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Abstract

We are concerned with multidimensional stochastic balance laws. We
identify a class of nonlinear balance laws for which uniform spatial BV
bounds for vanishing viscosity approximations can be achieved. Moreover,
we establish temporal equicontinuity in L1 of the approximations, uniformly
in the viscosity coefficient. Using these estimates, we supply a multidimen-
sional existence theory of stochastic entropy solutions. In addition, we es-
tablish an error estimate for the stochastic viscosity method, as well as
an explicit estimate for the continuous dependence of stochastic entropy
solutions on the flux and random source functions. Various further general-
izations of the results are discussed.

Key words. Stochastic balance law, vanishing viscosity method, entropy
solution, existence, uniqueness, stability, BV estimates, error estimate, con-
tinuous dependence.

1. Introduction

We are concerned with the well-posedness and continuous dependence
estimates for the stochastic balance laws

∂tu(t,x) +∇ · f(u(t,x)) = σ(u(t,x)) ∂tW (t), x ∈ R
d, t > 0, (1)

with initial data:

u(0,x) = u0(x), x ∈ R
d. (2)

We denote by ∇ and ∆ the spatial gradient and Laplacian, respectively.
Equation (1) is a conservation law perturbed by a random force driven

by a Brownian motion W (t) = W (t, ω), ω ∈ Ω, over a stochastic basis
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(Ω,F , {Ft}t≥0 , P ), where P is a probability measure, F is a σ-algebra, and
{Ft}t≥0 is a right-continuous filtration on (Ω,F) such that F0 contains all
the P–negligible subsets.

The initial function u0(x) is assumed to be a random variable satisfying

E
�
‖u0‖pLp(Rd)

+ |u0|BV (Rd)

�
<∞, p = 1, 2, · · · . (3)

Regarding the flux f = (f1, · · · , fd) : R → R
d, we assume fi ∈ C2(R),

i = 1, . . . , d, and that each fi has at most polynomial growth in u, i.e.,

|fi(u)| ≤ C (1 + |u|r) for some finite integer r ≥ 0. (4)

In this paper we focus mainly on the class of noise functions σ for which
there exists a constant C > 0 such that

σ(0) = 0, |σ(u)− σ(v)| ≤ C|u− v| ∀u, v ∈ R. (5)

This can be generalized to wider classes for different results in terms of
existence, stability, and continuous dependence, respectively; see Section 6
for more details. One reason for requiring σ(0) = 0 is that it follows from
the L1–contraction principle that E[‖u(t, ·)‖L1(Rd)] is finite. Similarly, the
Lipschitz continuity of σ(u) is required for the existence and uniform Lp–
estimates of solutions.

Stochastic partial differential equations arise in a number of problems
concerning random-phenomena occurring in biology, physics, engineering,
and economics. In recent years, there has been an increased interest in
studying the effect of stochastic forcing on solutions of nonlinear partial
differential equations. Of specific interest is the effect of noise on discon-
tinuous waves, since these are often the relevant solutions; an important
issue concerns the well-posedness (existence, uniqueness, and stability) of
discontinuous solutions.

The fundamental fluid dynamics models are based on the compressible
Navier-Stokes equations and Euler equations. However, abundant experi-
mental observations suggest that the chaotic nature of many high-velocity
fluid dynamics phenomena calls for their stochastic formulation. Indeed,
in these flows with large Reynolds numbers, microscopic perturbations get
amplified to macroscopic scales giving rise to unsteady flow patterns that de-
viate significantly from those predicted by the classical Navier-Stokes/Euler
models, and more viable models seem to be the stochastic Euler or Navier-
Stokes equations. In the present paper we are interested in nonlinear hy-
perbolic equations with stochastic forcing, so-called stochastic balance laws.
These balance laws can be viewed as a simple caricature of the stochastic
Euler equations.

When σ ≡ 0, equation (1) becomes a nonlinear conservation law for
which the maximum principle holds. A satisfactory well-posedness theory
is now available (cf. [4]). Some efforts have been made about the analysis
of nonlinear stochastic balance laws. In [8], a one-dimensional stochastic
balance law was analyzed for u0 in L∞ and compactly supported σ = σ(u),
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which ensures an L∞–bound. A splitting method was used to construct
approximate solutions, and it was shown that a subsequence of these ap-
proximations converges to a (possible non-unique) weak solution.

For general σ, the maximum principle is not available. Indeed, even for
initial data u0 ∈ L∞, the solution is not in L∞ generically. For σ = σ(t, x) in
Ct(W

1,∞
x ) and with compact support in x, Kim [10] established the existence

and uniqueness of entropy solutions in the one-dimensional case; see also
[18]. For general σ = σ(x, u) depending on u and for multidimensional
equations in the Lp–framework, the uniqueness of strong stochastic entropy
solutions was first established in Feng-Nualart [7], but the existence result
was restricted to one dimension. We refer to the recent paper Debussche-
Vovelle [5] for multidimensional results via a kinetic formulation1. For the
Lp–theory of deterministic conservations laws, see [17].

One of our main observations is that uniform spatial BV –bounds are
preserved for stochastic balance laws with noise functions σ(u) satisfying
(5). This yields the existence of strong stochastic entropy solutions in Lp ∩
BV , as well as in Lp, for multidimensional balance laws (1). Furthermore, we
develop a “continuous dependence” theory for stochastic entropy solutions
in BV , which can be used, for example, to derive an error estimate for
the vanishing viscosity method. Whenever σ = σ(x, u) has a dependency
on the spatial position x, BV –estimates are no longer available, but we
show that the continuous dependence framework can be used to derive local
fractionalBV –estimates, which in turn can be used, as before via a temporal
equicontinuity estimate, to establish a multidimensional existence result.

Besides providing an existence result in a multidimensional context by
standard methods, one reason for singling out the class of nonlinear balance
laws defined by (5) is that it makes a natural test bed for numerical analysis,
without having to account for all the added technical complications in a pure
Lp–framework. Moreover, by assuming σ(a) = σ(b) = 0 for some constants
a < b, one ensures that the solution remains bounded between a and b
if the initial function u0 does so. Consequently, it is possible to identify
a class of stochastic balance laws for which Lp ∩ BV , or even L∞ ∩ BV ,
supplies a relevant and technically simple functional setting, tailored for the
construction and analysis of numerical methods.

For other related results, we refer to Sinai [16] and E-Khanin-Mazel-
Sinai [6] for the existence, uniqueness, and weak convergence of invariant
measures for the one-dimensional Burgers equation with stochastic forcing
which is periodic in x, as well as the structure and regularity properties
of the solutions that live on the support of this measure. We also refer to
Lions-Souganidis [13] for Hamilton-Jacobi equations with stochastic forcing
and the so-called “stochastic” viscosity solutions.

We employ the vanishing viscosity method to establish the existence of
stochastic entropy solutions. To this end, consider the stochastic viscous

1 We became aware of this paper after our main results were obtained.
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conservation law

∂tu
ε(t,x) +∇ · f(uε(t,x)) = σ(uε(t,x))∂tW (t) + ε∆uε(t,x) (6)

for any fixed ε > 0, with initial data

uε(0,x) = uε0(x), x ∈ R
d, (7)

where uε0(x) is a smooth approximation to u0(x) with

E

�Z
Rd

|uε0(x)|p dx
�
≤ E

�Z
Rd

|u0(x)|p dx
�

and, if u0 ∈ BV (Rd),

E

�Z
Rd

|∇uε0(x)| dx
�
≤ E

�Z
Rd

|∇u0(x)| dx
�
.

In addition, E
�R

Rd |∇2uε0(x)| dx
�
<∞ for each fixed ε.

With regard to (6), we should replace (f , σ) by appropriate smooth ap-
proximations (fε, σε). However, mainly to ease the presentation throughout
this paper, we will not do that but instead simply assume that (f , σ) are suf-
ficiently smooth (cf. [7]) in order to ensure the validity of our calculations.
At times, we will do the same with the initial data.

The existence of global smooth solutions to (6)–(7) is established in [7],
along with the following uniform estimates for p ≥ 1 and T > 0:

sup
ε>0

sup
0≤t≤T

E
�
‖uε(t, ·)‖p

Lp(Rd)

�
+ sup

ε>0
E

�
ε

Z T

0
‖∇uε(t, ·)‖2L2(Rd)dt

�
<∞.

(8)
The solution satisfies

uε(t,x) =

Z
Rd

Gε(t,x− y)u0(y) dy

−
Z t

0

Z
Rd

Gε(t− s,x− y)∇ · f(uε(t,y)) dy ds

+

Z t

0

Z
Rd

Gε(t− s,x− y)σ(uε(s,y)) dy dW (s),

(9)

where Gε(t,x) is the heat kernel:

Gε(t,x) =
1

(4πεt)d/2
e−

|x|2

4εt , t > 0.

Using (3) and (8)–(9), it follows that, for each fixed ε > 0,

E
�
‖(∇, ∆)uε‖L1((0,T )×Rd)

�
<∞ for any finite T > 0, (10)

that is, ∇uε and ∇2uε are integrable for each fixed ε > 0. With different
methods, we will later prove an ε-uniform spatial BV –estimate.



On Nonlinear Stochastic Balance Laws 5

The remaining part of this paper is organized as follows: In Section 2,
we prove the uniform spatial BV –bound for stochastic viscous solutions
uε(t,x). In Section 3, based on the BV –bound, we establish the equiconti-
nuity of uε(t,x) in t > 0, uniformly in the viscosity coefficient ε > 0. With
these uniform estimates, we establish in Section 4 the existence of stochastic
entropy solutions in Lp ∩BV , as the vanishing viscosity limits for problem
(6)–(7) with initial data in Lp ∩ BV . Combining this existence result with
the L1-stability theory in Feng-Nualart [7] leads to the well-posedness in
Lp for problem (1)–(2). We further establish estimates for the “continuous
dependence on the nonlinearities” for BV stochastic entropy solutions in
Section 5, which also lead to an error estimate for (6)–(7). Various further
generalizations of the results are discussed in Section 6.

2. Uniform Spatial BV –Estimates

As indicated in Section 1, we have available regularity and uniform Lp–
estimates (8) for the viscous solutions uε(t,x) of (6)–(7). In this section, we
establish the uniform L1-estimate for∇uε, that is, the uniform BV -estimate
of uε(t,x) in the spatial variables x.

Before we do that, let us indicate why the BV –estimates do not seem
to be available when the noise coefficient function σ = σ(x, u) depends on
the spatial position x, even if that dependence is C∞ (see Section 6 for
fractional BV –estimates). To this end, it suffices to consider the simple
stochastic differential equation:

du = σ(x, u) dW (t), u(0) = u0(x), x ∈ R,

where we have dropped nonlinear transport effects and restricted to one
spatial dimension. The spatial derivative v = ∂xu satisfies

dv = (σu(x, u)v + σx(x, u)) dW (t).

