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We are concerned with free boundary problems arising from the analysis of multidimen-
sional transonic shock waves for the Euler equations in compressible fluid dynamics.
In this expository paper, we survey some recent developments in the analysis of multi-
dimensional transonic shock waves and corresponding free boundary problems for the
compressible Euler equations and related nonlinear partial differential equations (PDEs)
of mixed type. The nonlinear PDEs under our analysis include the steady Euler equa-
tions for potential flow, the steady full Euler equations, the unsteady Euler equations for
potential flow, and related nonlinear PDEs of mixed elliptic–hyperbolic type. The tran-
sonic shock problems include the problem of steady transonic flow past solid wedges, the
von Neumann problem for shock reflection–diffraction, and the Prandtl–Meyer problem
for unsteady supersonic flow onto solid wedges. We first show how these longstanding
multidimensional transonic shock problems can be formulated as free boundary prob-
lems for the compressible Euler equations and related nonlinear PDEs of mixed type.
Then we present an effective nonlinear method and related ideas and techniques to solve
these free boundary problems. The method, ideas, and techniques should be useful to
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analyze other longstanding and newly emerging free boundary problems for nonlinear
PDEs.
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1. Introduction

We are concerned with free boundary problems arising from the analysis of mul-
tidimensional transonic shock waves for the Euler equations in compressible fluid
dynamics. The purpose of this expository paper is to survey some recent develop-
ments in the analysis of multidimensional (MD) transonic shock waves and cor-
responding free boundary problems for the Euler equations and related nonlinear
partial differential equations (PDEs) of mixed type. We show how several MD
transonic shock problems can be formulated as free boundary problems for the
compressible Euler equations and related nonlinear PDEs of mixed-type, and then
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present an efficient nonlinear method and related ideas and techniques to solve
these free boundary problems.

Shock waves are steep wavefronts, which are fundamental in high-speed fluid
flows (e.g. [8, 9, 20, 35, 52, 53, 63, 91, 93, 104, 105, 110]). Such flows are governed
by the compressible Euler equations in fluid dynamics. The time-dependent com-
pressible Euler equations are a second-order nonlinear wave equation for potential
flow, or a first-order nonlinear system of hyperbolic conservation laws for full Euler
flow (e.g. [21, 35, 52, 53]). One of the main features of such nonlinear PDEs is
that, no matter how smooth the given initial data start with, the solution develops
singularity in a finite time to form shock waves (shocks, for short) generically, so
that the classical notion of solutions has to be extended to the notion of entropy
solutions in order to accommodate such discontinuity waves for physical variables,
that is, the weak solutions satisfying the entropy condition that is consistent with
the second law of thermodynamics (cf. [35, 52, 53, 73]).

General entropy solutions involving shocks for such PDEs have extremely com-
plicated and rich structures. On the other hand, many fundamental problems in
physics and engineering concern steady solutions (i.e. time-independent solutions)
or self-similar solutions (i.e. the solutions depend only on the self-similar variables
with form x

t for the space variables x and time-variable t); see [35, 52, 53, 63]
and the references cited therein. Such solutions are governed by the steady or self-
similar compressible Euler equations for potential flow, or full Euler flow. These
governing PDEs in the new forms are time-independent and often are of mixed
elliptic–hyperbolic type.

Mathematically, MD transonic shocks are codimension-one discontinuity fronts
in the solutions of the steady or self-similar Euler equations and related nonlinear
PDEs of mixed elliptic–hyperbolic type, which separate two phases: one of them
is supersonic phase (i.e. the fluid speed is larger than the sonic speed) which is
hyperbolic; the other is subsonic phase (i.e. the fluid speed is smaller than the
sonic speed) which is elliptic for potential flow, or elliptic–hyperbolic composite
for full Euler flow (i.e. elliptic equations coupled with some hyperbolic transport
equations). They are formed in many physical situations, for example, by smooth
supersonic flows or supersonic shock waves impinging onto solid wedges/cones or
passing through de Laval nozzles, around supersonic or near-sonic flying bodies, or
other physical processes. The mathematical analysis of shocks at least dates back
to Stokes [102] and Riemann [96], starting from the one-dimensional (1D) case. The
mathematical understanding of MD transonic shocks has been one of the most chal-
lenging and longstanding scientific research directions (cf. [35, 47, 51–53, 63, 65]).
Such transonic shocks can be formulated as free boundary problems (FBPs) in the
mathematical theory of nonlinear PDEs involving mixed elliptic–hyperbolic type.

Generally speaking, a free boundary problem is a boundary value problem for
a PDE or system of PDEs which is defined in a domain, a part of whose bound-
ary is a priori unknown; this part is accordingly named as a free boundary. The
mathematical problem is then to determine both the location of the free boundary
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and the solution of the PDE/system in the resulting domain, which requires to
combine analysis and geometry in sophisticated ways. The mathematical analy-
sis of FBPs is one of the most important research directions in the analysis of
PDEs, with wide applications across the sciences and real-world problems. On the
other hand, it is widely regarded as a truly challenging field of mathematics. See
[13, 14, 40, 54, 60, 70] and the references cited therein.

Transonic shock problems for steady or self-similar solutions are typically for-
mulated as boundary value problems for a nonlinear PDE or system of mixed
elliptic-hyperbolic type, whose type at a point is determined by the solution,
as well as its gradient for some cases. For a system, the type is more compli-
cated and may be either hyperbolic or mixed-composite elliptic-hyperbolic (also
called mixed, for the sake of brevity when no confusion arises). General solutions
of such nonlinear PDEs can be nonsmooth and of complicated structures (e.g.
[17–19, 21, 35, 63, 72, 75, 78, 98, 99, 115, 117]), so that even the uniqueness issue has
not been settled in many cases. However, in many problems, especially those moti-
vated by physical phenomena, the expected structures of solutions are known from
experimental/numerical results and underlying physics. The solutions are expected
to be piecewise smooth, with some hyperbolic/elliptic regions separated by shocks,
or sonic curves/surfaces of continuous type-transition (i.e. the type of equations
changes continuously in the physical variables such as the velocity and density). In
this paper, we present the problems in which the hyperbolic part of the solution
is a priori known, or can be determined separately from the elliptic part, in some
larger regions. Then the problem is reduced to determine the region in which the
underlying PDE is elliptic, with the transonic shock as a part of its boundary and
the elliptic solution in that region. In other words, we need to solve a free boundary
problem for the elliptic phase of the solution, with the transonic shock as a free
boundary. Since the type of equations depends on the solution itself, the ellipticity
in the region is a part of the results to be established. We remark that, in some
other problems involving shocks, FBPs also need to be solved in order to find the
hyperbolic part of the solution, which is beyond the scope of this paper.

For several problems under our discussion that follows, the PDEs involved are
single second-order quasilinear PDEs, whose coefficients and types (elliptic, hyper-
bolic, or mixed) depend on the gradient of the solution. In the other problems, the
PDEs are first-order nonlinear systems, whose types are hyperbolic or composite-
mixed elliptic–hyperbolic, and are determined by the solution only. In all the prob-
lems, the PDEs (or parts of the systems) are expected to be elliptic for our solu-
tions in the regions determined by the free boundary problems. That is, we solve
an expected elliptic free boundary problem. However, the available methods and
approaches of elliptic FBPs do not directly apply to our problems, such as the varia-
tional methods of Alt–Caffarelli [1] and Alt–Caffarelli–Friedman [2–4], the Harnack
inequality approach of Caffarelli [10–12], and other methods and approaches in
many further works. The main reason is that the type of equations needs to be first
controlled in order to apply these methods, which requires some strong estimates a
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priori. To overcome the difficulties, we exploit the global structure of the problems,
which allows us to derive certain properties of the solution (such as the monotonic-
ity) so that the type of equations and the geometry of the problem can be controlled.
With this, we solve the free boundary problem by the iteration procedure.

Note that the existence of multiple wild solutions for the Cauchy problem of the
compressible Euler equations has been shown; see [50, 71] and the references cited
therein for both the isentropic and full Euler cases. In this paper, we focus on the
solutions of specific structures motivated by underlying physics; for these solutions,
the uniqueness can be shown for all the cases as we discuss in what follows. Since
we are interested in the solutions of specific structures, we construct the solution
in a carefully chosen class of solutions, called admissible solutions. This class of
solutions needs to be defined with two somewhat opposite features: the conditions
need not only to be flexible enough so that this class contains all possible solutions
of the problem which are of the desired structure, but also to be rigid enough to
force the desired structure of the solutions with the sufficient analytic and geometric
control such that the expected estimates for these solutions can be derived, so that
eventually a solution can be constructed in this class by the iteration procedure.
In order to define such a class, we start with the solutions near some background
solutions:

(i) To make sure that the solutions obtained are still in the same desired structure
via careful estimates, which is the structure of transonic shock solutions in our
application.

(ii) To gain the insight and motivation for the structure and properties of the
solutions that are not near the background solution but have the required
configuration to form the conditions on which the a priori estimates and fixed
point argument are based.

In several problems, we consider only the solutions near the background solution,
as in Secs. 2 and 3 in what follows. In the other problems, say in Secs. 4 and 5 , we
carry out both steps described above and construct admissible solutions which are
not close to any known background solution.

Furthermore, we emphasize that the elliptic and hyperbolic regions may be
separated not only by shocks, which are discontinuity fronts of physical variables
such as the velocity and the density, but also by sonic curves/surfaces where the
type of equations changes continuously in the physical variables, as pointed out
earlier. This means that the ellipticity and hyperbolicity degenerate near the sonic
curves/surfaces. This presents additional difficulties in the analysis of such solutions.
Moreover, the sonic curves/surfaces may intersect the transonic shocks (see e.g.
Fig. 4, point P1) so that, near such points, the analysis of solutions is even more
involved.

The organization of this paper is as follows: In Sec. 2, we start with our pre-
sentation of MD transonic shocks and free boundary problems for the compressible
Euler equations for potential flow in a setup as simple as possible, and show how
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a transonic shock problem can be formulated as a free boundary problem for the
corresponding nonlinear PDEs of mixed elliptic–hyperbolic types. Then we describe
an efficient nonlinear method and related ideas and techniques, first developed
in [29], with focus on the key points in solving such free boundary problems through
this simplest setup. In Sec. 3, we describe how they can be applied to establish the
existence, stability, and asymptotic behavior of 2D steady transonic flows with
transonic shocks past curved wedges for the full Euler equations, by reformulating
the problems as free boundary problems via two different approaches. In Sec. 4,
we describe how the nonlinear method and related ideas and techniques presented
in Secs. 2–3 can be extended to the case of self-similar shock reflection/diffraction
for the compressible Euler equations for potential flow, including the von Neu-
mann problem for shock reflection–diffraction and the Prandtl–Meyer problem for
unsteady supersonic flow onto solid wedges, where the solutions have the sonic arcs
in addition to the transonic shocks. In Sec. 5, we discuss some recent developments
in the analysis of geometric properties of transonic shocks as free boundaries in the
2D self-similar coordinates for compressible fluid flows with focus on the convexity
properties of the self-similar transonic shocks obtained in Sec. 4.

2. Multidimensional Transonic Shocks and Free Boundary Problems
for the Steady Euler Equations for Potential Flow

For clarity, we start with our presentation of MD transonic shocks and free boundary
problems for the compressible Euler equations in a setup as simple as possible, and
show how a transonic shock problem can be formulated as a free boundary problem
for the corresponding nonlinear PDEs of mixed elliptic–hyperbolic type. Then we
describe a method, first developed in [29], with focus on the key points to solve
such free boundary problems through this simplest setup.

The steady Euler equations for potential flow, consisting of the conservation law
of mass and the Bernoulli law for the velocity, can be written as the following second-
order nonlinear PDE of mixed elliptic–hyperbolic type for the velocity potential
ϕ : Rd → R (i.e. u = Dϕ is the velocity):

div(ρ(|Dϕ|2)Dϕ) = 0 (2.1)

by scaling so that the density function ρ(q2) has the form:

ρ(q2) =
(

1 − γ − 1
2

q2
) 1

γ−1

, (2.2)

where γ > 1 is the adiabatic exponent and D := (∂x1 , . . . , ∂xd
) is the gradient with

respect to x = (x1, . . . , xd) ∈ Rd.
Equation (2.1) can be written in the non-divergence form

d∑
i,j=1

(
ρ(|Dϕ|2)δij + 2ρ′(|Dϕ|2)ϕxiϕxj

)
ϕxixj = 0, (2.3)
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where the coefficients of the second-order nonlinear PDE (2.3) depend on Dϕ, the
gradient of the unknown function ϕ. The nonlinear PDE (2.1), or equivalently (2.3)
for smooth solutions, is strictly elliptic at Dϕ with |Dϕ| = q if

ρ(q2) + 2q2ρ′(q2) > 0, (2.4)

and is strictly hyperbolic if

ρ(q2) + 2q2ρ′(q2) < 0. (2.5)

In fluid dynamics, the elliptic regions of Eq. (2.1) correspond to the subsonic flow,
the hyperbolic regions of (2.1) to the supersonic flow, and the regions with ρ(q2)+
2q2ρ′(q2) = 0 for q = |Dϕ| to the sonic flow.

2.1. Steady transonic shocks and free boundary problems

Let Ω ⊂ Rd be a domain (i.e. simply connected open subset). A function ϕ ∈
W 1,∞(Ω) is a weak solution of (2.1) in Ω if

(i) |Dϕ(x)| ≤ √
2/(γ − 1) a.e. x ∈ Ω, that is, the physical region so that

ρ(|Dϕ(x)|2) is well defined via (2.2) for a.e. x ∈ Ω;
(ii) for any test function ζ ∈ C∞

0 (Ω),

∫
Ω

ρ(|Dϕ|2)Dϕ ·Dζ dx = 0. (2.6)

We are interested in the weak solutions with shocks (i.e. the surfaces of jump
discontinuity of Dϕ of the solution ϕ with codimension one) satisfying the physical
entropy condition that is consistent with the Second Law of Thermodynamics in
Continuum Physics. More precisely, let Ω+ and Ω− be open nonempty subsets of
Ω such that

Ω+ ∩ Ω− = φ, Ω+ ∪ Ω− = Ω

and S := ∂Ω+\∂Ω. Let ϕ ∈ W 1,∞(Ω) be a weak solution of (2.1) so that ϕ ∈
C2(Ω±) ∩ C1(Ω±) and Dϕ has a jump across S.

We now derive the necessary conditions on S that is a C1-surface of codimension
one. First, the requirement that ϕ is in W 1,∞(Ω) yields curl(Dϕ) = 0 in the sense
of distributions, which implies

ϕ+
τ = ϕ−

τ on S, (2.7)
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where

ϕ±
τ := Dϕ± − (Dϕ± · ν)ν

are the trace values of the tangential gradients of ϕ on S in the tangential space
with (d − 1)-dimension on the Ω± sides, respectively, and ν is the unit normal to
S from Ω− to Ω+. Then, we simply write ϕτ := ϕ±

τ on S and choose

ϕ+ = ϕ− on S (2.8)

to be consistent with the W 1,∞-requirement of ϕ.
Now, for ζ ∈ C∞

0 (Ω), we use (2.6) to compute

0 =
(∫

Ω+
+
∫

Ω−

)
ρ(|Dϕ|2)Dϕ ·Dζ dx

= −
∫
∂Ω+

ρ(|Dϕ|2)Dϕ · ν ζ dHd−1 +
∫
∂Ω−

ρ(|Dϕ|2)Dϕ · ν ζ dHd−1

=
∫
S

(− ρ(|Dϕ+|2)Dϕ+ · ν + ρ(|Dϕ−|2)Dϕ− · ν)ζ dHd−1,

where Hd−1 is the (d−1)-D Hausdorff measure, i.e. the surface area measure. Thus,
the other condition on S, which measures the trace jump of the normal derivative
of ϕ across S, is

ρ(|Dϕ+|2)ϕ+
ν = ρ(|Dϕ−|2)ϕ−

ν on S, (2.9)

where ϕ±
ν = Dϕ± · ν are the trace values of the normal derivative of ϕ along S on

the Ω± sides, and

ρ(|Dϕ±|2) =
(

1 − γ − 1
2

(|ϕ±
τ |2 + |ϕ±

ν |2
)) 1

γ−1

,

respectively.
Conditions (2.8)–(2.9) are called the Rankine–Hugoniot conditions for potential

flow in fluid dynamics. On the other hand, it can also be shown that any ϕ ∈
C2(Ω±) ∩ C1(Ω±) that is a C2-solution of (2.1) in Ω±, respectively, such that Dϕ
has a jump across S satisfying the Rankine–Hugoniot conditions (2.8)–(2.9), must
be a weak solution of (2.1) in the whole domain Ω. Therefore, the necessary and
sufficient conditions for ϕ ∈ C2(Ω±) ∩ C1(Ω±) that is a solution of (2.1) in Ω±,
respectively, to be a weak solution of (2.1) in the whole domain Ω are the Rankine–
Hugoniot conditions (2.8)–(2.9).

For given K > 0, consider the function

ΦK(p) :=
(
K − γ − 1

2
p2

) 1
γ−1

p for p ∈ [0,
√

2K/(γ − 1)]. (2.10)
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Then ΦK ∈ C([0,
√

2K/(γ − 1)]) and

ΦK(p) > 0 for p ∈ (0,
√

2K/(γ − 1)), ΦK(0) = ΦK(
√

2K/(γ − 1)) = 0,

(2.11)

0 < Φ′
K(p) ≤ K

1
γ−1 for p ∈ (0, pKsonic), (2.12)

Φ′
K(p) < 0 for p ∈ (pKsonic,

√
2K/(γ − 1)), (2.13)

Φ
′′
K(p) < 0 for p ∈ (0, pKsonic], (2.14)

where

pKsonic :=
√

2K/(γ + 1). (2.15)

By direct calculation, condition (2.4) is equivalent to Φ′
1(q) > 0, and condition

(2.5) is equivalent to Φ′
1(q) < 0. Thus, using (2.12)–(2.13), we obtain that PDE (2.1)

is strictly elliptic at Dϕ if |Dϕ| < p1
sonic and is strictly hyperbolic if |Dϕ| > p1

sonic,
where we have used notation (2.15).

Suppose that ϕ(x) is a solution satisfying

|Dϕ| < p1
sonic =

√
2/(γ + 1) in Ω+, |Dϕ| > p1

sonic in Ω−, (2.16)

and

Dϕ± · ν > 0 on S, (2.17)

besides (2.8) and (2.9). Then ϕ(x) is a transonic shock solution with transonic shock
S that divides the subsonic region Ω+ from the supersonic region Ω−. In addition,
ϕ(x) satisfies the physical entropy condition (see [52]; also see [53, 73]):

ρ(|Dϕ−|2) < ρ(|Dϕ+|2), (2.18)

which implies, by (2.17), that the density ρ increases in the flow direction; that is,
the transonic shock solution is an entropy solution. Note that Eq. (2.1) is elliptic
in the subsonic region Ω+ and hyperbolic in the supersonic region Ω−.

For clarity of presentation of the nonlinear method, first developed in [29], we
focus first on the free boundary problem in the simplest setup, while the method
and related ideas and techniques have been applied to more general free boundary
problems involving transonic shocks for the nozzle problems and other important
problems, some of which will be discussed in Secs. 3–5.

Let (x′, xd) be the coordinates of Rd with x′ = (x1, . . . , xd−1) ∈ Rd−1 and
xd ∈ R. From now on, in this section, we focus on Ω := (0, 1)d−1 × (−1, 1) for
simplicity, without loss of our main objectives.

Let q− ∈ (p1
sonic,

√
2/(γ − 1)) and ϕ−

0 (x) := q−xd. Then ϕ−
0 is a supersonic

solution in Ω. From (2.11)–(2.14), there exists a unique q+ ∈ (0, p1
sonic) such that(

1 − γ − 1
2

(q+)2
) 1

γ−1

q+ =
(

1 − γ − 1
2

(q−)2
) 1

γ−1

q−. (2.19)
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In particular, q+ < q−. Define ϕ+
0 (x) := q+xd in Ω. Then the function

ϕ0(x) = min(ϕ+
0 (x), ϕ−

0 (x)) (2.20)

is a transonic shock solution in Ω, in which Ω−
0 = {xd ≤ 0} ∩ Ω and Ω+

0 = {xd ≥
0} ∩ Ω are the supersonic and subsonic regions of ϕ0(x), respectively. Also, the
boundary condition: (ϕ0)ν = 0 holds on ∂(0, 1)d−1 × [−1, 1].

We start with perturbations of the background solution ϕ0(x) defined in (2.20).
We use the following Hölder norms: For α ∈ (0, 1) and any non-negative integer k,

[u]k,0,Ω =
∑
|β|=k

sup
x∈Ω

|Dβu(x)|, [u]k,α,Ω =
∑
|β|=k

sup
x,y∈Ω,x �=y

|Dβu(x) −Dβu(y)|
|x− y|α ,

‖u‖k,0,Ω =
k∑
j=0

[u]j,0,Ω, ‖u‖k,α,Ω = ‖u‖k,0,Ω + [u]k,α,Ω, (2.21)

where β = (β1, . . . , βd), βl ≥ 0 integers, Dβ = ∂β1
x1

· · ·∂βd
xd

, and |β| = β1 + · · · + βd.
Then the transonic shock problem can be formulated as the following problem:

Problem 2.1. Given a supersonic solution ϕ− of (2.1) in Ω, which is a C2,α-
perturbation of ϕ−

0 :

‖ϕ− − ϕ−
0 ‖2,α,Ω ≤ σ (2.22)

for some α ∈ (0, 1) with small σ > 0 and satisfies

ϕ−
ν = 0 on ∂(0, 1)d−1 × [−1, 1], (2.23)

find a transonic shock solution ϕ in Ω such that

ϕ = ϕ− in Ω− := Ω\Ω+,

where Ω+ := {x ∈ Ω : |Dϕ(x)| < p1
sonic} is the subsonic region of ϕ, which is the

complementary set of the supersonic region of ϕ in Ω, and⎧⎪⎪⎪⎨⎪⎪⎪⎩
(ϕ,ϕxn) = (ϕ−, ϕ−

xn
) on (0, 1)d−1 × {−1},

ϕ = ϕ+
0 on (0, 1)d−1 × {1},

ϕν = 0 on ∂(0, 1)d−1 × [−1, 1].

(2.24)

Since ϕ = ϕ− in Ω−, |Dϕ| < p1
sonic < |Dϕ−| in Ω+, |Dϕ−| ∼ ∂xd

ϕ− > p1
sonic in

Ω, and it is expected that Ω+ = {xd > f(x′)} ∩ Ω and |Dϕ| ∼ ∂xd
ϕ < p1

sonic in Ω+

with (2.8) across the transonic shock S = {xd = f(x′)} ∩ Ω, then ϕ should satisfy

ϕ(x) ≤ ϕ−(x) for x ∈ Ω. (2.25)

This motivates the following reformulation of Problem 2.1 as a free boundary prob-
lem for the subsonic (elliptic) part of the solution.
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Problem 2.2 (Free Boundary Problem). Find ϕ ∈ C(Ω) such that

(i) ϕ satisfies (2.25) in Ω and (2.24) on ∂Ω;
(ii) ϕ ∈ C2,α(Ω+) is a solution of (2.1) in Ω+ = {x ∈ Ω : ϕ(x) < ϕ−(x)}, the

non-coincidence set ;
(iii) the free boundary S = ∂Ω+ ∩ Ω is given by xd = f(x′) for x′ ∈ (0, 1)d−1 so

that Ω+ = {xd > f(x′) : x′ ∈ (0, 1)d−1} with f ∈ C2,α([0, a]d−1);
(iv) the free boundary condition (2.9) holds on S.

In the free boundary problem (Problem 2.2) above, phase ϕ− is not required
to be a solution of (2.1) and ϕ is not necessary to be subsonic in Ω+, although
we require the subsonicity in Problem 2.1 so that the free boundary is a transonic
shock.

It is proved in [29] that, if perturbation ϕ− − ϕ−
0 is small enough in C2,α, then

the free boundary problem (Problem 2.2) has a solution that is subsonic on Ω+, so
that Problem 2.1 has a transonic shock solution. Furthermore, the transonic shock
is stable under any small C2,α-perturbation of ϕ−.

Theorem 2.1 ([29]). Let q+ ∈ (0, p1
sonic) and q− ∈ (p1

sonic,
√

2/(γ − 1)) sat-
isfy (2.19). Then there exist positive constants σ0, C1, and C2 depending only on
(q+, d, γ) and Ω such that, for every σ ≤ σ0 and any function ϕ− satisfying (2.22)–
(2.23), there exists a unique solution ϕ of the free boundary problem, Problem 2.2,
satisfying

‖ϕ− ϕ+
0 ‖2,α,Ω+ ≤ C1σ

and |Dϕ| < p1
sonic in Ω+. Moreover, Ω+ = {xd > f(x′)} ∩ Ω with f : Rd−1 → R

satisfying

‖f‖2,α,Rd−1 ≤ C2σ, Dx′f(x′) = 0 on ∂(0, 1)d−1,

that is, the free boundary S = {(x′, xd) : xd = f(x′),x′ ∈ Rd−1}∩Ω is in C2,α and
orthogonal to ∂Ω at their intersection points.

In particular, we obtain

Corollary 2.1. Let q± be as in Theorem 2.1, and let σ0 be the constant defined
in Theorem 2.1. If ϕ−(x) is a supersonic solution of (2.1) satisfying (2.22)–(2.23)
with σ ≤ σ0, then there exists a transonic shock solution ϕ of Problem 2.1 with
shock S = {(x′, xd) : xd = f(x′),x′ ∈ Rd−1} ∩ Ω such that ϕ and f satisfy the
properties stated in Theorem 2.1.

Indeed, under the conditions of Corollary 2.1, solution ϕ of Problem 2.2 obtained
in Theorem 2.1, along with the free boundary S = {(x′, xd) : xd = f(x′),x′ ∈
Rd−1} ∩ Ω, forms a transonic shock solution of Problem 2.1.

The following features of Eq. (2.1) and the free boundary condition (2.9) are
employed in the proof of Theorem 2.1.
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(i) The nonlinear equation (2.1) is uniformly elliptic only if |Dϕ| < p1
sonic − ε in

Ω+ for some ε > 0.
(ii) |Dϕ+| = (|ϕ+

ν |2 + |ϕτ |2)1/2 on S is subsonic only if ϕτ is sufficiently small.
(iii) The free boundary condition (2.9) is uniformly non-degenerate (i.e. ϕ−

ν − ϕ+
ν

is bounded from below by a positive constant on S) only if ϕ−
ν > pKsonic + ε on

S for some ε > 0 with K = 1 − γ−1
2 |ϕτ |2.

By (2.22), these conditions hold if, for any x ∈ S, the unit normal ν(x) to S is
sufficiently close to being orthogonal to {xd = 0}.

