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Abstract

We study the limiting behavior of systems of hyperbolic conservation laws
with stiff relaxation terms. Reduced systems, inviscid and viscous local con-
servation laws, and weakly nonlinear limits are derived through asymptotic ex-
pansions. An entropy condition is introduced for N × N systems that ensures
the hyperbolicity of the reduced inviscid system. The resulting characteristic
speeds are shown to be interlaced with those of the original system. Moreover,
the first correction to the reduced system is shown to be dissipative. A partial
converse is proved for 2 × 2 systems. This structure is then applied to study
the convergence to the reduced dynamics for the 2× 2 case.
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1. Introduction

We are concerned with the phenomena of relaxation, particularly the ques-
tion of stability and singular limits of zero relaxation time. Relaxation is im-
portant in many physical situations. For example, it arises in kinetic theory
[5], gases not in local thermodynamic equilibrium [17,27], elasticity with mem-
ory [11,15,22], multiphase and phase transition [14,23], and linear and nonlinear
waves [28]. In general, relaxations can be modeled as having a functional de-
pendence on the basic dependent variables. In this article we consider the case
where the relaxation depends on the local values of these variables. Thus, we
consider an evolutionary system of partial differential equations in the form

(1.1) ∂tU +∇·F (U) +
1
ε
R(U) = 0 .

Here U = U(t, x), which takes on values in RN , represents the density vector
of basic physical variables over the space variable x ∈ RD. Consistent with the
linear well-posedness of physical examples, we assume that the system is hyper-
bolic, that is, that the flux vector F = F (U) is such that for every wavenumber
ξ ∈ RD the N ×N matrix ∂UF (U)·ξ has real eigenvalues and is diagonalizable.

The relaxation term is endowed with a n×N matrix Q with rank n < N

such that

(1.2) QR(U) = 0 for all U .

This yields n independent conserved quantities u = QU . In addition, we as-
sume that each such u uniquely determines a local equilibrium value U = E(u)
satisfying R(E(u)) = 0 and such that

(1.3) QE(u) = u, for all u .

The image of E then constitutes the manifold of local equilibria of R.

Associated with Q are n local conservation laws that are satisfied by every
solution of (1.1) and that take the form

(1.4) ∂t(QU) +∇·
(
QF (U)

)
= 0 .
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These can be closed as a reduced system for u = QU if we make the local
equilibrium approximation for U , namely

U = E(u) ,(1.5)

∂tu+∇·f(u) = 0 ,(1.6)

where the reduced flux f is defined by

(1.7) f(u) ≡ QF
(
E(u)

)
.

The quantity ε is the relaxation time, which is small in many physical situations.
In the kinetic theory it is the mean free path, in elasticity the duration of
memory. One would expect solutions of the full system (1.1) to tend to those of
the local system (1.6) as ε goes to zero. This local equilibrium limit turns out
to be highly singular because of shock and initial layers. We are also interested
in the weakly nonlinear limits when the characteristic values tend to infinity, so
as to obtain incompressible flow equations.

Basic to our understanding of system (1.1) is the question of stability. In the
classical study of homogeneous systems of hyperbolic conservation laws (R ≡ 0),
this question is addressed through the notion of entropy, which is a function
Φ : RN → R such that for every U and ξ the matrix

(1.8) ∂UUΦ(U) ∂UF (U)·ξ is symmetric .

This ensures the existence of an entropy flux Ψ : RN → RD such that

(1.9) ∂UΦ(U) ∂UF (U) = ∂UΨ(U) for all U .

If Φ is convex, zero viscosity solutions of the homogeneous conservation laws
should satisfy

(1.10) ∂tΦ(U) +∇·Ψ(U) ≤ 0 ,

with equality for classical solutions. Now, given such a Φ, every classical solution
of (1.1) satisfies

(1.11) ∂tΦ(U) +∇·Ψ(U) +
1
ε
∂UΦ(U)R(U) = 0 .
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If this equation is to be consistent with (1.10), the relaxation term should be
dissipative in the sense that

(1.12) ∂UΦ(U)R(U) ≥ 0 , for all U .

This is reminiscent of the notion of entropy introduced by Boltzmann into his ki-
netic theory to describe kinetic relaxation to fluid dynamics. His key observation
was that his entropy characterizes the local equilibria of his kinetic equation, the
celebrated H theorem. In this work we adopt a notion of entropy that shares all
of the above properties. Among our main results is the conclusion that if sys-
tem (1.1) is endowed with such an entropy, the characteristic speeds for the local
equilibrium equation (1.6) are real and interlaced with those of the full system.
More precise statements are given in the next section. For 2 × 2 systems the
converse also holds, and the aforementioned singular limits can also be justified.

Many physical systems of the form (1.1) exist; we list a few below. The
compressible Euler equations are

(1.13)

∂tρ+∇·(ρv) = 0 ,

∂t(ρv) +∇·(ρv ⊗ v) +∇p = 0 ,

∂t(ρE) +∇·(ρEv + pv) = 0 .

In local thermodynamic equilibrium, the system is closed by the constitutive
relation

p = p(ρ, e) , E = 1
2 |v|

2 + e .

When the temperature varies over a wide range, the gas may not be in local
thermodynamic equilibrium, and the pressure p should then be regarded as a
function of only a part e of the specific internal energy, while another part q is
governed by a rate equation

(1.14) ∂tq +∇·(qv) =
Q(ρ, e)− q
τ(ρ, e)

,

(1.15) p = p(ρ, e) , E = 1
2 |v|

2 + e+ q .

Using the notation of the general system (1.1), one identifies

U = (ρ, ρv, ρE, q)> , u = (ρ, ρv, ρE)> .
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The relaxation time τ and the equilibrium value Q are given functions of the
density ρ and the part e of the specific internal energy.

A large class of systems from kinetic theory, the discrete velocity kinetic
equations, is represented by the Broadwell model, which has the form

(1.16)

∂tf− − ∂xf− =
f+f− − f2

0

ε
,

∂tf0 =
f2

0 − f+f−
ε

,

∂tf+ + ∂xf+ =
f+f− − f2

0

ε
.

Here the relaxation time is the mean free path ε, and the conserved quantities
u are the density and the momentum as given by

u =
(
ρ
ρv

)
= Q

 f−
f0
f+

 , Q =
(

1 2 1
−1 0 1

)
.

Considerable interest exists in the question of the local equilibrium approxima-
tion in kinetic theory, where it is better known as a fluid dynamical approxi-
mation. See [3,4,24,29] for such studies in the context of the Broadwell model
(1.16), and [2] or [19] for a discussion of more general models.

The simplest physical models are 2× 2 systems. Here we mention the river
equations [25,28], a shallow-water wave model describing the vertical depth h

and mean velocity v by

(1.17)
∂th+ ∂x(hv) = 0 ,

∂t(hv) + ∂x(hv2 + 1
2gh

2) = ghS − Cf |v|v ,

where g is the gravitational constant, S is the slope of the river bottom, and Cf
is the friction coefficient. The local equilibrium limit is identified with the long
space-time behavior of solutions of the system (1.17) that is associated with the
description of flooding. Care must be taken when devising numerical simulations
of the river equations in such regimes [16,25].

As an illustrative 2× 2 model, consider the p-system of conservation laws

(1.18)
∂tu+ ∂xv = 0 ,

∂tv + ∂xp(u) +
1
ε

(
v − f(u)

)
= 0 .
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This system is hyperbolic provided p′(u) > 0; its characteristic speeds then are
±
√
p′(u). The positive parameter ε is the relaxation time for the system; in the

absence of spatial gradients, the value of u remains fixed while that of v evolves
to the equilibrium v = f(u). The relaxation term is stiff when ε << 1; that
is, the relaxation time is much shorter than the time it takes for a hyperbolic
wave (sound wave) to propagate over a gradient length. In such a case, one
might naively expect that the solution would achieve local equilibrium and the
dynamics would be governed by the so-called local equilibrium approximation

(1.19)
v = f(u) ,

∂tu+ ∂xf(u) = 0 .

This approximation has two potential problems. First, its solution will de-
velop an infinite spatial derivative at some location in a finite time. This not only
violates the key smoothness assumption that led to this approximation, but also
complicates the nature of the solutions involved in the analysis. Second, equa-
tion (1.2b) has the characteristic speed f ′(u); this will exceed the characteristic
speeds of the original system unless

(1.20) −
√
p′(u) ≤ f ′(u) ≤

√
p′(u) .

The consistency of the approximation would seem to require that this bound be
satisfied, if only to preserve the proper causality. Indeed, further analysis shows
that the local equilibrium (ū, f(ū)) is linearly stable if and only if u = ū satisfies
the bound (1.20); hence (1.20) will be referred to as a stability criterion.

This issue can be better understood by improving upon the local equilibrium
approximation. Let (uε, vε) be a family parameterized by ε that solves

∂tu
ε + ∂xv

ε = 0 ,

∂tv
ε + ∂xp(uε) +

1
ε

(
vε − f(uε)

)
= 0 .

Consider a formal expansion of just vε in the form

vε = f(uε) + ε vε1 + ε2vε2 + · · · ,
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where the ε dependence in each vεk arises only through uε and its derivatives.
One finds from the above two identities that

∂tu
ε + ∂xf(uε) = O(ε) ,

∂tf(uε) + ∂xp(uε) + vε1 = O(ε) .

Eliminating the time derivative of uε up to O(ε) above leads to(
p′(uε)− f ′(uε)2

)
∂xu

ε + vε1 = O(ε) .

The simplest way to satisfy this relation is to set

vε1 = −
(
p′(uε)− f ′(uε)2

)
∂xu

ε .

Dropping all the higher-order terms in expansion (1.6) leads to a first-order
correction to the local equilibrium approximation in the form

(1.21)
v = f(u)− ε

(
p′(u)− f ′(u)2)∂xu ,

∂tu+ ∂xf(u) = ε ∂x
((
p′(u)− f ′(u)2)∂xu) .

This evolution equation will be dissipative provided that the stability criterion
(1.20) holds. The criterion is now intrinsically manifest in the approximation
(1.21), whereas before it was inferred through reference to the original system
(1.18).

The approximation is in the spirit of that of Chapman-Enskog for the kinetic
theory by which the Navier-Stokes equations are derived. The approximation
(1.21) cannot be viewed as the local equilibrium limit of (1.1) in any rigorous
sense. Instead, it holds when the solutions are dissipative so that higher dif-
ferentiations of the solutions are smaller. Thus it holds in the time-asymptotic
sense.

Such 2 × 2 systems have been studied in [8] and [20]. In [20] the viscous
approximation and time-asymptotic justification are shown for general systems.
Particular solutions of traveling waves and rarefaction waves are constructed,
and their stability is studied. In the local equilibrium limit, solutions of (1.1)
tend to those of the local equilibrium approximation (1.6). The limit is highly
singular because of shock and initial layers. In [8] this limit is studied for the
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physical models in elasticity and phase transition. Specifically, entropy pairs are
constructed to derive the energy estimates, and the compensated compactness
method is then applied to control the oscillations.