Let η be a C2–function. By Ito’s formula,

dη(v) = η′(v)
�
σu(x, u)v + σx(x, u)

�
dW (t)

+
1

2
η′′(v)

�
σu(x, u)v + σx(x, u)

�2
dt.

Integrating in x and taking expectations, it follows that

E

�Z
η(v(t)) dx

�
= E

�Z
η(v(0)) dx

�
+ E

�Z t

0

Z
1

2
η′′(v)

�
σu(x, u)v + σx(x, u)

�2
dx ds

�
.

Modulo an approximation argument, we can take η(·) as |·|. Unless σx ≡ 0,
the second term on the right-hand side does not seem to be controllable
(this term vanishes when σx ≡ 0).



6 Gui-Qiang Chen, Qian Ding, Kenneth H. Karlsen

Let us now continue with the derivation of the BV –estimate for (6). We
will need a C2–approximation of the Kruzkov entropy. Let η̄ : R → R be a
C2–function satisfying

η̄(0) = 0, η̄(−r) = η̄(r), η̄′(−r) = −η̄′(r), η̄′′ ≥ 0, (11)

and

η̄′(r) =

8><>:−1, when r < −1,

∈ [−1, 1], when |r| ≤ 1,

+1, when r > 1.

For any ρ > 0, define the function ηδ : R → R by

ηρ(r) = ρη̄

�
r

ρ

�
.

Then

|r| −M1ρ ≤ ηρ(r) ≤ |r| ,
��η′′ρ (r)�� ≤ M2

ρ
1|r|<ρ, (12)

where

M1 = sup
|r|≤1

�� |r| − η̄(r)
��, M2 = sup

|r|≤1

|η̄′′(r)| . (13)

We will frequently utilize the Burkholder-Davis-Gundy inequality, which
we now recall. For p > 0, there exists a constant C = Cp such that, if Mt is
a continuous martingale and t a stopping time, then

E

�
sup
s≤t

|Ms|p
�
≤ CpE

�
〈M〉p/2t

�
,

where 〈M〉t is the quadratic variation of Mt.

Theorem 1 (Spatial BV –estimate). Suppose that (3)–(5) hold. Let uε(t,x)
be the solution of (6)–(7). Then, for t > 0,

E

�Z
Rd

|∇uε(t,x)| dx
�
≤ E

�Z
Rd

|∇uε0(x)| dx
�
≤ E

�Z
Rd

|∇u0(x)| dx
�
.

Proof. Taking the derivative of (6) with respect to xi, 1 ≤ i ≤ d, we obtain

∂t(u
ε
xi
) +∇ ·

�
f ′(uε(t,x))uεxi

�
= σ′(uε(t,x))uεxi

∂tW (t) + ε∆(uεxi
).

Applying Ito’s formula to ηρ(u
ε
xi
) yields

∂tηρ(u
ε
xi
) = η′ρ(u

ε
xi
)σ′(uε)uεxi

∂tW (t)

+ η′ρ(u
ε
xi
)
�
ε∆uεxi

−∇ · (f ′(uε)uεxi
)
�

+
1

2
η′′ρ (u

ε
xi
)
�
σ′(uε)uεxi

�2
.

(14)
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We observe that

εη′ρ(u
ε
xi
)∆(uεxi

) = ε
�
∇ · (η′ρ(uεxi

)∇uεxi
)− η′′ρ (u

ε
xi
)
��∇uεxi

��2�
= ε

�
∆ηρ(u

ε
xi
)− η′′ρ (u

ε
xi
)|∇uεxi

|2
�

≤ ε∆ηρ(u
ε
xi
),

(15)

by using the convexity of ηρ and interpreting ∆ηρ(u
ε
xi
) in the distributional

sense. Here we have used that ∇uεxi
, 1 ≤ i ≤ d, are integrable, cf. (10), so

that they vanish at infinity.
Integrating (14) with respect to x, using (10) and (15), and noting thatZ

Rd

Z t

0
η′(uεxi

)σ′(uε)uεxi
dW (s)dx

is a martingale, we arrive at

E

�Z
Rd

ηρ(u
ε
xi
(t,x)) dx

�
− E

�Z
Rd

ηρ(u
ε
xi
(0,x)) dx

�
≤ E

"
−
Z t

0

Z
Rd

η′ρ(u
ε
xi
)∇ · (f ′(uε)uεxi

) dx ds

+
1

2

Z t

0

Z
η′′ρ (u

ε
xi
)
�
σ′(uε)uεxi

�2
dx ds

#
.

(16)

Now we send ρ→ 0 in (16). By the dominated convergence theorem,

E

�Z
Rd

��uεxi
(t,x)

�� dx�
≤ E

�Z
Rd

��uεxi
(0,x)

�� dx�− lim
ρ→0

E

�Z t

0

Z
Rd

η′ρ(u
ε
xi
)∇ · (f ′(uε)uεxi

) dx ds

�
+ lim

ρ→0

1

2
E

�Z t

0

Z
Rd

η′′ρ (u
ε
xi
)
�
σ′(uε)uεxi

�2
dx ds

�
=: E

�Z
Rd

��uεxi
(0,x)

�� dx�+ I1 + I2.

For the term I1,

|I1| = lim
ρ→0

����E �Z t

0

Z
Rd

∇ ·
�
f ′(uε)η′ρ(u

ε
xi
)uεxi

�
dx ds

�����
+ lim

ρ→0

����E �Z t

0

Z
Rd

η′′ρ (u
ε
xi
)uεxi

∇uεxi
· f ′(uε) dx ds

�����
≤ C lim

ρ→0
E

�Z t

0

Z
Rd

��uεxi

�� 1
ρ
χ[−ρ,ρ](u

ε
xi
)
��∇uεxi

�� |f ′(uε)| dx ds� .
Notice that��uεxi

�� 1
ρ
χ[−ρ,ρ](u

ε
xi
) → 0 for a.e. (t,x) almost surely as ρ→ 0,
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and ��uεxi

�� 1
ρ
χ[−ρ,ρ](u

ε
xi
)
��∇uεxi

�� |f ′(uε)|
≤ C

���∇uεxi

��2 + |uε|2(r−1)
�
,

where the right-side term of the inequality is integrable and independent of
ρ > 0. Then the dominated convergence theorem implies that |I1| = 0.

Next we consider I2. By condition (5) and estimate (12), we have��η′′ρ (uεxi
)(σ′(uε)uεxi

)2
�� = ��η′′ρ (uεxi

)
�� ��|uεxi

��2 (σ′(uε))2

≤ C
��uεxi

��1{|uε
xi

|<ρ} ≤ C
��uεxi

�� ∈ L1((0, T )× R
d).

On the other hand, since |uεxi
| is integrable and independent of ρ > 0, and��uεxi

��1||uε
xi
|<ρ} → 0 for a.e. (t,x) almost surely as ρ→ 0,

the dominated convergence theorem again implies |I2| = 0. ⊓⊔

3. Uniform Temporal L1–Continuity

In this section, we establish the uniform temporal L1–continuity of uε(t,x),
independent of the viscosity coefficient ε > 0.

Theorem 2 (Temporal L1–Continuity). Suppose that (3)–(5) hold. Let
uε(t,x) be the solution of (6)–(7). Let D ⊂ R

d be a bounded domain in R
d

and T > 0 finite. Then, for any small ∆t > 0, there exists a constant C > 0
independent of ∆t such that

E

�Z T−∆t

0

Z
D

|uε(t+∆t,x)− uε(t,x)| dxdt
�

≤ C(∆t)1/3 → 0 as ∆t→ 0. (17)

Proof. Fix ∆t > 0. For t ∈ [0, T −∆t], set wε(t, ·) := uε(t+∆t, ·)−uε(t, ·).
Then, for any ϕ ∈ L∞(0, T ;C∞

0 (D)), we haveZ
D
wε(t,x)ϕ(t,x) dx

=

Z
D

�Z t+∆t

t

∂su
ε(s,x)ds

�
ϕ(t,x) dx

=

Z t+∆t

t

Z
D
f(uε(s,x)) · ∇ϕ(t,x) dx ds

− ε

Z t+∆t

t

Z
D
∇uε(s,x) · ∇ϕ(t,x) dx ds

+

Z t+∆t

t

Z
D

σ(uε(s,x))ϕ(t,x) dx dW (s).

(18)
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For each t ∈ [0, T −∆t], take δ > 0, set

D−δ := {x ∈ D : dist(x, ∂D) ≥ δ},

and denote by χD−δ
(·) its characteristic function.

Let J ∈ C∞
c (Rd) be the standard mollifier defined by

J(x) =

¨
C exp

�
1

|x|2−1

�
if |x| < 1,

0 if |x| ≥ 1,
(19)

where the constant C > 0 is chosen so that
R
Rd J(x)dx = 1. For each δ > 0,

we take

ϕ := ϕδ(t,x) = δ−d

Z
Rd

J(x−y
δ ) sgn (w(t,y)) χD−δ

(y) dy

in (18). It is clear that ‖ϕδ‖L∞(D) + δ ‖∇ϕδ‖L∞(D) ≤ C, uniformly in t, for
some constant C > 0 independent of δ > 0.

Integrating (18) in t from 0 to T −∆t yieldsZ T−∆t

0

Z
D
|wε(t,x)| dxdt

=

Z T−∆t

0

Z t+∆t

t

Z
D
f(uε(s,x)) · ∇ϕδ(t,x) dx ds dt

−
Z T−∆t

0

Z t+∆t

t

Z
D
ε∇uε(s,x) · ∇ϕδ(t,x) dx ds dt

+

Z T−∆t

0

�Z t+∆t

t

� Z
D

σ(uε(s,x))ϕδ(t,x) dx
�
dW (s)

�
dt

+

Z T−∆t

0

Z
D

wε(t,x)
�
wε(t,x)− ϕδ(t,x)

�
dxdt

:=
4X

j=1

Iδj .

We examine these parts separately.

Thanks to the polynomial growth of f and (8),���E �Iδ1���� ≤ C
∆t

δ
‖f‖L1(D×(0,T )) ≤ C(T,D)

∆t

δ
.
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For the term Iδ2 , we have���E �Iδ2���� ≤ C

 
E

"Z T−∆t

0

Z
D

�Z t+∆t

t

√
ε|∇uε(s,x)| ds

�2

dx dt

#! 1
2

×
�
E
h Z T−∆t

0

Z
D
ε|∇ϕδ|2 dx ds

i� 1
2

≤ C∆t

�
E
h Z T−∆t

0

Z
D
|∇ϕδ|2dx ds

i� 1
2

≤ C(T,D)
∆t

δ
,

where the second inequality follows from the energy estimate (8):

sup
ε>0

E

�
ε

Z T

0
‖∇uε(t,x)‖2L2(Rd) dt

�
<∞.