2.2. A nonlinear method for solving the free boundary problems

for nonlinear PDEs of mixed elliptic–hyperbolic type

We now describe a nonlinear method and related ideas and techniques, developed
first in [29], for the construction of solutions of the free boundary problems for
nonlinear PDEs of mixed elliptic–hyperbolic type, through Problem 2.2 as the sim-
plest setup. We present the version of the method that is restricted to this setup.
The key ingredient is an iteration scheme, based on the non-degeneracy of the free
boundary condition: the jump of the normal derivative of solutions across the free
boundary has a strict lower bound. Since the PDE is of mixed type, we make a
cutoff (truncation) of the nonlinearity near the value related to the background
solution in order to fix the type of equation (to make it elliptic everywhere) and, at
the fixed point of the iteration, we remove the cutoff eventually by a required esti-
mate. The iteration set consists of the functions close to the background solution —
in the C2,α-norm in the present case. Then, for each function from the iteration
set, the non-degeneracy allows of using one of the Rankine–Hugoniot conditions,
equality (2.8), to define the iteration free boundary, which is a smooth graph. In
domain Ω+ determined by the iteration free boundary, we solve a boundary value
problem with the truncated PDE, the condition on the shock derived from the other
Rankine–Hugoniot condition (2.9) by a truncation (similar to the truncation of the
PDE) and other appropriate modifications to achieve the uniform obliqueness, and
the same boundary conditions as in the original problem for the iteration problem
on the other parts of the boundary of the iteration domain. The solution of this
iteration problem defines the iteration map. We exploit the estimates for the itera-
tion problem to prove the existence of a fixed point of the iteration map, and then
we show that a fixed point is a solution of the original problem.

In some further problems, we look for the solutions that are not close to a known
background solution. Some of these problems, as well as the corresponding versions
of the nonlinear method described above, are discussed in Sec. 4. A related method
for the construction of perturbations of transonic shocks for the steady transonic
small disturbance model was proposed in [16], in which the type of equation depends
on the solution only (but not on its gradient) so that the ellipticity can be controlled
by the maximum principle; also see [15].
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2.2.1. Subsonic truncations — shiffmanization

In order to solve the free boundary problem, we first reformulate Problem 2.2 as
a truncated one-phase free boundary problem, motivated by the argument intro-
duced originally in [101], now so-called the shiffmanization (cf. [74]); also see [4, pp.
87–90]. This is achieved by modifying both the nonlinear equation (2.1) and the
free boundary condition (2.9) to make the equation uniformly elliptic and the free
boundary condition non-degenerate. Then we solve the truncated one-phase free
boundary problem with the modified equation in the downstream region, the modi-
fied free boundary condition, and the given hyperbolic phase in the upstream region.
By a careful gradient estimate later on, we prove that the solution in fact solves
the original problem. We note that, for the steady potential flow equation (2.1), the
coefficients of its non-divergent form (2.3) depend on Dϕ, so the type of equation
depends on Dϕ.

We first recall that the ellipticity condition for (2.1) at |Dϕ| = q is (2.4), which
is equivalent to

Φ′
1(q) > 0, (2.26)

where ΦK(p) is the function defined in (2.10). By (2.12)–(2.13), inequality (2.26)
holds for q ∈ (0, p1

sonic).
The truncation is done by modifying Φ1(q) so that the new function Φ̃1(q) sat-

isfies (2.26) uniformly for all q > 0 and, around q+, Φ̃1(q) = Φ1(q). More precisely,
the procedure consists of the following steps:

(1) Denote ε := p1sonic−q+
2 . Let y = c0q+c1 be the tangent line of the graph of y =

Φ1(q) at q = p1
sonic−ε. Then, using (2.12)–(2.13), we obtain c0 = Φ′

1(p1
sonic−ε) > 0.

Define Φ̃1 : [0,∞) → R as

Φ̃1(q) =

⎧⎨⎩Φ1(q) if 0 ≤ q < p1
sonic − ε,

c0q + c1 if q > p1
sonic − ε,

(2.27)

which satisfies Φ̃1 ∈ C1,1([0,∞)).

(2) Define

ρ̃(s) =
Φ̃1(

√
s)√
s

for s ∈ [0,∞). (2.28)

Then ρ̃ ∈ C1,1([0,∞)) and

ρ̃(q2) = ρ(q2) if 0 ≤ q < p1
sonic − ε. (2.29)

By (2.12)–(2.14) and the definition of Φ̃1 in (2.27),

0 < c0 = Φ′
1(p

1
sonic − ε) ≤ Φ̃′

1(q) = ρ̃(q2) + 2q2ρ̃′(q2) ≤ C for q ∈ (0,∞)

for some constant C > 0. Then the equation

L̃ϕ := div(ρ̃(|Dϕ|2)Dϕ) = 0 (2.30)

is uniformly elliptic, with ellipticity constants depending only on q+ and γ.
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(3) We also do the corresponding truncation of the free boundary condition
(2.9):

ρ̃(|Dϕ|2)ϕν = ρ(|Dϕ−|2)Dϕ− · ν on S. (2.31)

On the right-hand side of (2.31), we use the non-truncated function ρ since ρ �= ρ̃

on the range of |Dϕ−|2. Note that (2.31), with the right-hand side considered as
a known function, is the conormal boundary condition for the uniformly elliptic
equation (2.30).

(4) Introduce the function:

u := ϕ− − ϕ.

Then, by (2.25), the problem is to find u ∈ C(Ω) with u ≥ 0 such that

(i) u ∈ C2,α(Ω+) is a solution of

divA(Du,x) = F (x) in Ω+ := {u > 0} ∩ Ω (the non-coincidence set),

(2.32)

A(Du,x) · ν = G(ν,x) on S := ∂Ω+\∂Ω, (2.33)

and the boundary condition on ∂Ω determined by (2.24) and ϕ−(x):⎧⎪⎪⎪⎨⎪⎪⎪⎩
u = 0 on (0, 1)d−1 × {−1},
u = ϕ− − ϕ+

0 on (0, 1)d−1 × {1},
uν = 0 on ∂(0, 1)d−1 × [−1, 1],

(2.34)

where ν is the unit normal to S towards the unknown phase and

A(P,x) = ρ̃(|Dϕ−(x) − P |2)(Dϕ−(x) − P )

− ρ̃(|Dϕ−(x)|2)Dϕ−(x) for P ∈ Rd,

F (x) = −div(ρ̃(|Dϕ−(x)|2)Dϕ−(x)),

G(ν,x) =
(
ρ(|Dϕ−(x)|2) − ρ̃(|Dϕ−(x)|2))Dϕ−(x) · ν.

Note that condition (2.23) has been used to determine the third condition in
(2.34).

(ii) The free boundary S := ∂Ω+∩Ω = {xd = f(x′) : x′ ∈ (0, 1)d−1} so that Ω+ =
{xd > f(x′)}∩Ω with f ∈ C2,α([0, a]d−1) andDx′f = 0 on ∂((0, 1)d−1×[−1, 1]).

2.2.2. Domain extension

We then extend domain Ω of the truncated free boundary problem in Sec. 2.2.1
above to domain Ωe, so that the whole free boundary lies in the interior of the
extended domain. This is possible owing to the simple geometry of the domain, as
considered in this section.
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Note that, for a function φ ∈ C2,α(Ω) with Ω := (0, 1)d−1 × (−1, 1) satisfying

φν = 0 on ∂(0, 1)d−1 × [−1, 1], (2.35)

we can extend φ to Rd−1 × [−1, 1] so that the extension (still denoted) φ satisfies

φ ∈ C2,α(Rd−1 × [−1, 1]),

and, for every m = 1, . . . , n− 1, and k = 0,±1,±2, . . . ,

φ(x1, . . . , xm−1, k − z, xm+1, . . . , xd) = φ(x1, . . . , xm−1, k + z, xm+1, . . . , xd),

(2.36)

that is, φ is symmetric with respect to every hyperplane {xm = k}. Indeed, for
k = (k1, . . . , kd−1, 0) with integers kj , j = 1, . . . , d− 1, we define

φ(x + k) = φ(η(x1, k1), . . . , η(xd−1, kd−1), xd) for x ∈ (0, 1)d−1 × [−1, 1]

with

η(t, k) =

⎧⎨⎩t if k is even,

1 − t if k is odd.

It follows from (2.36) that φ(x′, xd) is 2-periodic in each variable of (x1, . . . , xd−1):

φ(x + 2em) = φ(x) for x ∈ Rd−1 × [−1, 1], m = 1, . . . , d− 1,

where em is the unit vector in the direction of xm.
Thus, with respect to the 2-periodicity, we can consider φ as a function on

Ωe := Td−1 × [−1, 1], where Td−1 is a flat torus in d − 1 dimensions with its
coordinates given by cube (0, 2)d−1. Note that (2.36) represents an extra symmetry
condition, in addition to φ ∈ C2,α(Td−1 × [−1, 1]), and (2.36) implies (2.35).

Then we can extend ϕ− in the same way by (2.23), that is, ϕ− ∈ C2,α(Ωe)
satisfies (2.36). Note that ϕ±

0 can also be considered as the functions in Ωe satisfying
(2.36), since ϕ±

0 (x) = q±xd in Rd−1 × [−1, 1] which are independent of x′.
Therefore, we have reduced the transonic shock problem, Problem 2.2, into the

following free boundary problem.

Problem 2.3. Find u ∈ C(Ωe) with u ≥ 0 such that

(i) u ∈ C2,α(Ω+
e ) is a solution of (2.32) in Ω+

e := {u(x) > 0} ∩ Ωe, the non-
coincidence set ;

(ii) the first two conditions in (2.34) hold on ∂Ωe, i.e. u = 0 on ∂Ωe ∩ {xn = −1}
and

u = ϕ− − ϕ+
0 on ∂Ωe ∩ {xn = 1}; (2.37)

(iii) the free boundary S = ∂Ω+ ∩ Ωe is given by xd = f(x′) for x′ ∈ Td−1 so that
Ω+ = {xd > f(x′) : x′ ∈ Td−1} with f ∈ C2,α(Td−1);

(iv) the free boundary condition (2.33) holds on S.
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As indicated in Sec. 1, one of the main difficulties for solving the modified free
boundary problem, Problem 2.3, is that the methods presented in the previous
works for elliptic free boundary problems do not directly apply. Indeed, Eq. (2.32)
is quasilinear, uniformly elliptic, but does not have a clear variational structure,
while G(ν,x) in the free boundary condition (2.33) depends on ν. Because of these
features, the variational methods in [1, 3] do not directly apply to Problem 2.3.
Moreover, the nonlinearity in our problem makes it difficult to apply the Harnack
inequality approach of Caffarelli in [10–12]. In particular, a boundary comparison
principle for positive solutions of elliptic equations in Lipschitz domains is unavail-
able in our case that the nonlinear PDEs are not homogeneous with respect to
(D2u,Du, u) here. Therefore, a different method is required to overcome these dif-
ficulties for solving Problem 2.3.

2.2.3. Iteration scheme for solving free boundary problems

The iteration scheme, developed in [29], is based on the non-degeneracy of the free
boundary condition: the jump of the normal derivative of a solution across the free
boundary has a strictly positive lower bound.

Denote u0 := ϕ− − ϕ+
0 . Note that u0 satisfies the nondegeneracy condition:

∂xd
u0 = q− − q+ > 0 in Ωe. Assume that (2.22) holds with σ ≤ q−−q+

10 . Let a

function w on Ωe be given such that ‖w − (ϕ− − ϕ+
0 )‖C2,α(Ωe)

≤ q−−q+
10 , which

implies that w satisfies the nondegeneracy condition: ∂xd
w ≥ q−−q+

2 > 0 in Ωe.
Define domain Ω+(w) := {w > 0} ⊂ Ωe. Then

Ω+(w) = {xd > f(x′) : x′ ∈ Td−1},
S(w) := ∂Ω+(w)\∂Ωe = {xd = f(x′) : x′ ∈ Td−1}

with f ∈ C2,α(Td−1). We solve the oblique derivative Problem (2.32)–(2.33) and
(2.37) in Ω+(w) to obtain a solution u ∈ C2,α(Ω+(w)). However, u is not identically
zero on S(w) in general, so that u is not a solution of the free boundary problem.
Next, the estimates for Problem (2.32)–(2.33) and (2.37) in Ω+(w) show that ‖u−
(ϕ− −ϕ+

0 )‖C2,α(Ω+(w)) is small. Then, we extend u to the whole domain Ωe so that
‖u− (ϕ− −ϕ+

0 )‖C2,α(Ωe)
is small. This defines the iteration map: w → u. The fixed

point u = w of this process determines a solution of the free boundary problem,
since u is a solution of (2.32)–(2.33) and (2.37) in Ω+(u), and u satisfies u = w > 0
on Ω+(u) = Ω+(w) := {w > 0} and u = w = 0 on S := ∂Ω+(w)\∂Ωe. Then it
remains to show the existence of a fixed point. Since the right-hand side of the free
boundary condition (2.33) depends on ν, we need to exploit the structure of our
problem, in addition to the elliptic estimates, to obtain the better estimates for
the iteration and prove the existence of a fixed point. More precisely, the nonlinear
method can be described in the following five steps:
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(1) Iteration set. Let M ≥ 1. Set

KM :=
{
w ∈ C2,α(Ωe) : w satisfies (2.36) and ‖w − (ϕ− − ϕ+

0 )‖2,α,Ωe ≤Mσ
}
,

(2.38)

where ϕ+
0 (x) = q+xd. Then KM is convex and compact in C2,β(Ωe) for 0 < β < α.

Let w ∈ KM . Since q− > q+, it follows that, if

σ ≤ q− − q+

10(M + 1)
, (2.39)

then combining (2.22) and (2.38) with (2.39) implies

wxd
(x) ≥ q− − q+

2
> 0. (2.40)

By the implicit function theorem, Ω+(w) := {w(x) > 0} ∩ Ωe has the form

Ω+(w) = {xd > f(x′) : x′ ∈ Td−1}, ‖f‖2,α,Td−1 ≤ CMσ < 1, (2.41)

where C depends on q− − q+, and the last inequality is obtained by choosing small
σ. The corresponding unit normal on S(w) := {xd = f(x′)} is

ν(x′) =
(−Dx′f(x′), 1)√
1 + |Dx′f(x′)|2 ∈ C1,α(Td−1; Sd−1)

with

‖ν − ν0‖1,α,Rd−1 ≤ CMσ, (2.42)

where ν0 is defined by

ν0 :=
D(ϕ−

0 − ϕ+
0 )

|D(ϕ−
0 − ϕ+

0 )| = (0, . . . , 0, 1)�. (2.43)

Also, ν(·) can be considered as a function on S(w). Since Ω+(w) = {w(x) > 0}∩Ωe,
from the definition of f(x′) in (2.41), it follows that, for x ∈ S(w),

ν(x) =
Dw(x)
|Dw(x)| . (2.44)

By the definition of KM and (2.39) with (2.22), ν(x) can be extended to Ωe via
formula (2.44) and

‖ν − ν0‖1,α,Ωe ≤ CMσ (2.45)

with C = C(q+, q−). Motivated by the free boundary condition (2.31), we define a
function Gw on Ωe:

Gw(x) :=
(
ρ(|Dϕ−(x)|2) − ρ̃(|Dϕ−(x)|2))Dϕ−(x) · ν(x), (2.46)

where ν(·) is defined by (2.44).
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We now solve the following fixed boundary value problem for u in domain Ω+(w):

divA(Du,x) = F (x) in Ω+ := {w > 0}, (2.47)

A(Du,x) · ν = Gw(x) on S(w) := ∂Ω+(w)\∂Ωe, (2.48)

u = ϕ− − q+ on {xd = 1} = ∂Ω+(w)\S(w), (2.49)

and show that its unique solution u can be extended to the whole domain Ωe so
that u ∈ KM .

(2) Existence and uniqueness of the solution for the fixed boundary value
problem (2.47)–(2.49). We establish the existence and uniqueness of solution u
for Problem (2.47)–(2.49) and show that u is close in C2,α(Ω+(w)) to the unper-
turbed subsonic solution ϕ− − ϕ+

0 : For M ≥ 1, there is σ0 > 0, depending only on
(M, q+, d, γ,Ω), such that, if σ ∈ (0, σ0), ϕ− satisfies (2.22), and w ∈ KM , there
exists a unique solution u ∈ C2,α(Ω+(w)) of Problem (2.47)–(2.49) satisfying (2.36)
and

‖u− (ϕ− − ϕ+
0 )‖2,α,Ω+(w) ≤ Cσ, (2.50)

where C depends only on (q+, d, γ,Ω) and is independent of M , w ∈ KM , and
σ ∈ (0, σ0).

To achieve this, it requires to combine the existence arguments with careful
Schauder estimates for nonlinear oblique boundary value problems for nonlinear
elliptic PDEs, based on the results in [61, 80, 81, 103] and the references cited
therein. Moreover, the independence of C from M is achieved by employing a can-
cellation based on the structure in (2.48) with the explicit expressions of A(Du,x)
and Gw(x) and on the Rankine–Hugoniot condition for the background solution.

(3) Construction and continuity of the iteration map. We now construct
the iteration map by an extension of the unique solution of (2.47)–(2.49), which
satisfies (2.50), and show the continuity of the iteration map: Let w ∈ KM , and let
u(x) be a solution of Problem (2.47)–(2.49) in domain Ω+(w) established in Step 2
above. Then u(x) can be extended to the whole domain Ωe in such a way that this
extension, denoted as Pwu(x), satisfies the following two properties:

(i) There exists C0 > 0, which depends only on (q+, d, γ,Ω) and is independent of
(M,σ) and w(x), such that

‖Pwu− (ϕ− − ϕ+
0 )‖2,α,Ωe ≤ C0σ. (2.51)

(ii) Let β ∈ (0, α). Let wj ∈ KM converge in C2,β(Ωe) to w ∈ KM . Let uj ∈
C2,α(Ω+(wj)) and u ∈ C2,α(Ω+(w)) be the solutions of Problems (2.47)–(2.49)
for wj(x) and w(x), respectively. Then Pwjuj → Pwu in C2,β(Ωe).
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Define the iteration map J : KM → C2,α(Ωe) by

Jw := Pwu, (2.52)

where u(x) is the unique solution of Problem (2.47)–(2.49) for w(x). By (ii), J is
continuous in the C2,β(Ωe)-norm for any positive β < α.

Now we denote by u(x) both the function u(x) in Ω+(w) and its extension
Pwu(x). Choose M to be the constant C0 from (2.51). Then, for w ∈ KM , we see
that u := Jw ∈ KM if σ > 0 is sufficiently small, depending only on (q+, d, γ,Ω),
since M is now fixed. Thus, (2.52) defines the iteration map J : KM → KM and,
from (2.51), J is continuous on KM in the C2,β(Ωe)-norm for any positive β < α.

(4) Existence of a fixed point of the iteration map. We then prove the
existence of solutions of the free boundary problem, Problem 2.2.

First, in order to solve Problem 2.3, we seek a fixed point of map J . We use the
Schauder fixed point theorem (cf. [61, Theorem 11.1]) in the following setting:

Let σ > 0 satisfy the conditions in Step 2 above. Let β ∈ (0, α). Since Ωe is a
compact manifold with boundary and KM is a bounded convex subset of C2,α(Ωe),
it follows that KM is a compact convex subset of C2,β(Ωe). We have shown that
J(KM ) ⊂ KM , and J is continuous in the C2,β(Ωe)-norm. Then, by the Schauder
fixed point theorem, J has a fixed point ϕ ∈ KM .

If u(x) is such a fixed point, then

ũ(x) := max(0, u(x))

is a classical solution of Problem 2.3, and S(u) is its free boundary.
It follows that ϕ := ϕ−− ũ is a solution of Problem 2.2, provided that σ is small

enough so that (2.50) implies that |Dϕ| = |D(ϕ−−u)| < p1
sonic−ε on Ω+(u), where

ε = psonic−q+
2 defined in Sec. 2.2.1. Indeed, then (2.29) implies that ϕ(x) lies in the

non-truncated region for Eq. (2.30). Note also that the boundary condition ϕν = 0
on ∂(0, 1)d−1× [−1, 1] is satisfied because u and ϕ− satisfy (2.36) on Td−1× [−1, 1].

For such values of σ, if ϕ−(x) is a supersonic solution of (2.1) satisfying the con-
ditions stated in Problem 2.1, the defined function ϕ(x) is a solution of Problem 2.1.
Indeed, |Dϕ| = |D(ϕ−− ũ)| < p1

sonic−ε on Ω+(ϕ) := {ϕ < ϕ−} = {ũ(x) > 0} since
ũ = u on Ω+(ũ) and |Dϕ| = |Dϕ−| > p1

sonic on Ω \ Ω+(ϕ), Eq. (2.1) is satisfied in
both Ω+(ϕ) and Ω\Ω+(ϕ), and the Rankine–Hugoniot conditions (2.8)–(2.9) are
satisfied on S = ∂Ω+(ϕ)\∂Ω.

This completes the construction of the global solution. The uniqueness and
stability of the solution of the free boundary problem are obtained by using the
regularity and nondegeneracy of solutions.

Remark 2.2. For clarity, in this section, we focus on the simplest setup of the
domain as Ω = (0, 1)d−1 × (−1, 1), which can be extended directly to ΩR =
Πd−1
j=1 (0, aj) × (−1, R) for any R > 0, then to Ω∞ = Πd−1

j=1 (0, aj) × (−1,∞) by
analyzing the asymptotic behavior of the solution when R → ∞, as well as to
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Ω = Rd−1 × (−1,∞); see [29–31]. See also [46] for the extension to the isentropic
Euler case.

If the hyperbolic phase is C∞, then the solution and its corresponding free
boundary in Theorem 2.1 are also C∞. Furthermore, our results can be extended
to the problem with a steady C1,α-perturbation of the upstream supersonic flow
and/or general Dirichlet data h(x′),x′ ∈ Rd−1, at xd = 1 satisfying

‖h− ϕ+
0 ‖1,α,Rd−1 ≤ Cσ for α ∈ (0, 1).

Also, the Dirichlet data in Problem 2.2 may be replaced by the corresponding
Neumann data satisfying the global solvability condition.

The global uniqueness of piecewise constant transonic shocks in straight ducts
modulo translations was analyzed in [41, 58].

Remark 2.3. The domains in the setup of Problems 2.1–2.2 have also been
extended to MD infinite nozzles of arbitrary cross-section in [32]; also see [112, 114]
and the references cited therein for the 2D case with the downstream pressure exit.
For the analysis of geometric effects of the nozzles on the uniqueness and stability
of steady transonic shocks, see [7, 42, 76, 86, 87] and the references cited therein.

Remark 2.4. The iteration scheme can also be reformulated in a way such that
the free boundary normal ν is unknown in the iteration by replacing the known
function w in (2.44) by the unknown u, that is, by replacing ν(x) in (2.44) via

ν(x) =
Du(x)
|Du(x)| . (2.53)

Note that (2.53) coincides with (2.44) at the fixed point u = w, i.e. defines the
normal to S. Using expression (2.53) for ν in the iteration boundary condition, we
improve the regularity and structure of the boundary condition; in particular, it is
made independent of the regularity and constants in the iteration set. This is useful
in many cases, see e.g. [33]. Moreover, this allows us to obtain the compactness of
the iteration map, which has been used in [35].

This nonlinear method and related ideas and techniques described above for
free boundary problems have played a key role in many recent developments in the
analysis of MD transonic shock problems, as shown in Secs. 3–5 in what follows.

3. Two-Dimensional Transonic Shocks and Free Boundary Problems
for the Steady Full Euler Equations

We now describe how the nonlinear method and related ideas and techniques pre-
sented in Sec. 2 can be applied to establish the existence, stability, and asymptotic
behavior of 2D steady transonic flows with transonic shocks past curved wedges for
the full Euler equations, by reformulating the problems as free boundary problems,
via two different approaches.

2230002-20

B
ul

l. 
M

at
h.

 S
ci

. 2
02

2.
12

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

O
X

FO
R

D
 o

n 
04

/0
8/

22
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



March 23, 2022 15:24 WSPC/1664-3607 319-BMS 2230002

MD transonic shock waves and FBPs

The 2D steady Euler equations for polytropic gases are of the form (cf. [35, 52]):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
div(ρu) = 0,

div(ρu⊗ u) + ∇p = 0,

div
(
ρu
(
E +

p

ρ

))
= 0,

(3.1)

where u = (u1, u2) is the velocity, ρ the density, p the pressure, and E = 1
2 |u|2 + e

the total energy with internal energy e.
Choose pressure p and density ρ as the independent thermodynamical variables.

Then the constitutive relations can be written as

(e, T, S) = (e(p, ρ), T (p, ρ), S(p, ρ))

governed by

TdS = de− p

ρ2
dρ,

where T and S represent the temperature and the entropy, respectively. For a
polytropic gas,

e = e(p, ρ) =
p

(γ − 1)ρ
, T = T (p, ρ) =

p

(γ − 1)cvρ
, S = S(p, ρ) = cv ln

( p
κρ

)
,

(3.2)

where γ > 1 is the adiabatic exponent, cv > 0 the specific heat at constant volume,
and κ > 0 any constant under scaling.

System (3.1) can be written as a first-order system of conservation laws:

∂x1F (U) + ∂x2G(U) = 0, U = (u, p, ρ) ∈ R4. (3.3)

Solving det(λ∇UF (U) −∇UG(U)) = 0 for λ, we obtain four eigenvalues:

λ1 = λ2 =
u2

u1
, λj =

u1u2 + (−1)jc
√|u|2 − c2

u2
1 − c2

for j = 3, 4,

where

c =
√
γp

ρ
(3.4)

is the sonic speed of the flow for a polytropic gas.
The repeated eigenvalues λ1 and λ2 are real and correspond to the two linear

degenerate characteristic families which generate vortex sheets and entropy waves,
respectively. The eigenvalues λ3 and λ4 are real when the flow is supersonic (i.e.
|u| > c), and complex when the flow is subsonic (i.e. |u| < c) in which case the
corresponding two equations are elliptic.

For a transonic flow in which both the supersonic and subsonic phases occur in
the flow, system (3.1) is of mixed-composite hyperbolic–elliptic type, which consists
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of two equations of mixed elliptic–hyperbolic type and two equations of hyperbolic
type (i.e. two transport-type equations).

In the regimes with ρ|u| > 0, from the first equation in (3.1), in any domain
containing the origin, there exists a unique stream function ψ such that

Dψ = (−ρu2, ρu1) with ψ(0) = 0. (3.5)

We use the following Lagrangian coordinate transformation:

(x1, x2) → (y1, y2) = (x1, ψ(x1, x2)), (3.6)

under which the original curved streamlines become straight. In the new coordinates
y = (y1, y2), we still denote the unknown variables U(x(y)) by U(y) for simplicity of
notation. Then the original Euler equations in (3.1) become the following equations
in divergence form: (

1
ρu1

)
y1

−
(
u2

u1

)
y2

= 0, (3.7)(
u1 +

p

ρu1

)
y1

−
(
pu2

u1

)
y2

= 0, (3.8)

(u2)y1 + py2 = 0, (3.9)(
1
2
|u|2 +

γp

(γ − 1)ρ

)
y1

= 0. (3.10)

One of the advantages of the Lagrangian coordinates is to straighten the streamlines
so that the streamline may be employed as one of the coordinates to simplify the
formulations, since the Bernoulli variable is conserved along the streamlines. Note
that the entropy is also conserved along the streamlines in the continuous part of
the flow.