In the present article we study the limiting behavior of general systems
with stiff relaxation terms. In Section 2 we construct the local equilibrium ap-
proximation and its first correction for a general N × N system of hyperbolic
conservation laws with appropriate relaxation terms. A general notion of entropy
is introduced for such systems, the existence of which ensures the hyperbolicity
of the local equilibrium approximation and the dissipativity of its first correc-
tion. In Section 3 we show that for general 2× 2 strictly hyperbolic systems the
existence of dissipative entropies is implied by a strict stability criterion that
the equilibrium characteristic lies between the frozen characteristics (cf. (1.20)).
The validity of the local equilibrium limit for such 2× 2 systems is then estab-
lished in Section 4. Finally, in Section 5 we derive the weakly nonlinear limit
for 2× 2 systems and justify it through energy estimates. This limit is the third
approximation; it shares the feature of the local equilibrium approximation (1.6)
that it does not contain the relaxation time. It is based on the observation that
the linearization of the local equilibrium approximation (1.2) about an equilib-
rium u = ū gives a simple advection dynamics with speed f ′(ū). This suggests
that, for solutions of the original system (1.1), a small perturbation about an
equilibrium (u, v) = (ū, f(ū)) will be slowly varying in the corresponding moving
frame.

2. The Structure for General Systems

Consider the N ×N system of conservation laws over Ω ⊂ RD in the form

(2.1) ∂tU +∇·F (U) +
1
ε
R(U) = 0 .

Here the density vector U = U(t, x) takes on values in Ō, the closure of an open
convex set O ⊂ RN . The flux vector F : O → RN×D is a twice-differentiable
function such that the system is hyperbolic. More precisely, this means that for
every U ∈ O and every wavenumber ξ ∈ RD, the N ×N matrix ∂UF (U)·ξ has
real eigenvalues and is diagonalizable.
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The relaxation term R : O → RN is a vector field that leaves O invariant
under the flow

(2.2)
d

dt
U +

1
ε
R(U) = 0 ,

such that it has n < N independent linear conserved quantities

Q : RN → Rn such that Q has rank n ,(2.3a)

QR(U) = 0 for every U ∈ O .(2.3b)

Moreover, each orbit has an equilibrium that is uniquely determined by the
constants u = QU denoted E(u). The map

(2.4) E : o→ O , where o ≡ QO ⊂ Rn is an open convex set ,

and satisfies the identities

QE(u) = u for every u ∈ o ,(2.5a)

Q ∂uE(u) = I for every u ∈ o .(2.5b)

This last implies that for every u ∈ o the N ×N matrix P (u) ≡ ∂uE(u)Q is a
projection (P 2 = P ) onto the tangent space of the image of E , which is therefore
the n-dimensional manifold of local equilibria.

Throughout this section we shall adopt the following notational conventions.
Variables uniquely associated with either Rn or RN will be denoted by lower
or upper case Roman fonts respectively. The calligraphical font is used for
quantities that go between Rn and RN like E and Q. Products are matrix
multiplication with the understanding that vectors in Rn or RN are column
vectors, while those from Rn∗ or RN∗ are row vectors. Gradients of scalars with
respect to column vectors are row vectors, and vice versa.

Associated with Q are n local conservation laws that are satisfied by every
solution of (2.1) and take the form

(2.6) ∂t(QU) +∇·
(
QF (U)

)
= 0 .



10

These can be closed as a reduced system for u = QU if we make the local
equilibrium approximation

U = E(u) ,(2.7a)

∂tu+∇·f(u) = 0 ,(2.7b)

where the reduced flux f is defined by

(2.8) f(u) ≡ QF
(
E(u)

)
.

This approximation may not even be hyperbolic, much less have excessive char-
acteristic speeds. For example, consider the symmetric 3 × 3 linear system in
one spatial dimension:

(2.9) ∂t

 u
v
w

+

 0 1 0
1 0 −1
0 −1 0

 ∂x

 u
v
w

+
1
ε

 0
0

w − 2u

 = 0 .

Here the local equilibrium approximation is obtained by setting w = 2u in the
first two equations. This yields

∂t

(
u
v

)
+
(

0 1
−1 0

)
∂x

(
u
v

)
= 0 ,

which are the Cauchy-Riemann equations, and hence elliptic. These do not even
have a well-posed initial-value problem. Although the initial-value problem for
system (2.9) is well posed for each positive ε, the bounds are not uniform as
ε tends to zero. This behavior can also be connected with the fact that all of
the equilibria (u, v, w) = (ū, v̄, 2ū) are unstable. Even if the reduced system
(2.7b) is hyperbolic, the approximation is subject to the same kind of questions
as were raised regarding the p-system (1.18), such as whether it has excessive
characteristic speeds.

Whenever the local equilibrium approximation is hyperbolic, it makes sense
to seek a first-order correction. The validity of the local equilibrium approxi-
mation would suggest that the conserved density functions u could be used as
coordinates for a subset of the density functions U that is invariant, or at least
approximately invariant, under the evolution (2.1). Such a set would be the
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image of the conserved densities u under a coordinate map u 7→ U =M[u] such
that QM[u] = u. Here the notation indicates that, unlike E(u), the value of
M[u] at x generally depends on more than the value of u at x. For example,
the dependence may be nonlocal, or possibly local through the values of spatial
derivatives of u. Assuming differentiability, denote the Frechét derivative of M
with respect to u by DuM[u].

If the image of M were invariant under the evolution (2.1) the conserved
densities u would satisfy the closed system

(2.10) ∂tu+∇·
(
QF

(
M[u]

))
= 0 .

Assume that the dynamics of u is now governed by (2.10). The evolution of
U =M[u] is then given by

∂tU = DuM[u] ∂tu = −DuM[u]Q∇·F
(
M[u]

)
,

and hence

∂tU +∇·F (U) +
1
ε
R(U)

=
(
I −DuM[u]Q

)
∇·F

(
M[u]

)
+

1
ε
R
(
M[u]

)
.(2.11)

If M =M[u] could be found such that

(2.12)
(
I −DuM[u]Q

)
∇·F

(
M[u]

)
+

1
ε
R
(
M[u]

)
= 0 ,

the image ofM would be an invariant set under the evolution (2.1). While this
is too much to ask, we can seek an approximately invariant set by finding anM
for which this term is small.

Since the local equilibrium approximation suggests the possibility of such an
approximately invariant set for small ε, it is natural to seek a formal expansion
for Mε[u] in powers of ε as

(2.13) Mε[u] = E(u) + εM(1)[u] + ε2M(2)[u] + · · · .

The equations to be satisfied are(
I −DuMε[u]Q

)
∇·F

(
Mε[u]

)
+

1
ε
R
(
Mε[u]

)
= 0 ,(2.14a)

QMε[u] = u .(2.14b)
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Setting expansion (2.13) into (2.14) and matching terms order by order in ε, at
first order one obtains

(
I − P (u)

)
∇·F

(
E(u)

)
+ ∂UR

(
E(u)

)
M(1)[u] = 0 ,

QM(1)[u] = 0 ,(2.15)

while at higher orders one finds the general form

(2.16) ∂UR
(
E(u)

)
M(k)[u] = J (k)[u] , QM(k)[u] = 0 ,

for k > 1, where the term J (k)[u] depends explicitly on thoseM(j)[u] with order
j strictly less than k.

At this point we will assume that the null space of the N × N matrix
∂UR

(
E(u)

)
has dimension exactly n. The linear system

(2.17) ∂UR
(
E(u)

)
V = J , QV = 0 ,

will then have a unique solution if and only if

(2.18) QJ = 0 ;

we denote this solution by

(2.19) V =
(
∂UR

(
E(u)

))−1
J .

Since I − P (u) is annihilated by left multiplication by Q, the solution of (2.15)
is then simply

(2.20) M(1)[u] = −
(
∂UR

(
E(u)

))−1(
I − P (u)

)
∇·F

(
E(u)

)
.

Furthermore, since (2.14a) is annihilated upon left multiplication by Q, that will
also be the case order by order. Since left multiplication by Q also annihilates
the left side of (2.15b), it follows that

(2.21) QJ (k)[u] = 0 , for every k > 1 .
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Thus, equation (2.16) can be solved recursively to systematically obtain each
term in expansion (2.13) as

(2.22) M(k)[u] =
(
∂UR

(
E(u)

))−1
J (k)[u] .

This formal expansion is just the quasi-linear analogue of the classical Chapman-
Enskog expansion of kinetic theory [5], the local equilibrium approximation be-
ing analogous to the compressible Euler approximation.

The first order correction to the local equilibrium approximation is obtained
by truncating the above expansion after order ε; it is the analogue of the com-
pressible Navier-Stokes approximation in the kinetic theory context. Thus, the
first correction is

U = E(u)− ε
(
∂UR

(
E(u)

))−1(
I − P (u)

)
∇·F

(
E(u)

)
,(2.23)

∂tu+∇·f(u) = ε∇·
[
Q∂UF

(
E(u)

)(
∂UR

(
E(u)

))−1(
I − P (u)

)
∇·F

(
E(u)

)]
.

It is not generally clear, even when the zero-order approximation is hyperbolic
and its characteristic speeds are not excessive, that this first-order correction will
be dissipative. It can be shown that this will be the case whenever the linear
constant coefficient problem obtained by linearizing the original problem about
any absolute equilibrium E(ū) is stable as ε→ 0. However, this is a cumbersome
criterion to check. Here we present a simple alternative criterion, namely, the
existence of a strictly convex entropy.

Definition 2.1. A twice-differentiable function Φ : O → R is said to be an
entropy for the system (2.1) provided

(i) ∂UUΦ(U) ∂UF (U)·ξ is symmetric for all U ∈ O and ξ ∈ RD;

(ii) ∂UΦ(U)R(U) ≥ 0 for all U ∈ O ;

(iii) for any U ∈ O the following are equivalent

(a) R(U) = 0 ,

(b) ∂UΦ(U)R(U) = 0 ,
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(c) ∂UΦ(U) = vQ , for some v ∈ Rn∗.

An entropy Φ is called convex if

(iv) ∂UUΦ(U) ≥ 0 as a quadratic form for all U ∈ O;

if the inequality in (iv) is strict, the entropy is called strictly convex.

Notice that (i) is the classical Lax entropy condition for hyperbolic conservation
laws [18]. It ensures the existence of an entropy flux Ψ : O→ RD such that

(2.24) ∂UΦ(U) ∂UF (U) = ∂UΨ(U) , for all U ∈ O.

Formally, every classical solution of (2.1) then satisfies

(2.25) ∂tΦ(U) +∇·Ψ(U) +
1
ε
∂UΦ(U)R(U) = 0 ,

so that by (ii) the entropy Φ is locally dissipated. Moreover, if Φ is strictly
convex, the characteristic speeds associated with any wave vector ξ ∈ RD are
determined by the critical values of the Rayleigh quotient

(2.26) W 7→ W>∂UUΦ(U) ∂UF (U)·ξW
W>∂UUΦ(U)W

, for W ∈ RN .

