1842–February 23, 1917)
indicated the connection between the
isometric embedding and the
nonlinear Monge-Ampère equation.

Figure 23. John Forbes Nash Jr. (June
13, 1928–May 23, 2015) established the
Nash embedding theorems.

On the other hand, the fundamental theorem of surface
theory states that there exists a simply connected surface in ℝ3

whose first and second fundamental forms are 𝐼 = 𝑔𝑖𝑗𝑑𝑥𝑖𝑑𝑥𝑗
and 𝐼𝐼 = ℎ𝑖𝑗𝑑𝑥𝑖𝑑𝑥𝑗 on a domain for 𝑖, 𝑗 = 1, 2, provided that
the coefficients {ℎ𝑖𝑗}, together with metric 𝑔 = (𝑔𝑖𝑗) > 0, satisfy
the Gauss-Codazzi equations:

𝐿𝑁 −𝑀2 = 𝐾, (4.2)

{𝜕𝑥1𝑁 − 𝜕𝑥2𝑀 = −Γ122𝐿 + 2Γ112𝑀 − Γ111𝑁,
𝜕𝑥1𝑀 − 𝜕𝑥2𝐿 = Γ222𝐿 − 2Γ212𝑀 + Γ211𝑁,

(4.3)

where 𝐿 = ℎ11/√|𝑔|,𝑀 = ℎ12/√|𝑔|, and 𝑁 = ℎ22/√|𝑔|, and
Γ𝑘𝑖𝑗 are the Christoffel symbols for 𝑖, 𝑗, 𝑘 = 1, 2. This theo-
rem still holds for immersion even when {ℎ𝑖𝑗} is only in 𝐿𝑝
for 𝑝 > 2.8 Thus, given (𝑔𝑖𝑗) > 0, System (4.2)–(4.3) con-
sists of three nonlinear PDEs for the unknowns (𝐿,𝑀,𝑁)
determining {ℎ𝑖𝑗}, the knowledge of which gives the de-
sired immersion. Then the problem can be reduced to the
solvability of System (4.3) under constraint (4.2), which
is of mixed elliptic-hyperbolic type determined by the sign of
the Gauss curvature 𝐾. From the viewpoint of geometry,
(4.2) is a constraint condition, while (4.3) involves com-
patibility conditions.

System (4.2)–(4.3) has features similar to those in gas
dynamics in §2–§3. A natural question is whether or not
this system can be written in a gas dynamic formulation
to examine underlying interrelations and connections. In-
deed, a novel observation in Chen-Slemrod-Wang [11] has
indicated that this is indeed the case: The Codazzi system
(4.3) can be formulated as the familiar nonlinear balance

8S. Mardare, The fundamental theorem of surface theory for surfaces with
little regularity, J. Elasticity 73 (2003), 251–290.

laws of momentum:

⎧
⎪
⎨
⎪
⎩

𝜕𝑥1(𝜌𝑢2 + 𝑝) + 𝜕𝑥2(𝜌𝑢𝑣)
= −Γ122(𝜌𝑣2 + 𝑝) − 2Γ112𝜌𝑢𝑣 − Γ111(𝜌𝑢2 + 𝑝),

𝜕𝑥1(𝜌𝑢𝑣) + 𝜕𝑥2(𝜌𝑣2 + 𝑝)
= −Γ222(𝜌𝑣2 + 𝑝) − 2Γ212𝜌𝑢𝑣 − Γ211(𝜌𝑢2 + 𝑝),

(4.4)

and the Gauss equation (4.2) becomes the Bernoulli rela-

tion: 𝜌 = (𝑞2 +𝐾)−
1
2 if 𝑝 = − 1

𝜌
is chosen as the Chaplygin

pressure for 𝑞 = √𝑢2 + 𝑣2. In this case, define the sound
speed as 𝑐 = √𝑝′(𝜌) = 1

𝜌
. Then

• 𝑞 < 𝑐 and the flow is subsonic when 𝐾 > 0;
• 𝑞 > 𝑐 and the flow is supersonic when 𝐾 < 0;
• 𝑞 = 𝑐 and the flow is sonic when 𝐾 = 0.

A weak compactness framework has been introduced
and applied for establishing the existence and weak con-
tinuity/stability of isometric embeddings in 𝑊 2,𝑝, 𝑝 ≥ 2,
in [10, 11]; this has shown the high potential. In partic-
ular, the weak continuity/stability of the Gauss-Codazzi
equations (4.2)–(4.3) and isometric immersions of
(semi-)Riemannian manifolds, independent of local coor-
dinates, have been established in [9,10], even for the case
𝑝 = 2.

For the higher-dimensional case, the Gauss-Codazzi
equations for ℎ = {ℎ𝑎𝑖𝑗} are coupled with the Ricci equa-
tions for the coefficients 𝜅 = {𝜅𝑎𝑙𝑏} of the connection form
on the normal bundle to become the Gauss-Codazzi-Ricci
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equations in a local coordinate chart of the manifold:

ℎ𝑎𝑗𝑖ℎ𝑎𝑘𝑙 − ℎ𝑎𝑘𝑖ℎ𝑎𝑗𝑙 = 𝑅𝑖𝑗𝑘𝑙 (Gauss equations), (4.5)

𝜕𝑥𝑘ℎ
𝑎
𝑙𝑗 − 𝜕𝑥𝑙ℎ

𝑎
𝑘𝑗 = −Γ𝑚𝑙𝑗 ℎ𝑎𝑘𝑚 + Γ𝑚𝑘𝑗ℎ𝑎𝑙𝑚 − (𝜅𝑎𝑘𝑏ℎ𝑏𝑙𝑗 − 𝜅𝑎𝑙𝑏ℎ𝑏𝑘𝑗)

(Codazzi equations), (4.6)

𝜕𝑥𝑘𝜅
𝑎
𝑙𝑏 − 𝜕𝑥𝑙𝜅

𝑎
𝑘𝑏 = 𝑔𝑖𝑗(ℎ𝑎𝑙𝑖ℎ𝑏𝑘𝑗 − ℎ𝑎𝑘𝑖ℎ𝑏𝑙𝑗) + 𝜅𝑎𝑙𝑐𝜅𝑐𝑘𝑏 − 𝜅𝑎𝑘𝑐𝜅𝑐𝑙𝑏

(Ricci equations), (4.7)

where 𝜅𝑎𝑘𝑏 = −𝜅𝑏𝑘𝑎 are the coefficients of the connection
form on the normal bundle, 𝑅𝑖𝑗𝑘𝑙 is the Riemann curvature
tensor, the indices 𝑎, 𝑏, 𝑐 run from 1 to 𝑁, and 𝑖, 𝑗, 𝑘, 𝑙, 𝑚, 𝑛
run from 1 to 𝑑 ≥ 3. System (4.5)–(4.7) has no type, nei-
ther purely hyperbolic nor purely elliptic, for general Rie-
mann curvature tensor 𝑅𝑖𝑗𝑘𝑙. Nevertheless, the weak conti-
nuity of the nonlinear system (4.5)–(4.7) has been estab-
lished.

Theorem 4.1 (Chen-Slemrod-Wang [11]). Let (ℎ𝜀, 𝜅𝜀) be a
sequence of solutions of the Gauss-Codazzi-Ricci system (4.5)–
(4.7), which is uniformly bounded in 𝐿𝑝 for 𝑝 > 2. Then the
weak limit vector field (ℎ, 𝜅) of the sequence (ℎ𝜀, 𝜅𝜀) in 𝐿𝑝 is
still a solution of the Gauss-Codazzi-Ricci system (4.5)–(4.7).

The proof of this is based on the following key observa-
tion in [11] for the div-curl structure of System (4.5)–(4.7):
For fixed 𝑖, 𝑗, 𝑘, 𝑙, 𝑎, 𝑏, 𝑐,

div(
𝑘

⏞⎴⎴⏞⎴⎴⏞0,⋯ , 0, ℎ𝑎,𝜀𝑙𝑖 , 0,⋯ ,−ℎ𝑎,𝜀𝑘𝑖⏟⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏟
𝑙

, 0,⋯ , 0) = 𝑅𝜀1, (4.8)

curl(ℎ𝑏,𝜀1𝑗 , ℎ
𝑏,𝜀
2𝑗 ,⋯ , ℎ𝑏,𝜀𝑑𝑗 ) = 𝑅𝜀2, (4.9)

div(
𝑘

⏞⎴⎴⏞⎴⎴⏞0,⋯ , 0, 𝜅𝑎,𝜀𝑙𝑐 , 0,⋯ ,−𝜅𝑎,𝜀𝑘𝑐⏟⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏟
𝑙

, 0,⋯ , 0) = 𝑅𝜀3, (4.10)

curl(𝜅𝑐,𝜀1𝑏 , 𝜅
𝑐,𝜀
2𝑏 ,⋯ , 𝜅𝑐,𝜀𝑑𝑏) = 𝑅𝜀4, (4.11)

div(
𝑘

⏞⎴⎴⏞⎴⎴⏞0,⋯ , 0, ℎ𝑏,𝜀𝑙𝑗 , 0,⋯ ,−ℎ𝑏,𝜀𝑘𝑗⏟⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏟
𝑙

, 0,⋯ , 0) = 𝑅𝜀5, (4.12)

curl(𝜅𝑎,𝜀1𝑏 , 𝜅
𝑎,𝜀
2𝑏 ,⋯ , 𝜅𝑎,𝜀𝑑𝑏 ) = 𝑅𝜀6, (4.13)

where𝑅𝑟, 𝑟 = 1, … , 6, consist of the three types of nonlinear
quadratic terms:

ℎ𝑎,𝜀𝑙𝑖 ℎ
𝑏,𝜀
𝑘𝑗 − ℎ𝑎,𝜀𝑘𝑖 ℎ

𝑏,𝜀
𝑙𝑗 , 𝜅𝑎,𝜀𝑙𝑐 𝜅

𝑐,𝜀
𝑘𝑏 − 𝜅

𝑎,𝜀
𝑘𝑐 𝜅

𝑐,𝜀
𝑙𝑏 , 𝜅𝑎,𝜀𝑘𝑏ℎ

𝑏,𝜀
𝑙𝑗 − 𝜅𝑎,𝜀𝑙𝑏 ℎ

𝑏,𝜀
𝑘𝑗 ,

as well as several linear terms involving (ℎ𝜀, 𝜅𝜀), while the
nonlinear quadratic terms are actually the scalar products
of the vector fields given on the left-hand sides of (4.8)–
(4.13). Therefore, this div-curl structure fits the follow-
ing classical div-curl lemma divinely (Murat 1978, Tartar
1979): Let Ω ⊂ ℝ𝑑, 𝑑 ≥ 2, be open and bounded. Let 𝑝, 𝑞 > 1
such that

1
𝑝
+ 1

𝑞
= 1. Assume that, for 𝜀 > 0, two fields

𝐮𝜀 ∈ 𝐿𝑝(Ω;ℝ𝑑) and 𝐯𝜀 ∈ 𝐿𝑞(Ω;ℝ𝑑) satisfy the conditions

that

(i) 𝐮𝜀 ⇀ 𝐮 weakly in 𝐿𝑝(Ω;ℝ𝑑) and 𝐯𝜀 ⇀ 𝐯 weakly in
𝐿𝑞(Ω;ℝ𝑑) as 𝜀 ! 0;

(ii) div 𝐮𝜀 are confined in a compact subset of 𝑊−1,𝑝
loc (Ω;ℝ);

(iii) curl 𝐯𝜀 are confined in a compact subset of
𝑊−1,𝑞
loc (Ω;ℝ𝑑×𝑑),

where 𝑊−1,𝑝(Ω;ℝ) is the dual space of 𝑊 1,𝑞(Ω;ℝ), and vice
versa. Then the scalar product of 𝐮𝜀 and 𝐯𝜀 is weakly continuous:
𝐮𝜀 ⋅ 𝐯𝜀 ⟶𝐮 ⋅ 𝐯 in the sense of distributions.

With this div-curl lemma, the weak continuity result in
Theorem 4.1 can be seen as follows: For the uniformly
bounded sequence (ℎ𝜀, 𝜅𝜀) in 𝐿𝑝, 𝑝 > 2, 𝑅𝜀𝑟, 𝑟 = 1, … , 6,
are uniformly bounded in 𝐿𝑝/2, which implies that 𝑅𝜀𝑟, 𝑟 =
1, … , 6, are compact in 𝑊−1,𝑞

loc for some 𝑞 ∈ (1, 2). On
the other hand, System (4.8)–(4.13) implies that 𝑅𝜀𝑟, 𝑟 =
1, … , 6, are uniformly bounded in 𝑊−1,𝑝

loc for 𝑝 > 2. Then
the interpolation compactness argument yields that

𝑅𝜀𝑟, 𝑟 = 1, … , 6, are confined in a compact set in 𝐻−1
loc(Ω).

With this, we can employ the div-curl lemma to conclude
that

(ℎ𝑎,𝜀𝑙𝑖 ℎ
𝑏,𝜀
𝑘𝑗 − ℎ𝑎,𝜀𝑘𝑖 ℎ

𝑏,𝜀
𝑙𝑗 , 𝜅

𝑎,𝜀
𝑙𝑐 𝜅

𝑐,𝜀
𝑘𝑏 − 𝜅𝑎,𝜀𝑘𝑐 𝜅

𝑐,𝜀
𝑙𝑏 , 𝜅

𝑎,𝜀
𝑘𝑏ℎ

𝑏,𝜀
𝑙𝑗 − 𝜅𝑎,𝜀𝑙𝑏 ℎ

𝑏,𝜀
𝑘𝑗 )

−⇀ (ℎ𝑎𝑙𝑖ℎ𝑏𝑘𝑗 − ℎ𝑎𝑘𝑖ℎ𝑏𝑙𝑗 , 𝜅𝑎𝑙𝑐𝜅𝑐𝑘𝑏 − 𝜅𝑎𝑘𝑐𝜅𝑐𝑙𝑏, 𝜅𝑎𝑘𝑏ℎ𝑏𝑙𝑗 − 𝜅𝑎𝑙𝑏ℎ𝑏𝑘𝑗),
in the sense of distributions, as 𝜀 ! 0. Then Theorem 4.1
follows.

This local weak continuity result can be extended to the
global weak continuity of the Gauss-Codazzi-Ricci system
(4.5)–(4.7) as follows:

Theorem 4.2 (Chen-Li [10]). Let (𝑀, 𝑔) be a Riemannian
manifold with 𝑔 ∈ 𝑊 1,𝑝 for 𝑝 > 2. Let (ℎ𝜀, 𝜅𝜀) be a sequence of
solutions (i.e., the coefficients of the second fundamental form
and the connection form on the normal bundle) in 𝐿𝑝 of the
Gauss-Codazzi-Ricci system (4.5)–(4.7) in the distributional
sense. Assume that, for any submanifold 𝐾 ⋐ 𝑀, there exists
𝐶𝐾 > 0 independent of 𝜀 such that

sup
𝜖>0

‖(ℎ𝜀, 𝜅𝜀)‖𝐿𝑝(𝐾) ≤ 𝐶𝐾 .

Then, when 𝜀 ! 0, there exists a subsequence of (ℎ𝜀, 𝜅𝜀) that
converges weakly in 𝐿𝑝 to a pair (ℎ, 𝜅) that is still a weak solu-
tion of the Gauss-Codazzi-Ricci system (4.5)–(4.7).

The proof is based on a compensated compactness the-
orem in Banach spaces, which leads directly to a globally
intrinsic div-curl lemma on Riemannian manifolds, devel-
oped in Chen-Li [10]. From the viewpoint of geometry,
the 𝐿𝑝 bounded requirement on the connection form on
the normal bundle 𝜅𝜀 is not intrinsic. Therefore, Theorem
4.2 has been reformulated as follows:

Theorem 4.3 (Chen-Giron [9]). Let (𝑀, 𝑔) be a Riemannian
manifold with 𝑔 ∈ 𝑊 1,𝑝 for 𝑝 > 2. Let (ℎ𝜀, 𝜅𝜀) be a sequence of
solutions (i.e., the coefficients of the second fundamental form
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and the connection form on the normal bundle) in 𝐿𝑝 of the
Gauss-Codazzi-Ricci system (4.5)–(4.7) in the distributional
sense. Assume that, for any submanifold 𝐾 ⋐ 𝑀, there exists
𝐶𝐾 > 0 independent of 𝜀 such that

sup
𝜖>0

‖ℎ𝜀‖𝐿𝑝(𝐾) ≤ 𝐶𝐾 .

Then there exists a refined sequence (ℎ̃𝜀, 𝜅̃𝜀), each of which is
still a weak solution of the Gauss-Codazzi-Ricci system (4.5)–
(4.7), such that, when 𝜀 ! 0, (ℎ̃𝜀, 𝜅̃𝜀) converges weakly in 𝐿𝑝
to a pair (ℎ, 𝜅) that is still a weak solution of the Gauss-Codazzi-
Ricci system (4.5)–(4.7).

As a direct corollary, the weak limit of isometrically im-
mersed surfaces with lower regularity in𝑊 2,𝑝 is still an iso-
metrically immersed surface in ℝ𝑑 governed by the Gauss-
Codazzi-Ricci system (4.5)–(4.7) for any 𝑅𝑖𝑗𝑘𝑙 (without
sign/type restriction) with respect only to the coefficients
of the second fundamental form. The weak continuity re-
sult in Theorem 4.3 is global and intrinsic, independent
of local coordinates, without restriction on both the Rie-
mann curvatures and the types of System (4.5)–(4.7). The
key to the proof is to exploit the invariance for a choice
of suitable gauge to control the full connection form and
to develop a non-abelian div-curl lemma on Riemannian
manifolds (see Chen-Giron [9]).

This approach and related observations have been mo-
tivated by the theory of polyconvexity in nonlinear elas-
ticity,9 intrinsic methods in elasticity and nonlinear Korn
inequalities,10 andUhlenbeck compactness andGauge the-
ory,11,12 among other ideas.

5. Further Connections, Unified Approaches,
and Current Trends

In §2–§4, we have presented several important sets of
nonlinear PDEs of mixed elliptic-hyperbolic type, or even
of no type, in shock wave problems in fluid mechanics
and isometric embedding problems in differential geom-
etry and related areas. Such nonlinear PDEs of mixed
type arise naturally in other problems in fluid mechan-
ics, differential geometry/topology, nonlinear elasticity,
materials science, mathematical physics, dynamical sys-
tems, and related areas.

We have shown in §2–§4 that free boundary methods,
weak convergence methods, and related techniques are

9J. Ball, Convexity conditions and existence theorems in nonlinear elas-
ticity, Arch. Ration. Mech. Anal. 63 (1976), 337–403.
10see P. G. Ciarlet, Mathematical Elasticity, Volume 1: Three–
Dimensional Elasticity, North-Holland, Amsterdam, 1988; An Intro-
duction to Differential Geometry with Applications to Elasticity,
Springer, Dordrecht, 2005.
11K. K. Uhlenbeck, Connections with 𝐿𝑝 bounds on curvature, Comm.
Math. Phys. 83 (1982), 31–42.
12S. K. Donaldson, An application of gauge theory to four-dimensional
topology, J. Diff. Geom. 18 (1983), 279–315.

useful as unified approaches for dealing with the non-
linear mixed problems involving both elliptic and hyper-
bolic phases. Friedrichs’s positive symmetric techniques
have also demonstrated high potential in solving mixed-
type problems.13 Entropy methods and kinetic meth-
ods have been useful for solving nonlinear PDEs of hy-
perbolic or mixed hyperbolic-parabolic type. Variational
approaches deserve to be further explored, especially for
handling transonic flow problems, since the solutions of
these problems are critical points of the corresponding
functionals. Some approximate methods, such as viscos-
ity methods, relaxation methods, shock capturing meth-
ods, stochastic methods, and related numerical methods
should be further analyzed/developed, and numerical cal-
culations/simulations should be performed to gain new
ideas and motivations. These methods, along with en-
ergy estimate techniques, functional analytical methods,
measure-theoretic techniques (esp. divergence-measure
fields), and other methods, should be developed into even
more powerful approaches, applicable to wider classes of
nonlinear PDEs of mixed type. The underlying structures
of the nonlinear PDEs of mixed type under considera-
tion here have been one of the main motivating factors
in developing new methods/techniques/ideas for unified
approaches. As mentioned earlier, the analysis of nonlin-
ear PDEs of mixed type is still in its early stages, and most
nonlinearmixed-type problems are wide open and ripe for
the development of new ideas, methods, and techniques.
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Recent years have seen explosive progress in data-driven
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development of mathematics underpinning statistical
learning theory coupled with advancements in approxima-
tion theory, numerical analysis, technology, and comput-
ing gave rise to new-generation AI transforming our life.
These systems show great promise in cancer diagnostics
[MSG+20], they are a part of autonomous cars [22], au-
tomated face recognition and biometrics [KE21], image
segmentation [SBKV+20], language processing and trans-
lation tools [DZS+22], and as such become our new re-
ality. Availability of unprecedented volumes of data, citi-
zens’ expectations and participation are further driving this
change.
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New reality, however, brings new challenges. Uncer-
tainties and biases are inherent within any empirical data.
They enter production pipelines of data-driven AI and rip-
ple through them causing errors. AI instabilities and ad-
versarial examples—errors due to minor changes in data
or structure—have recently been found in many advanced
data-driven AI models. Moreover, mounting evidence sug-
gests that these errors are in fact expected in such systems
[THG20] and may not always be cured by larger volumes
of data or better training algorithms [BHV21] as long as
the AI architecture remains fixed.

This leads to the following question: if errors are in-
evitable in data-driven AI then how do we deal with them
once they occur?

One way to address this imminent challenge is to equip
an AI with an “error filter” or “error corrector” [GT18]. The
function of the AI corrector is to learn from errors “on-
the-job,” supplementing the AI’s initial training. Dynamic
addition of AI correctors continuously extends AI architec-
ture, adapts to data uncertainty [GGG+18], and enables AI
to escape the stability barrier revealed in [BHV21]. When a
new data arrives at AI input, the AI error corrector then de-
cides if it is likely to cause an error, and if so, then reports.
To do this, the filter uses some set 𝐼 of attributes, such as,
for example, internal latent representations of the input
in AI decision space. To each attribute 𝑖 ∈ 𝐼, the system
assigns some weight 𝑤𝑖. For each new input, the system
computes numerical values 𝑥𝑖 of all attributes 𝑖 ∈ 𝐼, and
compares the weighted sum ∑𝑖∈𝐼 𝑤𝑖𝑥𝑖 with some thresh-
old 𝑡 to decide whether to report the input as an error.

However, how does the filter determine the weights 𝑤𝑖
of all attributes? To do this, the filter is provided a training
set of example inputs marked as correct and errors. Then
the system tries to find weights 𝑤𝑖 such that, ideally, all
data in the training set are classified correctly. Moreover
the system tries to ensure that all (or a large proportion of)
future “unseen” inputs would be processed correctly too.
In other words, the system seeks to learn the weights from
some training data, and the error filter itself is therefore an
example of a machine learning (ML) system.

Geometrically, any input is described by the values 𝑥𝑖 of
the attributes, and can therefore be represented as a point
𝑥 = (𝑥1, … , 𝑥𝑛) in the 𝑛-dimensional Euclidean space,
where 𝑛 = |𝐼| is the number of attributes. Then the cri-
terion ∑𝑖∈𝐼 𝑤𝑖𝑥𝑖 ≥ 𝑡 for an input being an error defines a
half-space, whose boundary is the hyperplane 𝐻 defined
by the equation ∑𝑖∈𝐼 𝑤𝑖𝑥𝑖 = 𝑡. If we mark points corre-
sponding to errors and correct AI behavior as red and blue,
respectively, the machine learning task of error identifica-
tion reduces to finding a hyperplane that separates the red
points from the blue ones; see Figure 1.

Assume that such hyperplane 𝐻 exists and we have
started to use the filter with the corresponding weights 𝑤𝑖.

Figure 1. Separation of red and blue points by a hyperplane.

Figure 2. Retraining the system by recomputing a hyperplane.

Imagine, however, that a new input has arrived, which the
filter classified as correct but the user marked as an error.
In other words, the filter itself made an error. Of course,
we would like the system to be able to learn from such
errors and improve its performance in the future. An ob-
vious way to do this is to add a new point to the training
set and recompute the weights. This constitutes “retrain-
ing the system.” Geometrically, this means that a new red
point 𝑋 appears on the “wrong” side of the hyperplane, so
that we try to find a different hyperplane that separates all
points correctly; see Figure 2. Obviously, it is not always
possible to find such a hyperplane; see Figure 3. Moreover,
even if it is possible, it may require substantial time to re-
compute all weights every time the filter makes an error.

Alternatively, one may use the following
error-correction method, suggested in [GMT19]: separate
a new red point 𝑋 from the existing blue points by another
hyperplane 𝐻′ given by an equation ∑𝑖∈𝐼 𝑤′

𝑖𝑥𝑖 = 𝑡′; see
Figure 3. After this, classify any new input as error if either
∑𝑖∈𝐼 𝑤𝑖𝑥𝑖 ≥ 𝑡 or ∑𝑖∈𝐼 𝑤′

𝑖𝑥𝑖 ≥ 𝑡′.
A careful reader may have already noticed a limitation

of this approach that appears to be fundamental: why did
we assume that a point can be separated from all other
points by a hyperplane? Obviously, if that point belongs
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Figure 3. Separation of new red point by a different
hyperplane.

Figure 4. A red point not separable by a hyperplane.

to the convex hull1 of other points, then a separating hy-
perplane does not exist and the method does not work;
see Figure 4. For example, even if we have just 3 points
𝑋1, 𝑋2, 𝑋3, then 𝑋3 may lie in the interior of the line in-
terval 𝑋1𝑋2, and in this case it cannot be separated from
𝑋1, 𝑋2.

However, intuitively, the described case is in some sense
“degenerate” and should not happen too often with real
data. The best way to formalise this intuition is to use the
language of probability theory, and ask what is the proba-
bility that the method would work for random data. This
leads to a very nice problem that lies on the borderline of
probability theory and geometry.

Problem 1. Given a set 𝐾 of𝑚 random points inℝ𝑛, what
is the probability that each point 𝑋 ∈ 𝐾 can be separated
from all other points by a hyperplane? Equivalently, what
is the probability that points in 𝐾 are in convex position
(in sense that each point 𝑋 ∈ 𝐾 is a vertex of the convex
hull of 𝐾)?

2. Sylvester’s Problem
Problem 1 has a long history and goes back to at least
the question asked by Sylvester in 1864: given 4 random

1Recall that the convex hull of set 𝐾 ⊂ ℝ𝑛 is the intersection of all convex sets
containing 𝐾.

points 𝑋, 𝑌, 𝑍,𝑊 on the plane, what is the probability 𝑝
that they form a convex quadrilateral?

To address this question, it is convenient to introduce
the following random variables. Let 𝐼𝑋 be the random vari-
able equal to 1 if point 𝑋 is inside the triangle 𝑌𝑍𝑊 and 0
otherwise. Let random variables 𝐼𝑌 , 𝐼𝑍 and 𝐼𝑊 be defined
similarly. Then random variable

𝐼 = 𝐼𝑋 + 𝐼𝑌 + 𝐼𝑍 + 𝐼𝑊
counts the number of points that are inside the trian-
gle formed by other points. Hence, 𝐼 = 0 precisely if
𝑋, 𝑌, 𝑍,𝑊 form a convex quadrilateral, and this happens
with probability 𝑝. With probability 1 − 𝑝, 𝐼 = 1. Thus,
the expected value 𝔼[𝐼] = 0 ⋅ 𝑝 + 1 ⋅ (1 − 𝑝) = 1 − 𝑝, and
𝑝 = 1 − 𝔼[𝐼].

This implies that to find 𝑝 it suffices to find 𝔼[𝐼].
From the linearity of the expectation, and assuming that
𝑋, 𝑌, 𝑍,𝑊 are drawn independently from the same distri-
bution,

𝔼[𝐼] = 𝔼[𝐼𝑋] + 𝔼[𝐼𝑌 ] + 𝔼[𝐼𝑍] + 𝔼[𝐼𝑊 ] = 4𝔼[𝐼𝑋].
Next, 𝐼𝑋 is a random variable that takes values 0 or 1, and

𝔼[𝐼𝑋] = 0 ⋅ (1 − 𝑝𝑋) + 1 ⋅ 𝑝𝑋 = 𝑝𝑋 ,
where 𝑝𝑋 is the probability that 𝑋 lies inside triangle 𝑌𝑍𝑊 .

If points 𝑋, 𝑌, 𝑍,𝑊 are selected independently and uni-
formly at random from the unit disk 𝔻, then by the law of
total expectation,

𝔼[𝐼𝑋] = 𝔼[𝔼[𝐼𝑋 |𝑌 , 𝑍,𝑊]] = 𝔼 [𝐴(𝑌𝑍𝑊)
𝐴(𝔻) ]

where 𝐴 denotes the area. Hence, the problem reduces
to determining the expected area of the triangle 𝑌𝑍𝑊 . In
1867, Woolhouse determined that

𝔼 [𝐴(𝑌𝑍𝑊)
𝐴(𝔻) ] = 35

48𝜋2 ,

hence

𝑝 = 1 − 𝔼[𝐼] = 1 − 4𝔼[𝐼𝑋] = 1 − 35
12𝜋2 = 0.704… .

Of course, random points can be selected inside regions
different from a disk. Sylvester also asked the same ques-
tion in the following modified form. Let 𝑆 be a convex
body in the plane (that is, a compact convex set with non-
empty interior) and choose four points from 𝑆 indepen-
dently and uniformly at random. What is the probability
𝑝(4, 𝑆) that these points are the vertices of a convex quadri-
lateral? Further, for what 𝑆 is this probability the smallest
and the largest? The second question has been solved by
Blaschke, who proved in 1917 that for all convex bodies 𝑆,
2
3 = 𝑝(4, 𝕋) ≤ 𝑝(4, 𝑆) ≤ 𝑝(4, 𝔻) = 1 − 35

12𝜋2 = 0.704… ,

where 𝕋 and 𝔻 denotes a triangle and a disk in the plane,
respectively.
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Sylvester’s question can be asked for 𝑚 points: if they
are selected uniformly at random in a convex body 𝑆 in
the plane, what is the probability 𝑝(𝑚, 𝑆) that they form a
convex 𝑚-gon?

In 1995, Valtr solved this problem exactly for a parallel-
ogram 𝕃, and proved that

𝑝(𝑚, 𝕃) = (
(2𝑚−2
𝑚−1

)
𝑚! )

2

.

In 1996, Valtr also solved this problem for triangle 𝕋, and
showed that

𝑝(𝑚, 𝕋) = 2𝑚(3𝑚 − 3)!
(𝑚 − 1)!3 (2𝑚)! .

Using Stirling’s approximation for the factorial, it is
straightforward to prove that

lim
𝑚→∞

(𝑚2𝑚√𝑝(𝑚, 𝕋)) = 27
2 𝑒

2.

Because any convex body 𝑆 in the plane can be sandwiched
between two triangles, this implies the existence of univer-
sal constants 0 < 𝑐1 < 𝑐2 < ∞ such that

𝑐1 ≤ 𝑚2𝑚√𝑝(𝑚, 𝑆) ≤ 𝑐2
for all 𝑚 and all 𝑆. In fact, Bárány [Bár99] proved in 1999
that

lim
𝑚→∞

(𝑚2𝑚√𝑝(𝑚, 𝑆)) = 𝑐(𝑆)

for some constant 𝑐(𝑆) that depends on 𝑆. For example,
𝑐(𝕃) = 16𝑒2 for parallelogram, 𝑐(𝕋) = 27

2
𝑒2 for triangle, and

𝑐(𝔻) = 2𝜋2𝑒2 for disk. In particular,

𝑝(𝑚,𝔻) ≈ (2𝜋
2𝑒2
𝑚2 )

𝑚
.

approaches 0 as 𝑚 → ∞ with super-exponential speed.
Can we have the exact (non-asymptotic) formulas for

𝑝(𝑚,𝔻)? In 1971, Miles derived the exact formula for
𝑝(5, 𝔻):

𝑝(5, 𝔻) = 1 − 305
48𝜋2 = 0.356… .

Finally, Marckert in 2017 derived exact (but somewhat
complicated) formulas for 𝑝(𝑚,𝔻) for an arbitrary 𝑚. For
example, for 𝑚 = 6,

𝑝(6, 𝔻) = 1 − 305
24𝜋2 −

473473
11520𝜋4 = 0.134… .

The following table lists numerical values for 𝑝(𝑚, 𝕋),
𝑝(𝑚, 𝕃) and 𝑝(𝑚,𝔻) for 4 ≤ 𝑚 ≤ 7.

𝑚 4 5 6 7
𝑝(𝑚, 𝕋) 0.666… 0.305… 0.101… 0.0251…
𝑝(𝑚, 𝕃) 0.694… 0.340… 0.122… 0.0336…
𝑝(𝑚,𝔻) 0.704… 0.356… 0.134… 0.039…

As expected, we see that the probabilities decrease fast even
for small values of 𝑚. This is bad news for our machine
learning application, because it shows that new points will
most likely be in the convex hull of other points. How-
ever, all these results are in the plane, which corresponds to
a (toy) machine learning system with just two attributes.
Any realML systemhas significantlymore attributes, hence
we should study Problem 1 in higher-dimensional spaces.
In the next section we show that separability properties of
random points in higher dimensions are dramatically dif-
ferent from those computed for our low-dimensional ex-
ample.

3. The Effect of Higher Dimension
We start our analysis of Problem 1 in higher dimensions
with a simple special case. Let 𝔹𝑛 be the closed unit ball in
ℝ𝑛. We first consider the case when points 𝑋1, … , 𝑋𝑚 ∈ 𝔹𝑛
are fixed, and 𝑌 ∈ 𝔹𝑛 is selected uniformly at random in
𝔹𝑛. In 1986, Elekes [Ele86] proved that for any 𝑚 points
𝑋1, … , 𝑋𝑚 ∈ 𝔹𝑛, we have

Vol(conv(𝑋1, … , 𝑋𝑚))
Vol(𝔹𝑛)

≤ 𝑚
2𝑛 , (1)

where conv is the convex hull, and Vol denotes the 𝑛-
dimensional volume. This implies that 𝑌 can be separated
from 𝑋1, … , 𝑋𝑚 by a hyperplane with probability at least
1 − 𝑚/2𝑛. This probability is greater than 1 − 𝛿 provided
that 𝑚/2𝑛 < 𝛿, or

𝑚 < 𝛿2𝑛. (2)

Now assume that we select𝑚 points independently and
uniformly at random in 𝔹𝑛. Let 𝐸𝑖 be the event that the
point 𝑋𝑖 is inside the convex hull of the remaining points.
Then Elekes’s theorem implies that the probability of 𝐸𝑖 is
at most (𝑚 − 1)2−𝑛, and the probability of the event 𝐸 =
⋃𝑚

𝑖=1 𝐸𝑖 is at most 𝑚(𝑚 − 1)2−𝑛 < 𝑚22−𝑛. Hence with
the probability greater than 1 − 𝑚22−𝑛 every point 𝑋𝑖 is
separable by a hyperplane from the remaining points. This
probability is greater than 1 − 𝛿 if 𝑚22−𝑛 < 𝛿, or

𝑚 < √𝛿(√2)𝑛. (3)

The upper bound (3) was originally proved by Bárány
and Füredi in 1988. Complementing this result, Bárány
and Füredi also proved that, for all 𝑛 ≥ 100, the probability
that

𝑚 = 20𝑛3/4(√2)𝑛
independent uniformly distributed points in 𝔹𝑛 are all ver-
tices of their convex hull is less than 2𝑒−10. Hence, the
bound (3) is quite tight. In particular, the result is no
longer true if (√2)𝑛 in (3) is replaced by (√2 + 𝜖)𝑛 for any
𝜖 > 0.

The following table shows, in various dimensions 𝑛, the
upper bounds for𝑚 in (2) and (3) with 𝛿 = 0.01, ensuring
the separability with 99% probability.
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𝑛 Upper bound in (2) Upper bound in (3)
10 10.24 3.2
30 1.07 ⋅ 107 3276
50 1.12 ⋅ 1013 3.35 ⋅ 106
100 1.26 ⋅ 1028 1.12 ⋅ 1014

We see that in dimension 𝑛 = 30, a random point is
separable from millions of other points with probability
over 99%, and thousands of random points are all separa-
ble. In dimension 𝑛 = 50, millions of points all become
separable. In other words, if we select 3million uniformly
random points in ball 𝐵50 ⊂ ℝ50, then with probability
over 99% they are all vertices of their convex hull. This
observation is in sharp contrast with our low-dimensional
intuition.

This effect is not limited to the uniform distribution in
the unit ball 𝔹𝑛. In fact, when we say “uniform distribu-
tion in the unit ball,” we actually mean a family of distribu-
tions, one for each dimension: the uniform distribution
on the interval [−1, 1] in ℝ1, the uniform distribution in
the the disk {(𝑥, 𝑦) ∈ ℝ2 ∶ 𝑥2+𝑦2 ≤ 1} inℝ2, and so on. In
the theorems below, the dimension will not be fixed but
will be a variable, and in this case we need to consider a
family

ℙ = {ℙ1, … , ℙ𝑛, … }
of probability measures, where ℙ𝑛 denotes the probability
measure on ℝ𝑛.

Definition 1. [GGG+18] The family of joint distributions
of points 𝑋1, … , 𝑋𝑚 in ℝ𝑛 has SmAC property if there exist
constants 𝜖 > 0, 𝐴 > 0, and 𝐵 ∈ (0, 1), such that for every
positive integer 𝑛, any convex set 𝑆 ∈ ℝ𝑛 such that

Vol(𝑆)
Vol(𝔹𝑛)

≤ 𝜖𝑛,

any index 𝑖 ∈ {1, 2, … ,𝑚}, and any points
𝑌1, … , 𝑌 𝑖−1, 𝑌 𝑖+1, … , 𝑌𝑚 in ℝ𝑛, we have

ℙ(𝑋𝑖 ∈ 𝔹𝑛 ⧵ 𝑆 ∣ 𝑋𝑗 = 𝑌 𝑗 , ∀𝑗 ≠ 𝑖) ≥ 1 − 𝐴𝐵𝑛. (4)

Condition (4) says that, with probability exponentially
close to 1, a random point lies inside the unit ball, but
outside of any convex set of exponentially small volume.
In other words, SmAC property holds for the distributions
without (i) heavy tails and (ii) sharp peaks in sets with ex-
ponentially small volume. Indeed, any bounded or light-
tailed distribution can, after appropriate shift and rescal-
ing, be located essentially inside 𝔹𝑛, while for heavy-tailed
distributions there is a significant probability that 𝑋𝑖 ∉ 𝔹𝑛,
hence (4) fails. The name SmAC is an abbreviation of
“SMeared Absolute Continuity” and comes from analogy
with absolute continuity: the absolute continuity means
that the sets of zero measure have zero probability, and
the SmAC condition requires that convex sets with expo-
nentially small volume should not have high probability.

The theorem below states that if a family of distribu-
tions has the SmAC property, then exponentially many
points are in convex position with high probability.

Theorem 1. [GGG+18] Let {𝑋1, … , 𝑋𝑚} be a set of random
points in ℝ𝑛 from a distribution satisfying the SmAC property.
Let 𝛿 ∈ (0, 1) be fixed. Then there exists constants 𝑎 > 0 and
𝑐 > 1 such that if 𝑚 < 𝑎𝑐𝑛 then points {𝑋1, … , 𝑋𝑚} are in
convex position with probability greater than 1 − 𝛿.

The SmAC condition is very general and holds for a
large variety of distributions. As an illustration, consider
a special case of i.i.d. data. If probability measures ℙ𝑛 in
family ℙ have support in the unit ball 𝔹𝑛 and density 𝜌𝑛,
then the SmAC condition holds provided that

𝜌𝑛(𝑥)
𝜌uni(𝑥)

≤ 𝐶𝑅𝑛, ∀𝑥 ∈ 𝔹𝑛 (5)

where 𝐶 > 0 and 𝑅 > 0 are some constants independent
of the dimension, and 𝜌uni(𝑥) is the density of the uniform
distribution in 𝔹𝑛. In other words, the density 𝜌𝑛(𝑥) is al-
lowed to differ from the uniform density by an exponen-
tially large factor, and the exponent 𝑅 must be a constant
independent of 𝑛 but can be arbitrarily large.

For example, let 𝐴𝑛 be a bounded measurable set in ℝ𝑛.
Then it is not difficult to see that (5) is true for the uniform
distribution in (a possibly scaled and shifted) 𝐴𝑛 provided
that

diam(𝐴𝑛)
𝑛√Vol(𝐴𝑛)

≤ 𝑅√𝑛 (6)

for some constant 𝑅 < ∞. In particular, if 𝐴𝑛 is the unit
cube in ℝ𝑛, then Vol(𝐴𝑛) = 1, diam(𝐴𝑛) = √𝑛, and (6)
holds with 𝑅 = 1. Hence Theorem 1 implies that exponen-
tially many points selected uniformly at random from the
unit cube are in convex position with high probability.

4. Computing Separating Hyperplanes
Under SmAC condition, exponentially many random
points 𝑋1, … , 𝑋𝑚 in ℝ𝑛 are linearly separable with high
probability: for each 𝑖 ∈ 1, … ,𝑚, there exists a hyperplane
𝐻 passing through 𝑋𝑖 such that all other points are on the
same side from 𝐻. If (𝑥𝑗1, … , 𝑥𝑗𝑛) are the coordinates of
point 𝑋𝑗, 𝑗 = 1, … ,𝑚, then we can explicitly find𝐻 by solv-
ing the quadratic program

min
𝑐1,…,𝑐𝑛,𝑣

‖𝑐‖2, subject to (7)

𝑛
∑
𝑘=1

𝑐𝑘𝑥𝑗𝑘 + 𝑣 ≤ −1, 𝑗 ≠ 𝑖;
𝑛
∑
𝑘=1

𝑐𝑘𝑥𝑖𝑘 + 𝑣 = 1.

If 𝑐∗ = (𝑐∗1, … , 𝑐∗𝑛, 𝑣∗) is the solution to (7), then

𝐻 = {(𝑥1, … , 𝑥𝑛) ∈ ℝ𝑛 ∶ 1 − 𝑣∗ =
𝑛
∑
𝑘=1

𝑐∗𝑘𝑥𝑘} .

The above program is a version of the well-known
maximal-margin classifier or a support vector machine.
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This quadratic program has 𝑚 constraints and 𝑛 + 1 vari-
ables. Worst-case computational complexity of solving
this problem scales as 𝑂(max(𝑛 + 1,𝑚)min(𝑛 + 1,𝑚)2)
[Cha07]. When 𝑚 is potentially exponentially large in 𝑛,
the worst-case complexity grows exponentially with 𝑛.

The other issue with finding separating hyperplanes
through solving (7) is that this approach requires full
knowledge of all points𝑋𝑗, 𝑗 = 1, … ,𝑚. Whilst such knowl-
edge might be available in some tasks, it is hardly practical
in the task of correcting AI errors. In this context, 𝑋𝑖 repre-
sents an AI “error” that has already been detected and is to
be removed, and 𝑋𝑗, 𝑗 ≠ 𝑖 stand for “correct or expected”
past and possibly future AI behavior. The fact that some
or all 𝑋𝑗 are unknown makes solving (7) hardly possible.
The question, therefore, is:

Problem 2. How to construct 𝐻 separating 𝑋𝑖 from the
remaining points without knowing their positions?

In the next sectionswe show that, for appropriately high
dimension 𝑛 and under some mild assumptions, there are
simple closed-form expressions defining hyperplanes sep-
arating 𝑋𝑖 from 𝑋𝑗, 𝑖 ≠ 𝑗 with probability close to 1.
4.1. One-shot separability: Fisher separability. In order
to develop the intuition for Problem 2, let us return to the
simplest example, when the points are selected uniformly
at random from the 𝑛-dimensional unit ball 𝔹𝑛. Any hy-
perplane𝐻 through𝑋𝑖 divides𝔹𝑛 into pieces with volumes
𝑉1 ≤ 𝑉2. To maximize the chance that hyperplane 𝐻 sepa-
rates 𝑋𝑖 from all other points, we aim to select 𝐻 such that
volume 𝑉1 is the minimal possible. The optimal choice
of 𝐻 is the hyperplane orthogonal to 𝑂𝑋𝑖, where 𝑂 is the
centre of 𝔹𝑛; see Figure 5. If 𝐴 is the event that point 𝑋𝑗
belongs to the piece with volume 𝑉1, then a straighforward
calculation shows that

ℙ(𝐴) = 𝔼[𝐼𝐴] = 𝔼[𝔼[𝐼𝐴|𝑋𝑗]] = 𝔼[𝑅𝑛] = 1
2𝑛+1 , (8)

where 𝐼𝐴 is the indicator function of the event 𝐴, the sec-
ond equality is the law of total expectation, the third equal-
ity follows from the fact that 𝐼𝐴|𝑋𝑗 is equal to 1 if and only
if 𝑋𝑖 belongs to a ball with radius 𝑅 = |𝑂𝑋𝑗|/2, and the last
equality follows from the fact that 𝑅 is a random variable
with cdf ℙ[𝑅 ≤ 𝑟] = ℙ[|𝑂𝑋𝑗| ≤ 2𝑟] = (2𝑟)𝑛, 0 ≤ 𝑟 ≤ 1/2.

Now, if we have𝑚 i.i.d. points from𝔹𝑛, there are𝑚(𝑚−
1) ordered pairs of points. Hence, the probability that we
can find some pair𝑋𝑖, 𝑋𝑗 such that the corresponding event
𝐴 happens is at most 𝑚(𝑚 − 1)2−(𝑛+1) < 𝑚22−(𝑛+1). This
probability is less than 𝛿 provided that

𝑚 < √2𝛿(√2)𝑛.
Remarkably, this bound is even less restrictive than (3),
while the conclusion is stronger: not only are this many
points in convex position with probability greater than
1 − 𝛿, but in fact each point 𝑋𝑖 can be separated from the

Figure 5. One-shot separability in a sphere.

other ones by the specific hyperplane tangent to𝑂𝑋𝑖, which
is independent from other points, and can be constructed
exponentially faster than solving the program (7).

It turns out that this simple idea to choose hyperplane
𝐻 tangent to 𝑂𝑋𝑖 solves Problem 2 for surprisingly many
families of distributions, and is known as Fisher separabil-
ity [GGG+18].

Definition 2. A point 𝑋 ∈ ℝ𝑛 is Fisher-separable from
𝑌 ∈ ℝ𝑛 with threshold 𝛼 ∈ (0, 1] if

𝛼‖𝑋‖2 ≥
𝑛
∑
𝑖=1

𝑥𝑖𝑦𝑖. (9)

We say that 𝑋 is Fisher-separable from a finite set 𝐹 ∈ ℝ𝑛

with threshold 𝛼 if (9) holds for all 𝑌 ∈ 𝐹.
The question is: how do we know that 𝑋𝑖 is Fisher-

separable from 𝑋𝑗, 𝑖 ≠ 𝑗? An answer to this question fol-
lows from the next statement.

Proposition 1 ([GGG+18]). Let 𝛼 ∈ (1/2, 1], 1 > 𝛿 > 0,
let 𝑋 be drawn from a distribution supported on 𝔹𝑛 whose prob-
ability density satisfies (5) with some 𝐶 > 0 and 𝑅 ∈ (1, 2𝛼),
and let 𝑌 be a finite set in 𝔹𝑛 with

|𝑌| ≤ 𝛿 (2𝛼𝑅 )
𝑛 1
𝐶 .

Then the point 𝑋 is Fisher-separable from the set 𝑌 with proba-
bility at least 1 − 𝛿.

Several interesting observations stem immediately from
Proposition 1. It appears that construction of separating
hyperplanes does not always require complete knowledge
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Figure 6. One-shot separability: we select a hyperplane that
divides the probability measure into two maximally unequal
parts.

of sets that are being separated. Some rough information
such as the value of the point 𝑂, the fact that all 𝑋𝑗, 𝑗 ≠ 𝑖
are in a unit ball centered at 𝑂, and that 𝑋𝑖 is drawn from
a SmAC distribution suffices. The resulting hyperplane
𝐻 separates 𝑋𝑖 from 𝑋𝑗, 𝑗 ≠ 𝑖 with probability at least
1−𝛿, and with some guaranteed margin (1−𝛼)‖𝑋𝑖‖. Note,
however, that this margin is not necessarily maximal as re-
quested by program (7).

It turns out that Fisher separability for exponentially
many points holds for many important families of distri-
butions, including rotation invariant log-concave distribu-
tions and product distributions whose components have
bounded support or very fast-decaying tails [GGT21]. At
the same time, there are examples of product distributions
with identical log-concave components for which this is no
longer true [GGT21]. It is hence natural to ask if and how
similar simple solutions could be derived for such distri-
butions with “heavier” tails.
4.2. One-shot separability: general case. Now we for-
mulate the same idea in general. Let ℙ𝑛 be an arbitrary
probability measure in ℝ𝑛, and let 𝑋 ∈ ℝ𝑛 be an arbitrary
point. Problem2 asks to construct a hyperplane separating
𝑋 fromother𝑚 points selected at random fromℙ𝑛 without
knowing their positions. Every hyperplane dividesℝ𝑛 into
two half-spaces, say 𝐻1 and 𝐻2, whose probability mea-
sures are 𝑝1 = ℙ𝑛(𝐻1), and 𝑝2 = ℙ𝑛(𝐻2), respectively. We
would like 𝑋 and the remaining𝑚 points to belong to dif-
ferent subspaces, say𝑋 ∈ 𝐻1, and other𝑚 points to belong
𝐻2. The probability of the latter event is 𝑝𝑚2 = (1 − 𝑝1)𝑚.
This probability is maximized if 𝑝1 is minimized. Hence,
the idea is to select the halfspace containing 𝑋 whose prob-
ability measure is minimal; see Figure 6. Formally, let ℍ𝑋
be the set of halfspaces of ℝ𝑛 containing 𝑋 , let

𝜙(ℙ𝑛, 𝑋) = inf
𝐻∈ℍ𝑋

ℙ𝑛(𝐻) (10)

be the minimal measure of a halfspace containing 𝑋 , and
let 𝐻∗(𝑋) be the minimizer2 in (10). Function 𝜙(ℙ𝑛, 𝑋) is
known as Tukey’s halfspace depth.

The probability that 𝐻∗(𝑋) separates 𝑥 from 𝑚 points
is (1 − 𝜙(ℙ𝑛, 𝑋))𝑚. We would like this probability to be
greater than a given constant 1−𝛿 even if𝑚 grows exponen-
tially fast with 𝑛. To ensure this, 𝜙(ℙ𝑛, 𝑋) should decrease
exponentially fast with 𝑛. This may not be the case for all
𝑋 : for example, if ℙ𝑛 is the uniform distribution in the
ball, and 𝑋 is the center of the ball, then 𝜙(ℙ𝑛, 𝑋) = 1/2.
However, there is a hope that 𝜙(ℙ𝑛, 𝑋) decreases fast on
average, for random point 𝑋 . In other words, we need ex-
pected value

𝑐(ℙ𝑛) = 𝔼[𝜙(ℙ𝑛, 𝑋)]
to decrease exponentially fast with 𝑛.

Definition 3. Let ℙ = {ℙ1, … , ℙ𝑛, … } be a family of prob-
ability measures, where ℙ𝑛 is the probability measure on
ℝ𝑛. We say that ℙ has exponential one-shot separability
if

𝑐(ℙ𝑛) ≤ 𝑎ℙ(𝑐ℙ)𝑛

for some constants 𝑎ℙ < ∞, 𝑐ℙ ∈ (0, 1).

In this section, we overview our recent results that es-
tablish exponential one-shot separability for a large class
of product distributions, and discuss a conjecture that this
property holds for all log-concave distributions.

Let us now be a bit more formal. We say that density
𝜌𝑛 ∶ ℝ𝑛 → [0,∞) of random vector 𝑋 = (𝑥1, … , 𝑥𝑛) (and
the corresponding probability measure ℙ𝑛) is log-concave,
if set

𝐷 = {𝑧 ∈ ℝ𝑛 ∣ 𝜌𝑛(𝑧) > 0}
is convex and 𝑔(𝑧) = − log(𝜌𝑛(𝑧)) is a convex function
on 𝐷. For example, the uniform distribution in an arbi-
trary convex body is log-concave. Let 𝐶 be the variance-
covariance matrix of 𝑋 , that is, matrix with components
𝑐𝑖𝑗 = Cov(𝑥𝑖, 𝑥𝑗). Because the log-concavity of ℙ𝑛 and
the definition of 𝑐(ℙ𝑛) are invariant under invertible lin-
ear transformations, we may assume that 𝔼[𝑋] = 0 and
𝐶 = 𝐼𝑛 is the 𝑛 × 𝑛 identity matrix. Such distributions are
called isotropic. Quantity

𝐿ℙ𝑛 = ( sup
𝑧∈ℝ𝑛

𝜌𝑛(𝑧))
1/𝑛

is called the isotropic constant of ℙ𝑛. Very recently, Brazi-
tikos, Giannopoulos, and Pafis [BGP22] proved that

𝑐(ℙ𝑛) ≤ exp (− 𝑎𝑛
𝐿ℙ𝑛

) (11)

2Each halfspace can be identified with its normal unit vector, the set of all
such vectors is a compact set, hence there must be a halfspace that achieves the
minimum.
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for some absolute constant 𝑎 > 0. A famous conjecture in
convex geometry predicts that

𝐿ℙ𝑛 ≥ 𝜖 (12)

for some constant 𝜖 > 0 independent from the dimension.
This conjecture has been made in 1986 by Jean Bourgain
[Bou86] in the form that “There exists a universal constant
𝜖 > 0 (independent from 𝑛) such that for any convex set
𝐾 of unit volume in ℝ𝑛, there exists a hyperplane 𝐻 such
that the (𝑛 − 1)-dimensional volume of the section 𝐾 ∩ 𝐻
is bounded below by 𝜖,” and since then is known as the
Hyperplane conjecture. It turns out that this conjecture
is equivalent to (12), and in fact has many other equiva-
lent formulations. Recently, Chen [Che21] made a break-
through and proved that

𝐿ℙ𝑛 ≥ 𝑛−𝑓(𝑛)

for some function 𝑓 tending to 0 as 𝑛 → ∞. Even more
recently, Klartag and Lehec [KL22] improved this to 𝐿ℙ𝑛 ≥
𝑏(log 𝑛)−5 for some absolute constant 𝑏 > 0. In combina-
tion with (11), a full proof of conjecture (12) would imply
that any family of log-concave probability measures has
exponential one-shot separability.

Our next example is a family of product distributions.
Specifically, for each 𝑛, let ℙ𝑛 be the the product measure
of one-dimensional probabilitymeasures 𝜇1,𝑛, … , 𝜇𝑛,𝑛. For
any distribution 𝜇 on ℝ, define

𝜓𝜇(𝑥) = inf
𝑐∈ℝ

𝔼[exp(𝑐(𝑍 − 𝑥))], 𝑐𝜇 = 𝔼[𝜓𝜇(𝑋)],

where 𝑍 and 𝑋 are random variables with distribution 𝜇.
Then we have proved [GGT] that ℙ𝑛 has exponential one-
shot separability provided that 𝑐𝜇 < 1 for each component
distribution 𝜇. This property holds for a large variety of dis-
tributions. For example, we have the following sufficient
condition [GGT].

Proposition 2. Let 𝑍 be a random variable with distribution
𝜇. Assume that 𝑍 is non-constant and 𝑀𝑍(𝑡) ≔ 𝔼[𝑒𝑡𝑍] < ∞
for some 𝑡 ≠ 0. Then 𝑐𝜇 < 1.

When our data are non-negative, Proposition 2 implies
the following corollary.

Corollary 1. Let 𝑍 be a non-constant non-negative random
variable with distribution 𝜇. Then 𝑐𝜇 < 1.

For log-concave distributions, we have the following ex-
plicit and uniform upper bound [GGT].

Proposition 3. For any log-concave probability distribution 𝜇
on ℝ, we have

𝑐𝜇 < 1 − 2 ⋅ 10−5.
Proposition 3 implies the following result.

Theorem 2. Let ℙ = {ℙ1, … , ℙ𝑛, … } be a family of product dis-
tributions such that all component distributions are log-concave.

Then ℙ has exponential one-shot separability (see Definition 3)
with parameters 𝑎ℙ = 1 and 𝑐ℙ < 1 − 2 ⋅ 10−5.

We did not try to optimize the upper bound for 𝑐𝜇 in
Proposition 3. Instead, we pose the problem of finding the
optimal upper bound as an open question. Specifically, if
ℱ is the class of all log-concave distributions on ℝ, then
what is the value of

𝑐ℱ = sup
𝜇∈ℱ

𝑐𝜇?

Proposition 3 provides the upper bound 𝑐ℱ ≤ 1−2⋅10−5 <
1. On the other hand, example of Laplace distribution
shows that

𝑐ℱ ≥ 3
4 +

𝑒
16 ∫

∞

1

𝑒−𝑡
𝑡 𝑑𝑡 = 0.7872… .

While the upper bound is clearly non-optimal, it may be
that 𝑐ℱ is equal to the lower bound.

5. Conclusions
A phenomenon known as curse of dimensionality states
thatmanymethods and techniques that are efficient in low
dimension become infeasible is high dimension. Stochas-
tic separation theorems are examples of the opposite phe-
nomenon, blessing of dimensionality, which states that
some aspects become easier in higher dimensions. The the-
orems state that if we have 𝑚 random points in ℝ𝑛, then,
with high probability, every point can be separated from
all others by a hyperplane. This is true even if the number
of points grows exponentially fast with dimension.

While being interesting from purely mathematical per-
spective, stochastic separation theorems could be a step-
ping stone for the development of much-needed error
correcting mechanisms [GGG+18], algorithms capable of
learning from just few examples [GGM+21], approaching
the challenge of continuous learning without catastrohpic
forgetting inmachine learning and AI, and to produce new
notions of data dimension [GMT19]. The theorems imply
that if the number of attributes is moderately high, AI er-
rors may be corrected by adding simple linear correctors,
that are fast, easy to compute and implement, and do not
destroy existing functionality of the system. The simplest
corrector is based on Fisher separability discussed in Sec-
tion 4.1. Deeper one-shot separation theorems discussed
in Section 4.2 make the method applicable even for distri-
butions for which Fisher separability fails.
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Tropical Combinatorics

Felipe Rincón, Ngoc Mai Tran, and Josephine Yu
Tropical mathematics arises from the max-plus semifield.
The max-plus algebra, especially max-plus linear alge-
bra and applications to computer science, combinatorics,
and optimization, have been studied since 1970s by
Cuninghame-Green, Kleene, Zimmermann, and others.
However, much of the development in tropical geome-
try in the last 20 years is due to the tropicalization process,
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which turns algebro-geometric objects into combinatorial
ones.

Tropicalization of algebraic sets, also known as Maslov
dequantization or logarithmic limit sets, was introduced
by Bergman to study the “exponential behavior at infin-
ity” of algebraic varieties, by Viro to construct real plane
curves with prescribed degree and topology, by Mikhalkin
to count algebraic curves, and by Sturmfels for solving sys-
tems of polynomial equations.

Tropicalization has led to numerous recent break-
throughs in diverse areas of mathematics such as topol-
ogy of moduli spaces of curves [Cha21] and optimiza-
tion [ABGJ21]. Moreover, tropicalization gives us construc-
tions, intuition, and analogies for studying purely combi-
natorial objects as well, even if they do not arise as shad-
ows of algebraic geometry. This is the case, for example, in
the development of combinatorial Hodge theory, which
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contributed in great part to the recent Fields medal award
given to June Huh.

In this article we introduce some of the basic construc-
tions in tropical geometry, focusing on linear spaces and
Grassmannians for their combinatorial significance. We
give pointers to some recent research frontiers and discuss
applications in matroid theory, phylogenetic trees, and
auction theory.

In Section 1 we provide background on tropicalization
of algebraic sets. In Section 2we discuss tropicalizations of
linear subspaces, their connection to matroids, and tropi-
calizations of Grassmannians, which are parameter spaces
for the set of all linear subspaces of a fixed dimension in
an ambient vector space. In Section 3, we look beyond the
tropical Grassmannian and study the Dressian as a param-
eter space of all valuated matroids, not just those arising
from linear subspaces. The Dressian provides a unifying
language for applications in economics, which we discuss
in Section 4.

1. Tropical Foundations
In this section we explain how tropicalization uncovers
combinatorial structure of algebraic objects, such as New-
ton polytopes of polynomials and their subdivisions. More
generally, we discuss how tropicalizations of algebraic sets
are piecewise linear objects with rich combinatorial struc-
ture. We refer to the book [MS15] for proofs and more
details.

Tropical or max-plus algebra is algebra over the real num-
bers ℝ with tropical addition

𝑎 ⊕ 𝑏 = max(𝑎, 𝑏)
and tropical multiplication

𝑎 ⊙ 𝑏 = 𝑎 + 𝑏.
The operations satisfy associative, commutative, and dis-
tributive laws. The multiplicative identity is 0. We may
optionally adjoin −∞ if we desire an additive identity, but
there are no additive inverses.

Tropical operations arise from limits of logarithms. To
build intuition, consider two monic polynomials 𝐹, 𝐺 ∈
ℝ[𝑥]. If 𝑥 is very large, then 𝐹,𝐺 are each dominated by
the monomial of highest degree, so 𝐹(𝑥) ∼ 𝑥𝑎, 𝐺(𝑥) ∼ 𝑥𝑏
for some 𝑎, 𝑏 > 0. Then, (𝐹 ⋅ 𝐺)(𝑥) ∼ 𝑥𝑎+𝑏, and if 𝑎 ≠ 𝑏,
then (𝐹 + 𝐺)(𝑥) ∼ 𝑥max(𝑎,𝑏). In other words, if we work
with large values of 𝑥, then multiplication and addition of
polynomials corresponds to addition and taking maxima
of exponents. Let us now consider a richer variant of the
above. A non-Archimedean valuation on a field 𝕂 is a map
𝜈 ∶ 𝕂 ⧵ {0} → ℝ satisfying

1. 𝜈(𝑎𝑏) = 𝜈(𝑎) ⊙ 𝜈(𝑏)
2. −𝜈(𝑎 + 𝑏) ≤ −𝜈(𝑎) ⊕ −𝜈(𝑏).

For example,𝕂 can be the fieldℂ((𝑡)) of Laurent series with

complex coefficients, which are formal power series where
exponents can start at a negative integer, or its algebraic clo-

sure, the field of Puiseux series⋃𝑛≥1 ℂ((𝑡
1
𝑛 )). Then a valua-

tion could be the lowest exponent of a term with nonzero
coefficient.

We now have two different ways to tropicalize. We can
tropicalize a polynomial over 𝕂 by replacing the algebraic
operations with tropical operations, and replacing the co-
efficients with (negative of) their valuations. On the other
hand, we can tropicalize a subset of (𝕂⧵{0})𝑛 by taking (neg-
ative of) valuations coordinate-wise. For example, con-
sider the univariate polynomial

𝐹(𝑥) = 𝑥3 − (𝑡−4 + 𝑡−3 + 𝑡−2)𝑥 + (𝑡−5 + 𝑡−4)

with coefficients in the field of Laurent series ℂ((𝑡)). The
three roots of 𝐹 are the Laurent series 𝑡−2, −𝑡−2 − 𝑡−1, and
𝑡−1. We can tropicalize 𝐹(𝑥) to obtain the polynomial

𝑓(𝑥) = trop(𝐹(𝑥)) = 0 ⊙ 𝑥⊙3 ⊕ 4⊙ 𝑥 ⊕ 5. (1)

We can also take (negative of) valuations of the three roots,
obtaining the real numbers 2, 2, and 1. These two ways of
tropicalizing are compatible, if we define roots of tropical
polynomials appropriately. This is the content of the Fun-
damental Theorem of Tropical Algebraic Geometry, which
we will now work towards.

Defining the roots of a tropical polynomial 𝑓 by “solv-
ing” for 𝑓 = 0 or 𝑓 = −∞ is not a very useful notion, due
to the fact that tropical algebra has no additive inverses.
However, there are still good ways to define tropical roots,
and more generally, tropical hypersurfaces, varieties, and
their algebraic companions, ideals.

To motivate the definitions, consider the tropical poly-
nomial 𝑓 from Equation (1) above. We could try to factor
𝑓 into linear factors to define its roots. This is not possible,
though, as the degree-2 terms cannot be canceled out in a

𝑦 = 𝑥⊙𝑥⊙𝑥
𝑦 = 4⊙𝑥

𝑦 = 5(1, 5)

(2, 6)

Figure 1. The graph of the tropical polynomial 𝑓 defined in (1).
Each tropical monomial is a usual affine function, and the
tropical polynomial is the maximum of affine functions. The
tropical roots of 𝑓 are 1 and 2, which are the values of 𝑥 where
the graph bends.
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tropical product of lower-degree polynomials. Nonethe-
less, as real functions, we have the equality

𝑓(𝑥) ≡ (𝑥 ⊕ 2) ⊙ (𝑥 ⊕ 2) ⊙ (𝑥 ⊕ 1). (2)

Tropically multiplying a function by the linear polynomial
(𝑥 ⊕ 𝑎) translates its graph vertically by 𝑎 units and then
bends the graph up by slope one for 𝑥 ≥ 𝑎. This means
that the factorization is determined by where the slopes
change in the graph of 𝑓. Thus (2) is the unique factoriza-
tion of 𝑓 into monic linear factors, which motivates us to
say that the tropical roots of 𝑓 are 2 and 1, with 2 being a
root of multiplicity two. These are exactly the values of 𝑥
where the maximum (tropical sum) is attained by at least
two of the three tropical monomial terms that make up
the tropical polynomial 𝑓 in the expression (1). The three
tropical monomials are usual linear functions, shown by
the lines in Figure 1. Note that the three tropical roots are
also the valuations of the three roots of the original poly-
nomial 𝐹(𝑥). More generally, we have the following.

Definition 1.1. The tropical hypersurface 𝒱trop(𝑓) of a trop-
ical polynomial 𝑓 in 𝑛 variables is defined as the locus of
points 𝐱 ∈ ℝ𝑛 for which the maximum is attained at least
twice among the tropical monomial terms of 𝑓(𝐱). Equiva-
lently, it is the corner locus of the piecewise linear function
𝑓.

Let 𝕂 be a field with a nontrivial non-Archimedean val-
uation 𝜈. The tropicalization of a polynomial over 𝕂 is
obtained by replacing addition and multiplication with
their tropical counterparts and replacing the coefficients
with minus their valuations. The tropicalization of a point
𝐱 = (𝑥1, … , 𝑥𝑛) ∈ 𝕂𝑛 is

trop(𝐱) = (−𝜈(𝑥1), … , −𝜈(𝑥𝑛)).

For a subset 𝑆 ⊂ 𝕂𝑛, we can define its tropicalization as

trop(𝑆) = {trop(𝐱) ∣ 𝐱 ∈ 𝑆},

where the bar on the right-hand side denotes the closure
in the Euclidean topology.

Thus, from a polynomial 𝐹 ∈ 𝕂[𝐱] we get two tropical
objects: the tropicalization of 𝐹, and the tropicalization of
its zero locus in 𝕂𝑛. The following theorem of Kapranov
says that this latter set is precisely the set of tropical roots
of trop(𝐹).

Theorem 1.2 (Kapranov, 1990s). For any polynomial 𝐹 we
have

𝒱trop(trop(𝐹)) = {trop(𝐱) ∣ 𝐱 ∈ 𝕂𝑛, 𝐹(𝐱) = 0}

where 𝕂 is an algebraically closed extension of the field of defi-
nition of 𝐹 with a nontrivial non-Archimedean valuation, and
the closure is taken in the Euclidean topology of ℝ𝑛.

What information about the tropical polynomial 𝑓
does the tropical hypersurface 𝒱trop(𝑓) retain? Written us-
ing regular arithmetic, a tropical polynomial 𝑓 in 𝑛 vari-
ables 𝑥1, … , 𝑥𝑛 is a function of the form

𝑓 = max
𝐚∈𝐴

(𝑐𝐚 + 𝐱 ⋅ 𝐚) = max
𝐚∈𝐴

((𝐱, 1) ⋅ (𝐚, 𝑐𝐚))

where 𝐱 = (𝑥1, … , 𝑥𝑛). The set 𝐴 ⊂ ℤ𝑛 consists of the ex-
ponents of monomials appearing in 𝑓 and is called the
support of 𝑓. The coefficients 𝑐𝐚 are real numbers.

We can think of the point (𝐚, 𝑐𝐚) ∈ ℝ𝑛+1 as the point
𝐚 ∈ ℝ𝑛 lifted to height 𝑐𝐚 in a new dimension. Then 𝑓
is the function that sends 𝐱 ∈ ℝ𝑛 to the maximum dot
product of (𝐱, 1)with the lifted points (𝐚, 𝑐𝐚) for 𝐚 ∈ 𝐴. The
tropical hypersurface 𝒱trop(𝑓) consists of all the points 𝐱
where this maximum is attained at least twice.

Convex geometry tells us that, when maximizing a lin-
ear function on a set, the possible locations of the points
achieving the maxima are the faces of the convex hull of
the set. When maximizing the dot product with vectors
of the form (𝐱, 1) on the lifted points (𝐚, 𝑐𝐚), the maxima
can only occur on the faces on the upper part of the con-
vex hull, since these faces have an upward-pointing normal
vector, i.e., an outer normal vector with positive last coor-
dinate. See Figure 2 for an example of lifted points and
their upper convex hulls.

This means that the tropical hypersurface𝒱trop(𝑓) is de-
termined by the faces in the upper convex hull of the lifted
points (𝐚, 𝑐𝐚) with 𝐚 ∈ 𝐴. More concretely, if we take the
upper convex hull of the lifted points and project its faces
back down to ℝ𝑛, we obtain a decomposition of the New-
ton polytope of 𝑓, which is the convex hull of the support
of 𝑓, as a union of smaller polytopes. This decomposition
is called the regular subdivision of the Newton polytope of
𝑓 induced by the lift to heights given by the coefficients of
𝑓. The tropical hypersurface 𝒱trop(𝑓) is a polyhedral com-
plex whose faces or cells are in (inclusion-reversing) bijec-
tion with non-singleton faces of this regular subdivision.
This statement is often referred to as the duality between
tropical hypersurfaces and regular subdivisions. Compare
Figures 2 and 3.

Example 1.3. Consider a tropical polynomial in two vari-
ables 𝑥 and 𝑦 of the form

𝑓(𝑥, 𝑦) = (𝑢00⊙0)⊕ (𝑢10⊙𝑥)⊕ (𝑢01⊙𝑦)⊕ (𝑢11⊙𝑥⊙𝑦).

Its support is {(0, 0), (1, 0), (0, 1), (1, 1)} ⊂ ℤ2, and thus its
Newton polytope is the unit square [0, 1]2. Its regular sub-
division is obtained by lifting up the four corners of the
square to the heights 𝑢𝑖𝑗, taking the upper convex hull, and
projecting back down to the square. If 𝑢00+𝑢11 < 𝑢01+𝑢10,
then we obtain the subdivision of the square into two tri-
angles as shown on the left in Figure 2. If the inequality
goes the other way, then we obtain the subdivision shown
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Figure 2. Regular subdivisions of the unit square
corresponding to the tropical polynomials
0 ⊕ (1 ⊙ 𝑥) ⊕ (1 ⊙ 𝑦) ⊕ (1 ⊙ 𝑥 ⊙ 𝑦) and
0 ⊕ (1 ⊙ 𝑥) ⊕ (1 ⊙ 𝑦) ⊕ (3 ⊙ 𝑥 ⊙ 𝑦). The gray dashed line shows
the linear function 𝑢(𝑥, 𝑦) = 𝑥 + 𝑦, for reference.

(0,0)
(-1,-1)

(-2,-1)
(-1,-2)

Figure 3. Tropical hypersurfaces of the tropical polynomials in
Example 1.3. Compare the vertices in these figures with the
normal vectors to the faces in the upper convex hulls in
Figure 2.

on the right. If there is equality, we obtain the full square
unsubdivided.

These subdivisions turn up in auction theory of indivis-
ible distinct goods. Here, the coefficient map 𝑢 ∶ {0, 1}2 →
ℝ is called a bid function, with 𝑢𝑖𝑗 representing how much
a bidder is willing to pay for the goods bundle consisting
of 𝑖 copies of goods 1 and 𝑗 copies of goods 2. The regu-
lar subdivision Δᵆ represents the relationship between the
two items: on the right of Figure 2, the two items are com-
plements (such as milk and coffee), since together they are
worth more to the bidder than the sum of their individual
values. In other words, the bidder would strongly prefer
having both milk and coffee, over having milk alone or
coffee alone. In the other case, on the left, the two items
are called substitutes (such as coffee and tea). Some open
questions in auction theory were resolved using tropical
geometry, by studying the combinatorial types of the bid-
ders’ functions. We discuss this in Section 4.

We now consider the case of multiple polynomials. For
a single polynomial, its Newton polytope is a natural poly-
hedral object carrying some discrete invariants such as the
degree and the asymptotic behavior of the corresponding
hypersurface. When we have a polynomial ideal instead of

a single polynomial, what could an analogous polyhedral
object be? Tropical geometry provides an answer.

If 𝐼 ⊂ 𝕂[𝑥1, … , 𝑥𝑛] is an ideal with variety 𝑉(𝐼) = {𝐱 ∈
𝕂𝑛 ∣ 𝐹(𝐱) = 0 for all 𝐹 ∈ 𝐼}, we define its tropical variety
as the tropicalization of 𝑉(𝐼):

trop(𝑉(𝐼)) = {trop(𝐱) ∣ 𝐱 ∈ 𝑉(𝐼)}.

The Fundamental Theorem of Tropical Algebraic Geome-
try generalizes Kapranov’s theorem to any ideal.

Theorem 1.4 (Fundamental Theorem of Tropical Alge-
braic Geometry). Suppose 𝕂 is an algebraically closed field
with a nontrivial non-Archimedean valuation, and 𝐼 ⊂
𝕂[𝑥1, … , 𝑥𝑛] is an ideal. Then

trop(𝑉(𝐼)) = ⋂
𝐹∈𝐼

𝒱trop (trop(𝐹)).

That is, the two ways of tropicalizing are compatible—
taking (minus) the valuations of points in the variety 𝑉(𝐼),
and intersecting the tropical hypersurfaces of the tropical-
izations of all polynomials in the ideal 𝐼. This intersection
can in fact be taken to be finite, and a finite subset of 𝐼
that suffices is called a tropical basis—every ideal in a poly-
nomial ring has a tropical basis. There are other ways of
describing the tropicalization of an algebraic variety, using
logarithmic limits, Gröbner theory, or Berkovich analytifi-
cations.