3.1. Steady supersonic flow onto solid wedges

and free boundary problems

For an upstream steady uniform supersonic flow past a symmetric straight-sided
wedge (see Fig. 1):

W := {x = (x1, x2) ∈ R2 : |x2| < x1 tan θw, x1 > 0} (3.11)

whose angle θw is less than the detachment angle θdw, there exists an oblique shock
emanating from the wedge vertex. Since the upper and lower subsonic regions do
not interact with each other, it suffices to study the upper part. More precisely,
if the upstream steady flow is a uniform supersonic state, we can find the corre-
sponding constant downstream flow along the straight-sided upper wedge boundary,
together with a straight shock separating the two states. The downstream flow is
determined by the shock polar whose states in the phase space are governed by
the Rankine–Hugoniot conditions and the entropy condition; see Fig. 1. Indeed,
Prandtl in [95] first employed the shock polar analysis to show that there are two
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MD transonic shock waves and FBPs

Fig. 1. The shock polar in the u-plane and uniform steady (weak/strong) shock flows (see [22]).

possible steady oblique shock configurations when the wedge angle θw is less than
the detachment angle θdw — The steady weak shock with supersonic or subsonic
downstream flow (determined by the wedge angle that is less or larger than the
sonic angle θsw) and the steady strong shock with subsonic downstream flow, both
of which satisfy the entropy condition, provided that no additional conditions are
assigned at downstream. See also [9, 22, 52, 92, 95] and the references cited therein.

The fundamental issue — whether one or both of the steady weak and strong
shocks are physically admissible — has been vigorously debated over the past seven
decades (cf. [22, 52, 88, 100, 108, 109]). Experimental and numerical results have
strongly indicated that the steady weak shock solution would be physically admissi-
ble, as Prandtl conjectured in [95]. One natural approach to single out the physically
admissible steady shock solutions is via the stability analysis: the stable ones are
physical. See [52, 108, 109]; see also [88, 100].

A piecewise smooth solution U = (u, p, ρ) ∈ R4 separated by a front S := {x :
x2 = σ(x1), x1 ≥ 0} becomes a weak solution of the Euler equations (3.1) as in
Sec. 2.1 if and only if the Rankine–Hugoniot conditions are satisfied along S:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

σ′(x1)[ρu1] = [ρu2],

σ′(x1)[ρu2
1 + p] = [ρu1u2],

σ′(x1)[ρu1u2] = [ρu2
2 + p],

σ′(x1)
[
ρu1

(
E +

p

ρ

)]
=
[
ρu2

(
E +

p

ρ

)]
,

(3.12)

where [ · ] denotes the jump between the quantities of two states across front S as
before.

Such a front S is called a shock if the entropy condition holds along S: The
density increases in the fluid direction across S.

For given state U−, all states U that can be connected with U− through the
relations in (3.12) form a curve in the state space R4; the part of the curve whose
states satisfy the entropy condition is called the shock polar. The projection of the
shock polar onto the u-plane is shown in Fig. 1. In particular, for an upstream
uniform horizontal flow U−

0 = (u−10, 0, p
−
0 , ρ

−
0 ) past the upper part of a straight-

sided wedge whose angle is θw, the downstream constant flow can be determined by
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the shock polar (see Fig. 1). Note that the downstream flow must be parallel to the
wedge, and the upstream flow is parallel to the axis of wedge, so the angle between
the upstream and downstream flow is equal to the (half) wedge angle. According to
the shock polar, the two flow angles (or, equivalently, wedge angles) are particularly
important.

One is the detachment angle θdw such that line u2 = u1 tan θdw is tangential to
the shock polar at point T and there is no intersection between line u2 = u1 tan θw
and the shock polar when θw > θdw. For any wedge angle θw ∈ (0, θdw), there are two
intersection points of line u2 = u1 tan θw and the shock polar: one intersection point
is on arc �TH which determines velocity usg = (usg

1 , u
sg
2 ) of the downstream flow

corresponding to the strong shock, and the other intersection point is on arc�TQ
which determines velocity uwk = (uwk

1 , uwk
2 ) of the downstream flow corresponding

to the weak shock. Thus, for any wedge angle θw ∈ (0, θdw), the shock polar ensures
the existence of two attached shocks at the wedge: strong versus weak.

Since each point on the shock polar defines a downstream flow that is a constant
state, we can use (3.4) to compute its sonic speed c0 and then determine whether
this downstream state is subsonic or supersonic. It can be shown that there exists
the unique point S on the shock polar so that all downstream states are subsonic
for the points on �HS\{S}, supersonic for the points of �SQ\{S}, and sonic for
the state at S. Moreover, S lies in the interior of arc TQ. Then, denoting by θsw
the angle corresponding to point S, we see that θsw < θdw. The wedge angle θsw is
called the sonic angle. Point T divides arc�HS, which corresponds to the transonic
shocks, into the two open arcs �TS and �TH; see Fig. 1. The nature of these two
cases, as well as the case for arc �SQ, is very different. When the wedge angle θw is
between θsw and θdw, there are two subsonic solutions (corresponding to the strong
and weak shocks); while, for the wedge angle θw is smaller than θsw, there are one
subsonic solution (for the strong shock) and one supersonic solution (for the weak
shock). Such an oblique shock S0 is straight, described by x2 = s0x1 with s0 as its
slope. The question is whether the steady oblique shock solution is stable under a
perturbation of both the upstream supersonic flow and the wedge boundary.

Since we are interested in determining the downstream flow, we can restrict
the domain to the first quadrant; see Fig. 2. Fix a constant upstream flow U−

0 ,
a wedge angle θw ∈ (0, θdw), and a constant downstream state U+

0 which is one
of the downstream states (weak or strong) determined by the shock polar for the
chosen upstream flow and wedge angle. States U−

0 and U+
0 determine the oblique

shock x2 = s0x1, and the transonic shock solution U0 in {x : x1 > 0, x2 > 0}\W
such that U0 = U−

0 in Ω−
0 = {x ∈ R2 : x2 > s0x1, x1 > 0} and U0 = U+

0 in
Ω+

0 = {x ∈ R2 : x1 tan θw < x2 < s0x1, x1 > 0}; see Fig. 1. We refer to this
solution as a constant transonic solution (U−

0 , U
+
0 ).

Assume that the perturbed upstream flow U−
I is close to U−

0 (so that U−
I

is supersonic and almost horizontal) and that the perturbed wedge is close to a
straight-sided wedge. Then, for any suitable wedge angle (smaller than the detach-
ment angle), it is expected that there should be a shock attached to the wedge
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Fig. 2. The leading steady shock x2 = σ(x1) as a free boundary under the perturbation (see [22]).

vertex; see Fig. 2. We now use a function b(x1) ≥ 0 to describe the upper perturbed
wedge boundary:

∂W = {x ∈ R2 : x2 = b(x1), x1 > 0} with b(0) = 0. (3.13)

Then the wedge problem can be formulated as the following problem.

Problem 3.1 (Initial–Boundary Value Problem). Find a global solution of
system (3.1) in Ω := {x2 > b(x1), x1 > 0} such that the following conditions hold :

(i) Cauchy condition at x1 = 0:

U |x1=0 = U−
I (x2). (3.14)

(ii) Boundary condition on ∂W as the slip boundary:

u · νw|∂W = 0, (3.15)

where νw is the outer unit normal vector to ∂W .

Note that the background shock is the straight line given by x2 = σ0(x1) with
σ0(x1) := s0x1. When the upstream steady supersonic perturbation U−

I (x2) at
x1 = 0 is suitably regular and small under some natural norm, the upstream steady
supersonic smooth solution U−(x) exists in region Ω− = {x : x2 >

s0
2 x1, x1 ≥ 0},

beyond the background shock, and U− in Ω− is still close to U−
0 .

Assume that the shock-front S to be determined is

S = {x : x2 = σ(x1), x1 ≥ 0} with σ(0) = 0 and σ(x1) > 0 for x1 > 0.

(3.16)

The domain for the downstream flow behind S is denoted by

Ω = {x ∈ R2 : b(x1) < x2 < σ(x1), x1 > 0}. (3.17)

Then Problem 3.1 can be reformulated into the following free boundary problem
with S as a free boundary.

Problem 3.2 (Free Boundary Problem; see Fig. 2). Let (U−
0 , U

+
0 ) be a con-

stant transonic solution for the wedge angle θw ∈ (0, θdw) with transonic shock
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S0 := {x2 = σ0(x1) : x1 > 0} for σ0(x1) := s0x1. For any upstream flow U−

for system (3.1) in domain Ω− which is a small perturbation of U−
0 , and any wedge

boundary function b(x1) that is a small perturbation of b0(x1) = x1 tan θw, find a
shock S as a free boundary x2 = σ(x1) and a solution U in Ω, which are small
perturbations of S0 and U+

0 respectively, such that

(i) U satisfies (3.1) in domain Ω.
(ii) The slip condition (3.15) holds along the wedge boundary.
(iii) The Rankine–Hugoniot conditions in (3.12) as free boundary conditions hold

along the transonic shock-front S.

There are three subcases based on U+
0 : For a weak supersonic shock S0 given by U+

0

corresponding to a supersonic state on arc �SQ, we denote the problem by Problem
3.2(WS); for a weak transonic shock S0 given by U+

0 corresponding to a subsonic
state on arc �TS, we denote the problem by Problem 3.2(WT); finally, for a strong
transonic shock S0 given by U+

0 corresponding to a subsonic state on arc �TH, we
denote the problem by Problem 3.2(ST).

In general, the uniqueness for the initial–boundary value problem (Problem 3.1)
is not known (as it is a problem for a nonlinear system of a composite elliptic–
hyperbolic type), so it may not yet be excluded that Problem 3.1 has solutions
which are not of steady oblique shock structure, i.e. are not solutions of Problem 3.2.
On the other hand, the global solution of the free boundary problem (Problem 3.2)
provides the global structural stability of the steady oblique shock, as well as more
detailed structure of the solution.

Supersonic (i.e. supersonic–supersonic) shocks correspond to arc �SQ which is a
weaker shock (see Fig. 1). The local stability of such shocks was first established
in [64, 79, 97]. The global stability of the supersonic shocks for potential flow
past piecewise smooth perturbed curved wedges was established in [116]; also see
[45, 48, 49] and the references therein. The global stability and uniqueness of the
supersonic shocks for the full Euler equations, Problem 3.2(WS), were solved for
more general perturbations of both the initial data and wedge boundary even in
BV in [39, 43].

For transonic (i.e. supersonic–subsonic) shocks, the strong shock case corre-
sponding to arc �TH was first studied in [48] for the potential flow (see Fig. 1).
In [57], the full Euler equations were studied with a uniform Bernoulli constant
for both weak and strong transonic shocks. Because the framework is a weighted
Sobolev space, the asymptotic behavior of the shock slope or subsonic solution was
not derived. In [113], the Hölder norms were used for the estimates of solutions
of the full Euler equations with the assumption on the sharpness of the wedge
angle, which means that the subsonic state is near point H in the shock polar, by
Approach I introduced first in [23] which is described in Sec. 3.2 in what follows. In
[24], the weaker transonic shock, which corresponds to arc �TS, was first investigated
by Approach I as described in Sec. 3.2 in what follows. Then, in [25], the weak
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and strong transonic shocks, which correspond to arcs �TS and �TH, respectively,
were solved, by Approach II which is described in Sec. 3.3, so that the existence,
uniqueness, stability, and asymptotic behavior of subsonic solutions of both Prob-
lem 3.2(WT) and Problem 3.2(ST) in a weighted Hölder space were obtained.

We now describe two approaches for the wedge problem, based on the nonlinear
method and related ideas and techniques presented in Sec. 2. First, we need to
introduce the weighed Hölder norms in the subsonic domain Ω, where Ω is either
a truncated triangular domain or an unbounded domain with the vertex at origin
O and one side as the wedge boundary. There are two weights: One is the distance
function to origin O and the other is to the wedge boundary ∂W . For any x,x′ ∈ Ω,
define

δox := min(|x|, 1), δox,x′ := min(δox, δ
o
x′), δwx := min(dist(x, ∂W ), 1),

δwx,x′ := min(δwx , δ
w
x′),

Δx := |x| + 1, Δx,x′ := min(Δx,Δx′), Δ̃x := dist(x, ∂W ) + 1,

Δ̃x,x′ := min(Δ̃x, Δ̃x′).

Let α ∈ (0, 1) and l1, l2, γ1, γ2 ∈ R with γ1 ≥ γ2, and let k ≥ 0 be an integer.
Let k = (k1, k2) be an integer-valued vector, where k1, k2 ≥ 0, |k| = k1 + k2, and
Dk = ∂k1x1

∂k2x2
. We define

[f ](γ1;O)(γ2;∂W )
k,0;(l1,l2);Ω

= sup
x∈Ω
|k|=k

{
(δox)γ̂0(δwx )max{k+γ2,0} Δl1

x Δ̃l2+k
x |Dkf(x)|}, (3.18)

[f ](γ1;O)(γ2;∂W )
k,α;(l1,l2);Ω = sup

x,x′∈Ω
x �=x′,|k|=k

{
(δox,x′)γ̂α(δwx,x′)max{k+α+γ2,0}Δl1

x,x′Δ̃l2+k+α
x,x′

× |Dkf(x) −Dkf(x′)|
|x − x′|α

}
, (3.19)

‖f‖(γ1;O)(γ2;∂W )
k,α;(l1,l2);Ω =

k∑
i=0

[f ](γ1;O)(γ2;∂W )
i,0;(l1,l2);Ω

+ [f ](γ1;O)(γ2;∂W )
k,α;(l1,l2);Ω

, (3.20)

where γ̂β = max{γ1+min{k+β,−γ2}, 0} for β ∈ [0, 1). Similarly, the Hölder norms
for a function of one variable on R+ := (0,∞) with the weight near {0} and the
decay at infinity are denoted by ‖f‖(γ2;0)

k,α;(l);R+ .
For a vector-valued function f = (f1, f2, . . . , fn), we define

‖f‖(γ1;O)(γ2;∂W )
k,α;(l1,l2);Ω =

n∑
i=1

‖fi‖(γ1;O)(γ2;∂W )
k,α;(l1,l2);Ω

.

Let

C
k,α;(l1,l2)
(γ1;O)(γ2;∂W )(Ω) =

{
f : ‖f‖(γ1;O)(γ2;∂W )

k,α;(l1,l2);Ω
<∞}

. (3.21)

The requirement γ1 ≥ γ2 in the definition above means that the regularity up
to the wedge boundary is no worse than the regularity up to the wedge vertex.
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When γ1 = γ2, the δo-terms disappear so that (γ1, O) can be dropped in the
superscript. If there is no weight (γ2, ∂W ) in the superscript, the δ-terms for the
weights should be understood as (δox)max{k+γ1,0} and (δox)max{k+α+γ1,0} in (3.18)
and (3.19), respectively. Moreover, when no weight appears in the superscripts of
the seminorms in (3.18) and (3.19), it means that neither δo nor δw is present.
For a function of one variable defined on (0,∞), the weighted norm ‖f‖(γ1;0)

k,α;(l);R+

is understood in the same as the definition above with the weight to {0} and the
decay at infinity.

In the study of Problem 3.2 for a transonic solution (U−
0 , U

+
0 ) with wedge angle

θw, the variables in U are expected to have different levels of regularity. Thus, we
distinguish these variables by defining

U1 = (u · τ 0
w, ρ), U2 = (w, p) with w = u · ν0

w
u · τ0

w
, (3.22)

where ν0
w = (−sinθw, cos θw) and τ 0

w = (cos θw, sin θw). We note that, for the
solutions under our consideration, the denominator in the definition of w is strictly
positive, since it is a positive constant for the background solution.

Note that U+
10 = (|u+

0 |, ρ+
0 ) and U+

20 = (0, p+
0 ) are the corresponding quantities

for the background subsonic state. Moreover, ν0
w is the interior (for Ω0) unit normal

to ∂W0, and τ 0
w is the tangential unit vector to ∂W0, where ∂W0 and Ω0 are defined

by (3.13) and (3.17) for the background solution (U−
0 , U

+
0 ), i.e. u · τ 0

w and u · ν0
w

are the components u1 and u2 of u in the coordinates rotated clockwise by angle
θw, so that the background downstream flow becomes horizontal.

Theorem 3.1 ([25]). Let (U−
0 , U

+
0 ) be a constant transonic solution for the wedge

angle θw ∈ (0, θdw). There are positive constants α, β, C0, and ε, depending only on
the background states (U−

0 , U
+
0 ), such that

(i) If (U−
0 , U

+
0 ) corresponds to the state on arc �TS, and

‖U− − U−
0 ‖2,α;(1+β,0);Ω− + ‖b′ − tan θw‖(−α;0)

1,α;(1+β);R+ < ε, (3.23)

then there exist a solution (U, σ) of Problem 3.2(WT) and a function U∞(x) =
(u∞1 , 0, p

+
0 , ρ

∞)(x) = Z∞(−x1 sin θw + x2 cos θw) with Z∞ : [0,∞) → R4 of
form Z∞ = (z1, 0, p+

0 , z4) such that U1 and U2 defined by (3.22) satisfy

‖U1 − U∞
1 ‖(−α;∂W )

2,α;(β,1);Ω + ‖U2 − U+
20‖(−α;O)(−1−α;∂W )

2,α;(1+β,0);Ω

+ ‖σ′ − s0‖(−α;0)
2,α;(1+β);R+ + ‖Z∞

1 − U+
10‖(−α;0)

2,α;(1+β);[0,∞)

≤ C0

(‖U− − U−
0 ‖2,α;(1+β,0);Ω− + ‖b′ − tan θw‖(−α;0)

1,α;(1+β);R+

)
, (3.24)

where we have denoted U∞
1 := (u∞ · τ 0

w, ρ
∞) = (u∞1 cos θw, ρ∞) and Z∞

1 :=
(z1 cos θw, z4).
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(ii) If (U−
0 , U

+
0 ) corresponds to the state on arc �TH and

‖U− − U−
0 ‖2,α;(β,0);Ω− + ‖b′ − tan θw‖(−α−1;0)

2,α;(β);R+ < ε, (3.25)

then there exists a solution (U, σ) of Problem 3.2(ST) such that U1 and U2

defined by (3.22) satisfy

‖U1 − U+
10‖(−1−α;∂W )

2,α;(0,β);Ω + ‖U2 − U+
20‖(−1−α;O)

2,α;(β,0);Ω + ‖σ′ − s0‖(−1−α;0)
2,α;(β);R+

≤ C0

(‖U− − U−
0 ‖2,α;(β);Ω− + ‖b′ − tan θw‖(−1−α;0)

2,α;(β);R+

)
. (3.26)

The solution (U, σ) is unique within the class of solutions for each of Prob-
lem 3.2(WT) and Problem 3.2(ST) when the left-hand sides of (3.24) for Prob-
lem 3.2(WT) and (3.26) for Problem 3.2(ST) are less than C0ε correspondingly.

The dependence of constants α, β, C0, and ε in Theorem 3.1 is as follows: α and
β depend on (U−

0 , U
+
0 ) but are independent of (C0, ε), C0 depends on (U−

0 , U
+
0 , α, β)

but is independent of ε, and ε depends on all (U−
0 , U

+
0 , α, β, C0).

The difference in the results of the two problems is that the solution of Prob-
lem 3.2(WT) has less regularity at corner O and decays faster with respect to |x|
(or the distance from the wedge boundary) than the solution of Problem 3.2(ST).

Note that part (i) of Theorem 3.1 gives the asymptotics of solution U as |x| → ∞
within Ω, and U∞ is an asymptotic profile. Moreover, the convergence of U2 to
U∞

2 = U+
20 as |x| → ∞ is of polynomial rate |x|−(β+1) that is faster than the

convergence rate of U1, which is |x|−β . However, as x2 → ∞, both U1 and U2 decay
to U+

10 and U+
20, respectively, with the decay rate x−(β+1)

2 , which can be seen by
combining the estimates of the first and last terms on the right-hand side of (3.24)
for U1. Part (ii) of Theorem 3.1 does not give the asymptotic limit of U1 as |x| → ∞,
while U2 converges to U+

20 with the decay rate |x|−β . Also, as x2 → ∞, both U1

and U2 decay to U+
10 and U+

20, respectively, with the rate x−β2 for part (ii).
Furthermore, for both parts (i) and (ii) of Theorem 3.1, the asymptotic profile

in the Lagrangian coordinates is given in Theorem 3.3.

3.2. Approach I for Problem 3.2(WT )

We now describe Approach I for solving Problem 3.2(WT). We work in the
Lagrangian coordinates introduced in (3.6). From the slip condition (3.15) on the
wedge boundary ∂W , it follows that ∂W is a streamline so that ∂W becomes the
half-line L1 = {(y1, y2) : y1 > 0, y2 = 0} in the Lagrangian coordinates. Let
S = {y2 = σ̂(y1)} be a shock-front. Then, from Eqs. (3.7)–(3.10), we can derive the
Rankine–Hugoniot conditions along S:

σ̂′(y1)
[

1
ρu1

]
= −

[
u2

u1

]
, (3.27)

σ̂′(y1)
[
u1 +

p

ρu1

]
= −

[
pu2

u1

]
, (3.28)
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σ̂′(y1)[u2] = [p], (3.29)[
1
2
|u|2 +

γp

(γ − 1)ρ

]
= 0. (3.30)

The background shock-front in the Lagrangian coordinates is S0 = {y2 = s1y1}
with s1 = ρ+

0 u
+
10(s0 − tan θ0) > 0.

Without loss of generality, we assume that, in the Lagrangian coordinates, the
supersonic solution U− exists in domain D− defined by

D− =
{
y : y2 >

s1
2
y1, y1 > 0

}
. (3.31)

For a given shock function σ̂(y1), let

D−
σ̂ =

{
y : y2 > σ̂(y1), y1 > 0

}
, (3.32)

Dσ̂ =
{
y : 0 < y2 < σ̂(y1), y1 > 0

}
. (3.33)

Then Approach I consists of three steps:

(1) Potential function φ(y). We first use a potential function to reduce the full
Euler equations (3.7)–(3.10) to a scalar second-order nonlinear elliptic PDE in the
subsonic region. This method was first proposed in [23] in which the advantage of
the conservation properties of the Euler system is taken for the reduction.

More precisely, since ρu1 �= 0 in either the supersonic or subsonic region, it
follows from (3.7) that there exists a potential function of the vector field (u2

u1
, 1
ρu1

)
such that

Dφ = (
u2

u1
,

1
ρu1

) with φ(0) = 0. (3.34)

Equation (3.10) implies the Bernoulli law:

1
2
q2 +

γp

(γ − 1)ρ
= B(y2), (3.35)

where q = |u| =
√
u2

1 + u2
2, and B = B(y2) is completely determined by the

given incoming flow U− at the initial position I because of the Rankine–Hugoniot
condition (3.30).

From Eqs. (3.7)–(3.10), we find(
p

ργ

)
y1

= 0, (3.36)

which implies

p = A(y2)ργ in the subsonic region Dσ̂. (3.37)

With Eqs. (3.34) and (3.37), we can rewrite the Bernoulli law (3.35) as

φ2
y1 + 1
2φ2

y2

+
γ

γ − 1
Aργ+1 = Bρ2. (3.38)
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In the subsonic region, q = |u| < c =
√

γp
ρ . Therefore, the Bernoulli law (3.35)

implies

ργ−1 >
2(γ − 1)B
γ(γ + 1)A

. (3.39)

Condition (3.39) guarantees that ρ can be solved from (3.38) as a smooth function
of (Dφ,A,B).

Assume that A = A(y2) has been determined. Then (u, p, ρ) can be expressed
as functions of Dφ:

ρ = ρ(Dφ,A,B), u =
( 1
ρφy2

,
φy1
ρφy2

)
, p = Aργ , (3.40)

since B = B(y2) is given by the incoming flow.
Similarly, in the supersonic region D−, we employ the corresponding variables

(φ−, A−, B) to replace U−, where B is the same as in the subsonic region because
of the Rankine–Hugoniot condition (3.30).

We now choose (3.9) to derive a second-order nonlinear elliptic equation for φ
so that the full Euler system (3.7)–(3.10) is reduced to the following nonlinear PDE
in the subsonic region:(

N1(Dφ,A,B)
)
y1

+
(
N2(Dφ,A,B)

)
y2

= 0, (3.41)

where (N1, N2)(Dφ,A,B) = (u2, p)(Dφ,A,B) are given by

N1(Dφ,A,B) =
φy1

φy2ρ(Dφ,A(y2), B(y2))
,

N2(Dφ,A,B) = A(y2)
(
ρ(Dφ,A(y2), B(y2))

)γ
.

(3.42)

Then a careful calculation shows that

N1
φy1

N2
φy2

−N1
φy2

N2
φy1

=
c2ρ2u2

1

c2 − q2
> 0 (3.43)

in the subsonic region with ρu1 �= 0. Therefore, when φ is sufficiently close to φ+
0

(determined by the subsonic background state U+
0 ) in the C1-norm, Eq. (3.41) is

uniformly elliptic, and the Euler system (3.7)–(3.10) is reduced to the elliptic equa-
tion (3.41) in domain Dσ̂, where σ̂ is the function for the free boundary (transonic
shock).

The boundary condition for φ on the wedge boundary {y2 = 0} is derived from
the fact that φ(y1, y2) = x2(y1, y2) by (3.5)–(3.6) and (3.34). Then, recalling that
∂W = {x : x2 = b(x1), x1 > 0} in the x-coordinates which is {y : y2 = 0, y1 > 0}
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in the y-coordinates and using y1 = x1 by (3.6), we obtain

φ(y1, 0) = b(y1). (3.44)

The condition on S is derived from the Rankine–Hugoniot conditions (3.27)–(3.29).
Condition (3.27) is equivalent to the continuity of φ across S:

[φ]|S = 0, (3.45)

which, by (3.34), gives

σ̂′(y1) = − [φy1 ]
[φy2 ]

(y1, σ̂(y1)). (3.46)

Replacing σ̂′(y1) in (3.28)–(3.29) by (3.46) and using (3.37) give rise to the condi-
tions on S:

G(Dφ,A,U−) ≡ [φy1 ]
[

1
ρφy2

+Aργφy2

]
− [φy2 ][Aρ

γφy1 ] = 0, (3.47)

H(Dφ,A,U−) ≡ [φy1 ][N
1] + [φy2 ][N

2] = 0. (3.48)

We now combine the above two conditions into the boundary condition for (3.41)
by eliminating A. Taking the partial derivative of G and H with respect to A,
respectively, and making careful calculation, we have

GA = [φy1 ]
(
N1
A

φy1
+ φy2N

2
A

)
− [φy2 ]φy1N

2
A

=
u2ρ

γ(q2 + c2

γ−1)

u1(c2 − q2)

[
1
ρu1

]
− ργ−1

u1(c2 − q2)

(
u2

2 +
c2 − u2

1

γ − 1

)[
u2

u1

]
< 0,

and

HA = N1
A[φy1 ] +N2

A[φy2 ] =
γ

γ − 1
ργ−1u2

c2 − q2

[
u2

u1

]
−
ργ(q2 + c2

γ−1 )

c2 − q2

[
1
ρu1

]
> 0,

since [ 1
ρu1

] < 0 and u−2 is close to 0. Therefore, both Eqs. (3.47) and (3.48) can be
solved for A to obtain A = g1(Dφ,U−) and A = g2(Dφ,U−), respectively. With
these, we obtain our desired condition on the free boundary (i.e. the shock-front)

ḡ(Dφ,U−) := (g2 − g1)(Dφ,U−) = 0. (3.49)

Then the original free boundary problem, Problem 3.2, is reduced to the following
free boundary problem for the elliptic equation (3.41).