Note that (ii) and (iii) are an abstraction of Boltzmann’s H theorem [5]. In
particular, (iii) completely characterizes the local equilibria E = E(u) in terms
of Φ and Q as follows.

Let Φ∗ : O∗ → R be the Legendre dual function of the strictly convex
entropy function Φ. Its domain O∗ is given by

O∗ ≡
{
V ∈ RN∗

∣∣∣V = ∂UΦ(U) for some U ∈ O
}
,

and for every Φ it satisfies

(2.27) Φ(U) + Φ∗(V ) = V U ,

where U ∈ O and V ∈ O∗ are related by

(2.28) V = ∂UΦ(U) , U = ∂V Φ∗(V ) .
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Defining
o∗ ≡

{
v ∈ Rn∗

∣∣∣ vQ ∈ O∗
}
,

we can recast (c) of (iii) as

(d) U = ∂V Φ∗(vQ) for some v ∈ o∗.

The conserved densities corresponding to these equilibria are then

(2.29) u = QU = Q ∂V Φ∗(vQ) = ∂vφ
∗(v) ,

where φ∗(v) ≡ Φ∗(vQ). Note that since Φ∗ is strictly convex, so is φ∗ : o∗ → R.
Let φ = φ(u) be its Legendre dual; its domain o∗∗ is given by

o∗∗ ≡
{
u ∈ Rn

∣∣∣u = ∂vφ
∗(v) for some v ∈ o∗

}
=
{
u ∈ Rn

∣∣∣u = Q∂V Φ∗(vQ) for some v ∈ o∗
}
,

and it satisfies

(2.30) φ(u) + φ∗(v) = vu ,

where u ∈ o∗∗ and v ∈ o∗ are related by

(2.31) v = ∂uφ(u) , u = ∂vφ
∗(v) .

Now recall the set o defined in (2.4), which by (2.28) can be expressed as

o ≡
{
u ∈ Rn

∣∣∣u = QU for some U ∈ O
}

=
{
u ∈ Rn

∣∣∣u = Q∂V Φ∗(V ) for some V ∈ O∗
}
.

It is clear upon comparing this with the definition of o∗∗ that o∗∗ ⊂ o. On the
other hand, given any u ∈ o, the orbit of any solution of (2.2) with conserved
values u = QU has a unique equilibrium E(u). By (d) of (iii) this must have the
form

E(u) = ∂V Φ∗(vQ) for some v ∈ o∗.

Applying Q to both sides above and using (2.5a), we see that u ∈ o∗∗; hence
o ⊂ o∗∗. Therefore φ = φ(u) is defined over the entire set o, and the equilibria
in (d) written as a function of u ∈ o must be

(2.32) E(u) = ∂V Φ∗
(
∂uφ(u)Q

)
.
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One sees, from the duality relations (2.30) and (2.31) for φ∗, the definition of
φ∗, and the duality relations (2.27) and (2.28) for Φ∗, that

φ(u) = v∂vφ
∗(v)− φ∗(v)

= vQ∂V Φ∗(vQ)− Φ∗(vQ)(2.33)

= Φ
(
∂V Φ∗(vQ)

)
= Φ

(
E(u)

)
.

Simply stated, φ is just the restriction of Φ to the manifold of local equilibria.

The functions Φ, φ, and E are implicitly related by the relation

(2.34) ∂UΦ
(
E(u)

)
= ∂uφ(u)Q .

Differentiating the above relation yields

(2.35)
(
∂uE(u)

)>
∂UUΦ

(
E(u)

)
= ∂uuφ(u)Q .

Multiplying the last identity by Q> and envoking the symmetry of the resulting
right side, we obtain the relation

(2.36) P>(u) ∂UUΦ
(
E(u)

)
= ∂UUΦ

(
E(u)

)
P (u) .

This in turn implies that P (u) is an orthogonal projection with respect to the
inner product defined by ∂UUΦ

(
E(u)

)
.

Assuming the existence of a strictly convex entropy for the system (2.1) as
defined by (i)-(iv) above, we have the following stability theorems.

Theorem 2.1. The local equilibrium approximation

(2.37) ∂tu+∇·f(u) = 0 ,

is hyperbolic with the strictly convex entropy pair

(2.38) φ(u) = Φ
(
E(u)

)
, ψ(u) = Ψ

(
E(u)

)
;

Moreover, its characteristic speeds associated with any wave number
ξ ∈ RD are determined as the critical values of the restricted Rayleigh
quotient

(2.39) w 7→ W>∂UUΦ(E) ∂UF (E)·ξW
W>∂UUΦ(E)W

, W = ∂uE(u)w for w ∈ Rn.
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Proof. First check that (φ, ψ) is an entropy pair for the reduced system (2.37)
by the following direct calculation. Use the definition (2.8) of f , the relation
(2.34), and the defining relation (2.24) of Ψ to show

∂uφ(u) ∂uf(u) = ∂uφ(u)Q ∂UF
(
E(u)

)
∂uE(u)

= ∂UΦ
(
E(u)

)
∂UF

(
E(u)

)
∂uE(u)(2.40)

= ∂UΨ
(
E(u)

)
∂uE(u) = ∂uψ(u) .

The strict convexity of φ follows from its construction through Legendre duals.

Next, since the existence of this strictly convex entropy pair ensures that
the reduced system is symmetrizable, its characteristic speeds associated with
any wave number ξ ∈ RD are determined as the critical values of the Rayleigh
quotient

(2.41) w 7→ w>∂uuφ(u) ∂uf(u)·ξ w
w>∂uuφ(u)w

.

By the definition (2.8) of f and the identity (2.35), the matrix appearing in the
numerator of (2.41) can be written as

(2.42) ∂uuφ∂uf = ∂uuφQ ∂UF (E) ∂uE = (∂uE)>∂UUΦ(E) ∂UF (E) ∂uE ,

while, by the identities (2.5b) and (2.35), the matrix in the denominator becomes

(2.43) ∂uuφ = ∂uuφQ ∂uE = (∂uE)> ∂UUΦ(E) ∂uE .

Substituting these into the above quotient yields the result.

Remark. The reduced system’s characteristic speeds associated with any wave
number ξ ∈ RD are determined as the critical values of a restriction (2.39) of the
Rayleigh quotient for the full system (2.26) to the tangent space of the manifold
of local equilibria. Hence, they are interlaced with the characteristic apeeds for
the full system. More precisely, given a wave number ξ ∈ RD, for each u ∈ o let

Λ1 ≤ · · · ≤ Λk ≤ Λk+1 ≤ · · · ≤ ΛN ,

where Λk = Λk(E(u)) are the characteristic speeds for the full system (2.1),
while

λ1 ≤ · · · ≤ λj ≤ λj+1 ≤ · · · ≤ λn,
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where λj = λj(u) are those for the reduced system. Then the λj are inter-
laced with the Λk in the sense that each of the λj lies in the closed interval
[Λj ,Λj+N−n], cf. (1.20). This follows from the classical min-max characteriza-
tions of the Λk and λj given by

Λk = min
W⊂RN

{
max
W∈W

{
W>∂UUΦ(E) ∂UF (E)·ξW

W>∂UUΦ(E)W

} ∣∣∣∣ dim W = k

}
= max

W⊂RN

{
min
W∈W

{
W>∂UUΦ(E) ∂UF (E)·ξW

W>∂UUΦ(E)W

} ∣∣∣∣ codimW = k − 1
}
,

λj = min
w⊂Rn

{
max
w∈w

{
w>∂uuφ∂uf ·ξ w

w>∂uuφw

} ∣∣∣∣ dim w = j

}
= max

w⊂Rn

{
min
w∈w

{
w>∂uuφ∂uf ·ξ w

w>∂uuφw

} ∣∣∣∣ codimw = j − 1
}
,

and the identities established in the proof of the proceeding theorem.

Theorem 2.2. The first-order correction is locally dissipative with re-
spect to the entropy φ(u). It has the form

(2.44) ∂tu+∇·f(u) = ε∇·
[
g(u)∇∂uφ>(u)

]
,

with the diffusion tensor g(u) defined by

(2.45) g(u) = S(u)L(u)−1S(u)> ,

where

L(u)−1 ≡
(
∂UUΦ

(
E(u)

)
∂UR

(
E(u)

))−1
,(2.46a)

S(u) ≡ Q ∂UF
(
E(u)

) (
I − P (u)

)
,(2.46b)

is a nonnegative 4-tensor in RN×N ⊗RD×D.

Proof. Multiplying the equation (2.45) by ∂uφ(u) gives

(2.47) ∂tφ+∇·ψ = ε∇·
[
∂uφ g∇(∂uφ>)

]
− ε (∇∂uφ) g (∇∂uφ)> .
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Integrating (neglecting boundary contributions), we have that

(2.48)
d

dt

∫
φ(u) dx = −ε

∫
(∇∂uφ) g (∇∂uφ)> dx ≤ 0 .

The key step in this proof is checking that

(2.49) ∂UUΦ(E) ∂UR(E) +
(
∂UUΦ(E) ∂UR(E)

)> ≥ 0 ,

in the sense of forms. But this follows directly from (iv) which states

(2.50) ∂UΦ(U)R(U) ≥ 0 , for every U ∈ O,

and the fact that equality is attained when U = E ,

(2.51) ∂UΦ(E)R(E) = 0 .

Together, these imply

(2.52) ∂UU
(
∂UΦ(U)R(U)

)∣∣∣∣
U=E
≥ 0 .

A direct calculation then shows

(2.53) ∂UU
(
∂UΦ(U)R(U)

)∣∣∣∣
U=E

= ∂UUΦ(E) ∂UR(E) +
(
∂UUΦ(E) ∂UR(E)

)>
,

and (2.49) then follows from (2.52). What remains is to compute the formula
for g(u). Note that by the definition (2.44a) of L−1, the orthogonality (2.36) of
P , the symmetry (i), the relation (2.35), and the definition (2.44b) of S, one has(

∂UR(E)
)−1(I − P )∇·F (E)

=
(
∂UUΦ(E) ∂UR(E)

)−1
∂UUΦ(E) (I − P ) ∂UF (E)∇·E

= L−1(I − P )>∂UUΦ(E) ∂UF (E) ∂uE ∇u

= L−1(I − P )>
(
∂UF (E)

)>
∂UUΦ(E) ∂uE ∇u

= L−1(I − P )>
(
∂UF (E)

)>Q>∂uuφ∇u
= L−1S>(∇∂uφ)> .(2.54)

Substituting this identity into our formula (2.23b) then yields the result.
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3. The Structure for 2× 2 Systems

The remainder of this paper considers the general 2 × 2 system of conser-
vation laws over a one-dimensional spatial domain in the form

(3.1)
∂tu+ ∂xf1(u, v) = 0 ,

∂tv + ∂xf2(u, v) +
1
ε
r(u, v) = 0 .