For the term Iδ3 , by the Burkholder-Davis-Gundy inequality applied to

the martingale 0 ≤ ∆t 7→
R t+∆t
t

� R
D σ(u

ε(s,x))ϕδ(t,x) dx
�
dW (s), we have���E �Iδ3���� ≤ C

Z T−∆t

0
E

"�Z t+∆t

t

�Z
D
σ(uε(s,x))ϕδ(t,x) dx

�2

ds

� 1
2

#
dt

≤ C

�
E

�Z T−∆t

0

Z t+∆t

t

Z
D

�
σ(uε(s,x)ϕδ(t,x)

�2
dx ds dt

�� 1
2

≤ C

�
E

�Z ∆t

0

Z T−∆t

0

Z
D

�
σ(uε(s+ t,x)

�2
dx dt ds

�� 1
2

≤ C
√
∆t

�
E

�Z T

0

Z
D

�
σ(uε(t,x)

�2
dx dt

�� 1
2

≤ C
√
∆t

�
E

�Z T

0

Z
D

|uε(t,x)|2dx dt
�� 1

2

≤ C
√
∆t,

where we have used that supε>0E
�‖uε(t)‖22� <∞, uniformly in t > 0.

This L2–bound also implies

E

�Z T

0

Z
D\D−2δ

|uε(t,x)| dx dt
�

≤ C
�
E
�
‖uε‖22

�� 1
2

�
E
� Z T

0

Z
D\D−2δ

dx dt
�� 1

2

≤ C
√
δ.
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Hence,���E �Iδ4����
≤ 2E

�Z T−∆t

0

Z
D\D−2δ

|w(t,x)| dx dt
�

+ E

"Z T−∆t

0

Z
D−2δ

��� |w(t,x)|
− w(t,x)

Z
Rd

δ−dJ(x−y

δ ) sgn
�
w(t,y)

���� dy dx dt#
≤ C

√
δ

+ E

"Z T−∆t

0

Z
D−2δ

Z
Rd

δ−dJ(x−y

δ )

×
��� |w(t,x)| − w(t,x) sgn(w(t,y))

��� dy dx dt#
≤ C

√
δ

+ CE

�Z T−∆t

0

Z
D−2δ

Z
Rd

δ−dJ(x−y

δ )|w(t,x) − w(t,y)| dy dx dt
�

≤ C
√
δ + CE

�Z
J(z)

Z T

0

Z
D−2δ

|uε(t,x)− uε(t,x− δz)| dx dt dz
�

≤ C
√
δ + 4δ ≤ C

√
δ,

where the third inequality follows from
��|a| − a sgn(b)

�� ≤ 2|a − b| for any
a, b ∈ R. The fifth inequality follows, since uε belongs to BV in x.

Setting ρ(∆t) = infδ>0

�
C1

∆t
δ + C2

√
∆t+ C3

√
δ
©
, it follows thatZ T−∆t

0

Z
D

|w(t,x)| dxdt ≤ ρ(∆t).

The function ρ(·) reaches the infimum at δ = C(∆t)
2
3 , and henceZ T−∆t

0

Z
D
|w(t,x)| dx dt ≤ C(∆t)

1
3 → 0 as ∆t→ 0.

This concludes the proof of the theorem. ⊓⊔

Remark 1. Since the Brownian sample paths are α-Hölder continuous for
every α < 1

2 , a fractional order in the temporal L1–continuity in (17) is
expected. The proof of Theorem 2 uses an idea due to Kruzkov [11].
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4. Well-Posedness Theory in Lp

Before we introduce the relevant notions of generalized solutions, let us
define what is meant by an entropy-entropy flux pair (η,q), or more simply
an entropy pair, namely a C2 function η : R → R such that η′, η′′ have
at most polynomial growth, with corresponding entropy flux q defined by
q′(u) = η′(u)f ′(u). An entropy pair is called convex if η′′(u) ≥ 0.

Definition 1 (Stochastic Entropy Solutions). An {Ft}t≥0–adapted and

L2(Rd)–valued stochastic process u = u(t) = u(t,x;ω) is called a stochastic

entropy solution of the balance law (1) with initial data (2) provided that
the following conditions hold:

(i) for p = 1, 2, · · · ,

sup
0≤t≤T

E
�
‖u(t)‖pLp(Rd)

�
<∞, for any T > 0;

(ii) for any convex entropy pair (η,q) and any 0 < s < t,

−
�Z

Rd

η(u(t,x))ϕ(x) dx −
Z
Rd

η(u(s,x))ϕ(x) dx

�
+

Z t

s

Z
Rd

q(u(τ,x)) · ∇ϕdx dτ

+

Z t

s

Z
Rd

1

2
η′′(u(τ,x))

�
σ(u(τ,x))

�2
ϕdx dτ

+

Z t

s

�Z
Rd

η′(u(τ,x))σ(u(τ,x))ϕdx

�
dW (τ) ≥ 0,

for all ϕ ∈ C∞
c (Rd), ϕ ≥ 0, where

R t
s (· · · ) dW (τ) is an Ito integral.

To motivate the next definition, let us make a formal attempt to derive
the L1–contraction property for stochastic entropy solutions. To this end,
consider smooth (in x) solutions to the one-dimensional problems:

du+ ∂xf(u) dt = σ(u) dW, u|t=0 = u0,

dv + ∂xf(v) dt = σ(v) dW, v|t=0 = v0.

Subtracting the two stochastic conservation laws yields

d(u− v) = − [∂x(f(u)− f(v))] dt+ [σ(u)− σ(v)] dW.
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Let η(·) be an entropy. An application of the chain rule (Ito’s formula) now
yields

dη(u − v) =

"
−∂x

�
η′(u − v)(f(u)− f(v))

�
+ η′′(u− v)

�
f(u)− f(v)

�
∂x(u− v)

+
1

2
η′′(u− v)

�
σ(u)− σ(v)

�2#
dt

+ η′(u− v)
�
σ(u)− σ(v)

�
dW,

where the last term is a martingale. Choosing η(·) = |·| yields η′′(·) = δ0
and the two “η′′ terms” vanish. Consequently, after integrating and taking
expectations, we arrive at the L1–contraction (conservation) principle:

E

�Z
|u(t)− v(t)| dx

�
= E

�Z
|u0 − v0| dx

�
.

Of course, for non-smooth solutions, the Ito formula is not available and
we should instead derive the L1–contraction principle from the (stochastic)
entropy inequalities via Kruzkov’s method.

Attempting precisely that, we write the entropy condition for u(t) =
u(t, x;ω) with the entropy η(u(t) − v(s, y;ω)), where v(s, y;ω) is being
treated as a constant with respect to (t, x). Similarly, write the entropy
condition for v(s) = v(s, y;ω) for the entropy η(v(s) − u(t, x;ω)), with
u(t, x;ω) being constant with respect to (s, y). Take η(·) = |·|, and then
q(u, v) = sgn(u − v)(f(u) − f(v)). After adding together the two entropy
inequalities, we formally obtain

(dt + ds)|u− v|

≤
h
− (∂x + ∂y)

�
sgn(u − v)(f(u)− f(v))

�
+

1

2
δ(u− v)

�
(σ(u))

2
+ (σ(v))

2
� i
dt ds

+ sgn(u(t, x)− v(s, y))σ(u(t, x)) dW (t) ds

− sgn(u(t, x)− v(s, y))σ(v(s, y)) dW (s) dt.

Depending on t < s or t > s, one of the last two terms are not adapted,
and this causes a problem for the Ito integral. In particular, by taking the
expectation of the above inequality, only one of the last two terms vanishes.

Moreover, to write 1
2δ(u− v)

�
(σ(u))2 + (σ(v))2

�
in the favorable form:

1

2
δ(u − v) (σ(u)− σ(v))2 ,

we are missing the cross term 2σ(u)σ(v). These difficulties can be effectively
handled by the notion of “strong” stochastic entropy solutions.
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Definition 2 (Strong Stochastic Entropy Solutions). We refer to a
stochastic entropy solution u of the balance law (1) with initial data (2) as
a strong stochastic entropy solution if the following condition holds:

(iii) for each {Ft}t≥0–adapted, L
2(R)–valued stochastic process ũ = ũ(t) =

ũ(t,x;ω) satisfying

sup
0≤t≤T

E
�
‖ũ(t)‖pLp(Rd)

�
<∞ for any T > 0, p = 1, 2, · · · ,

and for each entropy function S : R → R, with

S(r; v,y) :=

Z
Rd

S′(ũ(r,x)− v)σ(ũ(r,x))ϕ(x,y) dx,

where r ≥ 0, v ∈ R, y ∈ R
d, and ϕ ∈ C∞

c (Rd × R
d), there exists a

deterministic function ∆(s, t), 0 ≤ s ≤ t, such that

E

�Z
Rd

Z t

s
S(τ ; v = u(t,y),y) dW (τ) dy

�
≤ E

�Z t

s

Z
Rd

∂vS(τ ; v = ũ(τ,y),y)σ(u(τ,y)) dy dτ

�
+∆(s, t),

where ∆(·, ·) is such that, for each T > 0, there exists a partition {ti}mi=1

of [0, T ], 0 = t0 < t1 < · · · < tm = T , so that

lim
max

i

|ti+1−ti|

mX
i=1

∆(ti, ti+1) = 0.

The notion of strong stochastic entropy solutions is due to Feng-Nualart
[7], who proved the L1–contraction property for these solutions:

E
�
‖u(t)− v(t)‖L1(Rd)

�
≤ E

�
‖u0 − v0‖L1(Rd)

�
for t > 0, (20)

where u(t) is any stochastic entropy solution with u|t=0 = u0 and v(t) is
any strong stochastic entropy solution with v|t=0 = v0. In (20), the entropy
|·| can be replaced by (·)+, yielding the L1–comparison principle.

Feng-Nualart [7] employed the compensated compactness method to
prove an existence result in the one-dimensional context. The following the-
orem provides the existence of strong stochastic entropy solutions for a class
of multidimensional equations.

