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OF TRANSONIC FLOWS, SHOCK WAVES,

AND PARTIAL DIFFERENTIAL EQUATIONS OF MIXED TYPE
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Abstract. This article is a survey of Cathleen Morawetz’s contributions to
the mathematical theory of transonic flows, shock waves, and partial dif-
ferential equations of mixed elliptic-hyperbolic type. The main focus is on
Morawetz’s fundamental work on the nonexistence of continuous transonic
flows past profiles, Morawetz’s program regarding the construction of global
steady weak transonic flow solutions past profiles via compensated compact-
ness, and a potential theory for regular and Mach reflection of a shock at
a wedge. The profound impact of Morawetz’s work on recent developments
and breakthroughs in these research directions and related areas in pure and
applied mathematics are also discussed.

1. Introduction

It is impossible to review all of Cathleen Morawetz’s paramount contributions to
pure and applied mathematics and to fully assess their impact on twentieth century
mathematics and the mathematical community in general. In this article, we focus
on Morawetz’s deep and influential work on the analysis of partial differential equa-
tions (PDEs) of mixed elliptic-hyperbolic type, most notably in the mathematical
theory of transonic flows and shock waves. We also discuss the profound impact of
Morawetz’s work on some recent developments and breakthroughs in these research
directions and related areas in pure and applied mathematics.

Morawetz’s early work on transonic flows has not only provided a new under-
standing of mixed-type PDEs, but has also led to new methods of efficient aircraft
design. Morawetz’s program for constructing global steady weak transonic flow
solutions past profiles has been a source of motivation for numerous recent devel-
opments in the analysis of nonlinear PDEs of mixed type and related mixed-type
problems through weak convergence methods. Furthermore, her work on the poten-
tial theory for regular and Mach reflection of a shock at a wedge (now known as the
von Neumann problem) has been an inspiration for the recent complete solution of
the von Neumann conjectures regarding global shock regular reflection-diffraction
configurations, all the way up to the detachment angle of the wedge.

As a graduate student, I learned a great deal from Cathleen’s papers [20–25],
which were a true inspiration to me. My academic journey took a significant turn
when I joined the Courant Institute of Mathematical Sciences (New York Univer-
sity) as a postdoctoral fellow under the direction of Peter Lax. During this time, I
had the extraordinary opportunity to learn directly from Cathleen about the chal-
lenging and fundamental research field that had, until that time, remained largely
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unexplored. I was immensely grateful to Cathleen for dedicating countless hours to
discuss and analyze with me a long list of open problems in this field. Her insights
were both illuminating and prolific, and I learned immensely from her during my
these years at Courant. Making substantial progress on some of these longstanding
open problems, however, was a journey that spanned over 10 years, on and off.
Indeed, this field has proven to be truly challenging. As a result, I experienced
great joy when I had the honor of presenting our first solution of the von Neu-
mann problem in [7] to Cathleen during my lecture at the Conference on Nonlinear
Phenomena in Mathematical Physics, dedicated to her on the occasion of her 85th
birthday, held at the Fields Institute in Toronto, Canada, from the 18th to 20th of
September 2008.

2. Background

The work of Cathleen Morawetz on transonic flows and the underlying PDEs of
mixed elliptic-hyperbolic type spanned her career. Let us first describe some of the
background regarding transonic flows in aerodynamics.

A fundamental question in aerodynamics is whether it is realistic for an aircraft to
fly at a relatively high speed, with respect to the speed of sound in the surrounding
air, with both relatively low economical and environmental costs. It is known that
at relatively low speeds—the subsonic range, the wing can be sailed by designing it
to obtain as much of a free ride as possible from the wind. At very high speeds—
the supersonic range, rocket propulsion is needed to overcome the drag produced by
shocks that invariably form (the sonic boom). The purpose of studying transonic
flows is to find a compromise that allows for sailing efficiently near the speed of
sound; this is a critical speed at which aerodynamic challenges emerge due to shock
formation and increased drag (cf. [23]).