What kind of objects are tropical varieties? Although
not immediate from the definition, tropicalizations of al-
gebraic varieties are polyhedral or piecewise linear objects.
This was known since Bergman’s work and is equivalent to
the existence of tropical bases. Bieri and Groves showed
in 1984 that the tropicalization has the same dimension
as the original variety. Moreover, the Structure Theorem
of Tropical Geometry says that the tropicalization of an ir-
reducible variety is connected through codimension-one
faces and that it satisfies a balancing condition. In Figure 3,
the balancing condition means that, locally around ev-
ery vertex, the outgoing direction vectors sum to zero, if
weighted appropriately. The balancing condition is a gen-
eralization of this statement to higher dimensions. Con-
nectedness through codimension-one facesmeans that the
polyhedral object remains connected even after removing
all codimension-two faces.

The connectedness part of the Structure Theorem
was recently strengthened—the tropicalization of a 𝑑-
dimensional irreducible variety is connected through
codimension-one faces even after removing any 𝑑 − 1
pointed maximal faces from it [GHM+21]. This provides
a new tool for the realizability problem of determining
whether a given polyhedral object arises as the tropicaliza-
tion of an irreducible algebraic variety.
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2. Tropicalized Linear Spaces
and Grassmannians

Linear subspaces are some of the simplest algebraic vari-
eties. It turns out that their tropicalizations are quite rich,
with an interesting connection to phylogenetic trees. We
now take a quick tour into this world.

A tropical hyperplane inℝ𝑑 is the tropical variety of a trop-

ical linear function 𝑓 = ⨁𝑑
𝑖=1 𝑎𝑖 ⊙ 𝑥𝑖. However, it is not

so obvious what the notion of a more general tropical lin-
ear space should be. Classically, there are many equivalent
characterizations of linear subspaces: as the linear span of
a set of vectors, as an intersection of hyperplanes, and as
a nonempty subset that is closed under linear combina-
tions, to name a few. However, the absence of additive
inverses makes these notions quite different in tropical ge-
ometry. As it turns out, the right notion of tropical linear
space arises when considering the Plücker embedding of
Grassmann variety.

In the 19th century, Julius Plücker realized that the set
of planes in 4-dimensional affine space 𝕂4 can be nicely
parametrized by a quadratic subvariety of ℙ5. His work
was later generalized by Hermann Grassmann, who found
a way of parametrizing all subspaces of 𝕂𝑛 of a fixed di-
mension 𝑑 by a projective variety that we now know as the
Grassmannian.

Concretely, any 𝑑-dimensional subspace 𝐿 of 𝕂𝑛 can
be written as the row space of a 𝑑 × 𝑛 matrix 𝐴. The
Plücker coordinates of 𝐿 are the (𝑛

𝑑
) maximal minors of 𝐴,

and they form a point in ℙ(
𝑛
𝑑)−1. These Plücker coordi-

nates depend only on the subspace 𝐿 and not on the cho-
sen matrix 𝐴, since row operations on the matrix 𝐴 only
change itsmaximalminors by a global scalarmultiple. The

Grassmannian Gr(𝑑, 𝑛) is the subvariety of ℙ(
𝑛
𝑑)−1 consist-

ing of the Plücker coordinates of all 𝑑-dimensional sub-
spaces of 𝕂𝑛. Any linear subspace 𝐿 is completely deter-
mined by its vector of Plücker coordinates, and thus the
Grassmann variety Gr(𝑑, 𝑛) serves as the parameter space
for all 𝑑-dimensional subspaces of 𝕂𝑛.

The Grassmannian Gr(𝑑, 𝑛) is a variety of dimension
𝑑(𝑛 − 𝑑)—much lower than that of its ambient projec-

tive space, ℙ(
𝑛
𝑑)−1. This variety is defined by polynomials

known as the Plücker relations. For example, Gr(2, 4) is de-
fined by the unique quadratic relation satisfied among the
six maximal minors of a 2 × 4 matrix:

𝑝12𝑝34 − 𝑝13𝑝24 + 𝑝14𝑝23 = 0, (3)

where 𝑝𝑖𝑗 denotes the maximal minor corresponding to
the submatrix consisting of columns 𝑖 and 𝑗.

This correspondence between linear subspaces and
points in the Grassmannian turns out to carry on into the
tropical world. For simplicity, let us fix a valued fieldwith a

surjective non-Archimedean valuation onto ℝ. Under this
setup, tropicalizing the Grassmann variety Gr(𝑑, 𝑛) under
its Plücker embedding in ℙ(

𝑛
𝑑)−1 produces a tropical vari-

ety whose points parametrize the set of tropicalizations of
all 𝑑-dimensional subspaces of 𝕂𝑛. In other words, the
tropicalization of a linear subspace of 𝕂𝑛 is determined
by—and also determines—the valuations of all its Plücker
coordinates.

Theorem 2.1 (Speyer and Sturmfels, 2004). The following
diagram commutes, with the horizontal maps being one-to-one
correspondences:

Gr(𝑑, 𝑛) oo //

trop
����

{𝑑-dim subspaces of 𝕂𝑛}

trop����

trop(Gr(𝑑, 𝑛)) oo // { 𝑑-dim tropicalized
linear spaces in ℝ𝑛 }.

The tropicalization of any 𝑑-dimensional linear sub-
space is a pure 𝑑-dimensional polyhedral complex that is
balanced when assigned multiplicities equal to 1 to all its
maximal cones. Furthermore, these polyhedral complexes
are tropical varieties of degree 1: the number of points
(counted with multiplicity) in their intersection with a
generic tropical linear subspace of the complementary di-
mension is always equal to 1. However, as we will discuss
in Section 3, the class of tropical varieties of degree 1 con-
sists of more than just tropicalizations of linear subspaces,
and it is tightly connected to the study of (valuated) ma-
troids.
Tropical Grassmannians and phylogenetics trees. A phy-
logenetic tree 𝑇 is a tree on 𝑛 labelled leaves {1, 2, … , 𝑛}
where the internal (non-leaf) edges are weighted by pos-
itive numbers and the leaf edges are weighted by real num-
bers. Such a tree 𝑇 produces a pairwise dissimilarity vector

𝑑(2, 𝑇) = {𝑑𝑖𝑗(𝑇) ∶ 1 ≤ 𝑖 < 𝑗 ≤ 𝑛} ∈ ℝ(
𝑛
2) where 𝑑𝑖𝑗(𝑇) is

the sum of edge weights along the unique path from leaf 𝑖
to leaf 𝑗 in 𝑇. An arbitrary vector 𝑑 ∈ ℝ(

𝑛
2) equals 𝑑(2, 𝑇)

for some tree 𝑇 if and only if it satisfies the four-point con-
dition: for each set of four distinct points {𝑖, 𝑗, 𝑘, ℓ} ⊆ [𝑛],
the tuple (𝑑𝑖𝑗 , 𝑑𝑖𝑘, 𝑑𝑖ℓ, 𝑑𝑗𝑘, 𝑑𝑗ℓ, 𝑑𝑘ℓ) ∈ ℝ6 lies on the tropi-
cal variety cut out by the polynomial

(𝑑𝑖𝑗 ⊙ 𝑑𝑘ℓ) ⊕ (𝑑𝑖𝑘 ⊙ 𝑑𝑗ℓ) ⊕ (𝑑𝑖ℓ ⊙ 𝑑𝑗𝑘). (4)

That is, the maximum among the above three terms is
achieved at least twice. Note that (4) is the tropicalization
of the quadratic Plücker relation (3)! In general, we have
the following theorem.

Theorem 2.2 (Pachter and Sturmfels, 2005; Speyer and
Sturmfels, 2004). The space of pairwise dissimilarity vectors
of phylogenetic trees with 𝑛 leaves equals the tropical Grassman-
nian trop(Gr(2, 𝑛)).
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Theorem 2.2 is at the heart of the tropical approach
to phylogenetics. An important problem in phylogenet-
ics is to infer the tree 𝑇 given noisy measurements of the
dissimilarity vector 𝑑(2, 𝑇). For example, suppose that
from different data sets one can obtain dissimilarity vec-
tors 𝑑1, … , 𝑑𝑘, each corresponding to a different phyloge-
netic tree 𝑇1, … , 𝑇𝑘 on the same [𝑛] leaves. One would like
to aggregate the information across these trees, and out-
put a single “best estimator” ̂𝑇. Unfortunately, the mean

of the dissimilarity vectors ̄𝑑 = 1
𝑘
∑𝑘

𝑗=1 𝑑𝑗 may not be a
dissimilarity vector itself. Instead, one could formulate
an optimization problem over the space of trees to find
a tree ̂𝑇 that minimizes the “average distance” to the ob-
served trees 𝑑1, … , 𝑑𝑘. Solving this optimization problem
is an active research area, and the choice of metric on the
tree space plays an important role. Here, the geometry of
trop(Gr(2, 𝑛)) suggests that the tropical Hilbert metric is a
natural choice [MLYK18].

One major quest in theoretical applications of tropical
geometry to phylogenetics was to generalize the Pachter–
Sturmfels theorem to higher-order dissimilarity vectors,
which assign a number to each 𝑟-subset of leaves of a phy-
logenetic tree 𝑇. Recently, it was shown in [CGMS21] that
for 2 ≤ 𝑟 ≤ 𝑛 − 2, the set of weighted 𝑟-order dissimilarity
vectors of phylogenetic trees on 𝑛 leaves is the tropicaliza-
tion of a natural subvariety of trop(Gr(𝑟, 𝑛)), whose tropi-
cal basis generalizes the four-point condition (4).

3. Tropical Linear Spaces and Matroids
The tropicalization of the Grassmannian Gr(𝑑, 𝑛) depends
in general on the ground field. However, we still get
a combinatorially meaningful space if we consider the

set of points in ℝ(
𝑛
𝑑) satisfying just the tropical quadratic

Plücker relations, and not necessarily higher-degree rela-
tions among Plücker coordinates.

Definition 3.1. The Dressian Dr(𝑑, 𝑛) is the space of real-
valued functions 𝑝 on 𝑑-element subsets of {1, 2, … , 𝑛} sat-
isfying the following tropical quadratic Plücker relations:
for any 𝐴, 𝐵 ⊂ {1, 2, … , 𝑛} with |𝐴| = 𝑑 − 1 and |𝐵| = 𝑑 + 1,
the maximum

max
𝑖∈𝐵⧵𝐴

𝑝(𝐴 ∪ 𝑖) + 𝑝(𝐵 ⧵ 𝑖) is achieved twice. (5)

For example, if 𝑑 = 2 and 𝑛 = 4, then (5) is exactly the
four-point condition (4), and the Dressian and the tropi-
cal Grassmannian coincide. However, in general the tropi-
cal Grassmannian is a proper lower-dimensional subset of
the Dressian, as it is cut out by the tropicalizations of all
relations among the maximal minors of a 𝑑×𝑛matrix, not
just the quadratic ones.

The tropical quadratic Plücker relations (5) encode the
basis exchange axiom that defines valuated matroids, and
thus the Dressian Dr(𝑑, 𝑛) turns out to be exactly the space

of valuated matroids of rank 𝑑 on the ground set {1, … , 𝑛}.
This section elaborates on this fundamental connection.

Matroids are combinatorial objects that abstract and
generalize several notions of independence in mathemat-
ics such as linear independence among vectors in a vector
space or algebraic independence among elements of field
extension. If a 𝑑-dimensional linear space 𝐿 is the row
span of a 𝑑×𝑛matrix 𝐴, then a collection of 𝑑 columns of
𝐴 are linearly independent if and only if the correspond-
ing Plücker coordinate of 𝐿 is nonzero. In other words,
the matroid recording the linear dependencies among the
coordinate functions on 𝐿 encodes the zero-pattern of the
vector of Plücker coordinates of 𝐿.

Matroids have been studied extensively since their intro-
duction by Whitney and Nakasawa in the 1930s, and have
found tight connections to several areas such as graph the-
ory, optimization, and coding theory. Valuated matroids
are an elegant generalization of matroids introduced by
Dress and Wenzel in 1992, in which every maximal inde-
pendent set 𝐵 is assigned a valuation 𝑝(𝐵) ∈ ℝ. For exam-
ple, a 𝑑 ×𝑛matrix of rank 𝑑 over a valued field 𝕂 gives rise
to a valuated matroid where for any linearly independent
𝑑-subset of columns 𝐵 ⊂ {1, 2, … , 𝑛}, the value of 𝑝(𝐵) is
the valuation of the corresponding 𝑑 × 𝑑 maximal minor.

Importantly for tropical geometry, the recipe that recov-
ers the tropicalization of a linear subspace from the valu-
ation of its Plücker coordinates directly generalizes to all
valuated matroids, allowing us to associate a tropical linear
space to every valuated matroid, not just those represented
by a matrix over a field. In fact, the combinatorics of val-
uated matroids is perfectly compatible with that of tropi-
cal geometry, in such a way that the set of tropical linear
spaces turns out to be exactly the set of tropical varieties
of degree 1, as shown by Fink in 2013. In this sense, (valu-
ated) matroids are the mathematical object that provides
the answer to what a tropical linear space should be.

A perspective on matroids that has recently gained
prominence in great part due to tropical geometry is that
of their associated polytopes. Given a matroid 𝑀 on the
ground set {1, … , 𝑛}, its associated matroid polytope is the
polytope in ℝ𝑛 whose vertices are the 0/1 indicator vectors
of the bases (i.e., maximal independent sets) of𝑀. For ex-
ample, the matroid polytope of the uniform matroid 𝑈𝑑,𝑛
in which any 𝑑-subset of {1, … , 𝑛} is a basis is the hyper-
simplex Δ𝑑,𝑛, whose vertices are the (𝑛

𝑑
) vectors with 𝑑 co-

ordinates equal to 1 and all other coordinates equal to 0.
From this polyhedral point of view, matroids can be ele-
gantly axiomatized as follows.

Theorem 3.2 (Gelfand, Goresky, MacPherson, Serganova,
1987). A polytope in ℝ𝑛 with vertices in {0, 1}𝑛 is a matroid
polytope if and only if all its edges have the form 𝑒𝑖 − 𝑒𝑗 for
𝑖, 𝑗 ∈ {1, … , 𝑛}.
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Figure 4. A tropical line (in red) dual to a matroid subdivision
of the regular octahedron Δ2,4. The Dressian, which is a
parameter space for tropical linear spaces or valuated
matroids, consists of regular subdivisions that do not
introduce a new edge. It also occurs naturally in auction
theory.

Vectors in the Dressian Dr(𝑑, 𝑛) ⊂ ℝ(
𝑛
𝑑) can be charac-

terized in polyhedral terms as well. They are exactly the
height vectors that induce a regular subdivision of the hy-
persimplex Δ𝑑,𝑛 into matroid polytopes; in other words, a
subdivision of Δ𝑑,𝑛 that does not introduce any new edges.
Furthermore, the tropical linear space associated to a vec-
tor 𝑝 ∈ Dr(𝑑, 𝑛) turns out to be a polyhedral complex that
is dual to a particular subcomplex of this regular subdivi-
sion; see Figure 4. In this way, the combinatorial proper-
ties of tropical linear spaces are tightly linked to those of
matroid polytope subdivisions.

It is sometimes said that tropical geometry provides a
tool for degenerating algebraic varieties into simpler poly-
hedral objects. However, already in the case of linear sub-
spaces, we see that, while all subspaces of a vector space are
quite “simple” geometrically, their tropicalizations carry
somewhat intricate information about their intersections
with the coordinate subspaces, in the form of valuated ma-
troids. In fact, very natural questions about the combina-
torics of tropical linear spaces—or dually, matroid poly-
tope subdivisions—remain unanswered, such as the max-
imal number of faces that a tropical linear space can have.
This particular question is known as the 𝑓-vector conjec-
ture, stated below in terms of matroid polytope subdivi-
sions.

Conjecture 3.3 (Speyer, 2008). Any regular subdivision
of the hypersimplex Δ𝑑,𝑛 into matroid polytopes has at most

(𝑖−1)!
(𝑛−𝑖−1)!(𝑑+𝑖−𝑛)!(𝑖−𝑑)!

interior faces of dimension 𝑖.

The 𝑓-vector conjecture has been proven to hold in par-
ticular cases, such as regular subdivisions corresponding
to valuated matroids that lie in the tropical Grassmannian
(over ℂ), or in the case of maximal faces, when 𝑖 = 𝑛 − 1.
However, the general statement remains open.
Combinatorial Hodge theory. This tropical point of view
on matroids that we have discussed has been extremely

fruitful in the last few years. The local building blocks of
tropical linear spaces, i.e., those subcomplexes consisting
of cells containing a single fixed cell, are called Bergman
fans of matroids. Combinatorially, a Bergman fan has the
structure of a geometric lattice, which is a partially ordered
set with special properties. Topologically, it is a cone over
a bouquet of spheres. However, the particular embedding
in ℝ𝑛 arising from tropical geometry makes Bergman fans
very potent tools.

Inspired by toric geometry, Feichtner and Yuzvinsky in
2004 used this embedding to associate a certain commuta-
tive Artinian ring, called the Chow ring, to every matroid.
More recently, Adiprasito, Huh, and Katz studied this ring
more in depth [AHK18], and showed that in fact it has a
very rigid “Hodge structure,” in the sense that it resembles
the cohomology ring of a smooth projective variety.

Using this powerful algebraic theory, they were able to
prove long-standing conjectures about the log-concavity of
certain integer sequences associated to a matroid, like the
coefficients of the characteristic polynomial and the num-
ber of independent sets of a given size. Similar approaches
that use other tropical spaces associated to matroids have
succeeded more recently in settling other long-standing
log-concavity questions in matroid theory [Ard18].
Algebraic foundations of tropical geometry. Over the
last few years there has been an effort to develop the
algebraic foundations of tropical geometry analogous to
scheme theory in algebraic geometry. Contrary to clas-
sical algebraic geometry, where information about alge-
braic varieties is thought of in both geometric and alge-
braic terms, tropical varieties have traditionally been con-
sidered as purely geometric objects. In their foundational
paper [GG16], Giansiracusa and Giansiracusa introduced
a novel algebraic structure attached to the tropicalization
of an algebraic variety, which plays the role of a “coordi-
nate semiring” for tropical varieties. It was later under-
stood that this algebraic information is equivalently en-
coded by the tropicalization of the polynomials in the
ideal defining the algebraic variety, as defined in Section
1.

Given these developments, it is natural to aim to de-
velop algebraic foundations for tropical geometry purely
on the tropical side, without having to rely on the pro-
cess of tropicalization of classical varieties or ideals. One
possibility would be to study the class of all ideals in the
semiring 𝕋[𝑥1, … , 𝑥𝑛] of tropical polynomials, where the
coefficients are taken from the set of tropical numbers
𝕋 = ℝ ∪ {−∞}. However, it turns out this semiring is not
Noetherian, general ideals in it are not finitely generated,
and their associated varieties are not necessarily polyhe-
dral objects. This class thus extends beyond the realm of
tropical geometry.
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The problem with general ideals of 𝕋[𝑥1, … , 𝑥𝑛] stems
from the fact that arbitrary modules over 𝕋 do not nec-
essarily behave like tropical linear spaces. Maclagan and
Rincón have thus proposed in [MR18] the following no-
tion as a sensible class of ideals for the study of tropical
geometry.

Definition 3.4. An ideal 𝐼 ⊂ 𝕋[𝑥1, … , 𝑥𝑛] is a tropical ideal
if for every degree 𝑑 ≥ 0, the 𝕋-module 𝐼≤𝑑 ≔ {𝑓 ∈
𝐼 ∶ deg(𝑓) ≤ 𝑑} is a tropical linear space in the space
𝕋[𝑥1, … , 𝑥𝑛]≤𝑑 of tropical polynomials of degree at most
𝑑.

The class of tropical ideals still contains the tropicaliza-
tions of all classical ideals, but it is in general much larger.
This phenomenon is analogous to the fact that the class
of all matroids is in general much larger than just the ma-
troids arising from classical linear subspaces.

As shown in [MR18], tropical ideals have indeed more
desirable properties than general ideals of 𝕋[𝑥1, … , 𝑥𝑛].
The fact that tropical linear spaces, which make up each
graded piece of a tropical ideal, have a well-behaved no-
tion of dimension means that tropical ideals have a natu-
ral notion of Hilbert function. Just as for classical ideals,
this Hilbert function eventually agrees with a polynomial,
and thus, for instance, tropical ideals have a natural notion
of dimension, given by the degree of this Hilbert polyno-
mial. In addition, the varieties they define are always fi-
nite polyhedral complexes. In fact, it was proved recently
in [MR20] that the variety of a tropical ideal is always a
polyhedral complex of dimension equal to the dimension
of the tropical ideal, and furthermore, these varieties are
always balanced polyhedral complexes, which generalizes
part of the Structure Theorem on tropicalizations of alge-
braic varieties.

The algebraic foundation for tropical geometry in this
direction is inherently combinatorial, as it is closely tied to
tropical linear spaces and thus to matroids. Even though
the theory is only in its beginnings, tropical ideals provide
a strong bridge between combinatorics, algebra, and geom-
etry, and they equip tropical varieties with richer structures
beyond purely polyhedral ones.

4. Tropical Geometry, Matroids and Auctions
Auctions with indivisible goods have a strong connection
to tropical geometry. Fundamental economics concepts
such as utility, demand set, and competitive equilibrium
can be translated into questions about tropical hypersur-
faces and their corresponding regular subdivisions. With
this bridge, some authors have used tropical geometry,
matroid theory, and convex geometry to answer open
problems in economics [JKS21, Tra21,HLSV22]. This sec-
tion gives a flavor of these connections.

The simplest auction is a sealed bid auction for one
good, such as an art work or a house. By the deadline,

each potential buyer (agent) submits their bid. The seller
announces a price 𝑝 and assigns the good to a bidder, who
would then pay this price. The seller could offer a discount,
so 𝑝 could be less than the highest bid, but it is expected
that the highest bidder will be assigned the goods; other-
wise the highest bidder will perceive the game as unfair for
them.

Multi-unit combinatorial auction or product-mix auc-
tion are versions of this where there are multiple types of
indivisible goods on sales. A bundle of 𝑛 types of goods
is represented as a point in ℤ𝑛. Each agent’s bid is no
longer a single number, but a so-called valuation function
𝑢 ∶ 𝐴 → ℝ, where 𝐴 ⊂ ℤ𝑛 is the set of available bundles
and 𝑢(𝑎) is how much this agent is willing to pay for bun-
dle 𝑎 ∈ 𝐴 or how much the bundle 𝑎 is worth to the agent.
The goal for the seller is to partition the goods bundle for
sale 𝑎∗ ∈ ℤ𝑛 into a sum of goods bundles 𝑎∗ = 𝑎1+⋯+𝑎𝐽 ,
where bundle 𝑎𝑗 is assigned to agent 𝑗, and to find the price
𝑝𝑖 per unit of good 𝑖 to charge the agents, so that the game
is fair for all. That is, at the announced prices 𝑝 ∈ ℝ𝑛, there
is no agent who would prefer a different bundle fromwhat
they were assigned.

Economists have long known that already for two good
types and two agents, there are combinations of valuations
{𝑢1, 𝑢2} where no fair pricing exists for some goods bundle
𝑎∗ (cf. Example 4.1). A central problem is thus to find
reasonable rules on the auctions that restrict the set of val-
uations 𝑢 that the agents can submit, so that a fair pricing
is always guaranteed, and that the allowed set of valuations
is still large enough tomodel different types of preferences.

Recently, economists Baldwin and Klemperer [BK19]
made three important observations. First, the utility or
profit function of an agent, which is the maximum over
all available bundles of the difference between the valua-
tion and the price, is a tropical polynomial in the (negative
of) prices 𝑝. Second, the regular subdivision that this trop-
ical polynomial induces on its Newton polytope tells us
which goods bundles an agent would ever want to consider
buying. That is, this tropical polynomial and its combina-
torics store important information on demanded bundles
and fair pricing. Third, when there are multiple agents,
their aggregated or total utility is the tropical product of
the agents’ individual tropical polynomials. The regular
subdivision corresponding to the product of the tropical
polynomials is called a regular mixed subdivision. It stores
the combinatorial information we need to know about ex-
istence of fair pricing for all goods bundles we might want
to consider in ℤ𝑛. These observations allow us to translate
economics questions into combinatorial questions about
regular mixed subdivisions.

Example 4.1. Let us construct an example of a no-fair-
pricing auction based on a simplified version of Figure 2.
For simplicity, suppose we have only two types of goods,
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tea and coffee, and two agents, Left and Right. Left wants
to buy either tea or coffee, will not settle for nothing, and
does not want to buy both. Right wants to buy either noth-
ing or both coffee and tea. Left bids $3 for a 1kg pack of
coffee only and $2 for a 1kg pack of tea only. Right bids
$3 for both and $0 for nothing. Their utility functions are
tropical polynomials in the negatives of prices:

𝑓𝐿 = (3 ⊙ (−𝑝𝑐)) ⊕ (2 ⊙ (−𝑝𝑡))
𝑓𝑅 = 0 ⊕ (3 ⊙ (−𝑝𝑐) ⊙ (−𝑝𝑡))

where 𝑝𝑐 and 𝑝𝑡 are the prices for a 1kg package of cof-
fee and tea, respectively. The Newton polytopes of these
tropical polynomials are the two line segments in Figure 5,
and the Newton polytope of the aggregate utility function
𝑓𝐿⊙𝑓𝑅 is the square on the right. The point (1, 1) is not in
the support of the aggregate utility function. This implies
that if we want to sell exactly 1kg of coffee and 1kg of tea,
then there is no way we can assign something to both Left
and Right such that each of them gets the product bundle
that maximizes their utility, at any price.

Figure 5. Newton polytopes of utility functions for an auction
of two agents with two items. See Example 4.1.

On the other hand, the point (1, 1) belongs to the New-
ton polytope of the aggregate utility function. This implies
that, if the amount of coffee and tea we sell to an agent is
not a discrete but a continuous quantity, and if our agents
are willing to buy a convex combination of what they de-
manded, then there is a solution: we can set the price of
coffee at 𝑝𝑐 = $2 per kg and of tea at 𝑝𝑡 = $1 per kg, and
assign 500g of tea and 500g of coffee to each buyer. Then
each of them gets a convex combination of the product
bundles that maximize their utility: Left makes a profit of
$1 and Rightmakes a profit of $0, which is themost each of
them can make under such pricing. The price vector (2, 1)
is precisely the intersection of the tropical hypersurfaces of
the two tropical polynomials 𝑓𝐿 and 𝑓𝑅.

Connections to matroids. Economists are interested in
conditions on the valuations 𝑢𝑗 and the pricing func-
tion 𝑝 (for example, beyond linear pricing) that ensure
fair pricing (technically known as competitive equilibrium)
is guaranteed to exist for all admissible goods bundles 𝑎∗.
The ideal theorem has the format: if the valuations 𝑢𝑗 be-
long to some function class𝒱 and if the pricing functions𝑝

belong to some function class 𝒫, then competitive equilib-
rium always exists at any admissible goods bundle 𝑎∗. An
early and influential result is due toWalras, which says that
if 𝒱 has the gross substitutes property and 𝒫 is linear, then
competitive equilibrium always exists. Figure 2, left, is an
example of a function with the gross substitutes property.
Interestingly, gross substitutes are certain generalizations
of rank functions associated to matroids. They are called
𝑀-concave functions in Murota’s work on discrete convex
analysis. They have several equivalent characterizations,
but for our purposes, the following is the most relevant.
Compare this to Theorem 3.2.

Definition 4.2. A function 𝑢 ∶ ℤ𝑛 → ℝ has the gross
substitutes property if each edge of the corresponding reg-
ular subdivision is parallel to one of the vectors in the set
{𝑒𝑖 − 𝑒𝑗 ∶ 1 ≤ 𝑖, 𝑗 ≤ 𝑛 and 𝑖 ≠ 𝑗} ∪ {𝑒𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛}.

In particular, functions with the gross substitutes prop-
erty on certain subsets of the 0/1 cubes are dehomogenized
versions of points on the Dressian. This rich connection
between Dressians and gross substitutes was instrumental
in the solution of the matroid-based valuation conjecture
in auction theory [Tra21,HLSV22].

Recent work concerning competitive equilibria extends
the tropical framework to go beyond linear pricing, by
considering embeddings of the lifted Newton polytope in
higher dimensions. With this technique, [BHT21] showed
that for combinatorial auctions, competitive equilibrium
always exists when both the pricing function and the
agents’ valuations are quadratic instead of linear; that is,
𝑝(𝑎) = ∑𝑖∈𝑎 𝑝𝑖 + ∑𝑖,𝑗∈𝑎 𝑝𝑖𝑗 where 𝑝𝑖 is the price for one
unit of item 𝑖, and 𝑝𝑖𝑗 is the “discount” for buying the
pair (𝑖, 𝑗) together. In a different direction, [JKS21] signif-
icantly extended the results on the straight jacket auction
by translating revenue optimizations in combinatorial auc-
tions into questions about generalized permutohedra and
finding roots of a system of polynomials. The connections
between convex geometry and economics also go twoways:
the Oda Conjecture in toric geometry can be restated in
terms of product-mix auctions [TY19]. These results attest
to the rich connections between these areas.
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Convolutional Neural
Networks and their

Applications in Medical
Imaging: A Primer for

Mathematicians

Kyle Hasenstab
Introduction
Deep neural networks, specifically convolutional neural
networks (CNNs), have become extremely popular in the
field of medical imaging for their ability to automate ra-
diological tasks across a variety of imaging modalities
(e.g., X-ray, CT, MRI, ultrasound) with state-of-the-art ac-
curacy. According to a recent study, the number of arti-
cles on PubMed containing the keyword phrases “medical
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imaging” and “deep learning” has exponentially increased
from45 to 1,006 between 2016 and 2020 [WWH+22]. The
increased popularity of CNNs is attributed, in part, to the
diversity of tasks they are able to perform, which include
pathology detection and classification [JMY+22], anatom-
ical segmentation [JMY+22], image-to-image translation
[CFK+18], and accelerated image registration [HTY+22].
The purpose of this article is to provide a fundamental un-
derstanding of CNNs and a summary of their applications
in medical imaging. We also provide a brief description of
how CNNs are trained and optimized.

Neural Network Basics
What are artificial neural networks (ANNs)? ANNs are
models that approximate (i.e., learn) nonlinear functional
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Figure 1. Mathematical and graphical representations of fully-connected neural networks and their corresponding predictions
(black dashed lines) in relation to network capacity. (a) A simple network architecture (linear equation) without hidden layers; (b)
A fully-connected network with a single hidden layer containing three hidden neurons; (c) A fully-connected network with two
hidden layers, each containing five hidden neurons. Artificial neural networks approximate the nonlinear relationship between a
set of inputs and outputs using hidden layers and nonlinear activation functions. The blue, green, and orange dashed lines in (b)
illustrate the basic nonlinear transformations using the ReLU activation function, which are subsequently combined in the final
layer to form the improved prediction. The inclusion of more hidden layers and neurons increases the network’s capability of
modeling more complex nonlinear relationships.

relationships between a set of inputs (i.e., features) and
outputs. Inputs and outputs can be categorical or continu-
ous and can assume a variety of data types, including tab-
ular data, images, text, and audio. ANNs automatically
learn nonlinear structure through two fundamental mech-
anisms: 1) hidden layers and 2) nonlinear transformations
or activation functions. To illustrate this point, we begin
with a simple 1D example aiming to predict a quadratic
outcome from a sample of 100 observations (𝑥𝑖1, 𝑦𝑖1), 𝑖 =
1, … , 100 (Figure 1a). That is, we would like to approxi-
mate some nonlinear function 𝑓 that maps inputs 𝑥𝑖1 to
outputs 𝑦𝑖1 [i.e., 𝑦𝑖1 = 𝑓(𝑥𝑖1)] as accurately as possible.
Here, ordered pairs are sampled from the true “unknown”
function 𝑦𝑖1 = 𝑥2𝑖1+0.5+𝜀𝑖, 𝑥𝑖 ∈ [−1, 1] (Figure 1a), where
𝜀𝑖 is a random error term.

A basic neural network architecture. Prior to approxi-
mating the functional relationship (i.e., training an ANN),
we must specify an ANN architecture. The simplest archi-
tecture is the equation of a line,

𝑓(𝑥𝑖1) = 𝑏 + 𝑤𝑥𝑖1, (1)

where 𝑏 and 𝑤 are the intercept (i.e., bias) and slope of the
line, respectively, commonly referred to as weights or pa-
rameters. Although ANN architectures can be represented
mathematically, as in Equation 1, they are often repre-
sented as feed-forward directed acyclic graphs, as shown
in Figure 1a, to facilitate communication. Circles in the
graph represent neurons and arrows (i.e., edges) represent
network weights. Weights are multiplied by the value of
their corresponding input neuron, with exception to the
bias, 𝑏, which is added. The weights within a network
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architecture are learned through model training, where
they are iteratively adjusted to minimize a loss function
that measures performance using gradient descent opti-
mization. For additional details on the training process,
we refer the reader to the Training and Optimization sec-
tion of this exposition.

Figure 1a shows predictions from the network specified
in Equation 1 after training. As expected, we observe poor
predictive performance due to the linear restriction of our
initial architecture. To improve performance, we may con-
sider including 𝑥2𝑖1 as an additional input neuron tomodel
the nonlinear relationship. However, this approach re-
lies on our understanding of the nature of the functional
relationship (quadratic), which is typically not the case
for higher-dimensional data, such as images, where ex-
ploratory visual analysis between inputs and outputs is less
tractable.
Expanding the architecture. To accommodate the un-
known nonlinear relationship, we include intermediate
neuronal connections between the inputs and outputs,
known as hidden layers. In addition, we apply basic non-
linear (activation) functions to each hidden neuron to en-
courage nonlinear behavior in the predictions. In effect,
hidden layers allow us to synergistically combine basic
nonlinearities to form more complex nonlinear functions.
A common activation function used for this purpose is the
Rectified Linear Unit (ReLU) defined as 𝜎(𝑥) = max{0, 𝑥}.
Figure 1b shows an example architecture illustrating this
concept. This network contains three hidden neurons in a
single hidden layer and applies the ReLU activation func-
tion to the output of each hidden neuron. The following
is the corresponding mathematical representation of this
network,

̂𝑦𝑖𝑘 = 𝑏[2]𝑘 +∑
𝑗
𝑤[2]
𝑗𝑘 𝑎

[1]
𝑖𝑗 (2)

𝑎[1]𝑖𝑘 = 𝜎 (𝑧[1]𝑖𝑘 ); 𝑧
[1]
𝑖𝑘 = 𝑏[1]𝑘 +∑

𝑗
𝑤[1]
𝑗𝑘𝑥𝑖𝑗 (3)

where 𝑧[ℓ]𝑖𝑘 is the linear value of the 𝑘𝑡ℎ hidden neuron in

the ℓ𝑡ℎ hidden layer for observation 𝑖, 𝑎[ℓ]𝑖𝑘 is the result of ap-

plying the activation function to 𝑧[ℓ]𝑖𝑘 , 𝑏[ℓ]𝑘 is the bias for the

𝑘𝑡ℎ neuron in the ℓ𝑡ℎ hidden layer, and 𝑤[ℓ]
𝑗𝑘 is the weight

coming from the 𝑗𝑡ℎ neuron in the (ℓ − 1)𝑡ℎ layer and con-
tributing to the 𝑘𝑡ℎ neuron in the ℓ𝑡ℎ layer. With exception
to the input neurons, each neuron also receives a bias term,
but these are omitted from the graph for readability. Note
that we did not apply an activation function to the output
neuron in this case since output activations differ depend-
ing on the predictive task.

Following network training using gradient descent op-
timization, we observe predictions better resembling a
quadratic function (Figure 1b). Output of the hidden

neurons (𝑎[1]𝑖𝑘 , 𝑘 = 1, 2, 3) illustrates the basic nonlinear
transformations using the ReLU activation function, which
are subsequently combined in the final layer to form the
improved prediction. Increasing the number of hidden
layers and neurons expands the capability of the network
to model more complex nonlinear relationships, such as
the network shown in Figure 1c, which includes two hid-
den layers each containing 5 neurons.

Architectures can be readily extended tomultiple inputs
and outputs by incorporating additional neurons in the
input and output layers along with their corresponding
weights. If inputs to these networks are 2D or 3D images,
the images are simply “flattened” into a 1D vector before
being propagated through the network (Figure 2a). Gener-
ally, these ANNs are called fully-connected networks since
each neuron in a given layer receives input from every neu-
ron in the previous layer.

Figure 2. Difference between (a) fully-connected networks and
(b) CNNs when applied to images. Fully-connected networks
require images to be flattened prior to being propagated
through the network. Each neuron is connected via a weight
to every neuron in the prior layer. In a CNN, each neuron is
connected to a small area on the input image; output neurons
are arranged in a manner that preserves spatial information.

Fully-connected networks are not ideal for imaging
tasks. Fully-connected networks are well-suited for mod-
eling nonlinear relationships between a smaller number
of inputs and outputs (1000s) and when a systematic spa-
tial or temporal relationship within the set of input (or
output) neurons is unknown or does not exist, as is of-
ten the case for tabular data. However, when applied to
images, where spatial structure is present, fully-connected
networks become inefficient for several reasons. First, they
do not preserve or take advantage of the spatial structure
within images since the input image is indiscriminately
flattened into a 1D vector. This makes a predictive task
much more challenging for the network as it must at-
tempt to learn spatial structure from the data. Second,
images can be quite large, causing fully-connected net-
works to quickly exceed memory limitations during train-
ing due to a large number of model weights. For example,
a 2048x2048 chest X-ray contains 4,194,304 pixels (i.e.,
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input neurons). A simple network with a single hidden
layer containing 100 neurons has over 400millionweights,
which is more than five times the number of weights in
state-of-the-art networks containing >100 hidden layers.
Finally, assuming memory limitations have not been ex-
ceeded, the large number of weights can make these archi-
tectures very slow to train and prone to overfitting, nega-
tively impacting network performance.

Convolutional Neural Networks
CNNs are a subclass of ANNs designed to overcome the
drawbacks of fully-connected networks when applied to
imaging tasks. In contrast to the dense connections of
fully-connected networks, each neuron in a CNN is con-
nected only to a small area of the input image, thus pre-
serving spatial information and requiring far fewer net-
work weights, as illustrated in Figure 2b. CNNs consist
of a sequence of convolutional layers, but also commonly
include pooling, fully-connected, upsampling, and other
layers, depending on the architecture and application.
Convolutional layers. Convolutional layers comprise a
set of cross-correlation operations applied to the layer’s in-
put, followed by a nonlinear activation function. Note
the use of the word “convolution” is a common mis-
nomer. Convolutional operations in CNNs are actually
“cross-correlations,” which are similar in calculation. How-
ever, we will refer to these operations as convolutions for
the remainder of the article given the term’s prevalence in
the CNN literature.

In image processing, a convolution is a mathematical
operation involving the inner product of an array, referred
to as a filter or kernel, and localized patches of an image.
The purpose of convolutions in this context is to extract
imaging features (e.g., edges, texture, shape, etc.) useful
for performing a predictive task. Mathematically, a convo-
lution is expressed as

𝐾 ∘ 𝐼(𝑥, 𝑦) =
𝑘−1
∑
𝑖=0

𝑘−1
∑
𝑗=0

𝐾(𝑖, 𝑗)𝐼(𝑥 + 𝑖, 𝑦 + 𝑗), (4)

where 𝐾 is a 𝑘x𝑘 filter and 𝐼(𝑥, 𝑦) is the pixel value at loca-
tion (𝑥, 𝑦) of the original image 𝐼 being convolved. If the
image contains multiple channels, such as the red-green-
blue channels of color images, then a filter must match
the corresponding channel dimension of the image, such
that

𝐾 ∘ 𝐼(𝑥, 𝑦) =
𝑐−1
∑
ℓ=0

𝑘−1
∑
𝑖=0

𝑘−1
∑
𝑗=0

𝐾(𝑖, 𝑗, ℓ)𝐼(𝑥 + 𝑖, 𝑦 + 𝑗, ℓ), (5)

where 𝐾 is a 𝑘x𝑘x𝑐 filter and 𝐼(𝑥, 𝑦, 𝑐) is the pixel value at
location (𝑥, 𝑦) in channel 𝑐 of image 𝐼. The channel axis is
collapsed to a single channel as a result of the convolution.

Figure 3a–b illustrates the process of convolving a 8x8x1
image depicting a “happy face” with a 3x3x1 horizontal
edge filter. First, the filter is overlaid on the image, start-
ing on the top-left, and the inner product is calculated and
stored in the output array. The filter is then shifted by a sin-
gle pixel and the process repeated until the inner products
across all local image patches have been obtained. The
amount over which a filter is shifted is called the stride,
which is often set to one. The convolution results in an-
other image known as a feature map (Figure 3c). An acti-
vation function is then applied to each pixel in the feature
map (Figure 3d) to introduce the nonlinearity. In this spe-
cific case, the feature map is smaller in dimension than the
original image. To enforce consistent dimensions, inputs
to a convolutional layer are often first padded with zeros.
Using this particular filter, the feature map after activation
highlights horizontal edges (i.e., the mouth) in the image.

Traditionally, investigators explicitly designed filters to
extract imaging features thought to be useful for a predic-
tive task. An image would be convolved with a set of hand-
crafted filters, each producing feature maps highlighting
distinctive characteristics of the input image. Featuremaps
would then be reduced in dimension and used as inputs
to a machine learning classifier.

In contrast to these traditional approaches, CNNs con-
sider filter values as unknown network weights. That is,
CNNs learn the image filters useful for a predictive task from
data through model training, resulting in large improvements
in predictive performance.
Pooling layers. A convolutional layer is often followed by
a pooling layer. Pooling layers downsample input feature
maps by propagating maximally activated neurons within
localized patches of featuremaps to subsequent layers. For
example, Figure 4a illustrates the pooling operation on a
6x6x1 image using a pooling size of 2x2 and a stride of 2.
A 2x2 patch is overlaid on the feature map, starting on the
top-left. The maximum within the patch is then calculated
and stored in the output array. The patch is then shifted
by 2 pixels (i.e., stride) and the calculation is repeated un-
til the entire image has been processed. This procedure
is referred to as max pooling since the maximum is calcu-
lated within each patch. If input to the pooling layer has
multiple channels, the max pooling operation is applied
separately for each channel. Alternatively, average pooling
involves calculating the average within a patch, however
max pooling is typically used as it is more robust.

Global pooling (Figure 4b) is an operation where the
pooling size is equal to the dimension of the input, hence
reducing the input to a single neuron per channel. Global
pooling is typically used near the final layer of a network.
Unlike convolutional layers, pooling layers do not contain
any trainable weights.
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Figure 3. Diagram illustrating the operations within a convolutional layer. (a) A 3x3x1 filter comprising network weights is
overlaid on the 8x8x1 image depicting a “happy face,” starting on the top-left. The inner product is then calculated and stored in
the output array. (b) The filter is shifted by a predetermined stride (e.g., 1) and the process is repeated. (c) Convolving the input
image with different filters produces feature maps highlighting different characteristics of the input image. Filter 1 highlights the
horizontal edges (mouth), filter 2 highlights the vertical edges (eyes), and filter 3 smooths the image. (d) The ReLU activation
function is then applied to the feature maps to introduce a nonlinearity. Note the weights in the filters are learned from data
during CNN training.

Why is pooling important? Although convolutional lay-
ers are effective spatial feature extractors, they are still sen-
sitive to spatial variability. Translations or rotations in an
input image can produce different feature maps, and there-
fore different predictions, despite representing the same
class or object. For example, a face rotated 15 degrees is
still a face, but this simple rotation may adversely affect
a network’s ability to identify the image as a face. Pool-
ing layers mitigate the effects of this type of localized spa-
tial variability by propagating larger activations across a
region to subsequent layers. Pooling layers also have the

added benefit of reducing memory consumption due to
their downsampling property.

An alternative to max pooling is strided convolutions,
which convolve images using a stride greater than one. For
example, convolving the image in Figure 3a with a stride
of two would result in a 4x4 feature map if zero padding
is used. In this case, the strided convolution downsam-
ples the image while simultaneously detecting horizontal
edges. A benefit of using strided convolutions is the pool-
ing operation is learned via the filter weights.
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Figure 4. Pooling and fully-connected layers of a CNN. (a) A
2x2x1 patch is overlaid on a 6x6x1 input feature map and the
maximum within the patch is stored in another array. The
patch is then shifted by a stride of two and the process is
repeated. (b) Applying max pooling to the three feature maps
from Figure 3 results in three 3x3x1 max pooling outputs.
Feature maps can either be flattened to a 27-dimensional
vector or globally averaged to a three dimensional vector. (c)
Globally averaged outputs can then be propagated through a
series of fully-connected layers prior to the network
prediction.

Fully-connected layers. Sequences of convolutional and
pooling layers (i.e., downsampling layers) produce a set
of low-resolution feature maps at the end of the network,
which are either flattened or globally pooled into a 1D
array. This 1D array can be considered a latent represen-
tation of the high-level features of the input image. For
example, a neuron in the 1D array may represent the cur-
vature of a smile on the face, and another neuron may rep-
resent the symmetry of a face. These latent features are of-
ten propagated through one or more fully-connected lay-
ers (Figure 4c) to approximate the nonlinear functional re-
lationship between these latent features and the network
output, similar to fully-connected networks.
Upsampling layers. Upsampling layers are useful for net-
works designed to predict outputs with spatial structure
(e.g., images). Upsampling layers can be viewed as the con-
verse of pooling operations, separately increasing the reso-
lution of feature maps in each channel, often by a factor of
two, using image interpolation methods. Figure 5b and 5c
show examples of upsampling a 3x3x1 feature map using
bed of nails and nearest neighbors interpolation. Similar
to pooling layers, upsampling layers do not have trainable
weights.

An alternative to standard upsampling layers is trans-
posed convolutions, which convolve an image with a filter

to broadcast pixels to a larger array. Figure 5d shows a
transposed convolution using a 3x3x1 filter with a stride
of two. The top-left scalar value within the input feature
map is multiplied by the filter and stored in an array. The
filter is then shifted by a predetermined stride and the pro-
cess is repeated but stored in a separate array. After pro-
cessing each pixel in the input feature map, the separate
arrays are added, producing the output of the transposed
convolution. As with strided convolutions, the nature of
the upsampling is learned via filter weights.
Skip connections. Although not considered an isolated
layer in a network, skip connections have become an im-
portant and standard component in many CNN architec-
tures. Skip connections forward propagate feature maps
from earlier layers in the network to other noncontigu-
ous layers in the network through addition, multiplication,
or concatenation operations. As a result, image features
learned in earlier network layers are “reused” in later layers
of the network, allowing low- and high-level features to in-
teract, which can improve network performance. More im-
portantly, skip connections, for reasons beyond the scope
of this paper, mitigate the vanishing gradient problem, a
situation that arises during optimization that prevents the
training of very deep networks.

Prototypical CNN Architectures
CNNs developed for imaging tasks often follow two pro-
totypical architectures (Figure 6) comprising the network
components described in the prior section.
Encoder architectures. Encoder architectures map an in-
put image to a 1D output vector and are therefore ideal
for classification and regression tasks. A prototypical en-
coder architecture is shown in Figure 6. An input image
is first convolved with a large set of filters, producing a set
of feature maps (one per filter) containing localized fea-
ture information (edges, brightness, texture, etc.). The fea-
tures are then propagated through a pooling layer, which
reduces the feature maps’ dimensions and preserves larger
featuremap activations. This process is continued for a pre-
determined number of convolutional-max pooling blocks,
with each block producing feature maps with increasingly
complex feature patterns useful for the predictive task. The
final set of feature maps are then flattened or globally
pooled and propagated through a set of fully-connected
layers to produce themodel prediction. This architecture is
sometimes referred to as an encoder network since the im-
age is encoded onto a lower-dimensional space spanned
by latent features useful for the predictive task.
Encoder-decoder architectures. Encoder-decoder archi-
tectures map an input image to another image by first
encoding the input image onto a lower-dimensional
feature space and subsequently decoding the image
back to image space. A prototypical encoder-decoder
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Figure 5. Examples of upsampling a single (a) feature map using (b) bed of nails, (c) nearest neighbors, and (d) transposed
convolutions. The transposed convolution is performed using a 3x3x1 filter and a stride of two. Note the weights within the
transposed convolutional filters are learned from the data during CNN training.

architecture is shown in Figure 6. An input image is
first propagated through a sequence of convolutional-max
pooling blocks in the encoder branch, producing a set of
low-resolution feature maps representing complex feature
patterns referred to as the bottleneck layer. The latent feature
representations in the bottleneck layer are then propagated
through the decoder branch, which comprises a sequence
of convolutional-upsampling blocks, to map the feature
maps back to image space.

Skip connections are often included in encoder-decoder
architectures via concatenations to link various feature
maps across the two branches. These connections have the
dual purpose of encouraging the reuse of lower-level fea-
tures in the terminal layers while mitigating the vanishing
gradient problem during training. Since encoder-decoder
networks typically do not contain fully-connected layers,
these are also referred to as fully-convolutional networks.

CNN Applications
The prototypical architectures in Figure 6 can be modified,
extended, or combined to perform a variety of imaging
tasks.
Classification. The prototypical encoder architecture in
Figure 6 (left) is commonly used for image classification
tasks. Classification CNNs aim to categorize input images
into a set of classes (Figure 7), such as to classify an image
of a liver lesion as benign or malignant. Prior to training a
classification CNN, output class labels must be one-hot en-
coded into 0-1 values, where the presence of a class is given
a value of one and the absence of a class is given a value of
zero. The corresponding network must then contain one
output neuron for each class.

Since class labels are in the set {0, 1}, an additional acti-
vation function is placed on the output neurons to restrict
predictions to the interval (0, 1). The softmax activation
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Figure 6. Prototypical encoder and encoder-decoder architectures. Encoder networks (left) map an input image to a 1D space,
which is ideal for classification and regression tasks. Encoder-decoder networks (right) map an input image to another image by
first encoding the input image onto a lower-dimensional space (bottleneck layer) and then upsampling the bottleneck feature
maps back to image space.

function is used when the goal of the network is to catego-
rize a set of inputs into nonoverlapping classes. Softmax
normalizes the output of the two neurons to a probability
distribution, such that the sumof their predictions is equal
to one. Let 𝑧𝑗 ∈ (−∞,∞), 𝑗 = 1, … , 𝐾, be the predictions
from each output neuron across the 𝐾 classes. The softmax
activation for the 𝑖𝑡ℎ output neuron is

𝜎(𝑧1, … , 𝑧𝐾)𝑖 =
𝑒𝑧𝑖

∑𝐾
𝑗=1 𝑒

𝑧𝑗
. (6)

The predicted class of an input corresponds to the output
neuron with the largest softmax score.

The sigmoid activation function is often used to catego-
rize a set of inputs into overlapping classes (i.e., multilabel
classification), such as to classify if a patient has obstruc-
tive lung disease or pneumonia, conditions that can co-
occur. Using the sigmoid function,

𝜎(𝑧𝑖) =
𝑒𝑧𝑖

𝑒𝑧𝑖 + 1, (7)

predictions for each class are mapped to the interval (0,1).
A threshold (e.g., 0.5) is then placed on the value of each
output neuron to determine class membership. Note that
the predictions do not sum to one, and inputs may be clas-
sified as members of multiple categories.

Many state-of-the-art architectures have been proposed
for classification tasks. Although these networks were de-
veloped using the ImageNet visual database [DDS+09],
they are often repurposed for classification tasks in med-
ical imaging. One such architecture is the VGG network,
which made groundbreaking improvements in classifica-
tion performance [SZ15]. The network contains 19 layers
with trainable weights, making VGG one of the first “deep”
networks. However, due to its fully-connected layers, each
containing 4096 neurons, VGG is computationally time-
consuming, memory-consuming, and over-parameterized.
To eliminate the need for fully-connected layers, many ar-
chitectures now apply a global pooling layer to the final
set of feature maps and make predictions directly from
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Figure 7. Diagram showing the differences between commonly performed medical imaging tasks. Classification categorizes the
entire input image into a set of finite classes. Object detection identifies objects within an image, localizes the objects using a
bounding box, and determines the class of the object within the same architecture. Segmentation partitions an image into
meaningful classes at the pixel level, which can be used to calculate anatomical measurements, such as lesion size.

these features. In addition, newer architectures incorpo-
rate skip connections, via additions or concatenations, en-
abling the training of very deep networks (>100 layers with
weights). The reduced number of weights and large num-
ber of nonlinearities, introduced through the increased
depth of networks, have resulted inmassive gains in perfor-
mance. Notable architectures include GoogleNet [SLJ+15]
and ResNet [HZRS16], among others.
Regression. Regression CNNs aim to map an input image
to a 1D vector comprising continuous values, such as pre-
dicting the percentage of fat in the liver using a liver CT
image. Regression CNNs use the same architectures as clas-
sification CNNs, with exception to the output layer, which
does not contain an activation function (i.e., linear activa-
tion).
Object detection. Object detection (Figure 7) extends the
task of classification to identifying both the class and lo-
cation of objects in an image. Early CNN-based object de-
tection algorithms used sliding window methods, which
classify patches extracted from many locations across an
image into various categories. For example, to detect liver
lesions, an encoder CNN would be pre-trained to classify
an image patch as a benign lesion, malignant lesion, or

no lesion. During test time, patches via a sliding window
would each be propagated through the pre-trained CNN
to determine the class and object bounds. Since objects
may be different in size, patches of various sizes and as-
pect ratios may be used. However, this approach is com-
putationally intensive, requiring the forward propagation
of thousands of patches through a network. Moreover, if
the selected patch size and aspect ratio does notmatch that
of an object, the bounding box for that object becomes in-
accurate.

The R-CNN family of object detection algorithms im-
proves upon this approach by processing the feature map
representation of an input image as opposed to the image
itself, making the algorithm much faster than sliding win-
dow methods [RHGS15, HGDG17]. An image is propa-
gated through a pre-trained network (e.g., VGG19 trained
on ImageNet) and the low-resolution feature maps from
the final convolutional layer are extracted. Sliding patches
of the feature maps are then mapped to a set of fully-
connected layers that predict 1) if the patch contains an
object and 2) the bounding box coordinates of the object
location. Patches from the feature maps can be used to
detect objects since the spatial locations on these feature
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maps correspond to larger spatial locations on the origi-
nal image.

These methods are further improved by the You Only
Look Once (YOLO) algorithm [RDGF16], which avoids
sliding patch-based processing and requires only a single
pass through the network. An image is first partitioned
into nonoverlapping patches. Using an encoder network,
YOLO predicts whether or not each patch contains an ob-
ject. If an object is contained within a patch, YOLO also
predicts the object’s bounding box coordinates and spe-
cific class. Although the input image is partitioned into
patches, all patches are processed simultaneously by the
network. For example, if an image is partitioned into a
4x4 grid, the model predicts 16 separate object classifica-
tions and bounding boxes with one forward pass, making
object detection much faster than prior algorithms.
Segmentation. Segmentation aims to partition an image
intomeaningful classes at the pixel or voxel level (i.e., each
pixel or voxel receives one or more classifications). For ex-
ample, the segmentation CNN in Figure 7 is designed to
segment benign lesions and malignant lesions simultane-
ously. Classes can be constrained to be nonoverlapping,
such as the benign and malignant classes (i.e., a malignant
lesion cannot be benign), or classes can be allowed to over-
lap, such as for the liver and lesions (i.e., a lesion is also
part of the liver). Since the segmentation task is essentially
a classification problem at the pixel level, output class la-
bels must be one-hot encoded into 0-1 values, similar to
the classification CNN. In addition, a softmax or sigmoid
activation function is applied to the output image at the
pixel level to bound the predictions to the interval (0,1).
By far, the most popular architecture used for this purpose
is the U-net [RFB15], similar to the encoder-decoder net-
work in Figure 6 (right). Segmentation is a very important
part of medical imaging and treatment as measurements
(e.g., organ volume, average lung attenuation, etc.) using
segmentations are often used for clinical diagnosis, prog-
nosis, and research.
Image-to-image translation. The encoder-decoder archi-
tecture, specifically the U-net, is an extremely versatile net-
work architecture capable of performing a variety of image-
to-image translation tasks. In addition to segmentation, U-
nets have been used for super-resolution to enhance noisy
acquisitions [CFK+18], translation of modalities (e.g., pre-
dicting a CT from an MRI) to maximize the utility of in-
formation contained within standard examinations [MSP-
NdLGAL21], and image reconstruction to make image ac-
quisition more efficient [YJA+2206]. Essentially, any tasks
involving the prediction of output images from input im-
ages, assuming a viable functional relationship exists be-
tween the inputs and outputs, can be performed by these
architectures.

Generative modeling. CNNs are also commonly used for
generative modeling. In particular, most CNN-based gen-
erativemodels are generative adversarial networks (GANs),
systems of networks designed to synthesize realistic im-
ages for various purposes. In medical imaging, the pix2pix
GAN is commonly used for image synthesis or prediction
[IZZE17].

Pix2pix is a conditional GAN framework comprising
a system of two networks, a generator and discriminator
(Figure 8a). The generator is a U-net network trained to
synthesize “fake” images that are indistinguishable from
“real” images when evaluated by the discriminator. In con-
trast, the discriminator is an encoder network trained to
determine if the synthetic image produced by the genera-
tor is “real” or “fake.” Training is conducted adversarially,
where each training iteration is alternated between the gen-
erator and discriminator. As the discriminator’s ability to
detect “fake” images improves, the generator’s ability to
synthetize realistic images also improves, resulting inmore
realistic and accurate results than when training a U-net
without the discriminator. Several additional details re-
garding the training process are excluded for brevity but
can be found in [IZZE17].

Since CNNs require large amounts of data to train,
GAN-synthesized images can be used to supplement the
existing set of training data to boost model performance.
GANs have also been shown to improve performance
over U-net-only frameworks for image-to-image transla-
tion tasks. However, GANs in general are known for be-
ing challenging to train. Note that pix2pix requires paired
images (i.e., each input image must have a corresponding
output image). Image synthesis for unpaired data is com-
monly performed using the CycleGAN [ZPIE17].
Image registration. Image registration is the process of
aligning two images based on their corresponding imaging
features (e.g., anatomical landmarks, pathologies, etc.).
Specifically, registration aims to estimate a mapping, rep-
resented as a 2D or 3D vector field, that transforms the co-
ordinate systemof one image, referred to as a “moving” im-
age, to the coordinate system of a reference image, referred
to as a “static” or “fixed” image. Estimation of themapping
is fundamentally an optimization problem, with the goal
of minimizing (or maximizing) some loss or energy func-
tion that quantifies the difference (or similarity) between
features of the static image and mapped (i.e., registered)
moving image. Traditional algorithms using these opti-
mization techniques are quite accurate. However, these
algorithms must perform the optimization each time an
image pair is to be registered, requiring minutes to even
hours to perform a single registration.

To expedite the registration task, CNN-based algo-
rithms have recently been proposed as an alternative to
traditional registration. These algorithms use a CNN to
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Figure 8. (a) Image-to-image translation GAN and (b) CNN-based registration framework. The pix2pix GAN is often used to
synthetize images to supplement training. In the registration framework, an encoder-decoder architecture is trained to predict a
spatial transformation represented by a vector field (i.e., mapping) that is used to map the moving image to fixed image space.

predict the optimal mapping using the image pairs as in-
put, performing the optimization only a single time dur-
ing CNN training. During test time, when the CNN-based
algorithm is applied to new image pairs, the fixed andmov-
ing images are simply propagated through the network to
predict the mapping needed to register the images, reduc-
ing the task to seconds on a CPU and less than a second
on a GPU.

Figure 8b shows an example of a CNN-based algo-
rithm designed to register inspiratory (fixed) and expira-
tory (moving) lung images. The fixed and moving images
are propagated through an encoder-decoder to predict a
mapping. The mapping and moving image are then prop-
agated through a spatial transformation layer, which uses
the vector field to map the moving image to the static im-
age. During training, constraints can be placed on the
geometric properties and smoothness of the vector field to

enforce realistic anatomical transformations. Image regis-
tration is an important part of medical imaging as it facili-
tates the characterization, monitoring, and surveillance of
pathologies and diseases within and across exams.

Training and Optimization
Loss functions. A loss function is a differentiable, objec-
tive metric used to quantify CNN performance. The loss
guides the iterative adjustment of weights during training
to improve predictive accuracy. Table 1 shows a list of com-
monly used loss functions, among which, mean squared
error (MSE) for regression and categorical cross entropy for
classification are most common.

MSE loss measures the disparity between predicted and
observed outputs through the average of their squared
differences, where a larger MSE indicates poorer model
performance. Cross entropy loss is a popular choice for
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classification tasks and is used in conjunction with the
softmax or sigmoid activation functions in the final layer.
Under these conditions, 𝑦𝑖 ∈ {0, 1} and ̂𝑦𝑖 ∈ (0, 1) imply
−𝑦𝑖log( ̂𝑦𝑖) ∈ (0,∞). When 𝑦𝑖 and ̂𝑦𝑖 are in agreement, the
cross entropy loss is close to zero, indicating better model
performance.

Losses are typically summed or averaged across obser-
vations to quantify total error of the model. If a network
contains multiple output neurons, the loss for a single ob-
servation is the sum of losses for each individual neuron.
Generally, a smaller loss implies better performance. If
this is not the case, losses are often negated to enforce this
behavior.
Gradient descent. Once an architecture and loss func-
tion have been selected, the network is ready for train-
ing. CNNs are trained with the gradient descent algorithm,
which uses the gradient of the loss function to iteratively
“step” in the steepest downward direction of the loss by ad-
justing its weights accordingly. The goal of this process is
to find a set of weights that minimize the loss function.

Figure 9 visualizes this process using a hypothetical loss
for a network with a single weight. If the derivative of the
loss with respect to the weight is negative, the weight is in-
creased to reduce the loss. Similarly, if the gradient is pos-
itive, the weight is decreased. These weight adjustments
are performed iteratively until the loss is minimized or
stops improving. The magnitude by which the weight is
adjusted is determined by a preset step size 𝛾 (i.e., learning
rate). Mathematically, the weight update is represented as

𝑤𝑟+1 = 𝑤𝑟 − 𝛾∇𝐿(𝑤𝑟), (8)

where 𝑤𝑟 is the value of the weight at iteration 𝑟 and
∇𝐿(𝑤𝑟) is the gradient of the loss with respect to the weight
𝑤𝑟.

Current state-of-the-art models contain hundreds of
layers, each with nonlinear activations, creating complex
functional hierarchies with millions of weights. Amaz-
ingly, optimization of these weights is greatly simplified
using the chain rule. For the simple network defined in
Equations 2 and 3, we can apply the chain rule to define
our loss gradient for each of its weights.

∇𝐿(𝑤[1]
𝑗𝑘 ) =

𝜕𝐿(𝑦𝑖1, ̂𝑦𝑖1)
𝜕 ̂𝑦𝑖1

× 𝜕 ̂𝑦𝑖1
𝜕𝑎[1]𝑖𝑘

× 𝜕𝑎[1]𝑖𝑘
𝜕𝑧[1]𝑖𝑘

× 𝜕𝑧[1]𝑖𝑘
𝜕𝑤[1]

𝑗𝑘
, (9)

∇𝐿(𝑏[1]𝑘 ) = 𝜕𝐿(𝑦𝑖1, ̂𝑦𝑖1)
𝜕 ̂𝑦𝑖1

× 𝜕 ̂𝑦𝑖1
𝜕𝑎[1]𝑖𝑘

× 𝜕𝑎[1]𝑖𝑘
𝜕𝑧[1]𝑖𝑘

× 𝜕𝑧[1]𝑖𝑘
𝜕𝑏[1]𝑘

, (10)

∇𝐿(𝑤[2]
𝑗𝑘 ) =

𝜕𝐿(𝑦𝑖1, ̂𝑦𝑖1)
𝜕 ̂𝑦𝑖1

× 𝜕 ̂𝑦𝑖1
𝜕𝑤[2]

𝑗𝑘
, (11)

∇𝐿(𝑏[2]𝑘 ) = 𝜕𝐿(𝑦𝑖1, ̂𝑦𝑖1)
𝜕 ̂𝑦𝑖1

× 𝜕 ̂𝑦𝑖1
𝜕𝑏[2]𝑘

. (12)

Figure 9. Illustration of the gradient-descent optimization
algorithm. Prior to network training, weights are randomly
initialized. The gradient of the predetermined loss function is
then calculated with respect to the weights and evaluated for
each training observation. Weights are adjusted by the
product of the gradient and a preselected step size 𝛾. The
process is iteratively performed until the loss is minimized or
stops improving.

These gradients are used to update each of the corre-
sponding weights. Since gradients are propagated back-
wards to earlier layers to update weights within those
layers, this process is referred as back propagation. Note
that the gradients are a function of the inputs (𝑥𝑖1) and
outputs (𝑦𝑖1), which are known, and network weights
(𝑤[1]

1𝑘 , 𝑏
[1]
𝑘 , 𝑤[2]

𝑗𝑘 , 𝑏
[2]
𝑘 ), which are initialized. Conventionally,

biases are initialized to zero and the remaining weights are
initialized using random samples from a probability distri-
bution (e.g., Glorot uniform, Gaussian, etc.). The value of
the learning rate 𝛾 varies by network but is often set to a
power of ten between 10−6 and 1.

Other Considerations
Mini-batch gradient descent. Training a network for
imaging tasks often requires a large number of images,
which may exceed the memory capacity of computing
hardware. Therefore, gradient updates are typically per-
formed on random mini-batches of data. This is known
as mini-batch gradient descent. A mini-batch of size one is
referred to as stochastic gradient descent. A set of mini-batch
gradient updates that pass through the entire dataset is an
epoch. In addition to reducing the memory load, mini-
batch optimization has favorable convergence properties.
Optimizers. In contrast to the depiction of a convex loss
function in Figure 9, in practice, CNN loss functions are
high-dimensional and highly nonconvex, containing sad-
dle points and local minima. This loss landscape presents
additional challenges during optimization, as the gradi-
ents near these areas are very close to zero, which can slow
training, falsely indicate convergence, or converge to a
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Loss Function 𝐿(𝑦, ̂𝑦) Task

Mean Squared Error
1
𝑁
∑𝑁

𝑖=1(𝑦𝑖 − ̂𝑦𝑖)2 Regression / Image Prediction

Mean Absolute Error
1
𝑁
∑𝑁

𝑖=1 |𝑦𝑖 − ̂𝑦𝑖| Regression / Image Prediction

Binary Cross-Entropy − 1
𝑁
∑𝑁

𝑖=1[𝑦𝑖log( ̂𝑦𝑖) + (1 − 𝑦𝑖)log(1 − ̂𝑦𝑖)] Classification / Segmentation

Dice − 1
𝑁
∑𝑁

𝑖=1
2∑𝑃

𝑝=1 𝑦𝑖𝑝 ̂𝑦𝑖𝑝
∑𝑃
𝑝=1 𝑦𝑖𝑝+∑

𝑃
𝑝=1 ̂𝑦𝑖𝑝

Segmentation

Table 1. Commonly used loss functions for CNN training and performance evaluation. Here, 𝑦𝑖 is the true output value or label
for observation 𝑖, ̂𝑦𝑖 is the corresponding ANN prediction, and 𝑁 is the sample size (or batch size). For image prediction and
segmentation, ANN outputs are entire images, and the outputs and predictions should therefore be modified to 𝑦𝑖𝑝, ̂𝑦𝑖𝑝 for pixel
𝑝. For multi-class tasks, losses are summed across the 𝐾 categories.

suboptimal minimum. Optimizers mitigate this problem
by incorporating loss gradients from prior iterations into
the weight update equation. Sun et al. provide a thorough
survey of several optimizers [SCZZ20]. Among these, Ada-
pative Moment Estimation is often used.
Overfitting and generalization error. The primary goal
of CNNs for supervised tasks is prediction. That is, a CNN
should generalize well to data outside of the data onwhich
it was trained. As the capacity of a network is increased by
incorporating more hidden layers (i.e., more weights), the
network may be subject to overfitting, a situation in which
the loss error of external data is much larger than the loss
error of the training data.

To determine whether a model is overfitting, data are
randomly partitioned into training/validation/testing sets.
The training set is used to train several architectures, which
are then evaluated using the validation set. The model
that minimizes error on the validation set is then selected
as the final model. The testing set is used to measure a
model’s ability to generalize to outside data and should
not be used to evaluate generalization error until a final
network has been selected. The proportional split into
training/validation/testing sets varies by the amount of
data available, but a 70%/15%/15% partition is common.
When a network is over capacity, as is often the case, the
validation set is typically used to stop training early be-
fore overfitting occurs. This is known as early stopping.
Other methods, such as L1 or L2 regularization, dropout
[SHK+14], and data augmentation can also be used tomit-
igate overfitting.
Data preprocessing. Prior to training, both inputs and
outputs are either normalized (scaled to [0,1] or [-1,1]) or
standardized (subtract mean and divide by standard devia-
tion) to ensure a similar data distribution between inputs,
outputs, and network weights. This stabilizes gradient cal-
culations, resulting in faster convergence.
Batch normalization. In contrast to the standardiza-
tion of data prior to model training, batch normaliza-
tion is used to standardize the feature maps produced

throughout the network during training [IS1507]. How-
ever, standardization using the global mean and stan-
dard deviation of feature maps across the entire dataset
is impractical. Therefore, standardization is performed at
the training batch level using a global set of parameters
learned during the training process. Similar to the stan-
dardization of input images, batch normalization results
in faster convergence and better stability during training.
Batch normalization layers are now often included within
Convolution-BatchNormalization-ReLU (or Convolution-
ReLU- BatchNormalization) blocks in many architectures.
Transfer learning and pretrained networks. CNNs typi-
cally require large amounts of training data (hundreds or
thousands) to achieve strong performance. However, in
medical imaging, training data is limited to a patient pop-
ulation of interest, which can often be sparse, leading to
network overfitting and poor generalization error. Rather
than starting training using randomly initialized weights,
one can use a network that has been pretrained to perform
a different task. The process of training a network using
pretrained weights is known as transfer learning. Trans-
fer learning speeds training and improves generalizability
since training is not initiated from a random starting point.

Earlier layers in CNNs learn low-level features such as
edges, textures, and intensities and hence tend to be sim-
ilar across CNNs despite being trained to perform differ-
ent tasks. Therefore, weight updates during transfer learn-
ing are often constrained to the terminal layers of the
pretrained CNN. That is, weights in the earlier layers are
“frozen” (i.e., no longer updated during training). If train-
ing a pretrained CNN to perform a similar task but using
a different dataset, a much smaller learning rate is used to
avoid large deviations from the original pretrained weight
distribution, a process known as fine-tuning.
Software and hardware. Currently, Python is the most
popular programming language for developing and oper-
ationalizing deep neural networks. However, other lan-
guages, such as MATLAB and R, have similar capabilities.
Within Python, a variety of deep learning libraries are
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available, including Keras, TensorFlow, PyTorch, Theano,
and Caffe, among others. Keras, in particular, is a high-
level user-friendly API that interfaces with Tensorflow
to enable fast experimentation of deep neural networks.
Keras, Tensorflow, and PyTorch are the most popular. As
an alternative to programming languages, point-and-click
interfaces are beginning to emerge to increase accessibil-
ity of these algorithms to individuals with less technical
expertise.

Training a deep neural network is a computationally
intensive process involving millions of floating point op-
erations and repeated I/O of large training batches. Al-
though some smaller networks can be trained on a stan-
dard CPU in a reasonable amount of time, most state-of-
the-art networks require a GPU to expedite training, which
may still require hours to days to complete. Since net-
works developed for medical imaging tasks typically in-
volve high-resolution 3D (or even 4D) images, GPUs with
larger memory capacities (e.g.,>12GB) are often necessary.
Training can be performed on either a personal worksta-
tion or one of the various cloud-based services available
(e.g., Google Cloud, Amazon AWS, Microsoft Azure).

Explainability and Translation to Clinical Practice
Although CNNs have accomplished state-of-the-art perfor-
mance on medical imaging tasks, translation of this tech-
nology into clinical practice is challenged by the difficulty
of explaining their decisions. Understandably, radiolo-
gists would like to understand why a CNN made a par-
ticular decision, or more importantly why a CNN made
an incorrect decision, before adopting the technology in
practice. In response to this need, an entire collection of
algorithms under the umbrella term “Explainable AI” have
been proposed. Among the most popular approaches in
medical imaging are attribution methods and feature map
visualizations, which highlight the salient regions on an
input image used by a CNN to make its prediction. A re-
view of explainable methods in medical imaging can be
found here [SSL20].

Conclusion
Deep neural networks are transforming the field of medi-
cal imaging in both research and clinical practice. They are
highly versatile algorithms capable of performing a multi-
tude of medical imaging tasks across imaging modalities
and subspecialties. Despite the remaining challenges per-
taining to their transparency, deep neural networks have
the potential to improve patient care and reduce radiolo-
gist burnout.
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Ability and Diversity of Skills
William Geller and Michał Misiurewicz
1. Introduction
The aim of this paper is to build a simple model of prob-
lem solving, both by single agents and by teams. We real-
ize that our model is crude and of course far from univer-
sal. Yet the results we get seem to us quite illuminating,
and show the importance of both ability and diversity of
skills.

The question of how to measure effectiveness of prob-
lem solving by individuals and (even more importantly)
by teams, and how to choose the best individual/team, has
been a subject of a lot of research. We can give as examples
papers [GJIB, HP2, KI, KR], and the literature cited there.
We do not address explicitly the problem of choosing a
team, but our findings may serve as the basis for further
research in that direction (in cases where it seems that our
model may be applicable).

For a single agent, or a team of agents, we try tomeasure
the probability of success as a function of the difficulty of a
problem (or rather the easiness of the problem, measured
by a variable 𝑝; the larger 𝑝, the easier the problem). In
Section 3we show that the probability of success is concave
as a function of 𝑝.

In Section 4 we show that in our model for a single
agent specialization is better than versatility.1 We also
show that comparing agents is difficult. In most cases, for
a given agent and chosen values of 𝑝, there can be another
agent, who is better at solving problems with easiness 𝑝 for
those chosen values, but worse at solving problems with
all other values of 𝑝.

In Section 5 we consider teams of agents. We get what
can be considered the main result of the paper: whenever
our model can be applied, both abilities of the team mem-
bers and the diversity of skills in the team matter. If any

William Geller is an associate professor in the Department of Mathematical Sci-
ences at Indiana University–Purdue University Indianapolis. His email address
is wgeller@iupui.edu.
Michał Misiurewicz is a professor emeritus of mathematics in the Department of
Mathematical Sciences at Indiana University–Purdue University Indianapolis.
His email address is mmisiure@math.iupui.edu.
This work was partially supported by grant number 426602 from the Simons
Foundation to Michał Misiurewicz.

Communicated by Notices Associate Editor William McCallum.

For permission to reprint this article, please contact:
reprint-permission@ams.org.

DOI: https://doi.org/10.1090/noti2594
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of those increases, so does the probability of success. For
simplicity, we consider teams with two members, but it is
clear that similar results should hold for larger teams. In-
terestingly, there is an example where for easier problems
ability is more important, but for more difficult problems
diversity is more important.

In Section 6 we show how our model can be applied to
a situation where the agents are trying to defend an orga-
nization against an attack. In this application, diversity is
even more important than for general problem solving.