This system is assumed to be strictly hyperbolic with (real and distinct) char-
acteristic speeds given by

(3.2) Λ±(u, v) ≡ 1
2

(
∂uf1 + ∂vf2 ±

√
(∂uf1 − ∂vf2)2 + 4∂vf1 ∂uf2

)
.

Here, as before, the values of (u, v)> lie in Ō, the closure of an open convex set
O ⊂ R2. For many physical models the set O can be one generated from an
invariant region, for example, as for the p-system (1.18) (see Section 4) and the
elastic model (see [8]).

The first equation of (3.1) represents a conservation law for u and the second
equation a rate equation for v. A typical form for the relaxation term r(u, v) is

(3.3) r(u, v) = v − e(u) ;

however, in general we assume only that for each u ∈ o the vector field v 7→
r(u, v) has a unique stable equilibrium v = e(u) satisfying

(3.4) r(u, e(u)) = 0 , ∂vr(u, e(u)) > 0 .

We also assume that the two equations in (3.1) are coupled in a nontrivial way.
More precisely, for Theorem 3.2 we assume the coupling condition

(3.5) ∂vf1(u, e(u)) 6= 0 , for all u ∈ o .

In addition, we assume smoothness as needed.

When cast in the notation of the previous section, system (3.1) takes the
form

(3.6) ∂tU + ∂xF (U) +
1
ε
R(U) = 0 ,
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where

(3.7) U =
(
u
v

)
, F (U) =

(
f1(u, v)
f2(u, v)

)
, R(U) =

(
0

r(u, v)

)
,

while

(3.8) Q = ( 1 0 ) , E(u) =
(

u
e(u)

)
, P (u) =

(
1 0
0 0

)
.

The general formulas for the local equilibrium approximation (2.7) and its first-
order correction (2.23) can now be specialized to system (3.1).

The local equilibrium equation is now just the scalar conservation law

(3.9) ∂tu+ ∂xf(u) = 0 ,

where the flux f(u) is simply

(3.10) f(u) ≡ f1(u, e(u)) ,

and its characteristic speed is

(3.11) λ(u) ≡ f ′(u) = ∂uf1(u, e(u)) + ∂vf1(u, e(u)) e′(u) .

While by its scalar nature the reduced equation (3.9) is hyperbolic, the stability
criterion analogous to that of (1.20) for the p-system (1.18) is

(3.12) Λ− ≤ λ ≤ Λ+ on v = e(u) .

As with the p-system, this can be inferred by requiring the linear stability of
the local equilibrium (ū, e(ū)). By Theorem 2.1, the existence of an entropy for
system (3.1) would also yield (3.12); later we will establish a partial converse.

The first-order relaxation correction for system (3.1) is simply the scalar
convection-diffusion equation

(3.13) ∂tu+ ∂xf(u) = ε ∂x
(
g(u)∂xu

)
,

where

(3.14) g(u) =
∂vf1

(
∂uf2 + (∂vf2 − ∂uf1) e′ − ∂vf1 e

′2)
∂vr

on v = e(u) .

We have the following theorem.
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Theorem 3.1. The first-order relaxation correction (3.13) is dissipa-
tive if and only if the stability criterion (3.12) holds. Moreover,

(3.15) g(u) =
(Λ+ − λ)(λ− Λ−)

∂vr
on v = e(u) .

Proof. Since ∂vr(u, e(u)) > 0 by (3.4), the nonnegativity of g(u) is equivalent
to that of the numerator on the right side of (3.15), which in turn is equivalent
to the stability criterion (3.12). Thus, the theorem follows immediately once
(3.15) is established. But a direct calculation starting from the definitions (3.2)
of Λ± and (3.11) of λ leads to the important identity

(3.16)
(Λ+ − λ)(λ− Λ−)

= ∂vf1
(
∂uf2 + (∂vf2 − ∂uf1) e′ − ∂vf1 e

′2) on v = e(u) .

Setting this into the numerator on the right side of (3.14) gives (3.15), and thus
proves the theorem.

Theorem 2.1 and its subsequent remark state that if (Φ,Ψ) is a strictly
convex entropy pair for the system (3.1), then (φ, ψ) defined by

(3.17) φ(u) ≡ Φ(u, e(u)) , ψ(u) ≡ Ψ(u, e(u)) ,

is a strictly convex entropy pair for the local equilibrium equation (3.9) and,
moreover, that the stability criterion (3.12) holds. Since (3.9) is a scalar conser-
vation law, any strictly convex φ(u) gives an entropy pair. Therefore the first
assertion is no deeper than the fact that φ(u) defined in (3.17) is strictly con-
vex by construction. The main content is therefore the second assertion of the
validity of the stability criterion. For 2× 2 systems (3.1) satisfying the coupling
condition (3.5) there is the following partial converse.

Theorem 3.2. Let (φ, ψ) be a strictly convex entropy pair for the local
equilibrium equation (3.9). Assume that the strict stability criterion

(3.18) Λ− < λ < Λ+ on v = e(u) ,

holds. Then there exists a strictly convex entropy pair (Φ,Ψ) for the
system (3.1) over an open set Oφ ⊂ O containing the local equilibria
curve v = e(u), along which it satisfies (3.17).
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Proof. If Φ is to be a strictly convex entropy for the system (3.1), it must
satisfy (i)-(iv) of Definition 2.1 as they are now manifest:

(i’) Φ solves the following entropy equation over (u, v)> ∈ Oφ,

(3.19) ∂uf2 ∂vvΦ− (∂vf2 − ∂uf1) ∂uvΦ− ∂vf1 ∂uuΦ = 0 ;

(ii’) ∂vΦ(u, v) r(u, v) ≥ 0 for all (u, v)> ∈ Oφ ;

(iii’) for any (u, v)> ∈ Oφ the following are equivalent

(a) r(u, v) = 0 ,

(b) ∂vΦ(u, v) r(u, v) = 0 ,

(c) v = e(u) for some u ∈ o ;

(iv’) Φ satisfies the following strict convexity conditions over (u, v)> ∈ Oφ

(3.20) ∂vvΦ > 0 , ∂uuΦ ∂vvΦ− (∂uvΦ)2 > 0 .

Given (iv’) and assumptions (3.4) regarding the equilibria of r(u, v), it is clear
that (ii’) and (iii’) will both follow from the simple requirement that

(3.21) ∂vΦ(u, e(u)) = 0 .

Indeed, for any fixed u ∈ o conditions (3.21) and (iv) ensure that v 7→ ∂vΦ(u, v)
has one simple zero at the point v = e(u), and no more. Condition (3.4) does
the same for v 7→ r(u, v). As both functions are locally increasing at this zero,
their product must be nonnegative, with v = e(u) being the only zero of both r
and the product, in accord with (ii’) and (iii’). Thus, given φ = φ(u) we must
construct a Φ = Φ(u, v) that satisfies (3.17), (3.19), (3.20), and (3.21).

First, by the strict stability criterion (3.18) and the coupling condition (3.6),
the identity (3.16) implies that

(3.22) ∂uf2 + (∂vf2 − ∂uf1) e′ − ∂vf1 e
′2 6= 0 .
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But this is exactly the condition that the local equilibria curve v = e(u) is a
noncharacteristic curve for the entropy equation (3.19). This is a second-order
hyperbolic equation for which we consider Cauchy data consistent with (3.19)
and (3.21) in the form

(3.23) Φ(u, e(u)) = φ(u) , ∂vΦ(u, e(u)) = 0 .

The classical local existence theory ensures that there is a solution Φ = Φ(u, v)
of this Cauchy problem over an open domain containing the local equilibria
curve.

If the strict convexity conditions (3.20) are satisfied along the local equilibria
curve, then by continuity they will also be satisfied in some (possibly smaller)
open domain containing the local equilibria curve; this smaller domain is the
Oφ asserted in the theorem.

Differentiating the Cauchy data (3.23) with respect to u will lead to the
identities

∂uuΦ(u, e(u)) + ∂uvΦ(u, e(u)) e′(u) = ∂uuφ(u) ,(3.24a)

∂uvΦ(u, e(u)) + ∂vvΦ(u, e(u)) e′(u) = 0 ,(3.24b)

Starting with the entropy equation (3.19), first use (3.24a) to eliminate ∂uuΦ,
and then use (3.24b) to eliminate ∂uvΦ to obtain

(3.25)

0 = ∂vf1 ∂uuΦ + (∂vf2 − ∂uf1) ∂uvΦ− ∂uf2 ∂vvΦ

= ∂vf1 ∂uuφ+ (∂vf2 − ∂uf1 − ∂vf1 e
′) ∂uvΦ− ∂uf2 ∂vvΦ

= ∂vf1 ∂uuφ−
(
∂uf2 + (∂vf2 − ∂uf1) e′ − ∂vf1 e

′2) ∂vvΦ ,

on v = e(u). Multiplying this by ∂vf1 and employing the identity (3.16) give

(3.26) (Λ+ − λ)(λ− Λ−) ∂vvΦ = (∂vf1)2 ∂uuφ , on v = e(u) .

The strict stability criterion (3.18), the coupling condition (3.6), and the strict
convexity of φ then imply that

(3.27) ∂vvΦ > 0 on v = e(u) ,
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which is the first of the strict convexity conditions (3.20).

To obtain the second, start with the identity (3.16), use (3.24b) to eliminate
e′, and then use the entropy equation (3.19) to find

(3.28)

(Λ+ − λ)(λ− Λ−)

= ∂vf1
(
∂uf2 + (∂vf2 − ∂uf1) e′ − ∂vf1 e

′2)
=

∂vf1

(∂vvΦ)2

(
∂uf2(∂vvΦ)2 − (∂vf2 − ∂uf1) ∂vvΦ ∂uvΦ− ∂vf1(∂uvΦ)2)

=
(∂vf1)2

(∂vvΦ)2

(
∂uuΦ ∂vvΦ− (∂uvΦ)2) on v = e(u) .

Now the strict stability criterion (3.18), the coupling condition (3.6), and the
first strict convexity condition (3.27) imply

(3.29) ∂uuΦ ∂vvΦ− (∂uvΦ)2 > 0 on v = e(u) ,

which is the second of the strict convexity conditions (3.20). By the aforemen-
tioned continuity argument, Theorem 3.2 follows.

Remark. For any bounded set B ⊂ R2 there is a constant γ > 0 such that

(3.30) Bγ ≡ B ∩
{

(u, v)
∣∣ |v − e(u)| ≤ γ

}
⊂ Oφ .

On the set Bγ one has

(3.31)

∂vvΦ > 0 ,

det(∂UUΦ) > 0 ,

∂vΦ(u, v) r(u, v) > 0 , for (u, v) ∈ Bγ − {v = e(u)} .

The constant γ depends on the flux functions (f1, f2) as well as the entropy
function φ.