Problem 3.3 (Free Boundary Problem). Seek (σ̂, φ, A) such that φ is a solu-
tion of the elliptic equation (3.41) in the region with the fixed boundary condition
(3.44) and conditions (3.45) and (3.47)–(3.49) on S.

(2) Hodograph transformation and fixed boundary value problem. In order
to solve the free boundary problem, we employ the hodograph transformation so
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that the shock-front becomes a fixed boundary by using the free boundary condi-
tions (3.45) and (3.49). This allows us to find φ for each A from an appropriately
chosen set. After that, we only need to perform an iteration for the unknown func-
tion A to satisfy (3.47)–(3.48).

Note that the expected solutions in Theorem 3.1 satisfy that ‖U −U+
0 ‖L∞(Ω) ≤

C0ε. Then, denoting by φ+
0 the potential function (3.34) for the subsonic background

state U+
0 , we obtain that φ is close to φ+

0 in C1 on the closure of the subsonic region.
On the iteration, we consider (and eventually obtain) solutions U for which the same
property holds. Thus, we assume that φ is close to φ+

0 in C1(Dσ̂) in what follows;
see (3.33).

We now extend the domain of φ− from D− to the first quadrant D− ∪ Dσ̂. Let

φ−0 =
1

ρ−0 u
−
20

y2,

which is the potential function (3.34) for the supersonic background state U−
0 . Then

φ− is close to φ−0 in C1(D−) since U− is close to U−
0 in L∞ (and in the stronger

norm; see Theorem 3.1). We can extend φ− into D− ∪Dσ̂ so that it remains close
to φ−0 in C1 on the closure of D−∪Dσ̂. We then use the following partial hodograph
transformation:

(y1, y2) → (z1, z2) = (φ− φ−, y2). (3.50)

Note that ∂y1(φ
+
0 −φ−0 ) = u+

20

u+
10
> 0 by using (3.34), where (u+

10, u
+
20) is the velocity

of the background subsonic state U+
0 and the fact that u−20 = 0 has been used.

Since φ and φ− are close to φ+
0 and φ−0 in the C1-norm respectively, transformation

(3.50) is invertible, so that y1 is a function of z := (z1, z2): y1 = ϕ(z).
Let

M1(Dφ,A,U−) = N1(Dφ,A,B) +N2(Dφ,A,B)
[φy2 ]
[φy1 ]

,

M2(Dφ,A,U−) =
N2(Dφ,A,B)

[φy1 ]
,

and

M
i
(Dϕ,ϕ,A, z) = −M i(∂y1φ

−(ϕ, z2) +
1
ϕz1

, ∂y2φ
−(ϕ, z2) − ϕz2

ϕz1
, A, U−(ϕ, z2))

for i = 1, 2. Then equation (3.41) becomes(
M

1
(Dϕ,ϕ,A, z)

)
z1

+
(
M

2
(Dϕ,ϕ,A, z)

)
z2

= 0. (3.51)

Note that

M
1

ϕz1
M

2

ϕz2
− 1

4
(
M

1

ϕz2
+M

2

ϕz1

)2 = [φy1 ]
2
(
N1
φy1

N2
φy2

− (N1
φy2

)2
)
> 0,

which implies that Eq. (3.51) is uniformly elliptic, for any solution ϕ that is close
to ϕ+

0 (determined by (3.50) with φ = φ+
0 ) in the C1-norm.
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Under transform (3.50), the unknown shock-front S becomes a fixed boundary,
which is the z2-axis, where we have used that φ is close in C1 to φ+

0 in Dσ̂ and to
φ−0 in D−

σ̂ in order to conclude that φ is Lipschitz across S from (3.34) and then
that φ = φ− on S but φ �= φ− in Dσ̂\S. Along the z2-axis, condition (3.49) is now

g̃(Dϕ,ϕ, z) := ḡ(∂y1φ
−(ϕ, z2) +

1
ϕz1

, ∂y2φ
−(ϕ, z2) − ϕz2

ϕz1
, U−(ϕ, z2))

= 0 on {z1 = 0, z2 > 0}. (3.52)

We also convert condition (3.48) into the z-coordinates: Along the z2-axis:

H̃(Dϕ,ϕ,A, z)

:= H(∂y1φ
−(ϕ, z2) +

1
ϕz1

, ∂y2φ
−(ϕ, z2) − ϕz2

ϕz1
, A, U−(ϕ, z2)) = 0.

(3.53)

The condition on the z1-axis can be derived from (3.44) as follows: Restricted
on z2 = 0, the coordinate transformation (3.50) becomes

z1 = b(y1) − φ−(y1, 0).

Then y1 can be expressed in terms of z1 as y1 = b̃(z1) so that ϕ(z1, 0) = y1 becomes

ϕ(z1, 0) = b̃(z1) on L1 := {z2 = 0, z1 > 0}. (3.54)

Therefore, the original wedge problem has now been reduced to the following
problem on the first quadrant Q.

Problem 3.4 (Fixed Boundary Value Problem). Seek (ϕ,A) such that ϕ is
a solution of the second-order nonlinear elliptic equation (3.51) in the unbounded
domain Q with the boundary conditions (3.52) and (3.54), and such that (3.53)
holds.

(3) Solution to the fixed boundary value problem — Problem 3.4. Through
the shock polar, we can determine the values of U at the origin so that A(0) is fixed,
depending on the values of U−(0) and b′(0). Then, we solve (3.53) to obtain a unique
solution Ã = h(z, φ,Dφ) that defines the iteration map.

This is achieved by the following fixed point argument. Consider a Banach space

X = {A : A(0) = 0, ‖A‖(−α);{0}
1,α;(1+β);R+ <∞}.

Then we define our iteration map J : X → X through the following.
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First, we define a smooth cutoff function χ on [0,∞) such that

χ(s) =

⎧⎨⎩1 for 0 ≤ s < 1,

0 for s > 2.

Set

A(0) := t(ω(0), b′(0)) for ω = U− − U−
0 , (3.55)

where t is a function determined by the Rankine–Hugoniot conditions (3.47)–(3.48).
Then we define wt(z2) as

wt(z2) := A+
0 +

(
t(ω(0), b′(0)) −A+

0

)
χ(z2), (3.56)

where A+
0 = p+0

(ρ+0 )γ
.

Consider any A = A(z2) so that A− wt ∈ X satisfying

‖A−A+
0 ‖(−α);{0}

1,α;(1+β);R+ ≤ C0ε (3.57)

for some fixed constant C0 > 0. With this A, we solve Eq. (3.51) for ϕ = ϕA in the
unbounded domain Q with the boundary conditions (3.52) and (3.54), and with
the asymptotic condition ϕ→ ϕ∞ as x → ∞, where the limit is understood in the
appropriate sense, ϕ∞ is the solution of

z1 = (φ∞ − φ−)(ϕ∞, z2), (3.58)

with φ∞ = u+
20

u+
10
y1 + l(y2), and l(y2) is determined by the Bernoulli law (3.38), via

replacing φ and ρ by their asymptotic values φ∞ and ρ∞(y2) =
( p+0
A(y2)

) 1
γ and noting

that B = B(y2) is determined by the upstream state U−. More specifically, we show
the existence of a solution ϕ of (3.51)–(3.52) and (3.54) in the set:

Σδ =
{
ϕ : ‖ϕ− ϕ∞‖(−1−α);L1

2,α;(β,0);Q ≤ δ
}

for sufficiently small δ > 0,

which is a compact and convex subset of the Banach space:

B =
{
ϕ : ‖ϕ− ϕ∞‖(−1−α′);L1

2,α′;(β′,0);Q <∞}
with 0 < α′ < α and 0 < β′ < β.

For ϕ ∈ Σδ, Eq. (3.51) is uniformly elliptic if δ > 0 is small. This allows us to
solve the problem for ϕ = ϕA ∈ Σδ by the Schauder fixed-point theorem if the
perturbation is small, i.e. if ε is small in (3.57) and the conditions of Theorem 3.1.
Then, with this ϕ = ϕA, we solve (3.53) to obtain a unique Ã that defines the
iteration map J by J (A− wt) := Ã− wt.

Finally, by the implicit function theorem, we prove that J has a fixed point
A− wt, for which A satisfies (3.57).

For more details for this approach, see [23, 24]. This approach can also be applied
to Problem 3.2(ST); see [113] for the case when the wedge angle is sufficiently small.
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3.3. Approach II for Problem 3.2(ST ) and Problem 3.2(WT )

We now describe the second approach, Approach II. It allows us to handle both
cases in Theorem 3.1: Problem 3.2(WT) and Problem 3.2(ST). In particular, for
Problem 3.2(WT), this approach yields a better asymptotic decay rate, as stated
in (3.24).

It is convenient to rotate the x-coordinates clockwise by the wedge angle θw, so
that the background downstream flow becomes horizontal, as discussed in the para-
graph before Theorem 3.1. We still use the same notations in the rotated coordinates
when no confusion arises; in particular, we write x = (x1, x2) and u = (u1, u2) in
the rotated basis. Then, in the new coordinates,

u−20
u−10

= − tan θw, U−
0 = (u−10, −u−10 tan θw, p−0 , ρ

−
0 ), U+

0 = (u+
10, 0, p+

0 , ρ
+
0 ).

(3.59)

Since the velocity components (u1, u2) are now in the basis (τ 0
w,ν

0
w), i.e. u1 = u·τ 0

w

and u2 = u · ν0
w, we see that, by (3.22),

U1 = (u1, ρ), U2 = (w, p) with w = u2
u1

(3.60)

in the new coordinates. Furthermore, we obtain from (3.13) and (3.23) or (3.25)
with small ε that, in the rotated coordinates,

∂W = {x ∈ R2 : x2 = brot(x1), brot(0) = 0}, (3.61)

and function brot(x1) satisfies the estimates in (3.63) or (3.65) that follows, respec-
tively, with Cε instead of ε when ε is small, where C depends only on b(·). For the
background solution, brot,0 = 0, i.e. ∂W0 is the positive x1-axis.

We construct a solution with a shock-front S expressed as (3.16) in the rotated
coordinates with a function σ̃(x1). The background shock is expressed as S0 :=
{x2 = σ̃0(x1) : x1 > 0} for σ̃0(x1) := s̃0x1, where s̃0 = tan(arctan s0 − θw). Then
the subsonic region of the solution has the form:

Ω = {x ∈ R2 : brot(x1) < x2 < σ̃(x1), x1 > 0}. (3.62)

We can assume that the upstream steady supersonic smooth solution U−(x) exists
in region Ω− = {x : s̃0

2 x1 < x2 < 2s̃0x1, x1 ≥ 0}, beyond the background shock,
but is still close to U−

0 . Moreover, in part (i) of Theorem 3.1, U∞ is independent
of x1 and U∞ = Z∞ in the rotated coordinates.

More specifically, we establish the following theorem in the rotated coordinates.

Theorem 3.2 ([25]). Let (U−
0 , U

+
0 ), given by (3.59), be a constant transonic solu-

tion for the wedge angle θw ∈ (0, θdw). There are positive constants α, β, C0, and ε
depending only on the background states (U−

0 , U
+
0 ) such that

(i) If (U−
0 , U

+
0 ) corresponds to the state on arc �TS and

‖U− − U−
0 ‖2,α;(1+β,0);Ω− + ‖b′rot‖(−α;0)

1,α;(1+β);R+ < ε, (3.63)
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then there exist a solution (U, σ̃) of Problem 3.2(WT ) and a function

U∞(x2) = (u∞1 (x2), 0, p+
0 , ρ

∞(x2))

so that U1 and U2 defined by (3.22) satisfy

‖U1 − U∞
1 ‖(−α;∂W )

2,α;(β,1);Ω + ‖U2 − U+
20‖(−α;O)(−1−α;∂W )

2,α;(1+β,0);Ω

+ ‖σ̃′ − s̃0‖(−α;0)
2,α;(1+β);R+ + ‖U∞

1 − U+
10‖(−α;0)

2,α;(1+β);[0,∞)

≤ C0

(‖U− − U−
0 ‖2,α;(1+β,0);Ω− + ‖b′rot‖(−α;0)

1,α;(1+β);R+

)
, (3.64)

where U∞
1 = (u∞1 , ρ∞).

(ii) If (U−
0 , U

+
0 ) corresponds to the state on arc �TH, and

‖U− − U−
0 ‖2,α;(β,0);Ω− + ‖b′rot‖(−α−1;0)

2,α;(β);R+ < ε, (3.65)

then there exists a solution (U, σ̃) of Problem 3.2(ST) so that U1 and U2 defined
by (3.22) satisfy

‖U1 − U+
10‖(−1−α;∂W )

2,α;(0,β);Ω + ‖U2 − U+
20‖(−1−α;O)

2,α;(β,0);Ω + ‖σ̃′ − s̃0‖(−1−α;0)
2,α;(β);R+

≤ C0

(‖U− − U−
0 ‖2,α;(β);Ω− + ‖b′rot‖(−1−α;0)

2,α;(β);R+

)
. (3.66)

The solution (U, σ̃) is unique within the class of solutions for each of Prob-
lem 3.2(WT) and Problem 3.2(ST) when the left-hand sides of (3.24) for Prob-
lem 3.2(WT) and (3.26) for Problem 3.2(ST) are less than C0ε correspondingly.

Clearly, Theorem 3.1 follows from Theorem 3.2 if ε is small so that, from the
estimates of σ̃ in (3.64) or (3.66), the shock remains a graph of C1 function: x2 =
σ(x1) after rotating the coordinates back.

To prove Theorem 3.2, we work in the Lagrangian coordinates (3.6) defined
for the rotated coordinates x = (x1, x2). Then, as in the previous case, using the
fact that the wedge boundary ∂W is a streamline due to the slip condition (3.15)
on ∂W , we obtain that, in the present Lagrangian coordinates, ∂W becomes the
half-line:

L1 = {(y1, y2) : y1 > 0, y2 = 0}.
The background shock-front S0 is now given by S0 = {y2 = s1y1, y1 > 0} with
s1 = ρ+

0 u
+
10s̃0. We can assume that, in the Lagrangian coordinates, the supersonic

solution U− exists in domain D− defined by (3.31). Shock S is given by y2 =
σ̂(y1) for y1 > 0, where function σ̂ differs from the one in Approach I because the
Lagrangian coordinates are now defined differently. The supersonic region D−

σ̂ and
the subsonic region Dσ̂ of the solution are given by (3.32) and (3.33), respectively,
with the present function σ̂.

We first present the existence and estimates of the solution in the Lagrangian
coordinates.
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Theorem 3.3. Let (U−
0 , U

+
0 ) be a constant transonic solution for the wedge angle

θw ∈ (0, θdw). There are positive constants α, β, C0, and ε depending only on the
background states (U−

0 , U
+
0 ) such that, if ∂W in (3.61) and U− satisfy

(ii) (3.63) for Problem 3.2(WT),
(ii) (3.65) for Problem 3.2(ST),

then there exist a transonic shock SL = {y2 = σ̂(y1), y1 > 0} and a subsonic
solution U = U(y) of (3.7)–(3.10) in Dσ̂, satisfying the Rankine–Hugoniot con-
ditions (3.27)–(3.30) along SL with U− expressed in the Lagrangian coordinates
in D−

σ̂ and the slip condition w|L1 = b′rot, as well as there exists a function
U∞(y2) = (u∞1 (y2), 0, p+

0 , ρ
∞(y2)), such that U(y) satisfies the following estimates:

(i) For Problem 3.2(WT),

‖U1 − U∞
1 ‖(−α;L1)

2,α;(1+β,0);Dσ̂
+ ‖U2 − U+

20‖(−α;O)(−1−α;L1)
2,α;(1+β,0);Dσ̂

+ ‖σ̂′ − s1‖(−α;0)
2,α;(1+β);R+ + ‖U∞

1 − U+
10‖(−α;0)

2,α;(1+β);R+

≤ C0

(‖U− − U−
0 ‖2,α;(1+β,0);D−

σ̂
+ ‖b′rot‖(−α;0)

1,α;(1+β);R+

)
; (3.67)

(ii) For Problem 3.2(ST),

‖U1 − U∞
1 ‖(−1−α;L1)

2,α;(β,0);Dσ̂
+ ‖U2 − U+

20‖(−1−α;O)
2,α;(β,0);Dσ̂

+ ‖σ̂′ − s1‖(−1−α;0)
2,α;(β);R+ + ‖U∞

1 − U+
10‖(−1−α;0)

2,α;(β);R+

≤ C0

(‖U− − U−
0 ‖2,α;(β);D−

σ̂
+ ‖b′rot‖(−1−α;0)

2,α;(β);R+

)
, (3.68)

where U∞
1 (y2) := (u∞1 (y2), ρ∞(y2)).

The solution U is unique within the class of solutions for each of Problem 3.2(WT)
and Problem 3.2(ST) when the left-hand sides of (3.67) for Problem 3.2(WT) and
(3.68) for Problem 3.2(ST) are less than C0ε correspondingly.

We remark that function U∞(y2) can be understood as the asymptotic limit of
U(y) as y1 → ∞.

Now we describe the proof of Theorem 3.3, which is the main part of Approach
II. Rewrite system (3.7)–(3.10) into the following nondivergence form for U =
(u, p, ρ) ∈ R4:

A(U)U�
y1 +B(U)U�

y2 = 0, (3.69)
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where

A(U) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
ρu2

1

0 0 − 1
ρ2u1

1 − p

ρu2
1

0
1
ρu1

− p

ρ2u1

0 1 0 0

u1 u2
γ

(γ − 1)ρ
− γp

(γ − 1)ρ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B(U) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

u2

u2
1

− 1
u1

0 0

pu2

u2
1

− p

u1
−u2

u1
0

0 0 1 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Solving det(λA−B) = 0 for λ, we obtain four eigenvalues:

λ1 = λ2 = 0 (real),

λj = − cρ

c2 − u2
1

(
cu2 + (−1)ju1

√
c2 − q2i

)
for j = 3, 4 (complex),

where q =
√
u2

1 + u2
2 < c in the subsonic region and i =

√−1. The corresponding
left eigenvectors are

l1 = (0, 0, 0, 1), l2 = (−pu1, u1, u2,−1),

l3,4 = (
p(γp− ρu2

1)
(γ − 1)ρu1

λ3,4 +
γp2u2

(γ − 1)u1
, −(u1 +

γp

(γ − 1)ρu1
)λ3,4 − γpu2

(γ − 1)u1
,

γp

γ − 1
− u2λ3,4, λ3,4).

Then

(i) Multiplying Eq. (3.69) from the left by l1 leads to the same Eq. (3.10). This,
together with the Rankine–Hugoniot condition (3.30), implies the Bernoulli
law (3.35) to be held in both supersonic and subsonic domains, as well as
across the shock-front. Therefore, B(y2) can be computed from the upstream
flow U−. If u1 is a small perturbation of u+

10, then u1 > 0. Therefore, we can
solve (3.35) for u1:

u1 =

√
2
(
B − 2γp

(γ−1)ρ

)
√

1 + w2
with w =

u2

u1
. (3.70)

(ii) Multiplying system (3.69) from the left by l2 also gives (3.36).
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(iii) Multiplying Eq. (3.69) from the left by l3 and separating the real and imaginary
parts of the equation lead to the elliptic system:

DRw + hDIp = 0,

DIw − hDRp = 0,
(3.71)

where DR = ∂y1 + λR∂y2 , DI = λI∂y2 , λR = − c2ρu2
c2−u2

1
, λI = cρu1

√
c2−q2

c2−u2
1

, and

h =
√
c2−q2
cρu2

1
.

Therefore, system (3.7)–(3.10) is decomposed into (3.70)–(3.71).
We solve this problem by iteration. Given U− that is close to U−

0 as defined in
Theorem 3.3, we solve the problem for U in the Lagrangian coordinates. However,
since U∞ is not known, we cannot directly solve Problem 3.2(WT) for U satisfy-
ing (3.67), or Problem 3.2(ST) for U satisfying (3.68). Instead, we solve Problem
3.2(ST) for U that is close to U+

0 as in (3.26), and Problem 3.2(WT) for U in
similar norms with appropriate growths, but using these norms in the Lagrangian
coordinates (more precisely, the z = (z1, z2)-coordinates defined by (3.75) in what
follows). Note that these norms are weaker than the ones in (3.67) or (3.68), respec-
tively; in particular, they do not determine any limit for U1 = (u1, ρ) as |y| → ∞
within the subsonic region. On the other hand, these norms determine that (w, p)
have the limit: (0, p+

0 ) at infinity within the subsonic region; this asymptotic con-
dition is sufficient to make the iteration problem well-defined (in fact, we use only
the asymptotic decay of w) and to obtain the existence and uniqueness for the iter-
ation problem. After the unique solution U of the problem stated in Theorem 3.3 is
obtained by iteration, we identify U∞

1 = (ρ∞, u∞1 ) and show the faster convergence
of (ρ, u1) to (ρ∞, u∞1 ), which lead to (3.67) and (3.68), respectively. Note that, in
the estimates discussed above, U − U+

0 (rather than U itself) lies in the weighted
spaces (3.21). For this reason, it is convenient to perform the iteration in terms of

δU1 = U1 − U+
10, δU2 = U2 − U+

20, δσ̂ = σ̂ − σ̂0 = σ̂ − s1y1, (3.72)

where U1 and U2 are defined by (3.60). Then, we follow the steps below to solve
this problem.

(1) Introduce a linear boundary value problem for the iteration. For a
given shock-front σ̂, the subsonic domain Dσ̂ is fixed, depending on σ̂. We make the
coordinate transformation to transform the domain from Dσ̂ to D, where D = Dσ̂0

with σ̂0(y2) = s1y1 is the domain corresponding to the background solution:

D =
{
y : 0 < y2 < s1y1

}
(3.73)

with ∂D = L1 ∪ L2, where

L1 = {(y1, y2) : y1 > 0, y2 = 0}, L2 = {(y1, y2) : y1 > 0, y2 = s1y1}. (3.74)

This transformation is

y = (y1, y2) → z = (z1, z2) := (y1, y2 − δσ̂(y1)), (3.75)

2230002-40

B
ul

l. 
M

at
h.

 S
ci

. 2
02

2.
12

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

O
X

FO
R

D
 o

n 
04

/0
8/

22
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



March 23, 2022 15:24 WSPC/1664-3607 319-BMS 2230002

MD transonic shock waves and FBPs

where δσ̂(y1) = σ̂(y1)− σ̂0(y1). In the z-coordinates, L1 corresponds to ∂W , and L2

corresponds to ∂S. Also, U(y) becomes Uσ̂(z) depending on σ̂. Then the upstream
flow U− involves an unknown variable explicitly depending on σ̂:

U−
σ̂ (z) = U−(z1, z2 + δσ̂(z1)), (3.76)

where U− is the given upstream flow in the y-coordinates. Equations (3.71) in D

in the z-coordinates are as follows:⎧⎨⎩D̃Rw + hD̃Ip = 0,

D̃Iw − hD̃Rp = 0,
(3.77)

where D̃R = ∂z1 + (λR − δσ̂′)∂z2 and D̃I = λI∂z2 . Since U+
0 is a constant vector

and w+
0 = 0, the same system holds for (δp, δw), where we have used notation

(3.72). Moreover, since the iteration: (δU, δw) → (δŨ , δw̃) is considered, we use
U := U+

0 + δU to determine the coefficients in (3.77) and (δp̃, δw̃) for the unknown
functions. Thus, we have ⎧⎨⎩D̃Rδw̃ + hD̃Iδp̃ = 0,

D̃Iδw̃ − hD̃Rδp̃ = 0.
(3.78)

We use system (3.78) in D as a linear system for the iteration.
In the z-coordinates, the Rankine–Hugoniot conditions (3.27)–(3.30) keep the

same form, except that σ̂′(y1) is replaced by σ̂′(z1) and U− is replaced by U−
σ̂ along

line z2 = s1z1. Among the four Rankine–Hugoniot conditions, (3.30) is used in the
Bernoulli law. From condition (3.29), we have

σ̂′(z1) =
[p]

[u1w]
(z1, s1z1), (3.79)

which is used to update the shock-front later. Now, because of (3.70), we can use
Ū = (w, p, ρ) as the unknown variables along z2 = s1z1. Using (3.79) to eliminate
σ̂′ in conditions (3.27)–(3.28) gives

G1(U−
σ̂ , Ū) := [p]

[
1
ρu1

]
+ [w][u1w] = 0, (3.80)

G2(U−
σ̂ , Ū) := [p]

[
u1 +

p

ρu1

]
+ [pw][u1w] = 0, (3.81)

on L2. We use conditions (3.80)–(3.81) to define the linear conditions for the itera-
tion: Ū → ˜̄U such that, at a fixed point Ū = ˜̄U , these iteration conditions imply that
the original conditions (3.80)–(3.81) hold. Specifically, we define the conditions:

∇ŪGi(U
−
0 , Ū

+
0 ) · δ ˜̄U = ∇ŪGi(U

−
0 , Ū

+
0 ) · δŪ −Gi(U−

σ̂ , Ū) on L2 (3.82)

for i = 1, 2, which can be written as

bi1δw̃ + bi2δp̃+ bi3δρ̃ = gi(U−
σ̂ , Ū) on L2, (3.83)
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where (bi1, bi2, bi3) := ∇ŪGi(U
−
0 , Ū

+
0 ) and

gi(U−
σ̂ , Ū) := ∇ŪGi(U

−
0 , Ū

+
0 ) · δŪ −Gi(U−

σ̂ , Ū) for i = 1, 2.

Since there are two conditions in (3.83), i = 1, 2, we can eliminate δρ̃ to obtain

δw̃ + b1δp̃ = g3 on L2, (3.84)

where

b1 =
b12b23 − b22b13
b11b23 − b21b13

, g3 =
b23g1 − b13g2
b11b23 − b21b13

(3.85)

with

b11b23 − b21b13

= (−u−20)[p0]
(

γp+
0

(γ − 1)(ρ+
0 )2u+

10

+
p−0
u−10

(
1

(ρ+
0 )2

+
γp+

0

(γ − 1)(ρ+
0 )3(u+

10)2

))
> 0.

Note that the shock polar is a one-parameter curve determined by the Rankine–
Hugoniot conditions. If p is used as the parameter, by Eq. (3.84), we obtain that
δw = −b1δp+ g3(δp), which shows that −b1δp is the linear term and g3(δp) is the
higher order term. We know from Fig. 3 that w(p) is decreasing in p on arc �TH
and increasing on �TS. Therefore, it is easy to see that

b1 > 0 corresponds to the state on arc�TH, b1 < 0 to �TS,

and b1 = 0 at the tangent point T . (3.86)

This difference in the sign of b1 is the reason for the different rates of decay at
infinity and near the origin in the two different cases (i) and (ii) of Theorems 3.1
and 3.3.

Fig. 3. The shock polar in the (w, p)-variables (cf. [25]).
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It can be checked that

b13 = −[p0]
(

p+
0

(ρ+
0 )2u+

10

+
γp+

0

(γ − 1)(ρ+
0 )3(u+

10)3

)
< 0.