Some of our ideas came from studying the model of
L. Hong and S.E. Page [HP1]. Our model is much simpler,
and can be easily investigated both by pure mathematical
means and by computational means. Moreover, we avoid
the main deficiency of the Hong–Page model, where high-
ability teams consist basically of clones of the same agent
(and as a result, ability excludes diversity).2

2. Preliminary Model
If an agent will be trying to solve problems that are not
known in advance, her expected performance can be mea-
sured by an average over various possible problems.

Our first, preliminary model is as follows. An agent has
some set of skills. This set is a subset 𝑆 of 𝑁 = {1, 2, … , 𝑛}.
An immediate problem is represented by a subset 𝑃 of 𝑁
of cardinality 𝑝. An agent can make progress if the inter-
section 𝑆 ∩ 𝑃 is nonempty. Clearly, the difficulty of the
problem is measured by 𝑝; problems with smaller 𝑝 are
more difficult.

When we want to measure the ability of an agent, we
average performance of an agent over all problems of a
given difficulty (that is, with a given cardinality 𝑝). The
result clearly does not depend on a concrete set 𝑆 of skills,
but only on its cardinality 𝑠 (the skillfulness of the agent).

For given 𝑛, 𝑠, 𝑝 it is easy to compute the probability of
making progress. If 𝑝 + 𝑠 > 𝑛, this probability is 1. If

𝑝 + 𝑠 ≤ 𝑛, out of all (𝑛
𝑝
) possible sets 𝑃 only (𝑛−𝑠

𝑝
) re-

sult in failure. Therefore the probability of success (that is,

2A reader interested in the discussion about that model may want to look
at [T1,P,T2].
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making progress) is

1 −
(𝑛−𝑠

𝑝
)

(𝑛
𝑝
)

= 1 − (𝑛 − 𝑠)! (𝑛 − 𝑝)!
𝑛! (𝑛 − 𝑝 − 𝑠)!

= 1 − 𝑛 − 𝑝
𝑛 ⋅ 𝑛 − 𝑝 − 1

𝑛 − 1 ⋅ … ⋅ 𝑛 − 𝑝 − 𝑠 + 1
𝑛 − 𝑠 + 1 .

In Figure 1, we can see how the probability of success
varies with the difficulty of the problem, for agents with
various numbers of skills. If the problem is easy, the skill-
fulness of an agent does not matter much (provided the
agent has some minimal number of skills). However, for
difficult problems it matters a lot.

Figure 1. For 𝑛 = 20, graphs of the probabilities of success as
functions of the difficulty of the problem for various numbers
of skills of the agent. As we move to the right, the difficulty of
the problem decreases (that is, 𝑝 increases).

3. Main Model
The preliminary model is very crude, because for each skill
an agent either has it or does not. However, one should
allow an agent to have partial skills. Then 𝑆 becomes a
strength function 𝑆 ∶ 𝑁 → [0, 1]. If 𝑘 ∈ 𝑃, then the proba-
bility that the agent can make progress using skill number
𝑘 is 𝑆(𝑘). We assume that those probabilities for different
𝑘 are independent. This means that it is easier to use in
computations the weakness function 𝑅 = 𝟙 − 𝑆, where 𝟙 is
the constant function 1. Then the probability 𝐹(𝑅, 𝑃) of
failure for a given agent and given problem is equal to the
product of the numbers 𝑅(𝑘) over 𝑘 ∈ 𝑃.

Often instead of speaking of the strength and weakness
functions we will speak of the strength and weakness vectors
(𝑆(1), 𝑆(2), … , 𝑆(𝑛)) and (𝑅(1), 𝑅(2), … , 𝑅(𝑛)).

For a given 𝑅, the sum of 𝐹(𝑅, 𝑃) over all sets 𝑃 ⊂ 𝑁 of
cardinality 𝑝 is equal to

∑
|𝑃|=𝑝

∏
𝑖∈𝑃

𝑅(𝑖),

where |𝑃| denotes the cardinality of 𝑃. Observe that this

number is equal to the coefficient for the polynomial

𝑄𝑅(𝑥) =
𝑛
∏
𝑖=1

(𝑥 + 𝑅(𝑖))

of 𝑥𝑛−𝑝. Thus, the average probability 𝐹𝑅(𝑝) of failure over
all sets 𝑃 of cardinality 𝑝 is equal to this coefficient divided

by (𝑛
𝑝
). Note that (𝑛

𝑝
) is the coefficient of 𝑥𝑛−𝑝 for the

polynomial 𝑄𝟙. This in particular means that if an agent
has no skills (so 𝑅 = 𝟙), her probability of failure is 1 no
matter what.

Clearly, if 𝜎 is a permutation of the set 𝑁 then 𝐹𝑅(𝑝) =
𝐹𝑅∘𝜍(𝑝). Therefore we may assume that 𝑅(1) ≤ 𝑅(2) ≤
… ≤ 𝑅(𝑛). Sometimes, if we do not want to make this
assumption, we will say that 𝑆 ∘ 𝜎 is a permutation of 𝑆.

Of course, if 𝑅 takes only values 0 and 1, we get the
previous model.

Let us investigate some basic properties of the function
𝐹𝑅.

Proposition 1. We have 𝐹𝑅(𝑝 + 1) ≤ 𝐹𝑅(𝑝), and equality
holds only if either both numbers are equal to 0 or 𝑅 = 𝟙.

Proof. Replace each subset 𝑃 ⊂ 𝑁 of cardinality 𝑝+1 by 𝑝+
1 pairs (𝑃, 𝑗), where 𝑗 ∈ 𝑃. Then the average of ∏𝑖∈𝑃 𝑅(𝑖)
over all such pairs will be equal to 𝐹𝑅(𝑝 + 1). Similarly,
when we replace each subset 𝑃 ⊂ 𝑁 of cardinality 𝑝 by
𝑛−𝑝 pairs (𝑃, 𝑗), where 𝑗 ∈ 𝑁 ⧵𝑃, the average of∏𝑖∈𝑃 𝑅(𝑖)
over all such pairs will be equal to 𝐹𝑅(𝑝). However, there
is a natural one-to-one correspondence between the pairs
of the first and of the second type. Namely, if |𝑃| = 𝑝 and
𝑗 ∈ 𝑁⧵𝑃, then |𝑃∪{𝑗}| = 𝑝+1 and 𝑗 ∈ 𝑃∪{𝑗}. Since always
∏𝑖∈𝑃∪{𝑗} 𝑅(𝑖) ≤ ∏𝑖∈𝑃 𝑅(𝑖), we get 𝐹𝑅(𝑝 + 1) ≤ 𝐹𝑅(𝑝).

Suppose that we have the equality. Then for every
𝑃 ⊂ 𝑁 of cardinality 𝑝 and every 𝑗 ∈ 𝑁 ⧵ 𝑃 we have either
∏𝑖∈𝑃 𝑅(𝑖) = 0 or 𝑅(𝑗) = 1. If for every 𝑃 ⊂ 𝑁 of cardinality
𝑝we have∏𝑖∈𝑃 𝑅(𝑖) = 0, then 𝐹𝑅(𝑝+1) = 𝐹𝑅(𝑝) = 0. Oth-
erwise, there exists 𝑃 ⊂ 𝑁 of cardinality 𝑝with∏𝑖∈𝑃 𝑅(𝑖) >
0, so we have 𝑅(𝑗) = 1 for every 𝑗 ∈ 𝑁 ⧵ 𝑃. Unless 𝑅 = 𝟙,
there is 𝑘 ∈ 𝑃 for which 𝑅(𝑘) < 1. Choose one 𝑗 ∈ 𝑁 ⧵ 𝑃
and consider the set 𝑉 = 𝑃 ∪ {𝑗} ⧵ {𝑘}. Then

∏
𝑖∈𝑉∪{𝑘}

𝑅(𝑖) = 𝑅(𝑘)∏
𝑖∈𝑉

𝑅(𝑖) <∏
𝑖∈𝑉

𝑅(𝑖),

a contradiction. This proves the second part of the propo-
sition. □

Proposition 2. We have

𝐹𝑅(𝑝 + 2) + 𝐹𝑅(𝑝)
2 ≥ 𝐹𝑅(𝑝 + 1), (1)

so the function 𝐹𝑅 is convex (and the success function, 𝟙 − 𝐹𝑅,
is concave). Equality holds if and only if either 𝐹𝑅(𝑝) = 0 or
there is at most one 𝑖 ∈ 𝑁 such that 𝑅(𝑖) ≠ 1.
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Proof. In a similar way as in the proof of Proposition 1, we
get the following four equalities (in the first one, we have
to look at the set 𝑁 ⧵ {𝑗} instead of 𝑁):

∀
𝑗∈𝑁

(𝑝 + 1) ∑
|𝑉 |=𝑝+1
𝑗∉𝑉

∏
𝑖∈𝑉

𝑅(𝑖) =
𝑛
∑
𝑘=1
𝑘≠𝑗

∑
|𝑊|=𝑝
𝑗,𝑘∉𝑊

𝑅(𝑗)∏
𝑖∈𝑊

𝑅(𝑖),

(2)

(𝑛 − 𝑝 − 1) ∑
|𝑉 |=𝑝+1

∏
𝑖∈𝑉

𝑅(𝑖) =
𝑛
∑
𝑗=1

∑
|𝑉 |=𝑝+1
𝑗∉𝑉

∏
𝑖∈𝑉

𝑅(𝑖), (3)

(𝑛 − 𝑝)(𝑛 − 𝑝 − 1) ∑
|𝑊|=𝑝

∏
𝑖∈𝑊

𝑅(𝑖) =
𝑛
∑
𝑗,𝑘=1
𝑗≠𝑘

∑
|𝑊|=𝑝
𝑗,𝑘∉𝑊

∏
𝑖∈𝑊

𝑅(𝑖),

(4)

(𝑝 + 2)(𝑝 + 1) ∑
|𝑃|=𝑝+2

∏
𝑖∈𝑃

𝑅(𝑖)

=
𝑛
∑
𝑗,𝑘=1
𝑗≠𝑘

∑
|𝑊|=𝑝
𝑗,𝑘∉𝑊

𝑅(𝑗)𝑅(𝑘)∏
𝑖∈𝑊

𝑅(𝑖). (5)

Since (1 − 𝑅(𝑗))(1 − 𝑅(𝑘)) ≥ 0, we have

1 + 𝑅(𝑗)𝑅(𝑘) ≥ 𝑅(𝑗) + 𝑅(𝑘). (6)

Now, from (5), (4), and (6), we get

(𝑝 + 2)(𝑝 + 1) ∑
|𝑃|=𝑝+2

∏
𝑖∈𝑃

𝑅(𝑖)

+ (𝑛 − 𝑝)(𝑛 − 𝑝 − 1) ∑
|𝑊|=𝑝

∏
𝑖∈𝑊

𝑅(𝑖)

=
𝑛
∑
𝑗,𝑘=1
𝑗≠𝑘

∑
|𝑊|=𝑝
𝑗,𝑘∉𝑊

(1 + 𝑅(𝑗)𝑅(𝑘))∏
𝑖∈𝑊

𝑅(𝑖)

≥
𝑛
∑
𝑗,𝑘=1
𝑗≠𝑘

∑
|𝑊|=𝑝
𝑗,𝑘∉𝑊

(𝑅(𝑗) + 𝑅(𝑘))∏
𝑖∈𝑊

𝑅(𝑖).

(7)

From (2) and (3), we get
𝑛
∑
𝑗,𝑘=1
𝑗≠𝑘

∑
|𝑊|=𝑝
𝑗,𝑘∉𝑊

𝑅(𝑗)∏
𝑖∈𝑊

𝑅(𝑖) =
𝑛
∑
𝑘=1

(𝑝 + 1) ∑
|𝑉 |=𝑝+1
𝑘∉𝑉

∏
𝑖∈𝑉

𝑅(𝑖)

= (𝑝 + 1)(𝑛 − 𝑝 − 1) ∑
|𝑉 |=𝑝+1

∏
𝑖∈𝑉

𝑅(𝑖).

(8)

From (7) and (8) (note that (8) holds also with 𝑗 and
𝑘 switched) we get

(𝑝+2)(𝑝+1) ∑
|𝑃|=𝑝+2

∏
𝑖∈𝑃

𝑅(𝑖)+(𝑛−𝑝)(𝑛−𝑝−1) ∑
|𝑊|=𝑝

∏
𝑖∈𝑊

𝑅(𝑖)

≥ 2(𝑝 + 1)(𝑛 − 𝑝 − 1) ∑
|𝑉 |=𝑝+1

∏
𝑖∈𝑉

𝑅(𝑖),

that is,

(𝑝+2)(𝑝+1)( 𝑛
𝑝 + 2)𝐹𝑅(𝑝+2)+(𝑛−𝑝)(𝑛−𝑝−1)(

𝑛
𝑝)𝐹𝑅(𝑝)

≥ 2(𝑝 + 1)(𝑛 − 𝑝 − 1)( 𝑛
𝑝 + 1)𝐹𝑅(𝑝 + 1).

Since

(𝑝 + 2)(𝑝 + 1)( 𝑛
𝑝 + 2) = (𝑛 − 𝑝)(𝑛 − 𝑝 − 1)(𝑛𝑝)

= (𝑝 + 1)(𝑛 − 𝑝 − 1)( 𝑛
𝑝 + 1),

we get

𝐹𝑅(𝑝 + 2) + 𝐹𝑅(𝑝) ≥ 2𝐹𝑅(𝑝 + 1).
This proves the first part of the proposition.

To prove the second part, notice that by (7), equality
in (1) holds if and only if for every 𝑊 ⊂ 𝑁 of cardinality
𝑝 and every 𝑗, 𝑘 ∈ 𝑁 ⧵ 𝑊 such that 𝑗 ≠ 𝑘, either 𝑅(𝑗) = 1,
or 𝑅(𝑘) = 1, or ∏𝑖∈𝑊 𝑅(𝑖) = 0.

If 𝐹𝑅(𝑝) = 0, then for every 𝑊 ⊂ 𝑁 of cardinality 𝑝 we
have ∏𝑖∈𝑊 𝑅(𝑖) = 0. If there is at most one 𝑖 ∈ 𝑁 such
that 𝑅(𝑖) ≠ 1, then 𝑗 ≠ 𝑘 implies 𝑅(𝑗) = 1 or 𝑅(𝑘) = 1. In
all those cases we get equality in (1).

Now assume that 𝐹𝑅(𝑝) ≠ 0 and 𝑅(𝑖) ≠ 1 for at least two
indices 𝑖 ∈ 𝑁. Then there are two possible cases. Either
there are two or more zeros among 𝑅(𝑖), 𝑖 ∈ 𝑁, or there
is at most one zero there. In the first case, we can choose
𝑗, 𝑘 ∈ 𝑁 such that 𝑗 ≠ 𝑘 and 𝑅(𝑗) = 𝑅(𝑘) = 0. Then,
since 𝐹𝑅(𝑝) ≠ 0, there is 𝑊 ⊂ 𝑁 ⧵ {𝑗, 𝑘} of cardinality 𝑝,
such that ∏𝑖∈𝑊 𝑅(𝑖) > 0. In the second case, we choose
𝑗, 𝑘 ∈ 𝑁 with 𝑗 ≠ 𝑘 and 𝑅(𝑗), 𝑅(𝑘) as small as possible,
and again there is 𝑊 ⊂ 𝑁 ⧵ {𝑗, 𝑘} of cardinality 𝑝, such
that ∏𝑖∈𝑊 𝑅(𝑖) > 0. In both cases, there is no equality
in (1). □

4. Specialization and Versatility
We would like to be able to measure the skillfulness of an
agent in our model. There may be various ways of doing
this, and as we will see in Theorem 5, we cannot expect to
find a perfect one. We will settle on what seems the most
natural way of doing it, by defining it to be 𝑆(1) + 𝑆(2) +
⋯+ 𝑆(𝑛), where 𝑆 is the strength function of the agent.

Within our model, one of the first questions that comes
to mind is what is the best distribution of strengths given
the skillfulness of an agent. The agent can be more spe-
cialized or more versatile. We will show that in our model
specialization is better than versatility.

The simplest case is when we have two agents, one with
𝑆1(1) = 𝑆1(2) = 1/2 and 𝑆1(𝑘) = 0 for 𝑘 > 2, and the other
one with 𝑆2(1) = 1 and 𝑆2(𝑘) = 0 for 𝑘 > 1. The first agent
is more versatile and the second one more specialized. We
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have

𝑄𝑅1 = (𝑥 + 1/2)2(𝑥 + 1)𝑛−2 = (𝑥2 + 𝑥 + 1/4)(𝑥 + 1)𝑛−2

= 𝑄𝑅2 +
1
4(𝑥 + 1)𝑛−2

and
𝑄𝑅2 = 𝑥(𝑥 + 1)𝑛−1.

Thus, 𝐹𝑅1(𝑝) = 𝐹𝑅2(𝑝) for 𝑝 < 2, and 𝐹𝑅1(𝑝) > 𝐹𝑅2(𝑝) for
𝑝 ≥ 2. Let us make exact computations.

The coefficient of 𝑥𝑛−𝑝 for the polynomial 𝑥(𝑥 + 1)𝑛−1
is the same as the coefficient of 𝑥𝑛−𝑝−1 for the polynomial

(𝑥 + 1)𝑛−1, that is, ( 𝑛−1
𝑛−𝑝−1

). Thus,

𝐹𝑅2(𝑝) =
(𝑛 − 1)!

(𝑛 − 𝑝 − 1)! 𝑝! ⋅
(𝑛 − 𝑝)! 𝑝!

𝑛! = 𝑛 − 𝑝
𝑛 = 1 − 𝑝

𝑛 .

To get the coefficient of 𝑥𝑛−𝑝 for the polynomial (𝑥 +
1/2)2(𝑥+1)𝑛−2, we have additionally to add the coefficient
of 𝑥𝑛−𝑝 for the polynomial

1
4
(𝑥 + 1)𝑛−2, so

𝐹𝑅1(𝑝) = 1 − 𝑝
𝑛 + 1

4 ⋅
(𝑛 − 2)!

(𝑛 − 𝑝)! (𝑝 − 2)! ⋅
(𝑛 − 𝑝)! 𝑝!

𝑛!

= 1 − 𝑝
𝑛 + 1

4 ⋅
𝑝(𝑝 − 1)
𝑛(𝑛 − 1) .

This means that while the graph of the probability of suc-
cess as a function of 𝑝 lies on the straight line from (0, 0)
to (𝑛, 1) for 𝑅2, it lies on a parabola from (0, 0) to (𝑛, 3/4)
for 𝑅1 (see Figure 2).

In this example specialization is better than versatility
(see Figures 3 and 4 for other examples).

Figure 2. The same picture as in Figure 1, with additional red
graphs showing probabilities of success with skillfulness an
integer, from 1 to 10, but 𝑆 taking only values 0 and 1/2. Black
graphs represent more specialization and red ones more
versatility.

We considered only a simple example, but it turns out
that in more complicated situations the result is the same.

Lemma 3. Let 𝑎, 𝑏 ∈ (0, 1), 𝑛 ≥ 2. Let a strength function
𝑆1 be such that 𝑆1(1) = 𝑎 and 𝑆1(2) = 𝑏. If 𝑎 + 𝑏 ≤ 1, set

Figure 3. The same picture as in Figure 2, but the red graphs
showing probabilities of success with skillfulness an integer,
from 1 to 20, spread evenly (that is, 𝑆(𝑖) is the same for all 𝑖).
This represents even more versatility than in the preceding
figure.

Figure 4. Here skillfulness is 1, but it is spread equally into 𝑘
skills, and 𝑘 varies from 1 (the highest graph) to 20 (the lowest
graph).

𝑆2(1) = 𝑎 + 𝑏, 𝑆2(2) = 0 and 𝑆2(𝑘) = 𝑆1(𝑘) for 𝑘 > 2. If
𝑎+𝑏 > 1, set 𝑆2(1) = 1, 𝑆2(2) = 𝑎+𝑏−1, and 𝑆2(𝑘) = 𝑆1(𝑘)
for 𝑘 > 2. Then, in both cases, 𝐹𝑅1(𝑝) ≥ 𝐹𝑅2(𝑝) for all 𝑝 and
𝐹𝑅1(𝑝) > 𝐹𝑅2(𝑝) for at least one 𝑝.

Proof. Assume first that 𝑎 + 𝑏 ≤ 1. Then for some poly-
nomial 𝑇 of degree 𝑛− 2 with nonnegative coefficients we
have

𝑄𝑅1 = (𝑥 + 1 − 𝑎)(𝑥 + 1 − 𝑏)𝑇(𝑥)
= (𝑥2 + (2 − 𝑎 − 𝑏)𝑥 + (1 − 𝑎 − 𝑏 + 𝑎𝑏))𝑇(𝑥)

and

𝑄𝑅2 = (𝑥 + 1 − 𝑎 − 𝑏)(𝑥 + 1)𝑇(𝑥)
= (𝑥2 + (2 − 𝑎 − 𝑏)𝑥 + (1 − 𝑎 − 𝑏))𝑇(𝑥).

Thus, 𝐹𝑅1(𝑝) ≥ 𝐹𝑅2(𝑝) for all 𝑝, and 𝐹𝑅1(𝑝) > 𝐹𝑅2(𝑝) for at
least one 𝑝.
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Assume now that 𝑎 + 𝑏 > 1. Then the formula for 𝑄𝑅1
stays the same, and we have

𝑄𝑅2 = 𝑥(𝑥 + 2 − 𝑎 − 𝑏)𝑇(𝑥) = (𝑥2 + (2 − 𝑎 − 𝑏)𝑥)𝑇(𝑥).
We have 0 < 1 − 𝑎 − 𝑏 + 𝑎𝑏, so the result is the same as in
the first case. □

The way we can restate this lemma is that if an agent
has at least two strengths other than 0 and 1, then we can
change her strength function, keeping the same skillful-
ness, in such a way that none of the probabilities of failure
𝐹(𝑝) increases, and at least one of them strictly decreases.
This change of the strength function is in the direction of
specialization.

Observe that given a skillfulness 𝜉, there is a unique (up
to permutations) strength function with at most one value
in (0, 1) giving this skillfulness. Let us denote this function
by 𝑆𝜉. This is the strength function of the most specialized
possible agent of skillfulness 𝜉.
Theorem 4. Given a strength function 𝑆 with skillfulness 𝜉 and
probabilities of failure 𝐹(𝑝), and the function 𝑆𝜉 with probabil-
ities of failure 𝐹𝜉(𝑝), we have 𝐹𝜉(𝑝) ≤ 𝐹(𝑝) for every 𝑝, and
unless 𝑆 is a permutation of 𝑆𝜉, there is at least one 𝑝 for which
𝐹𝜉(𝑝) < 𝐹(𝑝).
Proof. Use Lemma 3 inductively. □

We can interpret this result as saying that for an individ-
ual problem solver in our model, specialization is better
than versatility.

In Figures 2 and 3 we see pairs of graphs of the proba-
bility of success (extended piecewise linearly to functions
on [0, 𝑛]) that have intersections not only at 0 (more such
graphs can be seen in Figures 6 and 8). For each such pair
there is only one intersection apart from 0. Thus, a ques-
tion arises whether this is a general phenomenon. We now
show that this is very far from being true.

Theorem 5. Let 𝑅 ∶ 𝑁 → (0, 1) be an injection, and let 𝜏
be a function from 𝑁 to {−1, +1}. Then there exists a function
𝑅 ∶ 𝑁 → (0, 1) such that 𝐹𝑅(𝑝) > 𝐹𝑅(𝑝) if 𝜏(𝑝) = −1 and
𝐹𝑅(𝑝) < 𝐹𝑅(𝑝) if 𝜏(𝑝) = +1.
Proof. We may assume that 𝑅 is a strictly increasing func-

tion. We have 𝐹𝑅(𝑝) = 𝑎𝑝/ (𝑛𝑝 ), where

𝑥𝑛 +
𝑛
∑
𝑝=1

𝑎𝑝𝑥𝑛−𝑝 = 𝑄𝑅(𝑥) =
𝑛
∏
𝑖=1

(𝑥 + 𝑅(𝑖)).

If 𝜀 > 0 is sufficiently small, then the zeros of the poly-
nomial 𝑥𝑛 + ∑𝑛

𝑝=1(𝑎𝑝 + 𝜀𝜏(𝑝))𝑥𝑛−𝑝 are all real and con-
tained in the interval (−1, 0). Thus, there is a function
𝑅 ∶ 𝑁 → (0, 1) such that this polynomial is equal to 𝑄𝑅(𝑥).
We have 𝐹𝑅(𝑝) = (𝑎𝑝 + 𝜀𝜏(𝑝))/ (𝑛

𝑝
), so 𝐹𝑅(𝑝) > 𝐹𝑅(𝑝) if

𝜏(𝑝) = −1 and 𝐹𝑅(𝑝) < 𝐹𝑅(𝑝) if 𝜏(𝑝) = +1. □

This theorem illustrates the difficulty of measuring the
ability of agents (see also, for example, [HP2, KR]). Theo-
rem 5 shows that given a typical agent and a specified set
of problem difficulties, there can be another agent who is
better at solving problems with those difficulties but worse
at solving problems with all other difficulties.

One can ask whether we can remove the assumptions
that 𝑅 maps 𝑁 to the open interval (0, 1) and that it is an
injection. The answer is “no,” as the following simple ex-
amples show.

Let 𝑛 = 2 and consider two weakness vectors, 𝑅 =
(1/2, 1) and 𝑅 = (𝑎, 𝑏). We have 𝑄𝑅(𝑥) = 𝑥2 + (3/2)𝑥 + 1/2
and 𝑄𝑅(𝑥) = 𝑥2 + (𝑎 + 𝑏)𝑥 + 𝑎𝑏. If 𝑎 + 𝑏 ≥ 3/2 then
1/2 ≤ 𝑎 ≤ 1, so

𝑎𝑏 ≥ −𝑎2 + 3
2𝑎 ≥ min (− (12)

2
+ 3
2 ⋅

1
2 , −1

2 + 3
2 ⋅ 1)

= min (12 ,
1
2) =

1
2 .

Thus, we cannot have 𝐹𝑅(1) < 𝐹𝑅(1) and 𝐹𝑅(2) > 𝐹𝑅(2).
Similarly, if 𝑅 = (1/2, 1/2) and 𝑅 = (𝑎, 𝑏), then 𝑄𝑅(𝑥) =

𝑥2 + 𝑥 + 1/4 and 𝑄𝑅(𝑥) = 𝑥2 + (𝑎 + 𝑏)𝑥 + 𝑎𝑏. If 𝑎 + 𝑏 ≤ 1
then by the inequality between the geometric and arith-
metic means, √𝑎𝑏 ≤ (𝑎 + 𝑏)/2 ≤ 1/2, so 𝑎𝑏 ≤ 1/4. Thus,
we cannot have 𝐹𝑅(1) > 𝐹𝑅(1) and 𝐹𝑅(2) < 𝐹𝑅(2).

5. Teams
Let us consider now what our model tells us about teams
of agents. Suppose we have a team of two agents,3 and for
skill 𝑖, their weakness is 𝑅1(𝑖) and 𝑅2(𝑖), respectively. We
assume independence (in the sense of probability theory),
so the probability of not making progress on a problem
using skill 𝑖 is the product 𝑅1(𝑖)⋅𝑅2(𝑖). As for a single agent,
we will speak of the strength and weakness vectors of a
team.

We can take the diversity of a team to be the lack of over-
lap of their strengths. While this is not a formal definition,
we can often say which of two teams has larger diversity.
Similarly, we can speak of the ability of the team. Here
we can use the skillfulness as the measure, although The-
orem 5 suggests that it is not an ideal measure. However,
again we can often say which of two teams (or members
of the team) has larger ability.

Let us consider the simple example where there are
two agents in the team, and each of them has two skills
of strength 1/2. There are three possibilities: two, one,
or none of the skills coincide. Then we get for the
team three possible strength vectors: (3/4, 3/4, 0, … , 0),
(3/4, 1/2, 1/2, 0, … , 0), and (1/2, 1/2, 1/2, 1/2, 0, … , 0). Fig-
ure 5 illustrates the results. We see that with the same levels
of abilities of the members of the team, more diversity in

3The situation should be similar for larger teams.
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Figure 5. Team of two agents, each with two skills of strength
1/2. The black graph corresponds to a team whose skills
coincide, the red graph to a team sharing one skill, and the
green one to a team with no skills in common.
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Figure 6. Like Figure 5, but with two additional graphs. The
dark blue graph corresponds to the team strength vector
(0.91, 0.91, 0, … , 0) (that is, strength of skills 0.7, but no
diversity), the orange graph to (0.4, 0.4, 0.4, 0.4, 0, … , 0) (that is,
strength of skills 0.4 and maximal diversity).

their skills gives better results, except for the easiest prob-
lems.

This phenomenon is easy to explain. Consider two vec-
tors 𝑅1 and 𝑅2, the same except the values at some 𝑖, 𝑗.
They come from a team of agents with prescribed skills,
slightly differently placed. For 𝑅1 we have more diversity,
so 𝑅1(𝑖) = 𝑎 ∈ (0, 1) comes from one agent, and 𝑅1(𝑗) =
𝑏 ∈ (0, 1) from another agent. For 𝑅2, diversity is smaller,
so 𝑅2(𝑖) = 𝑎𝑏 and 𝑅2(𝑗) = 1. Then there is a polyno-
mial T, with nonnegative coefficients, such that 𝑄𝑅1(𝑥) =
𝑇(𝑥)(𝑥 + 𝑎)(𝑥 + 𝑏) and 𝑄𝑅2(𝑥) = 𝑇(𝑥)(𝑥 + 𝑎𝑏)(𝑥 + 1). We
have (𝑥+𝑎)(𝑥+𝑏) = 𝑥2+(𝑎+𝑏)𝑥+𝑎𝑏 and (𝑥+𝑎𝑏)(𝑥+1) =
𝑥2+(𝑎𝑏+1)𝑥+𝑎𝑏 and (𝑎𝑏+1)−(𝑎+𝑏) = (1−𝑎)(1−𝑏) > 0,
the coefficients of the polynomial 𝑄𝑅2 are strictly larger
than the coefficients of the polynomial𝑄𝑅1 (except the first
and last coefficients, for which we have the equality). This

Figure 7. Team of two agents for the security problem. The
black graph corresponds to the strength vector consisting of
ten strengths 0.91 and ten 0; the red graph to the vector
consisting of five strengths 0.91, ten 0.7, and five 0; and the
green one to the vector consisting of twenty strengths 0.7.

means that if ability is kept constant, by increasing diver-
sity of skills we get better chances for success.

This result differs from what we saw about specializa-
tion and versatility. This is because the skillfulness of a
team is usually smaller than the sum of each member’s
skillfulness.

We can ask what happens if we change the abilities of
themembers of the team. In Figure 6 we added two graphs.
One of them corresponds to larger abilities but no diver-
sity; the other one corresponds to smaller abilities but
larger diversity. By comparing the two lowest graphs with
each other, and two highest graphs with each other, we
see that to some degree ability and diversity of skills are ex-
changeable. However, in this example, for easier problems
ability is more important, while for more difficult ones di-
versity is more important. Of course, we do not know how
this applies to real life situations, since our model may or
may not fit them (cf. Theorem 5).

However, if the ability of one or more team members
increases (and no other changes aremade), the coefficients
of the polynomial𝑄 for the team decrease, so we get better
chances for success for problems of all difficulties.

6. Security
Let us look at a possible adaptation of our model to a se-
curity problem. Here the agents are trying to defend an
organization against an attack (for instance, by hackers).

The attacker has𝑝 possible lines of attack (out of 𝑛 possi-
ble), and for each of them the skillfulness of the agent gives
us the probability of stopping this line of attack. Thus, the
average probability of stopping an attack of strength 𝑝 is
𝐹𝑆(𝑝). Note that for problem solving large 𝑝meant an easy
problem; here large 𝑝 means a strong attack.

In earlier sections we wanted to minimize our probabil-
ity of failure 𝐹𝑅(𝑝). In contrast, we want now to maximize
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Figure 8. Team of two agents for the security problem. The
red graph corresponds to the vector consisting of twenty
strengths 0.7; and the blue one to the vector consisting of four
strengths 0.97, twelve strengths 0.9, and four strengths 0.

the attacker’s chance of failure 𝐹𝑆(𝑝). Therefore, by the re-
sults for problem solving, for security purposes versatility
is better than specialization.

This also means that in this application diversity of
skills in a team plays an even larger role than for problem
solving. Diversity corresponds to more uniform spread of
strengths, which for the security problem is useful even for
one agent. An example similar to the one from Figure 5 is
illustrated in Figure 7. We consider a team consisting of
two agents, each of them having 10 strengths 0.7. Then
we compare three possibilities: all, half, or none of the
strengths coincide. We get for the team three strength vec-
tors. The first one consists of ten strengths 0.91 and ten 0;
the second one of five strengths 0.91, ten 0.7, and five 0;
and the third one of twenty strengths 0.7.

Here also diversity and ability are to some degree inter-
changeable. For example, if we have two agents, one with
sixteen strengths 0.7, and the other one with four strengths
0.7, then in themost diverse casewe get for the team twenty
strengths 0.7. If the first agent’s strengths are 0.9 instead
of 0.7 and we consider the least diverse case, we get for
the team four strengths 0.97, twelve strengths 0.9, and four
strengths 0. The first team will be better for strong attacks,
but the second one will be better for weak attacks (see Fig-
ure 8).
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The Early Career Section offers information and suggestions for graduate students, job seekers, early career academics 
of all types, and those who mentor them. Angela Gibney serves as the editor of this section with assistance from Early 
Career Intern Katie Storey. In our next issue, we will feature articles in celebration of Black History Month. All Early 
Career articles organized by topic are available at https://www.angelagibney.org/the-ec-by-topic.

More Good Ideas
Don’t Give a Terrible Talk

Elena Giorgi

We have all been to terrible talks. To avoid being the one 
who delivers a terrible talk, we should first know what it is 
that makes a talk terrible, and then do the opposite.

A terrible talk...

...gets too technical
The most common mistake that a speaker makes is believ-
ing that the audience knows as much as he/she does on the 

subject. You should always remember that the background 
of the audience can vary greatly: there will probably be peo-
ple who are very close to your work (and may have invited 
you to give the talk for example), but there could also be 
those working in adjacent fields who want to attend the 
talk because they may be interested in some aspects of your 
work. A good way to avoid misjudging the background of 
the listeners is to ask the organizers beforehand about the 
audience members: how heterogeneous is the audience? 
are there people from other fields? how many students or 
postdocs? Having this information will help you prepare 
the material accordingly.

Another common mistake is to assume that the audience 
is listening to your talk with full attention for its entire du-
ration, for example having clear in mind at the end of the 
talk something you said at the beginning. Don’t be afraid 
to repeat concepts, especially the ones you introduced in 
a different part of the talk which may be useful in a subse-
quent moment. Even the audience members who listened 
carefully will benefit from your recap.

In order to make your talk more understandable, when-
ever possible you should include images, as well as graphs, 
tables, arrows, and any visual aid you can think of. Explore 
these tools and use them to make your talk more enjoyable.

...is not accessible to nonexperts
Those who are in the audience but are not expert in your 
field of research may not be able to appreciate the crucial 
technicalities that make the core of your work and that 
you spent time developing. Even though you really want 
to share the technical aspects of your work, try to elevate 
the argument as much as possible and start by presenting a 
simplified version of the main ideas. If anyone is interested 
in more technical details, you will be able to present them 
in a private discussion after the talk, which is also a great 
way to start a conversation with a fellow mathematician.

Always remember: your goal is to make people under-
stand, not to impress them. This is true even in a job talk: 
be understandable and the audience will be impressed as 
a consequence.

...does not have a clear narrative
A clear narrative is crucial in every aspect of human learn-
ing, and that is true in mathematics as well. A talk is not 
just a list of new ideas and proofs: it is a story, and as all 
narrated stories it should be engaging to the listeners. Keep 
in mind that the narrative may not be the linear history of 
your attempts at solving a problem. The story of your talk 
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could be something you realize about your research project 
only months or years later, where two distant concepts are 
connected by an idea, or a method can be used in different 
settings uncovering something new.

Spend some time identifying the story of your talk: the 
main problem, its genesis, the relevant attempts, its resolu-
tion, and what is missing from its current status. Make the 
narrative clear during your talk: when giving a definition 
or presenting a lemma, frame it as part of the story by 
alluding to its role in it. Presenting something you tried 
but did not work is also a good example of constructing a 
narrative, and it is very instructive for your audience who 
may be wondering about similar directions.

A narrative helps the audience follow your talk and 
pay attention. Humor is also a great way to keep people 
engaged. Always remember: to deliver a great talk, you are 
as important as the words you will be saying. Use your 
body and tone of voice to be emphatic and passionate; be 
a pleasure to listen to.

...overlooks the motivations and the conclusions of 
your work
Why are you doing what you are doing? It may seem obvi-
ous to you, so obvious that you forget to mention it, but it is 
one of the most important parts of your talk. Start your talk 
with a presentation of the motivation for your work, not 
only your personal motivations but also those that could 
be inspiring for other people, both internal and external 
to your field of research.

Give some history of your problem by positioning it in 
the larger context of your field. Include a long introduction 
where you can touch on the take-away message of your talk. 
End your talk with clear conclusions: a brief summary of 
your talk is particularly helpful for those who may have 
gotten lost at a certain point.

...does not respect the audience
Nobody wants to feel stupid, so don’t make them. Saying 
things like “it is trivial” or “it is obvious” is disrespectful 
towards your audience, who may not consider as trivial or 
obvious any of the things you mentioned, as they have not 
been thinking about them as much as you have.

It is important to show real openness to questions: ask 
often if anybody has any questions, and ask it repeatedly, 
with particular attention to the younger audience who may 
be frightened to ask. Another way to respect the audience 
(in the room or outside) is to always refer to the relevant 
work of other people.

...goes over time
If you don’t want to give a terrible talk, don’t go over time. 
There are various reasons why your talk can end up running 
over time, but it is important to find a way to avoid it, no 
matter the reason.

The most common reason is that the talk was not ade-
quately prepared: you thought you were able to say more 

than actually possible in the given amount of time. There 
is an easy fix to this: plan in advance with realistic expecta-
tions, and if uncertain, it is better to make it shorter to avoid 
looking stressed and anxious when trying to finish on time.

It is also possible that you are not able to finish the talk 
on time due to no fault of your own, for example because 
you received lots of questions from the audience. It is nor-
mally a good sign if the audience is engaged with your talk 
and asks many questions. If this happens, when the time 
is almost up and you realize you didn’t have time to get 
to the points you wanted, summarize the most important 
take-home message and try to connect them to some of 
the previous questions. Be at peace with yourself: answer-
ing the questions of your audience is far more effective at 
explaining your work than finishing at all costs your pre-
planned talk.

Credits
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Making Accessible 
Documents Using LaTeX

Eric Larson and Isabel Vogt

In order to disseminate mathematics as widely as possible, 
it is desirable to produce documents which are accessible 
to people with visual impairments. Indeed, there is a long 
history of successful blind mathematicians (including 
Euler late in life [J]), yet visual impairements can pose an 
obstacle to the written communication of mathematics. In 
the modern era, screen readers are a major way that blind 
individuals interact with written (electronic) documents. 
Unfortunately, without special effort, screens readers will 
typically garble equations, often beyond comprehensibility. 

Elena Giorgi

Eric Larson is an assistant professor at Brown University. His email address 
is elarson3@gmail.com.

Isabel Vogt is an assistant professor at Brown University. Her email address 
is ivogt.math@gmail.com.

DOI: https://dx.doi.org/10.1090/noti2606



Early Career

January 2023	  Notices of the American Mathematical Society	   69

Many guides exist for producing accessible documents in 
software such as Word—this is, in fact, a standard topic at 
many university-wide teacher-training workshops—but 
similar guides for mathematical content and LaTeX are 
difficult to find.

Since mathematics is often distributed as PDFs, we in-
tended to write an article about producing accessible PDF 
documents in LaTeX. But this turns out to be incredibly 
difficult! The basic issue is that PDF documents produced 
in LaTeX do not, by default, contain extra information 
that could be used by a screen reader to make equations 
accessible (i.e., the LaTeX code, the pronounciation, or 
anything else besides the visual appearance). And since 
very few PDF documents not produced by LaTeX contain 
any equations, very little work on the screen reader side has 
been done for equations in PDF documents. Thus, even if 
you produce a PDF with this extra information, it is un-
likely to be properly read by a screen reader. (And even if 
you manage to make it work in one situation, it might fail 
with a different operating system, different PDF viewer, or 
a different screen reader).

By contrast, it is relatively straightforward to make ac-
cessible HTML pages using LaTeX! The reason for this is 
two-fold:

1.	 A standard method for including equations on websites 
is mathjax, which works by embedding LaTeX code in 
the HTML file, so screen readers have been developed 
that take advantage of this.

2.	 There are web browsers that can be installed on any 
operating system and have their own functional screen 
readers specifically for HTML documents, for example 
the ChromeVox extension for Chrome. This eliminates 
the uncertainty of how an unknown general-purpose 
screen reader will react to your document.

We therefore begin, in Section 1, by giving a brief guide 
to producing accessible HTML pages from LaTeX source. 
We then discuss, in Section 2, some incremental steps you 
can take to make your PDFs more accessible for visually 
impaired students, like setting PDF metadata and choosing 
colorblind friendly color palettes. Finally, in Section 3, we 
discuss some of the more serious obstacles to creating truly 
accessible PDFs.

Note to the reader: We are not experts on this topic— 
just sympathetic users who are beginning to grapple with 
these issues ourselves. In addition, this article describes 
some steps that can be taken as of 2022... we hope that 
development on accessibility software continues at a rapid 
pace, making this article out of date in the near future!

1. Accessible HTML Documents
Currently, the most functional tool for creating HTML 
documents from LaTeX source is tex4ht, which can be 
easily used via the make4ht build system. On a UNIX-based 
system, to compile the document mydocument.tex, using 

a configuration file myconfigfile.cfg, and using mathjax 
to display equations, one simply executes the command:

--$ make4ht -c myconfigfile.cfg mydocument.
tex mathjax

1.1. Communication inside and outside of math mode. 
The major issue with this approach—which also affects 
the visual appearance of the document—is that the pro-
cessing of math mode is done by mathjax, while tex4ht 
itself processes the remainder of the document. Therefore 
communication failures between tex4ht and mathjax 
can arise. For most documents, this manifests in two ways:

	• A macro defined in your preamble will be processed 
by tex4ht, and not be available inside of math mode, 
so the corresponding symbols will be replaced by error 
messages. (There are no issues with user-defined macros 
outside of math mode.)

	• A \label on an equation in math mode will be pro-
cessed by mathjax, and not be available for use by a 
corresponding \eqref outside of math mode, so the 
reference will render as (??).
A simple way to fix these issues is to first place your 

macros that will be used in math mode in a separate docu-
ment mymacros.tex. So that your document will compile 
normally with TeX or pdfTeX, create a file called mymacros.
sty containing the following code:

\ProvidesPackage{mymacros}
\input{mymacros.tex}
\endinput

and add the following line to your preamble:

\usepackage{mymacros}

Then, to make mathjax aware of your macros, place the 
following code in your configuration file (myconfigfile.
cfg referenced above):

\Preamble{xhtml,mathjax}
\Configure{@BODY}{\IgnorePar
\HCode{\detokenize{\(}}
\special{t4ht*<mymacros.tex}
\HCode{\detokenize{\)}}
\par}
\begin{document}
\renewcommand\eqref[1]{\NoFonts\HChar{92}

eqref\{\detokenize{#1}\}\EndNoFonts}
\EndPreamble

This code (on the second-to-last line) also redefines the 
\eqref command so that it will properly link up with a  
\label defined inside of math mode.

1.2. Alternative text for figures in HTML. When using a 
figure to illustrate a mathematical argument, it is essential 
that a complete proof is written in words. This is not just 
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for visually impaired mathematicians—in private commu-
nication with the second author about a previous Notices 
article on the topic of mathematical writing, Jean-Pierre 
Serre jokingly said that he is sometimes frustrated that “a 
picture needs a thousand words” to be understood!

If you have any figures, you can also easily provide 
alternative text for screen readers to read in place of the 
image. In the most recent version of TeXLive, this can be 
done as follows:

\includegraphics[alt={my alternative text}]
{myimage}

2. Incremental Steps to Make PDF Documents 
More Accessible
2.1. Specifying document language and title in metadata. 
One simple step you can take is to specify the language of 
the document in the metadata (so a screen reader will be 
able to infer the pronounciation of words). It is also helpful 
to specify the title of the document, so that the screen reader 
can communicate easily to the user which document is 
being read. These two, as well as other metadata, can easily 
be set with the hyperref package as follows:

\usepackage{hyperref}
\hypersetup{
pdflang={en-US},
pdftitle={Making Accessible Documents Using 

LaTeX},
pdfauthor={Eric Larson and Isabel Vogt},
pdfsubject={Mathematics},
pdfkeywords={Accessibility, LaTeX}
}

2.2. Colorblind friendly color palettes. If you choose to 
include color in your figure, you should try to make sure 
that color is not the only distinguishing attribute and be 
sure to select a palette that will appear distinct to colorblind 
mathematicians.

There are several excellent online guides aimed at scien-
tists and mathematicians that contain sample palettes and 
tools to simulate what your own choice of palette would 
look like to a colorblind person [OI, N]. These guides are 
written in terms of RGB values of colors. To define a color 
mycolor in LaTeX from its RGB value, include the following 
in your preamble:

\usepackage{xcolor}
\definecolor{mycolor}{RGB}{myrvalue, 

mygvalue,mybvalue}

For the reader who is already familiar with modern RGB 
color theory (red–green–blue primaries), we remark that a 
simple rule of thumb is that complementary colors in RGB 
color theory are usually easy to distinguish; the same is not 
true for complementary colors in traditional color theory 
(red–yellow–blue primaries). Moreover, different levels of 

the blue component are most important (since the peak 
spectral sensitivities of the red and green cones are much 
closer). For example, the complementary color to green in 
modern color theory is magenta, which appears contrasting 
to nearly everyone; by contrast, green and red can be diffi-
cult for many colorblind individuals to distiguish.

2.3. Alternative text for figures in PDFs. You can specify 
alternative text to be read in place of a figure in a PDF using 
the pdfcomment package. In the preamble, you add:

\usepackage{pdfcomment}

You can then add alternative text to a figure using the 
pdftooltip command. For example, to draw this figure:

You would use the LaTeX code:

\pdftooltip{
\begin{tikzpicture}
\draw (0,0) -- (1,0) -- (1,1) -- (0, 1) -- 

(0, 0);
\end{tikzpicture}
}{Here is a square!}

3. Hard Obstacles to Accessible PDF Documents
3.1. Navigational data in PDFs. PDF documents can con-
tain tags, a type of metadata that screen readers can use to 
infer the structure of the document. Several packages are 
under development to generate tagged PDFs using LaTeX; 
the most mature such package is tagpdf [F], but even that 
package is still experimental.

3.2. Where does what data about equations go in the PDF 
file? In order for a screen reader to verbalize equations, the 
PDF must contain some sort of structured data describing 
the equations or their verbalizations, perhaps via the /Alt 
or /ActualText fields. Unfortunately, there is no standard 
method of doing this; as a consequence, even if this data 
is embedded in a PDF, a screen reader is unlikely to read 
it properly.

So far, the only package under development to do this 
is axessibility [CCABKMAB], which embeds the LaTeX 
code for the equations in the /ActualText field. For two 
different setups (operating system + PDF viewer + screen 
reader), the authors were able to get the screen reader to 
read the equations... but only after hand-coding two differ-
ent math dictionaries. In fact, the screen readers in question 
already had such dictionaries, but didn’t recognize that the 
embedded LaTeX code was LaTeX code, because it is not 
(yet) standard to do this.

This illustrates the benefit of including such data, in a 
way as standardized as possible, even if screen readers will 
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not be able to use it: Until including this data becomes 
standard, nobody will write screen readers that take full 
advantage of it.

At the moment, of course, it is not clear what the best 
way of including such data is. We urge continued experi-
mentation from TeX developers on this important project.
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How to Referee  
a (Math) Paper

Álvaro Lozano-Robledo

You can run but you can’t hide. Eventually, an editor will 
find you and send you a referee request.

Now what?
If you do not have any previous experience on what to 

do next, this article is for you. I would also recommend 
Arend Bayer’s “Writing, and reading, referee reports,” and 
Brian Katz’s “What makes a good PRIMUS review.”

Why do we referee papers? Refereeing papers is a ser-
vice that mathematicians provide to the community. Math 
papers can be long and complicated, and the refereeing 
process gives you the opportunity to have other research 
mathematicians proofread your paper carefully for correct-
ness and for suggestions, before it is published. It is a hard 
job, it can take many, many hours, and it is unpaid. But we 
publish papers, and others referee our papers so we return 
the favor by refereeing other mathematicians’ papers.

This article is not about the academic publication sys-
tem, which deserves an entire different piece. Here I will 
limit myself to the task of refereeing a paper, and we will 
leave the editorial commentary on journals, predatory 
journals, “publish or perish,” the tenure system and the 
need to publish, etc., for another piece.

When do mathematicians start refereeing? When 
you receive a request to referee a paper, there are several 
important factors to consider. But before we go into such 
factors, let us first address the question “when should you 
start taking on referee jobs?” Or, more generally, “who 
should be a referee?”

The most important qualification in order to be a referee 
is that you need to be an “expert” in the topic of the paper, 
which usually means that (i) you have enough background 
to follow and digest the arguments and techniques used in 
the paper under review, and (ii) you are familiar with the 
literature on the subject, enough to know how this result 
fits into the published record. If you are invited to referee, 
then the editor believes you are suffciently qualified to write 
a review of the paper, so now it is up to you to decide if you 
are a good fit for the job.

In light of all this, typically, mathematicians start ref-
ereeing after (a) they graduate with a PhD, and (b) they 
have published at least one paper. And the first paper you 
are asked to referee is probably related to your thesis, or to 
the topics of your first papers.
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Note that grad students are sometimes asked to referee 
papers... I do not think this is, in general, a good idea or fair 
to the student or the author. Perhaps a better idea would 
be for the PhD advisor and grad student to collaborate 
on a review, which would provide a training opportunity 
in refereeing papers, but I am not sure this is a great idea 
either, since someone else’s paper and career is on the line.

Should I accept the referee job? When you receive a 
referee request, you will be able to see a copy of the paper 
so you can decide if you can accept the refereeing job at 
this time. Go ahead, have a look, and then consider the 
following factors:

	• You are under no obligation whatsoever to referee papers. As 
I mentioned above, this is an unpaid job, so you can al-
ways politely decline an invitation to referee. However, if 
you are a research mathematician who publishes papers, 
then you should consider reviewing papers as part of 
your service to keep the community going.

	• Is this a journal you know about and mathematicians should 
be refereeing for? Please be aware that there are many 
publications out there that are “fake” or dishonest, so 
only accept referee jobs from reputable journals.

	• Is there a conflict of interest that disqualifies you for this job? 
If you cannot be an impartial referee then you should 
not accept the job. Simply let the editor know, and bow 
out. Here is a list of common conflicts: the paper is by 
your advisor, one of your students, a close collaborator, 
a family member, a close friend or a person you have a 
personal conflict with; the paper’s results are very much 
like a paper you are writing yourself; etc. If you think 
there might be a conflict of interest, there is probably a 
conflict. You can always consult with the editor of the 
journal, and let them decide. Note that some fields are 
really small, so there are a lot of connections that may 
be unavoidable. In summary: if for whatever reason, you 
think you will not be an impartial referee, then please 
decline the job.

	• Do you have time for this job? As I mentioned above, 
refereeing is a hard job and to do it well, it takes time 
(probably many hours). Ask the editor when the referee 
job is needed by, and if you cannot possibly have it ready 
by their deadline or soon after, then let them know you 
are too busy to take on this job at this time. Please keep 
in mind that some mathematicians’ careers, particularly 
graduate students and postdocs, are in the balance here, 
and timely refereeing can make a huge difference in their 
next job search.

	• Are you refereeing too much? If you accept too many 
jobs, then it might jeopardize your time for your own 
research. As a general rule, I referee about twice or three 
times as many papers as I submit to journals. Why? Many 
journals require two different referees, so I figure that 
two people kindly took the time to referee my paper, 
so I need to give back to the community two refereeing 
jobs for every paper I publish myself. If I have already 

accepted a refereeing job(s), and I am too busy with it, 
I will simply let the editors know that I am not available 
at this time to write a good and timely report.

	• Are you a good fit for the job? Have a look at the paper and 
try to get a sense of the topic, and the techniques used 
in the proofs. If you are unfamiliar with them, then you 
may not be the “expert” they are looking for, and it may 
take you an enormous amount of time to familiarize 
yourself with the techniques and the literature on the 
subject, so you should be honest with the editor and 
simply say that this is far from your area of expertise, and 
you are not a good fit. Refereeing is not the time to learn 
a new area, when someone else’s career is on the line. 
Of course, the paper is most likely brand new research, 
so you will learn a lot reading and reviewing the paper! 
But you shouldn’t referee a paper which is too far afield.
What kind of a referee job am I being asked to do? 

Typically, editors will ask for one of two types of referee 
jobs: a quick opinion, or a full referee report. In a quick 
opinion, you are only asked to evaluate if the paper is 
a good fit for the journal, and the results are interesting 
enough for the refereeing process to continue ahead. Usu-
ally, this opinion is not even shared with the authors, so it 
is an internal editorial process, and the editors just want a 
quick note back from you (one paragraph or two) about 
the paper with your first impressions (see below for more 
comments about how to evaluate the fit of a paper).

Should I reject a paper right away? Assuming you have 
answered yes to the questions in the bullet points above, 
then it is time to get started: accept the job, download the 
paper, and start lightly browsing its contents.

The first decision you need to make is if the paper should 
be rejected right away because, in your opinion, it is not 
a good fit for the journal. This is a hard call to make, so 
you can ask the editor for more information on what kind 
of papers they are looking to publish. Another good idea 
is to go through the journal’s archives, and look for other 
papers in the same area that they have recently published. 
Is the paper under review, in principle, at about the same 
level or above that of recent papers that have appeared 
in the same journal? If so, then go ahead with the job. If 
the paper is clearly not a good fit, if the result is known, if 
the combination of results and techniques are not strong 
enough for the journal, if the paper needs a huge amount 
of work,... then reply to the editors with a rejection. The 
sooner the better, and if you can, please offer a quick expla-
nation of why the paper is not a good fit, and suggestions 
of better journal fits.

Please do not (ever!) be mean when you reject a paper, 
or if you write a quick opinion. Harsh words are completely 
unnecessary. Just be professional, and imagine you are the 
one at the receiving end of the rejection letter. Be honest 
and direct, but always try to offer some constructive sug-
gestions.
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If you are in the middle of refereeing and you find a big 
problem with a proof, then stop right away, and consider 
for a while if it’s a mistake that cannot be salvaged. If so, 
you may need to reject the paper on those grounds. Or at 
least ask the authors for clarification.

By the way, never contact the authors directly. All com-
munication should go through the editor and the online 
editorial system. The anonymous nature of refereeing en-
sures that referees can be impartial and honest.

How much time should I spend refereeing this thing? 
Refereeing can take many hours, and if the paper is long, it 
can be months of work. Make sure the editors have given 
you a deadline that is reasonable so that you don’t have to 
put everything else aside to review the paper. Let the editors 
know what is a manageable deadline to have a report ready.

That said, once you start refereeing, if the job is taking 
longer that you imagined, then there might be other fac-
tors to consider. If it is taking too long because something 
came up, you might want to let the editors know so they 
can reassign the job if needed. If it is taking way too long 
because the paper is just not well written, or the arguments 
are confusing, or you are spending too much time fixing 
small steps of their proofs... then consider rejecting the 
paper on those grounds.

Note that a rejection is not necessarily a death sentence 
for the paper. Most journals offer sending back the paper 
to the authors for “light revisions” or “major revisions.” If 
you don’t want to quite reject the paper, but you think that 
it needs a great amount of work before it is ready for you 
to review it again, you can send it back with an initial set 
of general comments indicating what the authors would 
need to do for you to reconsider it. For example, you can 
ask the authors to restructure the paper, to add more detail 
in the proofs, to add more results in a certain direction that 
seems to be conspicuously missing from the paper, etc.

What am I actually looking for while refereeing? You 
are now in the thick of it, reading the paper, it looks like 
a good fit, and the paper seems worth looking at in detail. 
What now? What are an editor and an author actually 
looking for?

	• The amount of detail and time you put into a report is a 
personal choice. The bare minimum amount of work a 
referee needs to do is to check that all the arguments are 
mathematically correct. In other words, make sure the 
proofs are correct, and the theorems are stated correctly. 
However, most of us go an extra mile, and give feedback 
to improve the paper in several additional ways.

	• Should I worry about grammar and sentence structure? This 
is optional, because it can be a very time-consuming 
job to go into this level of detail. I do care about this, 
and I can’t let it go, so I will go into all sorts of grammar 
comments, but that’s just me. The key is that I want 
the paper to be readable, and easily understandable by 
others, so if bad sentence structure is getting in the way 
of the math, then I will definitely comment on it and 

suggest alternative sentences that would make a clearer, 
easier to digest argument.

	• Should I check every piece of math line by line? This is 
tricky. You need to check that the arguments are math-
ematically sound, so you need to go into enough detail 
to ascertain as much. If you are not checking certain 
arguments in the paper (e.g., because they are standard, 
or not the main point of the paper) then let the editor 
know, or simply write it in the referee report.

	• Should I provide suggestions? Yes!! Absolutely. The reason 
you are doing this job is because you are an expert in the 
field. You are the target audience! So any suggestions you 
may have, are very much welcome, and that’s the kind 
of referee report that enriches the refereeing experience 
and improves papers. You can offer references, alterna-
tive proofs, short cuts, examples, or any other kind of 
suggestion that you think would improve the quality 
of the paper (particularly if it improves its readability). 
However, you cannot expect that the authors will over-
haul the paper with your suggestions... after all, it is their 
paper and you are not a coauthor.

	• Should I be tough? No. Do not, in any way, write com-
ments that can be construed as offensive. You should 
be an impartial, professional, honest, and direct referee. 
So if things are missing, or if there are glaring mistakes, 
simply point them out in a plain way, and let the authors 
deal with the mistakes. If your comment is going to read 
like “the authors should know that...” then remove that 
comment and think of a way to point the problem out 
in a neutral way.

	• I am in a pissy mood. Should I referee at this time? No. It 
will not go well. You will be annoyed by every single 
little thing, and you might end up rejecting the paper 
for some minor thing. Step away, relax, watch a movie, 
go for a walk, sleep on it, and when you are back in a 
constructive mood, go back to the paper and keep going.

	• Should I be really nice? You do not have to go out of your 
way to be complimentary to the authors, but (negative) 
referee reports can be hard pills to swallow, particularly 
for early stage mathematicians. So I try to sound en-
couraging about the good parts, and offer constructive 
criticism and ideas whenever possible. The key is to strike 
a balance so that your report is useful.

	• I found a mistake. Should I reject the paper? Not yet. How 
big of a mistake is it? Is it a simple error that can be 
fixed? Offer a solution (though you are not obligated 
to do so). Is it a complicated issue that you cannot fix 
yourself in a reasonable amount of time? Write it down 
in the report, and let them deal with it (this may be a 
minor or major revision, depending on the size of the 
gap in the proof). Is it a catastrophic error? Then, yes, 
contact the editor, let them know there is a serious issue 
with the paper, and reject it.

	• Should I evaluate the overall quality of the paper? Yes. This 
is a very hard thing to do, but yes, absolutely, the editor 
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Finally, thanks for taking the time to do a great job 
refereeing papers! Authors definitely appreciate the hard 
work of a referee.

Credits
Photo of Álvaro Lozano-Robledo is courtesy of the author.

Be Inspirable

Allison Henrich

What is it that you’d like to do in your career? Would you 
like to become a better teacher? Become a powerful advocate 
for others? Contribute something significant to your research 
field? Perhaps you have your sights set on someday obtaining 
a large grant that could be transformative for your career, 
your institution, or the math community as a whole. Or 
maybe—and this may be the most exciting scenario—you 
don’t know what your dreams are. You have a set of skills, 
interests, and values, and you don’t know how you can com-
bine them to achieve something great. Whatever you want to 
accomplish, I am a big believer that you can be successful at 
achieving your goals—both those you are concretely aware 
of and those that are a collection of ephemeral ideas—if you 
do one thing: Be inspirable.

What in the world does it mean to be “inspirable”? (That’s 
not even a real word!) It means to be open to inspiration. 
Being inspirable means putting yourself into situations 
where you will meet new people or discuss new ideas with 
old friends. It means learning new things, brainstorming, 
considering what is possible. And, crucially, to be inspira-
ble means that you are open to getting really excited about 
good ideas, so much so that you feel compelled to act on 
that excitement.

will want to know your overall impression after you have 
looked at the entire paper. First, I gain an impression of 
the paper, enough to decide whether the paper is a good 
fit for the journal and I am going ahead with the process. 
And then I wait until I have read the paper in detail to 
decide on an overall opinion of the paper.

	• How do I actually referee? That’s your personal choice, 
but I print a hardcopy of the paper, and write all my 
comments on the paper itself and in the margins, so that 
when I am ready to write, I go comment by comment 
and expand on it in the report.
The referee report. It is time to write all your comments 

and feedback on the actual report. Your name, affiliation, 
and email address should not appear anywhere in the re-
port. Make sure the report is anonymous and that you are 
not writing your comments in a way that will easily identify 
yourself. Consider adding the following components to 
your report:

	• Title and authors of the paper under review.
	• Journal where the paper is submitted (this is mostly for 

your records, because sometimes you get to referee the 
same paper twice for different journals!).

	• Overview: a summary of the results of the paper, so the 
editor and authors know that you have actually read 
the paper. It is also a place to state the main results in 
your opinion, which may differ from the results that 
the authors think are the main results! This section is 
a neutral zone, however, so you are just stating results 
without colorful commentary.

	• Recommendation: a narrative of the strengths and 
weaknesses of the paper, in your expert opinion, which 
concludes with a recommendation for the editors: reject, 
accept, needs minor revision, major revision, etc. You 
can include big items that the authors need to address 
before the paper is accepted, and general comments 
about the paper.

	• Detailed comments: this is an itemized list of comments. 
Please include pages and lines and theorem numbers 
that you are referring to, so that the authors know exactly 
what you are talking about.

	• Conclusion: any other general comments that may im-
prove the paper, or thoughts about the paper itself. Once 
you are done, send the anonymous referee report to the 
editors, in their preferred contact method, probably 
through their online editorial system.
What happens then? After the report is sent back to the 

editors, the editorial team may be waiting for other referees 
to also send in their reports. Once they have all the reports 
on the paper, they will make a decision. If they ask the 
authors for a revision, they might ask you to look at the 
paper one more time. I usually agree to look at the revised 
version because it is efficient, since I am already familiar 
with the paper, but again, it is your call if you are available 
or busy at the time.
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Inspiration can come from a variety of situations. Some of 
these situations are ones you’d expect to be inspiring: attend-
ing a conference or a professional development workshop. 
Others are situations where inspiration might be more rare, 
but possible: a mandatory faculty meeting, a FaceTime date 
with a friend, or even watching an incredibly confusing talk 
or lecture.

In the math community, one common source for in-
spiration for new faculty members is Project NExT. This 
intensive professional development program exposes its 
fellows to new ideas in teaching, conversations about equity 
in mathematics, the nuts-and-bolts of grant writing, and so 
much more. It is probably far more rare for a fellow to go 
through the NExT program and not be inspired to take some 
positive action than otherwise. As a Project NExT Red08 dot, 
I took the opportunity to see Joe Gallian give his workshop 
“Getting Your Research Off to a Good Start” three times over 
the course of several years. During this workshop, Joe would 
point out that his more expository articles had far greater 
readership and vastly more citations than his traditional 
research papers. This inspired me to think about writing for 
MAA journals about topics that a broader spectrum of people 
would find interesting. Since then, I have coauthored papers 
that have appeared in the American Mathematical Monthly, the 
College Math Journal, Mathematics Magazine, and Math Hori-
zons. It may not have occurred to me to try and write in such 
venues if Joe hadn’t planted that seed in my mind early on.

For those who haven’t had the opportunity to participate 
in Project NExT, Section NExT can be a wonderful source of 
new ideas. Kate Kearney from Gonzaga University, for one, 
feels inspired after attending Section NExT meetings. She 
writes, “Possibly one of the most useful things about Section 
NExT has been the opportunity to meet with, talk with, and 
learn from people across the section at many different kinds 
of schools and at many levels of the academic hierarchy. It’s 
always interesting and informative to hear from people at a 
variety of different types of schools (liberal arts, state schools, 
community colleges, big schools, small schools, urban 
schools, very very rural schools). I can’t think of anywhere 
else that I have as rich of a resource of contacts with diverse 
perspectives on many different teaching situations.” One 
concrete change that Kate was encouraged by Section NExT 
to make was to try mastery-based grading in Calculus 2.

Of course, getting the most out of conferences has been 
more difficult in the COVID era, but it is certainly still pos-
sible. For instance, in our virtual Pacific Northwest Section 
NExT meeting in June 2021, we discussed a number of 
teaching techniques we discovered during the pandemic 
and shared with each other the ones we thought would be 
most valuable to keep moving forward. In this conversa-
tion, I learned about software I’d like to try out, assessment 
techniques I’ll use, and I got ideas for course policies I’ll 
implement that are more supportive of students.

AMS and MAA sectional meetings (and other local meet-
ings of national organizations) can also be fertile ground 

for inspiration. When I was at an AMS sectional meeting in 
Charleston several years back, I heard Harrison Chapman 
give a talk related to knot theory that wasn’t really in my 
specific research area. Sometimes, in talks that aren’t squarely 
in my mathematical subdiscipline, I don’t expect to derive 
any new ideas. This was such a fantastic session with such 
engaging speakers, however, that I was paying close attention 
to each talk. In Harrison’s talk, he mentioned tangentially 
some way of viewing knots where the trefoil knot could be 
interpreted as being “the same as” the figure-eight knot. This 
made me wonder which other pairs of knots are “the same.” 
Fast forward a few years, a paper I coauthored devoted to 
exploring this question, “Knots Related by Knotoids,” was 
the lead article in the Monthly and went on to win the Hal-
mos–Ford Award.

Getting involved in organizations you believe in—for in-
stance, NAM, AWM, MAA, CUR, SACNAS, SIAM, PME, AMS, 
and Math Alliance—can lead you to meet people you might 
not have met otherwise and think about how to magnify 
your impact on the math community. Pamela Harris from 
the University of Wisconsin Milwaukee had the following to 
say about her involvement in the Society for Advancement 
of Chicanos/Hispanics and Native Americans in Science 
(SACNAS): “I have been inspired by the mentoring at the 
annual SACNAS conference. Mathematics faculty attend 
the conference and spend the entire weekend mentoring 
students and early career faculty. Their unending mentoring 
has inspired me to find moments to always be supportive 
of others, regardless of how busy I may be. This means that 
when I travel and meet people I make an effort to get to know 
them and their aspirations. This helps me share relevant 
opportunities with them when I encounter them, but it also 
helps me feel connected to the mathematical community.”

Robin Wilson from Loyola Marymount University was 
similarly inspired by his involvement in the National Asso-
ciation of Mathematicians (NAM): “A lot of my interest in 
outreach and general interest in supporting undergraduate 
and graduate students has to do with me wanting to give 
back to the mentorship I received from the NAM members. 
I had people that I knew would look out for me, and I want 
to be able to do the same for others.” Since he initially found 
a home in NAM as an undergraduate, Robin has contrib-
uted to his community in countless ways. Recently, he was 
a co-PI for a $1 million grant from the NSF to increase the 
number of underrepresented minorities pursuing Ph.D.s 
in mathematics. The project, called BAMM! Bolstering the 
Advancement of Masters in Mathematics, is a joint effort 
between three CSU campuses, led by Oscar Vega at Fresno 
State—an incredibly inspirable person himself!

Speaking of grants, perhaps the most inspirable person I 
know, Michael Dorff, the most recent past president of the 
MAA, has earned many. For instance, Michael received grants 
to launch and support both the Center for Undergraduate 
Research in Mathematics (CURM) and the Preparation for 
Industrial Careers in Mathematical Sciences (PIC Math) 
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slides and go through every gory detail. For me, watching 
others’ (both “good” and “bad”) talks has helped me become 
a better speaker over the years. But more recently, I have had 
the opportunity to give some recorded virtual talks that have 
enabled me to watch and analyze my own performance. This 
has spurred me to make several improvements that will make 
me a better speaker.

I have dozens of other anecdotes I could share about how 
being inspirable has benefitted me in my career. Talking with 
others, attending events, reflecting on past practices, and 
being open has allowed me to be a research mentor in two 
REUs and codirect an REU on my own campus, it has led me 
to coauthor and coedit several papers, books, and blogs. It 
has transformed the way I teach. Can you think of a time you 
were inspirable? What impact did it have on you? How could 
you put yourself in situations and a frame of mind to have 
more great ideas and develop more connections with people?

Credits
Photo of Allison Henrich is courtesy of Seattle University/

Yosef Chaim Kalinko.

program. Michael recounts, “About 15 years ago, a colleague 
of mine, Tyler Jarvis, and I were discussing an NSF program 
that focused on helping students make a transition from one 
critical phase of their career to the next phase. In writing a 
proposal to NSF, we knew that it would be better to think of 
projects we had familiarity and success with. In connection 
with this, the BYU mathematics department was having a lot 
of success with its undergraduate research program that paid 
students to work on research during the academic year. We 
also knew that math faculty at smaller universities and col-
leges did not have the experience or capacity to get funding 
from NSF to do small undergraduate research projects. This 
led to the creation of the CURM model which was further 
enhanced by reaching out to a large group of colleagues at 
other institutions through Project NExT to find out what they 
thought about the idea and what suggestions they had on 
how to improve it. Two significant ideas that came from that 
were to have a training workshop for the participating faculty 
and to make the program so that it was not something more 
to add to the already-full plate the faculty had (which is why 
we incorporated course buyouts into CURM).”

Inspiration can also come from unexpected places, if you 
are open to it. When I began my job at Seattle University, I 
was excited to become a part of such a vibrant math depart-
ment, but unsure of how I could contribute to the Jesuit mis-
sion of the university. Initially, I thought, “If I just care for my 
students as people and do a good job teaching, this should 
count as my contribution.” During the mission-oriented part 
of the mandatory faculty orientation, I expected the conver-
sation to be more applicable to philosophy, religion, and law 
faculty—that is, until we started talking about social justice 
and service-learning. This conversation led me to realize that 
a math class could incorporate service-learning in a way that 
benefitted both the community and the students in the class. 
Since then, I have regularly taught a course I developed called 
Quantitative Literacy & Social Justice with a service-learning 
component that has had a measurably positive impact on my 
students’ attitudes about math and has provided hundreds 
of math tutors (my students) to local schools over the years.

Motivation for change can also come from observing 
things going wrong and learning from those things. For 
instance, I am interested in hearing mathematics talks of all 
varieties. I learn not only from watching speakers who have 
spent years honing their public speaking skills and give well-
crafted talks, but also from those who give talks that could be 
improved. I had a feeling that I wasn’t the only one who has 
picked up some speaking tips by observing less-than-perfect 
academic talks. Friends and colleagues reported to me that 
they learned the following from watching “bad” talks: (1) 
never go over time, (2) don’t put too much information on 
a slide, (3) practice your talks so that you know what you’re 
supposed to say next and how you want to explain concepts, 
(4) watch out for using too many filler words, like “like,” (5) 
try not to flip back and forth between your slides, and (6) 
don’t copy/paste a proof from a research paper into your 

Allison Henrich



Jacques Tits (1930–2021)
Richard M. Weiss

Introduction

Figure 1. Jacques Tits at age
19.

Jacques Tits was born in Uc-
cle, a municipality of Brus-
sels, on August 12, 1930,
and died on December 5,
2021. The son of a math-
ematician, Tits displayed
extraordinarymathematical
ability at an early age. He
received his doctorate at
the University of Brussels in
1950 and spent the follow-
ing year at the Institute for
Advanced Study. In 1964,
he moved from the Univer-
sity of Brussels to a profes-
sorship in Bonn, and then
in 1973 to the Collège de
France, where he remained
for the rest of his career. For
almost thirty years he held

courses and seminars at the Collège de France and for
nineteen years, Tits was editor-in-chief of the Publications
Mathématiques de l’IHES.

Tits made many fundamental contributions to our
understanding of the structure of semisimple algebraic
groups and finite simple groups and did more than any-
one to explore and reveal the geometric nature of these
subjects.

When Tits was young, Chevalley had shown that
semisimple algebraic groups over an algebraically closed
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field are classified up to isogeny by Dynkin diagrams.
Tits made a careful study of various structural features of
groups defined over an arbitrary field, much of which ap-
peared in a famous collaboration with Borel. Tits then
used this work to show that semisimple algebraic groups
over an arbitrary field are uniquely determined by combi-
natorial data in the form of a Tits index (a Dynkin diagram
endowed with certain decorations) and an anisotropic ker-
nel, the two things knitted together by Galois descent as
described in his lecture notes from a meeting that took
place in Boulder in 1966. This deep result is in the spirit
of the theorem of Wedderburn that says that a simple as-
sociative ring which is finite-dimensional over its center is
isomorphic to Mat𝑛(𝐷) for some division ring 𝐷, 𝑛 and
𝐷 being analogs of the Tits index and the anisotropic ker-
nel. Another important analog is the theorem of Witt that
says that a finite-dimensional quadratic form is uniquely
determined by its anisotropic part and the dimension of
its hyperbolic part.

Tits is best known for the theory of buildings. A build-
ing is a geometric structure defined by a few simple axioms
involving a notion of dimension called the rank. The sim-
plest example of a building of rank 𝑛 is the projective space
associated with a vector space of dimension 𝑛+ 1. Further
examples arise when the vector space carries a quadratic
or Hermitian form. Together these are the buildings asso-
ciated to the classical groups.

Buildings have distinguished substructures called apart-
ments. A building is spherical if its apartments are finite. A
building is irreducible if it is not a direct product. The clas-
sical buildings are all spherical and irreducible.

Tits introduced the notion of a BN-pair (also known as
a Tits system) and used it together with the structural fea-
tures revealed in his work with Borel to show that to every
absolutely simple algebraic group 𝐺 of positive 𝑘-rank 𝑛
for a given field 𝑘, there is an irreducible spherical building
of rank 𝑛 on which the group 𝐺(𝑘) acts. When 𝐺 is classi-
cal, then so is the building. These buildings are particularly
fascinating objects in the case when 𝐺 is exceptional.
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Figure 2. At the induction of Jacques Tits into the Order Pour
le Mérite, Bonn, 1996.

In a celebrated volume of Springer Lecture Notes pub-
lished in 1974, Tits gave the classification of irreducible
spherical buildings of rank at least 3. His classification
shows that every such building is either classical or excep-
tional or belongs to a unique family defined over an im-
perfect field in characteristic 2.