Theorem 3 (Existence in Lp ∩ BV ). Suppose that (3)–(5) hold. Then

there exists a strong stochastic entropy solution u of the balance law (1)
with initial data (2) such that

E
�
|u(t, ·)|BV (Rd)

�
≤ E

�
|u0|BV (Rd)

�
for any t ≥ 0. (21)
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Proof. For fixed ε > 0, we mollify u0 by uε0 ∈ C∞ so that E
�
‖uε0‖2Hs(Rd)

�
is finite for any s > 0, and

E
�
‖uε0‖pLp(Rd)

+ |uε0|BV (Rd)

�
≤ E

�
‖u0‖pLp(Rd)

+ |u0|BV (Rd)

�
<∞,

for any p = 1, 2, · · · , and uε0(x) → u0(x) for a.e. x, almost surely as ε→ 0.
Now the same arguments as in Section 4 of Feng-Nualart [7] yield that

there exists an Ft–adapted stochastic process uε = uε(t) ∈ C([0,∞);L2(Rd))
satisfying almost surely that

(i) E
�
‖uε(t, ·)‖2Hs(Rd)

�
<∞ for all t > 0;

(ii) ∂xixj
uε(t, ·) ∈ C(Rd) for all i, j = 1, . . . , d;

(iii) For any ϕ ∈ C∞
c (Rd), ϕ ≥ 0, and 0 < s < t,

〈η(uε(t, ·)), ϕ〉 − 〈η(uε(s, ·)), ϕ〉

=

Z t

s
〈q(uε(τ, ·)),∇ϕ〉 dτ + 1

2

Z t

s

¬
η′′(uε(τ, ·))(σ(uε(τ, ·))2, ϕ

¶
dτ

+

Z t

s
〈η′(u(τ, ·))σ(u(τ, ·)), ϕ〉 dW (τ)

+ ε

Z t

s

�
〈η(uε(τ, ·)), ∆ϕ〉 −

¬
η′′(uε(τ, ·))|∇uε(τ, ·)|2, ϕ

¶�
dτ

≤
Z t

s
〈q(uε(τ, ·)),∇ϕ〉 dτ + 1

2

Z t

s

¬
η′′(uε(τ, ·))(σ(uε(τ, ·))2, ϕ

¶
dτ

+

Z t

s
〈η′(uε(τ, ·))σ(u(τ, ·)), ϕ〉 dW (τ) +O(ε),

where the first equality in (iii) follows from the Ito formula.
Combining the results established in Sections 2 and 3, we conclude that

there exist a subsequence (still denoted) {uε(t,x)}ε>0 and a limit u(t,x)
such that, as ε→ 0,

uε(t,x) → u(t,x) for a.e. (t,x), almost surely,

and the limit u(t,x) satisfies (21). Arguing as in Feng-Nualart [7], we can
pass to the limit in the entropy inequality (iii) to conclude that the limit
u(t,x) is a stochastic entropy solution (cf. Definition 1). Moreover, we can
prove that u is a strong stochastic entropy solution (cf. Definition 2). ⊓⊔

Combining Theorem 3 with the L1–stability result established in Feng-
Nualart [7], we conclude

Theorem 4 (Well-Posedness in Lp). Suppose that (4) and (5) hold, and
that u0 satisfies

E
�
‖u0‖pLp(Rd)

�
<∞, p = 1, 2, · · · .
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(i) Existence: There exists a strong stochastic entropy solution of the balance

law (1) with initial data (2) such that, for any t ≥ 0,

E
�
‖u(t, ·)‖p

Lp(Rd)

�
<∞, p = 1, 2, · · · . (22)

(ii) Stability: Let u(t,x) be a strong stochastic entropy solution of (1) with

initial data u0(x), and let v(t,x) be a stochastic entropy solution with

initial data v0(x). Then, for any t > 0,

E

�Z
Rd

|u(t,x)− v(t,x)| dx
�
≤ E

�Z
Rd

|u0(x) − v0(x)| dx
�
. (23)

Proof. For the ∩∞
p=1L

p(Rd)-valued random variable u0, we can approxi-

mate u0 by uδ0(x) in L1 as δ → 0, with E[‖uδ0‖pp + |uδ0|BV ] < ∞ for fixed
δ > 0. Then, according to Theorem 3, there exists a corresponding family
of global strong entropy solutions uδ(t,x) for δ > 0.

Then the L1–stability (contraction) result established in Feng-Nualart
[7] implies that uδ(t,x) is a Cauchy sequence in L1, which yields the strong
convergence of uδ(t,x) to u(t,x) a.e., almost surely. Since

E
�
‖uδ(t, ·)‖p

Lp(Rd)

�
≤ E

�
‖uδ0(·)‖pLp(Rd)

�
≤ C, p = 1, 2, · · · ,

where C is independent of δ, one can check that u(t,x) is a strong stochastic
entropy solution, and (22) holds. For the stability result (23), see [7]. ⊓⊔

5. Continuous Dependence Estimates

The aim of this section is to establish an explicit “continuous dependence
on the nonlinearities” estimate in the BV class. Let u(t) = u(t,x;ω) be a
strong stochastic entropy solution of

∂tu+∇ · f(u) = σ(u) ∂tW, u|t=0 = u0. (24)

Let v(t) = v(t,x;ω) be a strong stochastic entropy solution of

∂tv +∇ · f̂(v) = σ̂(v) ∂tW, v|t=0 = v0. (25)

We are interested in estimating E [‖u(t)− v(t)‖L1 ] in terms of u0−v0, f− f̂ ,
and σ− σ̂. Relevant continuous dependence results for deterministic conser-
vation laws have been obtained in [14,1], and in [3] for strongly degenerate
parabolic equations; see also [2,9].

We start with the following important lemma.

Lemma 1. Suppose that (3)–(5) hold for the two data sets (u0, f , σ) and

(v0, f̂ , σ̂). For any fixed ε > 0, let u(t) = u(t,x;ω) be the solution to the

stochastic parabolic problem

du+
�
∇x · f(u)− ε∆xu

�
dt = σ(u) dW (t), u|t=0 = u0. (26)
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For any fixed ε̂ > 0, let v(t) = v(t,y;ω) be the solution to the stochastic

parabolic problem

dv +
�
∇y · f̂(v)− ε̂∆yv

�
dt = σ̂(v) dW (t), v|t=0 = v0. (27)

Take 0 ≤ φδ = φδ(x,y) ∈ C∞
c (Rd × R

d) to be of the form:

φδ(x,y) =
1
δd
J(x−y

2δ )ψ(x+y

2 ) =: Jδ(
x−y

2 )ψ(x+y

2 ), (28)

where J(·) is a regularization kernel as in (19) and 0 ≤ ψ ∈ C∞
c (Rd).

Moreover, given any entropy function η(·) with η(0) = 0 and η′(·) odd,

introduce the associated entropy fluxes for u, v ∈ R:

qf (u, v) =

Z u

v
η′(ξ − v)f ′(ξ) dξ, qf̂ (u, v) =

Z u

v
η′(ξ − v)f̂ ′(ξ) dξ.

Then, for any t > 0,ZZ
η(u(t,x)− v(t,y))φδ(x,y)dx dy−

ZZ
η(u0(x)− v0(y))φδ(x,y) dx dy

≤ If (φδ) + If ,f̂ (φδ) + Iσ,σ̂(φδ) + Iε,ε̂(φδ)

+

ZZ Z t

s

η′(u(s,x)− v(s,y))
�
σ(u(s,x)) − σ̂(v(s,y))

�
× φδ(x,y) dW (s) dx dy,

where

If (φδ) =

ZZ Z t

0
qf (u(s,x), v(s,y)) · ∇ψ(x+y

2 )Jδ(
x−y

2 ) ds dx dy,

If ,f̂ (φδ) =

ZZ Z t

0

�
qf̂ (v(s,y), u(s,x)) − qf (u(s,x), v(s,y))

�
×∇yφδ(x,y) ds dx dy,

Iε,ε̂(φδ) =
�√

ε−
√
ε̂
�2ZZ Z t

0

η(u(s,x)− v(s,y))∆yJδ(
x−y

2 )ψ(x+y

2 ) ds dx dy

+
1

4

�√
ε+

√
ε̂
�2ZZ Z t

0
η(u(s,x)− v(s,y))Jδ(

x−y
2 )∆ψ(x+y

2 ) ds dx dy

+
�
ε̂− ε

�ZZ Z t

0
η(u(s,x)− v(s,y))∇yJδ(x− y) · ∇ψ(x+y

2 ) ds dx dy,

Iσ,σ̂(φδ) =

ZZ Z t

0

1

2
η′′(u(s,x)− v(s,y))

×
�
σ(u(s,x)) − σ̂(v(s,y))

�2
φδ(x,y) ds dx dy.
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Proof. Subtracting (27) from (26) and subsequently applying Ito’s formula

to η
�
u(t)− v(t)

�
, we obtain

dη(u − v) =
h
− η′(u − v)

�
∇x · f(u)−∇y · f̂(v)

�
+ η′(u− v)

�
ε∆xu− ε̂∆yv

�
+

1

2
η′′(u− v)

�
σ(u)− σ(v)

�2i
dt

+ η′(u − v)
�
σ(u)− σ(v)

�
dW (t).

(29)

Observe that

η′(u − v)∇x · f(u) = ∇x · qf (u, v), η′(u − v)∇y · f̂(v) = ∇y · qf̂ (v, u),

and thus

− η′(u − v)
�
∇x · f(u)−∇y · f̂(v)

�
= −(∇x +∇y) · qf (u, v) +∇y ·

�
qf (u, v)− qf̂ (v, u)

�
.

Next,

η′(u − v)
�
ε∆xu− ε̂∆yv

�
=
�
ε∆x + ε̂∆y

�
η(u − v)− η′′(u − v)

�
ε|∇xu|2 + ε̂|∇yv|2

�
=
�
ε∆x + 2

√
ε
√
ε̂∇x · ∇y + ε̂∆y

�
η(u − v)− η′′(u− v)

��√ε∇xu−
√
ε̂∇yv

��2.
Inserting the last two relations into (29), we arrive at

dη(u− v) =
h
− (∇x +∇y) · qf (u, v) +∇y ·

�
q(u, v)− qf̂ (v, u)

�
+
�
ε∆x + 2

√
ε
√
ε̂∇x · ∇y + ε̂∆y

�
η(u− v)

− η′′(u− v)
��√ε∇xu−

√
ε̂∇yv

��2
+

1

2
η′′(u− v)

�
σ(u)− σ(v)

�2i
dt

+ η′(u− v)
�
σ(u)− σ(v)

�
dW (t).

(30)

We integrate (30) against the test function φδ defined in (28) to yieldZZ
η(u(t,x)− v(t,y))φδ(x,y)dx dy −

ZZ
η(u0(x)− v0(y))φδ(x,y) dx dy

≤ I1c + I2c + Id + Iσ,σ̂(φδ)

+

ZZ Z t

s
η′(u(s,x)− v(s,y))

�
σ(u(s,x)) − σ(v(s,y))

�
× φδ(x,y) dW (s) dx dy,
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where

I1c := −
ZZ Z t

0
(∇x +∇y) · qf (u, v)φδ(x,y) ds dx dy,

I2c :=

ZZ Z t

0

∇y ·
�
qf (u(s,x), v(s,y)) − qf̂ (v(s,y), u(s,x))

�
× φδ(x,y) ds dx dy,

Id :=

ZZ Z t

0

�
ε∆x + 2

√
ε
√
ε̂∇x · ∇y + ε̂∆y

�
η(u(s,x)− v(s,y))

× φδ(x,y) ds dx dy.