As shown in Figure 1, shocks (depicted in bold black) begin to appear on a wing
when the wing speed is below, but near, the speed of sound. As the wing speed
increases from subsonic (Mach number M ă 1) to supersonic (blue region, M ą 1),
some supersonic shock (depicted in bold black) appears over the wing already at
the Mach number M “ 0.77. As the wing speed increases from subsonic (M ă 1)
to supersonic (M ą 1), additional shocks and transonic regions are formed.

Figure 1. Transonic flow patterns around a wing at and above the
critical Mach numbers. As the wing speed increases from subsonic
(Mach number M ă 1) to supersonic (Mach number M ą 1), some
supersonic shock (depicted in bold black) appears over the wing
already at Mach number M “ 0.77.
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The two-dimensional irrotational, stationary, compressible, and isentropic flow
of air around a profile P is governed by the Euler equations of the conservation law
of mass and Bernoulli’s law for the velocity potential ϕpx, yq and the density ρ of
the fluid (cf. [3, 8, 13, 14, 17]):

(2.1) div
`

ρ∇ϕ
˘

“ 0,
1

2
|∇ϕ|

2
`

ργ´1

γ ´ 1
“ B.

Here ρ is the density, ϕ is the velocity potential (i.e., ∇ϕ “ pϕx, ϕyq is the velocity),
γ ą 1 is the adiabatic exponent for the ideal gas (γ « 1.4 for the usual gas), and
B ą 0 is the Bernoulli constant. Equation (2.1) can be formulated as the following
system for the velocity u “ pu, vq “ ∇ϕ:

(2.2)

#

vx ´ uy “ 0,

pρBp|u|quqx ` pρBp|u|qvqy “ 0,

with

(2.3) ρBpqq “
`

B ´
1

2
q2

˘
1

γ´1 .

System (2.1) for the steady velocity potential ϕ can be rewritten as

(2.4) div
`

ρBp|∇ϕ|q∇ϕ
˘

“ 0,

or, equivalently, as

(2.5) a11ϕxx ` 2a12ϕxy ` a22ϕyy “ 0,

with a11 “ c2 ´ϕ2
x, a12 “ ´ϕxϕy, and a22 “ c2 ´ϕ2

y, where c ą 0 is the local speed
of sound defined by

c2 “
d p

d ρ
“ ργ´1

“ pγ ´ 1qργ´1
B “ pγ ´ 1q

`

B ´
1

2
|∇ϕ|

2
˘

.

The adiabatic pressure-density relation for the air is p “ ppρq “ ργ{γ (after scaling)
with γ « 1.4.

Equation (2.4) is a nonlinear conservation law of mixed elliptic-hyperbolic type
for the velocity potential ϕ (cf. [4, 5, 9]); that is, it is

‚ strictly elliptic (subsonic), i.e., a212 ´a11a22 ă 0, if |∇ϕ| ă c˚ :“
b

2pγ´1qB
γ`1 ;

‚ strictly hyperbolic (supersonic) if |∇ϕ| ą c˚.

The transition boundary here is |∇ϕ| “ c˚ (sonic), a degenerate set of (2.4), which
is a priori unknown, as it is determined by the gradient of the solution itself.

The natural boundary condition for the airfoil problem is

(2.6) ∇ϕ ¨ n “ 0 on BP,

where n is the unit inner normal on the airfoil boundary BP. The nature of the
flow is determined by the local Mach number M “

q
c , where q “ |∇ϕ| is the flow

speed.
A transonic flow occurs when the flow involves both subsonic and supersonic

regions, and equation (2.4) is of mixed elliptic-hyperbolic type. In this context,
supersonic regions are characterized by the presence of shocks that result from
drastic changes in the air density and pressure, due to compressibility. These pres-
sure changes propagate at supersonic speeds, giving rise to a shock wave, typically
with a small but finite thickness. In Figure 1, the shock wave is depicted in bold
black. The velocity field ∇ϕ, governed by (2.4), experiences jump discontinuities as
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the flow crosses the shock wave. These discontinuities serve as an indicator of the
presence of shocks. The mathematical description of shocks involves an analysis
of entropy effects (cf. [8, 13, 14, 19]). The corresponding entropy condition states,
mathematically, that the density function increases across the shock in the flow
direction (cf. [5, 8, 9, 13]).