Inspired by the work of Iwahori and Matsumoto, Tits
went on to investigate affine buildings. Affine buildings are
those in which the apartments have a natural representa-
tion as an affine space. Every affine building 𝑋 of rank 𝑛+1
has a boundary which carries the structure of a spherical
building of rank 𝑛 (and is called the building at infinity of
𝑋). Tits observed that for every absolutely simple algebraic
group of positive 𝑘-rank for a field 𝑘 that is complete with
respect to a discrete valuation, there is an affine building
on which the group 𝐺(𝑘) acts and that its boundary is pre-
cisely the spherical building associated with 𝐺(𝑘). His fa-
mous lectures on the structure of absolutely simple groups
isotropic over a local field and their affine buildings were
delivered at ameeting in Corvallis, Oregon in 1977. In two
monumental volumes of the Publications Mathématiques de
l’IHES (and in lecture notes from a conference on Lake
Como in 1984), Tits and Bruhat completed the classifica-
tion of irreducible affine buildings of rank 𝑛 + 1 for 𝑛 ≥ 3.
Central to this classification is the notion of a valuation of
a root datum of the building at infinity.

Tits and Borel had shown that a semisimple algebraic
group of positive 𝑘-rank has a configuration of subgroups,
which Tits called a root datum. Tits identified a correspond-
ing property for spherical buildings he called the Moufang
condition in honor of Ruth Moufang, a pioneer in the study
of projective planes. Every irreducible spherical building
of rank at least 3 satisfies this condition, and every spher-
ical building satisfying this condition possesses, in a suit-
able sense, a root datum.

An irreducible spherical building of rank 2 is simply a
connected bipartite graph in which every vertex has at least
three neighbors and 𝑔 = 2𝑚, where 𝑔 is the girth, 𝑚 is the
diameter of the graph, and the minimal circuits are the
apartments. Tits called such graphs generalized 𝑚-gons.

The residues of a building are certain distinguished sub-
buildings. Every building is, in a suitable sense, an amal-
gam of its irreducible rank 2 residues; and if the building is
spherical, then it is, in fact, uniquely determined by these
subbuildings. The proof of this was a crucial step in Tits’
classification result for spherical buildings.

There is now an enormous literature on the subject of
generalized polygons, especially finite generalized poly-
gons. Generalized polygons are, however, too numerous
to classify (every projective plane can be viewed as a gener-
alized triangle, for example), but Tits observed that the ir-
reducible rank 2 residues of an irreducible spherical build-
ing of rank 𝑛 ≥ 3 all satisfy the Moufang property as do all
the spherical buildings associated to an absolutely simple
algebraic group of 𝑘-rank 2. In 2001, Tits and Weiss clas-
sified generalized polygons that satisfy the Moufang prop-
erty. They are almost all the spherical buildings associated
with an exceptional or classical group, but this time the list
of exceptions is longer.

Affine buildings are CAT(0)-spaces uniquely deter-
mined by their boundary whenever the boundary satisfies
the Moufang condition and the field is complete. It is this
property that makes affine buildings a subject of great in-
terest in geometric group theory. It also points toward a
possible connection to physics through the holographic
principle.

Jacques Tits andMark Ronan introduced and developed
the notion of a twin building. This notion was inspired by
Tits’ work on Kac–Moody groups which points to another
possible connection with physics. Tits also extended the
Moufang condition to buildings of rank 1 with the notion
of a Moufang set. Moufang sets have proved to be an essen-
tial tool in the study of absolutely simple algebraic groups
of 𝑘-rank 1.

Tits maintained a keen interest in the classification of
finite simple groups as it unfolded. As a tool for identify-
ing the finite groups of Lie type, spherical buildings played
an essential role in the classification. Later a theory of
“diagram geometries” based on older ideas of Tits’ was in-
troduced by Francis Buekenhout and others with the goal
of including the sporadic groups in this geometric picture.
This led, in turn, to Tits’ “local approach” to buildings. Tits
wrote papers on Griess’s construction of the monster and
moonshine and on several other sporadic groups as well
and he proved the simplicity of 2𝐹4(2)′, now called the Tits
group.
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Figure 3. Jacques Tits wearing
the medal of the French
National Order of the Legion
of Honor, Paris, 1995.

Tits introduced the no-
tion of the Coxeter com-
plex associated to a Cox-
eter group (and the term
Coxeter group itself) includ-
ing roots, projection maps,
and other essential features
of these complexes. He
proved fundamental results
about the structure of the
automorphism group of a
tree, the simplest of all
affine buildings. Tits an-
alyzed geometric structures
associated with the Suzuki
and Ree groups, showed
that these groups are clas-
sified by “Tits endomor-
phisms” of the correspond-
ing field, and proved their

simplicity even when the field is imperfect.
In 1970, Tits proved that in characteristic 0, every

finitely generated linear group contains either a solvable
subgroup of finite index or a non-abelian free group. Now
known as the Tits alternative, this result has inspired a host
of generalizations.

In 1964, Tits proved a remarkable result about the sim-
plicity of the subgroup of the group of rational points
of a 𝑘-simple algebraic group generated by certain unipo-
tent elements. Some remarks in this paper gave rise to
the Kneser–Tits conjecture. His 1968 paper on quadratic
forms became the starting point of the Book of Involutions.
In 1971, Tits determined all the 𝑘-irreducible linear repre-
sentations of a reductive group over an arbitrary field. He
also took the first steps in the theory of pseudo-reductive
groups.

In what is now known as the Tits-Kantor-Koecher con-
struction, Tits obtained Lie algebras from arbitrary Jordan
algebras. He devised the Freudenthal-Tits magic square
which forges a Lie algebra out of a composition algebra
and a degree 3 Jordan algebra, yielding all exceptional Lie
algebras if the field is algebraically closed. He also pro-
duced the first and second “Tits constructions” which play
a central role in the structure theory of Jordan algebras.

This brings to a close our attempt to name the highlights
of Tits’ mathematical career, but no brief summary can en-
compass them all, nor can we sufficiently describe the in-
fluence Tits’ mathematics has had on group theory and all
its many neighboring disciplines.

Figure 4. Jacques and Marie-Jeanne in Oslo, 2008.

Tributes

Jean-Pierre Bourguignon
Jacques Tits and I met for the first time in the early 1970s
in Bonn. Friedrich Hirzebruch, who had convinced him
to take a position there, introduced me to him in the tea
room on the ground floor of Beringstrasse 1. This remains
a special memory for me because of the many precious
opportunities I had to meet him later in my life.

Indeed, after I became director of the IHÉS in 1994, we
developed a close and trusting relationship, something I
am highly grateful for because of the thoroughness with
which he approached questions I posed to him. His sense
of humour and his gentle way of talking to people were
legendary.

Jacques Tits was one of the very first visitors to IHÉS,
shortly after its creation in 1958. He lectured several times
at the Institute’s first location Rond-Point Bugeaud, near
Place de l’Étoile in the heart of Paris’s XVIth arrondisse-
ment. Here is what he wrote in a letter to Léon Motchane,
the founder of IHÉS and its first director, dated 15 July
1961: “Pour autant que l’on puisse juger de son propre travail,
je compte les deux séjours que j’ai faits à l’Institut des Hautes
Études Scientifiques parmi les périodes les plus productives de
ma carrière scientifique.”

Later, when the Institute had moved to Bois-Marie in
Bures-sur-Yvette, where it still is, Jacques came for several
long visits, staying with his wife Marie-Jeanne at the Or-
maille Résidence.

Jean-Pierre Bourguignon is the Nicolaas Kuiper Honorary Professor at IHÉS.
His email address is jpb@ihes.fr.
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Figure 5. Announcement of Tits’ first lecture at IHES.

Jacques Tits was asked to become editor-in-chief of the
Publications Mathématiques de l’IHÉS in 1980, succeeding
Jean Dieudonné who had held the position for 20 years.
He was an extraordinarily dedicated editor-in-chief. In the
interview Pierre Deligne gave on the occasion of the con-
ference held in 2000 to honour Jacques1 when he retired
from the Collège de France and shortly after having left the
helm of the Publications Mathématiques, Pierre Deligne says:
“C’était une situation idéale. Tits faisait énormément de tra-
vail. . . Il était un despote éclairé. Il jouait son rôle parfaitement
et savait prendre des décisions quand il fallait mais il consul-
tait d’abord.” The advice Jacques Tits gave to Étienne Ghys
when he took over the editorship from him is revealing:
“Vous savez, c’est très facile, il suffit d’aimer la revue.”

His extremely careful checking of all articles to be pub-
lished there contributed certainly to the high recognition
the journal enjoys in the mathematical community. Dur-
ing his editorship, the journal attracted a number of land-
mark articles, some of them quite long.

On a number of occasions during my time as Director
of IHÉS, I reached out to him for advice on issues related
to scientific initiatives IHÉS should take concerning math-
ematicians to invite or events to organize. His in-depth
knowledge of the mathematical community at a high level
was very valuable. Earlier, he had been helpful in securing
some financial support for the IHÉS from the Belgian gov-
ernment.

His later years were not easy due to a difficult health
condition which confined him to his apartment. At the
end of his life, Tits needed care the around the clock, but

1The movie shot on this occasion by Jean-François Dars and Anne Papillault on
behalf of the CNRS is entitled “A Jacques Tits.” It can be found at: https://
images.cnrs.fr/video/1168.

his sense of humor persisted in spite of all the hardships
and his mind remained clear and agile.

Several mathematicians paid him regular visits. Jean-
Pierre Serre would come to see him every three weeksmore
or less. I accompanied Misha Gromov on some visits, as
Jacques appreciated my providing some “translation” of
what Misha said.

His funeral was very simple. Besides the testimony of a
family representative, Étienne Ghys and Michel Broué pre-
sented accounts of their admiration for him. I had the priv-
ilege of reading short testimonies received from five Fields
medallists. Jacques Titsmade the FoundationHugot of the
Collège de France his sole legatee.

Pierre Deligne
It has beenmy good fortune that Tits was a professor at the
ULB (Université Libre de Bruxelles) in the early sixties. He
gave me two crucial pieces of advice: “Do what you want”
and “Go to Paris.” The latter was easier said than done. Tits
made it possible by introducing me to Grothendieck (at
the Fall 1964 Bourbaki seminar), who, together with his
colleagues, enabledme to become “pensionnaire étranger”
at the ENS (École Normale Supérieure in Paris).

Every Thursday afternoon during one of my last years
of high school, I would bicycle to the ULB to attend Tits’
course on Lie groups. I vividly remember the day he
wanted to define the adjoint group. He began a pedes-
trian proof that the center is an invariant subgroup, then
stopped to say (rough translation): “In fact, this is obvious.
As I can define the center, it is stable by any automorphism,
hence by inner automorphisms.” For me, this interrupted
proof was a revelation of the power of “transport of struc-
tures.” It also shows how symmetry was never far from his
mind.

I also fondly remember the day when I bicycled to his
house in the pouring rain to show him some mathematics,
and how, arriving unannounced, I was warmly received–
and dried–by him and Marie-Jeanne.

In 1964, Tits left Brussels for Bonn. It was only in 1973
that I again saw him regularly. Attending his course at the
Collège de France was one of the highlights of my week.

Tits was a perfectionist. When he succeeded Dieudonné
as editor of the Publications Mathématiques de l’IHÉS, he de-
voted a lot of energy to it, but he enjoyed the result, and the
beautiful typography. Tits resigned when the composition
was computerized.

He had a great interest in languages. He learned Japan-
ese to better enjoy his visits and Chinese to read classical

Pierre Deligne is professor of mathematics at the Institute for Advanced Study
in Princeton. His email address is deligne@ias.edu.
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Figure 6. The Tits family: Léon (nicknamed Pap), Jacques
(Yaak), Jean (Coc), Yvonne (Vonne), Ghislaine (Ghaine), and
Louisa (Mam).

poetry. In French, he suffered when I failed to use a needed
imperfect subjunctive, and regularly chided me for my Bel-
gicisms, correcting my “rouler en vélo” to “rouler à vélo.”

He and Marie-Jeanne were inseparable. When walking
became difficult, he leaned on her. Her death was a shock
from which he did not recover.

His death, during the covid epidemic, came unexpect-
edly. I could only find some solace by reading from his
Collected Works, where his spirit remains.

Jean-Pierre Tignol
As a thesis advisor, Jacques Tits was always supportive and
benevolent to me, and I benefited immensely from his ap-
proachable demeanor and generous personality. In our in-
frequent work sessions, I had the privilege to witness the
workings of his mind and to appreciate his unfailing, often
self-deprecating, sense of humor. Even though the prob-
lem he suggested to me was purely algebraic, his line of
thought was infused with geometric insights.

This unique opportunity bestowed on a student in Bel-
gium by an illustrious mathematician from Bonn Univer-
sity who was about to move to the Collège de France was
a result of Tits’ attachment to his country of birth. While
he lived abroad, he regularly returned to visit not only his
family, but also his colleagues in the mathematics depart-
ment of the Université Libre de Bruxelles, from which he
had graduated and which had offered him his first posi-
tion. Tits had to become a French citizen in order to take
his chair at the Collège de France, but he kept an enduring
connection with Belgium. He once recounted that on an
official visit at the Collège de France the French president

Jean-Pierre Tignol is professor emeritus of mathematics at the Catholic Uni-
versity of Louvain. His email address is jean-pierre.tignol@uclouvain
.be.

Valéry Giscard d’Estaing asked him where he came from
(“Et vous, d’où sortez-vous ?,”) expecting as a reply the name
of any of the prestigious French grandes écoles. Tits replied:
“Er. . . from Belgium.”

Pierre-Antoine Absil
Jacques Tits was the brother of my maternal grandfather.
I met him on rare occasions, but my mother Janine Tits
was his closest relative during the latter period of his life.
Together with her brother André Tits, she was of great help
in gathering the family memories that are shared in this
contribution.

Born on August 12, 1930 Jacques was a lively, joyful
child, curious about everything. He lived in the family
home at 21 Avenue Victor-Emmanuel III in Uccle, Belgium,
with his parents, his older brother Jean, and his older sis-
ters Ghislaine and Yvonne. As a child, he dreamt of be-
coming a tramway driver: he loved watching the driver do-
ing his thing. Jacques’ father, Léon Tits (born in February
1880), was employed as an assistant in the mathematics
department at Université Catholique de Louvain (UCL).
At the time, he was a Catholic priest, like most professors
and many assistants back then at UCL. By 1914 though,
he was in disagreement with the clergy. He left the priest-
hood and was forced to resign from the university. The
Catholic Church made it difficult for him to find employ-
ment elsewhere. His parents and many of his relatives re-
jected him as well. In 1917, he married Louisa André, a
remote cousin, a warm, honest person, who worked as a
piano teacher. The family lived happily, though with lim-
ited means. Léon died of Parkinson’s disease in 1943, in
the midst of World War II. After Léon’s passing, Jacques’
older brother Jean became the family’s breadwinner and
took over his father’s private tutoring.

In 1941, Jean was starting as an engineering student at
the Université Libre de Bruxelles (ULB). As Jacques would
hear his dad and brother discuss integration, he wanted
to understand. It was shortly before Léon’s death, when
Jean told his bed-ridden father “now I know” that Jacques
is truly exceptional. Jacques started to teach university-
level mathematics to his brother’s classmates who were en-
countering difficulties. He soon decided, on the encour-
agement of his mathematics teacher, Charles Nootens, to
attempt the entrance examination to the ULB’s engineer-
ing school.

In preparation for the entrance examination, Jacques
had to learn trigonometry, so Jean lent him his 60-page
textbook. The next day, Jacques knew it all. His secret: start

Pierre-Antoine Absil is professor of applied mathematics at the University of
Louvain. His email address is pa.absil@uclouvain.be.
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Figure 7. Marie-Jeanne and Jacques, Rome, 1953.

from the end; if you understand the end, you can recon-
struct the rest. He passed the entrance examination with
flying colors. At age 14, he entered the ULB as a student in
mathematics.

In his third year at the ULB, under the direction of Paul
Libois, he obtained startling results in algebra, in particu-
lar on 3-transitive groups. He obtained his bachelor’s de-
gree at age 18, then his PhD before age 20. I recall seeing
a framed newspaper article at my grandparents place prais-
ing his accomplishment as the youngest Belgian Doctor of
Science.

In 1949, Jacques met then-Princeton mathematician
Emil Artin at the Colloque d’algèbre et théorie des nombres
in Paris. Artin invited him to visit Princeton. This would
be Jacques’ first trip outside of Europe.

Also in 1949, Jacques’ first niece, mymother Janine, was
born. “Yaak” became “Oncle Yaak.” He loved taking care
of Janine. In his late years, he confided to Janine that he
would have loved to have children of his own and that he
considered her as his daughter.

In 1953, in Rome, Jacques met Marie-Jeanne Dieuaide,
herself an FNRS Fellow from Belgium. Her field was his-
tory. Jacques and Marie-Jeanne were housed in the same
dormitory building. Marie-Jeanne later confided to us that,
before Jacques’ arrival, she had joked with other FNRS fel-
lows: “A mathematician is joining us? I hate math! Too se-
rious and boring forme!” She soon changed hermind and
proceeded to make him see other horizons. Marie-Jeanne
and Jacques got married in Brussels on September 8, 1956.

From 1956 to 1962, Jacques taught extensively at the
ULB. In 1964, Jacques and Marie-Jeanne left for Bonn,
where they would remain for ten years. Jacques kept close
contacts there for the remainder of his life.

A close friendship had been formed between Jacques
and Jean-Pierre Serre. Serre wished to have Jacques
with him at the Collège de France, and succeeded after
Jacques changed his citizenship to French, at that time a

requirement for obtaining a professorial position at the
Collège de France. In 1975, Jacques gave his inaugural lec-
ture at the Collège de France. This lecture was addressed
to a general audience, and Jacques succeeded in making it
seemingly understandable, even exciting, to the “person in
the street,” bringing to life the central role played by sym-
metry in mathematics.

In 2008, several family members had the privilege of
attending the Abel Prize award ceremony in Oslo. Jacques,
in a wheelchair, peppered his speech with the humorous
touch that characterized him.

In the latter portion of his life, Jacques had health
problems. Multiple times, Marie-Jeanne contacted Janine,
head-pharmacist at Verviers Hospital, asking her to con-
sult with Jacques’ doctors concerning his ailments. Several
times Janine, in close consultation with her cousin Claude,
had both Jacques and Marie-Jeanne urgently hospitalized
in Paris. In spite of all these travails, Jacques never com-
plained. Always accepting his fate, smiling, full of great
charm and humor, he had an amusing anecdote for every-
one.

Mywife Tatiana Sirbu recently accompaniedmymother
to Paris. Originally from Moldova, she speaks fluent Rus-
sian. Jacques wanted to hear about her home country, her
youth in the USSR, her current research work on depor-
tations and transfers of populations during the Soviet era;
they even had long conversations in Russian together. That
day Jacques was especially witty. Beside being fluent in
English and German, he could converse in Russian and
Italian, and was in the process of learning Spanish (he
wanted to read Don Quixote in the original) from his then
chief homecare person, Madame Rodriguez, plus an As-
simil book. He also studied Chinese and Japanese. He
once confided to my mother and André that he still had
some to-be-written mathematics papers in his head.

Jacques and Marie-Jeanne never had children. Their
child was their research, their life was the Collège de
France. An idea emerged: Would Jacques bequeath his en-
tire estate to the Collège de France, specifically to its Fon-
dation Hugot? Jacques was delighted at such a thought.
Jean-Pierre Serre contacted the Fondation Hugot and soon
Jacques wrote a will, before two witnesses: his dear friends
Jean-Pierre Serre and Jean-Pierre Bourguignon (then Presi-
dent of the European Research Council). This being set-
tled, Jacques was serene. He received the promise that
he would never have to leave his apartment, and Florence
Terrasse-Riou, director of Fondation Hugot, told him that,
down the road, his apartment would remain the “Apart-
ment Jacques Tits” and would be made available as hous-
ing for visitors.

Jacques never showed interest in using new technolo-
gies. He lived without a TV or even a radio; newspapers,
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Figure 8. Jean-Pierre Bourguignon, Jean-Pierre Serre,
Jacques Tits, Florence Terrasse-Riou, Claude Piret, and André
Tits in the Tits’ apartment in Paris, 2017.

magazines, and books were sufficient for him. For his 91st
birthday (on August 12, 2021), André offered him a lap-
top so that, with the help of Stéphanie, his chief homecare
person at the time, he could read emails we sent him and
interact with us on Skype.

On December 1, 2021, Janine had a pleasant Skype con-
versation with Jacques and Stéphanie. Jacques sent her a
virtual kiss. He would leave us four days later at dawn.

Always generous, charming, smiling, and joking,
Jacques expressed interest for all things. We keep fromhim
enchanted memories, a life model for future generations.

Franz Bingen
Jacques Tits was born in 1930 as the youngest in a family
of four surviving children. As a child, he played a lot with
his sister Yvonne, who preceded him by eighteen months.
The two felt like twins. They kept this special complic-
ity throughout life. There was a mathematics gene in the
family. Jacques’ father was a high school mathematics
teacher. He taught Jacques how to calculate at the age of
four. Jacques made rapid progress and skipped grades in
elementary school. His father quickly realized his uncom-
mon mathematical gift and did his best to develop it. Un-
fortunately, he died as Jacques was approaching thirteen.
Jacques found his own way to help his mother to make
ends meet. He gave lessons in mathematics to students
preparing for the entrance exam to the Faculty of Applied
Sciences at the Université Libre de Bruxelles (or ULB). He
took that opportunity to take the exam himself. Jacques

Franz Bingen is professor emeritus of mathematics at the Free University of
Brussels. His email address is fbingen@vub.be.

Figure 9. Franz Bingen and Jacques Tits at the wedding of
Tits’ sister Yvonne and Bingen’s brother Roald in Brussels,
June 19, 1954.

came out first in the exam, and this allowed him to start
early working on a bachelor’s degree in mathematics at the
Faculty of Sciences of the ULB. He got his BA at eighteen.
Two years later, he defended a PhD thesis prepared under
the direction of Paul Libois, who had been his geometry
professor throughout his studies. After that, he obtained
postdoctoral support from the science foundation in Bel-
gium (FNRS). This gave him the opportunity to present his
habilitation and to start an academic career at the ULB. In
particular, he assisted Paul Libois by contributing to the
teaching of the projective geometry course for second-year
students in mathematics.

I became a student at the ULB in 1950. Projective ge-
ometry was one of the courses I had to take and Jacques
Tits was the professor. I enjoyed his very personal style of
teaching. In the tradition of Enriques as later developed
in a two-volume book by Veblen and Young, one usually
started from the axiomatics of the projective plane and de-
duced its main properties. After this one climbed a dimen-
sion higher and if time allowed one reached general pro-
jective space. Jacques Tits began with the projective line
and the characterization of the group of projectivities on
the line among triply transitive groups. In dimension 2,
he introduced the nearly fourfold transitive groups and
again established the relationship with the group of pro-
jectivities of the projective plane. Then he could deduce
the traditional properties more easily. In spite of the diffi-
culty of the material, he succeeded in keeping his lectures
understandable to the students. We owed this to his very
communicative style of teaching, which was very different
from the distant manner adopted by most professors at
that time in universities. His eyes sparkled with intelli-
gence and above all he radiated kindness.
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Three years later, I met Jacques again in very different
circumstances. My brother Roald went to a summer camp
in Austria. Holidays did not go according to plan for him,
as an angina forced him to take to his bed. One young lady
paid special attention to him during his convalescence.
She was, by a nearly miraculous coincidence, Jacques’ sis-
ter Yvonne. She and Roald soon became engaged and they
married on June 19, 1954. At the wedding, Jacques (24
years old) and myself (two years younger) were of course
present. We raised our glass to the health of the newly-
weds and also, to a certain extent, to a new friendship that
would last for the rest of our lives. Obviously, Jacques felt
very comfortable in our family. We were soon separated,
however, by our various scientific stays abroad.

The early sixties was an exciting time at the ULB. Jacques
became a full professor, while I was appointed lecturer in
the Flemish section of the university. We found it impor-
tant, at a time when the number of students, and therefore
of professors, researchers, and assistants, was growing sig-
nificantly, to activate research in mathematics at the uni-
versity. Our contribution took the form of a seminar de-
voted to a current scientific subject. The first year was de-
voted to Banach algebras. Jacques wanted to better under-
stand the link between a commutative Banach algebrawith
unit and its compact spectrum. Lucien Waelbrouck, who
had studied continuous inverse algebras, was playing the
third wheel at the seminar, which was rapidly named the
BTW seminar (BTW is the acronym for value added tax in
Dutch). Through Georges Papy, we got to know another
young mathematical prodigy, Pierre Deligne, still on the
benches of secondary school. To interest him, we oriented
the second and third seminars towards algebraic geometry
and Lie algebras, this time with the help of Guy Valette and
Firmin Bratslavski, two geometers.

In 1964, Jacques Tits obtained a chair of mathematics
at the University of Bonn, better tailored to his mathemati-
cal interests than his assignment in Brussels. Jacques came
to Belgium regularly to visit family, in particular his dear
sister Yvonne and her children. Here is how Christine, a
daughter of Yvonne, describes her relationshipwith her un-
cle: “. . . for us, Uncle Jacques was above all this super-funny
uncle, extremely simple and kind, who came to visit us
once a year according to the availability of his conference
life, staying with us for the weekend. He told us extraor-
dinary stories, experienced during his travels around the
world. Magical moments for the children that we were,
where he had this mischievous side, disarming with can-
dor alongside an immense sweetness. This is the image
that, I am sure, my sister and brother will keep with me
of this uncle we loved a lot and who made us laugh and
dream so much.”

Figure 10. Hendrik Van Maldeghem, Gopal Prasad,
Pierre-Emmanuel Caprace, Jef Thas, Bertrand Rémy,
Jean-Pierre Serre, Ernie Shult, Bernhard Mühlherr, Jacques
Tits, Francis Buekenhout, Marie-Jeanne Tits, Richard Weiss,
and Mark Ronan at a colloquium in honor of Jacques Tits’
75th birthday at Ghent University, October, 2005.

Much, much later, around 2008, I started meeting him
again, this time in his apartment in Paris. My wife and
myself went several times a year to the ballet at the Paris
Opera and always took the opportunity to visit Jacques and
his wife Marie-Jeanne Dieuaide. Jacques had developed
Parkinson’s disease. He had his Complete Works on his bed-
side table. He leafed them through with us and asked for
the latest news in his family. Jacques passed away peace-
fully in December 2021. His friends retain the image of a
brilliant mathematician with a charming personality.

Michel Broué
I would just like to tell here how sad many of us are, who
have known Jacques Tits professionally and personally. A
peculiar intuition, a source of exceptional ideas, an origi-
nal and quite productive point of view, and even a kind of
library, have disappeared. This is quite a loss.

But the first feeling which comes to my heart when I
think of him is: kindness. To chat with him was always
pleasant, reassuring, quiet. He also expressed — I am not
sure I find the right word — a kind of unusual modesty.
A kind of modesty always spiced up with a soft and con-
stant sense of humor. Once he was giving a lecture at the
Bourbaki Seminar, and at one point he had to mention a
theorem known all around the world as “Tits’ Theorem;”
he talked about “le théorème de moi.”

He had been very precocious, defending the equivalent
of a Habilitation at the age of 20. Years later, he explained
to me that the main hardship for a mathematician is

Michel Broué is professor emeritus of mathematics at Paris Diderot University.
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Figure 11. Michel Dehon and Jacques Tits at the conclusion of
a talk by Tits in Ghent, October 25, 1979.

always to understand (and to smoothly accept) that one
day you will find someone quicker, brighter, “better.”
Once this is accepted, a mathematician’s life is marvellous,
he added.

He was both attached to traditions and opened to
rational reasons (he was a mathematician. . . ). A stu-
dent of mine submitted a “Note aux Comptes-Rendus de
l’Académie des Sciences” which was good. But the author
insisted on writing “je définis,” “je démontre,” etc. and at
first Tits would not accept this. He wanted the usual “nous
définissons,” “nous démontrons,” etc. The student insisted
that no one else but he had defined and proved, and he
added that only the late Kings of France would speak of
themselves with “nous.” Tits accepted “je.”

The Collège de France was profoundly renovated at the
end of the last century. One day the room where he was
supposed to deliver the first lecture of his annual course
was unavailable, and there were signs on the main door
which directed the audience to another room. Tits arrived
from the rear and did not see the signs. “Voilà, personne
pour mon cours, je savais que cela arriverait un jour” was what
he immediately thought, and when he eventually found
the right room he was still pale. Needless to say, though,
that Jean–Pierre Serre, among others, never missed one of
his lectures.

Alain Valette
The late seventies were an exciting time to studymathemat-
ics in Brussels. The two universities (the French-speaking
one, ULB, and the Dutch-speaking one, VUB) were
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sharing the same campus, and there was intensive collab-
oration between the two mathematics departments, with
a number of professors enjoying dual affiliations. People
like Jean Bourgain and Ingrid Daubechies were active at
VUB, and at ULB we enjoyed regular visits of extraordinary
alumni like Pierre Deligne and most frequently Jacques
Tits. We were lucky, as undergrads, to have two young
geometry teachers, Francis Buekenhout and Jean Doyen,
who strongly encouraged us to attend research seminars.
So, from my 4th and final undergraduate year (1979–
1980), I enjoyed following Tits’ seminar talks, in Brussels
and in Ghent. Even if I did not always have the prerequi-
sites, I was always impressed by his clarity, and there was al-
ways something deep to extract from his beautiful lectures.
That same year, in spring 1980, my mathematical inclina-
tions were leading me towards operator algebras; I applied
for a PhD thesis scholarship from the Belgian Fund for Sci-
entific Research (FNRS), and I was lucky to get it. Simul-
taneously, my official thesis supervisor Lucien Waelbroeck
had a severe accident that kept him away from academia
for a full year. So I found myself in the embarrassing sit-
uation of having a scholarship but no supervisor. To help
me out of this unpleasant situation, Buekenhout arranged
an appointment for me with Tits. I was extremely intimi-
dated, and trying to make me more comfortable Tits said,
waving his hands about 60 cm from each other: “Oh but I
know you, you were like that first time I saw you.” He was
alluding to the fact that he met me as a baby boy, back in
1959, when my father Guy Valette was doing his PhD the-
sis with him. (My father, born in 1934, was Tits’ first PhD
student.) Evenmore intimidated, I nevertheless succeeded
in explaining my thesis project. Tits exclaimed: “Young
man, if you want to do operator algebras today, there is
one saving grace: go to Paris andworkwith Alain Connes!”
With the recklessness of youth, I went to find Connes in
Paris and indeed became his unofficial PhD student. Two
years later Connes got the Fields medal. In retrospect, Tits
gave me the best advice in my career.

Since my thesis was on 𝐶∗-algebras associated with real
or 𝑝-adic simple Lie groups, I frequented group theory con-
ferences where I would occasionally meet Tits. Sometimes
I had the good fortune to be invited to his table for lunch
or dinner and got to experience how sweet and gentle he
was, but also how funny and witty he could be, with a typ-
ically Belgian sense of self-mockery. Tits’ style of writing
was akin to his style of lecturing: a model of clarity and
exposition. Un grand monsieur.
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Figure 12. Tits lecturing at the 80th birthday conference for
Tits’ advisor Paul Libois at the Université Libre de Bruxelles,
April 1, 1981.

Michel Racine
Jacques Tits was a kind and witty friend. I met Jacques
and Marie-Jeanne in the fall of 1966. He was a visiting
professor at Yale and I, a beginning graduate student. I
did not have the prerequisites to attend his course on alge-
braic groups but was looking for the opportunity to speak
French. They were both extremely kind with a good un-
derstanding of what belonging to a French-speaking mi-
nority meant. This developed into a life-long friendship.
A few years later while they were visiting Ottawa, I intro-
duced my future wife to them. I had tried to explain to
her Jacques’ mathematical importance without much suc-
cess until I told her he received his PhD at 19. She asked
Jacques if this was true. “Yes.” “But you are a genius!” His
answer was yes but with a connotation of there are things
in life that can’t be helped. Marie-Jeanne looked aghast
and said “Jacques!” All three of us broke into laughter and
Lise looked nonplussed. What made it so funny was that
it was really out of character.

At the 1974 ICM in Vancouver, he began his talk with:
Pick a group. Any group. Your favorite group. Let’s say
𝐸8. Looking around at those who were laughing or smil-
ing, you could tell who would enjoy the talk. In 1988–89,
we spent a sabbatical in Paris. Marie-Jeanne was helpful
in finding us a place to stay. Early on, Jacques made the
rounds of the mathematical libraries to introduce me to
the librarians. I thought, what a waste of time, we could
have discussed math instead. But, of course, he knew what
he was doing. Without his personal intervention, I would
not have been allowed to use these institutions.

Tits was proud to be a foreign member of the German
order Pour le Mérite founded by Frederick the Great. There
are no more than 40 German members and 40 foreign
ones.

Michel Racine is professor emeritus of mathematics at the University of Ottawa.
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Figure 13. Tits teaching at the
Université Libre de Bruxelles
his first year as an Assistant
Professor, 1957.

In the preface of his book
[2], Nathan Jacobsonwrote:
“I am greatly indebted to
Jacques Tits who took time
off from his own impor-
tant researches on algebraic
groups to derive, via the
theory of algebraic groups,
the elegant constructions of
exceptional Jordan algebras
which we have given in
Chapter IX.”

Jacques and Marie-
Jeanne were inseparable.
Her illness and death were
the great tragedy of the end
of his life. When they spent
a few weeks in Ottawa, I
rented a two-bedroom suite
in a nearby hotel. The staff

cleared one of the bedrooms and installed two banquet ta-
bles side by side so they could work together. In our con-
versations, “What are you reading?” was a frequent ques-
tion. Once Jacques answered “We are rereading Proust.”
“Are you reading the same thing?” “Of course. We read in
bed; one of us reads aloud until we feel sleepy.”

Roger Howe
When I think of Jacques Tits, I think of a kind and generous
person. Among the leaders of French mathematics of his
generation, he stands out as the onewho saw value inwhat
I was doing, and took steps to further my career.

I met Jacques somewhat by accident, for me a very
happy accident. We both spent 1971–72 at IAS and we
both had apartments in the IAS visitors apartment cluster.
My walk to Fuld Hall took me past the Tits’ apartment.
Apparently, my whistling while walking by attracted the
attention of Jacques and his wife Marie-Jeanne. (Perhaps
because it was off key. I am not at all musical, but they
were too polite ever to say that.)

Jacques arranged to have me invited to visit the Son-
derforschungsbereich run by Friedrich Hirzebruch at the
University of Bonn for 1973–74. In Bonn, I had two sig-
nificant mathematical interactions with Jacques. Günter
Harder was also party to these. The first concerned the or-
bit structure of pairs of classical groups acting on the ten-
sor product of their standard modules. This led me to the
idea of dual pairs in the symplectic group, which has been
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my main research focus in the half century since. I first re-
ported on the basic ideas at the Arbeitstagung conference
that marked the end of the academic year for the Sonder-
forschungsbereich.

The second was about a question of Harish-Chandra,
who was trying to establish properties of character distri-
butions, which had been so central to his work on real
reductive groups, in the 𝑝-adic situation. Harish-Chandra
wanted to know if certain constructions could be guaran-
teed to be well-behaved relative to nice maximal compact
groups. I knew how to show this was so when the size
of the residual field was large enough. Jacques, with his
understanding of algebraic groups as group schemes, was
able to show that this meant it could always be done. He
communicated the results to Harish-Chandra, who incor-
porated them into his work on characters.

I saw Jacques next in the summer of 1977, at the
AMS Symposium on “Automorphic Forms, Representa-
tions and L-Functions” in Corvallis, Oregon. He gave a
set of plenary lectures on buildings and their implications
for reductive algebraic groups over local fields. I also gave
a talk in Corvallis, sketching how the ideas conceived in
Bonnhad developed since 1974 and some implications for
𝑝-adic representation theory. The main facts were mostly
still quite conjectural, but Jacques again was supportive,
and in the following year he invited me to give a talk at
the Collège de France.

Over the following decade plus, I had the pleasure of
seeing Jacques and Marie-Jeanne in New Haven, when
Jacques would visit Yale. He had substantial interests in
common with Nathan Jacobson (Jordan algebras) and
Walter Feit (finite groups). A most enjoyable feature of
these visits was the farewell dinner at the Union League
Cafe, generally considered the best restaurant in New
Haven.

I regret that I hardly saw Jacques after 1990. What re-
mains strong is gratitude for the substantial help and en-
couragement he gave, and appreciation for the person he
was.

Jef Thas
In 1969, I followed a series of lectures on “Groupes de
Chevalley” at the University of Brussels; the main orga-
nizers were Francis Buekenhout and Franz Bingen. There
I learnt about the work of Jacques Tits on BN-pairs. A
few years later, I read the book of Peter Dembowski on
finite geometries, and learned about generalized polygons.
These objects were defined by Tits in his famous 1959
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paper on triality. In Dembowski’s book, I found the de-
scription of certain Tits’ generalized quadrangles 𝑇(𝑂) aris-
ing from ovoids. I generalized the construction of these
𝑇(𝑂) and gave a lecture on it at a summer school in Italy
in 1972. I sent the paper to Jacques Tits, and he answered
me from Princeton that he would present my work to Ge-
ometriae Dedicata. So my first contacts with Jacques Tits
started in the period 1972–1974. That was the beginning
of the many handwritten letters I received from him. It
was also the starting point of my research on generalized
polygons, one of the topics on which I am still working.

In 1976, Jacques Tits sent a letter to Stanley Payne, Fran-
cis Buekenhout, and me. In his letter he included the
preprint “Quadrangles deMoufang, I.” He alsomentioned
that due to his moving from Bonn to the Collège de France
his collection of reprints and preprints was “in a shamble”
and so he was not sure that the results in his text were new.
He asked us if the results were known up to the best of our
knowledge. He also said that “the interest of the paper is
certainly quite limited.” In fact this paper is part of his
huge achievement, the classification of all Moufang poly-
gons. This letter also shows his kind way of dealing with
much younger researchers. (I was 32 and was of course
very honored.) In February 1979, Jacques Tits was awarded
the title of Doctor Honoris Causa by Ghent University. It
was a great honor for me to be his promoter and to in-
troduce him during the ceremony. It was the first time
that my wife and I met Jacques Tits and his wife Marie-
Jeanne Dieuaide. We talked about a lot of things, not only
mathematics. We told him that we liked Italy very much
and that we stayed twice at the Academia Belgica in Rome.
It appeared that in 1953 Jacques stayed at the Academia
and that he met Marie-Jeanne there while she was doing
research on Medieval History.

In the winter of 1979, Jacques Tits and his wife visited
GhentUniversity again, and Jacques gave a talk on diagram
geometries. Jacques Tits and his wife were very fond of
Ghent. While being in Ghent, Marie-Jeanne consulted the
archives of the city in the frame of her research about the
Flemish cities in the Middle Ages. They always stayed in
their favorite hotel, the “Cour St Georges” in an eighteenth-
century building.

In 1981, they visited Ghent again, and now Tits talked
about groups and Kac–Moody algebras. At the same time
my colleague Stanley E. Payne, then professor at Miami
University, Ohio, was visiting me. We were busy work-
ing on our book Finite Generalized Quadrangles. In 1977,
Payne published two long papers proving the uniqueness
of the generalized quadrangle of order 4. Before including
it in the book, we discovered that the proof was incom-
plete. We mentioned this to Tits who immediately started
to write on the blackboard in my office. The next day he
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came up with a proof that certain configurations could not
exist. This allowed us to complete the missing part in the
proof. His reasoning was very original, and I am not sure
that Payne and myself would have found it. Tits was just
in time visiting me in Ghent to save us!

For Tits’ 60th birthday, the Belgian Mathematical Soci-
ety organized a conference in 1990 at the Palace of the
Academies in Brussels. The rector of our university invited
Jacques, Marie-Jeanne, my wife and myself for an informal
lunch, just the five of us in a room adjacent to the meeting
room of the University Board. The rector had to preside
at a meeting of the Board, which was supposed to start
right after the lunch, but the rector was so charmed by the
Tits family that he let the Board know that they could start
without him.

For my 50th birthday, some of my colleagues organized
a two-day conference as a surprise. An even bigger surprise
was that Jacques and Marie-Jeanne showed up. Jacques
gave a beautiful talk on Moufang polygons.

In 1996, we organized a conference in honor of the 65th
birthday of Jacques Tits. Then in 2003, I had the opportu-
nity to see him again in Brussels at a conference in honor of
my good colleague Francis Buekenhout. Some years later,
my colleagues Van Maldeghem and Mühlherr organized a
meeting for the 75th birthday of Jacques.

The last time I spoke briefly to Jacques was in 2008 at
the Palace of the Academies in Brussels, during a ceremony
in honor of Jacques Tits and Pierre Deligne being awarded
the Abel prize respectively the Wolf Prize. His health was
not good anymore and he needed a wheelchair.

Jacques Tits was a great man, not only as a mathemati-
cian but also as a human being. We all will miss him.

Hendrik Van Maldeghem
The first time I heard about Jacques Tits was in a lecture
for second-year undergraduates at Ghent University. It was
a course in projective geometry, and the professor (Julien
Bilo), nearing his retirement, was more concerned about
telling stories than presenting mathematical results. One
story was about a little boy wearing short pants that hemet
at Brussels University, who amazed his professors with his
knowledge and mathematical insight. Jacques was barely
14 when he entered university.

Some years later—I think I was still a student, or per-
haps a first-year PhD—Jacques Tits visited Jef Thas and I
saw Jacques in real life. Jacques was an honorary doctor at
our university (on the initiative of Jef Thas) and paid regu-
lar visits. The first talk I heard him present was in Mons in
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the same year, I think it was 1983. I remember himwriting
down the correct order of the monster on the blackboard,
excusing himself for knowing it by heart by pretending that
this huge number consisted of his telephone number, then
his bank account number, then his social security number,
etc. The talk was in French, as far as I remember, but it did
not matter. In fact, that is one of the many things I always
liked about Jacques’ talks: he spoke and pronounced very
clearly, using simple words; it did not matter in which lan-
guage he was speaking—and he spoke many languages!
His explanations always made the audience feel that they
understood everything; that was his special gift.

One especially charming feature about Jacques was that
he always made people feel important; for him all math-
ematicians were equal, he never looked down on lesser
gods. I experienced this myself several times. For example,
after finishing my PhD, which was about the special class
of affine buildings of type 𝐴2, I wrote a letter to Jacques
explaining what I did (no email at that time; it was 1984).
In the same year, Jacques classified all affine buildings of
irreducible type and rank at least 4. His reply to my letter
started with the sentence “It seems that we have been work-
ing along the same lines this year.” As a second example,
many years later, in 1994, I invited Jacques Tits to present
a talk at the conference celebrating the 50th birthday of Jef
Thas, my mentor at Ghent University. We were publish-
ing the proceedings and I persuaded Jacques to submit a
paper. He wrote one about theMoufang condition for gen-
eralized polygons and the relation with root systems. He
wrote this by hand, and I committed myself to put the text
into LATEX. Doing this, I discovered a small oversight in one
of the formulations. (He’d overlooked that the root groups
of the smallest Suzuki group are abelian.) Jacques was very
pleased, and at the conference he started his talk by thank-
ing the organizers, as usual, but added, “if you ever write
a paper full of mistakes, just send it to Van Maldeghem to
type it out, and he will not only do this, but also correct
all your errors.”

I remember Jacques as someone who was very generous
and thankful. In the 90s, I followed several courses of his
at the Collège de France. Every Tuesday in winter, I drove
630 kilometers from Ghent to the center of Paris and back
to follow his lectures. Sometimes PhD students joined me,
either for the full course, or on a sporadic basis; one time
my two sisters even joined me (they were math teachers).
And at the end of every course, Jacques invited me and ev-
eryone else who joined me regularly, to an extended lunch
in Paris (more like a dinner at noon). He was so thankful
that we came from so far just for him—but of course the
pleasure and the added value were entirely ours.

Jacques’ lectures were very pleasant to follow.
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Figure 14. Francis Buekenhout, Jean-Pierre Serre, Jacques
Tits, and Hendrik Van Maldeghem in the first row, at the
conference in honor of Jacques’ 75th birthday in Ghent, 2005.

His style was informal but in a way very efficient. For
instance he talked about “a path with hair on” to mean a
path together with all neighbors of its inner vertices, which
was immediately clear to everyone and fine for us. But
Serre did not agree with his informality and often inter-
rupted him asking for more precise and mathematically
sound definitions and expressions. Jacques explained ev-
erything in a rather geometric way, which I liked. He only
struggled when there was a choice between two alterna-
tives, like plus or minus, inside or outside, left or right.
I remember I corrected him once (no big deal in fact), and
then for the rest of the lecture he called on my help to de-
cide every dichotomy he encountered. . . .

There were three conferences in honor of Jacques held
in Belgium, one in Brussels and two in Ghent. The first
was on the occasion of his 60th birthday, the second for
his 65th birthday, and the third for his 75th birthday. I
was not involved in the organization of the first one (that
was Jef Thas), but I was the main and local organizer of
the other two. We celebrated his 65th birthday in fact one
year late, in 1996. At that conference he gave a double
talk, one on Friday and one on Saturday. In the first talk,
my sister (a teacher in mathematics in high school) came
into the roomwith two dozen school girls, on a school trip
to see one of the greatest mathematical minds in action.
Jacques was absolutely not disturbed by that and made his
young audience feel welcome with a few jokes. The next
day, he continued his lecture, but he was so into it, that
he lost track of time. When he looked at his watch after
one hour and a half (he was supposed to speak for 50 min-
utes, but nobodyminded), he exclaimed “My God, look at
the time, when did I start?” To which Francis Buekenhout
dryly replied “Yesterday.”

Soon after that conference, we celebrated Francis’s 60th
birthday with a special session in the one-week conference
“Finite Geometry and Combinatorics.” Jacques came over
to give a talk on the new class ofMoufang quadrangles that

Richard Weiss had just discovered. This triggered the fol-
lowing example of Jacques’ humor (a humor that, in con-
trast with some professional jokers, complimented people
instead of insulting them or making fun of them). With
this new class, Jacques confessed with a little bit of drama
“my friend Richard disproved my old conjecture, and so he
proved me wrong,” and then he continued along the line
“but luckily I have two other friends, Bernhard and Hen-
drik, because they saved my conjecture by showing that
the new quadrangles fit into the broad picture of gener-
alized Galois descent, so all Moufang quadrangles are of
algebraic origin after all.”

At all conferences that I organized and invited Jacques,
I had the pleasure of accompanying him to lunch and din-
ner, and even of inviting him to my home. These were
always very joyful experiences for me.

The conference celebrating his 75th birthday was the
last one in which I saw him participate. When I took him
to the train station, he immediately asked for a wheelchair,
and he apologized to me saying “It must be awful to see
a friend be discharged in a wheelchair like that, but do
not worry, I am getting used to it.” His Parkinson’s had
become worse (during one of the conferences that he or-
ganized on Algebraic Groups in Oberwolfach, he confided
in me that this illness prevented him from riding a bicycle,
which he would have loved to do). It was also the last time
I saw Jacques in Ghent.

One of the greatest honours in my scientific career was
to be a co-editor of Jacques’ Collected Works. One of the
highlights for me was the day that the four editors spent
in Paris together with Jacques asking him all sorts of ques-
tions. Jean-Pierre Tignol produced a transcript of these in-
terviews. We didn’t use it for the Collected Works, but it is
now an invaluable treasure to me. Jacques talked nineteen
to the dozen about all kinds of aspects of his life and career.
Near the end of the production process of the Collected
Works, I was the one making contact with Jacques through
Jean-Pierre Serre. I delivered two copies of the four books
of his Collected Works to his apartment in Paris, on Thurs-
day January 30, 2014. That day I had lunch with Serre at
13:30 and coffee with Tits and his wife Marie-Jeanne at
16:00. Marie-Jeanne told an interesting story. She said
that when historians meet (she was an historian) and dis-
cuss scientific matters, at the end of the day when they sep-
arate they each have their own original ideas and beliefs.
Whenmathematicians meet and started discussing various
matters, at the end of the day they all agree, nomatter what
their original belief was.

Marie-Jeanne and Jacques were together at many con-
ferences. She accompanied Jacques as frequently as pos-
sible. When I had an appointment with Jacques after a
lecture at the Collège, I noticed that he always first called
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Figure 15. Jef Thas, Arjeh Cohen, Dan Hughes, Francis
Buekenhout, Jacques Tits, Ernie Shult, and Antonio Pasini at
a conference in honor of Francis Buekenhout in Brussels,
November, 2003.

Marie-Jeanne just to say his lecture went well and ask how
she was doing. She also took great care of Jacques when
his illness became worse. Sadly, Jacques’ life companion
passed away too soon, on Tuesday February 2, 2016.

On Tuesday April 23, 2019, Bernhard Mühlherr and I
presented Jacques with a hard copy of the Complement to
the Collected Works of Jacques Tits [6]. This was the last time
that I saw him.

A few months before Jacques died, there was an initia-
tive among my department to compose a booklet contain-
ing trivia about the math professors. One of the items was
what is considered their greatest scientific achievement.
You could read great theorems there, proofs, prizes, and
other concrete accomplishments in that rubric. On my
page, it just mentioned my friendship with Jacques Tits.

Thank you, Jacques, for your beautiful mathematics, for
your beautiful personality, and for your beautiful friend-
ship. An architect died, but what he built will live on.

Bernhard Mühlherr
My first encounter with Jacques Tits was in January, 1989.
Tits was giving a course on twin buildings at the Collège
de France. I was in Brussels working on buildings for my
Diplom thesis and my advisor, Francis Buekenhout, rec-
ommended that I attend Tits’ course. I was surprised that
I was able to understand so much of his lectures despite
my rudimentary knowledge about buildings. Only much
later, did it become clear to me that Tits possessed an extra-
ordinary talent for describing the central ideas of his math-
ematics on a very concrete level. Since Buekenhout had let
Tits know that I would be attending his course, Tits offered
that we could meet for an hour after one of his lectures so
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Figure 16. Jacques Tits, Bertrand Rémy, Gopal Prasad,
Bernhard Mühlherr, and Jean-Pierre Serre at the meeting in
honor of Jacques’ 75th birthday in Ghent, 2005.

that I could ask him questions about buildings. I looked
forward to this hour, but I was anxious that I didn’t under-
stand enough and themeetingwould just waste his time. It
turned out that my fears were completely unfounded. Tits
listened carefully to the ideas I was working on, made valu-
able suggestions and encouraged me to continue with my
project.

Looking back, it is clear that those lectures influenced
me more than anything else in my mathematical training.
Around this time, Tits formulated several open questions
about twin buildings and in the following years I made
a number of contributions to their solution. Throughout
this time, we stayed in regular contact. Whenever I had
some progress to report, it sufficed for him that I would
give the general idea; we never talked about the details. For
me, these discussions were principally a kind ofmathemat-
ical compass. At one point they were decisive in suggesting
that I should pursue a vague idea I’d described. This idea
brought a breakthrough in the classification of twin build-
ings. Tits invited me to give a lecture about my results at
the Collège de France. This invitation and the fact that
on another occasion Tits referred to me as his student, are
among the greatest honors of my research career.

I remember well a number of meetings with Tits. Once,
when I was in Paris with Hendrik Van Maldeghem for
one of Tits’ lectures, the three of us met in Tits’ office,
where there was a table piled high with manuscripts and
preprints. He told us that these were all the things that
he still needed to work his way through and we’d better
not steal anything! This was just one of the many small
moments when I got to enjoy Tits’ very special sense of
humor. Tits was always interested in languages. We gen-
erally spoke in German to each other and he would say
something if I used a construction that wasn’t familiar to
him. Because of my South German origins, this occurred
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fairly often and he liked to joke in these situations that my
French was better than my German.

Jacques Tits’ mathematics opened exciting perspectives
to mathematicians of the next generation. He enjoyed see-
ing others work with his ideas and he was generous with
his support and encouragement. I rememberwell a conver-
sation he had with my first PhD student Pierre-Emmanuel
Caprace at the conference in Ghent in honor of Tits’ 75th
birthday. Caprace had given a talk about his thesis in
which he combined and modified many of Tits’ ideas to
solve the isomorphism problem for Kac–Moody groups.
Tits asked questions about the details, but as usual only
a few general remarks were all he needed to appreciate
what Caprace had accomplished. Tits’ pleasure at seeing
his mathematical ideas woven together in new ways and
bearing valuable fruit was particularly clear that day.

Richard Weiss
I first “met” Jacques Tits in the late 70s in the math library
of the Free University of Berlin, where I was a post-doc.
Killing time looking through recent journals on display,
I came across a paper entitled “Non-existence de certains
polygones généralisés, Part I” in the latest issue of Inven-
tiones, where Tits was editor. In this paper, Tits began the
proof that Moufang 𝑛-gons exist only for 𝑛 = 3, 4, 6, and
8. I didn’t know what a Moufang polygon was, but I had
been working on generalizations of a theorem of William
Tutte that says that finite trivalent graphs whose automor-
phism group acts transitively on paths of length 𝑠 but not
on paths of greater length exist only for 𝑠 = 4, 5, and 7.
I knew that special attention was needed to rule out the
case 𝑠 = 9. The coincidence in these numbers was striking
and within hours I understood how to prove a more gen-
eral version of Tits’ result by combining a lemma in his
paper with results that I had in my drawer. Tits reacted
to news of my result with charm and generosity. Not to
leave things hanging, he wrote a much shorter version of
his Part II using ideas from my paper and the two papers
appeared quickly back to back.

In 1992, I was spending a couple of months of a sab-
batical visiting Hendrik Van Maldeghem in Ghent. One
afternoon Hendrik stuck his head in my office and said he
was driving to Paris the next morning to hear a lecture of
Jacques Tits about Moufang polygons and would I like to
come. In fact, the subject was the theorem that 𝑛 = 3, 4, 6,
or 8. This was before Thalys, and Paris was far away. We
were on the road at 5:00 AM, merged into the daily traffic
jam on the Périférique just as the sun was rising, and then
drove through the city, arriving at the lecture room just
on time for the 9:00 AM lecture. Tits came in and started
to write on the board, but when he turned around and

Figure 17. Arjeh Cohen, Marie-Jean Tits, and Jacques Tits on
a boat during the conference on buildings and diagram
geometries by Lake Como, 1984.

noticed me, he made a startled expression and said “Oh,
this is like lecturing on the Riemann hypothesis and dis-
covering that Riemann is in the audience.” Tits always
knew how to be witty and generous at the same time. Hen-
drik and I went down every Tuesday for the remaining lec-
tures and on the last day, Tits invited the two of us to a
merry and lavish lunch in a nearby restaurant.

In 1993 Dina Ghinelli invited me to hold a series of
lectures on Tits’ work on Moufang polygons in Rome. For
the last part of his course, I worked through his unpub-
lished notes on the Moufang quadrangles that he called
“indifferent.” At that time, Tits had classified Moufang tri-
angles and octagons and announced the classification of
Moufang hexagons, but this unpublished manuscript was
all that he’d done with Moufang quadrangles apart from
describing examples coming from groups of type 𝐸6, 𝐸7,
and 𝐸8 in lectures at the Collège de France. Once I thought
I’d really understood Tits’ proof in the indifferent case, I
grew ambitious and wanted to go farther. After much hesi-
tation, I wrote a letter to Tits proposing that we collaborate
to finish the classification and write the whole thing up as
a book. I was proposing coming in on a project in which
he’d invested years of effort and was quite certain that my
offer would be rebuffed. In fact, months went by with
no reply. Tits was at Yale for the semester visiting his old
friend Nathan Jacobson. Still no reply. I’d mentioned my
letter to Diego Benardete whowas at Trinity College at that
time. Later, I learned that at a tea after a colloquium talk
at Yale, Diego marched up to Tits with the words “Profes-
sor Tits, you’re keeping Weiss waiting!” This did the trick.
Days later, shortly before his return to Paris in December,
Tits called me at home in Boston to say he agreed to work
together. “But I’m very busy with many other projects,” he
warned, “and it might take us five years!” He was wrong.
In the end it took seven.
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These were a thrilling seven years. Our collaboration
consisted mostly of written exchanges. Laptops were not
yet common and Tits never used anything but a fax ma-
chine for his communications. Our first goal was to com-
plete the classification of Moufang quadrangles. Pushing
the ideas in Tits’ indifferent paper, we arrived at the situ-
ation where the exceptional Moufang quadrangles should
turn up. In this case, we had to invent and classify struc-
tures that we later called “quadrangular algebras.” When
the classification was essentially complete, I noticed a mis-
take in a lemma asserting the existence of an element of or-
der 4 in one of the root groups when the characteristic is 2.
Each repair to the proof fell apart. It turned out that there
was, in fact, a new family of Moufang quadrangles whose
root groups were all abelian. Tits was thrilled. Within a
week of hearing about them, Bernhard Mühlherr and Hen-
drik Van Maldeghem showed that these new quadrangles
filled in a gap in Tits’ picture. They arise by descent from
a group of type 𝐹4, but not one associated with an abso-
lutely simple algebraic group, rather from a split pseudo-
reductive group of type 𝐹4 defined over a purely insepara-
ble field extension.

I think that Tits was particularly pleased with these de-
velopments because they confirmed his well-known atti-
tude about the importance of characteristic 2. Characteris-
tic 2was, as a rule, historically excluded in the study of qua-
dratic forms, Jordan algebras, and composition algebras.
This offended Tits’ understanding of the geometric nature
of these things. Here is what the authors of the The Book
of Involutions wrote in their introduction: “Not only was
Jacques Tits a constant source of inspiration through his
work, but he also had a direct personal influence, notably
through his threat—early in the inception of our project—
to speak evil of our work if it did not include the charac-
teristic 2 case.”

Once or twice a year I was able to spend a month in
Paris and often had the use of a small windowless storage
room in the Collège de France Annexe as my office. Tits’
office was down the hall, but as he’d warnedme at the start,
he was a very busy man and our meetings were always by
appointment. Tits knew my limitations as a mathemati-
cian. I think, though, that he had respect for my persis-
tence and trusted me to get around the technical problems
that arose on my own. But his guidance about what ought
to be true was the real driving force behind the project. Tits
often joked about seeing things in his crystal ball, but what
he was really referring to was his uncanny ability to see a
whole world hidden in a Dynkin diagram.

∗ ∗ ∗

In the bibliography we have included all the works of
Jacques Tits as well as a few other books alluded to in this

article. Volume I of [8] also includes a Curriculum Vitae
and surveys of Tits’ work written during his lifetime, in-
cluding one by Tits himself.
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Guido L. Weiss (1928–2021)
Eugenio Hernández and Edward N. Wilson with

contributions by Ronald Coifman, Mauro Maggioni,
Yves Meyer, Fulvio Ricci, Hrvoje Šikić, Fernando

Soria, Anita Tabacco, and Rodolfo H. Torres

Guido Weiss was born in Trieste, Italy, on December 29,
1928, and died in St. Louis, Missouri, on December 24,
2021. His family emigrated to the USA in 1939 and set-
tled initially in Topeka, Kansas, moving two years later to
Chicago. He obtained two degrees in mathematics from
the University of Chicago, a bachelor’s degree and a PhD
under the guidance of Antoni Zygmund.

In 1961, Guidomoved fromDePaul University toWash-
ington University in St. Louis where he later became the
Elinor Anheuser Professor of Mathematics. He married
Barbara Gibgot, then a doctoral student in molecular bi-
ology, and they had two sons, Paul and Michael.

Guido played a huge role in the development of har-
monic analysis at Washington University. In particular,
he entertained a host of students and collaborators from
around the world. He met R. Raphael (Raphy) Coifman
in Geneva in 1964 and started a long-term friendship and
collaboration. Coifman moved to Washington Univer-
sity, where he and Guido collaborated on many results,
including the beautiful theory of atomic decompositions
of Hardy spaces. He met Yves Meyer at Oberwolfach in
1965, and beginning in the 1970s Guido, Meyer, and
Coifman developed a broader understanding of Calderón–
Zygmund operators. Simultaneously, Guido and Eli Stein

Eugenio Hernández is a professor of mathematics at the Universidad Autónoma
de Madrid, Spain. His email address is eugenio.hernandez@uam.es.
Edward N.Wilson is a professor emeritus at Washington University in St. Louis.
His email address is enwilson@wustl.edu.

Communicated by Notices Associate Editor Daniela De Silva.

For permission to reprint this article, please contact:
reprint-permission@ams.org.

DOI: https://doi.org/10.1090/noti2607

were writing the book ([SW71]), which served as an invalu-
able reference for generations of harmonic analysis stu-
dents. He and Stein also developed a program studying
𝐻𝑝 spaces of several variables.

Interpolation of operators was the subject of Guido’s
PhD dissertation. He returned to this subject in the 1980s
with the theory of interpolation of families of Banach
spaces ([CCR+82]). After reading M. Frazier and B. Jaw-
erth’s work on phi-transforms andwavelets, Guido became
interested in reproducing formulae. From the 1990s until
his retirement in 2018, his papers with postdocs and other
collaborators were strongly influenced by these develop-
ments.

The above paragraphs give only a quick sketch of some
of the highlights of Guido’s mathematical career. The
reader is referred to the article by Susan Kelly and Rodolfo
Torres ([KT21]) for additional details. The tributes that fol-
low offer a sample of the teaching style and mathematical
achievements of Guido from the viewpoint of some of his
former students and collaborators. This is done with the
intention of keeping the memory of Guido Weiss alive.

Ronald Coifman
GuidoWeiss was an extraordinary human being andmath-
ematician; he has been my mentor and friend for over 50
years.

Wemet in 1964 in Geneva, Switzerland. Guido and Bar-
bara came to spend a sabbatical at the university of Geneva.

Ronald Coifman is the Sterling Professor of Mathematics and a professor of com-
puter science at Yale University. His email address is ronald.coifman@yale
.edu.
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I was finishing my thesis under J. Karamata, and as his as-
sistant, I was expected to welcome them and facilitate their
arrival. After various misadventures they settled in, and in
his usual way Guido initiated both a friendship and men-
torship with me. I was going to teach him skiing, and he
would teach me Harmonic Analysis.

Figure 1. Guido Weiss in his
office in 2005.

During that year, he was
writing his book with Stein
on Harmonic Analysis in
Euclidean spaces, which I
helped to proofread. This
exercise allowed Guido to
communicate his long-term
program in analysis to me,
expanding on the vision of
his ownmentor Antoni Zyg-
mund. This interaction
opened a whole new world
of mathematics to me, as
well asmathematical friend-
ships. We traveled to Paris
to meet with Antoni Zyg-
mund and Jean Pierre Ka-
hane, and we went skiing
in Zermatt. Guido and Bar-

bara welcomed Lucienne and me to their home. The in-
formality and friendliness of these meetings was quite as-
tounding to us “kids” (coming from a senior professor).
Guido would lounge on the floor with a glass of Dole wine
in his hand discussing everything from Italian Pizza that
he would bake to music, and to mathematics (when we
were alone).

While in Geneva, Guido convincedme to go to Chicago
for a special year in Harmonic Analysis, while he and Bar-
bara returned to Washington University. We had already
started on several papers, on basic analysis ranging from
group representations to Blaschke products in complex
analysis. These were part of his program to extend real
and complex analysis beyond their classical context. Three
years later Guido organized a special year on analysis on
symmetric spaces with a vision of building interactions be-
tween different groups of analysts and geometers.

Lucienne and I move to Washington University in St
Louis continuing our friendship with Guido and Barbara
and our collaboration; it was our best decision. For the
next fifteen years we continued mathematics and “skiing”
together.

In 1970, our two families spent the year in Orsay.
Guido and I were teaching a Harmonic Analysis course on
spaces of homogeneous type. Our goal was to develop a
general setting on which many classical tools and meth-
ods could be extended and applied, thereby providing a

bridge between geometry and multiscale analysis, as it ap-
plies to the structural understanding of operators which
are not convolutions.

As usual Guido befriended many in our audience:
Jacques Peyriere and Yves Meyer, as well as Aline Bonami
and Jean Louis Clerc, who participated in writing up our
lecture notes. I should note that much current activity in
computer science and data geometry on networks is di-
rectly related to the vision of blending algorithms (real
variable methods) with the geometries of nature as devel-
oped in our lecture notes.

At the time, we were challenged by proving 𝐿𝑝 estimates;
this was always understood as a test of understanding, and
our goal as formulated by Zygmund and his school was
to develop “methods” of analysis. Guido always stressed
this point; it has been the challenge all along, in particu-
lar, understanding the role of complex methods to prove
inequalities, and the role of geometry to understand com-
plex methods and the power of generalized analytic func-
tions to control singular integrals.

I should add that the combination of an extended view
of analysis in mathematics, together with Guido’s extra-
ordinary ability to assemble communities of mathemati-
cal friends in France, Italy, Spain, China, and more, and
collaborating and exploring the world around his vision,
led to a remarkable broadening of the Calderon–Zygmund
school, and our mathematical horizons.

Guido liked to quote A. Zygmund, who said that you
assess the mathematical contributions of a person by “in-
tegrating his positive part.” This generous philosophy
helped generate many friendly, collaborative teams.

Eugenio Hernández
Two people have profoundly influencedmy career inmath-
ematics: Miguel de Guzmán (1936–2004) while I was an
undergraduate student andGuidoWeiss when I was a grad-
uate student and later as a collaborator and friend.

I arrived at Saint Louis in August 1977, with a backpack
and a TWA1 bag of toiletries, becausemy two suitcases were
lost on the trip from Spain. After Guido learned of my
situation, he wrote a letter to TWA officials. Two weeks
later I had a check for $400 to compensate for the loss.
This little story sheds light on the kind of care Guido took
of his students.

While I was a second-year graduate student, Guido sug-
gested I prove an interpolation theorem for operators act-
ing on 𝐻𝑝 spaces using the atomic decomposition devel-
oped by Raphy Coifman. I am sure that as an expert on
complex interpolation and 𝐻𝑝 spaces, Guido could have
proved the result in a couple of hours. It took me several

1Trans World Airlines, a well-established airline at the time.
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Figure 2. Guido Weiss and Eugenio Hernández in 1996.

months, during which he patiently guided me towards the
correct proof, which resulted in my first math paper.

Guido always tried to share his math projects with oth-
ers. After my four-year term as Vice Rector of the Univer-
sidad Autónoma de Madrid, I sought his advice on how I
should spend a 1994–95 sabbatical year retooling inmath-
ematical research. He soon sorted out the finances and of-
fered me an invitation to visit Washington University and
to collaborate with him in “organizing” the mathematical
theory of wavelets. It gave me the opportunity to learn
this theory and the trials and tribulations of writing a book
with the mind always set on finding the best and simplest
ways to explainmathematics. Our collaboration produced
not only [HW96] but also many papers over the following
years together with several of his collaborators, of which I
would like to mention D. Labate, H. Šikić, and E. Wilson.

I am thankful to Guido for all the mathematics he
taughtme, his lessons of life, the tennismatches we played,
as partners and as opponents, and for his friendship.

Mauro Maggioni
The contributions of Guido L. Weiss to mathematical anal-
ysis, and harmonic analysis in particular, have spanned
multiple decades and multiple research directions—from
Hardy spaces to wavelets—often tying together different
areas of analysis. Guido’s work has influenced the work
of many mathematicians, and often it was the fruit of his
collaborations with researchers from all over the world.

I was very fortunate to bewelcomed byGuido atWashU,
and become one of his students—at the time some con-
jectured I would be the last one, but luckily that turned

Mauro Maggioni is the Bloomberg Professor of Mathematics, and of Applied
Mathematics and Statistics, at Johns Hopkins University. His email address is
mauromaggionijhu@icloud.com.

out to be far from being the case—not only because of
his scholarship in mathematics and the endless amount of
advice I would receive from him, but also because of the
many lessons I received, inmathematics and in life. Guido
mademe feel welcome from the very beginning. He was al-
ways generous with his time, with meetings that never felt
hurried and in which working on a problem on the black-
board felt natural. He was always available to answer ques-
tions and provide interesting research directions together
with references to beautiful papers and books to enrichmy
very limited knowledge of mathematics.

He fostered interactions with a wide variety of col-
leagues, short- and long-term visitors to the department,
and among students. This led to invaluable opportunities
to learn mathematics in other areas and to forge new col-
laborations. These interactions often moved from the de-
partment to his home, where he and his wife Barbara of-
fered the kindest and warmest hospitality, to guests from
all over the world, speaking many different language— a
surprisingly large subset of which Guido could speak profi-
ciently. He consistently refused to speak anything but my
mother language with me, which was truly helpful to me
especially at my arrival in the United States.

Guido’s lectures, always at the chalkboard, had utmost
clarity and perfect pacing, only matched by that of his
handwriting. His papers and books were superbly written,
with a terse prose and a natural organization of the materi-
als. They have influenced generations of mathematicians,
researchers, and students alike, and will continue to do so.
In fact, I remember that I had to quickly acquaint myself
with one of Guido’s books: at our firstmeeting in his office,
after about a week at WashU, and after explaining the story
behind a small fraction of the memorabilia there, Guido
asked me if I knew measure theory and some functional
analysis, to gauge the possibility of waiving the first-year
analysis course. I answered in the affirmative, quite pos-
sibly with an excess of self-assurance. He suggested that I
study his bookwith Eli Stein, Introduction to Fourier Analysis
on Euclidean Spaces, reconvene in a week to discuss it, and
then see if I could indeed waive the Analysis course. As
soon as I started reading, I realized I knew close to none
of the material in the book, so I stocked up on food for
the week, and started studying. While I was far from hav-
ing understood the book in that one week, Guido gener-
ously considered what I had learned enough for a waiver,2

and we went on discussing the book in greater depth in
our subsequent meetings. This book started opening my
mind to what the next level of Analysis looked like, and
I loved it. Under Guido’s direction, I then learned about

2I only learned much later that the first-year graduate course in Analysis was
at a much more basic level than the material in the book; there were multiple
lessons that I learned in that first week.
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Figure 3. Guido and PhD students from Washington
University. Picture taken at the Conference in his honor, May
10–14, 1993.

spaces of homogeneous type, Calderón–Zygmund theory,
representation theory, andwavelets; research in these areas
inspired me and propelled me to a career as a researcher.

I always remember Guido as setting an example by
showing the importance of hardwork and humility in tack-
ling difficult mathematical problems, and of kindness and
openness in welcoming others in mathematics and life.
He will be missed by many in the mathematical commu-
nity, who were influenced by him personally or through
his work.

Guido Weiss at
Oberwolfach 1965

Yves Meyer
I met Guido Weiss in August 1965, at an Oberwolfach con-
ference organized by Paul L. Butzer. I was still a graduate
student. Guido was ten years older than me and already
a famous mathematician. There were only nineteen par-
ticipants at this meeting. The old castle still existed, and
we were accommodated there. It was deliciously obsolete.
I became fascinated by Guido, by his mathematics and
by his extraordinary personality. Discussions with Guido
were great. He was at the same time a deep mathematician
and an accomplished humanist. For Guido, mathematics
was a part of human culture. He thought that mathemat-
ics should be shared by everyone and should contribute
to happiness. Doing mathematics should be as pleasant

Yves Meyer is a member of the Académie des Sciences, Paris, France. His email
address is yves.meyer305@orange.fr.

as playing tennis. This idea was completely new to me. To
me doing mathematics was a difficult experience. It was a
frustrating confrontation with a few great mathematicians.
Guido changed my mind. He was my mentor and often
corrected my naive beliefs in politics. He had deep and
original views on many issues.

Barbara Weiss and my wife Anne were allowed to par-
ticipate in the conference without being mathematicians.
They did not listen to the mathematical talks. Instead they
violated the established rules by arriving ten minutes be-
fore lunches and dinners and changing the seating arrange-
ment. As a result, the four of us ate together almost every
day. This was forbidden by the organizers since we were
supposed to interact every day with new participants. At
our table, we spoke French. Guido was fluent in many lan-
guages. He was fond of playing with words, which he did
in amixture of English, French, and Italian. His jokes were
absurd and hilarious.

I spent 1970 with Guido at Orsay. Then in 1974, he in-
vited me to work with him at Washington University. But
while I was there, he was busy with another program. Then
Raphy Coifman convinced me to attack Calderón’s conjec-
tures. That is another story.

Fulvio Ricci
Many aspects of Guido Weiss’s personality are fixed in my
mind, which I often recall with nostalgia, and whose im-
pact I recognize at various moments of my professional
life.

Among these aspects, I just want to mention his rigor in
research and teaching, his sense of responsibility toward
persons around him and institutions, and, going more
closely to scientific issues, his approach to problems ex-
clusively following his own mathematical taste. Scientif-
ically, I owe him for having introduced me to Euclidean
harmonic analysis.

I was fortunate to meet him in the early days of atomic
theory of Hardy spaces. Classical Hardy spaces 𝐻𝑝 with
0 < 𝑝 < 1 (in the sense of holomorphic functions on
the unit disc) had been the subject of my bachelor’s the-
sis. Attending the intensive course Guido gave in Perugia
in 1976 about his AMS Bulletin paper with Raphy Coif-
man, I was shocked to learn that a revolution on this topic
had taken place and to understand the tremendous gener-
alizing power coming from Guido’s contribution.

This event, followed by a semester at Washington Uni-
versity that Guido had arranged for me, determined the
direction that my research has taken ever since. The

Fulvio Ricci is a professor emeritus at Escuola Normale Superiore, Pisa, Italy.
His email address is fulvio.ricci@sns.it.
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Stein–Weiss book became a basic reference for me and
the source of new ideas. The chapter on spherical har-
monics combined nicely with what I was learning at the
time about analysis on Lie groups and homogeneous
spaces. This included the idea of transplanting Calderón–
Zygmund theory from ℝ𝑛 to a Lie group, in particular
𝑆𝑈(2), which was the topic of the Springer Lecture Notes
volume by Raphy and Guido. Another important source
of inspiration for me was the CBMS Lecture Notes on the
transference principle by Raphy and Guido.

For various years since then, Guido and I have remained
in close contact, though we have not worked together on
a specific research project. Following his own taste, Guido
became more and more interest in other topics, first in the
general theory of complex interpolation, then in wavelet
theory. As our interests were gradually diverging, the occa-
sions for meeting unfortunately became less and less fre-
quent over time. When I heard the sad news at the end of
last year, my first reaction was regret for not having been
closer to him over the last several years.

Another, more important, reason for being grateful to
Guido is the great effort and dedication he put into sup-
porting harmonic analysis in Italy. He had a large number
of Italian graduate students and promoted, or even just fa-
cilitated, many joint initiatives. Altogether, he contributed
greatly to the formation of a coherent group of mathemati-
cians with common scientific interests.

Hrvoje Šikić
Guido Weiss was one of the most exceptional people I ever
met. How does one describe such a unique and multifac-
eted person? Perhaps one could do so through some per-
sonal recollections.

It was in February of 1996 that I entered Guido’s office
for the first time. It was located centrally on the second
floor of the Cupples I Hall at Washington University in
St Louis. His office was packed with memorabilia and in
front of the blackboard was a wide olive-green sofa. A cute
small Shih Tzu, with the impressive name of Thor, was
comfortably settled on the sofa. Guido explained that any
mathematics discussed was to be approved by Thor and
then pointed toward the upper right-hand corner of the
blackboard where the word stupid was written in several
languages. He emphasized that he had already written the
word in Croatian, so that I probably could not add much
to it. My response was that the word written in Polish in-
deed meant stupid, but the Croatian one would be better
translated as a fool, so hopefully I could be of some help.