Thus, condition (3.83) for i = 1 can be rewritten as

δρ̃ = g4 − b2δw̃ − b3δp̃ on L2, (3.87)

where g4 = g1
b13
, b2 = b11

b13
, and b3 = b12

b13
.

We note that conditions (3.84)–(3.87) are equivalent to conditions (3.83) for
i = 1, 2. The boundary condition on L1 comes from the slip condition (3.15) on
∂W . Specifically, using (3.15) and (3.61), we obtain that w = b′rot on ∂W . Then, in
the z-coordinates, this must hold on L1. Also, for the background solution, brot = 0
by (3.61). Then, we prescribe

δw̃ = b′rot on L1. (3.88)

(2) Design the iteration map Q and prove the existence of a fixed point
for Q. We perform the iteration in terms of δUk, k = 1, 2, and δσ̂ as defined by
(3.72), in the z-coordinates defined in (3.75). In fact, for σ̂, we only need σ̂′ since
σ̂(0) = 0, i.e. the shock is attached to the wedge vertex. Note also that δσ̂′ = σ̂′−s1.
We thus denote V = (U1, U2, δσ̂

′) and perform the following iteration: δV → δṼ .
For a given δV , we determine V := δV +V +

0 . Then we find Ṽ by solving the linear
system (3.78) in D with the boundary conditions (3.84) and (3.88), to determine
(w̃, p̃) and then determine u1 from (3.70) and ρ from (3.36) (which holds in the
z-coordinates without change), and the boundary condition (3.87). The final step
is to use solution (δu1, δρ, δw, δp) and U−

σ̂ defined by (3.76) on the right-hand side
of (3.79) to update δσ̂′. This defines the iteration map Q from V to Ṽ , except that
we discuss in what follows how the boundary value problem for (3.78) with the
boundary conditions (3.84) and (3.88) is solved in D.

As we discussed above, we perform the iteration in the spaces from (3.68) for
Problem 3.2(ST) and similar norms with appropriate growths for Problem 3.2(WT),
expressed in the z-coordinates (3.75). We focus below on the case of Problem
3.2(WT), since the other case is similar.

For τ > 0, define

Στ1 = {v : ‖v‖(−α;L1)
2,α;(0,1+β);D + ‖vz1‖(1−α;L1)

2,α;(1+β,1);D ≤ τ},

Στ2 = {v : ‖v‖(−α;O)(−1−α;L1)
2,α;(1+β,0);D ≤ τ}, Στ3 = {v : ‖v‖(−α;0)

2,α;(1+β);R+ ≤ τ},

Στ = {(δU1, δU2, δσ̂
′) : δU1 ∈ Στ1 × Στ1 , δU2 ∈ Στ2 × Στ2 , δσ̂

′ ∈ Στ3}.

(3.89)

The condition on vz1 in Στ1 is added for technical reasons.
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It remains to discuss how we find (δw̃, δp̃) ∈ ΣC0ε
2 × ΣC0ε

2 that solves (3.78) in
D with the boundary conditions (3.84) and (3.88). From system (3.78), we obtain

(δp̃)z1 =
λR − δσ̂′

hλI
(δw̃)z1 +

(λR − δσ̂′)2 + λ2
I

hλI
(δw̃)z2 , (3.90)

(δp̃)z2 = − 1
hλI

(δw̃)z1 −
λR − δσ̂′

hλI
(δw̃)z2 . (3.91)

Now, differentiating and subtracting the equations, we eliminate δp̃ to obtain a
second-order PDE for δw̃ of the form

2∑
i,j=1

(aij(δw̃)zj )zi = 0, (3.92)

where the coefficients are computed explicitly from (3.90)–(3.91). Note that, at the
subsonic background solution (3.59), we have

λR0 = 0, λI0 > 0, h0 > 0,

where the left-hand sides are constants and δσ̂0 = 0. Then, computing the coeffi-
cients at the background solution, Eq. (3.92) becomes

1
λI0

(δw̃)z1z1 + λI0(δw̃)z2z2 = 0,

that is, the equation is uniformly elliptic. Then, for the coefficients computed at
(U+

10 + δU1, U
+
20 + δU2, δσ̂

′) for (δU1, δU2, δσ̂
′) ∈ ΣC0ε, Eq. (3.92) is uniformly ellip-

tic if ε is small. This allows us to obtain the unique solution δw̃ ∈ ΣC0ε
2 of (3.92) in D

with the boundary conditions (3.84) and (3.88). Note that the inclusion δw̃ ∈ ΣC0ε
2

involves the asymptotic condition at infinity, which makes the boundary value prob-
lem well-defined and allows us to prove the uniqueness. After δw̃ is determined, we
determine δp̃ by the z2-integration from (3.91) with the initial condition (3.84),
where it can be shown that b1 �= 0. Then we show that δp ∈ ΣC0ε

2 . This completes
the definition of the iteration map.

The iteration set for Problem 3.2(WT) is ΣC0ε. We first show that Q(ΣC0ε) ⊂
ΣC0ε when ε is small, and then obtain a fixed point by the Schauder fixed-point
theorem, via showing that ΣC0ε is a compact subset in the Banach space defined
by replacing α via α′ ∈ (0, α) in the norms used in the definition of Στ and showing
that map Q is continuous in this norm.

(3) Asymptotic limit of the fixed point in the y-coordinates. Let
(δU1, δU2, δσ̂

′) ∈ ΣC0ε be a fixed point of the iteration map, and let (U1, U2, σ̂
′) =

(U+
10 + δU1, U

+
20 + δU2, δσ̂

′).

We change from the z– to y-coordinates by inverting (3.75)

z := (z1, z2) → y := (y1, y2) = (z1, z2 + δσ̂(z1)).
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Since δσ̂′ ∈ ΣC0ε
3 , then both (3.75) and its inverse are close to the identity map

in C2,α(Dσ̂; R2) and C2,α(D; R2), respectively. Then it follows that, in the y-
coordinates, (δU1, δU2, δσ̂

′) ∈ Σ̃2C0ε if ε is small, where

Σ̃τ1 = {v : ‖v‖(−α;L1)
2,α;(0,1+β);Dσ̂

+ ‖vz1‖(1−α;L1)
2,α;(1+β,1);Dσ̂

≤ τ},

Σ̃τ2 = {v : ‖v‖(−α;O)(−1−α;L1)
2,α;(1+β,0);Dσ̂

≤ τ}, (3.93)

Σ̃τ = {(δU1, δU2, δσ̂
′) : δU1 ∈ Σ̃τ1 × Σ̃τ1 , δU2 ∈ Σ̃τ2 × Σ̃τ2 , δσ̂

′ ∈ Στ3}.

In particular, this leads to the estimates of the second and third terms on the
left-hand side of (3.67).

Note that, if v ∈ Σ̃τ2 , then v → 0 as |y| → ∞ in Dσ̂, with decay rate |y|−(β+1).
However, for v ∈ Σ̃τ1 , no asymptotic limit as |y| → ∞ in Dσ̂ is defined.

Then, from (3.59)–(3.60), it follows that U2 = (w, p) → (0, p+
0 ) as |y| → ∞ in

D; however, for U1 = (u1, ρ), the limit is not determined by space Στ1 , and (u1, ρ)
does not converge to (u+

10, ρ
+
0 ) in general, as we see in what follows. Thus, we have

to determine the limiting profiles (u∞1 (y2), ρ∞(y2)).
To determine ρ∞(y2), we first obtain (3.36) from (3.7)–(3.10), which implies

(3.37). Since σ̂(y1) is determined, then A(y2) in (3.37) is determined by the
upstream state U−(y) from the Rankine–Hugoniot conditions (3.27)–(3.30). Then,
noting that p→ p∞0 , we obtain formally

ρ→ ρ∞(y2) =
(

p+
0

A(y2)

) 1
γ

as |y| → ∞ in Dσ̂.

Similarly, we use (3.70) to obtain

u1 → u∞1 (y2) =

√
2
(
B(y2) − γp+

0

(γ − 1)ρ∞(y2)

)
as |y| → ∞ in Dσ̂.

Defining U∞(y2) := (u∞1 (y2), 0, p+
0 , ρ

∞(y2)), we can show that the estimates of the
first and the last terms on the left-hand side of (3.67) hold. This completes the
argument for case (i) of Theorem 3.3.

Case (ii) is handled similarly. Note that the slower decay at infinity for case (ii),
i.e. |y|−β , is from the elliptic estimates, even if the faster decay at infinity in (3.25)
is required. The reason for the difference in the rates for cases (i) and (ii) is (3.86).

(4) Return to the x-coordinates. We obtain Theorem 3.2 directly from Theorem
3.3 by changing the coordinates. Recall that, when the Lagrangian coordinates are
defined for Theorem 3.3, we have used the rotated coordinates x in (3.6); see the
discussion in the paragraph before Theorem 3.3.

From the estimates in Theorem 3.3, it follows that, in the Lagrangian coordi-
nates, |U −U+

0 | ≤Cε in Dσ̂, where C depends only on (U−
0 , U

+
0 ). Thus, the same is
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true in the x-coordinates in Ω. Then it follows from (3.5)–(3.6) and (3.59) for posi-
tive u+

10 and ρ+
0 that the change of coordinates x → y given by (3.6) is bi-Lipschitz.

Then (3.66) follows from (3.68) directly.
Similarly, the estimates of the second and third terms on the left-hand side of

(3.64) follow from (3.67) directly. In order to obtain the estimates of the remaining
terms on the left-hand side of (3.64), we need to identify U∞(x2).

Note that, on shock S, using (3.6) and the estimate of the third term on the
left-hand side of (3.64), we see that, for small ε,

∂τSψ = ρu · νS ≥ ρu+
0 · νS0 − Cε ≥ 1

2
ρu+

0 · νS0 > 0.

Recall also that ψ(0) = 0 by (3.5). Then, for each y2 > 0, there exists a unique
xin(y2) = (xin

1 (y2), xin
2 (y2)) ∈ S such that ψ(xin(y2)) = y2 and

‖xin‖C2,α([0,∞)) ≤ C, (xin)′ ≥ C−1 > 0 on [0,∞).

From this and (3.5), it follows that, for each y2 > 0,

Ω ∩ {x : ψ(x) = y2} = {(x1, x
∗
2(x1; y2)) : x1 > xin

1 (y2)},
where x∗2(·; y2) is the solution of the initial value problem for the differential equa-
tion: ⎧⎨⎩∂x1x

∗
2(x1; y2) = w(x1, x

∗
2(x1; y2)),

x∗2(x
in
1 (y2); y2) = xin

2 (y2),
(3.94)

where w = u2
u1

(cf. (3.60)). Since we have obtained the estimate of the second term
on the left-hand side of (3.24), using (3.59), we have

|Dkw(x)| ≤ C0ε(1 + |x|)−1−β in Ω, for k = 0, 1, 2. (3.95)

In particular, for each y2 ≥ 0 and k = 0, 1, 2,∫ ∞

xin
1 (y2)

|Dkw(x1, x
∗
2(x1; y2))|dx1 ≤ C0ε

∫ ∞

0

(1 + x1)−1−β dx1 ≤ Cε. (3.96)

Applying this with k = 1, we conclude that limx1→∞ x∗2(x1; y2) exists for each
y2 ≥ 0, which is denoted as x∞2 (y2).

Recall the structure of Ω in (3.62), where brot(x1) → 0 and σ̃(x1) → ∞ as
x1 → ∞ by (3.63) and the estimate of the third term in (3.64). Differentiating
(3.94) twice with respect to y2 and using the C2-estimate of xin and (3.96), we
obtain that ‖x∗2(x1; ·)‖C2([brot(x1),σ̃(x1)]) ≤ C for each x1 > 0. From this, we have

x∗2(x1; ·) → x∞2 (·) in C1 on compact subsets on [0,∞) as x1 → ∞, (3.97)

with ‖x∞2 ‖C2([0,∞)) ≤ C. Also, by a similar argument, using the C2,α-regularity
of xin and the estimate of w in the second term in (3.64), we obtain that x∞2 ∈
C2,α([0,∞)).
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Furthermore, for the background solution, the potential functions ψ−
0 of U−

0 ,
ψ+

0 of U+
0 , and ψ0 of the transonic shock solution (U−

0 , U
+
0 ) in {x1 > 0,

x2 > 0} are as follows:

ψ−
0 (x) = ρ−0 u

−
10(x1 − x2 tan θw), ψ+

0 (x) = ρ+
0 u

+
10x1,

ψ0(x) =

⎧⎨⎩ψ
−
0 (x) if x2 < s̃x1,

ψ+
0 (x) if x2 > s̃x1,

by using (3.59), where ψ0 is Lipschitz. Then, estimating ψ − ψ−
0 in Ω− via (3.63)

(where the polynomial decay is of degree −(1 + β) so that the calculations similar
to (3.96) can be used) and using the Rankine–Hugoniot conditions on S, we obtain

|(xin)′ − (xin
0 )′| ≤ Cε on [0,∞),

where xin
0 (y2) = y2

ρ+0 u
+
10

(1, s̃0) that is the corresponding function xin of the back-
ground solution.

Denote by x∗20(x1; y2) the corresponding function x∗2(x1; y2) of the background
solution. Then

x∗20(x1; y2) =
y2

ρ+
0 u

+
10

on x1 >
y2

ρ+
0 u

+
10s̃0

for each y2 ≥ 0.

Thus, x∗20(x1; y2) is independent of x1, so that x∗20(x1; y2) = x∗20(y2). Then, denoting

g(x1; y2) = x∗2(x1; y2) − x∗20(y2),

we see that g satisfies ⎧⎨⎩∂x1g(x1; y2) = w(x1, x
∗
2(x1; y2)),

|g(xin
1 (y2); y2)| ≤ Cε.

(3.98)

From this and (3.96)–(3.97), we obtain that |(x∞2 )′ − (x∞20)
′| ≤ Cε, where

(x∞20)
′(y2) = (x∗20)

′(y2) = 1
ρ+0 u

+
10

. Therefore, we have

(x∞2 )′ ≥ 1
2ρ+

0 u
+
10

on [0,∞),

if ε is small. In particular, noting that x∞2 (0) = 0 since ∂W is a streamline corre-
sponding to ψ = 0 and limx1→∞ brot(x1) = 0 by (3.63), we obtain x∞2 ([0,∞)) =
[0,∞). Then there exists the inverse function y∗2 : [0,∞) → [0,∞) to x∞2 (·) such
that y∗2 ∈ C2,α([0,∞)) with y∗2(0) = 0 and (y∗2)′ ≥ 1

C > 0.
Finally, defining U∞(x2) = U∞(y∗2(x2)), we obtain (3.64) from (3.67).
For more details, see [25].

Remark 3.1. For the global stability of weak transonic shocks for the 3D wedge
problem, see [26, 28]; also see the instability phenomenon for strong transonic shocks
for the 3D wedge problem in [77]. For the global stability of conical shocks for the
MD conic problem, see [27] for the transonic shock case and [38, 49, 82] for the
supersonic shock case.
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4. Two-Dimensional Transonic Shocks and Free Boundary Problems
for the Self-Similar Euler Equations for Potential Flow

In Secs. 2 and 3, we have discussed the free boundary problems for steady transonic
shock solutions of the compressible Euler equations. Now we discuss free boundary
problems for time-dependent solutions.

Time-dependent solutions with shocks of the Cauchy problem for the compress-
ible Euler system may exhibit non-uniqueness in general; see [50, 71] and the ref-
erences cited therein. On the other hand, many fundamental physical phenomena,
including shock reflection/diffraction, are determined by the time-dependent solu-
tions of self-similar structure; moreover, the uniqueness can be established in a
carefully chosen class of self-similar solutions with shocks. In this section, we focus
on this case; more precisely, we describe transonic shocks and free boundary prob-
lems for self-similar shock reflection/diffraction for the Euler equations for potential
flow.

The 2D compressible potential flow is governed by the conservation law of mass
and the Bernoulli law for the density function ρ and the velocity potential Φ (i.e.
u = ∇Φ):

∂tρ+ ∇x · (ρ∇xΦ) = 0, (4.1)

∂tΦ +
1
2
|∇xΦ|2 + h(ρ) = B (4.2)

for t ∈ R+ := (0,∞) and x ∈ R2, where B is the Bernoulli constant, and h(ρ) is
given by

h(ρ) =
ργ−1 − 1
γ − 1

for the adiabatic exponent γ > 1. (4.3)

By (4.2)–(4.3), ρ can be expressed as

ρ(∂tΦ,∇xΦ) = h−1(B − ∂tΦ − 1
2
|∇xΦ|2). (4.4)

Then system (4.1)–(4.2) can be rewritten as the following second-order nonlinear
wave equation:

∂tρ(∂tΦ,∇xΦ) + ∇x · (ρ(∂tΦ,∇xΦ)∇xΦ
)

= 0 (4.5)

with ρ(∂tΦ,∇xΦ) determined by (4.4).
Note that Eq. (4.4) is invariant under the self-similar scaling

(t,x) → (αt, αx), Φ → Φ
α

for α �= 0, (4.6)

and thus it admits self-similar solutions in the form of

Φ(t,x) = tφ(ξ) for ξ =
x
t
. (4.7)

Then, the pseudo-potential function

ϕ(ξ) = φ(ξ) − 1
2
|ξ|2
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satisfies the following equation:

div(ρ(|Dϕ|2, ϕ)Dϕ) + 2ρ(|Dϕ|2, ϕ) = 0 (4.8)

for

ρ(|Dϕ|2, ϕ) =
(
B0 − (γ − 1)

(
1
2
|Dϕ|2 + ϕ

)) 1
γ−1

, (4.9)

where B0 = (γ − 1)B + 1, and the divergence div and gradient D are with respect
to ξ ∈ R2.

Equation (4.8) written in the non-divergence form is

(c2 − ϕ2
ξ1)ϕξ1ξ1 − 2ϕξ1ϕξ2ϕξ1ξ2 + (c2 − ϕ2

ξ2)ϕξ2ξ2 + 2c2 − |Dϕ|2 = 0, (4.10)

where the sonic speed c = c(|Dϕ|2, ϕ) is determined by

c2(|Dϕ|2, ϕ) = ργ−1(|Dϕ|2, ϕ) = B0 − (γ − 1)
(

1
2
|Dϕ|2 + ϕ

)
. (4.11)

Another form of (4.10), which uses both the potential φ and the pseudo-potential
ϕ, is

(c2 − ϕ2
ξ1)φξ1ξ1 − 2ϕξ1ϕξ2φξ1ξ2 + (c2 − ϕ2

ξ2)φξ2ξ2 = 0. (4.12)

Equation (4.8) is a nonlinear PDE of mixed elliptic–hyperbolic type. It is elliptic
at ξ if and only if

|Dϕ| < c(|Dϕ|2, ϕ) at ξ, (4.13)

and is hyperbolic if the opposite inequality holds. This can be seen more clearly
from the rotational invariance of (4.10), by fixing ξ and choosing coordinates (ξ1, ξ2)
so that ξ1 is along the direction of Dϕ(ξ).

Moreover, from (4.10)–(4.11), Eq. (4.8) satisfies the Galilean invariance prop-
erty: If ϕ(ξ) is a solution, then its shift ϕ(ξ − ξ0) for any constant vector ξ0 is also
a solution. Furthermore, ϕ(ξ) + const . is a solution of (4.8) with adjusted constant
B correspondingly in (4.9) and (4.11).

One class of solutions of (4.8) is that of constant states that are the solutions
with constant velocity v ∈ R2. This implies that the pseudo-potential of a constant
state satisfies Dϕ = v − ξ so that

ϕ(ξ) = −1
2
|ξ|2 + v · ξ + C, (4.14)

where C is a constant. For such ϕ, the expressions in (4.9) and (4.11) imply that
the density and sonic speed are positive constants ρ and c, i.e. independent of ξ.
Then, from (2.4) and (4.14), the ellipticity condition for the constant state is

|ξ − v| < c.

Thus, for a constant state v, Eq. (4.8) is elliptic inside the sonic circle, with center
v and radius c, and hyperbolic outside this circle.
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We also note that, if density ρ is a constant, then the solution is a constant
state; that is, the corresponding pseudo-potential ϕ is of form (4.14).

Since the problem involves transonic shocks, we have to consider weak solutions
of Eq. (4.8), which admit shocks. As in [33], the weak solutions are defined in the
distributional sense in a domain Λ in the ξ–coordinates.

Definition 4.1. A function ϕ ∈W 1,1
loc (Λ) is called a weak solution of (4.8) if

(i) B0 − (γ − 1)(1
2 |Dϕ|2 + ϕ) ≥ 0 a.e. in Λ,

(ii) (ρ(|Dϕ|2, ϕ), ρ(|Dϕ|2, ϕ)|Dϕ|) ∈ (L1
loc(Λ))2,

(iii) For every ζ ∈ C∞
c (Λ),∫
Λ

(
ρ(|Dϕ|2, ϕ)Dϕ ·Dζ − 2ρ(|Dϕ|2, ϕ)ζ

)
dξ = 0. (4.15)

A shock is a curve across which Dϕ is discontinuous. If Λ+ and Λ−(:= Λ\Λ+)
are two nonempty open subsets of a domain Λ ⊂ R2, and S := ∂Λ+ ∩ Λ is a
C1-curve where Dϕ has a jump, then ϕ ∈ C1(Λ± ∪ S) ∩ C2(Λ±) is a global weak
solution of (4.8) in Λ if and only if ϕ is in W 1,∞

loc (Λ) and satisfies Eq. (4.8) and the
Rankine–Hugoniot condition on S:

ρ(|Dϕ|2, ϕ)Dϕ · ν|Λ+∩S = ρ(|Dϕ|2, ϕ)Dϕ · ν|Λ−∩S . (4.16)

Note that the condition ϕ ∈W 1,∞
loc (Λ) requires that

ϕΛ+∩S = ϕΛ−∩S , (4.17)

which is consistent with curl(Dϕ) = 0 in the distributional sense.
A piecewise smooth solution with the discontinuities is called an entropy solution

of (4.8) if it satisfies the entropy condition: density ρ increases in the pseudo-flow
direction of DϕΛ+∩S across any discontinuity. Then such a discontinuity is called a
shock.

4.1. The von Neumann problem for shock reflection–diffraction

We now describe the von Neumann problem for shock reflection–diffraction, pro-
posed for mathematical analysis first in [106–108]. When a vertical planar shock
perpendicular to the flow direction x1 and separating two uniform states (0) and
(1), with constant velocities u0 = (0, 0) and u1 = (u1, 0) and constant densities
ρ0 < ρ1 (state (0) is ahead or to the right of the shock, and state (1) is behind the
shock), hits a symmetric wedge:

W :=
{
(x1, x2) : |x2| < x1 tan θw, x1 > 0

}
head-on at time t = 0, a reflection–diffraction process takes place when t > 0. Then
a fundamental question is what types of wave patterns of reflection–diffraction
configurations may be formed around the wedge. The complexity of reflection–
diffraction configurations was first reported by Mach [90] in 1878, who first observed
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Fig. 4. Supersonic regular shock reflection–diffraction configuration.

Fig. 5. Subsonic regular shock reflection–diffraction configuration.

two patterns of reflection–diffraction configurations: Regular reflection (two-shock
configuration; see e.g. Figs. 4–5) and Mach reflection (three-shock/one-vortex-sheet
configuration); also see [8, 35, 52, 104]. The issues remained dormant until the 1940s
when John von Neumann [106–108], as well as other mathematical/experimental
scientists (cf. [8, 35, 52, 63, 104] and the references cited therein), began exten-
sive research into all aspects of shock reflection–diffraction phenomena, due to its
importance in applications. It has been found that the situations are much more
complicated than what Mach originally observed: The Mach reflection can be fur-
ther divided into more specific sub-patterns, and various other patterns of shock
reflection–diffraction configurations may occur such as the double Mach reflection,
the von Neumann reflection, and the Guderley reflection; see [8, 35, 52, 63, 65, 104]
and the references cited therein. Then the fundamental scientific issues include:

(i) Structures of the shock reflection–diffraction configurations.
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(ii) Transition criteria among the different patterns of shock reflection–diffraction
configurations.

(iii) Dependence of the patterns upon the physical parameters such as the wedge
angle θw, the incident-shock-wave Mach number, and the adiabatic exponent
γ > 1.

In particular, several transition criteria among the different patterns of shock
reflection–diffraction configurations have been proposed, including the sonic con-
jecture and the detachment conjecture by von Neumann [106–108].

A careful asymptotic analysis has been made for various reflection–diffraction
configurations in [67–69, 83, 84, 94], and the references cited therein; also see [63].
Large or small scale numerical simulations have been also performed; cf. [8, 63, 111]
and the references cited therein. However, most of the fundamental issues for
shock reflection–diffraction phenomena have not been understood, especially the
global structure and transition between the different patterns of shock reflection–
diffraction configurations. This is partially because physical and numerical exper-
iments are hampered by many difficulties and have not yielded clear transition
criteria between the different patterns. In particular, numerical dissipation or phys-
ical viscosity smear the shocks and cause boundary layers that interact with the
reflection–diffraction patterns and can cause spurious Mach steams; cf. [111]. Fur-
thermore, some different patterns occur when the wedge angles are only fractions of
a degree apart, a resolution as yet unreachable even by sophisticated experiments
(cf. [8, 89]). For this reason, it is impossible to distinguish experimentally between
the sonic and detachment criteria clearly, as pointed out in [8]. In this regard, the
necessary approach to understand fully the shock reflection–diffraction phenomena,
especially the transition criteria, is via rigorous mathematical analysis. To achieve
this, it is essential to formulate the shock reflection–diffraction problem as a free
boundary problem and establish the global existence, regularity, and structural
stability of its solution.

Mathematically, the shock reflection–diffraction problem is a 2D lateral Riemann
problem in domain R2\W .

Problem 4.1 (Two-Dimensional Lateral Riemann Problem). Piecewise
constant initial data, consisting of state (0) with velocity u0 = (0, 0) on {x1 > 0}\W
and state (1) with velocity u1 = (u1, 0) on {x1 < 0} connected by a shock at x1 = 0,
are prescribed at t = 0. Seek a solution of the Euler system (4.1)–(4.2) for t ≥ 0
subject to these initial data and the boundary condition ∇Φ · ν = 0 on ∂W .

In order to define the notion of weak solutions of Problem 4.1, it is noted that
the boundary condition can be written as ρ∇Φ · ν = 0 on ∂W , which is spatial
conormal to Eq. (4.5). Then we have

Definition 4.2 (Weak Solutions of Problem 4.1). A function Φ ∈W 1,1
loc (R+ ×

(R2\W )) is called a weak solution of Problem 4.1 if Φ satisfies the following
properties:
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B − (∂tΦ + 1
2 |∇xΦ|2) ≥ h(0+) a.e. in R+ × (R2\W ).

(ii) For ρ(∂tΦ,∇xΦ) determined by (4.4),

(ρ(∂tΦ, |∇xΦ|2), ρ(∂tΦ, |∇xΦ|2)|∇xΦ|) ∈ (L1
loc(R+ × R2\W ))2.