4. The Local Equilibrium Limit for 2× 2 Systems

Suppose that a sequence U ε = (uε, vε) ∈ Bγ , bounded open convex set, are
solutions of the systems of conservation laws with a stiff relaxation term:

(4.1)
∂tU

ε + ∂xF (U ε) +
1
ε

(
0

r(U ε)

)
= 0 ,

U ε
∣∣
t=0 = U ε0 ,
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and satisfy the entropy condition: for any convex entropy pair (Φ,Ψ) on Bγ ,

(4.2) ∂tΦ(U ε) + ∂xΨ(U ε) +
1
ε

Φv(U ε) r(U ε) ≤ 0 .

For simplicity, we can assume from Theorem 3.2 that there are two convex and
dissipative entropy pairs (Φi,Ψi), i = 1, 2, on Bγ such that

(4.3) φ2(u)− φ1(u) = Cf(u) ,

where φi(u) = Φi|v=e(u), f(u) = f1(u, e(u)), and

C <

sup
(u,v)∈Bγ

f ′′(u)

inf
(u,v)∈Bγ

φ′′1(u)
.

In fact, we first choose any strictly convex function φ1(u) as the Cauchy data
in the Cauchy problem for (3.19) to get a convex and dissipative entropy pair
(Φ1,Ψ1) on Bγ1 ; then we take convex function φ2 = Cf(u) + φ1 as the Cauchy
data in the Cauchy problem for (3.19) to get another convex and dissipative
entropy pair (Φ2,Ψ2) on Bγ2 ; and finally we choose γ = min(γ1, γ2).

Theorem 4.1. Suppose that

meas{u |λ′(u) = 0} = 0 ,

and
‖(uε0 − ū, vε0 − v̄)‖L2 ≤ C ,

with v̄ = e(ū). Then there exists a subsequence (still denoted) (uε, vε)
strongly converging almost everywhere:

(uε, vε) −→ (u, v) a.e. ,

and the limit functions (u, v) satisfy

(i) v(t, x) = e(u(t, x)) for a.e. t > 0 ;

(ii) u(t, x) is unique entropy solution of the Cauchy problem

∂tu+ ∂xf(u) = 0 ,

u
∣∣
t=0 = w∗- limuε0(x) .
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where w∗- lim denotes the weak-star limit in the space L∞.

Remark 1. Notice that vε0(x) generally is not equal to e(uε0(x)); indeed, the
initial data may even be far from equilibrium. Theorem 4.1 indicates that, in the
local equilibrium limit, the functions (u, v) indeed come into local equilibrium
as soon as t > 0. This shows that the limit is highly singular. In fact, this limit
consists of two processes simultaneously: one is the initial layer limit, and the
other is the shock layer limit.

Remark 2. Theorem 4.1 indicates that the sequence (uε, vε) is compact no
matter how oscillatory the initial data (uε0(x), vε0(x)) are. Note that systems with
the stiff relaxation term are allowed to be linearly degenerate; in particular, the
second characteristic field may be linearly degenerate, and the initial oscillations
can propagate along the linearly degenerate fields for the systems without the
stiff relaxation term (see [7]). This fact shows that the relaxation mechanism
and the nonlinearity of the equilibrium equations can kill the initial oscillations,
just as the nonlinearity for the full system can kill the initial oscillations (see
[6,13]).

Proof of Theorem 4.1. Notice that if (Φ,Ψ) is a convex entropy pair, then
so is

Φ̂(U) = Φ(U)− Φ(Ū)− ∂UΦ(Ū)(U − Ū) ,

Ψ̂(U) = Ψ(U)−Ψ(Ū)− ∂UΦ(Ū)(F (U)− F (Ū)) ,

with Ū = (ū, v̄) = (ū, e(ū)). Without loss of generality, we assume that Ū =
(0, 0). Therefore, we have

(4.4) ∂tΦ(U ε) + ∂xΨ(U ε) +
1
ε

Φv(U ε) r(U ε) ≤ 0 .

Integrate (4.4) over [0, t]× (−∞,∞) to obtain∫ ∞
−∞

Φ(U ε(t, x)) dx+
1
ε

∫ t

0

∫ ∞
−∞

Φv(U ε) r(U ε) dxdτ ≤
∫ ∞
−∞

Φ(U ε0(x)) dx .

Therefore, there exists a constant C > 0 such that

(4.5)
1
ε

∫ t

0

∫ ∞
−∞

(vε − e(uε))2 dxdτ ≤ C
∫ ∞
−∞

{
(uε0(x)− ū)2 + (vε0(x)− v̄)2} dx .
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Define (φi(u), ψi(u)) = (Φi,Ψi)|v=e(u), i = 1, 2. Then (φi(u), ψi(u)), i = 1, 2, are
convex entropy from Theorem 3.2. Notice that

(4.6)

∂tφi(uε) + ∂xψi(uε)

≤ ∂t
(
Φi(uε, e(uε))− Φi(uε, vε)

)
+ ∂x

(
Ψi(uε, e(uε))−Ψi(uε, vε)

)
+

1
ε

Φiv(uε, vε)
(
r(uε, e(uε))− r(uε, vε)

)
≡ Iεi1 + Iεi2 + Iεi3 , i = 1, 2 .

Using the estimate (4.5), we have

‖Iεi1‖H−1 = sup
ϕ∈H1

0

∣∣∣ ∫ ∫ ∂t
(
Φi(uε, e(uε))− Φi(uε, vε)

)
ϕdxdτ

∣∣∣
≤ C ‖vε − e(uε)‖L2‖ϕt‖L2

≤
√
εC ‖ϕ‖H1 −→ 0 , as ε −→ 0 .

Similarly, we have
‖Iεi2‖H−1 ≤ C

√
ε ‖ϕ‖ −→ 0 .

Notice that Φiv = 0 as v = e(u). Therefore, we have from (4.4) and (4.6)

‖Iε3‖L1 ≤ C ;

that is,
Iεi3 is compact in W−1,p1 ,

from the Sobolev embedding theorem. Therefore, we have

(4.7) Iεi =
3∑
j=1

Iεij is compact in W−1,p1 .

Using the fact

∂tφi(uε) + ∂xψi(uε)− Iε ≤ 0 ,

∂tφi(uε) + ∂xψi(uε)− Iε is bounded in W−1,p1 ,

from (4.6) and the boundedness of uε, and the Murat lemma [21], we conclude

(4.8) ∂tφi(uε) + ∂xψi(uε)− Iε is compact in W−1,p2 , 1 < p2 < p1 .
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Combining (4.7) and (4.8) with the boundedness of uε, we obtain

∂tφi(uε) + ∂xψi(uε)

{
is compact in W−1,p , 1 < p < p2 ,

is bounded in W−1,∞ .

Thus

(4.9) ∂tφi(uε) + ∂xψi(uε) is compact in H−1 , i = 1, 2 ,

from a compactness embedding lemma [12]: Let 1 < p ≤ q < r <∞. Then(
compact set of W−1,p

loc

)
∩
(
bounded set of W−1,r

loc

)
⊂
(
compact set of W−1,q

loc ) .

Therefore, we have from (4.3) and (4.9)

∂tf(uε) + ∂x

(∫ uε(
f ′(y)

)2
dy

)
is compact in H−1 .

Similarly, we can show that

∂tu
ε + ∂xf(uε) is compact in H−1 .

The compactness theorem that was established in [9] by using the Div-Curl
Lemma of compensated compactness (see [26]) then ensures that there exists a
subsequence (still denoted) uε(t, x) converging almost everywhere to a function
u(t, x):

uε(t, x) −→ u(t, x) a.e. ,

and
vε(t, x) −→ e(u(t, x)) a.e. ,

from the estimate (4.5). The proof is complete.

The above theorem is based on the L∞ a priori estimate. In many physical
systems, the estimate can be achieved. As an illustration, we now apply this
theorem to the p-system (1.18), a model in which a stiff relaxation term is
appended to the equations of elasticity. Consider the solutions (uε, vε) of the
Cauchy problem

(4.10)
∂tu+ ∂xv = 0 ,

∂tv + ∂xp(u) +
1
ε

(v − f(u)) = 0 , p′(u) > 0 ,

with the Cauchy data

(4.11) (u, v)
∣∣
t=0 = (uε0(x), vε0(x)) .

We first construct the solutions of the Cauchy problem (4.9)-(4.10).
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Lemma 4.1. Suppose that p(u) and f(u) satisfy

(4.12)

{
p ∈ C2 ; p′′(u)(u− ū) > 0 , for all u 6= 0 ,

f ∈ C1 ; f(u) = f̄ = const. , as |u− ū| ≥M0 ,

and the stability condition

(4.13) p′(u)− (f ′(u))2 ≥ 0 .

Assume that the initial data (uε0(x), vε0(x)) are bounded in L∞, uni-
formly in ε, and (uε0(x)− ū, vε0(x)− v̄) ∈ L2. Then there exists a weak
solution (uε(t, x), vε(t, x)) for the Cauchy problem (4.10) and (4.11)
for any fixed ε. The solution sequence (uε(t, x), vε(t, x)) is bounded in
L∞, uniformly in ε. Moreover, there exists a constant N0 > 0 such
that (uε(t, x), vε(t, x)) ∈ Bγ provided ‖(uε0− ū, vε0− v̄)‖L∞ ≤M0 ≤ N0.

Proof. Consider the following parabolic systems:

(4.14)
∂tu+ ∂xv = δ ∂xxu ,

∂tv + ∂xp(u) +
1
ε

(v − f(u)) = δ ∂xxv ,

with the Cauchy data

(4.15) (u, v)|t=0 = (uε0(x), vε0(x)) .

The Riemann invariants associated with system (4.14) are

w±(u, v) = v − f̄ ±
∫ u

ū

√
p′(ξ)dξ .

The invariant region principle [10] indicates that the domains

ΣK =
{

(u, v)
∣∣M1 ≤ |w±(u, v)| ≤M2

}
,

with K ≥M0 and

M1 = min
{∫ K

ū

√
p′(ξ)dξ ,

∫ −K
ū

√
p′(ξ)dξ

}
,

M2 = max
{∫ K

ū

√
p′(ξ)dξ ,

∫ −K
ū

√
p′(ξ) dξ

}
,
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are positively invariant for the homogeneous system associated with (4.14). This
is guaranteed by the condition (4.12). Therefore, the domains Σ will remain
invariant for the inhomogeneous system provided that

(4.16) −~n · (0, v − f(u))> ≤ 0 , on ∂Σ ,

where ~n denotes the outer unit normal to ∂Σ. The condition (4.16) is an imme-
diate corollary to the stability criteria (4.13).