Integrating by parts gives I2c = If ,f̂ (φδ), and also I1c = If (φδ), since

(∇x +∇y)φδ(x,y) = Jδ(
x−y
2 )(∇x +∇y)ψ(

x+y
2 ) = Jδ(

x−y
2 )∇ψ(x+y

2 ).

We now investigate the term Id. A calculation shows that�
ε∆x + 2

√
ε
√
ε̂∇x · ∇y + ε̂∆y

�
φδ(x,y)

=
�
ε∆x + 2

√
ε
√
ε̂∇x · ∇y + ε̂∆y

�
Jδ(

x−y

2 )ψ(x+y

2 )

+ Jδ(x− y)
�
ε∆x + 2

√
ε
√
ε̂∇x · ∇y + ε̂∆y

�
ψ(x+y

2 ) +R,

and

R = 2ε∇xJδ(
x−y
2 ) · ∇xψ(

x+y
2 ) + 2ε̂∇yJδ(x − y) · ∇yψ(

x+y
2 )

+ 2
√
ε
√
ε̂∇xJδ(

x−y

2 ) · ∇yψ(
x+y

2 ) + 2
√
ε
√
ε̂∇yJδ(

x−y

2 ) · ∇xψ(
x+y

2 )

=
�
2ε∇xJδ(

x−y
2 ) + 2

√
ε
√
ε̂∇xJδ(

x−y
2 ) + 2

√
ε
√
ε̂∇yJδ(

x−y
2 )

+ 2ε̂∇yJδ(
x−y

2 )
�
· ∇yψ(

x+y

2 )

= 2∇yJδ(
x−y
2 ) · ∇yψ(

x+y
2 )
�
ε̂− ε

�
= ∇yJδ(

x−y

2 ) · ∇ψ(x+y

2 )
�
ε̂− ε

�
.

Moreover,�
ε∆x + 2

√
ε
√
ε̂∇x · ∇y + ε̂∆y

�
Jδ(

x−y

2 ) =
�√

ε−
√
ε̂
�2
∆yJδ(

x−y

2 ),�
ε∆x + 2

√
ε
√
ε̂∇x · ∇y + ε̂∆y

�
ψ(x+y

2 ) =
1

4

�√
ε+

√
ε̂
�2
∆ψ(x+y

2 ).

Consequently, after integrating by parts, Id becomes Iε,ε̂(φδ). ⊓⊔

Theorem 5 (Continuous Dependence Estimates). Suppose that (3)–

(5) hold for the two data sets (u0, f , σ) and (v0, f̂ , σ̂). Let u(t) and v(t) be

the strong stochastic entropy solutions of (24)–(25), respectively, for which

E
�
|v(t)|BV (Rd)

�
≤ E

�
|v0|BV (Rd)

�
for t > 0.
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In addition, we assume that either

u, v ∈ L∞((0, T )× R
d ×Ω) for any T > 0,

or

f ′′, f ′ − f̂ ′, σ − σ̂ ∈ L∞.

Then

(i) There is a constant CT > 0 such that, for any 0 < t < T with T finite,

E

�Z
Rd

|u(t,x)− v(t,x)|ψ(x) dx
�

≤ CT

 
E

�Z
Rd

|u0(x) − v0(x)|ψ(x) dx
�
+
√
t‖ψ‖L1(Rd)‖σ − σ̂‖L∞

+ t E
�
|v0|BV (Rd)

� �
‖f ′ − f̂ ′‖L∞ + ‖σ − σ̂‖L∞

�!
,

where the constant CT > 0 is independent of |u0|BV (Rd) and |v0|BV (Rd),

and may grow exponentially in T . Moreover, ψ = ψ(x) ≥ 0 is any func-

tion satisfying |ψ| ≤ C0 and |∇ψ| ≤ C0ψ, which includes ψ(x) = e−C0|x|

and, more generally, ψ(x) = 1 when |x| ≤ R and ψ(x) = e−C0(|x|−R)

when |x| ≥ R. In particular, for any R > 0, this choice implies

E

�Z
|x|<R

|u(t,x)− v(t,x)| dx
�

≤ CT,R

 
E

�Z
Rd

|u0(x)− v0(x)| dx
�
+
√
t‖σ − σ̂‖L∞

+ t E
�
|v0|BV (Rd)

� �
‖f ′ − f̂ ′‖L∞ + ‖σ − σ̂‖L∞

�!
.

(ii) There is a constant CT such that, for any 0 < t < T <∞,

E

�Z
Rd

|u(t,x)− v(t,x)|ψ(x) dx
�

≤ CT

 
E

�Z
Rd

|u0(x)− v0(x)|ψ(x) dx
�
+
√
t‖ψ‖L1(Rd)∆(σ, σ̂)

+ t E
�
|v0|BV (Rd)

� �
‖f ′ − f̂ ′‖L∞ +∆(σ, σ̂)

�!
,

where ψ(x) is as before and

∆(σ, σ̂) := sup
ξ 6=0

|σ(ξ) − σ̂(ξ)|
|ξ| .
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Remark 2. If, in addition to the assumptions listed in Theorem 5, u0(x)
and v0(x) are periodic in x with the same period, we can “remove” ψ from
the above estimates, since integrations are then over a bounded domain.

Proof. As the vanishing viscosity method converges (cf. Theorem 3), it
suffices to prove the result for (26)–(27) with ε̂ = ε.

For ρ > 0, let ηρ : R → R be the function defined by (11)–(13). Then
the function

qf
ρ(u, v) =

Z u

v
η′ρ(ξ − v)f ′(ξ) dξ, u, v ∈ R,

satisfies ���∂u �qf
ρ(u, v)− qf

ρ(v, u)
���� ≤ M2

2
‖f ′′‖L∞ ρ, (31)

where M2 = sup|u|≤1 |η̄′′(u)|.
In view of Lemma 1 with ε̂ = ε,

E

�ZZ
ηρ(u(t,x)− v(t,y))φδ(x,y) dx dy

�
− E

�ZZ
ηρ(u0(x) − v0(y))φδ(x,y) dx dy

�
≤ E

�ZZ Z t

0

qf
ρ(u(s,x), v(s,y)) · ∇ψ(x+y

2 )Jδ(
x−y

2 ) ds dx dy

�
+ E

"ZZ Z t

0

�
qf̂
ρ(v(s,y), u(s,x))

− qf
ρ(u(s,x), v(s,y))

�
· ∇yφδ ds dx dy

#
+ E

"ZZ Z t

0

1

2
η′′ρ (u(s,x)− v(s,y))

×
�
σ(u(s,x)) − σ̂(v(s,y))

�2
φδ(x,y) ds dx dy

#
+ εE

"ZZ Z t

0
ηρ(u(s,x)− v(s,y))Jδ(

x−y
2 )∆xψ(

x+y
2 ) ds dx dy

#
.

(32)

Observe that

−∇y ·
�
qf̂
ρ(v(s,y), u(s,x)) − qf

ρ(u(s,x), v(s,y))
�

= ∇yv · ∂v
�
qf
ρ(u, v)− qf̂

ρ(v, u)
���

(u,v)=(u(s,x),v(s,y))
,



22 Gui-Qiang Chen, Qian Ding, Kenneth H. Karlsen

and, thanks to (31),���∂v�qf
ρ(u, v)− qf̂

ρ(v, u)
����

=
���∂v�qf

ρ(v, u)− qf̂
ρ(v, u)

�
+ ∂v

�
qf
ρ(u, v)− qf

ρ(v, u)
����

≤ |f ′(v)− f̂ ′(v)|+ M2

2
‖f ′′‖L∞ρ.

Hence, after an integration by parts,����E �ZZ Z t

0

�
qf̂
ρ(v(s,y), u(s,x)) − qf

ρ(u(s,x), v(s,y))
�
· ∇yφδ ds dx dy

�����
≤ t E

�
|v0|BV (Rd)

�
‖ψ‖L∞(Rd)

�
‖f ′ − f̂ ′‖L∞ +

M2

2
‖f ′′‖L∞ρ

�
.

Consequently, again thanks to (31) and also (12), we can write (32) as

E

�ZZ
|u(t,x)− v(t,y)|φδ(x,y) dx dy

�
− E

�ZZ
|u0(x)− v0(y)|φδ(x,y) dx dy

�
≤ E

�ZZ Z t

0

qf
ρ(u(s,x), v(s,y)) · ∇ψ(x+y

2 )Jδ(
x−y

2 ) ds dx dy

�
+ E

"ZZ Z t

0

1

2
η′′ρ (u(s,x)− v(s,y))

×
�
σ(u(s,x)) − σ̂(v(s,y))

�2
φδ(x,y) ds dx dy

#
+ t |v0|BV (Rd) ‖ψ‖L∞(Rd)

�
‖f ′ − f̂ ′‖L∞ +O(ρ)

�
+O

�
‖ψ‖L1(Rd) ρ

�
+O(ε).

(33)

Sending δ → 0 and using |∇ψ(x)| ≤ C0ψ(x), we obtain

lim
δ→0

����E �ZZ Z t

0

qf
ρ(u(s,x), v(s,y)) · ∇ψ(x+y

2 )Jδ(x − y) ds dx dy

�����
≤ C2‖f ′‖L∞

Z t

0

E

�Z
|u(s,x)− v(s,x)|ψ(x)dx

�
ds;
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hence, sending δ → 0 in (33) returns

E

�Z
|u(t,x)− v(t,x)|ψ(x) dx

�
− E

�Z
|u0(x) − v0(x)|ψ(x) dx

�
≤ C2‖f ′‖∞

Z t

0
E

�Z
|u(s,x)− v(s,x)|ψ(x)dx

�
ds

+ E

�Z Z t

0

1

2
η′′ρ (u(s,x)− v(s,x))

�
σ(u(s,x)) − σ̂(v(s,x))

�2
ψ(x) ds dx

�
+ t E

�
|v0|BV (Rd)

�
‖ψ‖L∞(Rd)

�
‖f ′ − f̂ ′‖L∞ +O(ρ)

�
+O

�
‖ψ‖L1(Rd) ρ

�
+O(ε).