(iii) For every ζ ∈ C∞
c (R+ × R2),∫ ∞

0

∫
R2\W

(
ρ(∂tΦ, |∇xΦ|2)∂tζ + ρ(∂tΦ, |∇xΦ|2)∇Φ · ∇ζ)dxdt

+
∫

R2\W
ρ(0,x)ζ(0,x)dx = 0,

where

ρ|t=0 =

⎧⎨⎩ρ0 for |x2| > x1 tan θw and x1 > 0,

ρ1 for x1 < 0.

Remark 4.3. Since ζ does not need to be zero on ∂Λ, the integral identity in
Definition 4.2 is a weak form of Eq. (4.5) and the boundary condition ρ∇Φ · ν = 0
on ∂W .

Remark 4.4. A weak solution is called an entropy solution if it satisfies the entropy
condition that is consistent with the second law of thermodynamics (cf. [35, 52,
53, 73]). In particular, a piecewise smooth solution is an entropy solution if the
discontinuities are all shocks.

Note that Problem 4.1 is invariant under scaling (4.6), so it admits self-similar
solutions determined by Eqs. (4.8) with (4.9), along with the appropriate boundary
conditions, through (4.7). We now show how such solutions in self-similar coordi-
nates ξ = (ξ1, ξ2) = x

t can be constructed.
First, by the symmetry of the problem with respect to the ξ1-axis, we consider

only the upper half-plane {ξ2 > 0} and prescribe the boundary condition: ϕν = 0
on the symmetry line {ξ2 = 0}. Note that state (1) satisfies this condition. Then
Problem 4.1 is reformulated as a boundary value problem in the unbounded domain:

Λ := R2
+\{ξ : |ξ2| ≤ ξ1 tan θw, ξ1 > 0}

in the self-similar coordinates ξ = (ξ1, ξ2), where R2
+ := R2∩{ξ2 > 0}. The incident

shock in the self-similar coordinates is the half-line S0 = {ξ1 = ξ01} ∩ Λ, where

ξ01 = ρ1

√
2(c21 − c20)

(γ − 1)(ρ2
1 − ρ2

0)
=

ρ1u1

ρ1 − ρ0
, (4.18)

which is determined by the Rankine–Hugoniot conditions between states (0) and (1)
on S0. Then, Problem 4.1 for self-similar solutions becomes the following problem:

Problem 4.2 (Boundary Value Problem). Seek a solution ϕ of Eqs. (4.8)–
(4.9) in the self-similar domain Λ with the slip boundary condition Dϕ · ν|∂Λ = 0

2230002-53

B
ul

l. 
M

at
h.

 S
ci

. 2
02

2.
12

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

O
X

FO
R

D
 o

n 
04

/0
8/

22
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



March 23, 2022 15:24 WSPC/1664-3607 319-BMS 2230002

G.-Q. G. Chen & M. Feldman

and the asymptotic boundary condition at infinity:

ϕ→ ϕ̄ =

⎧⎨⎩ϕ0 for ξ1 > ξ01 , ξ2 > ξ1 tan θw,

ϕ1 for ξ1 < ξ01 , ξ2 > 0,
when |ξ| → ∞,

where ϕ0 = − 1
2 |ξ|2 and ϕ1 = − 1

2 |ξ|2 + u1(ξ1 − ξ01).

A weak solution of Problem 4.2 is obtained by the following modification of
Definition 4.1: (4.15) is now required to hold for all ζ ∈ C∞

c (R2). As discussed in
Remark 4.3, with such a choice of function ζ, the integral identity (4.15) includes
both Eq. (4.8) and the boundary condition of conormal form: ρDϕ ·ν = 0 on ∂Λ. A
weak solution is called entropy solution if it satisfies the entropy condition: density
ρ increases in the pseudo-flow direction of Dϕ|Λ+∩S across any discontinuity curve
(i.e. shock).

Now we describe the more detailed structure of the regular reflection–diffraction
configurations as shown in Figs. 4–5. If a solution has one of the regular shock
reflection–diffraction configurations, and if its pseudo-potential ϕ is C1 in the sub-
region Ω̂ between the wedge and the reflected shock, then, at P0, it should satisfy
both the slip boundary condition on the wedge and the Rankine–Hugoniot condi-
tions with state (1) across the flat shock S1 = {ϕ1 = ϕ2}, which passes through
point P0 where the incident shock meets the wedge boundary. Define the uniform
state (2) with pseudo-potential ϕ2(ξ) such that

ϕ2(P0) = ϕ(P0), Dϕ2(P0) = lim
P→P0, P∈Ω̂

Dϕ(P ).

Then the constant density ρ2 of state (2) is equal to ρ(|Dϕ|2, ϕ)(P0) defined by
(4.8):

ρ2 = ρ(|Dϕ2|2, ϕ2)(P0).

From the properties of ϕ discussed above, it follows that Dϕ2 · ν = 0 on the wedge
boundary and the Rankine–Hugoniot conditions (4.16)–(4.17) hold on the flat shock
S1 = {ϕ1 = ϕ2} between states (1) and (2), which passes through P0. In particular,
ϕ2 satisfies the following three conditions at P0:

Dϕ2 · νw = 0, ϕ2 = ϕ1, ρ(|Dϕ2|2, ϕ2)Dϕ2 · νS1 = ρ1Dϕ1 · νS1 ,

for νS1 = D(ϕ1−ϕ2)
|D(ϕ1−ϕ2)| , (4.19)

where νw is the outward normal to the wedge boundary.
The entropy solution ϕ, correspondingly state (2), can be either supersonic or

subsonic at P0. This determines the supersonic or subsonic type of regular shock
reflection–diffraction configurations. The regular reflection solution in the super-
sonic region is expected to consist of the constant states separated by straight
shocks (cf. [99, Theorem 4.1]). Then, when state (2) is supersonic at P0, it can
be shown that the constant state (2), extended up to arc P1P4 of the sonic cir-
cle of state (2) between the wall and the straight shock P0P1 ⊂ S1 separating it
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from state (1), as shown in Fig. 4, satisfies Eq. (4.8) in the region, the Rankine–
Hugoniot condition (4.16)–(4.17) on the straight shock P0P1, and the slip boundary
condition: Dϕ2 ·νw = 0 on the wedge P0P4, and is expected to be a part of the reg-
ular shock reflection–diffraction configuration. Then the supersonic regular shock
reflection–diffraction configuration in Fig. 4 consists of three uniform states (0),
(1), (2), and a non-uniform state in domain Ω = P1P2P3P4, where Eq. (4.8) is
elliptic. The reflected shock P0P1P2 has a straight part P0P1. The elliptic domain
Ω is separated from the hyperbolic region P0P1P4 of state (2) by the sonic arc P1P4

which lies on the sonic circle of state (2), and the ellipticity in Ω degenerates on
the sonic arc P1P4. The subsonic regular shock reflection–diffraction configuration
as shown in Fig. 5 consists of two uniform states (0) and (1), and a non-uniform
state in domain Ω = P0P2P3 where the equation is elliptic, and ϕ|Ω(P0) = ϕ2(P0)
and D(ϕ|Ω)(P0) = Dϕ2(P0).

For the supersonic regular shock reflection–diffraction configurations in Fig. 4,
we use Γsonic, Γshock, Γwedge, and Γsym for the sonic arc P1P4, the curved part of the
reflected shock P1P2, the wedge boundary P3P4, and the symmetry line segment
P2P3, respectively.

For the subsonic regular shock reflection–diffraction configurations in Fig. 5,
Γshock, Γwedge, and Γsym denote P0P2, P0P3, and P2P3, respectively. We unify the
notations with the supersonic reflection case by introducing points P1 and P4 for
the subsonic reflection case as

P1 := P0, P4 := P0, Γsonic := {P0}. (4.20)

The corresponding solution for θw = π
2 is called normal reflection. In this case,

the incident shock normally reflects from the flat wall; see Fig. 6. The reflected
shock is also a plane {ξ1 = ξ̄1}, where ξ̄1 < 0.

From the discussion above, it follows that a necessary condition for the existence
of a regular reflection solution is the existence of the uniform state (2) with
pseudo-potential ϕ2 determined by the boundary condition Dϕ2 · ν = 0 on the

Fig. 6. Normal reflection configuration (cf. [35]).
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wedge and the Rankine–Hugoniot conditions (4.16)–(4.17) across the flat shock
S1 = {ϕ1 = ϕ2} separating it from state (1), and satisfying the entropy condi-
tion ρ2 > ρ1. These conditions lead to the system of algebraic equations (4.19) for
the constant velocity u2 and density ρ2 of state (2). System (4.19) has solutions
for some but not all of the wedge angles. More specifically, for any fixed densities
0 < ρ0 < ρ1 of states (0) and (1), there exist a sonic angle θsw and a detachment
angle θdw satisfying

0 < θdw < θsw <
π

2

such that the algebraic system (4.19) has two solutions for each θw ∈ (θdw,
π
2 ), which

become equal when θw = θdw. Thus, for each θw ∈ (θdw,
π
2 ), there exist two states

(2), called weak and strong, with densities ρweak
2 < ρstrong

2 . The weak state (2) is
supersonic at the reflection point P0(θw) for θw ∈ (θsw,

π
2 ), sonic for θw = θsw, and

subsonic for θw ∈ (θdw, θ̂
s
w) for some θ̂sw ∈ (θdw, θ

s
w]. The strong state (2) is subsonic

at P0(θw) for all θw ∈ (θdw,
π
2 ).

There had been a long debate to determine which of the two states (2) for
θw ∈ (θdw,

π
2 ), weak or strong, is physical for the local theory; see [8, 35, 52] and

the references cited therein. It was conjectured that the strong shock reflection–
diffraction configuration would be non-physical; indeed, it is shown in [33, 35]
that the weak shock reflection–diffraction configuration tends to the unique nor-
mal reflection in Fig. 6, but the strong reflection–diffraction configuration does not,
when the wedge angle θw tends to π

2 . The entropy condition and the definition
of weak and strong states (2) imply that 0 < ρ1 < ρweak

2 < ρstrong
2 , which shows

that the strength of the corresponding reflected shock near P0 in the weak shock
reflection–diffraction configuration is relatively weak, compared to the other shock
given by the strong state (2).

If the weak state (2) is supersonic, the propagation speeds of the solution are
finite, and state (2) is completely determined by the local information: state (1),
state (0), and the location of point P0. That is, any information from the reflection–
diffraction region, particularly the disturbance at corner P3, cannot travel towards
the reflection point P0. However, if it is subsonic, the information can reach P0

and interact with it, potentially altering the subsonic reflection–diffraction con-
figuration. This argument motivated the following conjecture by von Neumann
in [106, 107].

The Sonic Conjecture: There exists a supersonic regular shock reflection–
diffraction configuration when θw ∈ (θsw,

π
2 ) for θsw > θdw. That is, the supersonicity
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of the weak state (2) implies the existence of a supersonic regular reflection solution,
as shown in Fig. 4.

Another conjecture is that the global regular shock reflection–diffraction con-
figuration is possible whenever the local regular reflection at the reflection point is
possible.

The von Neumann Detachment Conjecture: There exists a regular shock
reflection–diffraction configuration for any wedge angle θw ∈ (θdw,

π
2 ). That is, the

existence of state (2) implies the existence of a regular reflection solution, as shown
in Figs. 4–5.

It is clear that the supersonic/subsonic regular shock reflection–diffraction con-
figurations are not possible without a local two-shock configuration at the reflection
point on the wedge, so the detachment conjecture is the weakest possible criterion
for the existence of supersonic/subsonic regular shock reflection–diffraction config-
urations.

From now on, for the given wedge angle θw ∈ (θdw,
π
2 ), state (2) represents

the unique weak state (2) and ϕ2 is its pseudo-potential. We now show how the
solutions of regular shock reflection–diffraction configurations can be constructed.
This provides a solution to the von Neumann conjectures for potential flow. Note
that state (2) is obtained from the algebraic conditions described above, which
determine line S1 and the sonic arc P1P4 when state (2) is supersonic at P0, and
the slope of Γshock at P0 (arc P1P4 on the boundary of Ω becomes a corner point P0)
when state (2) is subsonic at P0. Thus, the unknowns are domain Ω (or equivalently,
the curved part of the reflected shock Γshock) and the pseudo-potential ϕ in Ω. Then,
from (4.16)–(4.17), in order to construct a solution of Problem 4.2 of the supersonic
or subsonic regular shock reflection–diffraction configuration, it suffices to solve the
following problem.

Problem 4.3 (Free Boundary Problem). For θw ∈ (θdw,
π
2 ), find a free bound-

ary (curved reflected shock) Γshock ⊂ Λ ∩ {ξ1 < ξ1P1} (Γshock = P1P2 in Fig. 4 and
Γshock = P0P2 in Fig. 5) and a function ϕ defined in region Ω as shown in Figs.
4–5 such that

(i) Equation (4.8) is satisfied in Ω, and the equation is strictly elliptic for ϕ in
Ω\Γsonic,

(ii) ϕ = ϕ1 and ρDϕ · νs = ρ1Dϕ1 · νs on the free boundary Γshock,

(iii) ϕ = ϕ2 and Dϕ = Dϕ2 on P1P4 in the supersonic case as shown in Fig. 4 and
at P0 in the subsonic case as shown in Fig. 4,

(iv) Dϕ · νw = 0 on Γwedge, and Dϕ · νsym = 0 on Γsym,

where νs, νw, and νsym are the interior unit normals to Ω on Γshock, Γwedge, and
Γsym, respectively.
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Indeed, if ϕ is a solution of Problem 4.3, we define its extension from Ω to Λ by
setting

ϕ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ϕ0 for ξ1 > ξ01 and ξ2 > ξ1 tan θw,

ϕ1 for ξ1 < ξ01 and above curve P0P1P2,

ϕ2 in region P0P1P4,

(4.21)

where we have used the notational convention (4.20) for the subsonic reflection case,
in which region P0P1P4 is one point and curve P0P1P2 is P0P2; see Figs. 4–5. Also,
ξ01 used in (4.21) is the location of the incident shock (cf. (4.18)), and the extension
by (4.21) is well-defined because of the requirement that Γshock ⊂ Λ ∩ {ξ1 < ξ1P1}
in Problem 4.3.

Note that the conditions in Problem 4.3(ii) are the Rankine–Hugoniot conditions
(4.16)–(4.17) on Γshock between ϕ|Ω and ϕ1. Since Γshock is a free boundary and
Eq. (4.8) is strictly elliptic for ϕ in Ω\Γsonic, then two conditions — the Dirichlet
and oblique derivative conditions — on Γshock are consistent with one-phase free
boundary problems for nonlinear elliptic PDEs of second order (cf. [1, 3]).

In the supersonic case, the conditions in Problem 4.3(iii) are the Rankine–
Hugoniot conditions on Γsonic between ϕ|Ω and ϕ2. Indeed, since state (2) is sonic
on Γsonic, then it follows from (4.16)–(4.17) that no gradient jump occurs on Γsonic.
Then, if ϕ is a solution of Problem 4.3, its extension by (4.21) is a weak solution of
Problem 4.2. From now on, we consider a solution of Problem 4.3 to be a function
defined in Λ by extension via (4.21).

Since Γsonic is not a free boundary (its location is fixed), it is not possible in
general to prescribe two conditions given in Problem 4.3(iii) on Γsonic for a second-
order elliptic PDE. In the iteration problem, we prescribe the condition: ϕ = ϕ2 on
Γsonic, and then prove thatDϕ = Dϕ2 on Γsonic by exploiting the elliptic degeneracy
on Γsonic, as we describe in what follows.

We observe that the key obstacle to prove the existence of regular shock
reflection–diffraction configurations as conjectured by von Neumann [106, 107] is
an additional possibility that, for some wedge angle θaw ∈ (θdw,

π
2 ), shock P0P2 may

attach to the wedge vertex P3, as observed by experimental results (cf. [104, Fig.
238]). To describe the conditions of such an attachment, we note that

ρ1 > ρ0, u1 = (ρ1 − ρ0)

√
2(ργ−1

1 − ργ−1
0 )

ρ2
1 − ρ2

0

, c1 = ρ
γ−1

2
1 .

Then it follows from the explicit expressions above that, for each ρ0, there exists
ρc > ρ0 such that

u1 ≤ c1 if ρ1 ∈ (ρ0, ρ
c]; u1 > c1 if ρ1 ∈ (ρc,∞).

If u1 ≤ c1, we can rule out the solution with a shock attached to the wedge
vertex. This is based on the fact that, if u1 ≤ c1, then the wedge vertex P3 = (0, 0)
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lies within the sonic circle Bc1((u1, 0)) of state (1), and Γshock does not intersect
Bc1((u1, 0)), as we show in what follows.

If u1 > c1, there would be a possibility that the reflected shock could be attached
to the wedge vertex as the experiments show (e.g. [104, Fig. 238]).

Thus, in [33, 35], we have obtained the following results.

Theorem 4.1. There are two cases :

(i) If ρ0 and ρ1 are such that u1 ≤ c1, then the supersonic/subsonic regular
reflection solution exists for each wedge angle θw ∈ (θdw,

π
2 ). That is, for each

θw ∈ (θdw,
π
2 ), there exists a solution ϕ of Problem 4.3 such that

Φ(t,x) = t ϕ(
x
t
) +

|x|2
2t

for
x
t
∈ Λ, t > 0

with

ρ(t,x) =
(
ργ−1
0 − (γ − 1)

(
Φt +

1
2
|∇xΦ|2

)) 1
γ−1

is a global weak solution of Problem 4.1 in the sense of Definition 4.2 satisfying
the entropy condition; that is, Φ(t,x) is an entropy solution.

(ii) If ρ0 and ρ1 are such that u1 > c1, then there exists θaw ∈ [θdw,
π
2 ) so that

the regular reflection solution exists for each wedge angle θw ∈ (θaw,
π
2 ), and the

solution is of self-similar structure described in (i) above. Moreover, if θaw > θdw,

then, for the wedge angle θw = θaw, there exists an attached solution, i.e. ϕ is
a solution of Problem 4.3 with P2 = P3.

The type of regular shock reflection–diffraction configurations (supersonic as in
Fig. 4 or subsonic as in Fig. 5) is determined by the type of state (2) at P0:

(a) For the supersonic and sonic reflection cases, the reflected shock P0P2 is C2,α-
smooth for some α ∈ (0, 1) and its curved part P1P2 is C∞ away from P1. The
solution ϕ is in C1,α(Ω) ∩ C∞(Ω), and is C1,1 across the sonic arc which is
optimal ; that is, ϕ is not C2 across sonic arc.

(b) For the subsonic reflection case (Fig. 5), the reflected shock P0P2 and solution
ϕ in Ω is in C1,α near P0 and P3 for some α ∈ (0, 1), and C∞ away from
{P0, P3}.

Moreover, the regular reflection solution tends to the unique normal reflection (as
in Fig. 6) when the wedge angle θw tends to π

2 . In addition, for both supersonic and
subsonic reflection cases

ϕ2 < ϕ < ϕ1 in Ω. (4.22)

Furthermore, ϕ is an admissible solution in the sense of Definition 4.8 in what
follows, so that ϕ satisfies further properties listed in Definition 4.8.

Theorem 4.1 is proved by solving Problem 4.3. The first results on the existence
of global solutions of the free boundary problem (Problem 4.3) were obtained for
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the wedge angles sufficiently close to π
2 in [33]. Later, in [35], these results were

extended up to the detachment angle as stated in Theorem 4.1. For this extension,
the techniques developed in [33], notably the estimates near the sonic arc, were the
starting point.

Case I. The wedge angles close to π
2
. Let us first discuss the techniques in

[33], where we employ the approach of Chen–Feldman [29] to develop an iteration
scheme for constructing a global solution of Problem 4.3, when the wedge angle
θw is close to π

2 . For this case, the solutions are of the supersonic regular shock
reflection–diffraction configuration as shown in Fig. 4. The general procedure is
similar to the one described in Sec. 2.2, which can be presented in the following
four steps:

(1) Fix θw sufficiently close to π
2 so that various constants in the argument

can be controlled. The iteration set consists of functions defined on a region D,
where D contains all possible Ω for the fixed θw. Specifically, an important property
of the regular shock reflection–diffraction configurations is (4.22), which implies
that Ω ⊂ {ϕ2 < ϕ1}; that is, Ω lies below line S1 passing through P0 and P1 in
Fig. 4. Note that, when θw is close to π

2 , this line is close to the vertical reflected
shock of normal reflection in Fig. 6. Then D is defined as a region bounded by S1,
Γsonic = P1P4, Γwedge = P3P4, and the symmetry line ξ2 = 0. The iteration set is a
set of functions ϕ on D, defined by ϕ ≥ ϕ2 on D and the bound of norm of ϕ− ϕ2

on D in the scaled and weighted C2,α space defined in (4.38) in what follows. Such
functions satisfy

‖ϕ− ϕ2‖C1,α(D) ≤ C
(π

2
− θw

)
,

which is small when π
2 − θw � 1, and

‖ϕ− ϕ2‖C1,1(D∩Nε(Γsonic))
<∞.

However, ‖ϕ−ϕ2‖C1,1(D∩Nε(Γsonic))
is not small even if π2 − θw is small; the reasons

for that will be discussed in what follows.
Given a function ϕ̂ from the iteration set, we define domain Ω(ϕ̂) := {ϕ̂ < ϕ1}

so that the iteration free boundary is Γshock(ϕ̂) = ∂Ω(ϕ̂) ∩ D. This is similar to
(2.41), and the corresponding non-degeneracy similar to (2.40) in the present case is

∂ξ1(ϕ1 − ϕ2 − φ) ≥ u1

2
in D if ‖φ‖C1(D) and

π

2
− θw are small.

Then, we define the iteration equation by using form (4.12) of Eq. (4.8), by making
an elliptic truncation (which is somewhat different from Step 1 in Sec. 2.2) and
substituting ϕ̂ in some terms of the coefficients of (4.12). The iteration boundary
condition on Γshock(ϕ̂) is an oblique derivative condition obtained by combining two
conditions in Problem 4.3(ii) and making some truncations. On Γsonic, we prescribe
ϕ = ϕ2, i.e. one of two conditions in Problem 4.3(iii). On Γwedge and Γsym(ϕ̂), we
prescribe the conditions given in Problem 4.3(iv). The iteration map: ϕ̂ → ϕ is
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defined by solving the iteration problem to obtain ϕ and then extending ϕ from
Ω(ϕ̂) to D.

The fundamental differences between the iteration procedure in the shock
reflection–diffraction problem and the previous procedures on transonic shocks in
the steady case in Secs. 2 and 3 (such as [29, 30, 32, 112] and follow-up papers)
include:

(i) The procedures on steady transonic shocks in Secs. 2 and 3 are for the perturba-
tion case. In particular, the ellipticity of the iteration equation and the removal
of the elliptic cutoff are achieved by making the iteration set sufficiently close
to the background solution in C1 or a stronger norm. For the regular reflection
problem, this cannot be done because of the elliptic degeneracy near the sonic
arc.

(ii) Only one condition on Γsonic can be prescribed; however, both ϕ = ϕ2 and
Dϕ = Dϕ2 on Γsonic are needed to be matched to obtain a global entropy
solution. This is resolved by exploiting the elliptic degeneracy on Γsonic.

(2) In order to see the elliptic degeneracy on Γsonic more explicitly, we fix the
wedge angle θw and the corresponding pseudo-potential ϕ2 = ϕ

(θw)
2 of the weak

state (2), and rewrite Eq. (4.10) in terms of the function

ψ = ϕ− ϕ2

in the following coordinates flattening Γsonic:

x = c2 − r, y = θ − θw, (4.23)

where (r, θ) are the polar coordinates centered at O2 = u2 of the sonic circle of
state (2). Then

Ωε := Ω ∩ Nε(Γsonic) ⊂ {x > 0} for small ε > 0, Γsonic ⊂ {x = 0}.
In what follows, we always assume that ϕ ∈ C1,1(Ωε) as in Theorem 4.1 for the
supersonic case. Then, by the conditions in Problem 4.3(iii) and the definition of ψ,

ψ = 0 on Γsonic, (4.24)

Dψ = 0 on Γsonic. (4.25)

Moreover, we a priori assume that solution ϕ satisfies (4.22) in Ω to derive the
required estimates of the solution; with these estimates, we then construct such a
solution and verify that it satisfies (4.22). The heuristic motivation of (4.22) is the
following: From Figs. 4–5, it appears that Γshock (and hence Ω) is located below line
S1, i.e. in the half-plane {ϕ1 > ϕ2}. Thus, ϕ = ϕ1 > ϕ2 on Γshock, and ϕ1 > ϕ2 = ϕ

on Γsonic. Also, the potential functions φ1 and φ2 of states (1) and (2) are linear
functions, thus they satisfy Eq. (4.12) with coefficients determined by ϕ, considered
as a linear equation for φ. Taking into account the inequalities on Γshock and Γsonic
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noted above, and the oblique boundary conditions on Γwedge and Γsym, we obtain
(4.22) by the maximum principle. Then, from (4.22), we have

ψ > 0 in Ω. (4.26)

Even though the previous argument is heuristic, the fact that it comes from the
structure of the problem allows us to include the condition that ψ ≥ 0 in the
definition of the iteration set and close the iteration argument for constructing
the solutions within this set.

Equation (4.10) in Ω ∩Nε(Γsonic) for ψ in the (x, y)-coordinates (4.23) is(
2x− (γ + 1)ψx +O1

)
ψxx +O2ψxy +

(
1
c2

+O3

)
ψyy − (1 +O4)ψx +O5ψy = 0,

(4.27)

where

O1(Dψ,ψ, x) = −x
2

c2
+
γ + 1
2c2

(2x− ψx)ψx − γ − 1
c2

(
ψ +

1
2(c2 − x)2

ψ2
y

)
,

O2(Dψ,ψ, x) = −2(ψx + c2 − x)ψy
c2(c2 − x)2

,

O3(Dψ,ψ, x) =
1

c2(c2 − x)2

(
x(2c2 − x) − (γ − 1)

(
ψ + (c2 − x)ψx +

1
2
ψ2
x

)
− γ + 1

2(c2 − x)2
ψ2
y

)
,

O4(Dψ,ψ, x) =
1

c2 − x

(
x− γ − 1

c2

(
ψ + (c2 − x)ψx +

1
2
ψ2
x +

(γ + 1)ψ2
y

2(γ − 1)(c2 − x)2

))
,

O5(Dψ,ψ, x) = −2(ψx + c2 − x)ψy
c2(c2 − x)3

. (4.28)

Since ψ ∈ C1,1(Ωε), it follows from (4.24)–(4.25) that |ψ(x, y)| ≤ Cx2 and

|Dψ(x, y)| ≤ Cx in Ωε, (4.29)

so that

|O1(Dψ,ψ, x)| ≤ N |x|2, |Ok(Dψ,ψ, x)| ≤ N |x| for k = 2, . . . , 5. (4.30)

Using (4.30), we can show that Ok(Dψ,ψ, x) are small perturbations of the leading
terms of equation (4.27) in Ωε = Ω ∩Nε(Γsonic). Also, if (4.29) holds, Eq. (4.27) is
strictly elliptic in Ωε\Γsonic if

ψx(x, y) ≤ 2μ
γ + 1

x (4.31)

for μ ∈ (0, 1), when ε = ε(μ,N) is small. For θw close to π
2 , it can be shown that

any solution of Problem 4.3 (with some natural regularity properties) satisfies that,
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for any small δ > 0,

|ψx(x, y)| ≤ 1 + δ

γ + 1
x in Ωε for small ε = ε(δ), (4.32)

which verifies (4.31) with any μ ∈ (1
2 , 1) (e.g. with μ = 2

3 ) if δ is correspondingly
small.