For the uniformly bounded initial data (uε0(x), vε0(x)), there exists K0 > M0

such that
(uε0, v

ε
0) ∈ ΣK0 ,

and hence
(uεδ(t, x), vεδ(t, x)) ∈ ΣK0 ,

which means that (uεδ(t, x), vεδ(t, x)) are uniformly bounded. Then the classical
local solution can be extended to the global solution for the Cauchy problem
(4.14)–(4.15). DiPerna’s compactness theorem [13] for such p-system ensures
that the viscosity solutions (uεδ(t, x), vεδ(t, x)) converge strongly and pointwise
almost everywhere to (uε(t, x), vε(t, x)):(

uεδ(t, x), vεδ(t, x)
)
−→

(
uε(t, x), vε(t, x)

)
a.e. ,

and that for every ε > 0 the limit (uε(t, x), vε(t, x)) is an entropy weak solution,
uniformly bounded in ε. This completes the proof.

Theorem 4.2. Suppose that p(u) and f(u) satisfy (4.12) and (4.13).
Then there exists a constant N0 > 0 such that, when

(4.17) ‖(uε0, vε0)‖L∞ ≤M0 ≤ N0 ,

there exist global weak solutions

(4.18)
(
uε(t, x), vε(t, x)

)
∈ Bγ

for the Cauchy problem (4.10) and (4.11) subsequently converging point-
wise almost everywhere:(

uε(t, x), vε(t, x)
)
−→

(
u(t, x), v(t, x)

)
a.e. ,
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Moreover, the limit function (u, v) satisfies the following conditions:

(i) v(t, x) = f(u(t, x)) a.e. , for t > 0 ;

(ii) u(t, x) is the unique entropy solution of the Cauchy problem

(4.19)
∂tu+ ∂xf(u) = 0 ,

u
∣∣
t=0 = w∗- limuε0(x) .

Proof. Theorem 4.2 is a direct corollary of Theorem 4.1 by using Lemma 4.1.

Remark. The constant N0 depends only on γ. If there exists a global strictly
convex entropy for the p-system, the condition (4.17) can be removed by only
assuming the uniform boundedness of the initial data (uε0(x), vε0(x)), and the
assumption f(u) = f̄ = const., as |u − ū| ≥ M0, does not affect the limit
equation if one chooses a sufficiently large M0 ≥ sup |uε0(x)|.

5. The Weakly Nonlinear Limit for 2× 2 Systems

Now we are concerned with the weakly nonlinear limit for the Cauchy prob-
lem of 2× 2 systems

(5.1)
∂tu

ε + ∂xf1(uε, vε) = 0 ,

∂tv
ε + ∂xf2(uε, vε) +

1
ε
r(uε, vε) = 0 ,

and

(5.2) (uε, vε)
∣∣
t=0 = (uε0(x), vε0(x)) .

about an equilibrium (ū, v̄) = (ū, e(ū)) :

(5.3) (uε, vε) = (ū, v̄) + ε (wε, zε) .

Upon rescaling the time variable t and translating the space variable x as the
slow time variable εt and the moving space variable x− λ(ū)t, respectively:

(t, x) 7−→ (ε t, x− λ(ū) t) ,
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the flux functions in (5.1) with the stability condition (3.9) satisfy

(5.4)
λ̄ ≡ λ(ū) = 0 ,

λ̄−λ̄+ ≡ Λ−(ū)Λ+(ū) < 0 ,

The limit process as ε→ 0 is a weakly nonlinear limit just as the limit from the
Boltzmann equations to the incompressible Navier-Stokes equations [1].

Let us first consider a formal expansion. Suppose that (uε, vε) is a family
of solutions of (5.1) parameterized by ε. Define the new dependent variables
(ŵε, ẑε) and (ûε, v̂ε) by the relations

uε(t, x) = ū+ ε ŵε + ε2ûε(t̂, x̂) ,(5.5)

vε(t, x) = e(ū) + ε ẑε + ε2v̂ε(t̂, x̂) .(5.6)

Rendering system (5.1) in terms of these new variables yields
(5.7)
ε ∂tŵ

ε + ε2∂tû
ε + f̄1u(ŵεx + ε ûε) + f̄1v(ẑεx + ε v̂εx)

+
ε

2
∂x{f̄1uu(ŵε + ε û)2 + 2f̄1uv(ŵε + ε ûε)(ẑε + ε v̂ε) + f̄1vv(ẑεx + ε v̂ε)2}

+ ε2∂xQ1(f1) = 0 ,

and

(5.8)

ε ∂tẑ
ε + ε2∂tv̂

ε + f̄2u(ŵεx + ε ûε) + f̄2v(∂xẑε + ε ∂xv̂
ε) + ε ∂xQ0(f2)

+
1
ε
{r̄u(ŵε + ε ûε) + r̄v(ẑε + ε v̂ε)}

+ ε{r̄uu(ŵε + ε ûε)2 + 2r̄uv(ŵε + ε ûε)(ẑε + ε v̂ε) + r̄vv(ẑε + ε v̂ε)2}
+ ε2Q1(r) = 0 .

where

(5.9)

Q̂0(β) =
1
ε2

(
β(uε, vε)− β(ū, e(ū))− εβ̄u(ŵε + εûε)− εβ̄v(ẑε + εv̂ε)

)
= O(1)

(
(ŵε + εûε)2 + (ẑε + εv̂ε)2

)
,

Q̂1(β) =
1
ε3

(
Q0(β)− 1

2ε
2(β̄uu(ŵε + εûε)2

+ 2β̄uv(ŵε + εûε)(ẑε + εv̂ε) + β̄vv(ẑε + εv̂ε)2))
= O(1)

(
|ŵε + εûε|3 + |ẑε + εv̂ε|3

)
,

β̄ = β(ū, v̄) , β̄u = ∂uβ(ū, v̄) , β̄v = ∂vβ(ū, v̄) , etc.
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We have from (5.7)–(5.8)

(5.10) r̄uŵ
ε + r̄v ẑ

ε = 0 ,

(5.11)
r̄v v̂

ε + r̄uû
ε + 1

2

(
r̄uu(ŵε)2 + 2r̄uvŵεẑε + r̄vv(ẑε)2

)
+
(
f̄2u + f̄2ve

′(ū)
)
∂xŵ

ε = 0 ,

(5.12)
∂tŵ

ε+ f̄1u∂xû
ε+ f̄1v∂xv̂

ε + 1
2

(
f̄1uu∂x(ŵε)2 + 2f̄1uv∂x(ŵεẑε) + f̄1vv∂x(ẑε)2

)
= 0 .

If (ŵε, ẑε) → (w, z) and (ûε, v̂ε) → (û, v̂) as ε tends to zero so that, consistent
with their leading-order formal expansions, one also has the limits

(5.13) z = e′(ū)w ,

(5.14)

v̂ = e′(ū)û− 1
2r̄v

(
r̄uu + 2r̄uv e′(ū) + r̄vv e

′(ū)2
)
w2 − 1

r̄v

(
f̄2u + f̄2v e

′(ū)
)
∂xw ,

(5.15)
∂tw + f̄1v

(
∂xv̂ − e′(ū)∂xû

)
+
(
f̄1uu + 2f̄1uv e

′(ū) + f̄1vv e
′(ū)2

)
∂x
(1

2w
2) = 0 ,

by using
r̄u + r̄v e

′(ū) = 0 ,

f̄1u + f̄1v e
′(ū) = 0 .

Plug (5.14) into (5.15) and use

r̄uu + 2r̄uv e′(ū) + r̄vv e
′(ū)2 + r̄v e

′′(ū) = 0 ,

Λ̄−Λ̄+ = −f̄1v
(
f̄2u + f̄2v e

′(ū)
)
.

We have

(5.16) r̄v

(
∂tw + λ̄′∂x

( 1
2w

2))+ λ̄−λ̄+∂xxw = 0 .

This is the dominant balance for this asymptotic scaling provided

(5.17) λ̄′ 6= 0 , and λ̄−λ̄+ < 0 .

Not unexpectedly, (5.16) is just the classical Burgers equation.
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If one applies the same asymptotic scaling as above to the first correction
to the local equilibrium approximation (1.21), one again arrives at the weakly
nonlinear approximation (5.16). This shows the latter to be a distinguished limit
of the former and makes clear why it inherits the good features of the former.
Its big advantage is that the solutions of the Burgers equation (5.16) are so nice.
If the initial data has spatial derivatives that are order one, then so does the
solution for all time. Moreover, the solutions are smooth for any positive time.
Thus, the solutions of (5.16) remain globally consistent with all the assumptions
that were used to derive the weakly nonlinear approximation.

We justify this approximation by using the energy estimate technique. From
(5.1) and (5.3), we obtain that (wε, zε) satisfies

(5.18)
ε2∂tw

ε + ∂xf1(ū+ εwε, v̄ + ε zε) = 0 ,

ε2∂tz
ε + ∂xf2(ū+ εwε, v̄ + ε zε) +

1
ε
r(ū+ εwε, v̄ + ε zε) = 0 ,

and

(5.19) (wε, zε)
∣∣
t=0 = (wε0(x), zε0(x)) .

Theorem 5.1. There exist constants ε0 > 0 and C0 > 0 independent
of ε such that, if

(5.20)
0 < ε ≤ ε0 ,
‖(wε0, zε0)‖H3 ≤ C0 ,

and

(5.21) ‖zε0 −
e(ū+ εwε0)− e(ū)

ε
‖L2(R1) ≤ C0ε ,

such that there exists a unique global solution (wε, zε) ∈ H3 for the
Cauchy problem (5.18)–(5.19) (also (5.1)–(5.2)) such that

(5.22)

∑
i,j=1,i+j≤3

ε(i−1)‖∂it∂jx(wε, εizε)‖L2(R2
+) ≤ C ,

‖zε − e(ū+ εwε)− e(ū)
ε

‖L2(R2
+) ≤ Cε ,
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where C is the constant independent of ε.

Proof. For simplicity, we drop the index ε in the functions (wε, zε). Define

(5.23)

B(t) =
∫ ∞
−∞


3∑

i,j=0,i+j≤3

ε2i|∂it∂jx(w, εiz)|2(t, x)

 dx ,

C(t) =
∫ t

0

∫ ∞
−∞

 ∑
i,j=1,i+j≤3

ε2(i−1)|∂it∂jx(w, εiz)|2(τ, x)

 dxdτ ,

We first obtain the a-priori estimates.

Suppose there exist solutions (wε, zε) ∈ H3 for the Cauchy problem (5.18)
and (5.19). We wish to prove that there exist constants ε0 > 0 and C0 > 0
independent of ε such that, when

(5.24)

0 < ε ≤ ε0 ,
‖(wε0, zε0)‖H3 ≤ C0 ,∫ ∞

−∞

(
vε0(x)− e(uε0(x))

)2
dx ≤ ε4C0 ,

the estimates
B(t) +C(t) ≤ B0 ,

hold. These are proved under the a-priori assumption

B0 ≡ max
0≤τ≤t

B(τ)� 1 .

We have from the first equation of (5.18) that

(5.25) zx = − 1
f1v
{εwt + f1uwx} .