Next, with our choice of ηρ, it follows that����E �Z Z t

0

1

2
η′′ρ (u(s,x)− v(τ,x))

�
σ(u(s,x)) − σ̂(v(s,x))

�2
ψ(x) ds dx

�����
≤ E

�Z Z t

0

M2

ρ
1|u(s,x)−v(s,x)|<ρ

�
σ(u(s,x)) − σ̂(u(s,x))

�2
ψ(x) ds dx

�
+ E

�Z Z t

0

M2

ρ
1|u(s,x)−v(s,x)|<ρ

�
σ̂(u(s,x))− σ̂(v(s,x))

�2
ψ(x) ds dx

�
=: A+B.

(34)

Clearly,

|A| ≤ C3E

�Z Z t

0

|σ(u(s,x)) − σ̂(u(s,x))|2
ρ

ψ(x) ds dx

�
≤ C3‖ψ‖L1(Rd)

t‖σ − σ̂‖2L∞

ρ

and, in view of (5),

|B| ≤ C4

Z t

0
E

�Z
|u(s,x)− v(s,x)|ψ(x) dx

�
ds.

In summary, we have arrived at

E

�Z
|u(t,x)− v(t,x)|ψ(x) dx

�
− E

�Z
|u0(x) − v0(x)|ψ(x) dx

�
≤ C

 
‖f ′‖L∞

Z t

0
E

�Z
|u(s,x)− v(s,x)|ψ(x)dx

�
ds

+ ‖ψ‖L∞(Rd)E
�
|v0|BV (Rd)

�
t
�
‖f ′ − f̂ ′‖L∞ + ρ

�
+ ‖ψ‖L1(Rd)

t‖σ − σ̂‖2L∞

ρ
+ ‖ψ‖L1(Rd) ρ+ ε

!
,
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which implies via the Gronwall inequality that, for any t > 0,

E

�Z
|u(t,x)− v(t,x)| ψ(x) dx

�
≤ eC‖f ′‖L∞ tE

�Z
|u0(x)− v0(x)|ψ(x) dx

�
+ CeC‖f ′‖L∞ t

 
‖ψ‖L∞(Rd)E

�
|v0|BV (Rd)

�
t
�
‖f ′ − f̂ ′‖L∞ + ρ

�
+ ‖ψ‖L1(Rd)

t‖σ − σ̂‖2L∞

ρ
+ ‖ψ‖L1(Rd) ρ+ ε

!
.

(35)

Choosing ρ =
√
t‖σ − σ̂‖L∞ and sending ε→ 0 supplies part (i).

About part (ii), the only difference in the proof comes from the estimate
of the A-term in (34), which is replaced by

|A| ≤ C3E
h Z Z t

0

|σ(u(s,x))− σ̂(u(s,x))|2
ρ|u(s,x)|2 |u(s,x)|2ψ(x) ds dx

i
= C3E

h Z Z t

0

�
∆(σ, σ̂)

�2
ρ

|u(s,x)|2ψ(x) ds dx
i

≤ C3‖ψ‖L∞(Rd)E
�
‖u‖L∞(0,T ;L2(Rd))

� t �∆(σ, σ̂)
�2

ρ
.

With this estimate at our disposal, (35) is replaced by

E

�Z
|u(t,x)− v(t,x)| ψ(x) dx

�
≤ eC‖f‖L∞tE

�Z
|u0(x)− v0(x)|ψ(x) dx

�
+ CeC‖f ′‖L∞ t

 
‖ψ‖L∞(Rd)E

�
|v0|BV (Rd)

�
t
�
‖f ′ − f̂ ′‖L∞ + ρ

�
+ ‖ψ‖L∞(Rd)

t
�
∆(σ, σ̂)

�2
ρ

+ ‖ψ‖L1(Rd) ρ+ ε

!
.

Part (ii) follows by choosing ρ =
√
t∆(σ, σ̂) and sending ε→ 0. ⊓⊔

Theorem 6 (Error Estimate). Suppose that (3)–(5) hold. Let u(t) be the

strong stochastic entropy solutions of (24), for which

E
�
|u(t)|BV (Rd)

�
≤ |u0|BV (Rd) for t > 0, (36)

and let uε be the solution to the parabolic problem

duε +
�
∇x · f(uε)− ε∆xu

ε
�
dt = σ(uε) dW (t), uε|t=0 = u0.
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In addition, we assume that

either u, v ∈ L∞((0, T )× R
d ×Ω) for any T > 0, or f ′′ ∈ L∞.

Then there exists a constant CT > 0 such that, for any 0 < t < T with T
finite,

E

�Z
Rd

|u(t,x)− uε(t,x)| dx
�
≤ CT E

�
|u0|BV (Rd)

�
t
√
ε.

Proof. We proceed as in the proof of Theorem 5, starting off from Lemma
1 with σ̂ = σ, f̂ = f , ε̂ 6= ε, uε = u, uε̂ = v, leading to

E

�ZZ ��uε(t,x)− uε̂(t,y)
�� φδ(x,y) dx dy�

≤ E

�ZZ Z t

0
qf
ρ(u

ε(s,x), uε̂(s,y)) · ∇ψ(x+y
2 )Jδ(

x−y
2 ) ds dx dy

�
+ E

"ZZ Z t

0
η′′ρ (u

ε(s,x)− uε̂(s,y))

×
�
σ(uε(s,x)) − σ(uε̂(s,y))

�2
φδ(x,y) ds dx dy

#
+ t |u0|BV (Rd) ‖ψ‖L∞(Rd)O(ρ) +O

�
‖ψ‖L1(Rd) ρ

�
+
�√

ε−
√
ε̂
�2
E

"ZZ Z t

0
ηρ(u

ε(s,x)− uε̂(s,y))

×∆yJδ(
x−y

2 )ψ(x+y

2 ) ds dx dy

#
+

1

4

�√
ε+

√
ε̂
�2
E

"ZZ Z t

0
ηρ(u

ε(s,x)− uε̂(s,y))

× Jδ(
x−y

2 )∆ψ(x+y

2 ) ds dx dy

#
+
�
ε̂− ε

�
E

"ZZ Z t

0
ηρ(u

ε(s,x)− uε̂(s,y))

×∇yJδ(
x−y

2 ) · ∇ψ(x+y

2 ) ds dx dy

#
=: I1 + I2 + I3 + I4 + I5 + I6.

(37)

As before,

|I2| ≤ C1

Z t

0

E

�Z
|uε(s,x) − uε(s,y)| Jδ(x− y)ψ(x+y

2 ) dx dy

�
ds.
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Noting that the right-hand side is independent of ρ, we can first send ρ→ 0
in (37), and then let ψ tend to 1Rd , keeping in mind the Lp–estimates (21),
with the outcome that I1, I3, I5, I6 → 0. The resulting estimate reads

E

�ZZ ��uε(t,x) − uε̂(t,y)
�� Jδ(x−y

2 ) dx dy

�
≤ C1

Z t

0

E

�ZZ
|u(s,x)− v(s,y)| Jδ(x−y

2 ) dx

�
ds+ I,

(38)

where

I =
�√

ε−
√
ε̂
�2
E

�ZZ Z t

0

|uε(s,x)− uε̂(s,y)|∆yJδ(
x−y

2 ) ds dx dy

�
.

An integration by parts, followed by application of the spatial BV –
estimate (36), yields

|I| ≤ C 2 t E
�
|u0|BV (Rd)

� �√ε−√
ε̂
�2

δ
.

In view of this, it follows from (38) in a completely standard way that

E

�Z
|uε(t,x) − uε̂(t,x)| dx

�
≤ C1

Z t

0
E

�Z
|uε(s,x)− vε(s,x)| dx

�
ds

+ C3E
�
|u0|BV (Rd)

� �
δ + t

�√
ε−

√
ε̂
�2

δ

�
.

Choosing δ =
√
ε−

√
ε̂ gives

E

�Z
Rd

|uε(t,x)− uε̂(t,x)| dx
�
≤ CT E

�
|u0|BV (Rd)

�
t
�√

ε−
√
ε̂
�
.

Sending ε̂→ 0 concludes the proof of the theorem. ⊓⊔

Remark 3. Theorem 6 indicates that {uε(t,x)} is the Cauchy sequence in
C(0, T ;L1), which directly implies its strong convergence.

6. More General Equations

We now discuss briefly diverse generalizations.
First of all, as in [7], the stochastic term in (1) can be replaced by the

more general term Z
z∈Z

σ(u(t, x); z)∂tW (t, dz),
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where Z is a metric space, σ : R×Z → R,W (t, dz) is a space-time Gaussian
white noise martingale random measure with respect to a filtration {Ft} (see
e.g., Walsh [19], Kurtz-Protter [12]) with

E
�
W (t, A) ∩W (t, B)

�
= µ(A ∩B)t

for measurable A,B ⊂ Z, where µ is a (deterministic) σ-finite Borel measure
on the metric space Z. In particular, when Z = {1, 2, . . . ,m} and µ is a
counting measure on Z, then the stochastic term reduces to

mX
k=1

σk(u(t,x))∂tWk(t).

For the spatial BV and temporal L1–continuity estimates and stability
results, we can allow for more general flux functions f(t,x, u) with spatial
dependence, by combining the present methods with those in [2,9].

Next, let us discuss the case where the noise coefficient σ(x, u) has a
spatial dependence, focusing on the stochastic balance law:

∂tu+∇ · f(u) = σ(x, u) ∂tW (t), (39)

where the noise coefficient is assumed to satisfy σ(x, 0) = 0 and

|σ(x, u)− σ(x, v)| ≤ C |u− v| , ∀u, v ∈ R, ∀x ∈ R
d,

|σ(x, u)− σ(y, u)| ≤ C |x− y| |u| , ∀u ∈ R, ∀x,y ∈ R
d,

(40)

where C is a deterministic constant.
In the previous sections, we have established the existence of a strong

stochastic entropy solution in the multidimensional context. The proof was
based on deriving the BV –estimates. However, as mentioned before, the
BV –estimates are no longer available when the noise term σ depends on the
spatial location x. However, it is possible to derive fractional BV estimates.
For fixed ε > 0, let uε(t,x) be the solution to the stochastic parabolic
problem:

duε +
�
∇x · f(uε)− ε∆xu

ε
�
dt = σ(x, uε) dW (t), uε|t=0 = u0, (41)

where we tactically assume that f , σ, u0 are sufficiently smooth to ensure
the existence of a regular solution [7]. Utilizing the continuous dependence
framework (Lemma 1) which also holds when the noise term σ depends on
x, we will prove that, for any δ > 0,

E

�Z
Rd

Z
Rd

|uε(t,x+ z) − uε(t,x− z)| Jδ(z)ψ(x) dx dz
�

≤ CT E

�Z
Rd

Z
Rd

|u0(x+ z)− u0(x − z)| Jδ(z)ψ(x) dx dz
�

+ CT

√
δ
�
1 + ‖ψ‖L1(Rd)

�
, 0 < t < T,

(42)
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for some finite constant CT independent of ε, where Jδ is a symmetric
mollifier and ψ ≥ 0 is a compactly supported smooth function. In what
follows, we assume that the cut-off function ψ ≥ 0 satisfies

|∇ψ(x)| ≤ C0ψ(x), |∆ψ(x)| ≤ C0ψ(x), ψ ≡ 1 on KR := {|x| < R},

for some constants C0 > 0 and R > 0. One example of such a function,
at least after an easy approximation argument, is the compactly supported
function ψ ∈ W 2,∞(Rd) defined by

ψ(x) =

8><>:1, |x| ≤ R,
1

eπ+1

�√
2eπ−(|x|−R) sin(|x| −R+ π

4 ) + 1
�
, R ≤ |x| ≤ R+ π,

0, |x| ≥ R+ π.