(3) The iteration equation near Γsonic is defined based on the above facts. The
iteration set KM used in [33] is such that every ψ̂ = ϕ̂ − ϕ2 ∈ KM satisfies (4.24)
and (4.29) for some C, ε > 0. Then, the iteration equation for ψ is(

2x− (γ + 1)xη(
ψx
x

) +O
(ψ̂)
1

)
ψxx +O

(ψ̂)
2 ψxy +

(
1
c2

+O
(ψ̂)
3

)
ψyy

− (1 +O
(ψ̂)
4 )ψx +O

(ψ̂)
5 ψy = 0, (4.33)

where the cutoff function η ∈ C∞(R) satisfies |η| ≤ 5
3(γ+1) , η

′ ≥ 0, and η(s) = s if

|s| ≤ 4
3(γ+1) , and some other technical conditions. The terms O(ψ̂)

k , k = 1, . . . , 5, are

obtained from Ok by substituting ψ̂ into certain terms in (4.28) and performing the
cutoff in the remaining terms, so that estimates (4.30) hold. Then (4.33) is strictly
elliptic in Ωε\Γsonic for small ε, and its ellipticity degenerates on Γsonic. Since the
solution of Problem 4.3 satisfies Eq. (4.27) and inequality (4.32) with δ = 1

3 in
Ωε for small ε, then it satisfies Eq. (4.33) in Ωε with ψ̂ = ψ. Indeed, we have the

estimate: |ψx| ≤ 4
3(γ+1)x, so that xη(ψx

x ) = ψx; and the cutoffs in the terms of O(ψ̂)
k

are removed similarly.
We also note that the degenerate ellipticity structure of Eq. (4.33) is the follow-

ing: Writing (4.33) in the form
2∑

i,j=1

Aij(Dψ,ψ, x)Dijψ +
2∑
i=1

Ai(Dψ,ψ, x)Diψ = 0 (4.34)

with A12 = A21, we see that, for any ξ = (ξ1, ξ2) ∈ R2,

λ|ξ|2 ≤ A11(p, z, x)
ξ21
x

+ 2A12(p, z, x)
ξ1ξ2
x1/2

+A22(p, z, x)ξ22 ≤ 1
λ
|ξ|2 (4.35)

for all (p, z) ∈ R2 × R and x ∈ (0, ε).

We consider solutions of (4.33) in Ωε satisfying (4.24) and (4.26). Since condi-
tion (4.25) cannot be prescribed in the iteration problem as discussed above, we
have to obtain (4.25) from the estimates of the solutions by exploiting the elliptic
degeneracy. The estimates of the positive solutions of (4.33) with (4.24) in Ωε are
based on the fact that, for any δ > 0, the function

wδ(x, y) =
1 + δ

2(γ + 1)
x2

is a supersolution of (4.33) in Ωε if ε = ε(δ) is small; that is, N (wδ) < 0 in Ωε,
where N (·) denotes the operator determined by the left-hand side of (4.33). Using
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this, the boundary conditions on Γshock and Γwedge, and (4.26), we obtain by the
comparison principle that

0 ≤ ψ ≤ Cx2 in Ωε, (4.36)

where ε and C are uniform with respect to the wedge angles near π
2 . Note that −wδ

is not a subsolution of (4.27) so that it cannot be used to bound ψ from below.
Thus, property (4.26), which is derived from the global structure of the solution,
is crucially used in this argument. Then, in (4.36), the upper bound is from the
local estimates near Γsonic, while the lower bound is from the global structure of
the problem.

In particular, (4.36) implies that Dψ = 0 on Γsonic, which resolves the issue
described in (ii) above. Furthermore, from (4.36), using the non-isotropic parabolic
rescaling corresponding to the elliptic degeneracy (4.35) of Eq. (4.33) near x = 0,
we obtain the estimates in the appropriately weighted and scaled Hölder norm in
Ωε, which also imply the uniform C1,1 estimates

|D2ψ| ≤ C in Ωε. (4.37)

More precisely, we denote this norm by ‖ψ‖(par)
2,α,Ωε

and define it as follows: Denote
z = (x, y) and z̃ = (x̃, ỹ) with x, x̃ ∈ (0, 2ε) and

δ(par)
α (z, z̃) :=

(|x− x̃|2 + max(x, x̃)|y − ỹ|2)α/2 .
Then, for ψ ∈ C2(Ωε) ∩ C1,1(Ωε) written in the (x, y)-coordinates, we define

‖ψ‖(par)
2,0,Ωε

:=
∑

0≤k+l≤2

sup
z∈Ωε

(
xk+l/2−2|∂kx∂lyψ(z)|),

[ψ](par)
2,α,Ωε

:=
∑
k+l=2

sup
z,z̃∈Ωε,z�=z̃

(
min(xk+l/2−2, x̃k+l/2−2)

|∂kx∂lyψ(z) − ∂kx∂
l
yψ(z̃)|

δ
(par)
α (z, z̃)

)
,

‖ψ‖(par)
2,α,Ωε

:= ‖ψ‖(par)
2,0,Ωε

+ [ψ](par)
2,α,Ωε

.

(4.38)

Now we obtain the required estimates in the norm in (4.38), under the assump-
tion that (4.36) holds in Ω2ε. For every z0 = (x0, y0) ∈ Ωε\Γsonic (so that
x0 ∈ (0, ε]), we define

Rz0 =
{

(x, y) : |x− x0| < x0

10
, |y − y0| <

√
x0

10

}
∩ Ω. (4.39)

Note that dist(Rz0 ,Γsonic) = 9
10x0 > 0. We rescale the rectangle in (4.39) to the

unit square Q1 = (−1, 1)2:

Q
(z0)
1 :=

{
(S, T ) ∈ Q1 : (x0 +

x0

10
S, y0 +

√
x0

10
T ) ∈ Ω

}
, (4.40)
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and define the scaled version of ψ in the (S, T )-coordinates in Q(z0)
1 :

ψ(z0)(S, T ) :=
1
x2

0

ψ(x0 +
x0

10
S, y0 +

√
x0

10
T ) for (S, T ) ∈ Q

(z0)
1 . (4.41)

Note that this rescaling is non-isotropic with respect to the two variables x and y.
By (4.36), we have

‖ψ(z0)‖
L∞(Q

(z0)
1 )

≤ C for any z0 = (x0, y0) ∈ Ωε\Γsonic. (4.42)

Rewriting Eq. (4.33) in terms of ψ(z0) in the (S, T )-coordinates and noting the
degenerate ellipticity structure (4.35), we find that ψ(z0) satisfies a uniformly elliptic
equation in Q

(z0)
1 with the ellipticity constants and certain Hölder norms of the

coefficients independent of z0. We also rescale the boundary conditions on Γshock ∩
∂Ωε and Γwedge ∩∂Ωε in a similar way, when z0 is on the corresponding part of the
boundary. Then, we apply the local elliptic C2,α-estimates for ψ(z0) in Q(z0)

1 in the
following cases:

(i) Interior rectangles Rz0 , i.e. all z0 such that Q(z0)
1 = Q1 holds,

(ii) Rectangles Rz0 centered on the shock: z0 ∈ Γshock ∩ ∂Ωε,
(iii) Rectangles Rz0 centered on the wedge: z0 ∈ Γwedge ∩ ∂Ωε,

where, in the last two cases, we use the local estimates for the corresponding bound-
ary value problems. Using (4.42), we obtain

‖ψ(z0)‖
C2,α(Q

(z0)
1/2 )

≤ C with C independent of z0,

where Q(z0)
1/2 = Q

(z0)
1 ∩ (− 1

2 ,
1
2 )2. Rewriting in terms of ψ in the (x, y)-coordinates

and combining the estimates for all z0 as above, we obtain the estimate: ‖ψ‖(par)
2,α,Ωε

≤
C in norm (4.38), which also implies the C1,1-estimates (4.37).

Remark 4.5. Note that ψ(z0)
SS (S, T ) = 1

100ψxx(x0 + x0
10S, y0 +

√
x0

10 T ). It follows
that ‖D2ψ‖L∞ cannot be made small by choosing the parameters, e.g. choosing ε
small or θw close to π

2 .

Remark 4.6. The above argument, starting from (4.39), is also used for the
a priori estimates of the positive solutions of (4.27)–(4.28) with condition (4.24),
satisfying (4.29) and the ellipticity condition (4.31) with some μ ∈ (0, 1). Note that
(4.24), (4.29), and ψ ≥ 0 imply (4.36), which is used in the argument.

Remark 4.7. Remark 4.6 applies only to the positive solutions of (4.27) with
condition (4.24). For the negative solutions of (4.27) with condition (4.24), the
equation is uniformly elliptic up to {x = 0} and, similar to Hopf’s lemma, the
negative solutions have linear growth: |ψ(x, y)| ≥ 1

Cx, in a contrast with (4.36).
This feature is used in the proof of certain geometric properties of the free boundary
for the wedge angles away from π

2 , where we note that ϕ− ϕ1 < 0 by (4.22).
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(4) In order to remove the ellipticity cutoff in (4.33), i.e. to show that the fixed
point solution of (4.33) (i.e. with ψ = ψ̂) actually satisfies (4.27), we need to show
that |ψx| ≤ 4

3(γ+1)x, as we have discussed right after (4.33). Combining (4.37) with
Dψ = 0 on Γsonic, we obtain that |Dψ(x, y)| ≤ Cx in Ωε, which does not remove
the ellipticity cutoff, unless we show the explicit bound C ≤ 4

3(γ+1) . However, this
bound does not follow from the estimates discussed above (cf. Remark 4.5).

Note that the only explicit solution we know is the normal reflection for θw = π
2 ,

for which ϕ = ϕ
( π

2 )
2 , i.e. ψ = 0 in Ω. Also, the analysis in [5] has shown that

the solutions of Problem 4.3 for the supersonic regular shock reflection–diffraction
configuration satisfy that, for small ε,

ψx ∼
x

γ + 1
in Ωε ∩ {(x, y) : dist((x, y),Γshock) >

√
x},

but

Dψ = o(x) in Ωε ∩ {(x, y) : dist((x, y),Γshock) < x2}.
This shows that the convergence of solutions ϕ(θw) of Problem 4.3 to ϕ( π

2 ) as θw →
π
2
− does not hold in C2 up to the sonic arc Γsonic (but holds in C1,α) after mapping

Ω(θw) to a fixed domain for all θw. Moreover, the difference between the behaviors
of Dψ near Γshock and away from Γshock within Ωε shows that there is no clear
background solution such that the appropriate iteration set would lie in its small
neighborhood in the norm sufficiently strong to remove the ellipticity cutoff in
(4.33) by the smallness of the norm. Then, in order to remove the ellipticity cutoff
for the fixed point of the iteration, we derive an equation for ψx in Ωε and boundary
conditions on Γshock ∩ {x < ε} and Γwedge ∩ {x < ε}, and prove that

ψx ≤ 4
3(γ + 1)

x

from this boundary value problem, if the wedge angle θw is sufficiently close to π
2 .

The estimate from below

ψx ≥ − 4
3(γ + 1)

x

is proved from the global setting of Problem 4.3 under the same condition on θw.
This use of the local and global structure is similar to that in the proof of (4.36).

Note that, in this argument for the wedge angles near π
2 , the non-perturbative

nature of the problem is seen only in the estimates of the solution near Γsonic,
specifically in the fact that D2ψ on Γsonic does not tend to zero as θw → π

2 . The
free boundary Γshock in this case is near S1(θw), and also close to the reflected
shock of the normal reflection as in Fig. 6, which is the vertical line S1(π2 ). Also,
‖ϕ−ϕ(θw)

2 ‖C1(Ω) ≤ C(π2 −θw), which is small. Thus, away from Γsonic, the argument
is perturbative for the wedge angles near π

2 . In the case of general wedge angles in
Theorem 4.1, the free boundary Γshock is no longer close to a line, its structure is
not known a priori, thus the study of geometric properties of the free boundary is
a part of the argument.

2230002-66

B
ul

l. 
M

at
h.

 S
ci

. 2
02

2.
12

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

O
X

FO
R

D
 o

n 
04

/0
8/

22
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



March 23, 2022 15:24 WSPC/1664-3607 319-BMS 2230002

MD transonic shock waves and FBPs

Case II. General wedge angles up to the detachment angle. For the general
case and the proof of Theorem 4.1, we follow the approach introduced in [35]. Similar
to the case of wedge angles near π

2 where we have restricted our consideration to
the class of solutions satisfying ψ ≥ 0 in Ω and established the existence of such
solutions, for the general case, we define a class of admissible solutions, make the
necessary a priori estimates of such solutions, and then employ these estimates to
prove the existence of solutions in this class. Our motivation for the definition of
admissible solutions is from the following properties of supersonic regular reflection
solutions ϕ for the wedge angles close to π

2 ; or more generally, for the supersonic
regular reflection solutions ϕ satisfying that ‖ϕ − ϕ

(θw)
2 ‖C1(Ω) is small: If (4.8)

is strictly elliptic for ϕ in Ω\Γsonic, then ϕ satisfies (4.22) and the monotonicity
properties:

∂ξ2(ϕ1 − ϕ) ≤ 0, D(ϕ1 − ϕ) · eS1 ≤ 0 in Ω for eS1 = P0P1
|P0P1| . (4.43)

We now present the outline of the proof of Theorem 4.1 in the following four
steps:

(1) Motivated by the discussion above, for the general case, we define the admis-
sible solutions as the solutions of Problem 4.3 (thus the solutions with weak regular
reflection–diffraction configuration of either supersonic or subsonic type) satisfying
the following properties.

Definition 4.8. Let θw ∈ (θdw,
π
2 ). A function ϕ ∈ C0,1(Λ) is an admissible solution

of the regular reflection problem if ϕ is a solution of Problem 4.3 extended to Λ by
(4.21) (where P0P1P4 is a point in the subsonic and sonic cases) and satisfies the
following properties:

(i) The structure of solutions:

• If |Dϕ2(P0)| > c2, then ϕ is of the supersonic regular shock reflection–
diffraction configuration shown in Fig. 4 and satisfies that the curved part
of reflected–diffracted shock Γshock is C2 in its relative interior; curves Γshock,
Γsonic, Γwedge, and Γsym do not have common points except their endpoints;
ϕ ∈ C0,1(Λ) ∩ C1(Λ\(S0 ∪ P0P1P2)) and ϕ ∈ C1(Ω) ∩ C3(Ω\(Γsonic ∪
{P2, P3})).

• If |Dϕ2(P0)| ≤ c2, then ϕ is of the subsonic regular shock reflection–
diffraction configuration shown in Fig. 5 and satisfies that the reflected–
diffracted shock Γshock is C2 in its relative interior; curves Γshock, Γwedge,
and Γsym do not have common points except their endpoints; ϕ ∈ C0,1(Λ)∩
C1(Λ\(S0 ∪ Γshock)) and ϕ ∈ C1(Ω) ∩C3(Ω\{P0, P3}).

Moreover, in both the supersonic and subsonic cases, the extended curve
Γext

shock := Γshock ∪ {P0} ∪ Γ−
shock is C1 in its relative interior, where Γ−

shock

is the reflection of Γshock with respect to the ξ1-axis.
(ii) Equation (4.8) is strictly elliptic in Ω\Γsonic, i.e. |Dϕ| < c(|Dϕ|2, ϕ) in

Ω\Γsonic.
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(iii) ∂νϕ1 > ∂νϕ > 0 on Γshock, where ν is the normal to Γshock, pointing to the
interior of Ω.

(iv) Inequalities hold:

ϕ2 ≤ ϕ ≤ ϕ1 in Ω. (4.44)

(v) (4.43) is satisfied, where vector eS1 is defined as the unit vector parallel to S1

and pointing into Λ at P0 for the general case.

Note that (4.43) implies that

D(ϕ1 − ϕ) · e ≤ 0 in Ω for all e ∈ Cone(eξ2 , eS1), (4.45)

where Cone(eξ2 , eS1) = {aeξ2 + beS1 : a, b > 0} with eξ2 = (0, 1). Note that eξ2 and
eS1 are not parallel if θw �= π

2 .

(2) To prove the existence of admissible solutions for each wedge angle in The-
orem 4.1, we derive uniform a priori estimates for admissible solutions with any
wedge angle θw ∈ [θdw + σ, π2 ] for each small σ > 0, show the compactness of this
subset of admissible solutions in the appropriate norm, and then apply the degree
theory to establish the existence of admissible solutions for each θw ∈ [θdw + σ, π2 ],
starting from the unique normal reflection solution for θw = π

2 . To derive the a pri-
ori estimates for admissible solutions, we first obtain the required estimates related
to the geometry of shock Γshock and domain Ω, as well as the basic estimates of
solution ϕ. We prove

(a) The inequality in (4.45) is strict for any e ∈ Cone(eξ2 , eS1). Combined with the
first inequality in (4.44) and the fact that ϕ = ϕ1 on Γshock, this implies that
Γshock is a Lipschitz graph with a uniform Lipschitz estimate for all admissible
solutions.

(b) The uniform bounds on diam(Ω), ‖ϕ‖C0,1(Ω), and the directional monotonicity
of ϕ− ϕ2 near the sonic arc for a cone of directions.

(c) The uniform positive lower bound for the distance between the shock and the
wedge, and the uniform separation of the shock and the symmetry line (that
is, Γshock is away from a uniform conical neighborhood of Γsym with vertex at
their common endpoint P2).

(d) The uniform positive lower bound for the distance between the shock and the
sonic circleBc1((u1, 0)) of state (1), by using the properties described in Remark
4.7. This allows us to estimate the ellipticity of (4.8) for ϕ in Ω (depending on
the distance to the sonic arc P1P4 for the supersonic regular shock reflection–
diffraction configuration and to P0 for the subsonic regular shock reflection–
diffraction configuration).

(e) Estimate (4.29) holds in the supersonic case, by using the monotonicity of
ψ = ϕ − ϕ2 near the sonic arc in a cone of directions shown in (b) and the
conditions on Γsonic in Problem 4.3.
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The results of (a)–(c) are obtained via the maximum principle, by considering
Eq. (4.12) as a linear elliptic equation for φ and using the boundary conditions on
Γshock, Γsonic, Γwedge, and Γsym in Problem 4.3 and (4.44)–(4.45). The results of
(c), combined with (a), show the structure of Ω which allows us to perform the
uniform local elliptic estimates in various parts of Ω: the interior, near a point
P in a relative interior of Γshock, Γwedge, and Γsym, and locally near corners P2

and P3.
Based on estimates (a)–(d), we show the uniform regularity estimates for the

solution and the free boundary in the weighted and scaled C2,α norms away from
the sonic arc in the supersonic case and away from P0 in the subsonic case, i.e. in
Ω\Ωε, for any small ε > 0, for some α ∈ (0, 1). The equation is uniformly elliptic
in this region, with the ellipticity constant depending on ε. Thus, the estimates
depend on ε.

(3) In what follows, we discuss the estimates near Γsonic (respectively, near P0

in the subsonic/sonic case), i.e. the estimates in Ω2ε for some ε, independent of
θw ∈ [θdw + σ, π2 ], which allows us to complete the uniform a priori estimates for
admissible solutions with wedge angles θw ∈ [θdw + σ, π2 ]. We obtain the estimates
near Γsonic (or P0 for the subsonic reflection), i.e. in Ω2ε, in scaled and weighted
C2,α for ϕ and the free boundary Γshock ∩ ∂Ω2ε, by considering separately four cases
depending on |Dϕ2|

c2
at P0:

(i) Supersonic: |Dϕ2|
c2

≥ 1 + δ,

(ii) Supersonic (almost sonic): 1 < |Dϕ2|
c2

< 1 + δ,

(iii) Subsonic (almost sonic, including sonic): 1 − δ ≤ |Dϕ2|
c2

≤ 1,

(iv) Subsonic: |Dϕ2|
c2

≤ 1 − δ,

for small δ > 0 chosen so that the estimates can be obtained. The choice of δ
determines ε.

For cases (i)–(ii), Eq. (4.8) is degenerate elliptic in Ω near P1P4 in Fig. 4. For
case (iii), except the sonic case |Dϕ2(P0)|

c2
= 1, the equation is uniformly elliptic

in Ω, but the ellipticity constant is small and tends to zero near P0 in Fig. 5 as
|Dϕ(θw)

2 (P0)|
c2

→ 1−, i.e. as the subsonic angles θw tend to the sonic angle. Thus,
for cases (i)–(iii), we exploit the local elliptic degeneracy, which allows us to find a
comparison function in each case, to show the appropriately fast decay of ϕ − ϕ2

near P1P4 for cases (i)–(ii) and near P0 for case (iii); furthermore, combining with
appropriate local non-isotropic rescaling to obtain the uniform ellipticity, we obtain
the a priori estimates in the weighted and scaled C2,α-norms. In cases (i)–(ii), the
norms are (4.38). For case (iii), we use the different norms to obtain the estimates
that imply the standard C2,α-estimates. To obtain these estimates, for case (i), we
use the argument developed in [33] and described above (see Remark 4.6), where
the ellipticity estimate (4.31) follows from the estimates described in (d) above
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and (4.29) obtained in (e). These estimates hold in Ωε with ε � (length(Γsonic))2

because the rectangles R(x0,y0) defined by (4.39) do not fit into Ω for larger x0, which
means, for example, that R(x0,y0)∩Γwedge �= ∅ for (x0, y0) ∈ Γshock∩∂Ωε with x0 ≥
C(length(Γsonic))2 if C is fixed and length(Γsonic) is small, because the length of the
y-side of R(x0,y0) is

√
x0

10 , and Γshock and Γwedge are smooth curves that intersect

Γsonic transversally. However, length(Γsonic) tends to zero, as |Dϕ(θw)
2 (P0)|
c2

→ 1+,
i.e. when the supersonic wedge angle tends to the sonic angle. Thus, a different
argument, involving an appropriate scaling, is employed for case (ii) in order to
keep ε uniform for all θw ∈ [θdw + δ, π2 ]. Another version of that argument (with
a different scaling) is applied for case (iii). For both cases (ii)–(iii), we need to
use smaller rectangles than those for case (i), but this requires stronger growth
estimates than (4.36) to obtain a bound in C1,1 from the corresponding weighted
and scaled estimates. We obtain such growth estimates by using the conditions
of cases (ii)–(iii) for sufficiently small δ. For case (iv), the equation is uniformly
elliptic in Ω for the admissible solution, where the ellipticity constant is not small,
and the estimates are more technically challenging than those for cases (i)–(iii).
This can be seen as follows: For all cases (i)–(iv), the free boundary has a lower
a priori regularity in the sense that only the Lipschitz estimate of Γshock is obtained
in (a) above; however, for case (iv), the uniform ellipticity combined with oblique
boundary conditions does not allow a comparison function that leads to the fast
decay of |ϕ− ϕ2| near P0. Thus, we prove the Cα-estimates of D(ϕ− ϕ2) near P0,
by deriving the equations and boundary conditions for two directional derivatives
of ϕ − ϕ2 near P0, and performing the hodograph transform to flatten the free
boundary.

(4) In order to prove the existence of solutions, we perform an iteration, which
is an extension of the iteration process used in [33]. First, given an admissible
solution ϕ for the wedge angle θw, we map its elliptic domain Ω(ϕ, θw) to a unit
squareQ = (0, 1)2 so that, for the supersonic case, the boundary parts Γshock, Γsonic,
Γwedge, and Γsym are mapped to the respective sides ofQ, and the other properties of
this map are satisfied. For the subsonic case, the map is discontinuous at P0 = Γsonic

(mapping the triangular domain to a square). Moreover, we define a function u on
Q by expressing u := ϕ− ϕ̃

(θw)
2 in the coordinates on Q, where ϕ̃(θw)

2 is a function
determined by θw and equals to ϕ2 near Γsonic; we skip the complete technical
definition here. For appropriate functions u on Q and the wedge angle θw, this map
can be inverted, i.e. the elliptic domain Ω(u, θw) and the iteration free boundary
Γshock(u, θw) can be determined, and a function ϕ(u,θw) on Ω(u, θw) is defined by
expressing u in the coordinates on Ω(u, θw) and adding ϕ̃(θw)

2 so that, if u is obtained
from the admissible solution ϕ with the elliptic domain Ω as described above, then
Ω(u, θw) = Ω and ϕ(u,θw) = ϕ in Ω. Moreover, the map: Ω(u, θw) → Q and its
inverse satisfy certain continuity properties with respect to (u, θw). The iteration
is performed in terms of the functions defined on Q. The iteration set consists of
pairs (u, θw), where u is in a weighted and scaled C2,α space on Q, denoted as C2,α

∗∗
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(its definition is technical, so we skip it here), and satisfy

(i) ‖u‖C2,α
∗∗

≤ M(θw), where M(θw) is defined explicitly, based on the a priori
estimates discussed above.

(ii) Ω(u, θw), Γshock(u, θw), and ϕ(u,θw) on Ω(u, θw) satisfy some geometric and
analytical properties.

The iteration map: (û, θw) → (u, θw) is defined by solving the iteration problem
on Ω(u, θw) and then mapping its solution ϕ to a function u on Q. This mapping
includes additional steps, compared to the one described above. Specifically, we
modify the iteration free boundary by using the solution ϕ of the iteration problem
so that, in the mapping: (ϕ, θw) → u, the resulting function u on Q keeps the
regularity obtained from solving the iteration problem. This yields the compactness
of the iteration map. We prove that, for a fixed point (u, θw) of the iteration map,
ϕ(u,θw) on Ω(u, θw) is an admissible solution. We use the degree theory to establish
the existence of admissible solutions as fixed points of the iteration map for each
θw ∈ [θdw + δ, π2 ], starting from the unique normal reflection solution for θw = π

2 .
The compactness of the iteration map described above is necessary for that. The
a priori estimates of admissible solutions discussed above are used in the degree
theory argument in order to define the iteration set such that a fixed point of
the iteration map (i.e. admissible solution) cannot occur on the boundary of the
iteration set, since that would contradict the a priori estimates. With all of these
arguments, we complete the proof of Theorem 4.1. This provides a solution to the
von Neumann’s conjectures.

More details can be found in [35]; also see [33].

4.2. The Prandtl–Meyer problem for unsteady supersonic flow

onto solid wedges

As we discussed in Secs. 2 and 3, steady shocks appear when a steady supersonic
flow hits a straight wedge; see Fig. 1. Since both weak and strong steady shock
solutions are stable in the steady regime, the static stability analysis alone is not
able to single out one of them in this sense, unless an additional condition is posed
on the speed of the downstream flow at infinity. Then the dynamic stability analy-
sis becomes more significant to understand the non-uniqueness issue of the steady
oblique shock solutions. However, the problem for the dynamic stability of the
steady shock solutions for supersonic flow past solid wedges involves several addi-
tional difficulties. The recent efforts have been focused on the construction of the
global Prandtl–Meyer reflection configurations in the self-similar coordinates for
potential flow.