3. The nonexistence of continuous transonic flows past profiles

Between the 1930s and the 1950s, there was a long debate among leading scien-
tists, including G. I. Taylor and A. Busemann, regarding transonic flows around a
given airfoil. The central questions were:

‚ Do transonic flows about a given airfoil always, never, or sometimes produce
shocks?

‚ Is it possible to design a viable airfoil capable of shock-free flight at a range
of transonic speeds?

There was no definitive satisfactory answer to these questions until Morawetz’s work
in the 1950s. In a series of papers [20–22], Morawetz provided a mathematically
definite answer to the questions by proving that shock-free transonic flows are
unstable with respect to arbitrarily small perturbations in the shape of the profile.
More precisely, this can be stated as follows:

Theorem 3.1 (Morawetz [20–22]). Let ϕ be a transonic solution of (2.4)–(2.6) with
a continuous velocity field ∇ϕ and a fixed speed q8 at infinity about a symmetric
profile P pcf. Figure 1q. For an arbitrary perturbation P̃ of P along an arc inside
the supersonic region attached to the profile that contains the point of maximum
speed in the flow, there is no continuous velocity field ∇ϕ̃ solving the corresponding
problem (2.4)–(2.6) with P̃ .

This indicates that any arbitrary perturbation of the airfoil inside the blue su-
personic region creates shocks. In simpler terms, even if a viable profile capable
of a shock-free transonic flow can be designed, any imperfection in its construction
leads to the formation of shocks at the intended speed.

Morawetz’s proof involved ingenious new estimates for the solutions of nonlinear
PDEs of mixed elliptic-hyperbolic type. The proof made two major advances: First,
the correct boundary value problem was formulated, satisfying the perturbation of
the velocity potential in the hodograph plane. In this plane, a hodograph trans-
formation linearized equation (2.4) and mapped the known profile exterior into an
unknown domain. Second, by developing carefully tailored integral identities, a
uniqueness theorem was proven for regular solutions of the transformed PDE, with
data prescribed on only a proper subset of the transformed boundary profile. This
theorem states that the transformed problem is predetermined, and that no regular
solutions exist. This result was further extended to include fixed profiles but finite
perturbations in q8, as well as to nonsymmetric profiles (see [12]).

Morawetz’s results catalyzed a significant change in the views of engineers, com-
pelling them to recalibrate wing design to minimize the shock strength over a useful
range of transonic speeds. The work of H. H. Pearly and later R. R. Whitecomb
in the 1960s on supercritical airfoils further underscored the impact of Morawetz’s
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findings on transonic airfoil design. In the 1970s, this research direction experienced
a surge in growth as part of the field of computational fluid dynamics. Key mile-
stones included the type-dependent difference scheme proposed by E. M. Merman
and J. D. Cole (1971), the complex characteristic method proposed by P. Para-
median and D. Koran (1971), and the rotated difference scheme introduced by A.
Jameson (1974). These advances significantly contributed to the accurate calcu-
lation of steady transonic flows and the development of codes for transonic airfoil
design (cf. [18]).

Cathleen Morawetz’s work on transonic flows not only transformed the field of
PDEs of mixed elliptic-hyperbolic type, but also served as a compelling example of
mathematics coming to the rescue with regard to real-world problems. At the time,
when many engineers and applied scientists were deeply sceptical about the role
of mathematics in terms of real-world applications, Morawetz’s work demonstrated
the true usefulness of the discipline.