Differentiating both sides of the second equation of (5.18) with respect to x, we
have

(5.26)
ε2zxt + f2(ū+ εw, v̄ + ε z)x

= r̄uw + r̄vz +
ε

2
(
r̄uuw

2 + 2r̄uvwz + r̄vvz
2)+

ε2

6
Q1(r) .
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Henceforth the functions ru ≡ ∂ur, etc. are evaluated at the point (ū, v̄) ≡
(ū, e(ū)) and for any function β,

[β] =
1
ε

(
β(ū+ εw, v̄ + εz)− β(ū, v̄)

)
= O(1)(|w|+ |z|) ,

Q0(β) =
1
ε2
(
[β]− εβ̄uw − εβ̄vz

)
= O(1)(w2 + z2) ,

Q1(β) =
1
ε3

(
[β]− εβ̄uw − εβ̄vz − 1

2ε
2(β̄uuw2 + 2β̄uvwz + β̄vvz

2))
= O(1)(|w|3 + |z|3) ,

β̄ = β(ū, v̄) , β̄u = ∂uβ(ū, v̄) , β̄v = ∂vβ(ū, v̄) , etc.

Plug (5.25) into (5.26) to eliminate z and obtain
(5.27)
r̄v
(
wt + λ̄′

( 1
2w

2)
x

)
+ λ̄−λ̄+wxx + ε2wtt

=− ε(f1u + f2v)wxt

− ε{f̄1u[f1v] + f̄2v[f1u]− f̄1v[f2u]− f̄2u[f1v] + [f1u][f2v]− [f1v][f2u]}wxx

+
ε

2
r̄v{(f̄1uv + f̄1vvv̄

′)(v̄′′w2 +
ε

3
Q1(r)− 2

ε
f2x − 2εzt)− 2

r̄uu
r̄v

[f1v]w

+
2[f1v]
r̄vf1v

((r̄uvw + 2r̄vvz)f1u − r̄uvf1vz)Q0(f1u) +Q0(f1v)}wx

− {(f1uf2v)x − f1vf2ux −
f2vf1u

f1v
f1vx + ε2(f1uu −

f1u

f1v
f1uv)wt

+ ε3(f1uv −
f1u

f1v
f1vv)zt}wx

− ε{f2vx −
f2v

f1v
f1vx −

ε

f1v
f1vt +

ε2

f1v
[fv](r̄uvw + 2r̄uvz)}wt

+ ε
r̄v f̄1v

4r̄3
v

{εr̄vv(r̄uuw2 + 2r̄uvwz + r̄vvz
2 +

ε

3
Q1(r) +

1
ε
f2x + εzt)2

− (r̄vv(v̄′)2w2 − 2r̄uv r̄vw)

(r̄uuw2 + 2r̄uvwz + r̄vvz
2 +

ε

3
Q1(r) +

1
ε
f2x + εzt)}x

+
ε

6
f1vQ1(r)x

≡Eε(t, x) .

On the other hand, we know from Theorem 3.2 that there exists a convex entropy
pair (Φ(u, v),Ψ(u, v)) near the equilibrium with Φv = 0 and

(5.28) Φ(u, v) ≤ ε2C(w2 + z2) .
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Otherwise we can replace (Φ,Ψ) by (Φ̂, Ψ̂) where

Φ̂(U) = Φ(U)− Φ(Ū)− ∂UΦ(Ū)(U − Ū) ,

Ψ̂(U) = Ψ(U)−Ψ(Ū)− ∂UΦ(Ū)(F (U)− F (Ū)) .

Multiplying (5.1) by ∂UΦ, we have

εΦt + Ψx + Φv
r(u, v)
ε
≤ 0 .

Integrate the above inequality, and notice that

Φvr(u, v) ≥ α0(v − e(u))2 ,

for some α0 > 0 from Φv(u, e(u)) = 0,Φvv > 0, and rv 6= 0. We obtain

ε

∫ t

0
Φ(u, v) dx+ α0

∫ t

0

∫ ∞
−∞

(v − e(u))2

ε
dxdt

≤ ε
∫ ∞
−∞

Φ(u0(x), v0(x)) dx

≤ ε3C
∫ ∞
−∞

(
w2

0(x) + z2
0(x)

)
dx ,

and, therefore,

(5.29) ‖z − e(ū+ εw)− e(ū)
ε

‖L2(R2
+) ≤ Cε .

Now we estimate the relationship between w and z. From (5.18) we can
obtain

(5.30) |zx| ≤ C{|wx|+ ε|wt|} ,

(5.31) |zt| ≤
C

ε
{|wx|+ ε|wt|+

|v − e(u)|
ε2

} ,

(5.32) |zxx| ≤ C
{
|wxx|+ ε|wxt|+ ε

(
w2
x + ε2w2

t

)}
,

(5.33) |zxt| ≤ C
{
|wxt|+ ε|wtt|+ w2

x + ε2w2
t

(
|wx|+ ε|wt|

) |v − e(u)|
ε2

}
,
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(5.34) |ztt| ≤
C

ε3

{
ε2wxt + ε3wtt + ε2(w2

x + ε2w2
t ) + |wx|+ ε|wt|+

|v − e(u)|
ε

}
,

(5.35)
|zxxx| ≤ C

{
|wxxx|+ε|wxxt|+ε(|wx|+ε|wt|)(|wxx|+ε|wxt|)+ε3(|wx|3+ε3|wt|3)

}
,

(5.36)

|zxxt| ≤ C
{
|wxxt|+ ε|wxtt|

+ (|wx|+ ε|wt|)(|wxx|+ ε|wxt|+ ε2|wtt|+ εw2
x + ε3w2

t )

+ (wxx + εwxt + εw2
x + ε3w2

t )
|v − e(u)|

ε2

}
,

(5.37)

|zxtt| ≤ ε−2C
{
ε2|wxtt|+ ε3|wttt|+ w2

x + ε2w2
t + ε2|wx|3 + ε5|wt|3

+ ε2(|wx|+ ε|wt|)(|wxt|+ ε|wtt|)

+ (|wx|+ ε|wt|+ ε2|wxt|+ ε3wtt)
|v − e(u)|

ε2

}
,

(5.38)

|zttt| ≤
C

ε5

{
ε4|wxtt|+ ε5|wttt|+ ε3|wtt|+ ε2|wxt|+ |wx|+ ε|wt|+ ε2w2

x + ε4w2
t

+ ε4|wx|3 + ε7|wt|3 + ε4(|wx|+ ε|wt|)(|wxt|+ ε|wtt|) +
1
ε2
|v − e(u)|

}
,

and

(5.39)
ε2
∫ ∞
−∞

z2(t, x) dx+
∫ t

0

∫ ∞
−∞

z2(τ, x) dxdτ

≤ ε2
∫ ∞
−∞

z2(0, x) dx+
∫ t

0

∫ ∞
−∞
{w2 + ε2(w2

x + ε2w2
t )} dxdτ ,

(5.40)
∫ t

0

∫ ∞
−∞

z2
x dxdτ ≤ C

∫ t

0

∫ ∞
−∞

(w2
x + ε2w2

t ) dxdτ ,

(5.41)

ε2
∫ ∞
−∞

z2
t (t, x)dx+

∫ t

0

∫ ∞
−∞

{
1− ε2C(|wx|+ ε|wt|)

}
z2
t dxdτ

≤C
∫ ∞
−∞
|∇x(w0(x), z0(x))|2 dx+

1
ε4

∫ ∞
−∞

(v0(x)− e(u0(x)))2 dx

+ C

∫ t

0

∫ ∞
−∞

{
w2
t + ε2(w4

x + ε4w4
t ) + ε2w2

xt + ε4w2
tt

}
dxdτ ,



40

(5.42)
∫ t

0

∫ ∞
−∞

z2
xx dxdτ ≤ C

∫ t

0

∫ ∞
−∞

{
w2
xx + ε2w2

xt + ε2(w4
x + ε4w4

t )
}
dxdτ ,

(5.43)∫ t

0

∫ ∞
−∞

z2
xt dxdτ

≤ C
∫ t

0

∫ ∞
−∞

{
w2
xt + ε2w2

tt + w4
x + ε4w4

t + (w2
x + ε2w2

t )
(v − e(u))2

ε4

}
dxdτ ,

(5.44)

ε8
∫ ∞
−∞

z2
tt(t, x) dx+ ε6

∫ t

0

∫ ∞
−∞
{1− ε2C(|wx|+ ε|wt|)}z2

tt dxdτ

≤ Cε2
∫ ∞
−∞
|∇x(w0(x), z0(x))|2 dx+

2
ε4

∫ ∞
−∞

(v0(x)− e(u0(x)))2 dx

+ ε6C

∫ t

0

∫ ∞
−∞
{w2

t + w2
x + w2

tt + ε2w2
xt + ε2w2

xtt + ε4w2
ttt} dxdτ ,

(5.45)

∫ t

0

∫ ∞
−∞

z2
xxx dxdτ ≤ C

∫ t

0

∫ ∞
−∞

{
w2
xxx + ε2w2

xxt + ε6(w6
x + ε6w6

t )

+ ε2(w2
x + ε2w2

t )(w
2
xx + ε2w2

xt)
}
dxdτ ,

(5.46)∫ t

0

∫ ∞
−∞

z2
xxt dxdτ ≤ C

∫ t

0

∫ ∞
−∞

{
w2
xxt + ε2w2

xtt

+ (w2
x + ε2w2

t )(w2
xx + ε2w2

xt + ε4w2
tt + ε2w4

x + ε6w4
t )

+ (w2
xx + ε2w2

xt + ε2w4
x + ε6w4

t )
(v − e(u))2

ε4

}
dxdτ ,

(5.47)

∫ t

0

∫ ∞
−∞

z2
xtt dxdτ ≤

C

ε4

∫ t

0

∫ ∞
−∞

{
ε4w2

xtt + ε6w2
ttt +w4

x + ε4w4
t

+ ε4w6
x + ε10w6

t + ε4(w2
x + ε2w2

t )(w2
xt + ε2w2

tt)

+ (w2
x + ε2w2

t + ε2w2
xt + ε3w2

tt)
}
dxdτ ,

(5.48)

∫ t

0

∫ ∞
−∞

z2
ttt dxdτ ≤

C

ε10

∫ t

0

∫ ∞
−∞

{
ε8w2

xtt + ε10w2
ttt + ε4w2

xt + ε6w2
tt

+w2
x + ε2w2

t + ε4w4
x + ε8w4

t + ε8w6
x + ε14w6

t

+ ε8(w2
x + ε2w2

t )(w2
xt + ε2w2

tt)
}
dxdτ .
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Multiply (5.25) by w, and integrate over [0, t]× (−∞,∞). We obtain from (5.4)
and (3.4)

(5.49)

r̄v
2

∫ ∞
−∞

w2(t, x) dx+ |λ̄−λ̄+|
∫ t

0

∫ ∞
−∞

w2
x dxdτ

=
r̄v
2

∫ ∞
−∞

w2(0, x) dx+ ε2
∫ ∞
−∞
{(wwt)(t, x)− (wwt)(0, x)} dx

+ ε2
∫ t

0

∫ ∞
−∞

w2
t dxdτ +

∫ t

0

∫ ∞
−∞

E(τ, x)w(τ, x) dxdτ .