Hrvoje Šikić is a professor of mathematics at the University of Zagreb. His
email address is hsikic@math.hr.

And it continued like that for the next twenty-five years;
mainly mathematics, interrupted by word puns, thumb
wrestling, discussions of current events, history, arts, and
sports. Guido’s language skills were remarkable. I am not
sure how many languages he spoke, but I witnessed con-
versations of his in most major ones.

Throughout his life, Guido encountered a few historical
figures and many people who were in positions of power
and influence, but it did not prevent him from treating
everybody with respect and open arms. After getting to
know him better on a personal level and becoming aware
that he had lived through some difficult times in his long
life, I asked him how he maintained his optimism. He ex-
plained in somewhat mathematical terms that he always
tried to focus on the f-plus of the person’s character and
ignore the f-minus for as long as possible.

My wife and I became friends with Barbara and Guido,
and we saw both provide help to many people on numer-
ous occasions. Just to give you an illustration of the level
of their generosity, when we arrived for one of our longer
stays in St Louis, and our rented apartment was not yet
ready, Barbara and Guido took us along with our two-year
old daughter into their home for three weeks.

As a mathematician, I like to think of Guido as a theory-
builder and a storyteller. Think of mathematics as an in-
finite onion, where you peel off layer after layer. When
working with Guido, we did not rush, our pace was mod-
erate and steady; every day we would try to bring some
insight, perhaps very small, but an improvement never-
theless. When we managed to peel off a layer, then we
stopped to rethink it. Furthermore, we would remember it
and very often revisit it in the future. Guido liked to build
a solid house, but the level of understanding was never fi-
nal; a new point of view was not to be neglected. At one
point early in our collaboration, Guido, Manos Papadakis,
and I worked on a statement for a few months. Eventually,
Manos and I brought a seventeen-page proof to Guido. We
all checked it and it was correct. But Guido sent us back
to work on it further until we had a reasonable proof; the
instruction being that “a reasonable proof” would be clear
to us once we reached it. And indeed, it was so; the end
result was an elegant one-page proof where every step had
a clear and simple meaning.

For Guido, exposition in mathematics was not just a
matter of style or format. It was the essence of the con-
tent and understanding, a guide through a new theory. As
a consequence, his writing and his lectures were highly ap-
preciated everywhere in the world and on every level, from
undergraduate lectures to research seminars.

An opportunity to work with Guido also meant joining
Guido’s academic family, a large and very diverse group
of excellent people from every corner of the world. Guido
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was a natural leader, and the St Louis School of Analysis
left its mark in many countries in the world, my own in-
cluded. Guido visited Croatia on several occasions. One
of the visits some twenty years ago was particularly emo-
tional and reminded us again of the horror of the Holo-
caust. Guido’s mother’s family was from Pakrac, a small
town some fifty miles east of the Croatian capital of Za-
greb. Just before WWII and their move to the US, Guido
and his family visited their relatives in what was then Yu-
goslavia; as it happens, never to see most of them again.
Almost sixty-five years later we brought Guido to Pakrac,
where we found his grandfather’s house and managed to
trace one of his cousins near Zagreb and reunite them af-
ter all these decades. Guido had a long and complex life,
and he will remain a symbol of the human spirit and an
inspiration for all of us.

Fernando Soria
When I arrived at Washington University, I was not plan-
ning to be a student of Guido. But the frequent talks he
used to have with us, the Spaniards who came around that
time (José Luis Fernández, Juan José Manfredi) and in pre-
vious years (Eugenio Hernández, José Dorronsoro, Julián
Aguirre, Patricio Cifuentes, just to mention a three-year pe-
riod), convinced me that indeed it was with him that I
wanted to do my doctoral thesis. Thus, after finishing my
qualification period, he agreed to be my supervisor jointly
with another unforgettable and brilliant mathematician,
Mitch Taibleson. Working with them has been the best
thing that has happened to me in my entire academic life.

From Guido and his book, written with Eli Stein a few
years earlier ([SW71]), I learned the essence of harmonic
analysis. There was something about him that has al-
ways captivated me. I am talking about the enthusiasm he
showed for mathematics, the cleverness of his arguments,
and the care with which he used to write his manuscripts.
Hewould not stop until there was not a single doubt about
the validity of the arguments, until they were understood
by the most profane of mortals. This was true for the
courses he gave, as well as for his research work. I remem-
ber the care with which he showed us his own work or
the work of others on any subject, whether it was inter-
polation, Hardy spaces, maximal operators, factorization
of weights, atomic decompositions, and the many other
fields with which he dealt. I keep some of his handwritten
notes which, despite the time that has passed, I still use.

It is also worth mentioning the amount of time he
spent with his colleagues and students talking about

Fernando Soria is a professor of mathematics at the Universidad Autónoma de
Madrid, Spain. His email address is fernando.soria@uam.es.

Figure 4. Guido at his farm with students, colleagues, and his
son Michael, in 1983.

mathematics. It was incredible to see how a person who
was immensely busy with issues not always related to pure
academics, could squeeze his time in order to have infor-
mal work sessions on almost a daily basis. Every guest who
came to WashU to work with him or just for a friendly visit
(and Guido had lots of friends!) was immediately invited
to one of these sessions in his office in Cupples I Hall. One
of his students would begin by describing a problem he
or she was working on and then everyone present would
give their opinion, relating it to similar problems and sug-
gesting techniques to solve it. Guido, as a connoisseur of
the ins and outs of the proposed problem, would take the
lead. But he never disdained a suggestion, however banal.
A phrase he often repeated after an unexpected suggestion
was: well, what you just said it’s either true or false. We’ll have
to see it.

From a personal point of view, Guido was more than
a teacher, a friend, or a colleague. He was the mirror in
which I wanted to see myself reflected and from which
I learned so many things, professionally and in everyday
life. Every time I sit down next to a student to review their
master’s or doctoral thesis, his image comes to mind. In
particular, I think of the immense patience he always had,
sitting next to me, while explaining the reason for this or
that correction to my work. It was really an unforgettable,
and even priceless experience.

As a final thought, I must say that Guido was instrumen-
tal in helping mathematical analysis to flourish in Spain,
making it easy for almost a generation of Spaniards to go
to Washington University, either as doctoral or postdoc-
toral students and generating collaborations with Spanish
institutions. In recognition of his scientific career, the Au-
tonomous University of Madrid organized a conference in
his honor in 1993. Undoubtedly, some of the best har-
monic analysts of the time came to the congress, many of
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them personal friends of Guido. I think it was a memo-
rable moment that made him immensely happy.

Anita Tabacco
I met GuidoWeiss inOctober 1982when I arrived atWash-
ington University to pursue my PhD. I was 22 years old
and frightened by having made the decision to leave Italy,
where I could have followed a clear and safe road. I was
evenmore frightened by the idea of being evaluated by Pro-
fessor Weiss, who would immediately notice my knowl-
edge (tiny!) of mathematical analysis.

I still remember my feeling during our first meeting in
his office. It seemed that the spacewasmainly full of books
and papers; though it was nothing compared to what I saw
the last time I visited Guido in May 2014! Guido was my
scientific father and, even more, a very generous mentor.
He helped me in all the difficult moments that I had to
face as a graduate student. I grew up thanks to him and
his example; he had an enormous impact on all the stages
of my career.

Guido’s lectures were carefully prepared—always look-
ing for a simple way to explain fundamental points. This
was not only the case when he was teaching a course, but
alsowhen hewanted to introduce a new research topic. He
was attentive to details, but with the general picture very
clear in his mind. Guido was a Maestro, and his influence
on my way of teaching is undeniable. I keep in full view
the notes I took in his courses, his lectures, and in front of
a blackboard; they are still valuable to me today.

Studying his book written in collaboration with Elias
Stein, Introduction to Fourier analysis on Euclidean spaces
[SW71], and reading the first article he gave me (Extensions
of Hardy spaces and their use in analysis, coauthored with
R. R. Coifman [CW77]) were fundamental for me. In par-
ticular, the paper contained all the ingredients that are still
contained in my research today, such as spaces of homoge-
neous type, Hardy and BMO spaces, interpolation theory,
doubling measures, Calderón–Zygmund decomposition.

Guido’s intelligence, pleasure in life and personal re-
lationships, knowledge, and above all generosity, con-
tributed in a fundamental way to the growth of harmonic
analysis in Italy. He played a key role in forming a group of
friends and colleagues who met and talked while at Wash-
ington University.

I want to remember him as he has always been with all
of us: available, full of energy, ideas, and great humanity.

I am happy to have met him on my journey.

Anita Tabacco is a professor of mathematics at Politecnico di Torino. Her email
address is anita.tabacco@polito.it.

Rodolfo H. Torres
Guido Weiss had a tremendous influence on my life start-
ing when I was a graduate student. Estela Gavosto (now
my wife) and I arrived at Washington University in St.
Louis from Argentina with the help of Cora Sadosky. I
remember Cora encouraging us to go to WashU because it
was “a very special place to be a graduate student” and that
“Guido will take very good care of you.” Little did we know
at the time that in addition to receiving great training and
education, we would form many fantastic friendships and
relationships with colleagues which continue to this day,
due in large part to Guido. This experience has had a huge
impact on our professional careers and lives.

Guido and several of our other teachers, in particu-
lar Mitch Taibleson and Al Baernstein, were extremely
caring to a large group of students coming from China,
Italy, Poland, and Spain whose time at WashU overlapped.
Guido had established close connections with all these
countries and was a magnet for attracting students. In par-
ticular, he was one of the first US mathematicians to par-
ticipate in exchanges with post-Cultural Revolution China,
after the reopening of relations with the US.

When we arrived in Saint Louis, Raphy Coifman had
moved to Yale from WashU and so the Math Department
was eagerly trying to hire other outstanding mathemati-
cians. They succeeded in recruiting Björn Jawerth, Steven
Krantz, and later Björn Dahlberg. The atmosphere in the
Math Department during this time was incredible. There
was a constant stream of visitors from other universities
in the US and from all over the world. Practically every
week some leading figure in harmonic analysis, complex
analysis, several complex variables, or partial differential
equations was visiting WashU and giving a lecture. We
were encouraged to attend the talks, even if we were not
at a point in our education to fully understand everything.
The idea was to expose the students to a lot of great math
and also to give them a chance to meet people. The ac-
companying receptions at the homes of faculty, to which
graduate students were invited, served the same purpose.
The day-long picnics hosted by Guido and his wife Barbara
at their farm near St. Louis, were wonderful occasions to
build synergy and camaraderie in the department. As were
the memorable costume parties that the Italian students
used to organize, which several professors would also at-
tend. Guido and his colleagues managed to create a truly
unique welcoming environment where we could be both
nurtured professionally and also have a good time.

Rodolfo H. Torres is a Distinguished Professor of Mathematics and the Vice
Chancellor for Research and Economic Development at the University of Cali-
fornia, Riverside. His email address is rodolfo.h.torres@ucr.edu.
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Figure 5. Mitch Taibleson and Guido Weiss in 1994.

Guido was always there to help us with anything he
could. In fact, it was typical of Guido to grab the phone
and call someone and arrange things for any of us, or just
“save the world,” as he used to joke while pointing to a big
Superman belt buckle he often wore.

When it came time to pick an advisor after the gruel-
ing boot camp of first-year qualifying exams, Guido was
going to be away for some time, so it was agreed that I
would work with Björn Jawerth. Although I was not an of-
ficial PhD student of Guido, when Björnmoved to the Uni-
versity of South Carolina and I decided to stay at WashU,
Guido became my closest mentor in the last steps of my
thesis work.

In the mid 1980s, harmonic analysis saw the important
developments of the T1 and Tb theorems as well as the
birth of wavelets. These topics were very central to the fo-
cus of much of the research at WashU on the study of sin-
gular integrals and functions spaces. Michael Frazier, who
was a postdoc at WashU at the time, and Björn developed
their 𝜑-transform theory, producing powerful and uni-
fying decomposition techniques, which include smooth
atomic and molecular decompositions for the whole scale
of Besov and Triebel–Lizorkin spaces. Many of the appli-
cations of these decompositions were then elegantly pre-
sented in Guido’s collaborative monograph with Michael
and Björn [FJW91], which is one of the most cited refer-
ences on the subject. Björn had suggested to me that I ex-
plore a version of the T1 theorem for spaces of smooth
functions, in particular those with a lot of regularity, by
showing, in the “spirit of St. Louis,” that appropriate
Calderón–Zygmund operators map atoms into molecules.
This would require improving on and developing argu-
ments to extend previous work by M. Frazier, Y-S. Han, B.
Jawerth, and G. Weiss along the same lines, but for small
regularity. I had obtained some results when Björn learned
that Guido andMichael, whowere in a special semester on
harmonic analysis at the Mathematical Sciences Research

Institute (MSRI), were also working on the problem. I got
very worried, but Guido arranged for me to visit MSRI and
join forces with them. It was great to write my first math
paper with him and Michael. Though I never formally col-
laborated with Guido again, we discussed a lot of mathe-
matics over the years, and his ideas and mathematical con-
tributions inspired much of my other work.

I continued to be in touch with Guido after leaving St.
Louis, visiting him many times, and calling him on the
phone. It was always a pleasure to meet him in his leg-
endary office, which was often filled with other colleagues,
visitors, and students. Guido liked to include everyone in
the discussions and ideas he was investigating. I learned
a lot from him and not only in mathematics. He was al-
ways ready to provide a letter of recommendation, advice
about a difficult situation, or just chat about sports, world
politics, or joke about life. When I last saw Guido, in his
late eighties during a visit to WashU, he complained that
he was no longer the super-strong athlete he used to be
and could no longer play tennis, another subject he had
taught many of his students, but he was still active mathe-
matically and very engaging. He told me about a wavelets
project he had been working on with his lifelong friend Ed
Wilson, yet another great professor who was a dean when
we were students. Guido took me for dinner at one of his
favorite Italian restaurants on The Hill. We had a great
evening as usual and, as was his wont, he told the server
how to correct the name of the Italian dishes on the menu.
The multiple languages that Guido spoke were always a
source of conversation, amusement, and play on words.

I only had some brief communications with him after
my last visit, but I know through Barbara that Guido en-
joyed the biographical article my friend and colleague Su-
san Kelly and I wrote about him shortly before he passed
away. I regard that article as a way to express our admira-
tion for Guido. Imiss him and think of him inmany ofmy
current roles and activities. When facing a difficult prob-
lem or trying to help others, I often ask myself what Guido
would have done in a similar case. I am extremely thank-
ful for his mentorship and friendship and feel fortunate he
has touched my life. He will be forever remembered.
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Restoring Confidence in
the Value of Mathematics

by Teaching Undergraduates
Math They Will Use

Tyler J. Jarvis

1. Lost Confidence
Mathematics is deeply beautiful and extremely useful. But
even when we mathematicians succeed at helping people
see the beauty in mathematics, many don’t believe it has
value beyond its beauty. Everyone knows that somehow,
deep inside some computer somewhere, math is doing
something that somebody thinks is useful. But most peo-
ple don’t really believe that math is useful for them. They
lack confidence in the value of mathematics.

Students don’t hesitate to tell teachers whenever we
cover a difficult section or fail to engage them sufficiently
in the math we teach: “When am I ever going to use
this?!?”
1.1. Even math majors. But at least college math majors
knowmath is useful, right? Not really. About ten years ago
we surveyed the math majors at my university to get a bet-
ter sense of how to recruit more students intomathematics.
We asked them: Why did you major in math? andWhy aren’t
others majoring in math? Their answer was “I love it, but I
know I can’t get a job if I don’t want to teach. I thought
I’d just do something I enjoy now and worry about a job
later.”

Tyler J. Jarvis is a professor of mathematics and director of the Applied and Com-
putational Mathematics Emphasis (ACME) at Brigham Young University. His
email address is jarvis@math.byu.edu.

Communicated by Notices Associate Editor William McCallum.
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Their answers should not have surprised me, but they
did. I thought math majors knew there were lots of appli-
cations of math relevant to them and to their future em-
ployment. We had alumni with good jobs that used math,
but the students didn’t know that—they were just in it for
the beauty. Even math majors had no confidence in the
value of mathematics.
1.2. The cost of no confidence. That lack of confidence
in the value ofmathematics is a serious problem for at least
four reasons:

1. It diverts away resources. Funding, faculty lines, and
other resources go where administrators and other de-
cision makers think they will create the most value.
When we aren’t seen as adding value, we lose re-
sources. This is bad for mathematics, bad for us,
and bad for students. Conversely, my university has
provided our department with additional faculty and
other resources as we have built confidence in the
value of mathematics and attracted more and happier
students.

2. It damages learning. Students aremore willing to put
in the necessary effort to learn if they believe they will
get something out of it. They don’t all find math as
beautiful as we teachers do, and if they don’t see it as
useful, how long can we keep saying “trust me, you’re
going to like this” before they quit?

3. It drives away “world changers.” Many students
come to college wanting to change the world. They
will not study math if they see it as only beautiful
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but not useful. Mathematicians have powerful tools
to help overcome poverty, cure disease, and make the
world more fair and just. Driving away these students
means not only that we have fewer good students, but
that these goals will be harder to achieve because the
people working on them won’t have the tools they
need.

4. It excludes many. This lack of confidence excludes
many students from our major because only a privi-
leged few can afford to spend their college years doing
what they like, ignoring their future careers.

1.3. Wrong solution: just advertise. Of course math is
useful, even for undergraduates needing careers. At the
time of our survey our students were getting jobs—some
using math. And we knew lots of mathematicians in re-
warding math jobs at interesting companies. Maybe, we
thought, we just needed to tell students about these jobs.
We told them about traditional math jobs in engineering,
actuarial sciences, national security, and finance. We also
told them about newer math jobs at places like Google,
Amazon, LinkedIn, and Pixar.

This sort of worked. The number ofmathmajors started
to grow. But it was the wrong thing to do because many
were still skeptical of the value of mathematics for them,
and, more importantly, it wasn’t entirely honest. They
were right to be skeptical.

Yes, our alumni got some of those jobs. But not really
because of themath we taught them. Maybe they got them
partly because of the problem-solving and critical thinking
skills we taught. But much more often they got them be-
cause of some computer science classes they took on the
side. They never got them because they could perform
complicated matrix operations by hand or because of their
knowledge of unique factorization domains and quadratic
reciprocity.

We polled our alumni around this time and they were
usingmath in their jobs—just not themath they learned in
their degree. They told us: “I wish my major had prepared
me better for my job.”
1.4. Better solution: deliver. This suggests a better so-
lution: Actually deliver on the promise of mathematical
value to our students. By this I mean that we should teach
math that students can actually use, and enable them to
use it by giving them the necessary skills and tools to work
on problems that they truly care about. When we deliver
on the promise that math has value, then we can advertise
the careers, and then they believe us because then it’s true.

Let me be clear here. I am not talking about some sort
of job training program. A rich, transformative education
in rigorousmathematics and critical thinking (often called
a liberal education) is a wonderful thing, and we should not

give that up. I am talking about integrating the mathemat-
ics that is actually used in the real world, whether in com-
puting, biology, engineering, physics, economics, or data
science, into that traditional rigorous mathematical liberal
education.

What I hope to convince you of is that it is possible to
deliver on the promise that math has value, to teach math
that students can really use, and to enable them to use
it without losing what we love and what is most impor-
tant about a traditional liberal education in mathematics.
Moreover, as explained below, this can be done without
a lot of effort from or retraining of faculty whose primary
background is in pure mathematics.

2. Applied Mathematics is Good Mathematics
Some of you, like me, were raised by true believers in the
religion of Bourbaki, Hardy, and Halmos. They taught me
to be proud of the uselessness and “purity” ofmymath and
to believe, incorrectly, that only pure math was beautiful,
interesting, challenging, or rigorous.

But after 20 years of working in pure math, I finally
looked a little closer at applied math, and, to my surprise,
I found it to be just as beautiful, interesting, challenging
and rigorous as pure math.

The first time I saw how the fast Fourier transform could
be used to rapidly find a highly accurate low-degree Cheby-
shev polynomial approximation of an arbitrary smooth
function, I was in awe. It’s a glorious combination of beau-
tiful ideas, and it’s fabulously useful to boot. If you haven’t
seen it yet, go look it up—it’s fantastic. See [Tre20, Chap-
ter 3] or [HJ20, Section 9.5] for details. Some other things
I find beautiful in applied mathematics include Noether’s
theoremon symmetries and conservation laws; Thompson
sampling to optimize the tradeoff between exploration
and exploitation inmulti-armed bandit problems; and the
Metropolis–Hastings algorithm for Markov chain Monte
Carlo.

In addition to being beautiful and useful, appliedmath-
ematics can also be taught in a way that is at least as rigor-
ous and challenging as the traditional curriculum, and it
can be taught in a way that develops mathematical ability
and critical thinking skills as well as or better than the tra-
ditional major. As evidence for this claim, let me tell you
about the undergraduate major at Brigham Young Univer-
sity we call the Applied and Computational Mathematics Em-
phasis (ACME) [ACM22].

3. ACME
We started ACME as a way to deliver on the promise of
mathematical value to our students. ACME is the brain-
child of Jeff Humpherys and is the result of a lot of work
by a lot of people, including Jeff Humpherys, Emily Evans,
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Jared Whitehead, and me, along with scores of other col-
laborators and generous support from the National Sci-
ence Foundation. Since we started ACME, our university
has provided our department with additional faculty and
other resources because we have more, happier students.

I am describing ACME here not to say that everyone
should do exactly what we are doing—every school is dif-
ferent, and you’ll have to make your own way. But I hope
this is a useful proof of concept and that it gives you some
ideas of things you could try. And I hope that some of the
resources that we have developed can be useful to you.
3.1. 21st-century mathematics. The first question we
faced wasWhat mathematics should we teach? Applied math
has traditionally been focused on problems of matter and
energy—so much so that in 1998 V. I. Arnol′d insisted that
math is a part of physics [Arn98]. But most of our alumni
and industry contacts told us that the math they use is
less about matter and energy and more about information,
data, and computation.

I’ll let you decide for yourself whether that’s part of
physics or not, but it’s clear that the mathematics of in-
formation and data needs to be a big part of any modern
curriculum in applied mathematics. That doesn’t mean
we abandon traditional applied math, but rather expand
its scope to focus primarily on data-driven methods, mod-
eling, and algorithms. These are also the three main com-
ponents of applied mathematics identified by Weinan E in
[E21].
3.2. Mathematics, not data science. I need to emphasize
that the ACME program is not a degree in data science. It is
a rigorous education in the theory and practice of applied
and computational mathematics.

What we do in ACME is relevant to data science, but it
is not just data science. About a quarter of our students
go into data science careers or data science graduate pro-
grams. But our students also go into many other careers,
and to graduate school in many other disciplines, includ-
ing pure math, applied math, economics, finance, biology,
physics, engineering, computer science, and statistics. And
they flourish in those programs because they have a deep
and rigorous understanding of mathematics. An alumnus
now enrolled in a PhD program in biology wrote about
how ACME prepared him for that experience: “I work with
machine learning every day, and cookie cutter methods
don’t necessarily work for the problems I’m trying to solve.
I need to be able to read scientific and mathematical pa-
pers and really understand how all of the parts ofmodeling
with machine learning fit together. Having some feel for
the mathematical foundations of it all really gives me con-
fidence to try things and fail and not be afraid that there is
some mysterious mathematics that I don’t understand or

wouldn’t be able to understand if I tried.” —Karl Ringger
‘21

Some students initially think they want more training
in data science and and less education in mathematics,
but over time they come to appreciate the power of a rig-
orous education in mathematics. I recently received an
email from one of our alumni, currently doing a PhD in
network science at Northeastern, about this: “I can’t em-
phasize enough how grateful I am that my background is
based in math theory, rather than just knowing how to
plug and play with NumPy and scikit-learn. Thanks for re-
quiring us to learn so much at such a high level, being pa-
tient while we complained about it, and encouraging us
the whole time.” —Cory Glover ‘19

4. Key Features of ACME
From my perspective, the key features of the ACME pro-
gram are

1. A challenging and rigorous curriculum in mathemat-
ics.

2. Lockstep cohorts for the junior and senior years.
3. Computer labs for all advanced theory classes.
4. A student-chosen concentration in an area of applica-

tion.

The first half of the program is the same as our traditional
math major, covering basic mathematical and computer
programming prerequisites. But in the junior and senior
years students enroll in a lockstep cohort through a rigor-
ous and challenging mathematical core consisting of two
theory classes and two lab classes, two hours a day, five
days a week, every semester for four semesters. Students
also choose a concentration of four to five courses in an ap-
plication area. I’ll discuss each of these in more depth be-
low.
4.1. Challenging curriculum. The ACME curriculum is at
least as intense and demanding as our traditional major.
It is built on a mathematically rigorous foundational core
with daily (five days per week) homework sets or labs. De-
tails on the curriculum for each course can be found at
https://acme.byu.edu/.

I know some schools have been thinking about adding
a data science program or an applied math program that is
less challenging than the traditional major. I strongly rec-
ommend against this. First, mathematical tools are pow-
erful, and those who wield them need to understand very
well how they work and when and why they don’t work.
Moreover, there are many benefits of a challenging curricu-
lum to both the students and the program.
Benefits of a challenging curriculum. The most obvious ben-
efit is that students learn more, but a challenging cur-
riculum also attracts students, motivates collaboration,
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develops students’ ability to learn, develops ability and
confidence to solve hard problems, and brings better job
opportunities for graduates.

Students want a challenge. Students are attracted by
the challenging nature of the ACME program—they don’t
want a weak, watered-down experience. Here are two typ-
ical examples from our anonymous student ratings feed-
back about this. “I chose ACME because it challenges me.”
“The most engaging and exhausting mental challenge of
my life. I Love It.”

It encourages collaboration. Another big benefit of the
challenging curriculum is that it motivates students to
learn to collaborate with classmates. We do take many ac-
tive steps to foster collaboration, and our cohort system is
a big part of that effort (see Section 4.2 below), but the
difficult curriculum itself also helps encourage collabora-
tion. I’ll let one of the students explain: “I never enjoyed
working with other students before ACME, but now I pre-
fer it because I realize that I learn material better when I
help others to understand it, and faster when they helpme.
The high expectations served as a catalyst for good habits
that I would not have tried in their absence. With more to
be done than I could accomplish on my own, I embraced
working with others. The rigor of ACME taught me how
to learn and gave me the opportunity to respond compas-
sionately towardsmy peers. Because the load was challeng-
ing we learned—together—the value of working through
difficult circumstances and the joy of rising to meet lofty
expectations.” —Kolton Baldwin ‘21

Students learn to learn. Another benefit of the challeng-
ing curriculum is that students learn to learn more rapidly
and effectively. Students and alumni often talk about how
the ACME program has made them better learners, able to
quickly learn new ideas, algorithms, and techniques that
their coworkers struggle with. The following quote from
a recent graduate is typical: “Mathematics was always a
weakness of mine, and I’m now a lot stronger with it. But
most of all my ability to soak in mass amounts of new in-
formation is what has improved most. It all prepped me
for being a quick, efficient learner. I’ve been set up for life
and I’m excited to keep learning.” —Lee Woodside ‘22

Students learn to solve hard problems. The challenging cur-
riculum also helps build student ability and confidence
to solve hard problems. Here is a comment from a stu-
dent currently in the program: “Because of ACME, I am
no longer afraid of math—math is afraid of me. I’m very
grateful for the way that the program has built me into a
reliable problem solver.” —Sam Goldrup ‘23

And the following is from an ACME alumna currently
working on her PhD at Rice, studying applications of
deep learning in medical imaging. “Consistently be-
ing challenged by the fast pace of ACME gave me the

confidence to apply my deep learning research to imag-
ing physics—something I had no prior background in.”
—McKell Woodland ‘18

Employers want ACME students. The strong skill set of our
graduates means that once someone has hired one ACME
graduate, they usually want to hire more of them. Here’s
an excerpt from an email I recently received from an em-
ployer trying to recruit more ACME graduates: “There are
many programs out there which claim to prepare students
for data science careers only to send them into the jobmar-
ket woefully underprepared. . . . But ACME students, on the
other hand, have passed our technical interviews with fly-
ing colors and have shown they have the ability to solve
hard problems.”

And here is the experience of one alumnus: “Technical
leads that have known me now search out for ACME stu-
dents to hire as a first preference.” —Wesley Stevens, ‘18
Problems of a challenging curriculum. I don’t want to im-
ply that the challenging curriculum is without its prob-
lems. One of the difficulties includes the risk of students’
becoming intimidated or developing impostor syndrome.
But our lockstep cohort (see Section 4.2) helps to mitigate
that, as does the use of objective preparedness measures.
It’s more likely a student will feel unprepared if we say the
prerequisite is “good knowledge of analysis” than if we say
the prerequisite is “a B or better in Math 341.” ACME fac-
ulty and TAs also explicitly coach students about impostor
syndrome, why it happens, and how to overcome it.

The opposite problem also occurs, with a few students
developing a big ego and a destructive attitude, thinking
they are better than students not in the program or stu-
dents not doing as well in the program. Again, explicit
coaching is very powerful, and many students find that al-
though they may be good at one thing (e.g., mathematical
proofs), they are not necessarily so good at other things
(e.g., computer programming). Needing and getting help
from their classmates on the the things they struggle with
tends to make them more humble and compassionate in
those settings where they excel.

Students also sometimes struggle with time manage-
ment and the trap of local optimization—focusing too
much on one assignment and not enough on the big pic-
ture of their learning experience. This is partly helped by
coaching from faculty and TAs about better learning strate-
gies and by incentivizing good habits, but sometimes they
have to learn it by experience.

Our ACME faculty and TAs regularly meet together to
discuss how to best coach and otherwise support the stu-
dents through these challenges. Managing these different
challenges takes real work from the faculty and TAs. But
the work is rewarding and brings significant benefits to our
students.

“It’s HARD, but so powerful.” —Jesse Casillas ‘17
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4.2. Lockstep cohort. The lockstep cohort starts in fall se-
mester of the junior year and is a fundamental part of the
ACME experience. Students take courses with the same
classmates for two hours every day for two academic years
and study together in common study rooms with those
same classmates. They also organize social activities to-
gether.
Benefits of the cohorts. There are many benefits of the co-
horts, both for the students and for the program. These in-
clude enabling us to to take advantage of interconnections
between the parallel courses, building a sense of teamwork
and group support, and building loyal and enthusiastic
alumni.

Cohorts enable interconnections. Cohorts enable us to
take advantage of interconnections between parallel “sis-
ter” courses. For example, in one course they learn about
orthonormal bases and linear projections, and in the sis-
ter course they use that knowledge to understand Fourier
series. As another example, in one course they learn about
the uniform contractionmapping principle and in another
they use that knowledge to prove the stable manifold theo-
rem. Students appreciate the things they learn in one class
much more when those things are used right away in an-
other class.

Cohorts encourage teamwork. Learning to work together
is essential but hard for many math majors. The cohorts
help with that. One year a cohort entered themselves in
the university intramural frisbee competition and won the
championship for the entire university. That was partly
because of some expert coaching by one member of the
cohort, but it also shows how well they learned to work
together.

Cohorts provide emotional support. The emotional and so-
cial support the cohorts give students is powerful. One stu-
dent who was struggling with some mental health issues
suddenly stopped coming to class and ditched his study
groups. His peers recognized he needed help, went to his
dorm, and banged on his door until he got out of bed.
They told him to get dressed and come with them so they
could all work on homework together and get him caught
up. This wasn’t initiated or even noticed by the faculty un-
til much later, but with the help of his peers he finished the
semester strong and is now flourishing in a good graduate
programworking on his PhD inmathematics. Without the
cohort, I don’t think he would have finished the semester.

Another student just this month came to consult with
me about how to help a classmate struggling with some
personal issues. This is a stark contrast to my traditional
math classes, where the students mostly don’t even know
each others’ names, despite my best efforts to get them to
engage with each other.

Cohorts grow loyal alumni. Working together with class-
mates as a team transforms students into loyal and enthusi-
astic alumni who stay connected after graduation and gen-
erously give time and money to support the students cur-
rently in the program. Our university’s most recent senior
survey indicated that more than 40% of all math majors
(both ACME and traditional) were mentored by alumni—
significantly more than any other department in our col-
lege. ACME students often mention how helpful it was for
them to talk to alumni, and this is all a result of alumni vol-
unteering and taking initiative to make themselves avail-
able to students. In contrast, before we started ACME we
saw almost no alumni mentoring, and alumni of our tra-
ditional major still do not mentor students very often.
Challenges of cohorts. Of course there are difficulties with
a lockstep cohort, including reduced flexibility for both
faculty and students. Faculty must coordinate what they
teach and when they teach it to be able to build on what is
taught in sister courses. And students must take the cohort
courses at the time and in the semester that they are taught.
This sometimes also requires us to coordinate with other
departments to avoid scheduling conflicts. And the sched-
ule doesn’t always work perfectly for everyone. Some stu-
dents need to switch to another cohort, or even take one of
the off-ramps we provide to switch back to the traditional
major from ACME. Conversely, students who realize late
that they want what ACME has to offer can still join a ju-
nior cohort for just one semester or one year and use ACME
courses to count toward their traditional degree.

The cohort system can also be a challenge for introverts
who prefer to work alone or find it difficult to form study
groups. Learning to work with others is an important skill
even for introverts, but we try to help them overcome some
of these hurdles by assisting with study group formation
and providing dedicated study spaces and online collabo-
ration tools like Slack.

Managing these difficulties takes work, but it’s worth it,
because of the benefit to the students. And for many stu-
dents the cohort itself is a strong draw. As one alumnus
says, “I chose ACME because of the cohort situation and
the in-depth learning about the math for many algorithms
used in the industry today.” —Wesley Stevens ‘18

We started the cohort system as an efficiency, to reduce
the need for faculty and TA resources, but the benefits of
the cohort system are so significant we can’t imagine doing
ACME without cohorts. In fact, after seeing the power of
the cohorts in ACME, our department started a cohort ex-
perience for freshmen and sophomores for all our majors
(both the traditional major and ACME).
4.3. Computer labs. Throughout the junior and senior
core, students do a lab every week for each of the two core
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theory courses they are taking each semester. The general
approach we take to labs is that the students first code up
an implementation in Python of the mathematical ideas
we are treating, then they compare their implementation
for speed, scalability, and correctness to the industry stan-
dard implementation. Sometimes their code is competi-
tive with the polished industrial version, which they find
very rewarding. Finally, they use the mathematical tool to
solve an interesting problem.

As an example, one lab involves using the FFT to filter
the loud, annoying buzz of the popular vuvuzela noise-
maker out of a recording of a World Cup soccer game. Stu-
dents also experiment with convolution, starting with a
recording of a Chopin piano piece played in the studio
(a low-echo environment) and then convolving that with
a recording of a balloon pop in an echoey stairwell. They
get a kick out of hearing how the convolved result sounds
like the piano is being played in the echoey stairwell. They
often take this to the next level by convolvingmany of their
favorite audio clips with the balloon pop.

Other popular labs include Markov chains for text gen-
eration, Perron–Frobenius for PageRank and March Mad-
ness brackets, finding Bacon (Erdös) numbers, Monte
Carlo integration, Multi-armed bandits, SIR epidemic
models, Hidden Markov model speech recognition, Ran-
dom forests, Kalman filter, HIV treatment, and color quan-
tization with K-means. These labs were developed with fi-
nancial support from an NSF TUES grant (DUE-1323785)
and all of our labs are free and open source [HJE22].
Benefits of computer labs. The labs help students learn the
math better, improve students’ attention to detail, improve
students’ employability, and motivate students to learn
more mathematics.

Labs improve mathematical learning. The best way to
learn is to teach, and the computer is the dumbest possi-
ble student—it does only and exactly what you tell it and
never gets the idea, sees the pattern, or fills in the details.
To teach the computer the programmer must describe ev-
ery part of every algorithm and formula and be able to de-
bug all the errors that arise. Doing all that improves the
programmer’s understanding enormously. As J. Betteridge
et al. say, “Learning to use computers well is a very effec-
tive way to learn mathematics well: by teaching program-
ming, we can teach people to be better mathematicians”
[BCC+22].

Labs improve attention to detail. The Python interpreter
usually won’t run students’ programs at all unless they
have been careful about every aspect of their code, in-
cluding syntax, order of operations, and carefully defin-
ing variables and methods before using them. Getting
immediate feedback on these things in computer labs
helps them learn to think more carefully and clearly about

similar things in their written mathematics, where feed-
back is much slower. Importantly, students often seem to
respond better to an impersonal errormessage from a com-
puter than they do to a TA or professor telling them that the
their proof is wrong. This helps them learn that mistakes
are normal and expected, and that identifying mistakes is
essential to growth.

Labs boost employability. Computer labs directly build
students’ programming skills and their ability to convert
complex ideas into efficient code. Moreover, the labs help
students learn industry-standard tools, improving their
employability and giving them a chance to build a port-
folio of interesting projects to demonstrate their abilities
to prospective employers. The labs focus on using com-
puters and mathematics together, which is not something
they can gain just by taking computer courses alongside
their math courses, but it is something that employers tell
us they want.

Labs motivate mathematics. Students are motivated by
the applications in labs to learn more mathematics. The
theory of Markov chains or the singular value decomposi-
tionmay feel dry to them, butwhen they can use the theory
to build a cool application, they become more motivated
to learn and understand the mathematics.
Challenges with computer labs. As with anything, there are
challenges with the labs, but so far these have been man-
ageable for us.

The first challenge is limited resources for teaching. Not
all our faculty program well, not all that do program well
know Python, and faculty are busy with other things. For
these reasons we designed the labs to be taught by teach-
ing assistants (both graduate and undergraduate), and that
works pretty well for us.

Another challenge is that the lab materials need regular
updating, requiring a team of faculty and TAs to review
and revise the labs regularly. But the benefits of the labs
are so powerful for student learning that they absolutely
outweigh the cost to us of managing these relatively small
issues.
Why Python? We use Python almost exclusively for several
reasons. First, students need to learn to program well, so
they need to have enough experience in a full-blown pro-
gramming language to learn it in some depth. Othermath-
ematical and statistical computing tools like Mathematica,
MatLab,Maple, and R are great for what they do, but as pro-
gramming languages they are not as versatile nor as widely
used outside of the academic community as Python.

Python is the primary language of modern data science
and is currently the most popular programming language
in use, according to the TIOBE index [TIO]. It is easy to
learn, and it is free and open source. So it has been our
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exclusive tool. There are many packages within Python
that can be used for specific applications, and we usemany
of these in our labs [HJE22], but the underlying tool is al-
ways Python. It is possible that Julia will eventually take
the place of Python, but Julia is not yet asmature as Python
and is not yet widely used.
4.4. Concentration. Students are required to do a con-
centration of four to five courses in an application area of
their choice, usually from another department. Because
the students have a strong mathematical background,
these concentration courses are usually more advanced
than a typical minor. Some of the most popular choices
include computer science, data science and machine learn-
ing, economics, business, biology, and physics.
Benefits of concentrations. The concentration helps students
learn to communicate across disciplines and see howmath
is used in a subject they care about. And they use it to pre-
pare for their specific chosen career path, whether that’s a
job in machine learning, going to graduate school in eco-
nomics, or starting their own business.

Also, many students are attracted to ACME because the
concentration allows them to study both math and an-
other subject they love and use them together, rather than
choosing between them. The following quote from a re-
cent graduate is typical of what students tell us about why
they chose ACME: “ACME offered me the opportunity to
explore biology and mathematics simultaneously.... The
idea of having a concentration that was unique to me and
my interests really appealed to me.” —Karl Ringger ‘21
Challenges with the concentrations. In some concentrations
studentsmust fill many prerequisites before they can get to
the interesting courses that really use math. Some depart-
ments are good about working with us to find alternative
paths into those courses, and others aren’t. And, of course,
the students often need guidance as they choose and nav-
igate their concentration, and that takes faculty time. But
it’s worth it, because it really helps them.

5. Additional Challenges
One big challenge we faced when starting ACME was a
lack of suitable curriculum materials. Being naïve, we de-
cided to write our own. The National Science Foundation
helped with a grant to support our work; but it really was
a lot of work, and I don’t recommend it if you can avoid
it. I hope that some of what we have done will be useful
to you. I’ve already shared a little about the labs above,
but we also wrote some textbooks, which are published by
SIAM [HJE17,HJ20]. Wewere pleased that SIAMproduced
beautiful hardbound books in full color for less than what
it would cost an individual to photocopy the book.

One of the greatest challenges we faced when starting
ACMEwas limited resources, whichmotivated the lockstep
cohort model. The cohort model is efficient, using only
two faculty lines to run eight required courses, with labs
run by graduate students.

We also had few faculty who knew all the material. To
address this we developed our textbooks with faculty in
mind as well as students, allowing faculty to learn the ma-
terial ahead of the students. Many of our faculty also were
not proficient at computer programming. To address this
we use student TAs to teach the labs, so that the faculty
need not code.

Finally, some faculty were suspicious of applied math
and were reluctant to support any program that might
move resources from pure math to applied math. In fact,
when the first draft of the program went to the department
curriculum committee for approval, it was unanimously
opposed. But eventually the committee and the rest of the
department agreed to let us try it, especially when the uni-
versity academic vice president gave us one faculty line on
condition that within five years we meet a target of 40 stu-
dents enrolled per cohort and 25 graduating per year.

6. Results
Enrollments. Our first cohort had only 15 students in it,
but by the fifth year, we had 70 enrolled in each new co-
hort and over 60 graduating each year—far exceeding the
vice president’s requirement for keeping the faculty line.
The total number of math majors (traditional and ACME
combined, but not math education, statistics, or computer
science) has grown from the low 200s to well over 400 (ap-
proximately 1.3% of the BYU student body). Since 2014,
a year after ACME started, the percentage of minority stu-
dents in ACME, while still lower than we’d like, has grown
by 73%, compared to an increase of only 6% for minorities
in the university as a whole.
Jobs and internships. We are not a jobs training program,
but ACME students generally get much better jobs than
our traditional math majors. Data is incomplete because
not everyone reports job and salary information back to us,
but for those who do report, the highest starting salary of
our traditional mathmajors is roughly themedian starting
salary for our ACME majors.

We have also seen a large increase in the number of em-
ployers coming to recruit our students. And many faculty
in other departments now try to recruit our students as re-
search assistants.
Graduate programs. Our students have been very success-
ful in top graduate programs in both pure and applied
mathematics, but they have also been successful in top
graduate programs in other disciplines, including biostatis-
tics, computational biology, computer science, economics,
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electrical engineering, geology, machine learning, market-
ing, math education, petroleum engineering, and statis-
tics.

“In my graduate degree [Biostatistics at Berkeley] I have
classmates who graduated from Ivy League schools who
are constantly baffled by the breadth of topics in computer
science, mathematics, and statistics I’ve been exposed to
and the understanding I’ve retained.... I really am super
grateful for ACME. It prepared me better than I could have
imagined for grad school.”—Tyler Mansfield ‘20
Faculty. Although some of our faculty didn’t know all the
material the first time they taught an ACME course, which
meant extra work for them, most of them have loved teach-
ing it. Even most of those who haven’t yet taught ACME
classes recognize that ACME attracts more good students
to math, with a positive spillover into the traditional ma-
jor and graduate programs. And the university has pro-
vided our department with additional faculty and other re-
sources because we have more, happier students.

7. First Steps
If you want to start something like this for your students,
what should be your first steps? And what is the lowest
hanging fruit or most bang for the buck?

Math + programming. I feel strongly that the most im-
portant thing math majors need is more computer pro-
gramming in a widely used programming language, ide-
ally merged with their mathematics in a way that enables
them to use computers to solve mathematics problems
and to implement deep mathematical ideas in efficient
code.

One way to start this is to integrate programming labs
into linear algebra for math majors. This helps them de-
velop their programming skills, it frees them from the
drudgery of solving large linear systems and finding eigen-
values by hand, and it helps them see how tedious com-
putations can be assigned to the computer to let them do
interesting things with their mathematics. Students can
easily access a powerful computing environment through
free tools like Google Colab without any special help or
expertise. For an example of how this can be done, see
[HSWS22].

Another thing to consider for every math major is a
course in algorithms and optimization, where they really
think about the mathematics of computation and learn
about optimization—the fundamental tool of data sci-
ence, machine learning, and statistics. That course should
also have lots of programming labs. We teach this course
using [HJ20] and the labs in [HJE22], but there are many
other ways that you could do such a course.

Finally, whether you adopt these math-plus-program-
ing courses or not, consider requiring at least one or two

standard computer science courses of all yourmathmajors.
Although Python and C++ are some of the most useful lan-
guages for mathematicians, courses in other popular lan-
guages like Javascript and Java are also useful.

Concentrations: math + X. Students benefit from seeing
how mathematical ideas are used in other disciplines. But
not every student likes the same applications, and not ev-
eryonewill respond to the specific applications you choose
to show in your classes. Consider encouraging or even re-
quiring your students to take classes outside of mathemat-
ics in a complementary subject where they can apply their
skills to something that interests them. It need not be in
a STEM field; the social sciences, business, and other disci-
plines benefit greatly from the skills that mathematicians
bring.

Cohorts. Cohorts are extremely powerful for improving
the learning experience and helping students learn impor-
tant soft skills. Even if you find it difficult to form formal
cohorts among your majors, consider doing things to ap-
proximate cohorts. That could be scheduling two classes
that majors typically take concurrently to run in the same
classroom, back to back. It could also mean helping them
form study groups, and, if possible, dedicating space for
them to study together—maybe even in that same back-
to-back classroom in the hours before and after the two
classes. Almost anything that gets students talking to each
other and working together is helpful.

8. Conclusion
I don’t think that our approach is necessarily the perfect
fit for every program. But I hope that I’ve been able to
give you some ideas of both why and how to implement a
program that teaches students mathematics that they can
use, and prepares them to actually use it.

When the students see that what we have to offer is rele-
vant to their goals, their life, and their ambitions, then they
are willing to trust us when we then ask them to do hard
things. In the words of one student on our anonymous stu-
dent ratings form, the experience “globally optimized our
learning, happiness, and personal growth. That’s all you
really need to know, since this is an optimization class.”

We can restore confidence in the value of mathematics
by delivering what students have been promised—useful
math and the practical skills to use it. I hope I’ve been
able to convince you that we can do this without losing
what we love about the traditional math major. Applied
math is beautiful, and it can and should be taught in a way
that is rigorous and challenging. I ask you to consider how
you can use these ideas to open the doors for more of your
students to enjoy mathematics, to succeed in mathematics,
and to use mathematics to make the world a better place.
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3000 Years of Analysis
Reviewed by Anthony Weston

B
ir
kh

äu
se

r

3000 Years of Analysis
Thomas Sonar

3000 Years of Analysis by Thomas
Sonar provides a mathematical
and cultural excursion through
the historical development of
mathematical analysis from an-
cient to modern times. The math-
ematical focus of the text is placed
on models of continuous change
such as the differential and inte-
gral calculus. This focus naturally

includes the study of infinitely small quantities and cul-
minates with a discussion of the formal development of
nonstandard models of analysis in the twentieth century.
Sonar notes that in choosing a duration of 3000 years, he is
making a compromise since one cannot say with certitude
exactly when notions of analysis began to germinate.

The original German language editions of 3000 Years
of Analysis were published in 2011 and 2016. The focus
of this review is on the English translation of the 2016
edition. Sonar states in his preface to the English transla-
tion that he was partly motivated by an intention to make
“the history of analysis available to interested nonspecial-
ists and a broader audience.” The same preface contains
an elegantly stated definition of analysis: “In essence anal-
ysis is the science of the infinite; namely the infinitely
large as well as the infinitely small. Its roots lie already in
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Mellon University in Qatar. His email address is aweston2@andrew.cmu
.edu.
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For permission to reprint this article, please contact:
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the fragments of the Pre-Socratic philosophers and their
considerations of the ‘continuum’, as well as in the burn-
ing question of whether space and time are made ‘contin-
uously’ or made of ‘atoms’. Thin threads of the roots of
analysis reach even back to the realms of the Pharaohs and
the Babylonians from which the Greek[s] received some of
their knowledge.”

Despite the appeal to nonspecialists Sonar makes clear
in his preface that the apprehension of analysis does not
come for free: “But not later than with Archimedes (about
287–212 BC) analysis reached a maturity which asks for
the active involvement of my readership. Not by any
stretch of imagination can one grasp the meaning of the
Archimedean analysis without studying some examples
thoroughly and to comprehend the mathematics behind
them with pencil and paper.” In practical terms, this
means that the purelymathematical passages of 3000 Years
of Analysis require at least a good undergraduate back-
ground in mathematics. In other words, the level of math-
ematical difficulty of 3000 Years of Analysis is comparable
to that of the The Historical Development of the Calculus by
C. H. Edwards, Jr [Edw79]. Indeed, as Sonar makes plain,
there are a number of instances where he explicitly follows
Edwards.

A unique feature of 3000 Years of Analysis is that it pro-
vides an exquisitely detailed treatment of the history of
analysis on three distinct levels: (1) the historical and cul-
tural sweep of the times in which key advances took place
is given, (2) ample biographies of the personages behind
the advances are given, and (3) the mathematical founda-
tions of the advances are presented. Such an undertaking
is both a formidable task and a delicate balancing act. The
outcome is a fascinating and valuable addition to existing
literature on the history of mathematics. We now pick up
some of the main threads of Sonar’s monograph begin-
ning with the fourth century BC.
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At this time the ancient Greekmathematicianswerewell
aware of the existence of incommensurable geometricmag-
nitudes and the implied limitations of the Pythagorean
theory of proportionality. These deficiencies were ad-
dressed by Eudoxus of Cnidus (408–355 BC). Eudoxus
was a student at Plato’s Academy in Athens and he is univer-
sally regarded as the greatest mathematician of the fourth
century BC, not least because of his theory of proportional-
ity. Eudoxus defines two geometric ratios 𝑎 ∶ 𝑏 and 𝑐 ∶ 𝑑
to be proportional, denoted 𝑎 ∶ 𝑏 = 𝑐 ∶ 𝑑, if and only if
for any two given positive integers𝑚 and 𝑛, it follows that
either (1) 𝑛𝑎 > 𝑚𝑏 and 𝑛𝑐 > 𝑚𝑑, or (2) 𝑛𝑎 = 𝑚𝑏 and
𝑛𝑐 = 𝑚𝑑, or (3) 𝑛𝑎 < 𝑚𝑏 and 𝑛𝑐 < 𝑚𝑑.

Eudoxus’s extensive theory of proportionality appears
in Book V of Euclid’s Elements. In the case of two incom-
mensurable magnitudes 𝑎 and 𝑏, Eudoxus’s definition of
proportionality partitions the rational numbers into two
disjoint subsets 𝑈 and 𝑂, where 𝑈 consists of all rational
numbers 𝑚/𝑛 such that 𝑚 ∶ 𝑛 < 𝑎 ∶ 𝑏 and 𝑂 consists of
all rational numbers 𝑚/𝑛 such that 𝑚 ∶ 𝑛 > 𝑎 ∶ 𝑏. Of this
partition Sonar notes: “At the ‘interface’ between 𝑈 and
𝑂 a new number may be defined which obviously has to
be an irrational one. We had to wait well until the second
half of the 19th century before Eudoxus’s theory of pro-
portions could be utilized for the construction of the real
numbers. This fundamental step was finally carried out by
the mathematician Richard Dedekind (1831–1916) from
Brunswick, Germany.”

Eudoxus was also the first to state what has since be-
come known as the Archimedean axiom. Namely, given two
geometric magnitudes 𝑎 and 𝑏, there exists a positive inte-
ger 𝑛 such that 𝑛𝑎 > 𝑏. The germ of this axiom appears in
Book V of Euclid’s Elements (Definition 4) where it is stated
rather differently: Two geometric magnitudes “are said to
have a ratio to one another which are capable, when mul-
tiplied, of exceeding one another.” On the basis of this
axiom, Eudoxus was able to prove that if two geometric
ratios 𝑎 ∶ 𝑐 and 𝑏 ∶ 𝑐 satisfy 𝑎 ∶ 𝑐 = 𝑏 ∶ 𝑐, then 𝑎 = 𝑏.
Eudoxus’s proof is a classical exercise in reductio ad absur-
dum. Sonar also notes: “With the Archimedean axiom Eu-
doxus also brought a method for the computation of areas
to life: the method of exhaustion.”

Lurking in the work of Eudoxus and other ancient
Greek mathematicians we see implicit considerations of
infinite processes. By adroitly using the Archimedean ax-
iom and the method of exhaustion, Eudoxus and other an-
cient Greek mathematicians were able to explicitly avoid
taking limits when calculating areas and volumes. Nev-
ertheless, notions of the infinite were hotly debated by
ancient Greek scholars. Two schools of thought erupted:
atomism (the existence of fundamental indivisible com-
ponents in nature) and the theory of the continuum (that
which is always divisible nomatter how often it is divided).
Leucippus (5th century BC) and his student Democritus

(460–370 BC) are credited with founding atomism. They
contended that matter is not infinitely divisible and that
it is, indeed, composed of individual discrete particles or
atoms that cannot be divided. Aristotle (384–322 BC),
who drew a crucial distinction between potential and ac-
tual infinities, was a major proponent of the theory of the
continuum. For Aristotle, the continuum is a potential in-
finity: No matter how often a continuum is divided, a con-
tinuum will remain.

Foremost in the canon of ancient Greek mathematics
are the brilliant works of Archimedes of Syracuse (287–
212 BC). In some ways, Archimedes was a proto-engineer
whose inventions involving levers, pulleys, and screws
drew great acclaim during his lifetime. However, as his
extant writings make patently clear, Archimedes’s primary
focus was undoubtedly on mathematics. These writings
focus on area, length, and volume calculations and they
hone the method of exhaustion into a tool of phenomenal
precision. Scholars of Archimedes identify three codices
of his writings that are generally referred to as A, B, and C.
As Sonar explains: “Already with the writings contained in
codices A and B Archimedes could be identified as a great
mathematician and physicist, but it is codex C that cata-
pulted Archimedes into the heaven of immortals and gave
him a place of honour at the side of Newton and Leibniz.”

Codex C was lost for the best part of a millennium only
to come to light as partially erased text in amedieval prayer
book that resurfaced in 1899. During the summer of 1906,
using nothingmore than amagnifying glass, the renowned
Danish philologist and historian Johan Ludvig Heiberg
(1854–1928) determined that the text of the prayer book
was written over several treatises of Archimedes, including
two previously unknown works: The method and Stoma-
chion. The greatest revelation in Codex C is undoubtedly
The method because it presents the mechanical heuristic
that Archimedes used to discover some of his most out-
standing quadrature and center of gravity results. The ra-
tionale behind Archimedes’s heuristic was based on levers
in equilibrium and he went on to apply the method with
extraordinary success by “weighing” indivisibles.

We see in the sixth century AD a tremendous phase tran-
sition in the history of mathematics. As the Roman em-
pires crumble a great confluence of Greek, Persian, and In-
dian mathematical ideas takes place in the emerging Ara-
bic realms. The prophet Mohammedwas born inMecca in
570 AD and went on to found Islam after receiving divine
inspiration in the Cave of Hira, Jabal an-Nour (mountain),
in 610 AD. Within decades large swathes of the Greek-
Hellenistic world, the Iberian Peninsula, and North Africa
became subject to rapidly emanating influences of Arabic
and Islamic culture. Manuscripts of the ancient Greek, Per-
sian, and Indian mathematicians were translated into Ara-
bic and disseminated throughout the Arabic realms.
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The mathematician and astronomer al-Khwārizmı̄ is
thought to have lived from 780–850 AD. Not much is
known about al-Khwārizmı̄’s life but he worked at the
Grand Library of Baghdad under the patronage of the Ab-
basid dynasty Caliph Ma’mun. During this period Bagh-
dad was a renowned center for the study of the works of
ancient Greek, Persian, and Indian scholars. In terms of
mathematics, al-Khwārizmı̄ wrote influential textbooks on
arithmetic and algebra. His textbook on arithmetic, which
only survived to more modern times in Latin translation
(Algoritmi de numero Indorum), dealt extensively with the
Hindu art of reckoning. Manipulation of decimal numer-
als, positional notation, and a symbol for zero all figure
prominently in Algoritmi de numero Indorum.

A central figure in the firmament of Islamic Golden
Age scholarship is the physicist and mathematician al-
Haytham (965–1039 AD). Considered to be a parent of
modern day optics, al-Haythamunderpinned his investiga-
tions into the nature of light and vision with direct exper-
imental evidence. His multi-volume work on optics was
translated into Latin as Opticae thesaurus Alhazeni in 1270
and subsequently became influential in Western Europe.
Al-Haytham was a master practitioner of the method of ex-
haustion for calculating areas and volumes. In particular,
al-Haytham obtained nontrivial generalizations of some
of Archimedes’s celebrated volume results.

TheDark Ages refer to the European period of some four
centuries that followed the fall of the Western Roman Em-
pire in 476 AD. During this period of stagnation and de-
cline the scientific posture ofWestern Europe was seriously
corroded and, in fact, barely limped along. The master-
works of the ancient Greeks were reduced to a dim mem-
ory during the Dark Ages. Of this period Edwards [Edw79]
writes: “Only the Latin encyclopedists preserved any con-
nection, however tenuous, with the intellectual treasures
of the past.” This statement is beautifully unpacked by
Sonar in his treatment of “the great time of the transla-
tors.” One of the earliest translators of Arabic texts was
Adelard of Bath (1080–1152). Sonar notes: “One of the
first Latin translations (from the Arabic) of Euclid’s Ele-
ments flew from his quill as did astronomical tables com-
piled by al-Khwārizmı̄.” And so it happens, punctuated
by crusades and other calamities, that a rich mathematical
tradition, nurtured and enriched by Arab scholars, slowly
finds its way back into late medieval Europe.

Between 1328 and 1350 a group of logicians and nat-
ural philosophers at Merton College in Oxford developed
a theory, that became known as latitudes of forms, to quan-
tify “qualities” such as heat and speed. The Merton schol-
ars introduced rigorous definitions of uniform motion
and acceleration, and derived the mean speed theorem for
uniformly accelerated bodies. Sonar describes the mean
speed theorem as being the “First Law of Motion.” The
theorem represents a radical departure from millennia of

primarily static mathematical thought and it inaugurates
kinematics as a fundamental field of scientific inquiry.
Sonar deftly explains how this profound transformation
arose from within Scholasticism and he provides vivid in-
sights into some of the key historical figures, including
richly detailed passages on Robert Grosseteste, Roger Ba-
con, Albertus Magnus, Thomas Bradwardine, and Nicole
Oresme.

The ideas of the Merton College scholars spread rapidly
to France and Italy in the middle of the fourteenth cen-
tury. The theory of latitudes of forms was keenly studied
and extended by the Parisian polymath Nicole Oresme
(1320/25–1382). Oresme introduced graphical represen-
tations of intensities of qualities and provided a geometric
verification of themean speed theorem. InOresme’s workwe
see glimmers of the graphical representation of functional
relationships and steps being taken towards the introduc-
tion of coordinate systems.

At the beginning of the fifteenth century a clear shift
away from the Middle Ages became palpable in Europe.
The ensuing Renaissance lasted for roughly two centuries
and provided the pathway to modernity. The period of
the High Renaissance in the Italian states, which started in
about 1495 and lasted for around thirty years, is of central
importance to art historians, not least because of the epic
artworks of Leonardo, Michelangelo, and Raphael. The
vivid cultural flowering of the Renaissance encompassed
a period of rapid scientific progress. As Sonar points out,
a key driver of this scientific progress was the recently in-
vented Gutenberg printing press.

One may view the Renaissance as embodying a shift
away from the Church-centered Scholasticism of the Mid-
dle Ages and toward the establishment of a new era of
Humanism–a return to the centrality of the individual as
emphasized in classical antiquity. Renaissance Humanism
included the notion that natural phenomena may be com-
pletely explained by science and mathematics. Nowhere
was this notion more clearly displayed than in the radical
astronomical models of Copernicus, Kepler, and Galileo.
Sonar pays particular attention to Johannes Kepler (1571–
1630) and this is hardly surprising because Kepler, apart
from being one of the most extraordinary figures in the
history of science, was a proponent of using infinitesimals
as a means to simplify the calculations of areas and vol-
umes. The tumultuous life and times of Kepler are vividly
sketched by Sonar over the course of some twenty pages.
These biographical musings are followed by a treatment
of Kepler’s tactics for using geometric infinitesimals to cal-
culate areas (such as Kepler’s “barrel rule” for determining
the area under a parabola) and volumes of solids of revo-
lution (such as the torus).

The first half of the seventeenth century also witnessed
the majestic contributions of René Descartes (1596–1650)
and Pierre de Fermat (1607–1665) to the development
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of analytic geometry and analysis. As Sonar implies,
Descartes and Fermat were polar opposites in terms of tem-
perament. For instance, about Descartes, Sonar writes, “Af-
ter an utterly eventful life as a superb philosopher, mathe-
matician, physicist, bon vivant, mercenary, and wrangler
he died on 11th February 1650, shortly before his 54th
birthday, in Stockholm.” In stark relief we have Fermat,
who Sonar describes as being “the most unobtrusive of
the great French mathematicians of the 17th century – no
known scandals, no life as a mercenary, and no sharp turn-
ing points in his life; at least as far as we know. He was,
however, one of the most profound thinkers of his age.”
The historical significance of the new analytic geometry
of Descartes and Fermat is succinctly summarized by Ed-
wards [Edw79]: “Whereas the Greek geometers had suf-
fered from a paucity of known curves, a new curve could
now be introduced by the simple act of writing down a
new equation. In this way, analytic geometry provided
both a much broadened field of play for the infinitesimal
techniques of the seventeenth century, and the technical
machinery needed for their elucidation.”

Until the early seventeenth century the construction of
tangent lines to curves were, for the most part, a rarity.
In the 1630s, aided by the new analytic geometry, Fermat
and Descartes introduced novel methods for constructing
tangent lines to hitherto unknown classes of curves. Fer-
mat used a poorly explained but presumably infinitesimal
based “pseudo-equality” technique to construct tangent
lines. In contrast, the “circle method” of Descartes is of a
purely algebraic nature. Descartes was pleased to avoid the
use of infinitesimal arguments in his construction of tan-
gent lines but it came at a high cost in terms of themonoto-
nous algebraic calculations that had to be carried out. This
shortcoming of the circle method of Descartes was largely
alleviated in the 1850s by algorithmic advances of Johann
Hudde (1628–1704) and René de Sluse (1622–1685) that
streamlined the construction of tangent lines.

Descartes’s circle method only applies to explicitly de-
fined curves of the form 𝑦 = 𝑓(𝑥), 𝑓2 a polynomial. In
the mid 1650s de Sluse took things even further and de-
veloped an algorithmic procedure for constructing tangent
lines to implicitly defined curves of the form 𝑓(𝑥, 𝑦) = 0,
𝑓 a bivariate polynomial. Sluse’s rule was published in the
1672 Philosophical Transactions of the Royal Society but with-
out any indication of how the rule was obtained. As Ed-
wards [Edw79] points out: “Whatever may have been the
means by which Sluse’s rule was first discovered, the princi-
pal significance of the rules of Sluse and Hudde lay in the
fact that they provided general algorithms by which tan-
gents to algebraic curves could be constructed in a routine
manner.”

In Italy, during the time of the great works of Descartes
and Fermat, Galileo’s disciple Bonaventura Cavalieri
(1598–1647) put forth radical new ideas on how to

apply indivisible techniques to solve previously inacces-
sible quadrature and cubature problems. The most well-
known theorem of Cavalieri is the following simplified
principle: “If two solids have equal altitudes, and if sec-
tions made by planes parallel to the bases and at equal
distances from them are always in a given ratio, then the
volumes of the solids are also in this ratio.” (Quoted from
[Edw79, p. 104].)

Cavalieri was also skilled in the manipulation of the
cross sectional indivisibles of lone geometric figures. For
example, by calculating “sums of powers of lines”, Cava-
lieri was able to determine the area under the curve 𝑦 = 𝑥𝑛
(𝑛 a positive integer) on the interval [0, 1], albeit not very
rigorously. As Sonar remarks: “Looking at Cavalieri’s ‘sum-
mations’ today is breathtaking and hair-raising. There
were lines of thickness 0 airily ‘summed’ and put into ra-
tios; hence itmay be not surprising that opposition formed
quickly against Cavalieri’s method of indivisibles.”

During the sixteenth century mounting pressure to sim-
plify tedious arithmetic calculations led to the invention
of logarithms by John Napier (1550–1617). In essence,
Napier isolated his definition of a logarithm from a series
of proto-logarithmic tables and a kinematic model involv-
ing points moving on a pair of line segments. In order to
construct these tables Napier combined judicious numeri-
cal choices together with some subtle nonlinear interpola-
tion schemes. Napier’s logarithmic tables were published
as a slender volume in 1614, adroitly entitled Mirifici log-
arithmorum canonis descriptio. The impact of Napier’s won-
derful logarithms was both dramatic and immediate. For
example, Kepler used Napier’s tables to simplify the com-
putations that led to his discovery of the third law of plan-
etary motion.

At the outset of the seventh chapter of 3000 Years of
Analysis Sonar presents twenty pages of thoughtfully writ-
ten biographical material on Isaac Newton (1643–1727).
Sonar’s treatment is concise, deft, and finely balanced. The
capacity of Newton to be cantankerous is clearly stated
but not overly dwelt upon and, for this, the reader can be
most grateful. Sonar charts Newton’s difficult childhood
days (when great ingenuity was already abundantly evi-
dent in the young man), the sublimely productive Cam-
bridge years 1663–1687, and eventual decline as a well
paid government official. Of the beginning of the sublime
period, Sonar writes: “In a notebook we find Newton’s
true occupation in 1663: Theorems concerning conic sec-
tions following Pappus, remarks concerning geometrical
theorems by Viète, van Schooten, andOughtred, theorems
concerning arithmetic by John Wallis, methods of grind-
ing lenses, questions of natural philosophy, theology, and
alchemy.”

During the period 1663–1687, Newton became an ex-
pert manipulator of infinite series. The starting point
for Newton was studying John Wallis’s (1616–1703)
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Arithmetica infinitorum. Newton’s reading ofWallis led him
to formulate the binomial series expansion of (1+𝑥)𝛼, 𝛼 a
constant. The case 𝛼 = 1/2was previously known toHenry
Briggs (1561–1630) through his work on logarithms and
finite versions of the binomial theorem (when 𝛼 is a pos-
itive integer) had been known since antiquity. Critically,
Newton’s formulation of the binomial theorem allowed
for the free use of negative and fractional exponents.

Newton’s interest in the binomial theorem was not idle.
In developing the calculus of fluxions, Newton relied on
the binomial theorem to unlock implicit differentiation
for curves of the form 𝑓(𝑥, 𝑦) = 0, 𝑓 a bivariate polyno-
mial. As Sonar notes: “Newton thought in terms of mo-
tion and velocities when he attempted to compute tan-
gents of curves of the form 𝑓(𝑥, 𝑦) = 0. In the eyes of New-
ton the curve 𝑓(𝑥, 𝑦) = 0 itself ‘results’ from the points of
intersection of two moving lines which we can interpret as
being the velocity components in 𝑥- and 𝑦-direction.”

Newton wrote up his work on fluxions in a manuscript
that is datedOctober 1666. This so-calledOctober tract was
circulated to some English mathematicians but it was not
formally published. Included in the October tract is New-
ton’s “inverse method of fluxions.” This was the first state-
ment of the fundamental theorem of calculus in the his-
tory ofmathematics. In the words of Sonar: “Modern anal-
ysis could only begin with the thorough knowledge that
differentiation and integration are inverse operations. Bar-
row had this result implicitly but it was left to Newton and
Leibniz to clearly acknowledge the central place of the fun-
damental theorem.” Newton went on to use his method
of fluxions to show that problems of quadrature, construct-
ing tangent lines, rectification of curves, extreme values,
and so on, all fall under one umbrella. Newton had thus
unified millennia of mathematical analysis into a single
coherent whole. Gottfried Wilhelm Leibniz (1646–1716),
within the space of a few short years, would independently
obtain the fundamental theorem of calculus, but from a
different point of view to that of Newton.

Leibniz completed a baccalaureate in philosophy and
mathematics at the University of Leipzig in 1663 and was
awarded a doctorate of law at the University of Altdorf in
1667. In 1672 Leibniz traveled to Paris in a diplomatic ca-
pacity for the Elector of Mainz. This placed Lebniz within
the orbit of a coterie of superb European scholars, includ-
ing the Dutch mathematician Christiaan Huygens (1629–
1695). Huygens is credited with bringing Leibniz up to
pace on the mathematical literature of the times. In this
way, Leibniz was exposed to significant treatises such as
Arithmetica infinitorum by John Wallis and Opus geomet-
ricum by Gregorius Saint-Vincent (1584–1667). During
his four years in Paris, Leibniz began to assemble and fi-
nesse his own invention of the calculus.

In discussing Leibniz’s development of the calculus
Sonar makes the following preliminary remark: “We are

used to present Newton’s results in Leibniz’s notation sim-
ply because it turned out to be more feasible.” Indeed, the
primacy of Leibniz’s notation in calculus is not simply a
quirk or historical accident. During his life, Leibniz was
intensely interested in finding a universal language or char-
acteristica universalis that would allow complicated notions
of reasoning to be distilled into simpler components. The
program of characteristica universalis is a recurring theme
throughout theworks of Leibniz and it necessarily involves
a preoccupation with symbols and notation. The outcome
is summed up by Edwards ([Edw79, p. 232]): “His infini-
tesimal calculus is the supreme example, in all of science
andmathematics, of a system of notation and terminology
so perfectly mated with its subject as to faithfully mirror
the basic logical operations and processes of that subject.
It is hardly an exaggeration to say that the calculus of Leib-
niz brings within the range of an ordinary student prob-
lems that once required the ingenuity of an Archimedes or
a Newton.”

Section 7.2.4 in 3000 Years of Analysis deals with the
infamous priority dispute that erupted between Newton
and Leibniz over the invention of the calculus. Newton
had developed the outline and framework for his fluxion-
based calculus during the years 1664–1666 but he did
not formally disseminate the work until the publication of
Philosophiae Naturalis Principia Mathematica in 1687. Prior
to 1676, Newton’s calculus of fluxions and fluents was for
the most part unknown outside of England. An exception
to this was a letter thatNewton had sent to de Sluse in 1672
on thematter of constructing tangents. In contrast, Leibniz
developed his own differential-based version of the calcu-
lus during the years 1672–1676, almost a decade later than
Newton. However, the priority of publication for works
on both differential and integral calculus belongs to Leib-
niz. In 1684 and 1686 Leibniz published articles on dif-
ferential calculus and integral calculus (respectively) in the
Leipzig periodical Acta Eruditorum.

Using Henry Oldenburg as an intermediary, Newton
and Leibniz corresponded directly about the origins of
the calculus during the second half of 1676. Newton
addressed two letters to Leibniz that have since become
known as Epistola prior (13 June 1676) and Epistola posterior
(24 October 1676). The first letter was open and friendly
but the tone of the second letter was more circumspect
and it used an insoluble anagram at a critical juncture to
secrete the true scope of fluxional calculus from Leibniz.
By the end of 1676 some lines had been drawn but there
was, as yet, no rancorous priority dispute between New-
ton and Leibniz. Matters took a turn for the worse in 1684
with Leibniz’s publication of Nova methodus pro maximis et
minimis in Acta Eruditorum and were overheated by 1699.
As Blank [Bla09] puts it: “Throw in a priority dispute,
charges of plagiarism, and two men of genius, one vain,
boastful, and unyielding, the other prickly, neurotic, and
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unyielding, one a master of intrigue, the other a human
pit bull, each clamoring for bragging rights to so vital an
advance as calculus, and the result is a perfect storm.”

Subsequent to giving a measured treatment of the pri-
ority dispute, Sonar turns to the actual mechanics of Leib-
niz’s development of the calculus. The extent to which
Leibniz used infinitesimals is discussed at length, with par-
ticular attention given to the so-called characteristic trian-
gle and its relation to Leibniz’s transmutation theorem:

∫
𝑏

𝑎
𝑦 d𝑥 = 𝑥𝑦||𝑏𝑎 −∫

𝑏

𝑎
𝑥𝑦′ d𝑥.

Leibniz was keenly aware of both the significance and ver-
satility of the transmutation theorem. It put Leibniz in a
position to re-derive virtually all previously known plane
quadrature results and to provide some brilliant new ap-
plications. One such new result was Leibniz’s “arithmeti-
cal quadrature of the circle” which leads to the heavenly
series:

𝜋
4 = 1 − 1

3 +
1
5 −

1
7 +

1
9 −⋯ .

The brightest mathematical star of the Age of Enlight-
enment was Leonhard Euler (1707–1783). Born and edu-
cated in Basel, Switzerland, Euler entered the University of
Basel at the age of 13 or 14 and was mentored in mathe-
matics by John Bernoulli (1667–1748). Euler’s first math-
ematical work, Constructio linearum isochronarum in medio
quocunque resistente, was published in Acta Eruditorum in
1726. This paper marks the beginning of a prodigious and
wide ranging mathematical output by Euler, the collected
works of whom exceeds 70 hefty volumes.

After the immense flowering of infinitesimal analysis in
the eighteenth century an unease about rigor started to be-
come pervasive at the beginning of the nineteenth century.
Or as Sonar puts it: “After the death of Euler many math-
ematicians believed that there would not be much left in
mathematics worth[y] of study. On the other hand one felt
a certain discomfort concerning the foundations of anal-
ysis which was triumphant in applications but operated
still upon infinitely small quantities or even, as with Euler,
upon ‘zeros’.” It is not surprising then that mathematical
research during the nineteenth century focused on consol-
idation and a search for rigor, at least in terms of analysis.
Against this backdrop a new wave of mathematicians be-
gan to apply themselves to the determination of a more
rigorous basis for (infinitesimal) analysis and related no-
tions such as continuity.

One of the earliest and most important figures in this
new wave of rigor-oriented mathematical analysis was
Bernhard Bolzano (1781–1848). In 1817 Bolzano pub-
lished a note in Prague entitled Rein analytischer Beweis
des Lehrsatzes, dass zwischen je zwei Werthen, die ein entge-
gengesetztes Resultat gewähren, wenigstens eine reelle Wurzel
der Gleichung liege. It is reasonable to assert that this note

heralds the advent of nineteenth century mathematical
analysis for in it we find (arguably) the first precise for-
mulation of continuity. Bolzano defined continuity as fol-
lows: 𝑓 is continuous at 𝑥 if the “difference 𝑓(𝑥 + 𝜔) − 𝑓(𝑥)
can be made smaller than any given quantity, if one makes
𝜔 as small as one wishes.” Bolzano’s note goes on to give
a rigorous proof of the intermediate value theorem.