In the most recent two decades, Morawetz’s work has served as a source of
inspiration for mathematicians and has led to numerous significant developments
in the analysis of steady transonic flows and free boundary problems for the steady
compressible Euler equations and other nonlinear PDEs of mixed elliptic-hyperbolic
type. These developments encompass a wide range of transonic flow scenarios,
including those around wedges and conical bodies, transonic nozzle flows (including
the de Laval nozzle flow), and other related steady transonic flow problems. For
more details on these developments, we refer the reader to [5,8,9] and the references
provided therein.

4. Morawetz’s program for the construction

of global weak transonic flows past profiles

via compensated compactness

With the complete solution regarding the nonexistence of continuous transonic
flows past profiles (i.e., the exceptional nature of shock-free transonic flows), Mora-
wetz turned to the next fundamental problems:

‚ Can robust existence theorems for weak shock solutions be established?
‚ Can a weak shock be contracted to a sonic point on the profile?

The first problem, now known as the Morawetz problem, received support from the
work of Garabedian and Korn in 1971, which demonstrated that small perturbations
of continuous flows can result in only weak shocks in the case of potential flow. The
second question was inspired by the thinking of K. G. Guderley in the 1950s.

Inspired by the difference method of A. Jameson (1974), Morawetz introduced an
artificial viscosity parameter into the nonlinear potential equation in [24,26]. This
viscosity method involved replacing the Bernoulli law, which previously related
density ρ to the gradient of the velocity potential ∇ϕ as ρ “ ρBp|∇ϕ|q, with a first-
order PDE that retards the density ρ. Morawetz presented an ambitious program
aimed at proving the existence of global weak solutions of the problem.

This program involved embedding the problem within an assumed viscous frame-
work, wherein the following compensated compactness framework would be satis-
fied:
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Theorem 4.1 (Morawetz [24, 26]). Let tuε :“ ∇ϕεuεą0 Ă L8pΩq be a sequence
of approximate solutions of the Morawetz problem for (2.2)–(2.3) in the domain Ω
with the following uniform bounds:

(i) There exist q˚, q
˚ P p0, qcavq independent of ε ą 0 such that

(4.1) 0 ă q˚ ď |uε
pxq| ď q˚ for all x P Ω,

where qcav is the maximum speed so that ρBpqcavq “ 0.
(ii) There are θ˚, θ

˚ P p´8,8q such that the corresponding velocity angle se-
quence θεpxq satisfies

(4.2) θ˚ ď θεpxq ď θ˚ for all x P Ω.

(iii) The corresponding entropy dissipation measure sequence

(4.3) divxpQ1, Q2qpuε
q is compact in H´1

loc pΩq,

where pQ1, Q2q is any C2 entropy pair of system (2.2)–(2.3), and H´1pΩq

is the dual space of the Sobolev space W 1,2pΩq :“ H1pΩq.

Then there exist a subsequence pstill denotedq uε and a function u P L8pΩq such
that

(4.4) uε � u pointwise a.e., and in Lp for any p P r1,8q.

With this framework, Morawetz demonstrated that the sequence of solutions of
the viscous problem, which remains uniformly away from both stagnation (|u| “ 0)
and cavitation (ρ “ 0) with uniformly bounded velocity angles, converges subse-
quentially to an entropy solution of the transonic flow problem; see also Gamba
and Morawetz [16]. Some possible extensions of this framework were also discussed
in [24, 26].

An alternative vanishing viscosity method, building upon Morawetz’s pioneering
work, was developed in [11]. This method was designed for adiabatic constant
γ P p1, 3q and ensures a family of invariant regions for the corresponding viscous
problem. This implies an upper bound, uniformly away from cavitation, for the
viscous approximate velocity fields. In other words, the condition in (4.1),

(4.5) |uε
pxq| ď q˚ for all x P Ω,

can be verified rigorously for the viscous approximate solutions for γ P p1, 3q.
This method involves the construction of mathematical entropy pairs through the
Loewner–Morawetz relation via entropy generators governed by a generalized Tri-
comi equation of mixed elliptic-hyperbolic type. The corresponding entropy dis-
sipation measures are analyzed to ensure that the viscous solutions satisfy the
compactness framework (Theorem 4.1). Consequently, the compensated compact-
ness framework implies that a sequence of solutions to the viscous problem, staying
uniformly away from stagnation with uniformly bounded velocity angles, converges
to an entropy solution of the inviscid transonic flow problem.