Estimate (42) can be turned into a fractional BV estimate thanks to
the following deterministic lemma, which is related to known links between
Sobolev, Besov, and Nikolskii fractional spaces (cf., e.g., [15]); a proof can
be found in the appendix.

Lemma 2. Let h : Rd → R be a given integrable function, r, s ∈ (0, 1) with
r < s, ψ ∈ C∞

c (Rd), and {Jδ}δ>0 a sequence of symmetric mollifiers, i.e.,

Jδ(x) =
1
δd
J
�
|x|
δ

�
, 0 ≤ J ∈ C∞

c (R), supp (J) ⊂ [−1, 1], J(−·) = J(·), andR
J = 1. Then

(i) There exists a positive constant C1 = C1(J, d, r, s) < ∞ such that, for

any δ > 0,Z
Rd

Z
Rd

|h(x+ z)− h(x− z)| Jδ(z)ψ(x) dx dz

≤ C1 δ
r sup

|z|≤δ

�
|z|−s

Z
Rd

|h(x+ z)− h(x− z)|ψ(x) dx
�
.

(43)

(ii) There exists a positive constant C2 = C2(J, d, r, s) < ∞ such that, for

any δ > 0,

sup
|z|≤δ

�Z
Rd

|h(x+ z)− h(x)|ψ(x) dx
�

≤ C2 δ
r sup

0<δ≤1

�
δ−s

Z
Rd

Z
Rd

|h(x+ z) − h(x− z)| Jδ(z)ψ(x) dx dz
�

+ C2 δ
r ‖h‖L1(Rd) .

(44)

Suppose that u0 is, say, a deterministic function belonging to BV (Rd),
or more generally to the Besov space Bℓ

1,ν(R
d) for ν ∈ (12 , 1).
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Starting off from (42) with δ > 0,

1√
δ
E

�Z
Rd

Z
Rd

|uε(t,x+ z)− uε(t,x− z)| Jδ(z)ψ(x) dx dz
�

≤ CT
1√
δ

Z
Rd

Z
Rd

|u0(x+ z)− u0(x− z)| Jδ(z)ψ(x) dx dz

+ CT

�
1 + ‖ψ‖L1(Rd)

�
≤ 2CT C1 ‖ψ‖L∞(Rd) sup

|z|≤δ

�
|z|−s

Z
Rd

|u0(x+ z)− u0(x)| dx
�

+ CT

�
1 + ‖ψ‖L1(Rd)

�
≤ C(T,R),

(45)

where (43) with r = 1
2 and s > 1

2 was used to arrive at the second inequality.

In view of (44) with s = 1
2 and r < 1

2 ,

sup
|z|≤ δ

2

E

�Z
Rd

|uε(t,x+ z)− uε(t,x)|ψ(x) dx
�

≤ C2 δ
r sup

0<δ≤1

� 1√
δ

Z
Rd

Z
Rd

|uε(t,x+ z)− uε(t,x− z)| Jδ(z)ψ(x) dx dz
�

+ C2 δ
r ‖uε(t, ·)‖L1(Rd) .

(46)

Combining (45) with (46) yields

Theorem 7 (Fractional BV –Estimate). For fixed ε > 0, let uε solve the

stochastic parabolic problem (41) with initial data u0 belonging to the Besov

space Bν
1,∞(Rd) for some ν ∈ (12 , 1). In addition, we assume that

either uε ∈ L∞((0, T )× R
d ×Ω) for any T > 0, or f ′′ ∈ L∞.

Fix T > 0 and R > 0. There exists a constant CT,R independent of ε such

that, for any 0 < t < T ,

sup
|z|≤δ

E

�Z
KR

|uε(t,x+ z) − uε(t,x)| dx
�
≤ CT,R δ

r, r ∈ (0, 12 ).
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Proof of (42). We start off from Lemma 1 with f̂ = f , ε̂ = ε, σ̂ = σ,
v0 = u0, and v = u (this lemma also holds when σ depends on x):

E

�ZZ
ηρ(u

ε(t,x)− uε(t,y))Jδ(
x−y
2 )ψ(x+y

2 ) dx dy

�
− E

�ZZ
ηρ(u0(x)− u0(y))Jδ(

x−y

2 )ψ(x+y

2 ) dx dy

�
≤ E

�ZZ Z t

0
qf
ρ(u

ε(s,x), uε(s,y)) · ∇ψ(x+y
2 )Jδ(

x−y
2 ) ds dx dy

�
+ E

"ZZ Z t

0

�
qf
ρ(u

ε(s,y), uε(s,x))

− qf
ρ(u

ε(s,x), uε(s,y))
�
· ∇yφδ ds dx dy

#
+ E

"ZZ Z t

0

1

2
η′′ρ (u

ε(s,x)− uε(s,y))

×
�
σ(x, uε(s,x)) − σ(y, uε(s,y))

�2
φδ(x,y) ds dx dy

#
+ εE

"ZZ Z t

0

ηρ(u
ε(s,x)− uε(s,y))Jδ(

x−y

2 )∆xψ(
x+y

2 ) ds dx dy

#
=: I1 + I2 + I3 + I4.

(47)

Finally, denoting the left-hand side of (47) by LHS and utilizing (12),
we have

LHS = E

�ZZ
|uε(t,x) − uε(t,y)| Jδ(x−y

2 )ψ(x+y

2 ) dx dy

�
− E

�ZZ
|u0(x)− u0(y)| Jδ(x−y

2 )ψ(x+y

2 ) dx dy

�
+O(ρ) ‖ψ‖L1(Rd) .

Since |∇ψ(x)| ≤ C0ψ(x),

|I1| ≤ C

Z t

0

E

�ZZ
|uε(s,x)− uε(s,y)| Jδ(x−y

2 )ψ(x+y

2 ) dx dy

�
ds.

Note that, thanks to (31) and the boundedness of f ′′,

qf
ρ(v, u) = qf

ρ(u, v) +

Z u

v
∂ξ
�
qf
ρ(ξ, v)− qf

ρ(v, ξ)
�
dξ

= qf
ρ(u, v) + |u− v|O(ρ),
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so that

|I2| ≤ C ρE

�ZZ Z t

0
|uε(s,x)− uε(s,y)|

��∇yJδ(
x−y

2 )
��ψ(x+y

2 ) ds dx dy

�
+ C ρE

�ZZ Z t

0

|uε(s,x)− uε(s,y)| Jδ(x−y

2 )
��∇ψ(x+y

2 )
�� ds dx dy�

≤ C t ‖ψ‖L∞(Rd)

�ρ
δ
+ ρ
�
,

where we have used the estimate

sup
0≤t≤T

E
�
‖uε(t)‖L1(Rd)

�
<∞ for any T > 0,

and exploited |∇ψ(x)| ≤ C0ψ(x).
Regarding I3,

|I3| ≤ E

"ZZ Z t

0

M2

ρ
1|uε(s,x)−uε(s,x)|<ρ

�
σ(x, uε(s,x))− σ(y, uε(s,x))

�2
× Jδ(

x−y
2 )ψ(x+y

2 ) ds dx dy

#
+ E

"ZZ Z t

0

M2

ρ
1|uε(s,x)−uε(s,y)|<ρ

�
σ(y, uε(s,x)) − σ(y, uε(s,y))

�2
× Jδ(

x−y

2 )ψ(x+y

2 ) ds dx dy

#
=: A+B,

where, cf. the second part of (40),

|A| ≤M2E

"ZZ Z t

0

|σ(x, uε(s,x)) − σ(y, uε(s,x))|2
ρ

× Jδ(
x−y

2 )ψ(x+y

2 ) ds dx dy

#
≤ CE

�Z ZZ t

0

|y − x|2
ρ

|uε(s,x)|2Jδ(x−y

2 )ψ(x+y

2 ) ds dx dy

�
≤ C ‖ψ‖L∞(Rd) t

δ2

ρ
,

where we have put to use the estimate

sup
0≤t≤T

E
�
‖uε(t)‖2L2(Rd)

�
≤ CT for any T > 0.

Moreover, cf. the first part of (40),

|B| ≤ C

Z t

0
E

�ZZ
|uε(s,x) − uε(s,y)| Jδ(x−y

2 )ψ(x+y
2 ) dx dy

�
ds.
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Regarding I4, using |∆ψ(x)| ≤ C0ψ(x), we have

|I4| ≤ C

Z t

0
E

�ZZ
|uε(s,x)− uε(s,y)| Jδ(x−y

2 )ψ(x+y
2 ) dx dy

�
ds.

Summarizing, we have arrived at

E

�ZZ
|uε(t,x) − uε(t,y)| Jδ(x−y

2 )ψ(x+y

2 ) dx dy

�
≤ E

�ZZ
|u0(x)− u0(y)| Jδ(x−y

2 )ψ(x+y

2 ) dx dy

�
+ C

Z t

0

E

�ZZ
|uε(s,x)− uε(s,y)| Jδ(x−y

2 )ψ(x+y

2 ) dx dy

�
ds

+ C t ‖ψ‖L∞(Rd)

�ρ
δ
+ ρ
�
+ C ‖ψ‖L∞(Rd) t

δ2

ρ
+ Cρ ‖ψ‖L1(Rd) .

Optimizing with respect to ρ (take ρ = O(δ3/2)) and applying Gronwall’s
inequality gives

E

�ZZ
|uε(t,x)− uε(t,y)| Jδ(x−y

2 )ψ(x+y
2 ) dx dy

�
≤ CTE

�ZZ
|u0(x)− u0(y)| Jδ(x−y

2 )ψ(x+y

2 ) dx dy

�
+ CT

�
1 + ‖ψ‖L1(Rd)

� √
δ, 0 < t < T,

(48)

for some constant CT independent of ε.
Introducing new variables, x̃ = x+y

2 and z = x−y

2 in (48), so x = x̃+ z
and y = x̃+ z, we finally obtain (42) (dropping the tildes). ⊓⊔

Combining Theorem 7 with the argument in Section 3, we conclude

Theorem 8 (Existence and Regularity). Suppose that (40) holds and

also that ‖f ′′‖L∞ <∞.