As Sonar explains, Augustin Cauchy (1798–1857) pro-
vided a proof of the intermediate value theorem at around
the same time as Bolzano. However, whether or not
Cauchy formulated continuity in similar modern terms to
Bolzano remains moot. Across a number of picturesque
passages Sonar evokes the rich tapestry of the life, times
and mathematics of Cauchy, writing at one point: “As a
teacher Cauchy turned out to be a revolutionary. Since he
considered analysis being indispensable to engineers he
gave lectures on that topic. He developed a rigorous con-
cept formation of the limit and attachedmuch importance
to utmost accuracy which discouraged his students.”

Prior to the nineteenth century there was no formal def-
inition of the definite integral as we know it today. In the
eighteenth century integration typically entailed finding
anti-derivatives in the spirit of either Newton or Leibniz.
Of this century, Edwards [Edw79] writes: “Neither limits
of sums nor areas of plane sets were sufficiently well under-
stood to provide a solid basis for a logical treatment of the
integral.” Cauchy was the first to develop a notion of the
definite integral that was predicated in terms of limits of
sums, rather than anti-derivatives. The “Cauchy integral”
of a continuous function on a compact interval was first
introduced by Cauchy in his textbook Résumé des leçons sur
le calcul infinitésimal.

Despite the success of putting integration on a more
secure footing, the Cauchy integral was too limited in its
scope to deal with basic questions that had already arisen
from the works of Joseph Fourier (1768–1830) and Leje-
une Dirchlet (1805–1859) on the representation of func-
tions by trigonometric series. This limitation led Bernhard
Riemann (1826–1886), who was also profoundly inter-
ested in Fourier series, to develop a more general definite
integral. Riemann gave necessary and sufficient conditions
for a bounded function to be (Riemann) integrable and he
pointed out that it is possible for a function with a dense set
of discontinuities to be integrable.

Edwards [Edw79] mentions that “Cauchy occasionally
stumbled conspicuously, as in failing to distinguish be-
tween continuity and uniform continuity or between con-
vergence and uniform convergence.” One of the first
persons to grasp the importance of uniform convergence
was Karl Weierstrass (1815–1897). In 1872 Weierstrass
stunned the mathematical world by exhibiting a nondif-
ferentiable continuous function. Prior to the publication
of Weierstrass’s example there had been a common mis-
apprehension that a continuous function may only have
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isolated points of nondifferentiability. (Bolzano was un-
der no such illusion as he had given an example of a non-
differentiable continuous function in the 1830s. However,
in a quirk of fate, Bolzano’s example was not published
until the 1920s.) Part of the fallout from Weierstrass’s
example was a realization that the foundations of analy-
sis needed further attention, especially in respect of the
construction of the real numbers. This led to a flurry of
constructions of the real line in the early 1870s, the most
enduring of which are those of Richard Dedekind (1831–
1916) and Georg Cantor (1845–1918).

Chapter eleven of 3000 Years of Analysis deals with
the twentieth century renaissance of infinitesimal analy-
sis. Sonar recounts that inklings of this revival may be
found in an unpublished “black book” Vom Unendlichen
und der Null – Versuch einer Neubegründung der Analysis that
was written by Curt Schmieden (1905–1991). In the mid
1950s Detlef Laugwitz (1932–2000) became acquainted
with the “black book” and this eventually led to a joint pa-
per with Schmieden [SL58]. This paper presents a largely
constructive version of nonstandard analysis but it is one
in which the (putative) hyperreal numbers ℝ∗ form only
a partially ordered ring and for which the “transfer princi-
ple” from the reals to hyperreals is quite limited. A consid-
erably more satisfactory version of nonstandard analysis
was developed by Abraham Robinson (1918–1974) dur-
ing the 1960s. Robinson’s nonstandard analysis is based
onmodel theory and it is one for which the hyperreal num-
bers ℝ∗ form a non-Archimedian field equipped with a
substantial transfer principle.

Sonar’s discussion of nonstandard models of analysis
completes an epic walk through several millennia of math-
ematical discovery. It is apt that Sonar’s treatment of the
historical development of analysis effectively begins and
ends with the continuum. We remark that the sheer depth
of historical detail included in 3000 Years of Analysis sets
it apart from other sublime works such as that of Edwards
[Edw79]. We further remark that Sonar’s monograph is
richly illustrated with a plethora of geometric figures, line
drawings, engravings, reproductions of historical artworks
and photographs.
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What are Tensors Exactly? 

By Hongyu Guo

Most complex definitions evolve over time as the theory 
surrounding them is developed. Tensors are no different 
in that regard. They were first introduced by J.W. Gibbs in 
1884. Woldemar Voigt developed the idea further in the 
late 1800s and Hassler Whitney defined a tensor product 
in the late 1930s. As a relatively young topic, the definition 
of a tensor has taken on many forms in the recent past. To 
highlight this issue and the dynamic form of the definition, 
in the first chapter of the book, Guo gives seven definitions, 
not all of which are equivalent. This book aims to help clar-
ify what tensors are, in a way that is intuitive, yet maintains 
a high level of mathematical rigor.

Not all tensors are complicated and unfamiliar; linear 
transformations, for instance, are tensors. The author fre-
quently creates analogies with structures from linear alge-
bra to help the reader better understand. Several chapters 
of the book are dedicated to exploring how tensors are used 
in fields such as physics and machine learning. Some of the 
topics explored include Gibbs dyadics, the inertia tensor, 
and Riemannian geometry.

This book is written for students at the advanced un-
dergraduate level or higher. The introduction contains a 
flow chart which indicates which chapters rely on others, 
allowing readers to skip chapters without missing required 
background material. The author also includes interesting 
historical and philosophical notes addressing questions 
such as “Is math invented or discovered?” These notes 
coupled with discussions about common misconceptions 
make it an informative and multi-faceted book.

Pop-Up Geometry  
The Mathematics Behind Pop-Up Cards 

By Joseph O’Rourke

Most people can identify with the 
joy that pop-up books or pop-up 
cards brought as a child (and may 
still bring to our adult selves). 
How many of us have opened 
a pop-up and wondered about 
the mathematics required for the 
image inside to jump off the page? 
Pop-Up Geometry lifts the veil to re-
veal the magic of the mathematics 
at play.

Pop-Up Geometry requires only a high school math back-
ground with knowledge of algebra, geometry, and basic 
trigonometry. Using this as a launching point, it tackles 
mathematical concepts such as vectors, parametric equa-
tions, solving systems of equations, and platonic solids, 
grounding each topic in its relationship to pop-up cards. 
The mathematical concepts, theorems, and exercises are all 
color coded in easy to digest boxes.

Complete with vibrantly colored graphics, companion 
animations that depict the motion described in the book, 
and templates for the reader to make the pop-up creations 
the book is analyzing, this book makes it easy for the 
reader to engage with the material they are learning. It also 
includes exercises broken into different categories based 
on level of difficulty, and the solutions to the exercises can 
be found in the last chapter of the book. This would be an 
excellent book for a high school student or undergraduate 
interested in mathematics and geometry, or to provide 
inspiration for activities in a math for liberal arts class.
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these books, the most influential ones were those where 
the authors tried to balance algebra and geometry (I. Sha-
farevich, Springer, 1974; R. Hartshorne, Springer, 1977). All 
of these books, and others, have led to spectacular applica-
tions of algebraic geometry to many areas of mathematics, 
including number theory (the proof of Weil’s conjectures 
and Fermat’s Last Theorem) and mathematical physics 
(work by Witten and his school). 

The book Algebraic Geometry: Notes on a Course, written 
by Michael Artin, one of the most active and notable mod-
ern algebraic geometers, is the latest attempt to reach the 
right balance between algebra and geometry. It is based 
on a course for advanced undergraduates and beginning 
graduate students that the author taught for many years at 
MIT, and on the feedback he received from his students 
and colleagues. 

The book starts with a chapter about curves on the plane, 
which provides instructive examples for the material in later 
chapters. Chapters 2 and 3 introduce algebraic geometry of 
affine and projective varieties, respectively. Morphisms of 
algebraic varieties and their geometric properties are pre-
sented in Chapter 4. The structure of affine and projective 
varieties in the (Zariski) topology are described in Chapter 
5. In Chapters 6 and 7, sheaves and their cohomology are 
studied. Finally, in Chapter 8 the author returns to algebraic 
curves proving the Riemann–Roch Theorem and using it to 
define the group law on points of an elliptic curve. 

Packing a course on algebraic geometry into less than 
350 pages requires making several important choices. 
Artin’s choice is to restrict the exposition to the maximal 
spectrum of a ring and to varieties of complex numbers 
saying that, in his opinion, “… absorbing schemes and 
general ground fields won’t be too difficult for someone 
who is familiar with complex varieties.” On the other hand, 
he discusses in detail such crucial notions as integral mor-
phisms, sheaves and their direct and inverse images under 
a morphism, and the cohomology of sheaves. 

The author says in the preface that his goal in teaching 
algebraic geometry is “to make the development so natural 
as to seem obvious.” The overall impression when reading 
this book is that he succeeds in reaching his goal.

Algebraic Geometry  
Notes on a Course 

By Michael Artin

In his article in “Princeton Com-
panion to Mathematics,” Janos 
Kollar defines algebraic geom-
etry as follows: “Succinctly put, 
algebraic geometry is the study 
of geometry using polynomials 
and the investigation of poly-
nomials using geometry.” This 
attempt to marry algebra and 
geometry, two quite distant and 

seemingly unrelated areas of mathematics, led to algebraic 
geometry, which is a notoriously difficult subject to learn 
and, therefore, to teach.

One explanation for this difficulty may be that geometric 
constructions appeal to pictures and images (handled, ac-
cording to neurologists, by the right brain) whereas algebra 
involves complicated formal constrictions (handled by the 
left brain). The struggle between the two approaches is 
well illustrated by the history of the subject: compare the 
Italian school (Cremona, Corrado and Beniamino Segre, 
Castelnuovo, Enriques, Albanese, Bertini, Severi, del Pezzo, 
among others), which relied heavily on geometric approach 
and the Grothendieck school (Grothendieck himself, Serre, 
Deligne, Artin, Tate, Mumford, and many others), which 
used complicated algebraic constructions. Oscar Zariski is 
particularly important for his role as a “bridge” between 
these two schools.

In the last 50 years, there were many attempts to present 
algebraic geometry to the mathematical community, rang-
ing from books for undergraduates (T. Garrity et al, AMS, 
2013) to books for professionals (A. Grothendieck’s EGA 
volumes, IHES, 1960–1967), from books emphasizing 
geometric aspects (P. Griffiths–J. Harris, Wiley 1978; D. 
Mumford, Springer, 1976) to books which build algebraic 
geometry starting with strong algebraic foundations (J. 
Harris, Springer, 1992; D. Cutkosky, AMS, 2018). Among 
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A Conversation
with Alan Weinstein

Henrique Bursztyn and Rui Loja Fernandes

Alan Weinstein has been one of the most prominent and
influential differential geometers of the last five decades.
He has made fundamental contributions to such diverse
areas as Riemannian geometry, symplectic geometry and
Hamiltonian dynamics, geometric mechanics, microlo-
cal analysis and quantization, Poisson geometry and Lie
groupoids, as well as their various interconnections and ap-
plications. Alan will turn 80 years old in June 2023. This
conversation took place over Zoom in May and June 2022,
while Alan was at his home in Palo Alto, recovering from
COVID.

Growing Up in New York
R. You grew up in New York. How was it? Do you remem-
ber well the transformations that were occurring there at
the time, some of which were portrayed inWest Side Story?

A. I grew up in the city only until the age of eight and
then my family moved to Long Island to a quite well-off
neighborhood, which was almost all white. There were a
few African-Americans, maybe one or two Hispanics and
one Asian family. So the cultural changes portrayed in
West Side Story didn’t really impact me very much. But it
was a time when people were starting to get politically ac-
tive. In the late 50s, there were starting to be many protest
marches for integration, and I got involved in some of that
stuff.

Henrique Bursztyn is a professor at Instituto Nacional de Matemática Pura e
Aplicada (IMPA), in Rio de Janeiro, Brazil. His email address is henrique
@impa.br.
Rui Loja Fernandes is the Lois M. Lackner Professor of Mathematics at the
University of Illinois Urbana-Champaign. His email address is ruiloja
@illinois.edu.

Communicated by Notices Associate Editor Chikako Mese.

For permission to reprint this article, please contact:
reprint-permission@ams.org.

DOI: https://doi.org/10.1090/noti2595

H. And how was high school?
A. I attended Roslyn High school, where my interest

in mathematics was particularly encouraged by a teacher
named Anthony diLuna. He had graduated from a mas-
ter’s program at the University of Chicago, which was one
of the first places encouraging a more creative approach
to teaching math. There is now a scholarship named after
him in my high school. I think I had him for advanced
algebra, and maybe trigonometry. Apart from that, as a
senior, I did an Advanced Placement Calculus class which,
in some ways, was kind of a waste, as the teacher wasn’t
very good, so I was learning calculus on my own. I pub-
lished my first paper in a journal for high school students
[Wei60]. It was on the symmetry of the graph of a cubic
equation around its inflection point. I believe that I did it
by translating the inflection point to the origin and then
showing that the resulting function was odd.

H. In high school, did you take part in any math com-
petitions?

A. I was a “mathlete.” There were high school math
teams who met on a regular basis, and we’d go to a dif-
ferent high school for competitions. One would normally
spend an hour doing problems, and I did pretty well. At
the time there were not yet Math Olympiads [they started
in 1959 in Eastern Europe]. Later, at MIT, as a junior and
senior, I took part in the Putnam Math Competition and
got an honorable mention once.

H.Howdid you getmotivation to studymath? At home
from your parents?

A. Not particularly. They were happy enough to have
me study math. They might have wished that I had gone
into medicine or law, which was typical for parents at that
time, but I never had much interest in that.
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Figure 1. Alan Weinstein.

Attending College at MIT
H. How and why did you end up at MIT?

A. I went toMIT partly because I had applied for aGrum-
man Scholarship, which would have required me to major
in engineering. At the time, I thought I might be interested
in engineering. I was a runner up for this scholarship, but I
went anyway to MIT thinking I’d still major in engineering.
Since I didn’t win the scholarship, I didn’t really have to. I
think there were two things that changed my mind. One
was two really good teachers I had for calculus in the fresh-
man year. The other was that I didn’t much like the labora-
tories in chemistry and physics. At that time in MIT, every
freshman took the same courses: math, physics, chemistry,
and something called humanities, which was mostly liter-
ature. One of the teachers I had for that, A. R. Gurney,
became a quite famous playwright. I also studied Russian
for no particular reason, except it was something different.

R. I guess that allowed you years later to translate
Arnold’s famous book on Classical Mechanics.

A. Yes, that allowed me to translate Arnold’s book,
along with Karen Vogtmann, who was a graduate student
in Berkeley at the time (and actually did themajority of the
work). I haven’t read anything in Russian for a long time,
although I can read in Cyrillic when something appears in
the news these days related to the Ukrainian war.

H. How was your experience as a math undergrad at
MIT? Who were your main mathematical influences there?

A. I had two wonderful semesters of honors calculus
taught by James Munkres and Gian-Carlo Rota. This was

almost like a real analysis class, where we started by defin-
ing the real numbers and proving everything. We used
Courant’s calculus book, and we started with sequences
and limits of sequences, because that was easier to handle
than limits of functions where you have to worry about
both deltas and epsilons, while here you have only an 𝑁
and an epsilon. And then it went on. I think there were
even some infinite series before we started with functions
of a real variable.

Rota was not so well-known at the time, and he was
more of a real analyst, before he became a famous combi-
natorist. But that was after my time at MIT. I had one more
course from him, namely probability, an upper-division
class.

Another professor whom I remember having a signifi-
cant influence on me was Irving Segal, who was writing a
book with Ray Kunze on Integrals and Operators, for a first
graduate course on real analysis. I served as an informal
“copy editor” for that manuscript.

H.Do you remember who taught you differential geom-
etry at MIT?

A. The undergraduate class in differential geometry was
taught by someone who wasn’t at all in differential geome-
try. But by my senior year I was taking, like many students
do, some graduate courses. And I took differential geom-
etry with Sigurdur Helgason, who used his differential ge-
ometry book. That was a very good class, and he was a very
good teacher, too.

R. By Helgason’s book, you mean Differential Geometry,
Lie Groups and Symmetric Spaces?

A. Yes. That’s the one. It is a large book, and I think
we only did about the first five chapters. But it became a
reference for me later on. Certainly, an important book,
which I kept in Berkeley.

R. At MIT did you get to know Victor Guillemin, or did
you meet Shlomo Sternberg at Harvard, who later became
major figures related to your work?

A. No. I don’t think Victor Guillemin had arrived at
MIT yet. Or if he did, I had no idea of him. I did interact
with Henry McKean with whom I took a class in complex
variables. Much later, when I visited NYU for a semester, I
actually ended up writing a joint paper with him on solu-
tions of the sine-Gordon equation [BMW94].

R. Is that paper related to your paper with Andreas Floer
which, to our surprise, is your most cited paper on Math-
SciNet?

A. No, the paper with Floer was on the the nonlinear
Schrödinger equation [FW86]. The other collaborator on
that paper with McKean was Bjorn Birnir. Recently, I saw a
reference to our paper so I looked him up, of course, to see
what he was doing. And he’s been involved in quite practi-
cal fluid dynamics, including the transmission of COVID
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in the air. So I should reach out to him and tell him I just
caught it!

Graduate School at Berkeley
H. When did you decide to pursue a PhD in mathematics?
Was it a planned decision? Why did you pick Berkeley for
graduate school?

A.Not really planned. I guess I didn’t really think about
it. I just did it. You know, by the time I was a junior I
realized I would probably go on to graduate school and I
started talking to people about it. In addition to Berkeley, I
think I applied to either Princeton or Harvard, I don’t even
remember. I might have gotten in because I did very well
at MIT, but I chose Berkeley partly just to get far away from
where I had lived until then and see another part of the
country.

H. Tell us about your experience as a graduate student
in Berkeley in the 60s. Math environment? Flower power
movement? Anything unmentionable (laughs)?

A. Not much flower power, but the Free Speech Move-
ment made a great impression. Also amusing was the sub-
sequent Filthy Speech Movement.

The math culture was great. In those days before the in-
ternet, people actually talked with their colleagues. There
was a daily geometry lunch at the Student Union attended
by many of the faculty, to which graduate students were
invited as well. There was a wonderful seminar (run by
Smale, I think) going through the proof of the Atiyah–
Singer index theorem, which had just come out. Things
were much less competitive than they became later, partly
I suppose because there was no shortage of jobs in the 60’s.

H. When you went to Berkeley, did you already know
that you were going to study with Chern?

A. No, I did not. Actually, I didn’t even really know
Chern. But I pretty much knew that I wanted to do dif-
ferential geometry, since I liked the subject so much after

Figure 2. Alan Weinstein in Berkeley, circa 1972.

the class from Helgason at MIT. Once I got to Berkeley, I
took a beginning graduate class from Frank Warner, who
again is the author of an excellent text. (It seems that I had
classes from the authors of lots of good textbooks. Helga-
son and Segal at MIT, and Frank Warner at Berkeley.) He
helped cement my interest in differential geometry. Then,
in my second year, I took a topics course with Chern on
integral geometry, which was one of his interests. Anyway,
that cemented my interest in differential geometry, and I
decided to work with Chern.

H. How was it to have Shiing-Shen Chern as an advisor?
How did you find your thesis problem?

A. Chern was a great advisor. Hemostly listened and en-
couraged. Chern and his wife Shih-Ning were great hosts,
and their home was a center for social life in the geome-
try community. Regarding my thesis, at some point I met
with Frank Warner and Hung-Hsi Wu; we used to go to the
geometry lunch I mentioned before. Chern occasionally
would also go to this lunch and it may have been there that
I heard about a problem that Warner and Wu were work-
ing on, which was on a Rauch conjecture about conjugate
points and cut points on Riemannian manifolds. So I got
interested in that and I started thinking about it. Then at
some point, they said, “Well, Alan, you’re thinking about
this, we’ll leave it to you.” So that became my thesis, and
Warner and Wu became members of my thesis committee.

Wu and I became colleagues when I returned to Berke-
ley as an Assistant Professor. Wu has been at Berkeley the
whole time and now he is my office mate!

H. How long were you in graduate school?
A. I was there for only three years. I was lucky that I

found this problem. And I was able to write a 27-page
thesis and get out.

H. That was a short thesis!
A. I guess that was all the length I needed. And maybe I

was lazy, too. In fact, in February of my third year, I had ba-
sically finished writing the thesis. I don’t remember when
I turned it in, but I went on to spend some time in Paris.
I had a car then, so I drove back to the East Coast, via Los
Angeles, where I attended one of the first of the so-called
Geometry Fiestas. I think they are now called the Geometry
Festivals and they are centered at U Penn. It’s an annual,
mostly differential geometry, meeting. This one was an
early one at UCLA. So I went there first, and I actually gave
a talk on my thesis, the first meeting that I’d ever been to.

H. What was your connection with Paris?
A. I got to go to Paris because Chern had some connec-

tions with IHES, since he had been there many times. The
idea of spending time in Paris, came up in the previous
summer (that is, the summer of 1966, two years after start-
ing graduate school). I had pretty much worked out the
solution of my thesis problem by then, and I knew I just
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had to write it up. My girlfriend Margo was about to go off
to Paris, where she was doing a Middlebury College mas-
ter’s program in French. So I wanted to go to Paris as soon
as possible, which turned out to be February (of 1967). We
were married that May at the Mairie d’Orsay because I had
an apartment in Orsay while visiting IHES. It’s now been
55 wonderful years together!

R. Was it your first time in France?
A. It was my first time in France. In fact, except once or

twice on family driving trips to Montreal and Quebec, it
was my first time outside the United States.

H. And how was your French?
A. Well, once I decided that I was going to go to Paris, I

started studying French at Berkeley. I audited a French class
in the fall semester (of 1966), including the oral language
labs.

R. So coming back to your visit to Paris, who were your
main mathematical contacts there?

A. My main contact was Marcel Berger, who had been
at Berkeley, and I knew him through Chern. He was, in
some sense, my main mathematical contact in Paris, al-
though I did get to see a fair amount of René Thom, who
was there too. One of the nice things about IHES, and I
think it still happens, was that every day there’s lunch in a
building at the bottom of the hill. And almost everybody
would come to lunch. So sometimes I would be at the ta-
ble with Grothendieck. Zariski was there also that spring
and he talked to Grothendieck a lot. This was before the
time of Deligne.

R. At that time, you began to change your research a
little bit. How did that happen?

A. Jeff Cheeger’s work was starting to be well known.
His work on manifolds of nonnegative curvature and
his finiteness theorem for Riemannian manifolds with a
bounded curvature, were considered very important. So
I remember reading his thesis carefully. At that time, I
proved an estimate for the number of homotopy types of
positively pinched manifolds [Wei67]. (It was vastly im-
proved by Cheeger.)

I was also working on topics related to Palais’s work
about actions of compact groups on manifolds. I never
actually wrote a paper on that because Palais’s paper on
proper actions came out, but I attempted to give a talk
about that in French; I think I was feeling overconfident.
One of the people in the audience was Bernard Morin, a
French mathematician who made the first models of turn-
ing the sphere inside out. Even though he was blind, he
developed an algorithm for doing that. So I was giving my
talk and I drew something on the board and he asked me
to describe the picture. That was very challenging for my
French, so a French person in the audience had to explain
to him what was going on.

H. And this visit, still as a graduate student, was the be-
ginning of a life-long connection with Paris. . .

A. Yes, Margo and I have been visiting Paris regularly
since then. Early on, I came back for a short visit, maybe
in 1969, and then for a month or two in 1970. Then in
the summer of 72, after our daughter Asha was born, we
lived in an apartment in Paris. We went back for a year in
1975–76, and that was back at IHES. It was a really good
time. Dennis Sullivan was there and very active. There
were several kids who were all about the same age. One
was our daughter Asha. One was Michael Sullivan, Den-
nis’s son who is now a mathematician, and one was Chris-
tian Gromoll, also now amathematician, the son of Detlef
Gromoll. I think we have a picture of the three of them
together. It was kind of fun. By then I was really more in-
terested in curvature-related things and also getting more
into symplectic geometry.

Figure 3. Margo and Alan Weinstein in Paris in December
2004.

H. As a student, who were the mathematicians that you
looked up to, that were particularly inspiring to you?

A. Berger, Wilhelm Klingenberg, and Chern of course.
They were kind of my mathematical heroes at the time. I
was a student, and Riemannian geometry was the thing.
I was really interested in curvature, although my thesis
wasn’t about that. I didwrite a paper about curvaturewhen
I was a graduate student [Wei68]. Klingenberg was also in-
volved in the study of closed geodesics, and so I got very
interested in closed geodesics and periodic orbits. Once
I got into symplectic geometry, closed geodesics morphed
into periodic orbit interest. And that’s what led to the stuff
I did on periodic orbits, equilibria, and so on.

I also really admired Smale who, as I mentioned be-
fore, ran a seminar on the Atiyah–Singer index theorem.
Atiyah himself taught a course at Berkeley in the summer
of 1968, during an AMS summer conference on global
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analysis. That was a really great meeting, and Atiyah gave
a course on the index theorem. Obviously, I also admired
him very much and I had a little bit of contact with him
over the years, nothing too close. Later I did a couple of
things on the index of Fourier integral operators, though I
never got as far as I wanted.

Postdoctoral Years
R. As a postdoc, you went back to MIT and then Bonn,
and that was about the time you started to get interested
in symplectic geometry. Do you remember when you first
heard about symplectic manifolds?

A. It was when I was a Moore instructor at MIT, because
I was doing this work on conjugate locus and cut locus.
Frank Warner had written a paper about the singularities
of the conjugate locus, and I got interested in the subject.
I realized that the exponential map was a projection of
a Lagrangian submanifold of the cotangent bundle. This
hadn’t played a part in Warner’s work and so I got very in-
terested in that. Arnol’d’s paper on the Maslov index had
introduced me to Lagrangian submanifolds, though I did
not meet Arnol’d until many years later.

R. But according toMathSciNet you had an earlier paper
on symplectic structures on Banach manifolds.

A. Yes, from around the same time. This paper used
Moser’s method. I was getting interested in symplectic ge-
ometry and I knew aboutMoser’s paper “On the volume el-
ements on a manifold,” where he proved that two volume
elements on an oriented compact manifold with the same
volume are diffeomorphic. So I figured out how to extend
that to symplectic manifolds. This paper on symplectic
structures on Banach manifolds, as well as other work I
did on normal forms, was all based on Moser’s method.
For example, I appliedMoser’s method around Lagrangian
submanifolds [Wei71]. By then I was also starting to think
about theWKBmethod, and how it related Lagrangian sub-
manifolds in the cotangent bundle to quantum states. I
was also interested in the interface between classical and
quantum mechanics, for instance because of relations be-
tween the Laplace spectrum and the geometry of Riemann-
ian manifolds, and symplectic geometry turned out to be
the right tool for studying that.

H. How long were you at MIT as a postdoc?
A. I did just a year as a Moore instructor at MIT and then

I took a NATO postdoc, also for a year, in Bonn. There my
sponsor was Wilhelm Klingenberg, who was very involved
in pinching theorems. For example, a complete, simply-
connected Riemannianmanifoldwith curvature strictly be-
tween 1/4 and 1 must be a sphere. That was one of the
first topics I was interested in even as a graduate student,
because Berger and Klingenberg, who both did pinching
theorems, were in Berkeley as visitors brought by Chern.

In Bonn, in addition to Klingenberg, there were two of his
postdocs, Detlef Gromoll and Wolfgang Meyer, who were
working together on some Riemannian geometry prob-
lems. After the year in Bonn, I came back to Berkeley as
an Assistant Professor.

Back to Berkeley as Faculty
R. During your first years at Berkeley, now as a faculty
member, you wrote one of your most cited works on
what is now known as “symplectic reduction” or “Marsden-
Weinstein-Meyer reduction” with Jerry Marsden. How did
you meet Marsden, and how did you start collaborating
with him?

A. Jerry and I were attending a class of Smale’s on clas-
sical mechanics, where of course symplectic geometry is a
big part of the story. Smale had proven a version of sym-
plectic reduction for cotangent bundles and lifted actions
from group actions on the base. Jerry and I figured out how
to do this for general symplectic manifolds and Hamilton-
ian group actions, and sowewrote that paper on reduction
[MW74]. Only later did we learn that Ken Meyer had dis-
covered reduction on his own.

Figure 4. Jerry Marsden and Alan Weinstein.

Soon after, Jerry and I wrote another paper on Hamil-
tonian dynamics [MW81]. It originated from another
seminar we both attended, run by a plasma physicist
named Alan Kaufman and his student at the time, Robert
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Littlejohn. There they talked about somework of PhilMor-
rison, who had discovered a noncanonical Poisson bracket
and Hamiltonian structure for the Maxwell–Vlasov equa-
tions. These are equations for a collisionless plasma, i.e.,
charged particles interacting with each other via the elec-
tromagnetic fields that they produce. Morrison’s bracket
turned out not to satisfy the Jacobi identity, so we looked
at it and realized that we could get a Poisson structure
by symplectic reduction from a cotangent bundle crossed
with another factor to account for the electromagnetic field.
So we had a great simplification and a structure that actu-
ally satisfied the Jacobi identity. After six months of work,
we figured out how to do this in two minutes! That got
us into lots of stuff with infinite dimensional systems and
the Hamiltonian structure of many other systems, for flu-
ids and so on.

R. Something you are interested in to these days, right?
A. Something I’m still interested in these days. More-

over, somehow it became clear that Poisson structures
were very important, and so I started thinking about Pois-
son structures in their own right. More or less at the same
time appeared the paper of André Lichnerowicz on the sub-
ject, which was preceded by an earlier work of Alexandre
Kirillov, which also included Jacobi structures, by the way.
But I found that one could go a lot further than they had,
in various directions [Wei83], and Poisson geometry even-
tually became a field in its own right. Lichnerowicz was
also a visitor at Berkeley, and he gave lectures which had a
big influence on me.

H. After returning to Berkeley, one can say you turned
into a symplectic geometer. . .

A. That’s right. Although I still wrote some papers in
Riemannian geometry, including on curvature pinching,
since Chern was of course there and was still very active.
He was the head of differential geometry. Frank Warner
had moved to Penn by then, but Hung-Hsi Wu was still
there.

R.Was it easy to knowwhat was going on in the Russian
school?

A. Well, Eliashberg came later, of course. But because
I knew some Russian, I could read the Russian journals
to follow what was going on. And, of course, there were
translated versions of themajor journals. I also started hav-
ing some correspondence (in English) with Maslov and
Arnol’d from early on.

H. What about contact geometry? How did you come
up with the “Weinstein conjecture”?

A. That came about because, as I mentioned before,
I was interested in periodic orbits of Hamiltonian sys-
tems, inspired by Klingenberg’s and his students’ work on
closed geodesics. For a Hamiltonian system on a symplec-
tic manifold of dimension 2𝑛, using a version of Moser’s

variational method, I was able to prove that in a neigh-
borhood of a nondegenerate minimum of the Hamilton-
ian, there are 𝑛 families of periodic orbits [Wei73]. At that
time, I also had a student named O. Raul Ruiz, who did a
thesis on the existence of brake-orbits in Finsler mechan-
ical systems, which also used variational methods. Then
I started looking at convexity, and I was able to use varia-
tional methods to prove the existence of periodic orbits for
convex Hamiltonian systems [Wei78]. About that time, I
was asked to referee a paper by Paul Rabinowitz, where he
proved the existence of periodic orbits on star-shaped en-
ergy surfaces [Rab79], and somehow just looking at that, I
conjectured a wide extension of what he had done.

H. Your conjecture is in an appendix [Wei79] of that
paper!

A. Yes, it is there because I was the referee. I thought
maybe what lets you apply variational methods to get peri-
odic orbits is the contact nature of the energy hypersurface.
In the published version of the conjecture that now car-
ries my name, I included the hypothesis that the manifold
be simply connected. The reason was that I (mistakenly)
thought I had a counterexample related to the cotangent
bundle of a torus. But it turns out from what people did
later that the hypothesis was not needed.

Figure 5. Alan Weinstein with his wife Margo, his daughter
Asha, and their cats Lucy and Toby in Berkeley around 1985.

R. Coming back to the Poisson brackets, at some point
groupoids appeared in the picture too. . .

A. They appeared because of geometric quantization
and deformation quantization. In deformation quantiz-
ing a Poisson manifold, the objects you’re deforming are
the functions on the Poisson manifold. A WKB approach
involves looking at functions on a Poisson manifold as
Lagrangian submanifolds in its cotangent bundle. If you
had a product on the functions on a Poisson manifold,
this gave you a kind of binary operation on Lagrangian
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submanifolds which might imply that the bilinear “quan-
tized” operation should be associative. By then, I had
heard about groupoids at a meeting, the Séminaire Sud-
Rhodanien de Géométrie in southern France, where Kir-
ill Mackenzie talked about groupoids and algebroids in
their own right, and so I made this connection [Wei87].
It turned out that Mikhail Karasev and Viktor Maslov had
done something very similar; also, Stanisław Zakrzewski,
independently, had thought of similar things. But I pur-
sued it further. (Zakrzewski passed away very, very young.
There’s a paper of his which I finished after he died.)

R. Although Lie algebroids and Lie groupoids had been
around for quite some time, the discovery of their connec-
tion with Poisson geometry kind of transformed the sub-
ject. . .

A. That is right, they had been around for quite some
time but not in symplectic geometry. Kirill Mackenzie had
written several papers on the subject, and Rui Almeida and
Pierre Molino, whom I first met in the same Séminaire
Sud-Rhodanien, had found the first example of a non-
integrable Lie algebroid.

R. Can we talk a little bit about your creative process?
How do you come up with new ideas, and how do you
identify interesting problems?

A. I wish I knew!
H. That’s a key point of the interview, I’m sure everyone

wants to learn that!
A. OK, I’ll try. One thing I remember is that for a long

time I was interested in lots of different things. Now I’m
much less good at multitasking. But I was very good at
multitasking back in the day. So I used to think about
various things, and sometimes one of these areas gave me
an idea that I could apply to some distant problem. That
was partially responsible for the variety of problems that
I worked on. If I look back, I started in Riemannian ge-
ometry, and I kept working on that for some time after I
started getting interested in symplectic geometry, and then
in microlocal analysis. . .

Another method which I have frequently used is to ap-
proach a problem by considering simple, even trivial, ex-
amples, such as the zero Poisson structure.

H. Indeed your research has covered an impressively
wide array of topics, including Riemannian geometry, sym-
plectic geometry and Hamiltonian dynamics, semiclassi-
cal analysis and PDEs, quantization and noncommutative
geometry, Poisson geometry and Lie groupoids, etc. Is
there anything that unifies, or a common motivation that
explains the breath of your work?

A. One thing came from another. I suppose that the
classical–quantum transition was responsible for a lot of it.
Since very early on, in fact since I took an upper-division
physics class at MIT, I was very interested in the relation

between classical and quantum mechanics. You can see
reflections of that in a lot of the things I’ve done that in-
volve quantization. For example, the thesis problem of
my former student Steven Zelditch, which was centered
on Schrödinger’s equation, was an attempt to extend to the
noncompact case some previous work on closed geodesics
in Riemannian geometry and its relation with the spec-
trum.

H. It is remarkable that, many times, you had one of the
key ideas in a subject, but you don’t really pursue it that
much and you let other people work on it. For example,
for the Weinstein conjecture in contact geometry, which
we talked about before, you posed the conjecture but you
did not actually work on it afterwards, although it became
a huge thing. . .

A. There is a certain amount of laziness on my part. On
the other hand, it often happened that I got interested in
something and, fortunately, I had some student who got
interested in pursuing it. So I could leave it to him or her.

R. Besides conjectures, there are also these philosoph-
ical principles that you suggest and then often everyone
adheres to, like “everything is a Lagrangian submanifold,”
for example, which you called “the symplectic creed”!

A. I am very proud of that. That principle, it was kind
of half a joke. I put it at the beginning of a survey article
I wrote [Wei82], and it seemed appropriate for a survey.
It turned out to be, obviously, an exaggeration (laughs).
But if you think about the Fukaya category, for example,
the objects are Lagrangian submanifolds. There are many
other examples.

R. But the Fukaya category appeared much later than
that survey. . .

A. In fact, I think the idea that everything is a Lagrangian
submanifold came mostly from from WKB and geomet-
ric quantization. Hörmander’s paper on Fourier integral
operators had a big influence on me. That paper I proba-
bly studied more carefully than any other paper. By then,
I was talking with Victor Guillemin at MIT and Shlomo
Sternberg at Harvard. There was a nice back and forth ex-
change of ideas, and that’s partly what got me more seri-
ously interested in microlocal analysis. Other people who
influenced me were Hans Duistermaat, who wrote notes
on Fourier integral operators when he was at NYU, and
François Treves, who was a professor at Rutgers and also
wrote a two-volume text on pseudodifferential operators
and Fourier integral operators.

H. If one considers symplectic manifolds in broader
contexts, like graded or shifted symplectic spaces, then
your symplectic creed becomes really far-reaching. For ex-
ample, Dirac structures are Lagrangian submanifolds in an
appropriate sense. How did Dirac structures come about?
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Figure 6. Alan Weinstein received a honorary doctorate from
the University of Utrecht on March 26, 2003. The promoters
were Hans Duistermaat (left in this picture) and Ieke Moerdijk
(in the background).

A. I was initially motivated by some work of Robert Lit-
tlejohn, a physicist at Berkeley that I mentioned before. I
was on his thesis committee and his work involved Dirac’s
theory of constraints. Because submanifolds of Poisson
manifolds are, in general, neither Poisson nor presymplec-
tic, there should be something more general. So I gave
that problem to one of my PhD students at the time, Ted
Courant. Eventually, he came up with the basic theory of
Dirac structures and wrote his thesis about them. We also
wrote a little joint announcement about it [CW88]. But
obviously, Dirac structures caught on much more than we
ever thought they would!

R. So you couldn’t really anticipate they would become
so important. . .

A. No, not at all. I mean, it seemed like a very good
idea. So I pursued it a little bit, writing a paper with
Zhang-Ju Liu and Ping Xu where we introduced Courant
algebroids [LWX97], and that, together with Dirac struc-
tures themselves, is whatmade the theory explode. Dmitry
Roytenberg and Pavol Ševera gave a supermanifold inter-
pretation of Dirac structures as Lagrangian submanifolds,
and soon after they appeared in generalized complex ge-
ometry. It was first Nigel Hitchin, and then his student
Marco Gualtieri [Gua11] who got that subject to take off
as a big thing, which I really appreciated. I had met Marco
as a student at a conference, and he explained to me what
he was doing. Later he visited Berkeley, and we talked a lot,
but I never actually did anythingmuch in generalized com-
plex geometry. There is also a connection of Dirac struc-
tures with new notions of symmetries, like group-valued
momentum maps. These things really made Dirac struc-
tures take off!

R. Besides your research, you have also been a very dedi-
cated teacher at various levels. You’re the author of several
calculus books and have advised nearly 40 PhD students.
What can you tell us about your life as an educator?

A. The idea for the calculus books came as I was playing
tennis with Jerry Marsden. (Once we started, I never had
time for tennis again!)

Being an advisor was one of many things I enjoyed
about being a professor. I really liked working with stu-
dents, with each of whom I had a different kind of rela-
tionship. I mostly let them go on their own, as much as
they wanted to. Occasionally I had problems in mind, or
general areas. I usually had more than one student at a
time, which was nice, because they could also talk to each
other without me. I occasionally collaborated with stu-
dents while they were students, but more often I wound
up doing collaborations after they graduated.

R. One final question: What occupies your mind these
days?

A. Besides wondering about where all my time is going,
and enjoying doing things with my family, I’m thinking
mostly about problems which arise from trying to under-
stand geometric properties of the constraints for the ini-
tial value problem in general relativity. This led on the
one hand to the discovery of a groupoid symmetry for
which the Lie algebroid bracket matched that of the Pois-
son brackets of the constraints, and on the other hand a
theory of compatibility between Lie algebroids over aman-
ifold and presymplectic or Poisson structures on the mani-
fold. Unfortunately, all of this work, which has turned out
to be interesting in its own right, has not led to a resolu-
tion of the initial question about the Einstein equations,
so I’m still trying.

Figure 7. Alan Weinstein with some of his former PhD
students, during his 70th Birthday Conference at Institut Henri
Poincaré, in July 2013.
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The Next Generation
Edward Dunne

It is time for a big change in MathSciNet. In particular, it is
time for a new user interface. The biggest changes in this
release are the clean, modern look, the functionality for
tablets and phones, and the increased accessibility.

Mathematical Reviews was an early adopter of the inter-
net, recognizing its potential to give greater access to the
content that had historically existed only in print. In the
1980s, a segment of the content was available online via
the third-party services BRS and Dialog. This database was
initially called MATHFILE, then renamed MathSci. It in-
cluded all bibliographic and subject information on arti-
cles and books reviewed in Mathematical Reviews starting
from 1973 and reviews starting from 1979. This remained
the state of the art for a decade. In 1989, Tim Berners-
Lee began working on what became the World Wide Web.
The possible interfaces to the web were rudimentary un-
til Mosaic was released in 1993. Standards for the web
and HTML were made open starting in 1994, making it
easier to set-up web servers and to create web sites. In Jan-
uary 1996, MathSciNet, the web version of Mathematical
Reviews was launched. Since then, there have been new
features and changes to the layout, but the overall struc-
ture of searching has remained the same for 25 years.

Before the pandemic, Mathematical Reviews had begun
work on a new user interface (UI) for MathSciNet. The
work was interrupted, but resumed in 2021. As I write this,
a beta version is available. By the time of publication, the
new interface will be available for all users.

Edward Dunne is the executive editor of Mathematical Reviews at the American
Mathematical Society. His email address is egd@ams.org.

For permission to reprint this article, please contact:
reprint-permission@ams.org.
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Elements of the new interface have been introduced
over the years. We added filters, originally called facets, in
late 2016. These are modeled on the filters that show up
when searching a retail site or a library catalog. The filters
show users how many items in the search results contain
a particular element, such as an author’s name or a jour-
nal. You can then select that element to refine the search
results. Filters are powerful because they use the richness
of the database itself to point users to productive searches.
The profile pages for journals were expanded dramatically
in June 2019. The journal profiles became a prototype for
the look of the new interface. More significantly, the re-
vised journal profiles advanced the idea of giving users a
detailed picture of any journal based on the data from its
publication history.

Three years ago, two consecutive columns in Math Re-
views News ([2] and [3]) described how to use MathSciNet.
Those columns gave an overview of the structure of the
database, especially the aspects that influence how to
search. A lot of that structure remains the same, and is
not affected by the change of the user interface.

Next Generation Searching
Before diving into details, let me point out that there are
four primary searches in new MathSciNet, corresponding
to the major parts of the database: authors, journals, se-
ries, and publications (papers and books). Previously,
MathSciNet only had authors, journals, and publications
searches. Each type of search works somewhat differently
and returns different results. For instance, with an au-
thor search, the results will be a list of people, not their
papers. If the author search produces a unique match,
you are directed to the author’s profile page, rather than
to a list containing just that author. Similarly, a journal
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search will return a list of journals—or take you to a jour-
nal profile page if the search has a unique match. With
this iteration of MathSciNet, we have added a series search,
which looks for book series, such as the Graduate Studies
in Mathematics from the AMS or Lecture Notes in Mathemat-
ics from Springer. Series searches include all book series:
monograph series, collection/proceedings series, and se-
ries that contain both monographs and collections. By far,
the most common search is for publications. Indeed, over
80% of the initial searches on MathSciNet have been pub-
lication searches. Author searches represent about 15% of
all initial searches. Journal searches have made up the rest.

Much has changed since the original release of Math-
SciNet. Search technology is more powerful. Peo-
ple’s expectations for searches and their experiences with
databases have evolved dramatically. Google is responsi-
ble for some of that change, but so, too, is almost every
web site we use, from online shopping to library catalogs
to social media. People are as likely to access the internet
on a phone or tablet as on a laptop or desktop computer.

The biggest change for MathSciNet is that the publica-
tions search is now through a single box. You enter some
terms, hit “Enter,” and the software searches for those
terms in all the primary fields in the database related to
that search. Let’s search for “mathematical reviews boas.”
Ralph Boas was an Executive Editor of Mathematical Re-
views, but also an accomplished research mathematician.
This search is trying to focus on what he wrote aboutMath-
ematical Reviews.

This produces 125 results. The first two have an author
named Boas. The third in the list is by Everett Pitcher, and
Ralph Boas is mentioned in the text of the review. You can
refine the search by introducing field codes. In this case,
let’s force the search term “boas” to be in the author field:

This results in just 24 matches, all of which have an au-
thor named Boas.

The interface makes adding a field fast and easy. Click
“Show all fields” over on the right and a list of standard
field codes appears, along with a short explanation of each
code.

If you are unfamiliar with the field codes, you can leave
them displayed, then click on a code. That will insert the
code into the search box, add any delimiters needed, and
put the cursor in the appropriate point in the search box.

You can also add a field by typing in the code directly.
As you do so, we provide autocomplete: if what you are
typing matches the beginning of one or more field codes,
we offer them up as possible completions:

If you choose one of the completions, the user interface
again adds appropriate delimiters and places the cursor so
that you can begin typing the search term. These features
help you navigate MathSciNet both quickly and precisely.
Author searches and journal searches in next genera-
tion MathSciNet. MathSciNet already had autocomplete
for author searches and journal searches, and this carries
over to the new user interface. As soon as you type two or
more letters in the search box, the database starts suggest-
ing completions.
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Clicking on a suggestion puts it into the search box.

Then using “Enter” or clicking the search icon executes
the search, in this case finding the unique author in the
database named Denis Serre.

Notice that MathSciNet took us directly to Denis Serre’s
profile page, rather than to a list of authors named “Denis
Serre.” That is because there was a unique match.

Autocomplete works similarly for journal searches.
Start typing the name of a journal and the database starts
offering suggestions:

Pick one by clicking on it, then use “Enter” or the search
icon to activate the search.
Autocomplete and publications searches. With the new
user interface, a limited autocomplete is active for publi-
cation searches. Specifically, suggestions are offered for
terms in the Author Name, Reviewer, Journal Name, and
Series Name fields. As you start typing inside au:“ ”, for
instance, the database starts suggesting names.

After you pick one, you can add the journal field and
start typing. The database will start suggesting comple-
tions for the journal name:
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Search results.
Sorting. Results can be sorted by Newest first, Oldest first,
Number of Citations, Number of Authors, or Relevance.
The first four are carried over from the previous user inter-
face. The fifth, Relevance, is new with this edition of Math-
SciNet. The relevance ranking is a combination of term
frequency (the number of times the term occurs in a par-
ticular record), inverse document frequency (a measure of
how often the term occurs across the database), and field-
length norm (a norm based on the number of terms or
words that occur in the field being searched, calculated so
that shorter fields have more relevance). The default sort-
ing is newest first. If you select a different sort order, it will
follow you as you search and view results.

Filters, Filters, Filters!
We added filters, or facets, to sidebars in 2016. They pro-
vided a particularly helpful way to refine results by using
the information from the database. The new implemen-
tation adds significant functionality. You can now choose
multiple values within a single filter. For example, a pub-
lications search for the term “twin primes” turns up 772
results. In the Journals filter, it is possible to pick both
J. Number Theory and Math. Comp., then filter for results
coming from either of those journals.

Previously, selecting a filter would instantly apply it.
Now, you select one or more values, then click “Apply”
to activate the filter, which is the feature that allows you
to make multiple selections. But there is more: clicking
a value twice turns the check into a minus sign, forcing
that value NOT to be found in the filtered results. Finally,
clicking a value a third time unchecks its box.

Works Well on Mobile Devices
From the very first empty screen during development, we
were designing with phones, tablets, laptops, and desktops
in mind. Layouts, features, and functionality were all de-
signed so that the important features work well in smaller
formats. Sometimes this means that a menu collapses to
an icon, such as the three stacked lines known to web de-
signers as “the hamburger,” or that descriptive labels are
abbreviated. For the filters on a small screen, the sidebar
is hidden by default, displaying a button above the first
result instead.

When you click “Filters,” MathSciNet presents them as
a scrollable overlay, as shown below:

As the devices and their screens become bigger, more
of the options are automatically displayed, rather than re-
quiring a tap on the screen to expand them.
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Increased Usability and Accessibility
Choices of colors and contrast levels, fonts, and font sizes
were all made for increased clarity and improved accessi-
bility for users with visual impairments. We have also en-
sured that all navigation is possible by either a mouse or
a keyboard, using the Tab or Arrow keys. Headings are
implemented for compatibility with screen readers. The
new version of filters, with selection followed by activa-
tion, helps users working with a screen reader or just with
a keyboard. The two-step process also opened the door to
allowing multiple selections and a Boolean NOT operator
within the filters, which is a powerful new functionality.

Some New Features
Search History and Pinned Searches. The new version al-
lows users to see their recent Search History, as well as to
“pin” a search. By default, the Search History is hidden.
Clicking on “Show Search History” opens it.

Note that on a small screen, such as a phone, “Show
Search History” is abbreviated to “Show History”:

After performing some searches, you can see what you
have been up to:

If you click on the search itself, MathSciNet will put
those terms in the search box and execute the search. If
you click on “Edit,” MathSciNet will put those terms in
the search box, allowing you to modify the search before

activating the search. It is quite useful! You can also “pin”
a search. This is helpful, for instance, if you are doing
many searches, but want to come back to a few of them.
The preferred searches might get lost in the Search History,
but will be easy to find among the Pinned Searches. You
pin a search via the Search History, which is also where
you unpin a search.
Search Newest. In order to see the latest additions to the
database, we have added a “Search Newest” button. By de-
fault, this displays the reviews, fully-cataloged items, and
preliminary items that have been added in the last month.

This is actually a variation on the Current Publications
search that was previously available, but required a few
clicks. The new version is easier to find, as well as easier to
modify, since it puts the appropriate search into the search
box, allowing you to add other searches, such as subject
classifications, keywords, or journal names.

Favorite Features Remain
Some favorite features remain, and some have even been
improved. The more than 1.8 million reviews are still
present, of course. Reference lists and links to items citing
the current item continue to be readily available, with ref-
erence lists more easily searched. Links to full text on the
publishers’ sites are present, including the OpenURL fea-
ture that allows you to go through your library to access
the material.

The journal profile pages were an early prototype
for this next generation of MathSciNet, so remain little
changed. Indeed, we were so happy with the layout of the
journal profile pages that we mimicked them to create the
series profile pages. Author pages still show the date of
the author’s earliest publication in our database, as well as
the counts for publications, related publications, and cita-
tions. We have changed the way the coauthors and subject
areas are displayed, making themmore similar towhat was
developed for the journal profile pages:
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One of themost common tools people use is download-
ing the BibTeX description for any item in the database.
That is now a little more straightforward, and batch down-
loading multiple items in BibTeX is even easier. For a sin-
gle item, click on the “Cite” button at the top right. For
multiple items, use the “Export” button at the top of the
results list. You can then either select every result on the
page or check the boxes of the items you want. Then finish
with “Get Citations.” The new interface also makes it eas-
ier to see how to capture a permalink to the listing of an
item in MathSciNet. It’s an option from the “Cite” button.

Note: Counts and screenshots were accurate as of Sep-
tember 2022. As items are added to the Math Reviews
Database, new items may be part of sample searches and
counts will change.
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Isbell Duality
John C. Baez

Mathematicians love dualities. The dual of a vector space
𝑉 is the vector space 𝑉∗ of linear maps from 𝑉 to the
ground field. Any linear map 𝑓∶ 𝑉 → 𝑊 between vec-
tor spaces gives a linear map going the other way between
their duals, 𝑓∗ ∶ 𝑊 ∗ → 𝑉∗, given by

𝑓∗(ℓ)(𝑣) = ℓ(𝑓(𝑣)), ∀𝑣 ∈ 𝑉, ℓ ∈ 𝑊 ∗.
Composition gets turned around:

(𝑓𝑔)∗ = 𝑔∗𝑓∗.
Furthermore, there is always a linear map

𝑖 ∶ 𝑉 → 𝑉∗∗

given by

𝑖(𝑣)(ℓ) = ℓ(𝑣) ∀𝑣 ∈ 𝑉, ℓ ∈ 𝑉∗,
and when 𝑉 is finite-dimensional this is an isomorphism.
So, for finite-dimensional vector spaces, duality is like flip-
ping a coin upside down: when you do it twice, you get
back where you started—at least up to isomorphism.

Dualities are useful because they let you view the same
situation in two different ways. Often dualities give an in-
teresting description of the opposite of a familiar category
𝖢. This is the category 𝖢op with the same objects as 𝖢, but
where a morphism 𝑓∶ 𝑋 → 𝑌 is defined to be a morphism
𝑓∶ 𝑌 → 𝑋 in 𝖢, and the order of composition is reversed.
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Some dualities show a category is equivalent to its own
opposite. For example, duality for vector spaces can be
used to show the category of finite-dimensional vector
spaces over any field is equivalent to its opposite. We’re
secretly using this whenever we take the transpose of a ma-
trix. Similarly, Pontryagin duality says the category of lo-
cally compact abelian groups is equivalent to its own oppo-
site. This duality sends each locally compact group 𝐺 to its
“Pontryagin dual” 𝐺, and the Fourier transform of a func-
tion on 𝐺 is a function on 𝐺. For example, the Poincaré
dual of the real line is the real line, while the Pontryagin
dual of the circle is the integers.

More commonly, however, a category of mathematical
objects is not equivalent to its opposite, and a duality re-
lates two different categories. The opposite of a category of
spaces is typically a category of commutative rings or alge-
bras. For example, Gelfand–Naimark duality says the op-
posite of the category of compact Hausdorff spaces is the
category of commutative 𝐶∗-algebras. In fact, to make the
duality between spaces and commutative rings as nice as
possible, Grothendieck defined a category of spaces called
“affine schemes” to be the opposite of a category of com-
mutative rings.

There are also dualities within category theory itself.
The opposite of a category is itself a kind of a dual, and
taking the opposite twice gives you back the category you
started with:

(𝖢op)op = 𝖢.

But there is a subtler and very beautiful duality in category
theory called “Isbell duality.”

140 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 70, NUMBER 1



Short Stories

First, there is a map from any category 𝖢 to the category
[𝖢op, 𝖲𝖾𝗍], where objects are functors from 𝖢op to the cat-
egory of sets and morphisms are natural transformations.
This map takes any object 𝑋 ∈ 𝖢 to the functor

hom(−, 𝑋)∶ 𝖢op → 𝖲𝖾𝗍,
which sends any object 𝐴 ∈ 𝖢 to the set hom(𝐴, 𝑋) of all
morphisms from 𝐴 to 𝑋 . This map is called the Yoneda
embedding, and is itself a functor:

𝑦∶ 𝖢 → [𝖢op, 𝖲𝖾𝗍]
𝑋 ↦ hom(−, 𝑋).

The Yoneda embedding is fundamental in category the-
ory. Philosophically it says that an object can be known
by the behavior of the morphisms into it. It takes time
to learn how to use it as a practical tool, but this is nicely
explained in modern textbooks [3, 4]. One insight is this:
just as we often take a set and form the vector space with
that set as basis, it is often useful to treat a category 𝖢 as
sitting inside the larger category [𝖢op, 𝖲𝖾𝗍]. The reason is
that [𝖢op, 𝖲𝖾𝗍] has “colimits,” which are analogous to lin-
ear combinations in a vector space. For example, we can
sum 𝐹,𝐺 ∈ [𝖢op, 𝖲𝖾𝗍] as follows:

(𝐹 + 𝐺)(𝑋) = 𝐹(𝑋) + 𝐺(𝑋) ∀𝑋 ∈ 𝖢op

where the sum at right is the usual disjoint union of sets.
In fact [𝖢op, 𝖲𝖾𝗍] is the free category with colimits on the
category 𝖢.

But this whole story has a dual version! An object can
also be known by the behavior ofmorphisms out of it. This
fact is captured by the co-Yoneda embedding:

𝑧∶ 𝖢 → [𝖢, 𝖲𝖾𝗍]op
𝑋 ↦ hom(𝑋,−).

The concept dual to colimit is “limit”: just as colimits gen-
eralize sums, limits generalize products. Unsurprisingly, it
turns out that [𝖢, 𝖲𝖾𝗍]op is the free category with limits on
the category 𝖢.

In 1960, Isbell [2] noticed a wonderful link between
the Yoneda and co-Yoneda embeddings, which has sub-
sequently been clarified by many authors, as reviewed in
[1]. Any functor 𝐹 ∶ 𝖢op → 𝖲𝖾𝗍 has an Isbell conjugate
𝐹∗ ∶ 𝖢 → 𝖲𝖾𝗍, given by

𝐹∗(𝑋) = hom(𝐹, 𝑦(𝑋)).
Similarly, any functor 𝐺∶ 𝖢 → 𝖲𝖾𝗍 has an Isbell conjugate
𝐺∗ ∶ 𝖢op → 𝖲𝖾𝗍 given by

𝐺∗(𝑋) = hom(𝑧(𝑋), 𝐺).
These two versions of Isbell conjugate give functors going
back and forth like this:

[𝖢op, 𝖲𝖾𝗍] [𝖢, 𝖲𝖾𝗍]op
∗

∗

But these two functors are typically not inverses, not
even up to natural isomorphism! Instead, Isbell dual-
ity says they are adjoints, meaning that hom(𝐹∗, 𝐺) and
hom(𝐹, 𝐺∗) are naturally isomorphic for all 𝐹 ∈ [𝖢op, 𝖲𝖾𝗍]
and 𝐺 ∈ [𝖢, 𝖲𝖾𝗍]op. This is analogous to the situation for
vector spaces that are not necessarily finite-dimensional:
taking the dual defines adjoint functors going back and
forth between 𝖵𝖾𝖼𝗍 and 𝖵𝖾𝖼𝗍op, where 𝖵𝖾𝖼𝗍 is the category
of all vector spaces over a given field.

Isbell duality sets the stage for a panoply of further de-
velopments [1]. For example, just as the vector spaces
where 𝑖 ∶ 𝑉 → 𝑉∗∗ is an isomorphism are precisely the
finite-dimensional ones, it is very interesting to study func-
tors 𝐹 ∈ [𝖢op, 𝖲𝖾𝗍] such that the canonicalmap 𝑖 ∶ 𝐹 → 𝐹∗∗
is an isomorphism.

So far most applications of Isbell duality involve its gen-
eralization to enriched categories [5]. For example, this
generalization gives a way to find, for any compact metric
space 𝑋 , the smallest compact metric space 𝑌 containing a
copy of 𝑋 with the property that for any 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌
there is a point 𝑥′ ∈ 𝑋 such that

𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑥′) = 𝑑(𝑥, 𝑥′).
However, it seems that Isbell duality still remains largely
unexploited. Perhaps one problem is simply that this
jewel of mathematics is not yet widely known.
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5.	 Geometry/Topology (2029)
6.	 Discrete Mathematics/Logic (2024)

Next Prize: January 2024

Nomination Period: 1 February – 31 March 2023

Nomination Procedure: https://www.ams.org/steele 
-prize

AMS Prizes & Awards
Leroy P. Steele Prize for 
Lifetime Achievement

About this Prize
The Steele Prize for Lifetime Achievement is awarded for 
the cumulative influence of the total mathematical work 
of the recipient, high level of research over a period of 
time, particular influence on the development of a field, 
and influence on mathematics through PhD students. The 
amount of this prize is US$10,000.

Next Prize: January 2024

Nomination Period: 1 February – 31 March 2023

Nomination Procedure: https://www.ams.org/steele 
-prize

Nominations can be submitted between February 1 and 
March 31. Nominations for the Steele Prizes for Lifetime 
Achievement should include a letter of nomination, the 
nominee’s CV, and a short citation to be used in the event 
that the nomination is successful. Nominations will remain 
active and receive consideration for three consecutive years.

Leroy P. Steele Prize for 
Mathematical Exposition

About this Prize
The Steele Prize for Mathematical Exposition is awarded for 
a book or substantial survey or expository research paper. 
The amount of this prize is US$5,000.

Next Prize: January 2024

https://www.ams.org/steele-prize
https://www.ams.org/steele-prize
https://www.ams.org/steele-prize
https://www.ams.org/steele-prize
https://www.ams.org/steele-prize
https://www.ams.org/steele-prize
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Nominations can be submitted between February 1 and 
March 31. Nominations for the Steele Prizes for Seminal 
Contribution to Research should include a letter of nom-
ination, a complete bibliographic citation for the work 
being nominated, and a brief citation to be used in the 
event that the nomination is successful.

Chevalley Prize  
in Lie Theory
The Chevalley Prize is awarded for notable work in Lie 
theory published during the preceding six years; a recipient 
should be at most twenty-five years past the PhD.

About this Prize
The Chevalley Prize was established in 2014 by George 
Lusztig to honor Claude Chevalley (1909–1984). Chevalley 
was a founding member of the Bourbaki group. He made 
fundamental contributions to class field theory, algebraic 
geometry, and group theory. His three-volume treatise on 
Lie groups served as standard reference for many decades. 
His classification of semisimple groups over an arbitrary 
algebraically closed field provides a link between Lie’s the-
ory of continuous groups and the theory of finite groups, 
to the enormous enrichment of both subjects.

The current prize amount is US$8,000, awarded in 
even-numbered years, without restriction on society mem-
bership, citizenship, or venue of publication.

Next Prize: January 2024

Nomination Period: 1 February – 31 May 2023

Nomination Procedure: Submit a letter of nomination, 
complete bibliographic citations for the work being nom-
inated, and a brief citation that might be used in the event 
that the nomination is successful.

To make a nomination go to https://www.ams.org 
/chevalley-prize.

Frank Nelson Cole Prize  
in Algebra
This prize recognizes a notable research work in algebra 
that has appeared in the last six years. The work must be 
published in a recognized, peer-reviewed venue.

About this Prize
This prize (and the Frank Nelson Cole Prize in Number 
Theory) was founded in honor of Professor Frank Nelson 

Cole upon his retirement after twenty-five years as secretary 
of the American Mathematical Society. Cole also served 
as editor-in-chief of the Bulletin for twenty-one years. The 
original fund was donated by Professor Cole from moneys 
presented to him on his retirement, and was augmented by 
contributions from members of the Society. The fund was 
later doubled by his son, Charles A. Cole, and supported 
by family members. It has been further supplemented by 
George Lusztig and by an anonymous donor.

The current prize amount is US$5,000, and the prize is 
awarded every three years.

Next Prize: January 2024

Nomination Period: 1 February – 31 May 2023

Nomination Procedure: Submit a letter of nomination, a 
complete bibliographic citation for the work being nom-
inated, and a brief citation that explains why the work is 
important.

To make a nomination go to https://www.ams.org 
/cole-prize-algebra.

Levi L. Conant Prize
This prize was established in 2000 in honor of Levi L. 
Conant to recognize the best expository paper published 
in either the Notices of the AMS or the Bulletin of the AMS 
in the preceding five years.

About this Prize
Levi L. Conant was a mathematician and educator who 
spent most of his career as a faculty member at Worcester 
Polytechnic Institute. He was head of the mathematics de-
partment from 1908 until his death and served as interim 
president of WPI from 1911 to 1913. Conant was noted as 
an outstanding teacher and an active scholar. He published 
a number of articles in scientific journals and wrote four 
textbooks. His will provided for funds to be donated to the 
AMS upon the death of his wife.

Prize winners are invited to present a public lecture 
at Worcester Polytechnic Institute as part of their Levi L. 
Conant Lecture Series, which was established in 2006. 

The Conant Prize is awarded annually in the amount 
of US$1,000.

Next Prize: January 2024

Nomination Period: 1 February – 31 May 2023

Nomination Procedure: Nominations with supporting 
information should be submitted online. Nominations 

https://www.ams.org/chevalley-prize
https://www.ams.org/cole-prize-algebra
https://www.ams.org/cole-prize-algebra
https://www.ams.org/chevalley-prize
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should include a letter of nomination, a short description 
of the work that is the basis of the nomination, and a com-
plete bibliographic citation for the article being nominated.

To make a nomination go to https://www.ams.org 
/conant-prize.

Ulf Grenander Prize  
in Stochastic Theory  
and Modeling
The Grenander Prize recognizes exceptional theoretical and 
applied contributions in stochastic theory and modeling. 
It is awarded for seminal work, theoretical or applied, in 
the areas of probabilistic modeling, statistical inference, 
or related computational algorithms, especially for the 
analysis of complex or high-dimensional systems.

About this Prize
This prize was established in 2016 by colleagues of Ulf 
Grenander (1923–2016). Professor Grenander was an in-
fluential scholar in stochastic processes, abstract inference, 
and pattern theory. He published landmark works through-
out his career, notably his 1950 dissertation, Stochastic 
Processes and Statistical Interference at Stockholm University, 
Abstract Inference, his seminal Pattern Theory: From represen-
tation to inference, and General Pattern Theory. A long-time 
faculty member of Brown University’s Division of Applied 
Mathematics, Grenander received many honors. He was a 
Fellow of the American Academy of Arts and Sciences and 
the National Academy of Sciences and was a member of 
the Royal Swedish Academy of Sciences.

The current prize amount is US$5,000, and the prize is 
awarded every three years.

Next Prize: January 2024

Nomination Period: 1 February – 31 May 2023

Nomination Procedure: To make a nomination go to 
https://www.ams.org/grenander-prize.

Bertrand Russell Prize

About this Prize
The Bertrand Russell Prize of the AMS was established in 
2016 by Thomas Hales. The prize looks beyond the con-
fines of the profession to research or service contributions 
of mathematicians or related professionals to promoting 
good in the world. It recognizes the various ways that  

mathematics furthers fundamental human values. Math-
ematical contributions that further world health, our un-
derstanding of climate change, digital privacy, or education 
in developing countries are some examples of the type of 
work that might be considered for the prize.

The current prize amount is US$5,000, awarded every 
three years.

Next Prize: January 2024

Nomination Period: 1 February – 31 May 2023

Nomination Procedure: Include a short description of 
the work that is the basis of the nomination, including 
complete bibliographic citations. A curriculum vitae should 
be included.

To make a nomination go to https://www.ams.org 
/russell-prize.

Albert Leon Whiteman 
Memorial Prize
The Whiteman Prize recognizes notable exposition and 
exceptional scholarship in the history of mathematics.

About this Prize
This prize was established in 1998 using funds donated by 
Mrs. Sally Whiteman in memory of her husband, Albert 
Leon Whiteman.

The US$5,000 prize is awarded every three years.

Next Prize: January 2024

Nomination Period: 1 February – 31 May 2023

Nomination Procedure: Include a short description of 
the work that is the basis of the nomination, including 
complete bibliographic citations. A curriculum vitae should 
be included.

To make a nomination go to https://www.ams.org 
/whiteman-prize.

Award for Distinguished 
Public Service
The Award for Distinguished Public Service recognizes a 
research mathematician who has made recent or sustained 
distinguished contributions to the mathematics profession 
through public service.

https://www.ams.org/conant-prize
https://www.ams.org/conant-prize
https://www.ams.org/grenander-prize
https://www.ams.org/whiteman-prize
https://www.ams.org/whiteman-prize
https://www.ams.org/russell-prize
https://www.ams.org/russell-prize
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About this Award
The AMS Council established this award in response to a 
recommendation from its Committee on Science Policy.

The US$4,000 award is presented every two years.

Next Award: January 2024

Nomination Period: 1 February – 31 May 2023

Nomination Procedure: Submit a letter of nomination 
describing the candidate’s accomplishments, a CV for the 
nominee, and a brief citation that explains why the work 
is important.

To make a nomination go to https://www.ams.org 
/public-service-award.

Award for an Exemplary 
Program or Achievement in 
a Mathematics Department
This award recognizes a department which has distin-
guished itself by undertaking an unusual or particularly 
effective program of value to the mathematics community, 
internally or in relation to the rest of society. Examples 
might include a department that runs a notable minority 
outreach program, a department that has instituted an 
unusually effective industrial mathematics internship 
program, a department that has promoted mathemat-
ics so successfully that a large fraction of its university’s 
undergraduate population majors in mathematics, or a 
department that has made some form of innovation in its 
research support to faculty and/or graduate students, or 
which has created a special and innovative environment 
for some aspect of mathematics research.

About this Award
This award was established in 2004. For the first three 
awards (2006–2008), the prize amount was US$1,200. 
The prize was endowed by an anonymous donor in 2008, 
and starting with the 2009 prize, the amount is US$5,000.

This US$5,000 prize is awarded annually. Departments 
of mathematical sciences in North America that offer at 
least a bachelor’s degree in mathematical sciences are 
eligible.

Next Award: January 2024

Nomination Period: 1 February – 31 May 2023

Nomination Procedure: A letter of nomination may be 
submitted by one or more individuals. Nomination of the 
writer’s own institution is permitted. The letter should de-
scribe the specific program(s) for which the department is 
being nominated as well as the achievements which make 
the program(s) an outstanding success, and may include 
any ancillary documents which support the success of the 
program(s). Where possible, the letter and documentation 
should address how these successes 1) came about by sys-
tematic, reproducible changes in programs that might be 
implemented by others, and/or 2) have value outside the 
mathematical community. The letter should not exceed 
two pages, with supporting documentation not to exceed 
an additional three pages. 

To make a nomination go to https://www.ams.org 
/department-award.

Award for Mathematics 
Programs that Make  
a Difference
The Award for Mathematics Programs that Make a Differ-
ence was established in 2005 by the AMS’s Committee on 
the Profession to compile and publish a series of profiles 
of programs that:
1.	 aim to bring more persons from underrepresented 

backgrounds into some portion of the pipeline be-
ginning at the undergraduate level and leading to 
advanced degrees in mathematics and professional 
success, or retain them once in the pipeline;

2.	 have achieved documentable success in doing so; and
3.	 are potentially replicable models.

About this Award
This award brings recognition to outstanding programs that 
have successfully addressed the issues of underrepresented 
groups in mathematics. Examples of such groups include 
racial and ethnic minorities, women, low-income students, 
and first-generation college students.

One program is selected each year by a Selection Com-
mittee appointed by the AMS President and is awarded 
US$1,000 provided by the Mark Green and Kathryn Kert 
Green Fund for Inclusion and Diversity.

Preference is given to programs with significant partici-
pation by underrepresented minorities. Note that programs 
aimed at pre-college students are eligible only if there is 
a significant component of the program benefiting indi-
viduals from underrepresented groups at or beyond the 
undergraduate level. Nomination of one’s own institution 
or program is permitted and encouraged.

https://www.ams.org/public-service-award
https://www.ams.org/public-service-award
https://www.ams.org/department-award
https://www.ams.org/department-award
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Next Award: January 2024

Nomination Period: 1 February – 31 May 2023

Nomination Procedure: The letter of nomination should 
describe the specific program being nominated and the 
achievements that make the program an outstanding 
success. It should include clear and current evidence of 
that success. A strong nomination typically includes a 
description of the program’s activities and goals, a brief 
history of the program, evidence of its effectiveness, and 
statements from participants about its impact. The letter of 
nomination should not exceed two pages, with supporting 
documentation not to exceed three more pages. Up to three 
supporting letters may be included in addition to these 
five pages. Nomination of the writer’s own institution or 
program is permitted. Non-winning nominations will 
automatically be reconsidered for the award for the next 
two years.

To make a nomination go to https://www.ams.org 
/make-a-diff-award.

Award for Impact on  
the Teaching and Learning 
of Mathematics
This award is given annually to a mathematician (or group 
of mathematicians) who has made significant contribu-
tions of lasting value to mathematics education.

Priorities of the award include recognition of:
(a) accomplished mathematicians who have worked di-

rectly with pre-college teachers to enhance teachers’ impact 
on mathematics achievement for all students, or

(b) sustainable and replicable contributions by math-
ematicians to improving the mathematics education of 
students in the first two years of college.

About this Award
The Award for Impact on the Teaching and Learning of 
Mathematics was established by the AMS Committee on 
Education in 2013. The endowment fund that supports 
the award was established in 2012 by a contribution from 
Kenneth I. and Mary Lou Gross in honor of their daughters 
Laura and Karen.

The US$1,000 award is given annually.

Next Award: January 2024

Nomination Period: 1 February – 31 May 2023

Nomination Procedure: Letters of nomination may be 
submitted by one or more individuals. The letter of nomi-
nation should describe the significant contributions made 
by the nominee(s) and provide evidence of the impact these 
contributions have made on the teaching and learning of 
mathematics. The letter of nomination should not exceed 
two pages, and may include supporting documentation not 
to exceed three additional pages. A brief curriculum vitae 
for each nominee should also be included. The non-win-
ning nominations will automatically be reconsidered, 
without further updating, for the awards to be presented 
over the next two years.

To make a nomination go to https://www.ams.org 
/impact.

Fellowships
Fellows of the American 
Mathematical Society
The Fellows of the American Mathematical Society pro-
gram recognizes members who have made outstanding 
contributions to the creation, exposition, advancement, 
communication, and utilization of mathematics.

AMS members may be nominated for this honor during 
the nomination period which occurs in February and March 
each year. Selection of new Fellows (from among those 
nominated) is managed by the AMS Fellows Selection 
Committee, comprised of twelve members of the AMS who 
are also Fellows. Those selected are subsequently invited 
to become Fellows and the new class of Fellows is publicly 
announced each year on November 1. 

Learn more about the qualifications and process for 
nomination at https://www.ams.org/ams-fellows.

Joint Prizes
George David Birkhoff Prize 
in Applied Mathematics 
(AMS-SIAM)
The Birkhoff Prize is awarded for an outstanding contribu-
tion to applied mathematics in the highest and broadest 
sense.

https://www.ams.org/make-a-diff-award
https://www.ams.org/impact
https://www.ams.org/ams-fellows
https://www.ams.org/impact
https://www.ams.org/make-a-diff-award
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About this Prize
The prize was established in 1967 in honor of Professor 
George David Birkhoff, with an initial endowment con-
tributed by the Birkhoff family and subsequent additions 
by others. The American Mathematical Society (AMS) and 
the Society for Industrial and Applied Mathematics (SIAM) 
award the Birkhoff Prize jointly.

The current prize amount is US$5,000, awarded every 
three years to a member of AMS or SIAM.

Next Prize: January 2024

Nomination Period: 1 February – 31 May 2023

Nomination Procedure: To make a nomination go to 
https://www.ams.org/birkhoff-prize.

Frank and Brennie Morgan 
Prize for Outstanding 
Research in Mathematics by 
an Undergraduate Student 
(AMS-MAA-SIAM)
The Morgan Prize is awarded each year to an undergrad-
uate student (or students for joint work) for outstanding 
research in mathematics. Any student who was enrolled as 
an undergraduate in December at a college or university in 
the United States or its possessions, Canada, or Mexico is 
eligible for the prize.

The prize recipient’s research need not be confined to a 
single paper; it may be contained in several papers. How-
ever, the paper (or papers) to be considered for the prize 
must be completed while the student is an undergraduate. 
Publication of research is not required.

About this Prize
The prize was established in 1995. It is entirely endowed by 
a gift from Mrs. Frank (Brennie) Morgan. It is made jointly 
by the American Mathematical Society, the Mathematical 
Association of America, and the Society for Industrial and 
Applied Mathematics.