On the other hand, for the case γ ě 3, cavitation does occur. In particular, for
γ “ 3 (similar to the case γ “

5
3 for the time-dependent isentropic case), a family

of invariant regions for the corresponding viscous problem has been identified in
the most recent preprint [10]. This identification implies a lower bound uniformly
away from stagnation, but it allows for the occurrence of cavitation, in the vis-
cous approximate velocity fields. As a result, the first complete existence theorem
for system (2.2)–(2.3) has been established, without requiring a priori estimate
assumptions.
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5. Potential theory for regular and Mach reflection

of a shock at a wedge

When a planar shock separating two constant states, (0) and (1), with constant
velocities and densities ρ0 ă ρ1 (state (0) is ahead or to the right of the shock,
and state (1) is behind the shock) travels in the flow direction and impinges upon
a symmetric wedge with a half-wedge angle θw head-on at time t “ 0, a reflection-
diffraction process occurs as time progresses (t ą 0). A fundamental question arises
regarding the nature of the wave patterns formed in shock reflection-diffraction con-
figurations around the wedge. The complexity of these configurations was initially
reported by Ernst Mach (1878), who observed two patterns of shock reflection-
diffraction configurations: regular reflection (characterized by a two-shock configu-
ration) and Mach reflection (characterized by a three-shock/one-vortex-sheet con-
figuration). These configurations are illustrated in Figure 2.1 The issue remained
largely unexplored until the 1940s when John von Neumann [28–30], along with
other mathematical and experimental scientists (see, for example, [2, 8, 13, 15, 17]
and the references cited therein) initiated extensive research into all aspects of shock
reflection-diffraction phenomena.

Figure 2. Three patterns of shock reflection-diffraction configurations.

In fact, the situation is far more intricate than what Mach initially observed.
Shock reflection can be further divided into more specific subpatterns, and nu-
merous other patterns of shock reflection-diffraction configurations exist. These
include supersonic regular reflection, subsonic regular reflection, attached regular
reflection, double Mach reflection, von Neumann reflection, and Guderley reflec-
tion. For a comprehensive exploration of these patterns, we refer to [2, 5, 8, 13, 17]
and the references cited therein (see also Figures 2, 3, and 4). The fundamental
scientific issues related to shock reflection-diffraction configurations encompass the
following:

(i) understanding the structures of these configurations;
(ii) determining the transition criteria between the different patterns;
(iii) investigating the dependence of these patterns on physical parameters such

as the incident-shock-wave Mach number (i.e., the strength of the incident
shock), the wedge angle θw, and the adiabatic exponent γ ą 1.

In particular, several transition criteria between different patterns of shock reflec-
tion-diffraction configurations have been proposed. Notably, there are two signif-
icant conjectures: the sonic conjecture and the detachment conjecture, introduced
by von Neumann [28, 29] (these are also discussed in [2, 5, 8]).

In her pioneering work [27], Morawetz investigated the nature of shock reflection-
diffraction patterns for weak incident shocks with strength M1 that represents the

1M. Van Dyke: An Album of Fluid Motion, The Parabolic Press: Stanford, 1982.
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Mach number of state (1) behind the incident shock, and for small half-wedge angles
θw. Her exploration involved the use of potential theory, several scaling techniques,
the study of mixed equations, and matching asymptotics for different scalings. The
self-similar equations encountered in the analysis are of mixed elliptic-hyperbolic
type. The investigation included linearization to obtain a linear mixed flow valid
away from a sonic curve. Near the sonic curve, a shock solution was constructed by
using a different scaling, except near the zone of interaction between the incident
shock and the wall, where a special scaling was employed. The analysis specifically
addressed polytropic gases with an adiabatic exponent γ ą 1. The parameter

β “
θ2
w

pγ`1qM1
spans a range from 0 to 8, and its values have distinct implications:

‚ When β ą 2, regular reflection (either weak or strong) is possible, and the
entire pattern is reconstructed to the lowest order in shock strength.