(i) Let the initial data u0 belong to the Besov space Bν
1,∞(Rd) for some

ν ∈ (12 , 1) and

E
�
‖u0‖pLp(Rd)

�
<∞, p = 1, 2, · · · . (49)

Then there exists a strong stochastic entropy solution of the balance law

(39) with initial data u0 such that, for fixed T > 0 and R > 0, there
exists a constant CT,R such that, for any 0 < t < T ,

sup
|z|≤δ

E

�Z
KR

|u(t,x+ z)− u(t,x)| dx
�
≤ CT,R δ

r

for some r ∈ (0, 12 ) and

E
�
‖u(t, ·)‖p

Lp(Rd)

�
<∞, p = 1, 2, · · · . (50)
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(ii) Let u0 satisfy only (49). Then there exists a strong stochastic entropy

solution of the balance law (39) with initial data u0 satisfying (50).

Finally, we remark in passing that the results and techniques extend
easily to stochastic balance laws with additional nonhomogeneous terms,
by combining with the Gronwall inequality, such as

∂tu(t,x) +∇ · f(x, u(t,x)) = σ(x, u(t,x)) ∂tW (t) + g(x, u(t,x)),

for a large class of non-homogeneous terms f(x, u), g(x, u).

Appendix A. Proof of Lemma 2

Since r < s, we can prove (43) as follows:

δ−r

Z
Rd

Z
Rd

|h(x+ z)− h(x− z)| Jδ(z)ψ(x) dz dx

=

Z
Rd

Z
Rd

|h(x+ z)− h(x− z)|
δd+r

J( |z|δ )ψ(x) dz dx

≤ ‖J‖L∞(R)

Z
Rd

Z
|z|≤δ

|h(x+ z)− h(x− z)|
|z|d+r

ψ(x) dz dx.

≤ ‖J‖L∞(R) sup
|z|≤δ

�
z−s ‖(h(·+ z)− h(· − z))ψ‖L1(Rd)

Z
|z|≤δ

1

|z|d+r−s
dz
�

≤ CJ,d,r,s sup
|z|≤δ

�
z−s ‖(h(·+ z)− h(· − z))ψ‖L1(Rd)

�
,

where we have used the integrability of 1/ |z|d+r−s (since d+ r − s < d).

We continue with the proof of (44). To this end, let us introduce the
modulus of continuity

ω(δ) := sup
|z|≤δ

�Z
Rd

|h(x+ z) − h(x)|ψ(x) dx
�
, δ > 0.

Clearly, ω(·) is a non-decreasing function and thusZ ∞

0
κ−r−1ω(κ) dκ ≥

Z ∞

δ
κ−r−1ω(κ) dκ ≥ ω(δ)

Z ∞

δ
κ−r−1 dκ =

1

r
δ−rω(δ);

therefore

ω(δ) ≤ r δr
Z ∞

0

κ−r−1ω(κ) dκ. (A.1)

Set

hδ(x) :=

Z
Rd

J δ
2
(y)h(x + y) dy,
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and note thatZ
Rd

|h(x+ z)− h(x)|ψ(x) dx

≤
Z
Rd

|hδ(x+ z)− hδ(x)|ψ(x) dx +

Z
Rd

|hδ(x+ z)− h(x+ z)|ψ(x) dx

+

Z
Rd

|hδ(x)− h(x)|ψ(x) dx,
(A.2)

We estimate the first two terms on the right-hand side as follows:Z
Rd

|hδ(x)− h(x)|ψ(x) dx

=

Z
Rd

����2dδ−d

Z
Rd

J(2|y|δ ) (h(x+ y)− h(x)) dy

����ψ(x) dx
≤ ‖J‖L∞(R) δ

−d

Z
|y|≤ δ

2

Z
Rd

|h(x+ y)− h(x)|ψ(x) dx dy

and, similarly,Z
Rd

|hδ(x+ z)− h(x+ z)|ψ(x) dx

≤ ‖J‖L∞(R) δ
−d

Z
|y|≤ δ

2

Z
Rd

|h(x+ z+ y)− h(x+ z)|ψ(x) dx dy

= ‖J‖L∞(R) δ
−d

Z
|y|≤ δ

2

Z
Rd

|h(x+ y) − h(x)|ψ(x− z) dx dy

≤ C δ−d

Z
|y|≤ δ

2

Z
Rd

|h(x+ y) − h(x)|ψ(x) dx dy + I1(δ),

where, for δ ≥ 0,

I1(δ) := δ−d sup
|z|≤ δ

2

�Z
|y|≤δ

Z
Rd

|h(x+ y)− h(x)| |ψ(x) − ψ(x− z)| dx dy
�

≤ δ C ‖∇ψ‖L∞(Rd) ‖h‖L1(Rd) 10≤δ≤1(δ)

+ C ‖ψ‖L∞(Rd) ‖h‖L1(Rd) 1δ>1(δ).

For each z ∈ R
d and x ∈ R

d,

hδ(x+ z)− hδ(x) =

Z 1

0

∇hδ(x + θz) · z dθ.

Observe that, for each x ∈ R
d,

∇hδ(x) =
Z
Rd

∇J δ
2
(y) (h(x+ y) − h(x)) dy.
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by the symmetry of the mollifier. Thus, with |z| ≤ δ,Z
Rd

|hδ(x+ z)− hδ(x)|ψ(x) dx

=

Z
Rd

����Z 1

0
∇hδ(x+ θz) · z dθ

����ψ(x) dx
≤ C δ−d sup

|z|≤δ, θ∈[0,1]

�Z
|y|≤ δ

2

Z
Rd

|h(x+ θz + y)− h(x+ θz)|ψ(x) dx dy
�

= C δ−d sup
|z|≤δ, θ∈[0,1]

�Z
|y|≤ δ

2

Z
Rd

|h(x+ y) − h(x)|ψ(x − θz) dx dy
�

≤ C δ−d

Z
|y|≤ δ

2

Z
Rd

|h(x+ y)− h(x)|ψ(x) dx dy + I2(δ),

where I2(δ) denotes the expression

C δ−d sup
|z|≤δ, θ∈[0,1]

�Z
|y|≤ δ

2

Z
Rd

|h(x+ y) − h(x)| |ψ(x)− ψ(x− θz)| dx dy
�
,

and

I2(δ) ≤ δ C ‖∇ψ‖L∞(Rd) ‖h‖L1(Rd) 10≤δ≤1(δ)

+ C ‖ψ‖L∞(Rd) ‖h‖L1(Rd) 1δ>1(δ),

cf. the term I1(δ).
In view of the estimates derived above, taking the supremum in (A.2)

over |z| ≤ δ, we have established

ω(δ) ≤ C δ−d

Z
|y|≤ δ

2

Z
Rd

|h(x+ y) − h(x)|ψ(x) dx dy

+ C ‖h‖L1(Rd)

�
δ 10≤δ≤1(δ) + 1δ>1(δ)

�
.

Multiplying this by δ−r−1 and integrating in δ from 0 to ∞ yield (re-
placing y by z)Z ∞

0
δ−r−1ω(δ) dδ

≤ C

Z ∞

0

δ−r−1−d

Z
|z|≤ δ

2

Z
Rd

|h(x+ z)− h(x)|ψ(x) dx dz dδ

+ C ‖h‖L1(Rd)

�Z 1

0

δ−r dδ +

Z ∞

1

δ−r−1 dδ

�
=: A+B,

(A.3)

where the integrals on the last line are bounded since r ∈ (0, 1):

B ≤ Cr ‖h‖L1(Rd) .
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Noticing that |z|
δ ≤ 1

2 ⇒ J
�
|z|
δ

�
> 0 and using r < s, we have

A ≤ CJ

Z 1

0
δ−r−1−d

Z
|z|≤ δ

2

Z
Rd

|h(x+ z)− h(x)| J
�
|z|
δ

�
ψ(x) dx dz dδ

≤ CJ

Z 1

0
δ−sδs−r−1

Z
|z|≤ δ

2

Z
Rd

|h(x+ z)− h(x)| Jδ(z)ψ(x) dx dz dδ

≤ CJ

�Z 1

0

1

δ1+r−s
dδ

�
sup

0<δ≤1

�
δ−s

Z
Rd

Z
Rd

|h(x+ z)− h(x)| Jδ(z) dx dz
�

≤ CJ,r,s sup
0<δ≤1

�
δ−s

Z
Rd

Z
Rd

|h(x+ z)− h(x)| Jδ(z)ψ(x) dx dz
�
,

where CJ,r,s = CJ
1

s−r .
Consequently, from (A.1) and (A.3), it follows that, for any δ > 0,

sup
|z|≤δ

�Z
Rd

|h(x+ z)− h(x)|ψ(x) dx
�

≤ C δr sup
0<δ≤1

�
δ−s

Z
Rd

Z
Rd

|h(x+ z) − h(x)| Jδ(z)ψ(x) dx dz
�

+ C δr ‖h‖L1(Rd) ,

(A.4)

for some finite constant C.
Finally, observe thatZ

Rd

Z
Rd

|h(x+ z)− h(x)| Jδ(z)ψ(x) dx dz

=

Z
Rd

Z
Rd

|h(x+ z)− h(x− z)| Jδ(2z)ψ(x − z) dx dz

=
1

2d

Z
Rd

Z
Rd

|h(x+ z)− h(x− z)| J δ
2
(z)ψ(x − z) dx dz

≤ 1

2d

Z
Rd

Z
Rd

|h(x+ z)− h(x− z)| J δ
2
(z)ψ(x) dx dz + I3(δ),

where I3(δ) denotes the expression

1

2d

Z
Rd

Z
Rd

|h(x+ z)− h(x− z)| J δ
2
(z) |ψ(x)− ψ(x − z)| dx dz.

As with I1(δ),

I3(δ) ≤ C ‖h‖L1(Rd)

�
δ 10≤δ≤1(δ) + 1δ>1(δ)

�
,

which implies

sup
0<δ≤1

�
δ−s

Z
Rd

Z
Rd

|h(x+ z)− h(x)| Jδ(z)ψ(x) dx dz
�

≤ C sup
0<δ≤1

�
δ−s

Z
Rd

Z
Rd

|h(x+ z)− h(x− z)| J δ
2
(z)ψ(x) dx dz

�
+ C ‖h‖L1(Rd) .
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We can therefore replace (A.4) by

sup
|z|≤δ

Z
Rd

|h(x+ z)− h(x)|ψ(x) dx

≤ C δr sup
0<δ≤1

�
δ−s

Z
Rd

Z
Rd

|h(x+ z)− h(x)| J δ
2
(z)ψ(x) dx dz

�
+ C δr ‖h‖L1(Rd) ,

for some finite constant C, which implies (44).
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