The current prize amount is US$1,200, awarded annu-
ally.

Next Prize: January 2024

Nomination Period: 1 February – 31 May 2023

Nomination Procedure: To nominate a student, submit a 
letter of nomination, a brief description of the work that is 
the basis of the nomination, and complete bibliographic 
citations (or copies of unpublished work). All submissions 
for the prize must include at least one letter of support 
from a person, usually a faculty member, familiar with the 
student’s research.

To make a nomination go to https://www.ams.org 
/morgan-prize.

JPBM Communications 
Award
This award is given each year to reward and encourage com-
municators who, on a sustained basis, bring mathematical 
ideas and information to non-mathematical audiences.

About this Award
This award was established by the Joint Policy Board for 
Mathematics (JPBM) in 1988. JPBM is a collaborative 
effort of the American Mathematical Society, the Mathe-
matical Association of America, the Society for Industrial 
and Applied Mathematics, and the American Statistical 
Association.

Up to two awards of US$2,000 are made annually. Both 
mathematicians and non-mathematicians are eligible.

Next Prize: January 2024

Nomination Period: open

Nomination Procedure: Nominations should be submit-
ted on mathprograms.org. Note: Nominations collected 
before September 15th in year N will be considered for an 
award in year N+2.

https://www.ams.org/birkhoff-prize
https://www.ams.org/morgan-prize
https://www.ams.org/morgan-prize
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people with prior experience with the AMS and new voices. 
I feel like we’ve been pretty successful with that.

Notices: What did you hope to see happen during your term as 
president that didn’t pan out?

Notices: What are you most proud of from your term as pres-
ident?

Charney: This has been a very challenging few years for 
the AMS, as well as the community as a whole, as a result 
of COVID, political controversy, and international con-
flicts. Much of my energy has been focused on navigating 
those challenges and getting people to work together in a 
productive way.

One place I feel I have made real progress is in bringing 
more diverse voices into the AMS. A major job of the pres-
ident is to find volunteers to serve on AMS committees. 
The AMS has over 100 committees, and for a fair number 
of these, it’s the purview of the president to appoint people 
to serve on them. One of the first steps we needed to take in 
addressing diversity issues was to make sure that the people 
serving on these committees represented a larger segment 
of the community. We have a Committee on Committees 
that helps the president generate names of potential can-
didates, and they’ve been fabulous. I’ve also been soliciting 
suggestions from many other sources for new people we 
might engage—young people and people from parts of the 
community we don’t usually reach out to—and making 
sure that our committees have a nice balance between 

An Interview 
with Ruth Charney
Scott Hershberger

Scott Hershberger is a master’s student in science communication at the 
University of Wisconsin–Madison. When he conducted this interview, he 
was the communications and outreach content specialist at the AMS. His 
email address is scotthersh42@gmail.com.

For permission to reprint this article, please contact: reprint-permission 
@ams.org.

DOI: https://dx.doi.org/10.1090/noti2555
Figure 1. Ruth Charney is the outgoing AMS president.

Every other year, when a new AMS president takes office, the Notices publishes interviews with the outgoing and in-
coming presidents. Ruth Charney’s two-year term as president will end on January 31, 2023. Charney is the Theodore 
and Evelyn Berenson Professor of Mathematics at Brandeis University. Notices contributing writer Scott Hershberger 
spoke with her in June 2022. An edited version of that interview follows.
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I’ve also become more aware of the breadth of view-
points and concerns across the math community—people 
think in all different ways and have different priorities. 
That’s part of what I find fascinating about doing these 
kinds of jobs. I get to know so many new people beyond my 
usual cohort of topologists and geometric group theorists 
(whom, of course, I like very much).

Notices: You led during a time of worsening discourse in society 
in general, and even in the math community in some ways. How 
did that affect your approach?

Charney: It seems that whatever you do or say these days, 
somebody is angry about it. I’m the sort of person who 
wants to keep everybody happy. Well, it turns out that’s not 
possible in this environment, and that’s been frustrating 
for me.

I realized early on that it was going to be really important 
to listen to other people. With respect to diversity issues, 
I originally said to myself, “Oh, I went through this with 
bringing more females into the math community. I was 
president of the Association for Women in Mathematics, 
and I know how to do this.” But I quickly became aware that 

Charney: There are certain aspects of AMS governance 
that are a little klutzy, and I hoped to find a way to make 
things more efficient. Many good ideas emerge from the 
policy committees, but they take a multi-layer process to 
implement. We are considering changing the timing of 
meetings or having some remote meetings to try to make 
the process more efficient. I don’t think this is something 
that people outside the governance structure see, but it can 
be difficult and frustrating at times. Of course, whatever it 
is one wants to do—and I’m saying this more generally, not 
just about the AMS—it always takes longer and is harder 
than one would like!

Notices: The Task Force on Understanding and Documenting the 
Historical Role of the AMS in Racial Discrimination released its 
report at the beginning of your term as president. What do you 
think has been the most important result of it so far?

Charney: I would say that the most important outcomes of 
the Task Force report so far have been the creation of a new 
Director of Equity, Diversity, and Inclusion staff position 
and the hiring of Dr. Leona Harris for this position; progress 
toward including more diverse voices in our committees, 
as we discussed earlier; and publicizing the expertise of 
mathematicians of color through books, Notices articles, 
invited lectures, etc.

The AMS also created a new top-level policy commit-
tee, the Committee on Equity, Diversity, and Inclusion. 
While this committee was created independently of the 
Task Force, one of its main missions is to keep track of the 
progress being made on the Task Force recommendations 
and to report on this progress to the Council each year. It 
is important that we don’t allow ourselves to stop paying 
attention to these issues, that we keep going and take the 
next step and the next step after that. I’m optimistic that the 
new staff position together with this new policy committee 
will assure that EDI is a continuing priority for the AMS.

Notices: What have you learned about the AMS and the math 
community during your time as president?

Charney: The more I get involved with the AMS, the more 
impressed I am with the range and the impact of the soci-
ety’s activities. I really believe that the AMS is an essential 
pillar of the mathematics community, and it deserves 
people’s appreciation and support. 

For example, I think one of the most important things 
that the AMS does is government advocacy. We have an 
office in Washington, and our Director of Government 
Relations, Dr. Karen Saxe, talks to congressional members 
and staff frequently about issues relating to the math and 
science communities, making sure mathematics—includ-
ing theoretical research mathematics—stays front and 
center in funding initiatives. 

Figure 2. Ruth Charney in her backyard in Lexington, 
Massachusetts. Charney enjoys gardening in her spare time.
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theoretical side, are now being used in all sorts of new ways. 
I think the future of mathematics is to play an ever-larger 
role in society—and that’s good for us.

Notices: What challenges will the AMS face in the coming years?

Charney: Almost all societies have been seeing a reduction 
in membership. People just don’t join things anymore. 
Everything’s available online, so why bother to pay a mem-
bership fee? But I claim that there is much to be gained 
from getting involved in professional societies. The AMS 
does a great deal for the mathematics community through 
publications, advocacy, meetings, professional develop-
ment, etc., and it’s also an opportunity to make all kinds 
of connections with other people. There are so many great 
reasons to join the AMS!

Notices: Have you given any advice to Bryna Kra about being 
president?

Charney: We’ve certainly discussed how to move forward 
on various issues. Bryna has been very involved in the AMS 
for years, so she knows what she’s getting into. We may 
have slightly different perspectives on some things, but I’m 
sure it will be a smooth transition and she will bring great 
energy to the job. 

An interview with Bryna Kra, the incoming AMS president, 
will appear in the February 2023 issue of Notices of the AMS.

Credits
Figure 1 is courtesy of Mike Lovett for Brandeis University.
Figure 2 is courtesy of Ruth Charney.
Author photo is courtesy of Scott Hershberger.

the problems we face currently are just not the same. There 
are some aspects that are similar, but the more I listened to 
people’s experiences, the more I realized that I didn’t really 
know what the answers were, or even, in some cases, what 
the problems were.

While it’s difficult to listen to people’s anger, it’s import-
ant to understand what it is that’s upsetting them. That’s 
been a learning process.

Notices: How do you view the AMS’s relationships with other 
professional societies in math?

Charney: We’ve been strengthening our interactions with 
other mathematics societies in recent years. We have worked 
with multiple societies to redesign meetings and institute 
new professional development programs. I hope that we 
continue to build on those relationships. Each society has 
its role to play and represents a certain aspect of the com-
munity, and that’s wonderful—but it is also important that 
we work together toward advancing the profession.

Notices: The 2022 International Congress of Mathematicians 
was originally planned to be held in Russia—a very controversial 
choice from the start due to Russia’s human rights abuses. What 
lessons should the AMS and the entire math community draw 
from this situation?

Charney: It is really not the AMS who makes these de-
cisions. That’s the job of the International Mathematical 
Union. Of course, we’re in touch with the people who are 
involved, and we can express opinions, but it’s not up to 
us to make the decisions.

There’s a somewhat related question about meetings we 
hold in the US: Should the AMS hold meetings in locations 
that either historically or currently are not welcoming to 
certain communities? This is a complicated question that is 
currently under discussion by the AMS policy committees. 
Regardless of the outcome of these discussions, the AMS 
is working to assure a welcoming environment at all our 
meetings.

Notices: What are your thoughts on the direction in which 
mathematics is going?

Charney: I feel that there’s a growing appreciation in 
the general public for the importance of mathematics in 
many different aspects of science and society. It’s no longer 
viewed as a highly specialized, isolated field. We used to 
talk about pure math and applied math. In my opinion, 
the word “pure” is a poor choice. It suggests that we’ve got 
a wall around us. A better way to think of it is as theoretical 
and applied math, and the two merge into each other. The 
theoretical feeds into the applied, and the applied feeds 
back into the theoretical. Ideas from math, including the 

Scott Hershberger



Polynomial Systems,
Homotopy Continuation,

and Applications
Timothy Duff and Margaret Regan

Systems of multivariate polynomial equations are ubiqui-
tous throughout mathematics. They also appear promi-
nently in scientific applications such as kinematics [20,22],
computer vision [11,15], power flow engineering [18], and
statistics [12]. Numerical homotopy continuation meth-
ods are a fundamental tool for both solving these systems
and determining more refined information about their
structure.

In this article, we offer a brief glimpse of polynomial ho-
motopy continuation methods: the general theory, a few
applications, and some software packages that implement
these methods. Our aim is to spark the reader’s interest in
this exciting and broad area of research. We invite those
looking to learn more to join us at the AMS Short Course:
Polynomial systems, homotopy continuation, and appli-
cations, to be held January 2–3 at the 2023 Joint Mathe-
matics Meetings in Boston.

1. Homotopy Continuation
Many types of homotopy continuation methods exist, but
they all are based on the same strategy. A system of equa-
tions 𝑔(𝑧) = 0 whose solutions are known, called the
start system, can be continuously deformed into a system
of equations 𝑓(𝑧) = 0 whose solutions we would like to
know, called the target system. The following example il-
lustrates some of the key ideas.
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Figure 1. Graphical summary of homotopy continuation.

Example 1. Consider the target polynomial system

𝑓(𝑧) = [ 4(𝑧21𝑧2 + 𝑧1𝑧2) − 3𝑧2
𝑧22 − 2𝑧1 + 1 ] .

The corresponding total degree start system

𝑔(𝑧) = [ 𝑧31 − 1
𝑧22 − 1 ]

has 6 solutions of the form (𝑧1, 𝑧2) = (𝜔,±1), where 𝜔 is
a third root of unity. These will serve as the smooth start
points depicted in Figure 1.

Using the straight-line homotopy

𝐻(𝑧; 𝑡) = (1 − 𝑡)𝑓(𝑧) + 𝑡𝑔(𝑧) = 0
to deform 𝑔 into 𝑓, each solution for 𝑡 ≈ 1 may be estima-
ted from the start points by numerical predictor/corrector
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methods, also known as homotopy path-
tracking [24, Ch. 2]. Iterating this procedure, we find for
this example there are six smooth homotopy paths of the
form 𝑧(𝑡) ∶ (0, 1] → ℂ2, where 𝑧(1) is one of the smooth
start points. As 𝑡 → 0+, one solution path will diverge to-
wards infinity, and three will come together at the singular
endpoint (𝑧1, 𝑧2) = (1/2, 0). The remaining two endpoints
(𝑧1, 𝑧2) = (−1/2, ±2𝑖) are finite and nonsingular. We see
that 𝑓 has three solutions, five counting multiplicity.

Path-tracking methods are well-studied in numerical
analysis, and are especially potent when applied to a
parametrized polynomial system

𝑓(𝑧; 𝑝) = 𝑓(𝑧1, … , 𝑧𝑁 ; 𝑝1, … , 𝑝𝑘)

= [
𝑓1(𝑧1, … , 𝑧𝑁 ; 𝑝1, … , 𝑝𝑘)

⋮
𝑓𝑛(𝑧1, … , 𝑧𝑁 ; 𝑝1, … , 𝑝𝑘)

]
(1)

where 𝑧1, … , 𝑧𝑁 are variables representing unknown quanti-
ties and 𝑝1, … , 𝑝𝑘 are parameters representing physical mea-
surements. Section 2 gives few examples of such systems
appearing in applications.

A general parameter continuation theorem [24, Theorem
7.1.1] is based on the fact that for almost all parameter val-
ues 𝑝∗ ∈ ℂ𝑘, the system of equations 𝑓(𝑧; 𝑝∗) = 0 has a
finite number 𝑑 of solutions 𝑧∗ ∈ ℂ𝑁 which are nonsingu-
lar in the sense that 𝐽𝑧𝑓(𝑧∗; 𝑝∗), the 𝑁 ×𝑁 Jacobian matrix
of 𝑓 with respect to 𝑧, is invertible. The number 𝑑 is some-
times called the generic root count of the system (1).

The essential observation of the parameter continua-
tion theorem is that all isolated solutions can be computed
via tailor-made homotopies which operate in a problem’s
natural parameter space. These parameter homotopies in-
volve two phases, summarized below. See [5, Chap. 6] for
more details.
Ab initio phase. The first step for a parameter homotopy
is to fix parameter values 𝑝∗ ∈ ℂ𝑘 and find 𝑑 non-
singular solutions to the system 𝑓(𝑧; 𝑝∗) = 0. This can
be accomplished with a straight-line homotopy as in Ex-
ample 1. This has the advantage that the solutions of
𝐻(𝑧; 1) = 𝑔(𝑧) = 0 are trivial to compute. More sophis-
ticated methods allow us to track potentially fewer paths
in this phase. These include multihomogeneous homo-
topies [24, Sec. 8.4.2], polyhedral homotopy [24, Sec. 8.5],
and methods based on monodromy [24, Sec. 15.4].
Parameter homotopy phase. With the ab initio phase com-
plete, the “online” parameter homotopy phase aims to
solve 𝑓(𝑧; 𝑝) = 0 for any sufficiently general choice of
𝑝 ∈ ℂ𝑘. For this task, we utilize the parameter homotopy

𝐻(𝑧; 𝑡) = 𝑓(𝑧; 𝜏(𝑡) ⋅ 𝑝∗ + (1 − 𝜏(𝑡)) ⋅ 𝑝) = 0

where 𝜏(𝑡) = 𝛾𝑡
1 + (𝛾 − 1)𝑡 (2)

for all 𝑡 ∈ [0, 1] and some fixed 𝛾 ∈ ℂ. In particular,
𝐻(𝑧; 1) = 𝑓(𝑧; 𝑝∗) = 0has known solutions 𝑆, computed in
the ab initio phase, and one aims to compute the solutions
to 𝐻(𝑧; 0) = 𝑓(𝑧; 𝑝) = 0. For generic values of the constant
𝛾 ∈ ℂ, the arc 𝜏(𝑡) ⋅ 𝑝∗ + (1 − 𝜏(𝑡)) ⋅ 𝑝 for 𝑡 ∈ [0, 1] con-
nects 𝑝∗ to 𝑝 and avoids the complex discriminant locus.
Thus, for 𝑡 ∈ [0, 1], 𝐻(𝑧; 𝑡) = 0 defines precisely 𝑑 solution
paths connecting the 𝑑 points in 𝑆 with the 𝑑 solutions to
𝑓(𝑧; 𝑝) = 0.

Our discussion of homotopy continuation methods in
this section is necessarily incomplete. Here we list a few ad-
ditional topics falling under the rubric of general methods.
One important topic is numerical algebraic geometry [23],
which allows us to study positive-dimensional algebraic
varieties. In the opposite case of an overdetermined system,
several techniques allow us to reduce to the case of a well-
constrained parametrized system of the form (1); see [11]
and the references therein. Lastly, we mention numerical
certification methods which can prove that approximated
solutions will converge to exact solutions (see, e.g., [13]),
and deflation methods for regularizing systems with singu-
lar solutions [14,16].

2. Applications
Polynomial homotopy continuation has been a key to ad-
vances in various applications. We summarize three that
will be featured in our short course.
2.1. Kinematics. Mechanical linkage systems of interest
have constrained motions that are naturally modeled with
systems of polynomial equations. Such polynomial for-
mulations cover a wide breadth of mechanisms including
planar, spherical, and spatial types.

For example, consider the 4-bar mechanism in Figure 2
where 𝐴 and 𝐵 are fixed pivots and ℓ1, ℓ2, and ℓ3 are the
lengths of the moving links.

Figure 2. Schematic of a four-bar linkage.
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The path synthesis problem associated with this mech-
anism seeks to find all possible linkages that meet cer-
tain design requirements. Wampler et al. [27] solved the
exact path synthesis problem for 4-bars, also known as
Alt’s problem, which imposes that the coupler trace point
𝑋 passes through nine generic positions. Alt’s problem
amounts to solving a system with 8652 complex solutions.
These solutions carry the extra structure of a 6-fold symme-
try group, including the 3-fold Roberts’ cognate triplets.

Homotopy continuation has been used for these exact
synthesis problems by finding the roots of the correspond-
ing system of polynomial equations [1, 8, 19–22]. These
are large-scale (up to 106) root-finding problems, where
homotopy continuation is the only method capable of
computing complete solution sets at such scales.

Othermethods focus on approximate kinematic synthe-
sis, relying on optimization techniques to accommodate
any number of design specifications. For example, in [2],
the approximate path synthesis problem using optimiza-
tion yields about 303,249 ± 713 Roberts’ cognate triples
as critical points with 95% confidence for the 4-bar link-
age. This offers an advantage over exact methods, with the
downside being large computational effort. Numerical ho-
motopy continuation methods were central to the use of
monodromy loops that made this computation possible.

The use of homotopy continuationwithin optimization
problems in kinematic design has also enabled the study
of the configurations of the parallel 5-bar mechanism,
which displays more nonlinearity that the serial 5-bar
mechanism. Figure 3 shows this complicated configura-
tion space. In [9], homotopy continuation is used to quan-
tify transmission quality using the curves of input and
output singularities. This enables developing a path that
switches between non-neighboring output modes (i.e., so-
lution sheets).

In general, homotopy continuation methods have led
to the analysis and solving of much more complicated
problems in kinematics.
2.2. Algebraic statistics. Maximum likelihood estima-
tion (MLE) is a fundamental technique of statistical infer-
ence, in which the likelihood function associated to a data
set is maximized over a space of all possible parameters
that specifies a statistical model. A major theme in the
field of algebraic statistics [25] is that the space of model
parameters will often be an algebraic variety. In this case,
homotopy continuation methods can be used for global op-
timization of the likelihood function. This complements
the widely used EM algorithm for MLE, which has the ad-
vantage of being easy to implement, but is generally sus-
ceptible to local minima.

To make these ideas expressed above concrete, we con-
sider a discrete statistical model from [12]. Fix positive

Figure 3. Workspace curve of input singularities and velocity
ellipse for a five-bar linkage.

integers 𝑚, 𝑛 ≥ 1, and consider two discrete probability
distributions,

𝑝𝑋 ∶ {1, … ,𝑚} → [0, 1],
𝑝𝑌 ∶ {1, … , 𝑛} → [0, 1].

If we draw 𝑘 samples from each distribution, 𝑋1, … , 𝑋𝑘 ∼
𝑝𝑋 , 𝑌1, … , 𝑌 𝑘 ∼ 𝑝𝑌 , we may record the frequency of all
possible 𝑚𝑛 outcomes into a 𝑚 × 𝑛 matrix of counts 𝑈.
Let 𝑃 be the 𝑚 × 𝑛 matrix giving the joint distribution
𝑝𝑖𝑗 = Pr (𝑋 = 𝑖, 𝑌 = 𝑗) . Our statistical model is the alge-
braic variety𝒱𝑟∩Δ𝑚𝑛−1, where𝒱𝑟 is the variety of matrices
of rank at most 𝑟, and Δ𝑚𝑛−1 is the probability simplex,

Δ𝑚𝑛−1 = {𝑃 ∈ ℝ𝑚×𝑛 ∣ 𝑝𝑖𝑗 ≥ 0, ∑𝑝𝑖𝑗 = 1}.
Note that random variables 𝑋 and 𝑌 are independent iff
𝑃 ∈ 𝒱𝑟∩Δ𝑚𝑛−1. TheMLE problem amounts tominimizing
the log-likelihood function

ℓ(𝑃; 𝑈) = log
⎛
⎜⎜
⎝
∏
1≤𝑖≤𝑚
1≤𝑗≤𝑛

𝑝ᵆ𝑖𝑗𝑖𝑗
⎞
⎟⎟
⎠
− 𝑘 log

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝
∑

1≤𝑖≤𝑚
1≤𝑗≤𝑛

𝑝𝑖𝑗
⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
. (3)

Calculating the partial derivatives
𝜕ℓ
𝜕𝑝𝑖𝑗

reveals that they are

rational functions in 𝑢𝑖𝑗 and 𝑝𝑖𝑗 , and this leads to a polyno-
mial system of equations whose solutions are the critical
points of (3) restricted to the model 𝒱𝑟 ∩ Δ𝑚𝑛−1. Among
these critical points is the maximum-likelihood estimate.
The total number of critical points is known as the ML de-
gree of the model. Using parameter homotopies, we can
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track exactly this number of homotopy paths to find all
critical points. The ML degrees for small 𝑚, 𝑛, and 𝑟 are
tabulated below (table adapted from [12].) Do you see
any patterns?

(𝑚, 𝑛) = (3, 3) (3, 4) (3, 5) (4, 4) (4, 5) (4, 6)
𝑟 = 1 1 1 1 1 1 1
𝑟 = 2 10 26 58 191 843 3119
𝑟 = 3 1 1 1 191 843 3119
𝑟 = 4 1 1 1

2.3. Power flow systems. Let 𝑛 ≥ 2 be an integer and con-
sider a finite undirected graph 𝐺 on the vertices {1, … , 𝑛}.
Fix 𝑥1 = 1, 𝑦1 = 0, and consider the system of 2(𝑛 − 1)
equations in 2(𝑛 − 1) unknowns

𝑥2𝑖 + 𝑦2𝑖 − 1 = 0 𝑖 = 2, … , 𝑛,
∑

(𝑖,𝑗)∈𝐸(𝐺)
𝑏𝑖𝑗(𝑥𝑖𝑦𝑗 − 𝑥𝑗𝑦𝑖) = 0 𝑖 = 2, … , 𝑛. (4)

This is one formulation of the power flow equations used
to model a network of 𝑛 agents (also known as buses.)
Each busmay represent a power station, customer, or some
other entity within an electrical grid. The coefficients 𝑏𝑖𝑗 ∈
ℝ for (𝑖, 𝑗) ∈ 𝐸(𝐺) are called susceptances and are assumed
to be known. The unknowns (𝑥𝑖, 𝑦𝑖) are the real and imag-
inary parts of the voltage at the 𝑖-th bus. The fixed values
(𝑥1, 𝑦1) = (1, 0) determine the reference bus.

Solving the power flow equations plays an important
role in operating and controlling electrical networks. It is
common for engineers to approach this problem with lo-
cal, iterative algorithms such as Newton’s method, which
will return a single real solution.

But what can we say about all solutions to (4)? Notice
that there are 2𝑛−1 “trivial” solutions obtained by fixing all
non-reference buses (𝑥𝑖, 𝑦𝑖) = (±1, 0) for 𝑖 = 2, … , 𝑛. The
number of “non-trivial” solutions turns out to depend on
the topology of the graph 𝐺. At one extreme, for the com-
plete graph 𝐺 = 𝐾𝑛, these equations will have (2𝑛−2

𝑛−1
) so-

lutions over the complex numbers, as long as the suscep-
tances are sufficiently generic. For the 𝑛-cycle 𝐺 = 𝐶𝑛, the
generic complex root count is a more modest 𝑛 ⋅ ( 𝑛−1

⌊(𝑛−1)/2⌋
).

In either case, there is a symmetry on these solutions that
sends (𝑥𝑖, 𝑦𝑖) ↦ (𝑥𝑖, −𝑦𝑖), allowing us to reduce the cost of
homotopy path-tracking by a factor of 2. Of course, only
the solutions where all 𝑥𝑖 and 𝑦𝑖 are real are of any practi-
cal interest. Figure 4 illustrates the distribution of real so-
lutions as a subset of the susceptances vary for the 5-cycle
𝐶5. The visible regions which are blue, red, green, purple,
and yellow correspond to parameter values with 0, 2, 4, 6,
and 8 solutions, respectively. We refer to the article [18]
for detailed explanations and many other interesting ex-
perimental results obtained using homotopy continuation
methods.

Figure 4. Distribution of real solutions to equations (4) for the
cycle graph 𝐺 = 𝐶5, with three susceptances 𝑏𝑖𝑗 drawn
uniformly from the unit sphere in ℝ2 and the other two fixed.

3. Software
A wide variety of software packages implementing poly-
nomial homotopy continuation methods exists. Here we
highlight three that will be used during the upcoming
short course:

1. Bertini [4] is a standalone software package, whose
functionality includes many of the standard ho-
motopy methods for isolated solutions, as well as
numerical irreducible decomposition for positive-
dimensional solutions.

2. HomotopyContinuation.jl [6] is a software pack-
age written for the Julia language, a programming lan-
guage designed for high-performance numerical com-
puting.

3. Macaulay2 [10] is a computer algebra system fo-
cused on computational commutative algebra and al-
gebraic geometry. Primarily a tool for symbolic com-
putation, it also has a growing number of numerical
algebraic geometry packages [17].
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Math and Writing: Two Sides
of the Same Coin?
Anuraag Bukkuri

“What do you want to be when you grow up?” was defi-
nitely not an easy question for me to answer when I was
a kid. My quest for the answer has taken me on an exhil-
arating journey that has not yet come to an end. I was
inspired by the words of Poe, the works of Euclid, and the
adventures of Darwin. I wanted to do it all!

By the time I entered college, I decided to study math-
ematics and biology. I poured over books and papers on
topics from ancient human fossils to cutting-edge medical
research, from the esoteric realms of infinity-category the-
ory to the practical applications of harmonic analysis. And
I loved every minute of it.

My passion for writing, however, was relegated to a side-
hobby at best, with a few miscellaneous poems scribbled
in the margins of my organic chemistry notes. Something
was missing. Something was incomplete.

As I started graduate school, I vowed to rekindlemywrit-
ing activities. Amidst the never-ending deluge of seminars,
papers, and conferences, I discovered the critical need for
scientists to share their knowledge and excitement about
science with the public. Realizing that I could use my com-
munication skills to fill this need, I dove headfirst into the
world of science writing.

I began writing for outlets such as The Conversation, ex-
plaining how ecology and evolution could help us tackle
the biggest problems in cancer, and for the journal Evo-
lution, summarizing and synthesizing the latest develop-
ments in evolutionary biology and ecology to a lay audi-
ence. It was a blast and the engagement I got from my
audiences was addicting.

Anuraag Bukkuri was the 2022 AMS-AAAS Mass Media Fellow, assigned to
the Miami Herald. His email address is Anuraag.Bukkuri@moffitt.org.

For permission to reprint this article, please contact:
reprint-permission@ams.org.

DOI: https://doi.org/10.1090/noti2591

When I learned about the AAASMassMedia Science and
Engineering Fellowship, I knew I had to apply. I was elated
to discover that I had been chosen for the fellowship by the
AmericanMathematical Society and placed at a local news-
paper, The Miami Herald, where I’d be working as a health
reporter for the summer. But I was wholly unprepared for
what was to come.

The summer approached quickly, and I was soon im-
mersed in the world of science journalism. I was call-
ing local health officials about expanding vaccine and
testing sites, analyzing the latest COVID and monkeypox
trends, and speaking to medical experts and political pun-
dits about the effects of the Roe v. Wade decision. But
most importantly, I was reaching out to members of the
South Florida community to understand their questions
and concerns.

Many of the articles I wrote at the Miami Herald were in
response to such queries: How can I track COVID trends
in Florida? What are the symptoms of monkeypox and
how can I get tested? Others were more detailed explain-
ers about the impacts of the overturning of Roe v. Wade
on medical care, the effects of the new COVID variant and
the monkeypox virus, and what the government is doing
about the monkeypox vaccine shortage. And yet others
chronicled the stories of a trauma surgeon who went to
work on war victims in Ukraine, or a summer camp for
kids with cancer.

Each of these articles had a life of its own. Some were
sad. Somewere angry. Somewere hopeful. But all of them
were important for the members of the South Florida com-
munity. They gave the opportunity for a woman to open
up, for the first time, about her lived experience with can-
cer. And for aman to express his frustration over the health
inequities he’s faced and the abrupt cancellation of his vac-
cine appointment.
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As I return to graduate school, I will bring back with
me many of the lessons I learned during my time as an
AAAS/AMS Mass Media fellow. Namely, the ability to
write quickly and effectively, construct compelling and
thorough arguments, and find novel questions or unique
angles on well-studied problems are all skills that will
make me a better scientist. And although I plan to remain
in academia, doing the work I love with colleagues and stu-
dents that inspire me, science writing and communication
will always be an integral part of who I am and what I do.

Anuraag Bukkuri

Credits

Photo of Anuraag Bukkuri is courtesy of Anuraag Bukkuri.
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Finding Meaning
Outside Academia
A. J. Stewart

“Why did you decide to work in Congress?”
I get asked this question a lot. It seems a mathemati-

cian working in Congress is a novel enough event that it
requires an explanation. It is only now, over a year after
I accepted the AMS Congressional Fellowship, that I feel
I can begin to accurately answer this question. My time
on Capitol Hill showed me how to use mathematics out-
side academia. Whether it be as an integral part of a team
working on large issues or committing to small actions that
make a big difference to a single person, I saw that mathe-
matics has a place in creating a brighter future.

For my fellowship, I was placed in Senator Raphael
Warnock’s office. I grew up in Florida, sometimes referred
to as south of the South, and understood the challenges of
being from a low-income family in the South. I wanted to
utilize my mathematical skills on policy that would sup-
port a more equitable economy for all Americans. Senator
Warnock’s office was a perfect fit.

Within Senator Warnock’s office I worked on the eco-
nomic portfolio, which included housing, tax, trade, and
financial services, with two other staffers. We were the hub
for any content coming in or out of the office related to
our portfolio. We met with constituents and stakeholders,
created background documents, and lent our expertise on
policy decisions. My background as a mathematician was
immediately treated as an asset. It was assumed I would
utilize my skills and training in any way to support the of-
fice. I felt trusted, valued, and part of a team. I was excited
to be able to usemathematics to helpworking families and
it was fulfilling to be part of an office committed to doing
the same.

A. J. Stewart was the 2021–2022 AMS Congressional Fellow. His email address
is allenjstewart@protonmail.com.

For permission to reprint this article, please contact:
reprint-permission@ams.org.

DOI: https://doi.org/10.1090/noti2608

However, no matter how committed a member of Con-
gress may be, what gets done in Congress is completely
reliant on the congressional body as a whole. If Congress
is unable to reach sufficient consensus on any matter, then
that matter won’t be resolved. This legislative gridlock was
not the overarching theme during my time on Capitol Hill.
The 117th Congress was exceptionally productive by pro-
viding COVID-19 relief, necessary infrastructure funding,
future investments in green technology to combat climate
change, as well as much more.

Much of this work was a result of bipartisan coopera-
tion, which was a common thread through all my work
during the fellowship. I felt the importance of creating and
supporting bipartisan coalitions. My mathematical skills
lent themselves to this cooperative process. Since mathe-
matics has a large foundation in problem solving and so
much of problem solving is being able to view a problem
in several different ways, this meant that I could use the
same skills to approach a specific policy that I would use
to approach a problem. This enabled me to view policy ar-
eas from multiple viewpoints, which is an important skill
on Capitol Hill.

I always felt that I was able to lend my skills in any way
possible even though I was only a small part of larger leg-
islative actions. The passage of The Inflation Reduction
Act required a process called “vote-a-rama” where numer-
ous amendments are voted on during an extended period
of time. This process can take over 24 hours to complete.
As multiple amendments regarding complex tax law were
filed (sometimes at 3 or 4 in the morning), I relied on de-
duction and inference to predict the exact changes the sug-
gested amendment would have on the tax structure as well
as whowould feel its effects. I needed tomake quick policy
recommendations and it was my training as a mathemati-
cian that guided me.

Not every action on Capitol Hill involves staying up all
night researching amendments. Some actions are much
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smaller in scope. The Economic Injury Disaster Loans
(EIDL) are administered by the Small Business Adminis-
tration (SBA) and provide emergency financial support for
small businesses in disaster areas. As a result of the pan-
demic, specific COVID-19 EIDL loans were created. When
the funding for a construction business in Georgia was de-
layed, I argued the business’s case to the SBA. This meant
that the business could stay afloat, and its employees could
remain on payroll. It was a small action that helped a
dozen or so working families. Being able to argue the mer-
its of the case involved analyzing the required application
documentation and using logic to persuade the SBA. Again,
the skills I utilized were supported by the skills I use as a
mathematician. It was mathematics that guided me as I
supported and advocated for people in these small ways.

Now I return to the question of why I wanted to work
in Congress or more specifically how I found a place out-
side academia. In the years leading up to 2020, I wanted
to do more with mathematics. I felt that mathematics had
so much to offer the world and should be used to address
some of the hardest questions of our generation; wealth in-
equality, climate change, increased political polarization,
etc. I wanted to work in Quantitative Justice. To apply my
training and skills to support a more equitable and just
world. I just didn’t know how to do it or how I could be
useful.

During my fellowship I realized mathematicians are
desired for our quantitative training, logical skills, and
problem-solving ability but we are also valued because of
the unique perspective we bring. We naturally seek out
truth and can see the center of systems and processes. Our
education lends itself to findingmore stable, equitable pro-
cesses and so we possess necessary skills to address the in-
herent inequalities within our historical systems. We can
be useful and the world outside academia is waiting for us
to participate.

I know I won’t solve the Riemann Hypothesis or the
Hodge Conjecture, but I also know there is not a monop-
oly on worthy mathematical pursuits. Whether it be play-
ing a small part of substantial climate change legislation
or ensuring a construction business can pay its employees,
mathematicians can make a difference in a multitude of
ways. We need only step out into the world and commit
to change.

The AMS Congressional Fellowship is a unique way to
get involved in our government. For those interested in
personally getting involved, the AMS funds one Congres-
sional Fellow per year, with this year’s application dead-
line of February 1, 2023, and there aremultiple other types
of science and technology policy fellowships available to
mathematicians.

Learn about the AMS Congressional Fellowship at
https://www.ams.org/government/government/ams
-congressional-fellowship.

A. J. Stewart

Credits

Photo of A. J. Stewart is courtesy of Jay Shepherd.
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To streamline this year’s process for all involved, we 
ask that you notify the AMS (postdoc-deadline@ams 
.org) if and only if: your department is not listed and you 
would like to be listed as part of the agreement; or your 
department is listed and you would like to withdraw from 
the agreement and be removed from the list.

Please feel free to email us with questions and concerns. 
Thank you for consideration of the proposal.

—Catherine A. Roberts
AMS Executive Director

Torina Lewis
AMS Associate Executive Director

Inaugural Fall Graduate 
School Fair Draws More 
Than 300 Students
At the AMS’s first Fall Graduate School Fair, held October 
12, representatives of more than 40 graduate programs in 
the mathematical sciences hosted virtual tables to answer 
student questions.

The Gather platform provided a dynamic way to inter-
act, replicating an in-person experience for more than 300 
undergraduates and master’s students. The students were 
provided with avatars that allowed them to navigate and 
interact within the virtual fair, much like an online video 
game.

In addition to the virtual tables, the Graduate School 
Fair kicked off with a panel of students and graduate chairs, 
who shared ways that students can explore graduate school 
options and can pose insightful questions of program staff.

“The panel provided exactly what I had hoped: an op-
portunity to empower students,” said Sarah Bryant, AMS 
director of programs. “It also, I hope, prompted department 
representatives to think deeply about how they are recruit-
ing to their programs.” She added that the panel discussion 
was recorded and is available online on the AMS YouTube 
channel.

The AMS Fall Graduate School Fair will recur annu-
ally in addition to the Graduate School Fair at the Joint  

Math Departments 
Coordinate Job Offer 
Deadlines
For the past 21 years, the American Mathematical Society 
has led the effort to gain broad endorsement for the fol-
lowing proposal:

That mathematics departments and institutes agree not 
to require a response prior to a certain date (usually around 
February 1 of a given year) to an offer of a postdoctoral 
position that begins in the fall of that year.

This proposal is linked to an agreement made by the 
National Science Foundation (NSF) that recipients of NSF 
Mathematical Sciences Postdoctoral Fellowships would be 
notified of their awards, at the latest, by the end of January.

This agreement ensures that our young colleagues enter-
ing the postdoctoral job market have as much information 
as possible about their options before making a decision. It 
also allows departmental hiring committees adequate time 
to review application files and make informed decisions. 
From our perspective, this agreement has worked well and 
has made the process more orderly. There have been very 
few negative comments. Last year, more than 180 mathe-
matics and applied mathematics departments and institutes 
endorsed the agreement.

Therefore, we propose that mathematics departments 
again collectively enter into the same agreement for the 
upcoming cycle of recruiting, with the deadline set for 
Monday, February 6, 2023. The NSF’s Division of Mathe-
matical Sciences has already agreed that it will complete 
its review of applications and notify all applicants no later 
than Friday, January 27, 2023.

The American Mathematical Society facilitated the pro-
cess by sending an email message to all doctoral-granting 
mathematics and applied mathematics departments and 
mathematics institutes. The list of departments and insti-
tutes endorsing this agreement was widely announced on 
the AMS website and is updated weekly until mid-January.

We ask that you view this year’s formal agreement at 
https://www.ams.org/employment/postdoc-offers 
.html along with this year’s list of adhering departments.

https://www.ams.org/employment/postdoc-offers.html
https://www.ams.org/employment/postdoc-offers.html
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When Design Science left the MathJax Consortium in 
2013, the AMS assumed the role of Managing Partner and 
was responsible for day-to-day operations and manage-
ment. In 2019, MathJax joined NUMFocus, a nonprofit 
organization that promotes open practices in research, data, 
and scientific computing by serving as a fiscal sponsor for 
open-source projects.

The AMS remains a founding partner of MathJax, 
making a substantial annual contribution and serving on 
its steering committee, said Thomas J. Blythe, AMS chief 
information officer.

“MathJax is vital to the AMS’s commitment to making 
mathematics accessible on the internet,” he said. “It’s the 
cornerstone of our accessibility efforts for rendering math-
ematics in our journals and ePub versions of our ebooks, 
as well as in AMS MathViewer and MathSciNet®.”

—AMS Communications

Deaths of AMS Members 
Andrew Bucki, of Edmond, Oklahoma, died on March 

2, 2022. Born on March 29, 1946, he was a member of the 
Society for 38 years.

C. Carton-Lebrun, of Belgium, died on April 5, 2022. 
Born on January 8, 1942, she was a member of the Society 
for 50 years.

Ian Connell, of Canada, died on February 21, 2022. Born 
on December 20, 1934, he was a member of the Society 
for 60 years.

Ed Dubinsky, of Miami Springs, Florida, died on June 9, 
2022. Born on February 7, 1935, he was a member of the 
Society for 57 years.

Bert Fristedt, of Bloomington, Minnesota, died on July 
18, 2020. Born on April 8, 1937, he was a member of the 
Society for 57 years.

Betty B. Garrison, of San Diego, California, died on 
January 16, 2021. Born on July 1, 1932, she was a member 
of the Society for 66 years.

Eberhard Kaniuth, of Germany, died on April 27, 2017. 
Born on November 30, 1937, he was a member of the 
Society for 36 years.

J. Musielak, of Poland, died on October 11, 2020. Born 
on November 7, 1928, he was a member of the Society for 
38 years.

Keith Phillips, of Boulder, Colorado, died on March 
8, 2016. Born on June 11, 1937, he was a member of the 
Society for 53 years.

Helmut R. Salzmann, of Germany, died on March 8, 
2022. Born on November 3, 1930, he was a member of 
the Society for 58 years.

Jerrold B. Tunnell, of Piscataway, New Jersey, died on 
April 1, 2022. Born on September 16, 1950, he was a 
member of the Society for 50 years.

Mathematics Meetings. “I wish this resource had been 
available when I was applying to graduate school,” said 
panelist Christopher L. Cox, mathematics professor and 
department head, University of Tennessee at Chattanooga.

—AMS Communications

New Version of 
MathJax Available
An updated version of MathJax is now available, reported 
its lead developer, Davide Cervone.

“MathJax 4.0.0-alpha.1 is the first release of a major up-
date to MathJax,” said Cervone, professor of mathematics 
at Union College. “It includes a number of significant new 
features that our sponsors and users have been waiting for.”

For those unfamiliar, MathJax is an open-source tool for 
rendering mathematics on the web, designed for diverse 
audiences. Using MathJax does not require the viewer to 
download any software, and because it uses actual fonts, 
its output will scale and print better than math presented 
as images. 

MathJax’s four new features include:
	• support for 10 different fonts, including the STIX2 

font set, five Gyre math fonts, and a sans-serif font 
based on the Fira-Math font. “The original Math-
Jax TeX font set remains available as an option,” 
Cervone said.

	• support for automatic and explicit line breaks in 
both display and in-line expressions, automatic 
breaking of text elements, better breaking in tables 
and arrays, more array column specifiers for the 
array preamble, and TeX macros to control line 
breaking, indentation, and alignment, as well as 
more commands for making fixed-size boxes in 
which line breaking can occur;

	• support for HTML embedded in MathML and TeX 
expressions (e.g., you can insert form elements into 
the mathematical expressions);

	• improvements to the assistive support by including 
the expression explorer in all combined compo-
nents.

The release notes provide extensive information about 
the new features.

MathJax launched in 2010 as an open-source project 
under the sponsorship of the American Mathematical So-
ciety (AMS), the Society for Industrial and Applied Math-
ematics (SIAM), and Design Science, Inc., with additional 
support from StackExchange, the American Physical Society, 
Elsevier, the Optical Society of America, Project Euclid, 
WebAssign, and others.
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	• James Maynard, Oxford University and Institute for 
Advanced Study, for multiple contributions to analytic 
number theory, and in particular to the distribution of 
prime numbers.
Three Maryam Mirzakhani New Frontiers Prizes of 

$50,000 each were awarded to women mathematicians 
who have recently completed their PhDs and who have 
produced important results:

	• Maggie Miller, Stanford University and Clay Mathe-
matics Institute, for work on fibered ribbon knots and 
surfaces in 4-dimensional manifolds.

	• Jinyoung Park, Stanford University, for contributions to 
the resolution of several major conjectures on thresholds 
and selector processes.

	• Vera Traub, University of Bonn, for advances in approx-
imation results in classical combinatorial optimization 
problems, including the traveling salesman problem 
and network design.
The 2023 Breakthrough Prize laureates in Fundamental 

Physics, Life Sciences, and Mathematics were announced on 
September 22, 2022 by the Breakthrough Prize Foundation 
and its founding sponsors—Sergey Brin, Priscilla Chan and 
Mark Zuckerberg, Julia and Yuri Milner, and Anne Wojcicki.

—From a Breakthrough Prize announcement

2023 ICIAM Prizes 
Announced
The International Council for Industrial and Applied Math-
ematics (ICIAM) announced the winners of 2023 ICIAM 
Prizes, which will be awarded during the opening ceremony 
of the International Congress for Industrial and Applied 
Mathematics, to be held in Tokyo on August 20–25, 2023.

Maria Colombo of EPFL Lausanne, Switzerland, was 
awarded the ICIAM Collatz Prize for fundamental contri-
butions to the regularity theory and the analysis of singu-
larities in elliptic PDEs, geometric variational problems, 
transport equations, and incompressible fluid dynamics.

Alfio Quarteroni of Politecnico di Milano, Italy, was 
awarded the ICIAM Lagrange Prize for groundbreak-
ing work in finite element and spectral methods, do-
main decomposition methods, discontinuous Galerkin  

2023 Breakthrough Prizes 
in Mathematics Announced

AMS Member Daniel A. Spielman 
was awarded the 2023 Breakthrough 
Prize in Mathematics.

The world’s largest science awards, 
each of five main Breakthrough prizes 
is $3 million.

Spielman is a Sterling Professor 
of Computer Science and a Professor 
of Statistics and Data Science and of 
Mathematics at Yale University. He 
was honored “for breakthrough con-

tributions to theoretical computer science and mathemat-
ics, including to spectral graph theory, the Kadison-Singer 
problem, numerical linear algebra, optimization, and 
coding theory,” the prize citation noted.

“In Mathematics, Daniel A. Spielman’s insights and al-
gorithms have been significant not only for mathematics, 
but for highly practical problems in computing, signal 
processing, engineering, and even the design of clinical 
trials,” according to a news release.

Additionally, six New Horizons Prizes of $100,000 
each were distributed between 11 early-career scientists 
and mathematicians who have already made a substantial 
impact on their fields. The 2023 New Horizons in Mathe-
matics Prizes were awarded to:

	• Ana Caraiani, Imperial College 
London and University of Bonn, for 
diverse transformative contributions 
to the Langlands program, and in 
particular for work with Peter Scholze 
on the Hodge–Tate period map for 
Shimura varieties and its applica-
tions. Caraiani is an AMS Fellow.

	• Ronen Eldan, Weizmann Insti-
tute of Science and Microsoft Re-
search, for the creation of the sto-

chastic localization method, which has led to significant 
progress in several open problems in high-dimensional 
geometry and probability, including Jean Bourgain’s 
slicing problem and the KLS conjecture.

Daniel Spielman

Ana Caraiani
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Yunqing Tang Receives 
SASTRA Ramanujan Prize

The 2022 SASTRA Ramanujan Prize 
was awarded to Yunqing Tang, an 
assistant professor at the University 
of California, Berkeley, who has been 
described as “one of the best young 
number theorists to emerge in recent 
years worldwide.”

Tang was honored for “having 
established, by herself and in col-
laboration, a number of striking 
results on some central problems in 

arithmetic geometry and number theory,” the prize citation 
noted. “… Her works display a remarkable combination 
of sophisticated techniques, in which the arithmetic and 
geometry of modular curves and of Shimura varieties play 
a central role, and have strong links with the discoveries of 
Srinivasa Ramanujan in the area of modular equations.”

Tang earned her PhD from Harvard University in 2016 
under supervision of Mark Kisin. A native of China, she 
has been a member of the Institute for Advanced Study in 
Princeton, NJ; a junior researcher (chargée de recherche) 
at CNRS/Université Paris-Sud; and an instructor and assis-
tant professor at Princeton University. “She is one of the 
deepest and most creative mathematicians of her age, and 
her wide-ranging contributions are bound to have impact 
in the decades ahead,” the citation noted.

The annual $10,000 prize is for outstanding contribu-
tions by individuals not exceeding the age of 32 in areas of 
mathematics influenced by Srinivasa Ramanujan in a broad 
sense. “The age limit has been set at 32 because Ramanujan 
achieved so much in his brief life of 32 years,” according 
to the citation.

—From the SASTRA Ramanujan Prize

Hendricks Awarded 
AWM Joan and Joseph 
Birman Research Prize
The Association for Women in Mathematics (AWM) has 
awarded the fifth AWM Joan & Joseph Birman Research 
Prize in Topology and Geometry to Kristen Hendricks, 
associate professor of mathematics at Rutgers University.

Hendricks is being honored for highly influential work 
on equivariant aspects of Floer homology theories. Her 
work “in low-dimensional and symplectic topology has 
revolutionized the understanding of equivariant aspects of 

methods, numerical solution of incompressible Navier–
Stokes equations, multiphysics and multiscale modeling—
with application to fluid dynamics, geophysics, the human 
heart and circulatory system, the COVID-19 epidemic, and 
improvement of sports performance for the America’s Cup 
sailing competition.

Weinan E of Peking University, China, and Princeton 
University was awarded the ICIAM Maxwell Prize for semi-
nal contributions to applied mathematics and in particular 
on analysis and application of machine learning algo-
rithms, multi-scale modeling, the modeling of rare events 
and stochastic partial differential equations.

Leslie Greengard of New York University has been 
awarded the ICIAM Pioneer Prize for groundbreaking work 
on fast algorithms, including the fast multipole method 
(one of the top 10 algorithms of the 20th century), fast 
Gauss transform, and fast direct solvers; and for the devel-
opment of innovative high-order, automatically adaptive 
algorithms for differential and integral equations.

Jose Mario Martinez Perez of the University of Campi-
nas, Brazil, was awarded the ICIAM Su Buchin Prize for 
outstanding achievements in research—a combination 
of theory, practice, software, and applications for solving 
large-scale optimization problems—and in fostering the 
development of the optimization and applied mathematics 
communities in Latin America.

Cleve B. Moler of Math Works, Inc., was awarded the 
ICIAM Industry Prize for his outstanding contributions to 
the development of mathematical and computational tools 
and methods for the solution of science and engineering 
problems and his invention of MATLAB, which allows 
industrial users to harness efficient and reliable numerical 
methods to execute numerical simulations in ever-expand-
ing domains of science and engineering.

The 2023 ICIAM Prize Committee was chaired by ICIAM 
President Ya-xiang Yuan. Chairs of the prize subcommit-
tees were Gang Bao (Maxwell Prize), Alfredo Bermudez 
(Pioneer Prize), Nira Chamberlain (Industry Prize), Leah 
Edelstein-Keshet (Lagrange Prize), Lois Curfman McInnes 
(Su Buchin Prize), and Kim-Chuan Toh (Collatz Prize).

—From an ICIAM announcement

Yunqing Tang
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Sonnleitner Wins 
2022 Joseph F. Traub 
Information-Based 
Complexity Young 
Researcher Award
Mathias Sonnleitner, University of Passau, Germany, has 
received the 2022 Joseph F. Traub Information-Based Com-
plexity Young Researcher Award from the Journal of Complex-
ity. The annual award is given for significant contributions 
to information-based complexity by a young researcher 
who has not reached their 35th birthday by September 
30 in the year of the award. The award consists of $1,000 
and a plaque, which was presented at the conference “Ap-
proximation and Geometry in High Dimensions,” held in 
Będlewo, Poland, in October 2022.

—From Journal of Complexity

Credits
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Floer theories, allowing powerful equivariant techniques 
to be used to solve classical, non-equivariant problems,” 
according to a press release. “Hendricks’ pioneering work 
on involutive Heegaard Floer homology has had wide-rang-
ing applications, particularly to questions that straddle the 
border between 3- and 4-dimensional topology. The impact 
of her contributions to the understanding of homology 
cobordism groups, and to the closely related subject of knot 
concordance, has been profound. Hendricks’ work has also 
opened new doors in the realm of symplectic topology, 
where her work with collaborators introduced one of the 
first general constructions of equivariant Floer homology.”

Hendricks, who received her PhD in 2013 from Colum-
bia University, was a Hedrick Assistant Adjunct Professor at 
the University of California, Los Angeles and an Assistant 
Professor at Michigan State University before joining the 
faculty at Rutgers.

“Joan Birman was a great inspiration to me while I 
was fortunate enough to interact with her as a graduate 
student at Columbia, and my appreciation and respect for 
her achievements has only increased as my perspective has 
matured,” Hendricks said. “I’m also delighted to have my 
name on the same list as the previous prize winners, all of 
whom I hold in great esteem.

“I am greatly indebted to many excellent mentors, most 
especially my first undergraduate professor, Tom Coates; 
my primary graduate adviser, Robert Lipshitz; and my 
postdoctoral supervisor, Ciprian Manolescu,” she said. “I 
am also grateful to both my former colleagues at Michigan 
State and my current colleagues at Rutgers for their unfail-
ing supportiveness.”

Established in 2012, the AWM Joan & Joseph Birman 
Research Prize highlights exceptional research in topology/
geometry by a woman early in her career. The award is 
made possible by a generous contribution from Joan Bir-
man, whose work has been in low-dimensional topology, 
and her husband, Joseph, who was a theoretical physicist 
specializing in applications of group theory to solid state 
physics. Hendricks will receive her award at the 2023 Joint 
Mathematics Meetings in Boston.

—From the Association for Women in Mathematics
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MASSACHUSETTS

Northeastern University

The College of Science at Northeastern University invites 
applications for positions at all ranks (Assistant Professor, 
Associate Professor, or Professor), beginning in academic 
year 2023–2024 in the fields of Mathematical Modeling 
and Computation, broadly defined. Primary appointments 
will be in Mathematics with joint appointments in other 
departments including Physics and/or other colleges in-
cluding Khoury College of Computer Sciences, the College 
of Engineering, and Bouvé College of Health Sciences. 
Appointments will have the opportunity to collaborate 
in cross-disciplinary teams across the University and will 
complement existing strengths.

Mathematical Modeling and Computation are at the 
heart of multiple areas of great societal impact. The College 
of Science is looking for exceptionally qualified individuals 
to fill faculty roles in these fields. Candidates will be con-
sidered from all areas concerned with the Mathematical 
Foundations of Modeling and Optimization in the Sciences 
and Engineering, or the Mathematics of Computation, 
with some emphasis on data-driven research. Relevant 
areas of study include Applied Analysis, Partial Differential 
Equations, Optimization, Discrete Mathematics, Quan-
tum Computing, Algebraic Geometry, Data Science, High 
Dimensional Statistics, Probability, Complexity Theory, 
Security, and Cryptography.

Our tenure and promotion process values collaborative 
research and teamwork. Hires will be mentored for success, 

with mentoring teams and group guidance. In addition, a 
strong and effective faculty development strategy is part of 
the Northeastern institutional mission.

At Northeastern University, we embrace a culture of 
respect, where each person is valued for their contribution 
and is treated fairly. We oppose all forms of racism. We 
support a culture that does not tolerate any form of dis-
crimination and where each person may belong. We strive 
to have a diverse membership, one where each person is 
trained and mentored to promote their success. See our 
website for more information about the College and its 
Leadership Team.

Responsibilities:
Potential hires are expected to develop vigorous research 
programs cross cutting the fields of Mathematics, Physics, 
Computer Science, Engineering, or Health Sciences. Fac-
ulty at Northeastern are expected to develop independent 
research programs that attract external funding; teach 
courses at the graduate and undergraduate level; super-
vise students and postdocs in their area of research; and 
participate in service to the department, university, and 
discipline. Qualified candidates must have excellence in, 
or a demonstrated commitment to, working with diverse 
student populations and/or in a culturally diverse work and 
educational environment.

Qualifications:
Applicants must have a PhD in Mathematics, Physics, 
Computer Science, Engineering, or a related field by the 
appointment start date. We encourage applicants from a 
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CHINA

Tianjin University, China  
Tenured/Tenure-Track/Postdoctoral Positions at  

the Center for Applied Mathematics  

Dozens of positions at all levels are available at the recently 
founded Center for Applied Mathematics, Tianjin Univer-
sity, China. We welcome applicants with backgrounds in 
pure mathematics, applied mathematics, statistics, com-
puter science, bioinformatics, and other related fields. We 
also welcome applicants who are interested in practical 
projects with industries. Despite its name attached with 
an accent of applied mathematics, we also aim to create a 
strong presence of pure mathematics.

Light or no teaching load, adequate facilities, spacious 
office environment and strong research support. We are 
prepared to make quick and competitive offers to self-mo-
tivated hard workers, and to potential stars, rising stars, as 
well as shining stars.

The Center for Applied Mathematics, also known as the 
Tianjin Center for Applied Mathematics (TCAM), located 
by a lake in the central campus in a building protected as 
historical architecture, is jointly sponsored by the Tianjin 
municipal government and the university. The initiative 
to establish this center was taken by Professor S. S. Chern. 
Professor Molin Ge is the Honorary Director, Professor 
Zhiming Ma is the Director of the Advisory Board. Professor 
William Y. C. Chen serves as the Director.

TCAM plans to fill in fifty or more permanent faculty 
positions in the next few years. In addition, there are a 
number of temporary and visiting positions. We look for-
ward to receiving your application or inquiry at any time. 
There are no deadlines.

Please send your resume to mathjobs@tju.edu.cn.
For more information, please visit cam.tju.edu.cn 

or contact Mr. Albert Liu at mathjobs@tju.edu.cn, tele-
phone: 86-22-2740-6039.

2

wide range of backgrounds, including academia and indus-
try. All applicants should have a strong record of scholarly 
accomplishment that demonstrates the ability to build a 
strong research program. Candidates seeking appointment 
at the Associate or Full Professor level should have sub-
stantial research productivity and an established history of 
grant support and academic service. Research excellence is 
the top-most priority. Depending on the research profile 
and expertise, a joint or affiliate appointment in another 
department(s) within the University is possible.

Additional Information:
Interested candidates should view the complete position 
description and apply at: Northeastern University Careers: 
(https://northeastern.wd1.myworkdayjobs.com 
/en-US/careers/details/Open-Rank--Assistant 
-Associate-Professor--Mathematical-Modeling 
-and-Computation_R109613?q=%20math%20modeling) 
or at MathJobs: (https://www.mathjobs.org/jobs 
/list/20881) with a curriculum vita that includes a list 
of publications, research statement, teaching statement, an 
equity statement, and names and contact information for 
at least three professional references. Applications will be 
reviewed beginning on November 30, 2022.

Northeastern University is an equal opportunity em-
ployer, seeking to recruit and support a broadly diverse 
community of faculty and staff. Northeastern values and 
celebrates diversity in all its forms and strives to foster an 
inclusive culture built on respect that affirms inter-group 
relations and builds cohesion.

All qualified applicants are encouraged to apply and 
will receive consideration for employment without regard 
to race, religion, color, national origin, age, sex, sexual 
orientation, disability status, or any other characteristic 
protected by applicable law.

To learn more about Northeastern University’s commit-
ment and support of diversity and inclusion, please see 
www.northeastern.edu/diversity.

1

https://northeastern.wd1.myworkdayjobs.com/en-US/careers/details/Open-Rank--Assistant-Associate-Professor--Mathematical-Modeling-and-Computation_R109613?q=%20math%20modeling
https://northeastern.wd1.myworkdayjobs.com/en-US/careers/details/Open-Rank--Assistant-Associate-Professor--Mathematical-Modeling-and-Computation_R109613?q=%20math%20modeling
https://northeastern.wd1.myworkdayjobs.com/en-US/careers/details/Open-Rank--Assistant-Associate-Professor--Mathematical-Modeling-and-Computation_R109613?q=%20math%20modeling
https://northeastern.wd1.myworkdayjobs.com/en-US/careers/details/Open-Rank--Assistant-Associate-Professor--Mathematical-Modeling-and-Computation_R109613?q=%20math%20modeling
https://www.mathjobs.org/jobs/list/20881
https://www.mathjobs.org/jobs/list/20881
http://cam.tju.edu.cn
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List US$59, AMS Institutional member US$47.20, All 
Individuals US$47.20, Order code STML/99

bookstore.ams.org/stml-99

Analysis

Continuous Symmetries 
and Integrability of 
Discrete Equations
Decio Levi, Roma Tre University, 
Rome, Italy, and INFN, Roma Tre 
Section, Rome, Italy, Pavel Win-
ternitz, Université de Montréal, 
QC, Canada, and Ravil I. Yami-
lov, UFA Federal Research Center 
of the Russian Academy of Science, 
Russia

This book on integrable systems 
and symmetries presents new results on applications of 
symmetries and integrability techniques to the case of 
equations defined on the lattice. This relatively new field 
has many applications, for example, in describing the evo-
lution of crystals and molecular systems defined on lattices, 
and in finding numerical approximations for differential 
equations preserving their symmetries.

The book contains three chapters and five appendices. 
The first chapter is an introduction to the general ideas 
about symmetries, lattices, differential difference and par-
tial difference equations and Lie point symmetries defined 
on them. Chapter 2 deals with integrable and linearizable 
systems in two dimensions. The authors start from the 
prototype of integrable and linearizable partial differential 
equations, the Korteweg de Vries and the Burgers equations. 
Then they consider the best known integrable differential 
difference and partial difference equations. Chapter 3 
considers generalized symmetries and conserved densities 
as integrability criteria. The appendices provide details 
which may help the readers’ understanding of the subjects 
presented in Chapters 2 and 3.

This book is written for PhD students and early research-
ers, both in theoretical physics and in applied mathematics, 

Algebra and 
Algebraic Geometry

Finite Fields, with 
Applications to 
Combinatorics
Kannan Soundararajan, Stan-
ford University, CA

This book uses finite field theory 
as a hook to introduce the reader 
to a range of ideas from algebra 
and number theory. It constructs 
all finite fields from scratch and 
shows that they are unique up 
to isomorphism. As a payoff, 

several combinatorial applications of finite fields are given: 
Sidon sets and perfect difference sets, de Bruijn sequences 
and a magic trick of Persi Diaconis, and the polynomial 
time algorithm for primality testing due to Agrawal, Kayal 
and Saxena.

The book forms the basis for a one term intensive course 
with students meeting weekly for multiple lectures and a 
discussion session. Readers can expect to develop famil-
iarity with ideas in algebra (groups, rings and fields), and 
elementary number theory, which would help with later 
classes where these are developed in greater detail. And 
they will enjoy seeing the AKS primality test application 
tying together the many disparate topics from the book. The 
pre-requisites for reading this book are minimal: familiarity 
with proof writing, some linear algebra, and one variable 
calculus is assumed. This book is aimed at incoming un-
dergraduate students with a strong interest in mathematics 
or computer science.

This item will also be of interest to those working in discrete 
mathematics and combinatorics and number theory.

Student Mathematical Library, Volume 99
February 2023, 170 pages, Softcover, ISBN: 978-1-4704-
6930-6, LC 2022037518, 2010 Mathematics Subject Classifi-
cation: 11–01, 05–01, 12–01, 11A07, 11A51, 05B10, 12E20, 

CRM
MONOGRAPH
SERIES

C
R
M

Centre de Recherches Mathématiques
Montréal

Volume 38Volume 38

Continuous Symmetries Continuous Symmetries 

and Integrability of and Integrability of 

Discrete EquationsDiscrete Equations

Decio LeviDecio Levi
Pavel WinternitzPavel Winternitz
Ravil I. Yamilov Ravil I. Yamilov 

http://bookstore.ams.org/stml-99
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also contains a wealth of examples, figures, and regular ex-
ercises to support teaching and learning. The book includes 
opportunities for computer-aided explorations, and each 
chapter contains a bibliography with references covering 
further details of the material.

This item will also be of interest to those working in analysis and 
differential equations.

Pure and Applied Undergraduate Texts, Volume 59
February 2023, approximately 219 pages, Softcover, ISBN: 
978-1-4704-6991-7, 2010 Mathematics Subject Classification: 
00A69, 34A26, 34E10, 37N99, 41A58, 49K15, List US$85, 
AMS members US$68, MAA members US$76.50, Order 
code AMSTEXT/59

bookstore.ams.org/amstext-59

Calculus

The Six Pillars of Calculus
Biology Edition
Lorenzo Sadun, University of 
Texas at Austin, TX

The Six Pillars of Calculus: Biology 
Edition is a conceptual and prac-
tical introduction to differential 
and integral calculus for use in 
a one- or two-semester course. 
By boiling calculus down to six 
common-sense ideas, the text 
invites students to make calculus 

an integral part of how they view the world. Each pillar is 
introduced by tackling and solving a challenging, realistic 
problem. This engaging process of discovery encourages 
students to wrestle with the material and understand the 
reasoning behind the techniques they are learning—to 
focus on when and why to use the tools of calculus, not just 
on how to apply formulas.

Modeling and differential equations are front and center. 
Solutions begin with numerical approximations; deriva-
tives and integrals emerge naturally as refinements of those 
approximations. Students use and modify computer pro-
grams to reinforce their understanding of each algorithm.

The Biology Edition of the Six Pillars series has been 
extensively field-tested at the University of Texas. It features 
hundreds of examples and problems specifically designed 
for students in the life sciences. The core ideas are intro-
duced by modeling the spread of disease, tracking changes 
in the amount of CO2 in the atmosphere, and optimizing 
blood flow in the body. Along the way, students learn about 

who are interested in the study of symmetries and integra-
bility of difference equations.

This item will also be of interest to those working in differential 
equations and mathematical physics.

Titles in this series are co-published with the Centre de Recherches 
Mathématiques.

CRM Monograph Series, Volume 38
January 2023, approximately 509 pages, Hardcover, ISBN: 
978-0-8218-4354-3, 2010 Mathematics Subject Classifica-
tion: 34–XX, 35–XX, 35Cxx, 35Pxx, 37Kxx, 39–XX, 39Axx; 
17B67, 22E65, 34M55, 34C14, 34K04, 34K08, 34K17, 
34L25, 35A22, 35B06, 35Q53, 37J35, 37K40, 37K06, 
37K10, 37K15, 37K30, 37K35, 39A06, 39A14, 39A36, 
List US$125, AMS members US$100, MAA members 
US$112.50, Order code CRMM/38

bookstore.ams.org/crmm-38

Applications

Topics in 
Applied Mathematics 
and Modeling
Concise Theory with 
Case Studies
Oscar Gonzalez, University of 
Texas at Austin, TX

The analysis and interpretation 
of mathematical models is an 
essential part of the modern 
scientific process. Topics in Ap-
plied Mathematics and Modeling is 

designed for a one-semester course in this area aimed at a 
wide undergraduate audience in the mathematical sciences. 
The prerequisite for access is exposure to the central ideas 
of linear algebra and ordinary differential equations.

The subjects explored in the book are dimensional anal-
ysis and scaling, dynamical systems, perturbation methods, 
and calculus of variations. These are immense subjects of 
wide applicability and a fertile ground for critical thinking 
and quantitative reasoning, in which every student of math-
ematics should have some experience. Students who use 
this book will enhance their understanding of mathematics, 
acquire tools to explore meaningful scientific problems, 
and increase their preparedness for future research and 
advanced studies.

The highlights of the book are case studies and mini-proj-
ects, which illustrate the mathematics in action. The book 

http://bookstore.ams.org/crmm-38
http://bookstore.ams.org/amstext-59
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Differential Equations

Topological and Ergodic 
Theory of Symbolic 
Dynamics
Henk Bruin, University of Vienna, 
Austria

Symbolic dynamics is essential 
in the study of dynamical sys-
tems of various types and is con-
nected to many other fields such 
as stochastic processes, ergodic 
theory, representation of num-
bers, information and coding, 

etc. This graduate text introduces symbolic dynamics from a 
perspective of topological dynamical systems and presents 
a vast variety of important examples.

After introducing symbolic and topological dynamics, 
the core of the book consists of discussions of various 
subshifts of positive entropy, of zero entropy, other non-
shift minimal action on the Cantor set, and a study of the 
ergodic properties of these systems. The author presents 
recent developments such as spacing shifts, square-free 
shifts, density shifts, B-free shifts, Bratteli-Vershik systems, 
enumeration scales, amorphic complexity, and a modern 
and complete treatment of kneading theory. Later, he pro-
vides an overview of automata and linguistic complexity 
(Chomsky’s hierarchy).

The necessary background for the book varies, but for 
most of it a solid knowledge of real analysis and linear al-
gebra and first courses in probability and measure theory, 
metric spaces, number theory, topology, and set theory 
suffice. Most of the exercises have solutions in the back of 
the book.

This item will also be of interest to those working in discrete 
mathematics and combinatorics and applications.

Graduate Studies in Mathematics, Volume 228
February 2023, 460 pages, Hardcover, ISBN: 978-1-4704-
6984-9, LC 2022034733, 2010 Mathematics Subject Classifi-
cation: 37B10; 37B05, 28D05, 11J70, 68R15, List US$125, 
AMS members US$100, MAA members US$112.50, Order 
code GSM/228

bookstore.ams.org/gsm-228

optimal drug delivery, population dynamics, chemical 
equilibria, and probability.

Pure and Applied Undergraduate Texts, Volume 60
February 2023, approximately 383 pages, Softcover, ISBN: 
978-1-4704-6996-2, LC 2022038762, 2010 Mathematics 
Subject Classification: 00–01, 26A06, 92–10, 92D30, 92D25, 
00A71, 26–01, List US$99, AMS members US$79.20, MAA 
members US$89.10, Order code AMSTEXT/60

bookstore.ams.org/amstext-60

The Six Pillars of Calculus
Business Edition
Lorenzo Sadun, University of 
Texas at Austin, TX

The Six Pillars of Calculus: Business 
Edition is a conceptual and prac-
tical introduction to differential 
and integral calculus for use in 
a one- or two-semester course. 
By boiling calculus down to six 
common-sense ideas, the text 
invites students to make calculus 

an integral part of how they view the world. Each pillar is 
introduced by tackling and solving a challenging, realistic 
problem. This engaging process of discovery encourages 
students to wrestle with the material and understand the 
reasoning behind the techniques they are learning—to 
focus on when and why to use the tools of calculus, not just 
on how to apply formulas.

Modeling and differential equations are front and center. 
Solutions begin with numerical approximations; deriva-
tives and integrals emerge naturally as refinements of those 
approximations. Students use and modify computer pro-
grams to reinforce their understanding of each algorithm.

The Business Edition of the Six Pillars series has been 
extensively field-tested at the University of Texas. It features 
hundreds of examples and problems designed specifically 
for business students. The core ideas are introduced by 
modeling market penetration of a new product, tracking 
changes in the national debt, and maximizing the profit 
of a business. Along the way, students learn about present 
value, consumer and producer surplus, amortization, and 
probability.

Pure and Applied Undergraduate Texts, Volume 56
November 2022, approximately 381 pages, Softcover, ISBN: 
978-1-4704-6995-5, LC 2022028500, 2010 Mathematics 
Subject Classification: 00–01, 26A06, 01–01, 00A71, 26–01, 
List US$99, AMS members US$79.20, MAA members 
US$89.10, Order code AMSTEXT/56

bookstore.ams.org/amstext-56

GRADUATE STUDIES
IN MATHEMATICS 228

Topological and 
Ergodic Theory 
of Symbolic 
Dynamics  

Henk Bruin

http://bookstore.ams.org/amstext-60
http://bookstore.ams.org/amstext-56
http://bookstore.ams.org/gsm-228
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This item will also be of interest to those working in probability 
and statistics.

Memoirs of the American Mathematical Society, Volume 
280, Number 1379
December 2022, 123 pages, Softcover, ISBN: 978-1-4704-
5375-6, 2010 Mathematics Subject Classification: 93E20; 
60H30, 60K35, List US$85, AMS members US$68, MAA 
members US$76.50, Order code MEMO/280/1379

bookstore.ams.org/memo-280-1379

Differential Equations

Asymptotic Spreading for General 
Heterogeneous Fisher-KPP Type Equations
Henri Berestycki, École des Hautes en Sciences Sociales, Paris, 
France and Grégoire Nadin, Laboratoire Jacques-Louis Lions, 
Paris, France

Memoirs of the American Mathematical Society, Volume 
280, Number 1381
December 2022, 100 pages, Softcover, ISBN: 978-1-4704-
5429-6, 2010 Mathematics Subject Classification: 35B40, 
35B27, 35K57; 35B50, 35K10, 35P05, 47B65, 49L25, List 
US$85, AMS members US$68, MAA members US$76.50, 
Order code MEMO/280/1381

bookstore.ams.org/memo-280-1381

Adiabatic Evolution and Shape Resonances
Michael Hitrik, University of California, Los Angeles, CA, 
Andrea Mantile, Université de Reims, France, and Johannes 
Sjöstrand, Université de Bourgogne, Dijon, France

Memoirs of the American Mathematical Society, Volume 
280, Number 1380
December 2022, 90 pages, Softcover, ISBN: 978-1-4704-
5421-0, 2010 Mathematics Subject Classification: 35B34, 
35J10, 35P20, 35S05, List US$85, AMS members US$68, 
MAA members US$76.50, Order code MEMO/280/1380

bookstore.ams.org/memo-280-1380

Geometry and Topology

Horocycle Dynamics: New Invariants 
and Eigenform Loci in the Stratum H(1,1)
Matthew Bainbridge, University of Indiana, Bloomington, 
IN, John Smillie, University of Warwick, Coventry, United 
Kingdom, and Barak Weiss, Tel Aviv University, Israel

New in Memoirs 
of the AMS
Algebra and 
Algebraic Geometry

Mackey Profunctors
D. Kaledin, Steklov Mathematical Institute, Moscow, Russia, 
and National Research University Higher School of Economics, 
Moscow, Russia

Memoirs of the American Mathematical Society, Volume 
280, Number 1385
December 2022, 90 pages, Softcover, ISBN: 978-1-4704-
5536-1, 2010 Mathematics Subject Classification: 18G99, List 
US$85, AMS members US$68, MAA members US$76.50, 
Order code MEMO/280/1385

bookstore.ams.org/memo-280-1385

Analysis

One-Dimensional Dyadic Wavelets
Peter M. Luthy, College of Saint Vincent, Riverdale, NY, 
Hrvoje Šikić , University of Zagreb, Croatia, Fernando Soria, 
Universidad Autónoma de Madrid, Spain, Guido L. Weiss, 
Washington University in St. Louis, MO, and Edward N. 
Wilson, Washington University in St. Louis, MO

Memoirs of the American Mathematical Society, Volume 
280, Number 1378
December 2022, 152 pages, Softcover, ISBN: 978-1-4704-
5374-9, 2010 Mathematics Subject Classification: 42C40, List 
US$85, AMS members US$68, MAA members US$76.50, 
Order code MEMO/280/1378

bookstore.ams.org/memo-280-1378

Applications

A Probabilistic Approach to Classical 
Solutions of the Master Equation 
for Large Population Equilibria
Jean-François Chassagneux, Université Paris Cité, France, 
Dan Crisan, Imperial College London, United Kingdom, and 
François Delarue, Université Côte d’Azur, Nice, France

http://bookstore.ams.org/memo-280-1385
http://bookstore.ams.org/memo-280-1378
http://bookstore.ams.org/memo-280-1380
http://bookstore.ams.org/memo-280-1381
http://bookstore.ams.org/memo-280-1379
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New AMS-Distributed 
Publications
Differential Equations

Constructive and 
Destructive Interferences 
in Nonlinear Hyperbolic 
Equations
R. Carles, Université de Rennes 1, 
France and C. Cheverry, Univer-
sité de Rennes 1, France

This book introduces a phys-
ically realistic model for ex-
plaining how electromagnetic 
waves can be internally gener-
ated, propagate and interact in 

strongly magnetized plasmas or in nuclear magnetic reso-
nance experiments. It studies high frequency solutions of 
nonlinear hyperbolic equations for time scales at which dis-
persive and nonlinear effects can be present in the leading 
term of the solutions. It explains how the produced waves 
can accumulate during long times to produce constructive 
and destructive interferences which, in the above contexts, 
are part of turbulent effects.