As we discussed earlier, if a supersonic flow with a constant density ρ0 > 0 and
a velocity u0 = (u10, 0), u10 > c0 := c(ρ0), impinges toward wedge W in (3.11),
and if θw is less than the detachment angle θdw, then the well-known shock polar
analysis shows that there are two different steady weak solutions: the steady weak
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shock solution Φ̄ and the steady strong shock solution, both of which satisfy the
entropy condition and the slip boundary condition (see Fig. 1).

Then the dynamic stability of the weak transonic shock solution for potential
flow can be formulated as the following problem.

Problem 4.4 (Initial–Boundary Value Problem). Given γ > 1, fix (ρ0, u10)
with u10 > c0. For a fixed θw ∈ (0, θdw), let W be given by (3.11). Seek a global
entropy solution Φ ∈ W 1,∞

loc (R+ × (R2\W )) of Eq. (4.5) with ρ determined by (4.4)

and B = u2
10
2 + h(ρ0) so that Φ satisfies the initial condition at t = 0:

(ρ,Φ)|t=0 = (ρ0, u10x1) for x ∈ R2\W, (4.46)

and the slip boundary condition along the wedge boundary ∂W :

∇xΦ · νw|∂W = 0, (4.47)

where νw is the exterior unit normal to ∂W .
In particular, we seek a solution Φ ∈ W 1,∞

loc (R+ × (R2\W )) that converges to
the steady weak oblique shock solution Φ̄ corresponding to the fixed parameters
(ρ0, u10, γ, θw) with ρ̄ = h−1(B− 1

2 |∇Φ̄|2), when t→ ∞, in the following sense: For
any R > 0, Φ satisfies

lim
t→∞ ‖(∇xΦ(t, ·) −∇xΦ̄, ρ(t, ·) − ρ̄)‖L1(BR(0)\W ) = 0 (4.48)

for ρ(t,x) given by (4.4).

Since the initial data functions in (4.46) do not satisfy the boundary condition
(4.47), a boundary layer is generated along the wedge boundary starting at t = 0,
which forms the Prandtl–Meyer reflection configurations; see [6] and the references
cited therein.

Note that the initial–boundary value problem, Problem 4.4, is invariant under
scaling (4.6). Thus, we study the existence of self-similar solutions determined by
Eq. (4.8) with (4.9) through (4.7).

As the upstream flow has the constant velocity (u10, 0), noting the choice of B
in Problem 4.4, the corresponding pseudo-potential ϕ0 has the expression of

ϕ0 = −1
2
|ξ|2 + u10ξ1 (4.49)

in self-similar coordinates ξ = x
t , as shown directly from (4.14). Note also the

symmetry of the domain and the upstream flow in Problem 4.4 with respect to
the x1-axis. Problem 4.4 can then be reformulated as the following boundary value
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problem in the domain:

Λ := R2
+\{ξ : ξ2 ≤ ξ1 tan θw, ξ1 ≥ 0}

in the self-similar coordinates ξ, which corresponds to domain {(t,x) : x ∈
R2

+\W, t > 0} in the (t,x)-coordinates, where R2
+ = {ξ : ξ2 > 0}.

Problem 4.5 (Boundary Value Problem). Seek a solution ϕ of Eq. (4.8) in
the self-similar domain Λ with the slip boundary condition:

Dϕ · ν|∂Λ = 0 (4.50)

and the asymptotic boundary condition:

ϕ− ϕ0 → 0 (4.51)

along each ray Rθ := {ξ1 = ξ2 cot θ, ξ2 > 0} with θ ∈ (θw, π) as ξ2 → ∞ in the
sense that

lim
r→∞‖ϕ− ϕ0‖C(Rθ\Br(0)) = 0. (4.52)

In particular, we seek a global entropy solution of Problem 4.5 with two types
of Prandtl–Meyer reflection configurations whose occurrence is determined by the
wedge angle θw for the two different cases: One contains a straight weak oblique
shock S0 attached to the wedge vertex O and connected to a normal shock S1

through a curved shock Γshock when θw < θsw, as shown in Fig. 7; the other contains
a curved shock Γshock attached to the wedge vertex and connected to a normal shock
S1 when θsw ≤ θw < θdw, as shown in Fig. 8, in which the curved shock Γshock is
tangential to the straight weak oblique shock S0 at the wedge vertex.

To seek a global entropy solution of Problem 4.5 with the structure of Fig. 7 or
Fig. 8, one needs to compute the pseudo-potential function ϕ below S0.

Given M0 > 1, ρ1 and u1 are determined by using the shock polar as in Fig. 1 for
steady potential flow (note that the shock polar is now different from the one for the
full Euler system but has the same shape as in Fig. 1). Similar to those in Sec. 3.1,
in the potential flow case, for any wedge angle θw ∈ (0, θsw), line u2 = u1 tan θw and
the shock polar intersect at a point u1 with |u1| > c1 and u11 < u10; while, for any
wedge angle θw ∈ [θsw, θ

d
w), they intersect at a point u1 with u11 > u1d and |u1| < c1,

where u1d is the u1–component of the unique detachment state ud when θw = θdw.

Fig. 7. Self-similar solutions for θw ∈ (0, θs
w) in the self-similar coordinates ξ (cf. [6]).
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Fig. 8. Self-similar solutions for θw ∈ [θs
w, θd

w) in the self-similar coordinates ξ (cf. [6]).

The intersection state u1 is the velocity for steady potential flow behind an oblique
shock S0 attached to the wedge vertex with angle θw. The strength of shock S0 is
relatively weak compared to the other shock given by the other intersection point
on the shock polar, hence we call S0 a weak oblique shock, and the corresponding
state u1 is a weak state.

We also note that states u1 depend smoothly on u10 and θw, and such states
are supersonic when θw ∈ (0, θsw) and subsonic when θw ∈ [θsw, θ

d
w).

Once u1 is determined, by (4.17) and (4.49), the pseudo-potential ϕ1 below the
weak oblique shock S0 is

ϕ1 = −1
2
|ξ|2 + u1 · ξ. (4.53)

Similarly, by (4.16)–(4.17) and (4.49)–(4.50), the pseudo-potential ϕ2 below the
normal shock S1 is of the form:

ϕ2 = −1
2
|ξ|2 + u2 · ξ + k2 (4.54)

for constant state u2 and constant k2; see (4.14). Then it follows from (4.9) and
(4.53)–(4.54) that the corresponding densities ρ1 and ρ2 are constants, respectively.
In particular, we have

ργ−1
k = ργ−1

0 +
γ − 1

2
(
u2

10 − |uk|2
)

for k = 1, 2. (4.55)

Denote Γwedge := ∂W ∩ ∂Λ. In what follows, we define the sonic arcs Γ1
sonic =

P1P4 in Fig. 7 and Γ2
sonic = P2P3 on Figs. 7–8. The sonic circle ∂Bc1(u1) of the

uniform state ϕ1 intersects line S0, where c1 = ρ
γ−1

2
1 by (4.11). For the supersonic

case θw ∈ (0, θsw), there are two arcs of this sonic circle between S0 and Γwedge in Λ.
We denote by Γ1

sonic the lower arc (i.e. located to the left from another arc) in the
orientation in Fig. 7. Note that Γ1

sonic tends to point O as θw ↗ θsw and is outside
of Λ for the subsonic case θw ∈ [θsw, θ

d
w). Similarly, the sonic circle ∂Bc2(u2) of the

uniform state ϕ2 intersects line S1, where c2 = ρ
γ−1

2
2 . There are two arcs of this

circle between S1 and the line containing Γwedge. For all θw ∈ (0, θdw), the upper arc
(i.e. located to the right of the other arc) in the orientation in Figs. 7–8 is within
Λ, which is denoted as Γ2

sonic.
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Then Problem 4.5 can be reformulated into the following free boundary problem.

Problem 4.6 (Free Boundary Problem). For θw ∈ (0, θdw), find a free boundary
(curved shock) Γshock and a function ϕ defined in domain Ω, as shown in Figs. 7–8,
such that ϕ satisfies

(i) Equation (4.8) in Ω,
(ii) ϕ = ϕ0 and ρDϕ · νs = ρ0Dϕ0 · νs on Γshock,

(iii) ϕ = ϕ̂ and Dϕ = Dϕ̂ on Γ1
sonic ∪ Γ2

sonic when θw ∈ (0, θsw) and on Γ2
sonic ∪ {O}

when θw ∈ [θsw, θ
d
w) for ϕ̂ := max(ϕ1, ϕ2),

(iv) Dϕ · νw = 0 on Γwedge,

where νs and νw are the unit normals to Γshock and Γwedge pointing to the interior
of Ω, respectively.

Remark 4.9. It can be shown that ϕ1 > ϕ2 on Γ1
sonic and the opposite inequality

holds on Γ2
sonic. This justifies the requirements in Problem 4.6(iii) above.

Remark 4.10. Similar to Problem 4.3, the conditions in Problem 4.6(ii)–(iii) are
the Rankine–Hugoniot conditions (4.16)–(4.17) on Γshock and Γ1

sonic ∪ Γ2
sonic or

Γ2
sonic ∪ {O}, respectively; see the discussions right after Problem 4.3.

Let ϕ be a solution of Problem 4.6 such that Γshock is a C1-curve up to its
endpoints and ϕ ∈ C1(Ω). To obtain a solution of Problem 4.5 from ϕ, we consider
two cases.

For the supersonic case θw ∈ (0, θsw), we divide region Λ into four separate
regions; see Fig. 7. We denote by S0,seg the line segment OP1 ⊂ S0, and by S1,seg

the portion (half-line) of S1 with left endpoint P2 so that S1,seg ⊂ Λ. Let ΩS be
the unbounded domain below curve S0,seg ∪ Γshock ∪ S1,seg and above Γwedge (see
Fig. 7). In ΩS , let Ω1 be the bounded domain enclosed by S0,Γ1

sonic, and Γwedge.
Set Ω2 := ΩS\Ω1 ∪ Ω. Define a function ϕ∗ in Λ by

ϕ∗ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ϕ0 in Λ\ΩS ,

ϕ1 in Ω1,

ϕ in Γ1
sonic ∪ Ω ∪ Γ2

sonic,

ϕ2 in Ω2.

(4.56)

By Problem 4.6(ii)–(iii), ϕ∗ is continuous in Λ\ΩS and C1 in ΩS . In particular, ϕ∗
is C1 across Γ1

sonic ∪ Γ2
sonic. Moreover, using Problem 4.6(i)–(iii), we obtain that ϕ∗

is a global entropy solution of Eq. (4.8) in Λ.
For the subsonic case θw ∈ [θsw, θ

d
w), region Ω1∪Γ1

sonic in ϕ∗ reduces to one point
{O}; see Fig. 8. The corresponding function ϕ∗ is a global entropy solution of Eq.
(4.8) in Λ.

The first unsteady analysis of the steady supersonic weak shock solution as the
long-time behavior of an unsteady flow is due to Elling–Liu [56], in which they

2230002-75

B
ul

l. 
M

at
h.

 S
ci

. 2
02

2.
12

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

O
X

FO
R

D
 o

n 
04

/0
8/

22
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



March 23, 2022 15:24 WSPC/1664-3607 319-BMS 2230002

G.-Q. G. Chen & M. Feldman

succeeded in establishing a stability theorem for an important class of physical
parameters determined by certain assumptions for the wedge angle θw less than the
sonic angle θsw ∈ (0, θdw) for potential flow.

Recently, in [6], we have removed the assumptions in [56] and established the
stability theorem for the steady (supersonic or transonic) weak shock solutions as
the long-time asymptotics of the global Prandtl–Meyer reflection configurations for
unsteady potential flow for all the admissible physical parameters even up to the
detachment angle θdw (beyond the sonic angle θsw < θdw).

To achieve this, we solve the free boundary problem (Problem 4.6), involving
transonic shocks, for all the wedge angles θw ∈ (0, θdw) by employing the techniques
developed in [35], described in Sec. 4.1 above. Similar to Definition 4.8, we define
admissible solutions in the present case.

Definition 4.11. Let θw ∈ (0, θdw). A function ϕ ∈ C0,1(Λ) is an admissible solu-
tion of Problem 4.6 if ϕ is a solution of Problem 4.6 extended to Λ by (4.56) and
satisfies the following properties:

(i) The structure of solutions is as follows:

• If θw ∈ (0, θsw), then ϕ has the configuration shown in Fig. 7 such that Γshock

is C2 in its relative interior, ϕ ∈ C0,1(Λ) ∩ C1(Λ\(S0,seg ∪ Γshock ∪ S1,seg)),
and ϕ ∈ C1(Ω) ∩ C2(Ω \ (Γ1

sonic ∪ Γ2
sonic)) ∩ C3(Ω).

• If θw ∈ [θsw, θdw), then ϕ has the configuration shown in Fig. 8 such that
Γshock is C2 in its relative interior, ϕ ∈ C0,1(Λ) ∩ C1(Λ\(Γshock ∪ S1,seg)),
and ϕ ∈ C1(Ω) ∩ C2(Ω \ ({O} ∪ Γ2

sonic)) ∩ C3(Ω).

(ii) Equation (4.8) is strictly elliptic in Ω \ (Γ1
sonic ∪Γ2

sonic), i.e. |Dϕ| < c(|Dϕ|2, ϕ)
in Ω \ (Γ1

sonic ∪ Γ2
sonic).

(iii) ∂νϕ0 > ∂νϕ > 0 on Γshock, where ν is the normal to Γshock, pointing to the
interior of Ω.

(iv) The inequalities hold:

max{ϕ1, ϕ2} ≤ ϕ ≤ ϕ0 in Ω. (4.57)

(v) The monotonicity properties hold:

D(ϕ0 − ϕ) · eS1 ≥ 0, D(ϕ0 − ϕ) · eS0 ≤ 0 in Ω, (4.58)

where eS0 and eS1 are the unit vectors along lines S0 and S1 pointing to the
positive ξ1-direction, respectively.

Similar to (4.45), the monotonicity properties in (4.58) imply that

D(ϕ1 − ϕ) · e ≤ 0 in Ω for all e ∈ Cone(−eS1 , eS0), (4.59)
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where Cone(−eS1 , eS0) = {−a eS1 + b eS0 : a, b > 0}. We note that eS0 and eS1

are not parallel if θw �= 0. Then, we establish the following theorem.

Theorem 4.12. Let γ > 1 and u10 > c0. For any θw ∈ (0, θdw), there exists a global
entropy solution ϕ of Problem 4.6 such that the following regularity properties are
satisfied for some α ∈ (0, 1):

(i) If θw ∈ (0, θsw), the reflected shock S0,seg ∪ Γshock ∪ S1,seg is C2,α-smooth, and
ϕ ∈ C1,α(Ω) ∩ C∞(Ω\(Γ1

sonic ∪ Γ2
sonic)).

(ii) If θw ∈ [θsw, θ
d
w), the reflected shock Γshock ∪ S1,seg is C1,α near O and C2,α

away from O, and ϕ ∈ C1,α(Ω) ∩ C∞(Ω\({O} ∪ Γ2
sonic)).

Moreover, in both cases, ϕ is C1,1 across the sonic arcs, and Γshock is C∞ in its
relative interior.

Furthermore, ϕ is an admissible solution in the sense of Definition 4.11, so ϕ

satisfies further properties listed in Definition 4.11.

We follow the argument described in Sec. 4.1 so that, for any small δ > 0, we
obtain the required uniform estimates of admissible solutions with wedge angles
θw ∈ [0, θdw − δ]. Using these estimates, we apply the Leray–Schauder degree theory
to obtain the existence for each θw ∈ [0, θdw − δ] in the class of admissible solutions,
starting from the unique normal solution for θw = 0. Since δ > 0 is arbitrary, the
existence of a global entropy solution for any θw ∈ (0, θdw) can be established. More
details can be found in [6]; see also [35].

The existence results in [6] indicate that the steady weak supersonic/transonic
shock solutions are the asymptotic limits of the dynamic self-similar solutions, the
Prandtl–Meyer reflection configurations, in the sense of (4.52) in Problem 4.5 for
all θw ∈ (0, θdw) and all γ > 1.

On the other hand, it is shown in [6, 55] that, for each γ > 1, there is no self-
similar strong Prandtl–Meyer reflection configuration for the unsteady potential
flow in the class of admissible solutions. This means that the situation for the
dynamic stability of the strong steady oblique shocks is more sensitive.

5. Convexity of Self-Similar Transonic Shocks and Free Boundaries

We now discuss some recent developments in the analysis of geometric properties
of transonic shocks as free boundaries in the 2D self-similar coordinates for com-
pressible fluid flows. In [36], we have developed a general framework for the analysis
of the convexity of transonic shocks as free boundaries. For both applications dis-
cussed above, the von Neumann problem for shock reflection–diffraction in Sec. 4.1
and the Prandtl–Meyer problem for unsteady supersonic flow onto solid wedges
in Sec. 4.2, the admissible solutions satisfy the conditions of this abstract frame-
work, as shown in [36]. For simplicity, we present below the results on the convexity
properties of transonic shocks for these two problems (without discussion on the
abstract framework).

2230002-77

B
ul

l. 
M

at
h.

 S
ci

. 2
02

2.
12

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

O
X

FO
R

D
 o

n 
04

/0
8/

22
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



March 23, 2022 15:24 WSPC/1664-3607 319-BMS 2230002

G.-Q. G. Chen & M. Feldman

For the regular shock reflection–diffraction configurations, we recall that, for
admissible solutions in the sense of Definition 4.8, the inequality in (4.45) is shown
to be strict for any e ∈ Cone(eξ2 , eS1). From this, it is proved that, for admissible
solutions, the shock is a graph in the coordinate system (S, T ) with respect to basis
{e, e⊥} for any unit vector e ∈ Cone(eξ2 , eS1), where e⊥ is the unit vector orthogo-
nal to e and oriented so that TP1 > TP2 , and we have used notation (SP , TP ) for the
coordinates of point P . That is, there exists fe ∈ C∞((TP2 , TP1)) ∩ C1([TP2 , TP1 ])
such that

Γshock = {(S, T ) : S = fe(T ), TP2 < T < TP1},
Ω ∩ {TP2 < T < TP1} ⊂ {S < fe(T )},

(5.1)

where we have used the notational convention (4.20) in the subsonic/sonic case.
Since the convexity or concavity of a shock as a graph depends on the orientation

of the coordinate system and Ω will be shown to be a convex domain (corresponding
to the concavity of fe in (5.1)), we do not distinguish them and instead use the
term convexity for either case below. Then we have the following theorem:

Theorem 5.1 (Convexity of transonic shocks for the regular shock
reflection–diffraction configurations). If a solution of the von Neumann prob-
lem for shock reflection–diffraction is admissible in the sense of Definition 4.8, then
its domain Ω is convex, and the shock curve Γshock is a strictly convex graph in the
following sense: For any e ∈ Cone(eξ2 , eS1), the function fe in (5.1) satisfies

f ′′
e < 0 on (TP2 , TP1).

That is, Γshock is uniformly convex on any closed subset of its relative interior.
Moreover, for the solution of Problem 4.3 extended to Λ by (4.21), with pseudo-

potential ϕ ∈ C0,1(Λ) satisfying Definition 4.8(i)–(iv), the shock is strictly convex
if and only if Definition 4.8(v) holds.

For the Prandtl–Meyer problem for unsteady supersonic flow onto solid wedges,
the results are similar. We first note that, based on (4.59) (which is strict for
e ∈ Cone(−eS1 , eS0)) and the maximum principle, it is proved that, for admissible
solutions in the sense of Definition 4.11, the shock is a graph in the coordinate
system (S, T ) with respect to basis {e, e⊥} for any unit vector e ∈ Cone(−eS1 , eS0),
i.e. (5.1) holds, with fe ∈ C∞((TP2 , TP1)) ∩C1([TP2 , TP1 ]), where we have used the
notational convention P1 = P0 for the subsonic/sonic case θw ∈ [θsw, θdw).

Theorem 5.2 (Convexity of transonic shocks for the Prandtl–Meyer
reflection configurations). If a solution of the Prandtl–Meyer problem is admis-
sible in the sense of Definition 4.11, then its domain Ω is convex, and the
shock curve Γshock is a strictly convex graph in the following sense: For any
e ∈ Cone(−eS1 , eS0), the function fe in (5.1) satisfies

f ′′
e < 0 on (TP2 , TP1).

That is, Γshock is uniformly convex on any closed subset of its relative interior.
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Moreover, for the solution of Problem 4.6 extended to Λ by (4.56) (with the
appropriate modification for the subsonic/sonic case) with pseudo-potential ϕ ∈
C0,1(Λ) satisfying Definition 4.11(i)–(iv), the shock is strictly convex if and only if
Definition 4.11(v) holds.

Theorems 5.1–5.2 indicate that the curvature of Γshock

κ = − f ′′
e (T )(

1 + (f ′
e(T ))2

)3/2
has a positive lower bound on any closed subset of (TP2 , TP1).

Now we discuss the techniques developed in [36] by giving the main steps in the
proofs of Theorems 5.1–5.2. While the argument in [36] is carried out in a more
general setting, we focus here on the specific cases of the regular shock reflection–
diffraction and Prandtl–Meyer reflection configurations; see [36] for the results in
the more general setting and the detailed proofs.

For the von Neumann problem, define

φ := ϕ− ϕ1.

For the Prandtl–Meyer problem, define

φ := ϕ− ϕ0.

Then, in both cases, φ = 0 on Γshock. From this, using Definition 4.8(iii) for the
regular reflection–diffraction case and Definition 4.11(iii) for the Prandtl–Meyer
reflection case, it follows that, in both problems, φ < 0 in Ω near Γshock. Since
Γshock is the zero level set of φ, the conclusion of Theorems 5.1–5.2 on the strict
convexity of Γshock is equivalent to the following: φττ > 0 along Γ0

shock, where Γ0
shock

is the relative interior of Γshock. Also, denote by Con the cone from (4.45) for the
von Neumann problem and the cone from (4.59) for the Prandtl–Meyer problem.

First, we establish the relation between the strict convexity/concavity of a por-
tion of the shock and the possibility for ∂eφ, with e ∈ Con, to attain its local
minimum or maximum with respect to Ω on that portion of the shock. More pre-
cisely, on a portion of “wrong” convexity on which f ′′

e ≥ 0 (equivalently, φττ ≤ 0),
φe cannot attain its local minimum relative to Ω. Then, assuming that a portion
of the free boundary has a “wrong” convexity f ′′

e > 0, we show that φe for e ∈ Con
attains its local minimum relative to Γshock on the closure of that portion. As we
discussed above, it cannot be a local minimum with respect to Ω. Starting from
that, through a nonlocal argument, with the use of the maximum principle for
Eq. (4.12), considered as a linear elliptic PDE for φ, in Ω, and the boundary con-
ditions on various parts of ∂Ω, we reach a contradiction, which implies that the
shock is convex, possibly non-strictly, i.e. f ′′

e ≤ 0 on (TP2 , TP1), or equivalently,
φττ ≥ 0 on Γshock. Extending the previous argument with use of the real analytic-
ity of Γ0

shock, we improve the result to the locally uniform convexity as in Theorems
5.1–5.2.
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Furthermore, with the convexity of reflected–diffracted transonic shocks, the
uniqueness and stability of global regular shock reflection–diffraction configurations
have also been established in the class of admissible solutions; see [37] for the details.

The nonlinear method and related ideas, techniques, and approaches that we
have presented above for solving MD transonic shocks and free boundary prob-
lems should be useful to analyze other longstanding and newly emerging problems.
Examples of such problems include the unsolved MD steady transonic shock prob-
lems for the full Euler equations (including steady detached shock problems), the
unsolved MD self-similar transonic shock problems (such as the 2D Riemann prob-
lems and the conic body problems) for potential flow, as well as the longstanding
open transonic shock problems for both the isentropic and the full Euler equa-
tions; also see [35]. Certainly, further new ideas, techniques, and methods are still
required to be developed in order to solve these mathematically challenging and
fundamentally important problems.
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[71] C. Klingenberg, O. Kreml, V. Mácha and S. Markfelder, Shocks make the Riemann
problem for the full Euler system in multiple space dimensions ill-posed, Nonlinearity
33 (2020) 6517–6540.

[72] A. Kurganov and E. Tadmor, Solution of two-dimensional Riemann problems for
gas dynamics without Riemann problem solvers, Numer. Methods Partial Differ.
Equ. 18 (2002) 584–608.

[73] P. D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory
of Shock Waves, CBMS-RCSM (SIAM, Philiadelphia, 1973).

2230002-83

B
ul

l. 
M

at
h.

 S
ci

. 2
02

2.
12

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

O
X

FO
R

D
 o

n 
04

/0
8/

22
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



March 23, 2022 15:24 WSPC/1664-3607 319-BMS 2230002

G.-Q. G. Chen & M. Feldman

[74] P. D. Lax, Max Shiffman (1914–2000) (Notices of American Mathematical Society,
2003), p. 1401.

[75] P. D. Lax and X.-D. Liu, Solution of two-dimensional Riemann problems of gas
dynamics by positive schemes, SIAM J. Sci. Comput. 19 (1998) 319–340.

[76] J. Li, Z. Xin and H. Yin, Transonic shocks for the full compressible Euler system in
a general two-dimensional de Laval nozzle, Arch. Ration. Mech. Anal. 207 (2003)
533–581.

[77] L. Li, G. Xu and H. C. Yin, On the instability problem of a 3-D transonic oblique
shock wave, Adv. Math. 282 (2015) 443–515.

[78] J. Li, T. Zhang and S. Yang, The Two-Dimensional Riemann Problem in Gas
Dynamics, Pitman Monographs, Vol. 98 (Longman, Essex, 1998).

[79] T.-T. Li, On a free boundary problem, Chin. Ann. Math. 1 (1980) 351–358.
[80] G. M. Lieberman, Regularity of solutions of nonlinear elliptic boundary value prob-

lems, J. Reine Angew. Math. 369 (1986) 1–13.
[81] G. M. Lieberman and N. S. Trudinger, Nonlinear oblique boundary value problems

for nonlinear elliptic equations, Trans. Amer. Math. Soc. 295 (1986) 509–546.
[82] W.-C. Lien and T.-P. Liu, Nonlinear stability of a self-similar 3-dimensional gas

flow, Commun. Math. Phys. 204 (1999) 525–549.
[83] M. J. Lighthill, The diffraction of a blast I, Proc. Roy. Soc. London A 198 (1949)

454–470.
[84] M. J. Lighthill, The diffraction of a blast II, Proc. Roy. Soc. London A 200 (1950)

554–565.
[85] F. H. Lin and L. Wang, A class of fully nonlinear elliptic equations with singularity

at the boundary, J. Geom. Anal. 8 (1998) 583–598.
[86] L. Liu and H. R. Yuan, Stability of cylindrical transonic shocks for the two-

dimensional steady compressible Euler system, J. Hyperbolic Differ. Equ. 5 (2008)
347–379.

[87] L. Liu, G. Xu and H. R. Yuan, Stability of spherically symmetric subsonic flows
and transonic shocks under multidimensional perturbations, Adv. Math. 291 (2016)
696–757.

[88] T.-P. Liu, Multi-dimensional gas flow: Some historical perspectives, Bull. Inst. Math.
Acad. Sinica (New Series) 6 (2011) 269–291.

[89] G. D. Lock and J. M. Dewey, An experimental investigation of the sonic criterion for
transition from regular to Mach reflection of weak shock waves, Exp. Fluids 7 (1989)
289–292.
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