‚ When β ă
1
2 , Mach reflection occurs, and the flow behind the reflection

becomes subsonic which, in principle, can be constructed (with an open
elliptic problem) and matched.

‚ For values of β between 1
2 and 2, or an even larger value of β, the flow

behind a Mach reflection may become transonic. Further investigation is
required to determine the nature of this transonic flow.

The fundamental pattern of shock reflection includes an almost semicircular
shock. In the case of regular reflection, this shock originates from the reflection
point on the wedge. In the case of Mach reflection, it is matched with a local
interaction flow. Given their nature, choosing the least entropy generation, the
weak regular reflection occurs for a sufficiently large value of β (which settled the
von Neumann paradox). An accumulation point of vorticity is observed on the
wedge, located above the leading point.

Inspired by Morawetz’s work, significant progress has been made on the von
Neumann problem for shock reflection-diffraction. In particular, several new ideas,
approaches, and techniques have been developed to solve fundamental open prob-
lems involving transonic shocks and related free boundary problems for nonlinear
PDEs of mixed hyperbolic-elliptic type; see [5,7–9] and the references cited therein.
In [7], a new approach was first introduced and corresponding techniques were de-
veloped to solve the global problem of shock reflection-diffraction by large-angle
wedges. This development eventually led to the first complete and rigorous proof
of both von Neumann’s sonic and detachment conjectures in Chen and Feldman
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[8]. Consequently, this provided a rigorous proof of the existence, uniqueness, sta-
bility, and optimal regularity of global solutions of the von Neumann problem for
shock reflection-diffraction, all the way up to the detachment angle, for the two-
dimensional Euler equations for potential flow. The approaches and techniques
developed in these works have also been applied to solve other transonic shock
problems and related problems involving similar difficulties for nonlinear PDEs of
mixed type, which arise in fluid dynamics and other fields (see, for example, the
references provided in [5,7–9]). Notably, these developments include the first com-
plete solution to two other long-standing open problems: the Prandtl conjecture
for the Prandtl–Meyer configuration for supersonic flow onto a solid ramp up to the
detachment angle (see [1]) and the global solutions of the two-dimensional Riemann
problem with four-shock interactions for the Euler equations (see [6]).

6. Concluding remarks

From the brief discussion above, we have seen that Cathleen Morawetz has made
truly seminal contributions to the mathematical theory of transonic flows, shock
waves, and PDEs of mixed elliptic-hyperbolic type. Furthermore, Morawetz also
made fundamental contributions to many other fields, including functional inequal-
ities and scattering theory. Her work has resulted in numerous significant develop-
ments and breakthroughs in various research directions and related areas in pure
and applied mathematics. These new developments underscore the enduring impor-
tance of pioneering work in mathematics and its lasting impact on contemporary
research, further highlighting the significance of Cathleen Morawetz’s contributions
to these fields. It is hard to imagine a world without Morawetz’s profound contribu-
tions to transonic flow theory, shock wave theory, PDEs of mixed type, functional
inequalities, and scattering theory.

Cathleen Morawetz’s role as a leader, mentor, and inspirational figure in the
mathematical community has been equally significant throughout her ninety-four
years of life. Her dedication to excellence and her generosity in sharing her knowl-
edge and insights have left an indelible mark on generations of mathematicians. Her
legacy will undoubtedly continue to inspire and shape the future of mathematical
research for many decades to come.
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