A publication of the Société Mathématique de France, Marseilles (SMF), 
distributed by the AMS in the US, Canada, and Mexico. Orders from other 
countries should be sent to the SMF. Members of the SMF receive a 30% 
discount from list.

Mémoires de la Société Mathématique de France, Num-
ber 174
October 2022, 110 pages, Softcover, ISBN: 978-2-85629-
946-3, 2010 Mathematics Subject Classification: 35Lxx, 
35Qxx, 42B20, 70K30, 78Axx, 35Bxx, List US$63, AMS 
members US$50.40, Order code SMFMEM/174

bookstore.ams.org/smfmem-174

Memoirs of the American Mathematical Society, Volume 
280, Number 1384
December 2022, 100 pages, Softcover, ISBN: 978-1-4704-
5539-2, 2010 Mathematics Subject Classification: 37D40, 
30F30, List US$85, AMS members US$68, MAA members 
US$76.50, Order code MEMO/280/1384

bookstore.ams.org/memo-280-1384

Partial Compactification of Monopoles 
and Metric Asymptotics
Chris Kottke, New College of Florida, Sarasota, FL and 
Michael Singer, University College London, United Kingdom

This item will also be of interest to those working in mathemat-
ical physics.

Memoirs of the American Mathematical Society, Volume 
280, Number 1383
December 2022, 110 pages, Softcover, ISBN: 978-1-4704-
5541-5, 2010 Mathematics Subject Classification: 53C07; 
58J99, 81T13, List US$85, AMS members US$68, MAA 
members US$76.50, Order code MEMO/280/1383

bookstore.ams.org/memo-280-1383

Number Theory

Hypergeometric Functions Over Finite Fields
Jenny Fuselier, High Point University, NC, Ling Long, Lou-
isiana State University, Baton Rouge, LA, Ravi Ramakrishna, 
Cornell University, Ithaca, NY, Holly Swisher, Oregon State 
University, Corvallis, OR, and Fang-Ting Tu, Louisiana State 
University, Baton Rouge, LA

Memoirs of the American Mathematical Society, Volume 
280, Number 1382
December 2022, 120 pages, Softcover, ISBN: 978-1-4704-
5433-3, 2010 Mathematics Subject Classification: 11T23, 
11T24, 33C05, 33C20, 11F80, 11S40, List US$85, AMS 
members US$68, MAA members US$76.50, Order code 
MEMO/280/1382

bookstore.ams.org/memo-280-1382

http://bookstore.ams.org/memo-280-1384
http://bookstore.ams.org/memo-280-1383
http://bookstore.ams.org/memo-280-1382
http://bookstore.ams.org/smfmem-174
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that includes examples useful for the reader to grasp the 
main ideas needed to solve the proposed problems. The 
first chapter deals with quadratic functions and underscores 
the use of the discriminant and the relations involving the 
roots of a quadratic trinomial and its coefficients.

The second chapter emphasizes that every square of a 
real number is non-negative. This simple property leads 
to numerous applications also encountered in subse-
quent chapters. Chapter 3 focuses on several inequalities, 
including the most famous inequality in the world of 
mathematical Olympiads: the Cauchy-Schwarz Inequality. 
Chapter 4 is devoted to problems related to minima and 
maxima of algebraic expressions. These problems can also 
be approached using the techniques studied in the previous 
chapter.

The fifth chapter is about a beautiful identity involving 
the cubes of three numbers and the triple of their product 
and you will see that this identity has numerous interesting 
applications. Chapter 6 deals with complex numbers. Some 
definitions and useful results are given to assist the reader 
in solving the proposed problems. The seventh chapter 
features Lagrange’s Identity, which has various unexpected 
applications, including those involving problems related to 
number theory. Chapter 8 focuses on the so-called Sophie 
Germain’s Identity. Here, too, you will find problems in 
which the application of this identity will be anything but 
obvious. Chapter 9 looks at expressions of the form t+k/t 
and meaningful applications. Finally, the last chapter is 
about the fifth-degree polynomials x5+x ±1 and assorted 
non-routine problems. Solutions to all proposed problems 
are provided in the second part of the book: there is a cor-
responding solution chapter for each of the ten chapters 
in the first part.

A publication of XYZ Press. Distributed in North America by the American 
Mathematical Society.

XYZ Series, Volume 46
January 2022, 307 pages, Softcover, ISBN: 978-1-7358315-
5-8, 2010 Mathematics Subject Classification: 00A05, 00A07, 
97U40, 97D50, List US$59.95, AMS members US$47.96, 
Order code XYZ/46

bookstore.ams.org/xyz-46

Geometry and Topology

Parabolic Hecke 
Eigensheaves
Ron Donagi, Department of 
Mathematics, University of Penn-
sylvania David Rittenhouse Lab, 
Philadelphia, PA  and Tony 
Pantev, Department of Mathe-
matics, University of Pennsylvania 
David Rittenhouse Lab, Philadel-
phia, PA

The authors study the Geometric 
Langlands Conjecture (GLC) for 

rank two flat bundles on the projective line C with tame 
ramification at five points p1,p2,p3,p4,p5. In particular, 
they construct the automorphic D-modules predicted by 
GLC on the moduli space of rank two parabolic bundles 
on (C,p1,p2,p3,p4,p5). The construction uses non-abelian 
Hodge theory and a Fourier-Mukai transform along the 
fibers of the Hitchin fibration to reduce the problem to 
one in classical projective geometry on the intersection of 
two quadrics in ℙ4.

A publication of the Société Mathématique de France, Marseilles (SMF), 
distributed by the AMS in the US, Canada, and Mexico. Orders from other 
countries should be sent to the SMF. Members of the SMF receive a 30% 
discount from list.

Astérisque, Number 435
October 2022, 192 pages, Softcover, ISBN: 978-2-85629-
960-9, 2010 Mathematics Subject Classification: 14D24, 
22E57, 14F10, 14A30, 14F08, 14H60, 14D23, List US$75, 
AMS members US$60, Order code AST/435

bookstore.ams.org/ast-435

Math Education

Ten Themes in Algebra 
for Mathematics 
Competitions
Titu Andreescu, University of 
Texas at Dallas, TX and Ales-
sandro Ventullo, University of 
Milan, Italy

This book contains ten fre-
quently recurring themes in al-
gebraic problems. Each chapter 
starts with a brief introduction 

http://bookstore.ams.org/ast-435
http://bookstore.ams.org/xyz-46
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Mathematical Reflections
Two Lockdown Years 
(2020–2021)
Titu Andreescu, University of 
Texas at Dallas, TX and Maxim 
Ignatiuc, University of Texas at 
Dallas, TX, Editors

Mathematical Reflections: Two 
Lockdown Years is a compilation 
and revision of the 2020 and 
2021 volumes from the online 
journal of the same name. This 

book is aimed at high school students, participants in math 
competitions, undergraduates, and anyone who has a fire 
for mathematics. Passionate readers submitted many of the 
problems, solutions, and articles, and all require creativity, 
experience, and comprehensive mathematical knowledge. 
This book is a great resource for students training for ad-
vanced national and international mathematics competi-
tions such as USAMO and IMO.

A publication of XYZ Press. Distributed in North America by the American 
Mathematical Society.

XYZ Series, Volume 45
September 2022, 736 pages, Hardcover, ISBN: 978-1-
7358315-7-2, 2010 Mathematics Subject Classification: 
00A05, 00A07, 97U40, 97D50, List US$79.95, AMS mem-
bers US$63.96, Order code XYZ/45

bookstore.ams.org/xyz-45

MathSciNet® is the authoritative gateway 
to the scholarly literature of mathematics. 
Containing information on more than 4 
million articles and books, with direct links 
to over 2.6 million articles in more than 
1,800 journals. MathSciNet includes ex-
pert reviews, customizable author profiles, 
and citation information on articles, books, 
journals, and authors.

MathSciNet’s extensive resources can help 
you throughout your entire math career. 
Use it to:
•  Quickly get up to speed on a new topic
•  Look up a researcher’s body of work
•  Find an article or book and track its  
    reference list
•  Research a math department to prepare  
    for a job interview or when applying to  
    graduate school

mathscinet.ams.org

How to Subscribe

Go to www.ams.org/mathsciprice to 
learn more about MathSciNet, 
including information about 
subscription rates, joining a 

consortium, and a 30-day free trial.
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The AMS strives to ensure that participants in its activities 
enjoy a welcoming environment. Please see our full Policy 

on a Welcoming Environment at https://www.ams 
.org/welcoming-environment-policy.

The Meetings and Conferences section of the Notices gives 
information on all AMS meetings and conferences ap-
proved by press time for this issue. Please refer to the page 
numbers cited on this page for more detailed information 
on each event. Paid meeting registration is required to submit 
an abstract to a sectional meeting.

Invited Speakers and Special Sessions are listed as soon 
as they are approved by the cognizant program committee; 
the codes listed are needed for electronic abstract sub-
mission. For some meetings the list may be incomplete. 
Information in this issue may be dated. 

The most up-to-date meeting and conference informa-
tion can be found online at www.ams.org/meetings.

Important Information About AMS Meetings: Potential 
organizers, speakers, and hosts should refer to https://
www.ams.org/meetings/meetings-general for general 
information regarding participation in AMS meetings and 
conferences.

Abstracts: Speakers should submit abstracts on the 
easy-to-use interactive Web form. No knowledge of LaTeX 
is necessary to submit an electronic form, although those 
who use LaTeX may submit abstracts with such coding, and 
all math displays and similarly coded material (such as ac-
cent marks in text) must be typeset in LaTeX. Visit www.ams 
.org/cgi-bin/abstracts/abstract.pl. Questions 
about abstracts may be sent to abs-info@ams.org. Close 
attention should be paid to specified deadlines in this issue. 
Unfortunately, late abstracts cannot be accommodated.

Associate Secretaries of the AMS
Central Section: Betsy Stovall, University of Wisconsin–
Madison, 480 Lincoln Drive, Madison, WI 53706; email: 
stovall@math.wisc.edu; telephone: (608) 262-2933.

Eastern Section: Steven H. Weintraub, Department of 
Mathematics, Lehigh University, Bethlehem, PA 18015-
3174; email: steve.weintraub@lehigh.edu; telephone: 
(610) 758-3717.

Southeastern Section: Brian D. Boe, Department of Math-
ematics, University of Georgia, 220 D W Brooks Drive, 
Athens, GA 30602-7403; email: brian@math.uga.edu; 
telephone: (706) 542-2547.

Western Section: Michelle Manes, University of Hawaii, 
Department of Mathematics, 2565 McCarthy Mall, Keller 
401A, Honolulu, HI 96822; email: mamanes@hawaii.edu; 
telephone: (808) 956-4679.

http://www.ams.org/cgi-bin/abstracts/abstract.pl
http://www.ams.org/cgi-bin/abstracts/abstract.pl
https://www.ams.org/welcoming-environment-policy
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IMPORTANT information regarding meetings programs: AMS Sectional Meeting programs do not appear in the print 
version of the Notices. However, comprehensive and continually updated meeting and program information with links 
to the abstract for each talk can be found on the AMS website. See https://www.ams.org/meetings. 

Final programs for Sectional Meetings will be archived on the AMS website accessible from the stated URL.

New: Sectional Meetings Require Registration to Submit Abstracts. In an effort to spread the cost of the sectional 
meetings more equitably among all who attend and hence help keep registration fees low, starting with the 2020 fall 
sectional meetings, you must be registered for a sectional meeting in order to submit an abstract for that meeting. 
You will be prompted to register on the Abstracts Submission Page. In the event that your abstract is not accepted or 
you have to cancel your participation in the program due to unforeseen circumstances, your registration fee will be 
reimbursed.
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Boston, Massachusetts
John B. Hynes Veterans Memorial Convention Center, Boston Marriott Hotel, and Boston Sheraton Hotel

January 4–7, 2023
Wednesday – Saturday

Meeting #1183
Associate Secretary for the AMS: Steve Weintraub
Program first available on AMS website: To be announced

Issue of Abstracts: Volume 44, Issue 1

Deadlines
For organizers: Expired
For abstracts: Expired

The scientific information listed below may be dated. For the latest information, see https://www.ams.org/amsmtgs 
/national.html.

Joint Invited Addresses
Laura G. DeMarco, Harvard University, Rigidity and uniformity in algebraic dynamics (AWM-AMS Noether Lecture).
Jordan S. Ellenberg, University of Wisconsin-Madison, Outward-facing mathematics (JPBM Communications Award 

Lecture).
Philip Maini, University of Oxford, Are we there yet? Modelling collective cell motion in biology and medicine (AAAS-AMS 

Invited Address).
Omayra Ortega, Sonoma State University, Who are we serving with our scholarship: a Covid model case study (MAA-SIAM-

AMS Hrabowski-Gates-Tapia-McBay Lecture).
Grant Sanderson, 3blue1brown, Raising the ceiling and lowering the floor of math exposition (JPBM Communications 

Award Lecture).
Bernd Sturmfels, University of California, Berkeley, The Quadratic Formula Revisited (MAA-AMS-SIAM Gerald and 

Judith Porter Public Lecture).
Talithia Williams, Harvey Mudd College, The power of talk: engaging the public in mathematics (JPBM Communications 

Award Lecture).
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AMS Invited Addresses
Rodrigo Banuelos, Purdue University, Sharp inequalities in probability and harmonic analysis.
Richard G. Baraniuk, Rice University, The Mathematics of Deep Learning (AMS Josiah Willard Gibbs Lecture).
Eugenia Cheng, School of the Art Institute of Chicago, Associativity, Commutativity and Units: a Higher-dimensional ballet 

(AMS Erdoős Memorial Lecture).
Camillo De Lellis, Institute For Advanced Study, Princeton, Flows of nonsmooth vector fields (AMS Colloquium Lecture I).
Camillo De Lellis, Institute For Advanced Study, Princeton, Flows of nonsmooth vector fields (AMS Colloquium Lecture II).
Camillo De Lellis, Institute For Advanced Study, Princeton, Flows of nonsmooth vector fields (AMS Colloquium Lecture III).
Wilfrid Gangbo, UCLA, Recent Progress on Master equations in Mean Field Games.
Ling Long, Louisiana State University, A Stroll in the Garden of Hypergeometric Functions (AMS Maryam Mirzakhani 

Lecture).
Chris Rasmussen, Center for Research in Math and Science Education, Three Models of Successful Department Change 

Approaches for Infusing Active Learning in Introductory Mathematics Courses (AMS Lecture on Education).
Nikhil Srivastava, University of California, Berkeley, Four Ways to Diagonalize a Matrix (von Neumann Lecture).
Rekha Rachel Thomas, University of Washington, Ideals and Varieties of the Pinhole Camera.

Invited Addresses of Other JMM Partners
Nathan N. Alexander, Morehouse College, Histories of African Americans Connecting Mathematics and Society (NAM 

Cox-Talbot Address).
Jeremy David Avigad, Carnegie Mellon University, The promise of formal mathematics (ASL Invited Address).
Peter Cholak, University of Notre Dame, Ramsey like theorems on the rationals (ASL Invited Address).
Sylvester James Gates, Jr, Clark Leadership Chair in Science, University of Maryland; past president of American Physical 

Society, National Medal of Science, What challenges does data science present to mathematics education? (TPSE Invited Address).
Edray Goins, Pomona College, Distance Makes the Math Grow Deeper: Rational Distance Sets, Nate Dean, and Me (PME 

J. Sutherland Frame Lecture).
Ryan Hynd, University of Pennsylvania, The Blaschke–Lebesgue theorem revisited (NAM Claytor-Woodard Lecture).
Franziska Jahnke, University of Münster, Model theory of perfectoid fields (ASL Invited Address).
Apoorva Khare, Indian Institute of Science, Analysis applications of Schur polynomials (ILAS Invited Address).
Stephen S. Kudla, University of Toronto, Modularity of generating series of divisors on unitary Shimura varieties (AIM 

Alexanderson Award Lecture).
Luis Antonio Leyva, Vanderbilt-Peabody College, Undergraduate Mathematics Education as a White, Cisheteropatriarchal 

Space and Opportunities for Structural Disruption to Advance Queer of Color Justice (Spectra Lavender Lecture).
Sandra Müller, Technical University of Vienna, Universally Baire sets, determinacy and inner models (ASL Invited Address).
Mason Porter, University of California, Los Angeles, Bounded-confidence models of opinion dynamics on networks (SIAM 

Invited Address).
Robert Santos, US Census Bureau, To be announced (ASA Committee of Presidents of Statistical Societies Lecture).
Lynn Scow, California State University, San Bernardino, Semi-retractions and the Ramsey Property (ASL Invited Address).
Assaf Shani, Harvard University, Classifying invariants for Borel equivalence relations (ASL Invited Address).
Erik Donal Walsberg, University of California Irvine, Model theory of large fields (ASL Invited Address).

Invited Addresses of Other Organizations
Estrella Johnson, Virginia Tech, What the Research Says about Active Learning – and What it Doesn’t (Project NExT Lecture 

on Teaching and Learning).
Russell Marcus, Hamilton College, A Philosophical Account of Mathematics that Won’t Make You Hate Philosophers (SIG-

MAA in the Philosophy of Mathematics Guest Lecture).

AMS Special Sessions
Advances and Applications in Integral and Differential Equations, Jeffrey W. Lyons, The Citadel, Sougata Dhar, The Uni-

versity of Connecticut, and Jeffrey T. Neugebauer, Eastern Kentucky University.
Advances in Markov Models: Gambler’s Ruin, Duality and Queueing Applications, Alan Krinik, California State Polytechnic 

University, Pomona, and Randall James Swift, California State Polytechnic University.
Advances in Modeling Mosquito-borne Disease Dynamics and Control Methods, Zhuolin Qu, University of Texas at San 

Antonio, and Michael A. Robert, Virginia Tech.
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Advances in Nonlinear Boundary Value Problems, Nsoki Mavinga, Swarthmore College, Maya Chhetri, UNC Greensboro, 
and R. Pardo, Complutense University of Madrid.

Advances in Operator Algebras, Sarah Browne, University of Kansas, Priyanga Ganesan, Texas A&M University, and 
David Jekel, University of California, San Diego.

Advances in Partial Differential Equations, Numerical Analysis, and their Applications, Andrew Miller, Bridgewater State 
University, and Joshua L. Flynn, McGill University.

Advances in Qualitative Theory and Applications to Life Sciences of Differential, Difference, and Dynamic Equations, Elvan 
Akin, Missouri University S&T, and Naveen K. Vaidya, San Diego State University.

Analysis and Differential Equations at Undergraduate Institutions, Ryan Alvarado, Amherst College, and Lyudmila Koro-
benko, Reed College.

Applications of Riemann Surfaces, Mark Syd Bennett and Bernard Deconinck, University of Washington, Charles Wang, 
Harvard University, and Turku Ozlum Celik, Bogazici University.

Applications of Tensors in Computer Science, Harm Derksen, Northeastern University, Neriman Tokcan, Broad Institute, 
and Benjamin Lovitz, University of Waterloo.

Applied Category Theory (a Mathematics Research Communities session), Charlotte Aten, University of Denver, Layla H.M. 
Sorkatti, Southern Illinois University, and Abigail Hickok, University of California, Los Angeles.

Applied Enumerative Geometry, Frank Sottile, Texas A&M University, and Taylor Brysiewicz, Max Planck Institute For 
Mathematics In the Sciences.

Applied Topology: Theory and Implementation, Nikolas Schonsheck, Chad Giusti, Melinda Kleczynski, and Jerome 
Roehm, University of Delaware.

Arithmetic Geometry Informed by Computation, Jennifer Balakrishnan, Boston University, and Bjorn Poonen and Andrew 
V. Sutherland, Massachusetts Institute of Technology.

Arithmetic Statistics, Allechar Serrano Lopez, Harvard University, and Robert James Lemke Oliver, Tufts University.
Automorphic Forms and Representation Theory, Spencer Leslie, Duke University, and Solomon Friedberg, Boston College.
Coding Theory for Modern Applications, Allison Beemer, University of Wisconsin-Eau Claire, Hiram H. Lopez, Cleveland 

State University, and Rafael D’Oliveira, Clemson University.
Complex and Arithmetic Dynamical Systems (AMS-AWM), Laura G. DeMarco and Niki Myrto Mavraki, Harvard Univer-

sity, and Max Weinreich, Brown University.
Complexity and Topology in Computational Algebraic Geometry, Ali Mohammad Nezhad and Saugata Basu, Purdue Uni-

versity.
Complex Systems in the Life Sciences, Xiang-Sheng Wang, University of Louisiana at Lafayette, Zhisheng Shuai, University 

of Central Florida, and Gail S. Wolkowicz, McMaster University.
Current Directions in the Philosophy of Mathematics (AMS-SIGMAA), Bonnie Gold, Monmouth University, and Kevin 

Iga, Pepperdine University.
Current Progress in Computational Biomedicine, Nektarios Valous, National Center for Tumor Diseases Heidelberg, 

German Cancer Research Center, Heidelberg, Germany, Anna Konstorum, Center for Computing Sciences, Institute for 
Defense Analyses, MD, Heiko Enderling, Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Cen-
ter & Research Institute, Tampa, FL, USA, and Dirk Jäger, National Center for Tumor Diseases, German Cancer Research 
Center, Heidelberg, Germany.

Data Science at the Crossroads of Analysis, Geometry, and Topology (a Mathematics Research Communities session), Hitesh 
Gakhar, University of Oklahoma, Harlin Lee, University of California, Los Angeles, and Josué Tonelli-Cueto, The Uni-
versity of Texas at San Antonio.

Definability, Computability, and Model Theory: A Special Session dedicated to Gerald E. Sacks, Nathanael Leedom Acker-
man, Harvard University, Ted Slaman, University of California, Berkeley, and Cameron E. Freer, Massachusetts Institute 
of Technology.

Discrete and Hybrid Dynamical Systems: Time Scales and Fractional Approaches, Billy Jackson, University of Wisconsin 
Madison.

Distance Problems in Continuous, Discrete and Finite Field Settings, Abdul Basit, Johns Hopkins University, Eyvindur Ari 
Palsson, Virginia Tech University, and Steven Joel Miller, Williams College.

Dynamics, Geometry & Group Actions, Kathryn Lindsey, Boston College, and Boris Hasselblatt, Tufts University.
Dynamics of PDEs on Heterogeneous Domains: Theory & Applications, Denis Daniel Patterson, Princeton University, Ryan 

Nolan Goh, Boston University, and Jonathan Touboul, Brandeis University.
Ecological and Evolutionary Dynamics in Life and Social Sciences, Sabrina H. Streipert, McMaster University, and Yun 

Kang and Lucero Rodriguez Rodriguez, Arizona State University.
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Excursions in Arithmetic Geometry, Tony Shaska, Research Institute of Science and Technology.
Financial Mathematics, Sixian Jin and Stephan Strum, Worcester Polytechnic Institute.
Geometric PDEs, Theodora Bourni, University of Tennessee, Knoxville, and Brett Kotschwar, Arizona State University.
Geometry and Dynamics in Moduli Spaces of Abelian Differentials, Chris Johnson, Western Carolina University, Martin J. 

Schmoll, Clemson University, Chris Martin Judge, Indiana University, and Jane Wang, Indiana University Bloomington.
Homotopy Theory: Connections and Applications, Elden Elmanto, Harvard University, and Daniel C. Isaksen, Wayne 

State University.
If You Build It They Will Come: Presentations by Scholars in the National Alliance for Doctoral Studies in the Mathematical 

Sciences, Rolando de Santiago, Purdue University, and David Goldberg, Math Alliance/Purdue University.
Integrable Systems and Symplectic Group Actions, Joseph Palmer and Susan Tolman, University of Illinois Urbana-Cham-

paign.
Integral Equations and Applications, Irina Mitrea, Temple University, and Shari Moskow, Drexel University.
Kicks, Shocks, Recovery and Resilience: Impulsive Models in Ecology and Socio-Economic Systems, Punit Gandhi, Virginia 

Commonwealth University, and Sarah Iams, Harvard University.
Langlands Program, Shanna Dobson, University of California, Riverside.
Lessons Learned from Successful Departmental Efforts to Transform Precalculus and Calculus, Chris Rasmussen, Center for 

Research in Math and Science Education.
Math Circle Activities as a Gateway into Mathematics, Lauren L. Rose, Bard College, Brandy S. Wiegers, Central Washing-

ton University, Gabriella A. Pinter, University of Wisconsin, Milwaukee, and Nick Rauh, Julia Robinson Math Festivals.
Mathematical Foundations of Democracy, Stanley Chang, Andrew Schultz, and Ismar Volic, Wellesley College.
Mathematical Methods in Machine Learning and Optimization, Carlos M. Ortiz-Marrero, Pacific Northwest National 

Laboratory, and Ryan W. Murray, North Carolina State University.
Mathematical Modeling of Ecology and Evolution: From Infectious Disease to the Evolution of Cooperation, Daniel Brendan 

Cooney, University of Pennsylvania, Chadi M. Saad-Roy, Princeton University, Olivia Jessica Chu, Dartmouth College, 
and Benjamin Allen, Emmanuel College, Boston, MA.

Mathematics and Fiber Arts, sarah-marie belcastro, MathILy and Smith College, and Carolyn Ann Yackel, Mercer 
University.

Mathematics and the Arts, Karl M. Kattchee, University of Wisconsin-La Crosse, Doug Norton, Villanova University, 
and Anil Venkatesh, Adelphi University.

Mathematics Standards, Equity, Policy, and Politics (AMS-SIGMAA), Yvonne Lai, University of Nebraska-Lincoln, Tyler 
Kloefkorn, American Mathematical Society, Dave Kung, Charles A. Dana Center, The University of Texas at Austin, and 
Blain Patterson, Virginia Military Institute.

Modeling Collective Behavior in Biology, Alexandria Volkening, Purdue University, and Philip Maini, University of Oxford.
Models and Methods for Sparse (Hyper) Network Science (a Mathematics Research Communities session), Sarah Tymochko, 

Michigan State University, Jessalyn Bolkema, California State University, Dominguez Hills, Himanshu Gupta, University 
of Delaware, Fangfei Lan, University of Utah, and Nicholas W. Landry, University of Colorado Boulder.

Modular Forms, Hypergeometric Functions, Character Sums and Galois Representations, Ling Long, Louisiana State Univer-
sity, Wen-Ching Winnie Li, Pennsylvania State University, William Yun Chen, Institute for Advanced Study, and Holly 
Swisher, Oregon State University.

New Developments in Differential Geometry and Topology, Megan M. Kerr, Wellesley College, and Catherine Searle, 
Wichita State University.

Nonlinear Evolution Equations and Their Applications, Guoping Zhang, Gaston Mandata N’Guerekata, Xuming Xie, 
Mingchao Cai, and Jemal S. Mohammed-Awel, Morgan State University.

Nonlocal Frameworks in Analysis and Mathematical Modeling, Nicole Buczkowski, University of Nebraska, Lincoln, and 
Petronela Radu and Anh Vo, University of Nebraska-Lincoln.

Number Theory at Non-PhD Granting Institutions, Steven Joel Miller, Williams College, Naomi Tanabe, Bowdoin Col-
lege, Harris Daniels, Amherst College, Enrique Treviño, Lake Forest College, and Alia Hamieh, University of Northern 
British Columbia.

Orthogonal Polynomials and their Applications, Ahmad Barhoumi, University of Michigan, Roozbeh Gharakhloo, Col-
orado State University, and Andrei Martinez-Finkelshtein, Baylor University.

Partial Differential Equations and Complex Variables, Hyun-Kyoung Kwon, University At Albany, SUNY, Bingyuan Liu, 
The University of Texas Rio Grande Valley, and Qi Han, Texas A & M University San Antonio.

Perspectives on Eigenvalue Computation, Nikhil Srivastava, University of California, Berkeley, Peter Buergisser, Technische 
Universität Berlin Institut Für Mathematik, and James Demmel, University of California, Berkeley.
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Polymath Jr: Mentoring and Learning, Steven Joel Miller, Williams College, Johanna Franklin, Hofstra University, Adam 
Sheffer, Baruch College, CUNY, and Yunus E. Zeytuncu, University of Michigan - Dearborn.

Polynomial Systems, Homotopy Continuation and Applications, Margaret Regan, Duke University, and Timothy Duff, 
University of Washington.

Promoting Equity Through Active Learning in Undergraduate Mathematics: Precalculus, Jose Maria Menendez, Pima 
Community College, Ksenija Simic-Muller, Pacific Lutheran University, and Anthony Fernandes, University of North 
Carolina - Charlotte.

Quadratic Forms, Modular Forms, and Applications, Fang-Ting Tu, Louisiana State University, Gene S. Kopp, Purdue 
University, and Jingbo Liu, Texas A&M University-San Antonio.

Quaternions, Johannes Familton, Borough of Manhattan Community College, CUNY, Chris McCarthy, BMCC, City 
University of New York, and Terrence Richard Blackman, Medgar Evers Community College, CUNY.

Recent Advances in Arithmetic Dynamics, Joseph H. Silverman, Brown University, Jacqueline Anderson, Bridgewater 
State University, and John R. Doyle, Oklahoma State University.

Recent Advances in Nonlinear Partial Differential Equations and their Applications, Qi Han, Texas A&M University-San 
Antonio, and Jing Tian, Towson University.

Recent Development in Partial Differential Equations Related to Geometric and Harmonic Analysis, Meijun Zhu, University 
of Oklahoma, and Xiaodong Wang, Michigan State University.

Recent Developments in Geometric Measure Theory, Camillo De Lellis, Institute For Advanced Study, Princeton, Antonio 
De Rosa, University of Maryland, and Luca Spolaor, University of California, San Diego.

Recent Developments in Numerical Methods for PDEs, Leo G. Rebholz, Clemson University, and Michael Neilan, Uni-
versity of Pittsburgh.

Recent Trends in Discrete-Time Ecological and Epidemiological Models, Mustafa R. Kulenovic, University of Rhode Island, 
and Abdul-Aziz Yakubu, Howard University.

Research Community in Algebraic Combinatorics, Rosa C. Orellana and Nadia Lafrenière, Dartmouth College.
Research from the Graduate Research Workshop in Combinatorics (GRWC), Steve Butler, Iowa State University, Xavier 

Perez-Gimenez, University of Nebraska-Lincoln, and Puck Rombach, University of Vermont.
Research in Mathematics by Undergraduates and Students in Post-Baccalaureate Programs (AMS-SIAM), Darren A. Narayan, 

Rochester Institute of Technology, Khang Tran, California State University, Fresno, Mark Daniel Ward, Purdue University, 
John C. Wierman, Johns Hopkins University, and Christopher O’Neil, San Diego State University.

Resolutions of Singularities and Cohomology in Geometry and Representation Theory, Iva Halacheva, Northeastern University, 
Roman Bezrukavnikov, Massachusetts Institute of Technology, Peter Crooks, Utah State University, and Valerio Toledano 
Laredo, Northeastern University.

Rethinking Number Theory, Allechar Serrano Lopez, Harvard University, Lea Beneish, University of California, Berkeley, 
and Soumya Sankar, Ohio State University.

Riemannian Manifolds with Lower Scalar Curvature Bounds, Brian Allen, University of Hartford, and Demetre Kazaras, 
Duke University.

Scholarship on Teaching and Learning Introductory Statistics, Jennifer McNally, Laura Kyser Callis, and Steven LeMay, 
Curry College.

Spatial Ecology Applications Using Reaction Diffusion Models, Jerome Goddard II, Auburn University Montgomery, and 
Ratnasingham Shivaji, University of North Carolina at Greensboro.

Statistics and Data Science Curriculum in a Mathematics Department, Qing Wang and Anny-Claude Joseph, Wellesley 
College.

Stimulating Student Engagement in Differential Equations through Modeling Activities, Kyle T. Allaire, Worcester State Uni-
versity, Lisa Naples, Macalester College, and Timothy Antonelli, Worcester State University.

Stochastic Analysis and Applications, Parisa Fatheddin, Ohio State University, Marion, and Michael A. Salins, Boston 
University.

Tensor Representation, Completion, Modeling and Analytics of Complex Data, Ivo D. Dinov and Joshua Welch, University 
of Michigan.

The Combinatorics and Geometry of Jordan Type and Lefschetz Properties, A. Iarrobino, Northeastern University, and Leila 
Khatami, Union College.

The EDGE (Enhancing Diversity in Graduate Education) Program: Pure and Applied Talks by Women Math Warriors, Laurel 
Ohm, Princeton University, Shanise Walker, Clark Atlanta University, and Ziva Myer, Duke University.

The History of Mathematics, Jemma Lorenat, Pitzer College, Adrian Rice, Randolph-Macon College, Deborah Kent, 
University of St. Andrews, and Daniel E. Otero, Xavier University.
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The Math and Art of Mathemalchemy, Samantha Pezzimenti, Penn State Brandywine, Carolyn Ann Yackel, Mercer 
University, and Edmund O. Harriss, University of Arkansas.

The Mathematics of RNA and DNA, Chris McCarthy, BMCC, City University of New York, and Johannes Familton, 
Borough of Manhattan Community College, CUNY.

The Scholarship of Teaching and Learning: Past, Present, and Future, Jacqueline M. Dewar, Loyola Marymount University, 
Thomas F. Banchoff, Brown University, Curtis D. Bennett and Brian P. Katz, California State University, Long Beach, 
Lewis D. Ludwig, Denison University, and Larissa Schroeder, University of Nebraska Omaha.

The Teaching and Learning of Undergraduate Ordinary Differential Equations: An Interdisciplinary Approach, Viktoria Sava-
torova, Central Connecticut State University, Itai Seggev, Wolfram Research, Iordanka Panayotova, Christopher Newport 
University, and Beverly H. West, Cornell University.

Topological and Combinatorial Methods in Commutative Algebra, Augustine O’Keefe, Connecticut College, and Jennifer 
Biermann, Hobart and William Smith Colleges.

Topology, Algebra, and Geometry in the Mathematics of Data Science, Henry Kvinge, Tim Doster, and Tegan Emerson, 
Pacific Northwest National Laboratory.

Topology, Structure and Symmetry in Graph Theory, Mark Ellingham, Vanderbilt University, and Lowell Abrams, George 
Washington University.

Trees in Many Contexts (a Mathematics Research Communities session), Ann Wells Clifton, Louisiana Tech University, 
Fadekemi Janet Osaye, Alabama State University, Lora Bailey, Grand Valley State University, Alex Wiedemann, Ran-
dolph-Macon College, and Reem Mahmoud, Virginia Commonwealth University.

Undergraduate Research Activities in Mathematical and Computational Biology, Timothy D. Comar, Benedictine University, 
Hannah Callender Highlander, University of Portland, and Anne E. Yust, University of Pittsburgh.

Understanding COVID-19: Three Years of Mathematical Models to Address the Global Pandemic, Hwayeon Ryu, Elon Uni-
versity, Lauren M. Childs, Virginia Tech, and Kamila Larripa, Humboldt State University.

Variational Methods, Optimal Control and Hamilton-Jacobi Equations, Wilfrid Gangbo, UCLA, Andrzej Swiech, Georgia 
Tech, Alpar Meszaros, University of Durham, and Chenchen Mou, City University of Hong Kong.

Women in Automorphic Forms, Mathilde Gerbelli-Gauthier, Institute for Advanced Study, Maria Fox, University of Or-
egon, and Manami Roy, Fordham University.

AIM Special Sessions
Automorphic Forms and Special Cycles, Tonghai Yang, University of Wisconsin, Madison, Stephen S. Kudla, University 

of Toronto, and Jan Hendrik Bruinier, Technical University of Darmstadt.
Little School Dynamics: Cool Dynamics Research by Researchers at PUIs, Kimberly Ayers, California State University, San 

Marcos, Ami Radunskaya, Pomona College, Han Li, Wesleyan University, David M. McClendon, Ferris State University, 
and Andrew Parrish, Eastern Illinois University.

ASL Special Sessions
Model-theoretic and “Higher Infinite” Methods in Descriptive Set Theory and Related Areas, Rehana Patel, AIMS-Senegal, 

Alexander Kechris, California Institute of Technology, Alejandro Poveda, Hebrew University of Jerusalem, and Assaf 
Shani, Harvard University.

Tame Geometry and Applications to Analysis, Alexi Block Gorman and Elliot Kaplan, McMaster University, and Daniel 
Miller, Emporia State University.

AWM Special Sessions
AWM Workshop: Women in Commutative Algebra (WiCA), Claudia Miller, Syracuse University, and Janet Striuli, Fairfield 

University.
Celebrating the Mathematical Contributions of the AWM, Michelle Ann Manes, University of Hawaii, Kathryn E. Leonard, 

Occidental College, Donatella Danielli, Arizona State University, and Ami Radunskaya, Pomona College.
Recent Developments in the Analysis of Local and Nonlocal PDEs, Alaa Haj Ali and Donatella Danielli, Arizona State 

University.
Women, Art, and Mathematics: Mathematics in the Literary Arts and Pedagogy in Creative Settings, Shanna Dobson, Univer-

sity of California, Riverside, Stephanie Lewkiewicz, Temple University, and Elizabeth Donovan, Murray State University.
Women in Graph Theory, Karen L. Collins, Wesleyan University, Sandra R. Kingan, Brooklyn College and the Graduate 

Center, CUNY, Brigitte Servatius, Worcester Polytechnic Institute, and Ann N. Trenk, Wellesley College.
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COMAP Special Sessions
COMAP’s Modeling Contests: Engaging Students and Faculty in Mathematical Modeling, Amanda I. Beecher, Ramapo College 

of New Jersey, Steve Horton, US Military Academy (Emeritus), and Kayla Blyman, Saint Martin’s University.

ILAS Special Sessions
Innovative and Effective Ways to Teach Linear Algebra, David M. Strong, Pepperdine University, Gil Strang, MIT, Sepideh 

Stewart, University of Oklahoma, and Megan Wawro, Virginia Tech.
Matrices and Operators, Mohsen Aliabadi, Iowa State University, and Tin-Yau Tam and Pan-Shun Lau, University of 

Nevada, Reno.
Matrix Analysis and Applications, Hugo Woerdeman, Drexel University, and Edward Poon, Embry-Riddle Aeronautical 

University.
The Inverse Eigenvalue Problem for a Graph and Zero Forcing (ILAS-AIM), Mary Flagg, University of St. Thomas, and Bryan 

A Curtis, Iowa State University.

MSRI/SLMath Special Sessions
African Diaspora Joint Mathematics Working Groups (ADJOINT), Edray Herber Goins, Pomona College, and Anisah 

Nabilah Nu’Man, Spelman College.
Summer Research in Mathematics (SRiM): Analytic Number Theory, Ayla Gafni, University of Mississippi, Amita Malik, 

Max Planck Institute, Bonn, and Sneha Chaubey, Indian Institute of Information Technology Delhi.
Summer Research in Mathematics (SRiM): Applied and Computational Mathematics, Yunan Yang, ETH Zurich, Jingwei Hu, 

University of Washington, and Yifei Lou, The University of Texas at Dallas.
Summer Research in Mathematics (SRiM): Cluster Algebras and Related Topics, Sunita Chepuri, University of Michigan, 

Elizabeth Kelley, University of Illinois at Urbana-Champaign, and Esther Banaian, University of Minnesota.
Summer Research in Mathematics (SRiM): Differential and Metric Geometry, Catherine Searle, Wichita State University, 

Lee T. Kennard, Syracuse University, and Elahe Khalili Samani, University of Notre Dame.
Summer Research in Mathematics (SRiM): Dynamics and Operator Algebras, Sarah Reznikoff, Kansas State University, Sarah 

Browne, University of Kansas, Elizabeth Anne Gillaspy, University of Montana, and Lauren Chase Ruth, Mercy College.
Summer Research in Mathematics (SRiM): Geometric and Topological Combinatorics, Margaret M. Bayer, University of 

Kansas, Marija Jelic Milutinovic, University of Belgrade, and Julianne Vega, Kennesaw State University.
Summer Research in Mathematics (SRiM) : Mathematical Modeling and Analysis in Eye Research, Atanaska Dobreva, Augusta 

University, and Erika Camacho, Arizona State University.
Summer Research in Mathematics (SRiM): Unknotting Operations, Hannah Turner, Georgia Institute of Technology, and 

Samantha Allen, Duquesne University.
The MSRI Undergraduate Program (MSRI-UP), Federico Ardila, San Francisco State University.

NSF Special Sessions
NSF Session on Outcomes and Innovations from NSF Undergraduate Education Programs in the Mathematical Sciences, Michael 

Ferrara and Mindy Capaldi, Division of Undergraduate Education, National Science Foundation, John R. Haddock, Na-
tional Science Foundation, Elise Nicole Lockwood, Division of Undergraduate Education, National Science Foundation, 
and Lee L. Zia, National Science Foundation.

PMA Special Sessions
BSM Special Session: Mathematical Research in Budapest for Students and Faculty, Kristina Cole Garrett, Budapest Semes-

ters in Mathematics.

SIAM Minisymposium
SIAM ED Session on Education as Research and Research as Education to include a panel discussion on the benefits and chal-

lenges of integrating research and teaching., Benjamin Galluzzo and Kathleen Kavanagh, Clarkson University.
SIAM Minisymposium on Applications of the Maslov Index, Christopher K. R. T. Jones and Emmanuel Fleurantin, Uni-

versity of North Carolina.
SIAM Minisymposium on Combinatorial Optimization, Annie Raymond, University of Massachusetts.
SIAM Minisymposium on Fractional Dynamics, Lukasz Plociniczak, Wroclaw University of Science and Technology, and 

Krzysztof Burnecki, Wrocław University of Science and Technology.
SIAM Minisymposium on Imaging and Inverse Problems, Andrea Arnold, Worcester Polytechnic Institute.
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SIAM Minisymposium on Numerical Linear Algebra: Algorithms, Computations, and Application, James Nagy and Elizabeth 
Newman, Emory University.

SIAM Minisymposium on Quantitative Justice (a NAM-SIAM Joint Session), Ron Buckmire, Occidental College, Omayra 
Ortega, Sonoma State University, and Carrie Diaz Eaton, Bates College.

SIAM Minisymposium on Quantum Algorithms, Dong An, University of Maryland, and Di Fang and Lin Lin, University 
of California, Berkeley.

SPECTRA Special Sessions
Research by LGBTQ+ Mathematicians, Juliette Emmy Bruce, University of California, Berkeley, Christopher Goff, Uni-

versity of the Pacific, and Rebecca R.G., George Mason University.

Atlanta, Georgia
Georgia Institute of Technology

March 18–19, 2023
Saturday – Sunday

Meeting #1184
Southeastern Section
Associate Secretary for the AMS: Brian D. Boe

Program first available on AMS website: To be announced
Issue of Abstracts: Volume 44, Issue 2

Deadlines
For organizers: Expired
For abstracts: January 17, 2023

The scientific information listed below may be dated. For the latest information, see https://www.ams.org/amsmtgs 
/sectional.html.

Invited Addresses
Betsy Stovall, University of Wisconsin-Madison, Title to be announced.
Blair Dowling Sullivan, University of Utah, Title to be announced.
Yusu Wang, University of California San Diego, Title to be announced.
Amie Wilkinson, University of Chicago, Title to be announced (Erdoős Memorial Lecture).

Special Sessions
If you are volunteering to speak in a Special Session, you should send your abstract as early as possible via the abstract submission 
form found at https://www.ams.org/cgi-bin/abstracts/abstract.pl.

Advanced Topics in Graph Theory and Combinatorics (Code: SS 1A), Songling Shan, Illinois State University, and Guang-
ming Jing, Augusta University.

Advances in Applied Dynamical Systems and Mathematical Biology (Code: SS 25A), Chunhua Shan, The University of 
Toledo, and Guihong Fan, Columbus State University.

Advances in Mathematical Finance and Optimization (Code: SS 24A), Ibrahim Ekren, Arash Fahim, and Lingjiong Zhu, 
Florida State University.

Algebraic Methods in Algorithms (Code: SS 16A), Kevin Shu and Mehrdad Ghadiri, Georgia Institute of Technology.
Combinatorial Matrix Theory (Code: SS 22A), Zhongshan Li, Marina Arav, and Hein Van der Holst, Georgia State 

University.
Combinatorics, Probability and Computation in Molecular Biology (Code: SS 38A), Christine Heitsch and Brandon Legried, 

Georgia Institute of Technology.
Commutative Algebra and its Interactions with Algebraic Geometry (Code: SS 10A), Michael Brown and Henry K. Schenck, 

Auburn University.
Contact and Symplectic Topology in Dimensions 3 and 4 (Code: SS 34A), Akram Alishahi, Peter Lambert-Cole, and Go-

rdana Matic, University of Georgia.
Discrete Analysis (Code: SS 31A), Giorgis Petridis, Neil Lyall, and Akos Magyar, University of Georgia.
Disordered and Periodic Quantum Systems (Code: SS 26A), Rodrigo Bezerra de Matos and Wencai Liu, Texas A&M Uni-

versity, and Xiaowen Zhu, University of Washington.
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Diversity in Mathematical Biology (Code: SS 36A), Daniel Alejandro Cruz, University of Florida, and Margherita Maria 
Ferrari, University of Manitoba.

Dynamics of Partial Differential Equations (Code: SS 18A), Gong Chen, Georgia Institute of Technology, Hao Jia, Uni-
versity of Minnesota, and Dallas Albritton, Princeton University.

Fractal Geometry and Dynamical Systems (Code: SS 11A), Mrinal Kanti Roychowdhury, School of Mathematical and 
Statistical Sciences, University of Texas Rio Grande Valley, and Scott Kaschner, Butler University.

Geometric and Combinatorial Aspects of Lie Theory (Code: SS 40A), William Graham, University of Georgia, Amber 
Russell, Butler University, and Scott Larson, University of Georgia.

Geometric Group Theory (Code: SS 4A), Ryan Dickmann, Georgia Institute of Technology, Sahana H. Balasubramanya, 
University of Münster, and Abdoul Karim Sane and Dan Margalit, Georgia Institute of Technology.

Harmonic Analysis (Code: SS 14A), Betsy Stovall, University of Wisconsin-Madison, Benjamin Jaye, Georgia Tech, and 
Manasa Vempati.

High-dimensional Convexity and Probability (Code: SS 13A), Galyna Livshyts and Orli Herscovici, Georgia Institute of 
Technology, and Dan Mikulincer, MIT.

Knots, Skein Modules and Categorification (Code: SS 8A), Marithania Silvero-Casanova, Universidad De Sevilla, Rhea 
Palak Bakshi, The George Washington University, Jozef Henryk Przytycki, George Washington University, and Radmila 
Sazdanovic, North Carolina State University.

Logic, Combinatorics, and their Interactions (Code: SS 27A), Anton Bernshteyn, Georgia Institute of Technology, and 
Robin Tucker-Drob, University of Florida.

Macdonald Theory at the Intersection of Combinatorics, Algebra, and Geometry (Code: SS 37A), Olya Mandelshtam, Uni-
versity of Waterloo, Sean Griffin, UC Davis, and Andy Wilson, Kennesaw State University.

Mathematical Modeling and Simulation Techniques in Fluid Structure Interaction Problems (Code: SS 17A), Pejman Sanaei, 
Georgia State University.

Mathematical Modeling of Populations and Diseases Transmissions (Code: SS 33A), Yang Li, Georgia State University, Jia 
Li, University of Alabama in Huntsville, and Xiang-Sheng Wang, University of Louisiana at Lafayette.

Multiscale Approaches to Modeling Ecological and Evolutionary Dynamics (Code: SS 28A), Daniel Brendan Cooney, Uni-
versity of Pennsylvania, Denis Daniel Patterson, Princeton University, Olivia Chu, Dartmouth College, and Chadi M 
Saad-Roy, University of California, Berkeley.

Qualitative Aspects of Nonlinear PDEs: Well-posedness and Asymptotics (Code: SS 23A), Atanas G. Stefanov, University of 
Alabama Birmingham, Fazel Hadaifard, University of California - Riverside, and Jiahong Wu, Oklahoma State University.

Quasi-periodic Schrödinger Operators and Quantum Graphs (Code: SS 35A), Fan Yang, Louisiana State University, Matthew 
Powell, UCI, and Burak Hatinoglu, UC Santa Cruz.

Recent Advances and Applications in Imaging Sciences (Code: SS 39A), Carmeliza Luna Navasca, University of Alabama 
at Birmingham, Fatou Sanogo, Bates College, and Elizabeth Newman, Emory University.

Recent Development in Advanced Numerical Methods for Partial Differential Equations (Code: SS 21A), Seulip Lee and Lin 
Mu, University of Georgia.

Recent Developments in Commutative Algebra (Code: SS 5A), Thomas Polstra, University of Alabama, and Florian Enescu, 
Georgia State University.

Recent Developments in Graph Theory (Code: SS 32A), Guantao Chen, Georgia State University, Zhiyu Wang, Georgia 
Institute of Technology, and Xingxing Yu, Georgia Tech.

Recent Developments in Mathematical Aspects of Inverse Problems and Imaging (Code: SS 20A), Yimin Zhong and Junshan 
Lin, Auburn University.

Recent Developments on Analysis and Computation for Inverse Problems for PDEs (Code: SS 2A), Dinh-Liem Nguyen, Kansas 
State University, Loc Nguyen, UNC Charlotte, and Khoa Vo, Florida A&M University.

Recent Trends in Structural and Extremal Graph Theory (Code: SS 29A), Joseph Guy Briggs and Jessica McDonald, Au-
burn University.

Representation Theory of Algebraic Groups and Quantum Groups: A Tribute to the Work of Cline, Parshall and Scott (CPS) 
(Code: SS 6A), Daniel K. Nakano, University of Georgia, Chun-Ju Lai, Institute of Mathematics, Academia Sinica, Taipei 
10617 Taiwan, and Weiqiang Wang, University of Virginia.

Singer-Hopf Conjecture in Geometry and Topology (Code: SS 9A), Luca Di Cerbo, University of Florida, and Laurentiu 
Maxim, University of Wisconsin-Madison.

Spectral Theory (Code: SS 19A), Rudi Weikard, University of Alabama at Birmingham, and Stephen P. Shipman, Lou-
isiana State University.



MEETINGS & CONFERENCES

January 2023	  Notices of the American Mathematical Society	   185

Stochastic Analysis and its Applications (Code: SS 7A), Parisa Fatheddin, Ohio State University, Marion, and Kazuo 
Yamazaki, Texas Tech University.

Stochastic Processes and Related Topics (Code: SS 15A), Ngartelbaye Guerngar, University of North Alabama, and Le 
Chen, Erkan Nane, and Jerzy Szulga, Auburn University.

Topological Persistence: Theory, Algorithms, and Applications (Code: SS 12A), Luis Scoccola, Northeastern University, Hitesh 
Gakhar, University of Oklahoma, and Ling Zhou, The Ohio State University.

Topology and Geometry of 3- and 4-Manifolds (Code: SS 3A), Miriam Kuzbary, Georgia Institute of Technology, David T. 
Gay, University of Georgia, Jon Simone, Georgia Institute of Technology, and Nur Saglam, Georgia Tech.

Undergraduate Mathematics and Statistics Research (Code: SS 30A), Leslie Julianna Meadows, Georgia State University, 
Tsz Ho Chan and Asma Azizi, Kennesaw State University, and Mark Grinshpon, Georgia State University.

Spring Eastern Virtual Sectional Meeting
Meeting virtually, hosted by the American Mathematical Society

April 1–2, 2023
Saturday – Sunday

Meeting #1185
Eastern Section
Associate Secretary for the AMS: Steven H. Weintraub

Program first available on AMS website: To be announced
Issue of Abstracts: Volume 44, Issue 2

Deadlines
For organizers: Expired
For abstracts: January 30, 2023

The scientific information listed below may be dated. For the latest information, see https://www.ams.org/amsmtgs 
/sectional.html.

Invited Addresses
Kirsten Eisentraeger, Pennsylvania State University, Title to be announced.
Jason Manning, Cornell University, Title to be announced.
Jennifer L Mueller, Colorado State University, Title to be announced.

Special Sessions
If you are volunteering to speak in a Special Session, you should send your abstract as early as possible via the abstract submission 
form found at https://www.ams.org/cgi-bin/abstracts/abstract.pl.

Analysis and Differential Equations at Undergraduate Institutions (Code: SS 3A), William R. Green, Rose-Hulman Institute 
of Technology, and Katharine A. Ott, Bates College.

Analysis of Markov, Gaussian and Stationary Stochastic Processes (Code: SS 4A), Alan C Krinik, California State Polytechnic 
University, Pomona, and Randall J. Swift, Cal Poly Pomona.

Cybersecurity and Cryptography (Code: SS 10A), Lubjana Beshaj, Army Cyber Institute, Shekeba Monshref, IBM, and 
Angela Robinson, NIST.

Fractal Geometry and Dynamical Systems (Code: SS 6A), Mrinal Kanti Roychowdhury, School of Mathematical and 
Statistical Sciences, University of Texas Rio Grande Valley, Sangita Jha, Department of Mathematics, National Institute 
of Technology Rourkela, India, and Saurabh Verma, Indian Institute of Information Technology Allahabad.

Gauge Theory, Geometric Analysis, and Low-Dimensional Topology (Code: SS 7A), Paul M. N Feehan, Rutgers University, 
New Brunswick, and Thomas Gibbs Leness, Florida International University.

Hypergeometric Functions, q-series and Generalizations (Code: SS 5A), Howard Saul Cohl, National Institute of Standards 
and Technology, Robert Maier, University of Arizona, and Roberto Costas-Santos, Universidad Loyola de Andalucía.

Modeling, Analysis, and Control of Populations Impacted by Disease and Invasion (Code: SS 1A), Rachel Natalie Leander 
and Wandi Ding, Middle Tennessee State University.

Quasiconformal Analysis and Geometry on Metric Spaces (Code: SS 8A), Dimitrios Ntalampekos, Stony Brook University, 
and Hrant Hakobyan, Kansas State University.

Recent Advances in Differential Geometry (Code: SS 2A), Bogdan D. Suceava, California State University Fullerton, Adara 
M. Blaga, West University of Timişoara, Romania, Cezar Oniciuc, “Al.I.Cuza” University of Iaşi, Romania, Marian Ioan 
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Munteanu, “Al.I.Cuza” University of Iaşi, Iaşi, Romania, Shoo Seto, California State University, Fullerton, and Lihan 
Wang, California State University, Long Beach.

Recent Advances in Infinite-Dimensional Stochastic Analysis (Code: SS 9A), Vincent R. Martinez, Hunter College (CUNY), 
Hung Nguyen, UCLA, and Nathan E. Glatt-Holtz, Tulane University.

Recent Advances in Ion Channel Models and Poisson-Nernst-Planck Systems (Code: SS 11A), Zilong Song, Utah State Uni-
versity, and Xiang-Sheng Wang, University of Louisiana at Lafayette.

Recent Progress in Chromatic Graph Theory (Code: SS 12A), Hemanshu Kaul and Samantha Dahlberg, Illinois Institute 
of Technology.

Cincinnati, Ohio
University of Cincinnati

April 15–16, 2023
Saturday – Sunday

Meeting #1186
Central Section
Associate Secretary for the AMS: Betsy Stovall

Program first available on AMS website: To be announced
Issue of Abstracts: Volume 44, Issue 2

Deadlines
For organizers: Expired
For abstracts: February 13, 2023

The scientific information listed below may be dated. For the latest information, see https://www.ams.org/amsmtgs 
/sectional.html.

Invited Addresses
Johnny Guzman, Brown University, Title to be announced.
Lisa Piccirillo, MIT, Title to be announced.
Krystal Taylor, The Ohio State University, Department of Mathematics, Title to be announced.
Nathaniel Whitaker, University of Massachusetts, Title to be announced (Einstein Public Lecture in Mathematics).

Special Sessions
If you are volunteering to speak in a Special Session, you should send your abstract as early as possible via the abstract submission 
form found at https://www.ams.org/cgi-bin/abstracts/abstract.pl.

Advances in Dispersive Partial Differential Equations (Code: SS 13A), William R. Green, Rose-Hulman Institute of Tech-
nology, Mehmet Burak Erdogan, University of Illinois at Urbana Champaign, and Michael J. Goldberg, University of 
Cincinnati.

Advances in Radial Basis Functions for Numerical Simulation (Code: SS 7A), Jonah A. Reeger, Air Force Institute of Tech-
nology, and Cecile Piret, Michigan Technological University.

Algorithms, Number Theory, and Cryptography (Code: SS 8A), Jonathan P. Sorenson and Jonathan Webster, Butler 
University.

Arithmetic Statistics (Code: SS 19A), Brandon Alberts, Eastern Michigan University, and Soumya Sankar, Ohio State 
University.

Brauer Groups in Algebraic Geometry and Arithmetic (Code: SS 25A), Jack Petok and Sarah Frei, Dartmouth College.
Cluster Algebras, Positivity and Related Topics (Code: SS 28A), Eric Bucher, Xavier University, John Machacek, The Uni-

versity of Oregon, and Nicholas Ovenhouse, Yale University.
Combinatorial and Geometric Knot Theory (Code: SS 11A), Micah Chrisman, The Ohio State University, Sujoy Mukherjee, 

University of Denver, and Robert G Todd, Mount Mercy University.
Commutative Algebra with Connections to Combinatorics and Geometry (Code: SS 24A), Aleksandra C. Sobieska, University 

of Wisconsin - Madison, and Jay Yang, Washington University in St. Louis.
Ends and Boundaries of Groups: On the Occasion of Mike Mihalik’s 70th Birthday (Code: SS 2A), Craig R. Guilbault, Uni-

versity of Wisconsin-Milwaukee, and Kim E. Ruane, Tufts University.
Extremal Graph Theory (Code: SS 18A), Neal Bushaw, Virginia Commonwealth University, Puck Rombach and Calum 

Buchanan, University of Vermont, and Vic Bednar, Virginia Commonwealth University.
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Geometric and Analytic Methods in PDE (Code: SS 20A), Dennis Kriventsov, Rutgers University, Mariana Smit Vega 
Garcia, Western Washington University, and Mark Allen, Brigham Young University.

Growth Models, Random Media, and Limit Theorems (Code: SS 6A), Magda Peligrad, Wlodek Bryc, and Xiaoqin Guo, 
University of Cincinnati.

Harmonic Analysis and its Applications to Signals and Information (Code: SS 12A), Dustin G. Mixon, The Ohio State 
University, and Matthew Fickus, Air Force Institute of Technology.

Homological Methods in Commutative Algebra (Code: SS 27A), Michael DeBellevue, Syracuse University, and Josh Pol-
litz, University of Utah.

Inequalities in Harmonic Analysis (Code: SS 26A), Ryan Gibara, University of Cincinnati, Kabe Moen, University of 
Alabama, and Leonid Slavin, University of Cincinnati.

Interactions between Analysis, PDE, and Probability in Non-smooth Spaces (Code: SS 1A), Nageswari Shanmugalingam, 
University of Cincinnati, Luca Capogna, Smith College, and Jeremy T. Tyson, National Science Foundation.

Interactions between Noncommutative Ring Theory and Algebraic Geometry (Code: SS 3A), Jason Gaddis, Miami University, 
and Robert Won, George Washington University.

Mathematical Modeling in Biosciences (Code: SS 29A), Sookkyung Lim, University of Cincinnati, Jeungeun Park, SUNY 
at New Paltz, Yanyu Xiao, University of Cincinnati, Hem R. Joshi, Xavier University, Cincinnati, and David Gerberry, 
Xavier University.

Modern Trends in Numerical PDEs (Code: SS 4A), Johnny Guzman, Brown University, and Michael Neilan, University 
of Pittsburgh.

Nonlinear Partial Differential Equations from Variational Problems and Fluid Dynamics (Code: SS 16A), Tao Huang, Wayne 
State University, Hengrong Du, Vanderbilt University, and Changyou Wang, Purdue University.

Probabilistic and Extremal Combinatorics (Code: SS 14A), Jozsef Balogh, University of Illinois at Urbana-Champaign, 
and Tao Jiang, Miami University.

Quantitative Aspects of Symplectic Topology (Code: SS 15A), Jun Li, University of Dayton, Olguta Buse, IUPUI, and Rich-
ard Keith Hind, University of Notre Dame.

Recent Advances in Finite Element Methods: Theory and Applications (Code: SS 21A), Tamas L. Horvath, Oakland University, 
and Giselle Sosa Jones, University of Houston.

Recent Developments in the Study of Fluid Flows, Turbulence, and its Applications (Code: SS 30A), Vincent Martinez, CUNY 
Hunter College & Graduate Center, and Samuel Punshon-Smith, Tulane University.

Recent Trends in Graph Theory (Code: SS 23A), Adam Blumenthal, Westminster College, and Katherine Perry, University 
of Soka.

Recent Trends in Integrable Systems and Applications (Code: SS 5A), Deniz Bilman and Robert J. Buckingham, University 
of Cincinnati.

Representation Theory, Geometry and Mathematical Physics (Code: SS 22A), Daniele Rosso, Indiana University Northwest, 
and Jonas T. Hartwig, Iowa State University.

Stochastic Analysis and its Applications (Code: SS 9A), Po-Han Hsu, University of Cincinnati, Tai-Ho Wang, Baruch 
College, CUNY, and Ju-Yi Yen, University Of Cincinnati.

The Interface of Geometric Measure Theory and Harmonic Analysis (Code: SS 10A), Eyvindur Ari Palsson, Virginia Tech, 
and Krystal Taylor, The Ohio State University, Department of Mathematics.

Topological and Geometric Methods in Combinatorics (Code: SS 17A), Zoe Wellner and R. Amzi Jeffs, Carnegie Mellon 
University.

Fresno, California
California State University, Fresno

May 6–7, 2023
Saturday – Sunday

Meeting #1187
Western Section
Associate Secretary for the AMS: Michelle Ann Manes

Program first available on AMS website: March 16, 2023
Issue of Abstracts: Not applicable

Deadlines
For organizers: Expired
For abstracts: March 7, 2023



MEETINGS & CONFERENCES

188   	 Notices of the American Mathematical Society	 Volume 70, Number 1

The scientific information listed below may be dated. For the latest information, see https://www.ams.org/amsmtgs 
/sectional.html.

Invited Addresses
Sami Assaf, University of Southern California, Title to be announced.
Natalia Komarova, University of California, Irvine, Title to be announced.
Joseph Teran, University of California, Los Angeles, Title to be announced.

Special Sessions
If you are volunteering to speak in a Special Session, you should send your abstract as early as possible via the abstract submission 
form found at https://www.ams.org/cgi-bin/abstracts/abstract.pl.

Advances by Scholars in the Pacific Math Alliance, Andrea Arauza Rivera, California State University, East Bay, Mario 
Banuelos, California State University, Fresno, and Jessica De Silva, California State University, Stanislaus.

Advances in Functional Analysis and Operator Theory, Michel L. Lapidus, University of California, Riverside, Marat V. 
Markin, California State University, Fresno, and Igor Nikolaev, St. John’s University.

Algebraic Structures in Knot Theory, Carmen Caprau, California State University, Fresno, Sam Nelson, Claremont McK-
enna College, and Neslihan Gügümcu, Izmir Institute of Technology in Turkey.

Algorithms in the Study of Hyperbolic 3-manifolds, Robert Haraway, III and Maria Trnkova, University of California, Davis.
Analysis of Fractional Differential and Difference Equations with its Application, Bhuvaneswari Sambandham, Dixie State 

University, and Aghalaya S. Vatsala, University of Louisiana at Lafayette.
Artin-Schelter Regular Algebras and Related Topics, Ellen Kirkman, Wake Forest University, and James Zhang, University 

of Washington.
Combinatorics and Representation Theory (associated with the Invited Address by Sami Assaf), Sami Assaf, University of 

Southern California, and Nicolle Gonzalez, University of California, Berkeley.
Complexity in Low-Dimensional Topology, Jennifer Schultens, University of California, Davis, and Eric Sedgwick, DePaul 

University.
Data Analysis and Predictive Modeling, Earvin Balderama, California State University, Fresno, and Adriano Zambom, 

California State University, Northridge.
Inverse Problems, Hanna Makaruk, Los Alamos National Laboratory, and Robert Owczarek, University of New Mexico, 

Albuquerque and University of New Mexico, Los Alamos.
Math Circle Games and Puzzles that Teach Deep Mathematics, Maria Nogin, Agnes Tuska, Yaomingxin Lu, and Gábor 

Molnár-Sáska, California State University, Fresno.
Mathematical Biology: Confronting Models with Data, Erica Rutter, University of California, Merced.
Mathematical Methods in Evolution and Medicine (associated with the Invited Address by Natalia Komarova), Natalia Koma-

rova and Jesse Kreger, University of California, Irvine.
Methods in Non-Semisimple Representation Categories, Eric Friedlander, University of Southern California, Los Angeles, 

Julia Pevtsova, University of Washington, Seattle, and Paul Sobaje, Georgia Southern University, Statesboro.
Research in Mathematics by Early Career Graduate Students, Doreen De Leon, Marat Markin, and Khang Tran, California 

State University, Fresno.
Scientific Computing, Changho Kim, University of California, Merced, and Roummel Marcia.
The Use of Computational Tools and New Augmented Methods in Networked Collective Problem Solving, Mario Banuelos, 

California State University, Fresno, Andrew G. Benedek, Research Centre for the Humanities, Hungary, and Agnes Tuska, 
California State University, Fresno.

Women in Mathematics, Doreen De Leon, Katherine Kelm, and Oscar Vega, California State University, Fresno.
Zero Distribution of Entire Functions, Tamás Forgács and Khang Tran, California State University, Fresno.
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Buffalo, New York
University at Buffalo (SUNY)

September 9–10, 2023
Saturday – Sunday

Meeting #1188
Eastern Section
Associate Secretary for the AMS: Steven H. Weintraub

Program first available on AMS website: July 27, 2023
Issue of Abstracts: To be announced

Deadlines
For organizers: February 9, 2023
For abstracts: July 18, 2023

The scientific information listed below may be dated. For the latest information, see https://www.ams.org/amsmtgs 
/sectional.html.

Invited Addresses
Jennifer Balakrishnan, Boston University, Title to be announced.
Sigal Gottlieb, University of Massachusetts, Dartmouth, Title to be announced.
Samuel Payne, University of Texas, Title to be announced.

Omaha, Nebraska
Creighton University

October 7–8, 2023
Saturday – Sunday

Meeting #1190
Central Section
Associate Secretary for the AMS: Betsy Stovall, University 
of Wisconsin-Madison

Program first available on AMS website: August 17, 2023
Issue of Abstracts: To be announced

Deadlines
For organizers: March 7, 2023
For abstracts: August 8, 2023

Mobile, Alabama
University of South Alabama

October 13–15, 2023
Friday – Sunday

Meeting #1189
Southeastern Section
Associate Secretary for the AMS: Brian D. Boe

Program first available on AMS website: August 24, 2023
Issue of Abstracts: To be announced

Deadlines
For organizers: March 13, 2023
For abstracts: August 15, 2023

The scientific information listed below may be dated. For the latest information, see https://www.ams.org/amsmtgs 
/sectional.html.

Invited Addresses
Theresa Anderson, Carnegie Mellon University, Title to be announced.
Laura Miller, University of Arizona, Title to be announced.
Cornelius Pillen, University of South Alabama, Title to be announced.
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Special Sessions
If you are volunteering to speak in a Special Session, you should send your abstract as early as possible via the abstract submission 
form found at https://www.ams.org/cgi-bin/abstracts/abstract.pl.

Mathematical Modeling of Problems in Biological Fluid Dynamics (Code: SS 1A), Laura Miller, University of Arizona, and 
Nick Battista, The College of New Jersey.

Albuquerque, New Mexico
University of New Mexico

October 21–22, 2023
Saturday – Sunday

Meeting #1191
Western Section
Associate Secretary for the AMS: Michelle Ann Manes

Program first available on AMS website: August 31, 2023
Issue of Abstracts: Not applicable

Deadlines
For organizers: March 21, 2023
For abstracts: August 22, 2023

Auckland, New Zealand
December 4–8, 2023
Monday – Friday
Associate Secretary for the AMS: Steven H. Weintraub
Program first available on AMS website: To be announced

Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced

San Francisco, California
Moscone West Convention Center

January 3–6, 2024
Wednesday – Saturday
Associate Secretary for the AMS: Michelle Ann Manes
Program first available on AMS website: To be announced

Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced

Tallahassee, Florida
Florida State University in Tallahassee

March 23–24, 2024
Saturday – Sunday
Southeastern Section
Associate Secretary for the AMS: Brian D. Boe, University 
of Georgia

Program first available on AMS website: To be announced
Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced
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Washington, District of Columbia
Howard University

April 6–7, 2024
Saturday – Sunday
Eastern Section
Associate Secretary for the AMS: Steven H. Weintraub
Program first available on AMS website: To be announced

Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced

San Francisco, California
San Francisco State University

May 4–5, 2024
Saturday – Sunday
Western Section
Associate Secretary for the AMS: Michelle Ann Manes
Program first available on AMS website: Not applicable

Issue of Abstracts: Not applicable

Deadlines
For organizers: To be announced
For abstracts: To be announced

The scientific information listed below may be dated. For the latest information, see https://www.ams.org/amsmtgs 
/sectional.html.

Special Sessions
If you are volunteering to speak in a Special Session, you should send your abstract as early as possible via the abstract submission 
form found at https://www.ams.org/cgi-bin/abstracts/abstract.pl.

Recent Advances in Differential Geometry, Zhiqin Lu, University of California, Shoo Seto and Bogdan Suceavă, California 
State University, Fullerton, and Lihan Wang, California State University, Long Beach.

Palermo, Italy
July 23–26, 2024
Tuesday – Friday
Associate Secretary for the AMS: Brian D. Boe
Program first available on AMS website: To be announced

Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced

Riverside, California
University of California, Riverside

October 26–27, 2024
Saturday – Sunday
Western Section
Associate Secretary for the AMS: Michelle Ann Manes
Program first available on AMS website: Not applicable

Issue of Abstracts: Not applicable

Deadlines
For organizers: To be announced
For abstracts: To be announced
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Seattle, Washington
Washington State Convention Center and the Sheraton Seattle Hotel

January 8–11, 2025
Wednesday – Saturday
Associate Secretary for the AMS: Brian Boe
Program first available on AMS website: To be announced

Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced

Washington, District of Columbia
Walter E. Washington Convention Center and Marriott Marquis Washington DC

January 4–7, 2026
Sunday – Wednesday
Associate Secretary for the AMS: Betsy Stovall
Program first available on AMS website: To be announced

Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced

S H A R E  Y O U R
V O I C E  A N D

S E R V E
M A T H E M A T I C S

Bring your perspective
to an AMS committee
You can make a difference in mathematics at any stage of 
your career. Our committees best serve the math com-
munity when we have a constellation of perspectives in 
conversation.

Editorial boards, scientifi c program planning for meetings, 
prize committees, invited speakers, fi nancial oversight, and 
more are among the over 100 AMS committees that are 
run by volunteers excited to make a difference.

www.ams.org/committees
Bring your voice and mathematical experiences 
and get involved to serve the mathematical
community.

Nominate a Colleague
Inclusive representation from the entire mathematics 
community is a priority of the AMS. If you have colleagues 
who would be particularly well-suited for service, please 
let us know. Self-nominations are also encouraged. 
Thank you!

www.ams.org/committee-nominate



AMS Child Care Grants 
help early career
scholars attend the
Joint Mathematics
Meetings and Sectional 
Meetings at a critical 
time in their professional 
lives. These grants give 
mathematicians fl exibil-
ity in arranging care for 
their families.

π
To learn more or give online: 

www.ams.org/child-care-grants

Contact the AMS Development offi ce
at 401.455.4111 or development@ams.org

+
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Free shipping for members 
in the USA (including Puerto Rico) and Canada.

Discover more titles at bookstore.ams.org
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Keep your mind sharp all year long with 
Mathematics 2023: Your Daily Epsilon of Math, 
a full-color wall calendar featuring a new math 
problem every day and 12 beautiful math images!

The solution is always the date, but the fun lies in 
figuring out how to arrive at the answer, and 
possibly discovering more than one method of 
arriving there.

2022; ISBN: 978-1-4704-7107-1; List US$18; 

AMS members US$14.40; MAA members US$16.20; 

Order code MBK/144

Learn more at bookstore.ams.org/MBK-144

P
h

o
to

s 
b

y 
K

at
e 

A
w

tr
ey

, A
tl

an
ta

 C
o

nv
en

ti
o

n
 P

h
o

to
g

ra
p

hy

NOW AVAILABLE from the AMS

12-Month 
Calendar

Rebecca Rapoport,
Harvard University, Cambridge, 
MA, and Michigan State 
University, East Lansing, MI

Dean Chung, 
Harvard University, 
Cambridge, MA, and 
University of Michigan, 
Ann Arbor, MI

http://bookstore.ams.org
http://bookstore.ams.org/MBK-144

	Front Cover
	Current Events Bulletin
	Table of Contents
	Masthead
	Letters to the Editor
	A Word From... Trena Wilkerson
	Partial Differential Equations of Mixed Type--Analysis and Applications by Gui-Qiang G. Chen
	Wokrshop for Department Chairs and Leaders
	Stochastic Separation Theorems: How Geometry May Help to Correct AI Errors by Alexander Gorban, Bogdan Grechuk, and Ivan Tyukin
	Tropical Combinatorics by Felipe Rincon, Ngoc Mai Tran, and Josephine Yu
	JMM Member Activities
	Convolution Neural Networks and their Applications in Medical Imaging: A Primer for mathematicians by Kyle Hasenstab
	Ability and Diversity of Skills by William Geller and Michal Misiurewicz
	Early Career
	Jacques Tits (1930-2021) by Richard M. Weiss
	MRC
	Guido L. Weiss (1928-2021) by Eugenio Hernandez and Edward N. Wilson, with contributions by Ronald Coifman, Mauro Maggioni, Yves Meyer, Fulvio Ricci, Hrvoje Sikic, Fernando Soria, Anita Tabacco, and Rodolfo H. Torres
	Fan China Exchange Program
	Restoring Confidence in the Value of Mathematics by Teaching Undergraduates Math They Will Use by Tyler J. Jarvis
	AMS Donors
	3000 Years of Analysis, A Review by Anthony Weston
	Bookshelf
	AMS Bookshelf
	Princeton University Press
	A Conversation with Alan Weinstein by Henrique Bursztyn and Rui Loja Fernandes
	The Next Generation by Edward Dunne
	Isbell Duality by John C. Baez
	Calls for Nominations and Applications
	An Interview with Ruth Charney by Scott Hershberger
	Polynomial Systems, Homotopy Continuation, and Applications by Timothy Duff and Margaret Regan
	Math and Writing: Two Sides of the same Coin? by Anuraag Bukkuri
	Finding Meaning Outside Academia by A. J. Stewart
	AMS Updates
	Mathematics People
	Classified Advertising
	New Books Offered by the AMS
	Tsingua University PhD Program
	Meetings & Conferences of the AMS January Table of Contents
	Meetings & Conferences
	JMM Child Care Grants
	Now Available from the AMS