Now we estimate the integral of the E term. From the Schwartz inequality

w2(t, x) =
∫ x

−∞
2wwx dx ≤

(
2
∫ ∞
−∞

w2 dx

∫ ∞
−∞

w2
x dx

)1/2

,

and so∫ t

0

∫ ∞
−∞

w6(t, x) dxdt ≤ max
0≤τ≤t

{(∫ ∞
−∞

w2(τ, x) dτ
)2}∫ t

0

∫ ∞
−∞

w2
x dxdτ

≤ B0

∫ t

0

∫ ∞
−∞

w2
x dxdτ .

Thus, we have

(5.50)

∫ t

0

∫ ∞
−∞

(w6 + z6) dxdτ ≤ B0

∫ t

0

∫ ∞
−∞

(w2
x + z2

x) dxdτ

≤ B0

∫ t

0

∫ ∞
−∞

(w2
x + ε2w2

t ) dxdτ .

Moreover,

(5.51) ε

∫ ∞
−∞

wwt dx ≤
∫ ∞
−∞

w2(t, x) dx+ ε2
∫ ∞
−∞

w2
t (t, x) dx .

and

(5.52)

∣∣∣ε∫ t

0

∫ ∞
−∞

(f1u + f1v)wxtw dxdτ
∣∣∣

=
∣∣∣ε∫ t

0

∫ ∞
−∞

{
(f1u + f1v)wxwt + (f1u + f1v)xwwt

}
dxdτ

∣∣∣
≤ C

∫ t

0

∫ ∞
−∞

{
δw2

x + ε2w2
t

}
dxdτ , for δ sufficiently small.
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Using (5.50), (5.51) and the argument of estimating (5.52), we obtain from
(5.49)∫ ∞

−∞
w2(t, x)dx+

∫ t

0

∫ ∞
−∞

w2
x dxdτ

≤ C
{∫ ∞
−∞

(
w2(0, x) + ε4w2

t (0, x)
)
dx+

∫ ∞
−∞

(
w2(t, x) + ε4w2

t (t, x)
)
dx

+
∫ t

0

∫ ∞
−∞

(
δw2

x + ε2w2
t + ε4z2

t

)
dxdτ

}
.

Therefore, we have

(5.53)

∫ ∞
−∞

w2(t, x) dx+
∫ t

0

∫ ∞
−∞

w2
x dxdτ

≤C
{∫ ∞
−∞

(
w2(0, x) + ε2|∇x(w, z)|2(0, x) + (v − e(u))2(0, x)

)
dx

+ ε4
∫ ∞
−∞

w2
t (t, x) dx+ ε2

∫ t

0

∫ ∞
−∞

(
w2(t, x) + w2

t (t, x)
)
dxdτ

}
;

henceforth we assume that C is the universal constant depending only on B0.

Similar arguments yield the estimates for higher derivatives of w by in-
tegrating (5.27) × w, (5.27) × wt, (5.27) × wx, (5.27)x × wxx, (5.27)x × wxt,
(5.27)t ×wtt, (5.27)xx ×wxxt, (5.27)×wxxt, (5.27)xt ×wxtt, and (5.27)tt ×wttt
over [0, t]× (−∞,∞), respectively,

(5.54)
ε2
∫ ∞
−∞

w2
t (t, x) dx+

∫ t

0

∫ ∞
−∞

w2
t dxdτ

≤ ε2
∫ ∞
−∞

wt(0, x) dx+C

∫ t

0

∫ ∞
−∞
{w2

x + w2
xx + ε4w2

xt} dxdτ ,

(5.55)∫ ∞
−∞

w2
x(t, x) dx+

∫ t

0

∫ ∞
−∞

w2
xx dxdτ

≤ C
{∫ ∞
−∞

(
w2
x(0, x) + ε

(
wxx(0, x) + zxx(0, x)

)
+ ε
(
w4
x(0, x) + z4

x(0, x)
))
dx

+ ε3
∫ ∞
−∞

w2
xt(t, x) dx+

∫ t

0

∫ ∞
−∞

(
w2
x + ε2w2

t + ε2w2
xt

)
dxdτ

}
,
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(5.56)

ε4
∫ ∞
−∞

w2
tt(t, x) dx+ ε2

∫ t

0

∫ ∞
−∞

w2
tt dxdτ

≤ε4
∫ ∞
−∞

wtt(0, x) dx

+ C

∫ t

0

∫ ∞
−∞
{w2

x +w2
t + w2

xx + ε2w2
xt + ε2w2

xxt + ε6w2
xtt} dxdτ ,

(5.57)
ε2
∫ ∞
−∞

w2
xt(t, x) dx+

∫ t

0

∫ ∞
−∞

w2
xt dxdτ

≤ ε4
∫ ∞
−∞

wxt(0, x) dx+ C

∫ t

0

∫ ∞
−∞
{w2

x + ε2w2
t +w2

xx + δw2
xxt} dxdτ ,

(5.58)

∫ ∞
−∞

w2
xx(t, x) dx+

∫ t

0

∫ ∞
−∞

w2
xxx dxdτ

≤
∫ ∞
−∞

wxx(0, x) dx

+ C

∫ t

0

∫ ∞
−∞
{w2

x + ε4w2
t +w2

xx + ε6w2
tt + ε2w2

xxt + ε4w2
xtt} dxdτ ,

(5.59)

∫ ∞
−∞

(ε2w2
xxt + w2

xxx(t, x)) dx+
∫ t

0

∫ ∞
−∞

w2
xxt dxdτ

≤
∫ ∞
−∞

(
ε2w2

xxt(0, x) +w2
xxx(0, x)

)
dx

+ C

∫ t

0

∫ ∞
−∞
{w2

x + ε4w2
t + ε2w2

xx + ε4w2
xt +w2

xxx + ε6w2
xtt} dxdτ ,

(5.60)∫ ∞
−∞

(
ε4w2

xtt + ε2w2
xxt(t, x)

)
dx+ ε2

∫ t

0

∫ ∞
−∞

w2
xtt dxdτ

≤
∫ ∞
−∞

(
ε4w2

xtt(0, x) + ε2w2
xxt(0, x)

)
dx

+ C

∫ t

0

∫ ∞
−∞
{w2

x + δw2
t +w2

xx + δw2
xt + ε2wtt +w2

xxx + δw2
xxt + ε4w2

ttt} dxdτ ,
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(5.61)∫ ∞
−∞

(
ε6w2

ttt + ε4w2
xtt(t, x)

)
dx+ ε4

∫ t

0

∫ ∞
−∞

w2
ttt dxdτ

≤
∫ ∞
−∞

(
ε6w2

xtt(0, x) + ε4w2
xxt(0, x)

)
dx

+ C

∫ t

0

∫ ∞
−∞

{
w2
x + w2

t + δw2
xx + ε2w2

xt + ε4wtt + ε2w2
xxt + ε4w2

xtt + ε5w2
ttt

+ ε8
( f̄1vv

f̄1v

)2
z2
tt + ε8

(f1vv

f1v
− f̄1vv

f̄1v

)2
z2
tt

}
dxdτ ,

We obtain, from (5.53)–(5.61) and (5.39)–(5.48), that there exists ε0 > 0 such
that, when 0 < ε ≤ ε0,

B(t) + C(t) ≤ C(B0)D0 ,

where

(5.62) D0 = ‖(wε0, zε0)‖2H3 +
1
ε2

(
f̄1vv

f̄1v

)2

‖zε0 −
e(ū+ εwε0)− e(ū)

ε
‖2L2(R) ,

and C(B0) is the constant depending only on B0. Choose C0 > 0 sufficiently
small that, when D0 ≤ C0,

C(B0)D0 ≤ B0 .

Then we do have
B(t) ≤ B0 ,

as we assumed a priori.

Using above estimates, we have from (5.23)

(5.63) ‖
∑

i,j=0,i+j≤3

ε2i∂it∂
j
x(w, εiz)‖2L2 ≤ B0 .

The classical theory ensures the local solutions for the Cauchy problem (5.18)–
(5.19). The energy estimates (5.63) enable us to extend the local solutions to
the global solutions and

(wε, zε) ∈ H3(R2
+) .

This completes the proof of Theorem 5.1.

The condition (5.20) in Theorem 5.1 can be removed provided that the flux
function f1(u, v) satisfies the following condition (5.64).
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Theorem 5.2. Suppose that f1(u, v) satisfies

(5.64) f1vv(ū, v̄) = 0 ,

on the equilibrium state (ū, v̄) = (ū, e(ū)). Then there exist constants
ε0 > 0 and C0 > 0 independent of ε such that if (5.20) holds, there
exists a unique global solution (wε, zε) ∈ H3 for the Cauchy problem
(5.18)–(5.19) (also (5.1)–(5.2)) such that (5.22) still holds.

In fact, the condition (5.64) ensures

D0 = ‖(wε0, zε0)‖H3

in (5.62). The results follows.

Remark. The condition (5.64) is satisfied by many physical examples such as
the elasticity model (see [8]) and the p-system (1.18).

Theorem 5.3. Suppose that the functions (wε, zε) are solutions of
the Cauchy problem (5.18)–(5.19) uniquely determined by Theorem
5.1 and Theorem 5.2. Then there exists a subsequence (still denoted)
(wε(t, x), zε(t, x)) strongly converging to (w(t, x), z(t, x)) in L2:

(wε(t, x), zε(t, x)) −→ (w(t, x), z(t, x)) ∈ L2 ,

and the limit function (w(t, x), z(t, x)) satisfies the Burgers equation:

z(t, x) = e′(ū)w(t, x) ,

r̄v
(
wt + λ̄′

(1
2w

2)
x

)
+ λ̄−λ̄+wxx = 0 .

Proof. Notice that the sequence (wε(t, x), zε(t, x)) satisfied the estimates (5.22):∫ t

0

∫ ∞
−∞

{ ∑
i,j=1,i+j≤3

ε2(i−1)|∂it∂jx(wε, εizε)|2(τ, x)
}
dxdτ ≤ C .

Using the estimates (5.22), we obtain from (5.27)

(5.65)
r̄uw + r̄vz = oε(1) −→ 0 ,

wt + λ̄
(1

2w
2)
x

+ λ̄−λ̄+wxx = oε(1) −→ 0, as ε→ 0 .
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Notice that
‖wε‖H1(R2

+)

are uniformly bounded with respect to ε. Using the Sobolev embedding theorem,
we obtain that there exists a subsequence (still denoted) wε converging strongly
in L2:

wε(t, x) −→ w(t, x) ∈ H1 .

Using the estimate (5.29), we conclude that zε strongly converges in L2:

zε(t, x) −→ e′(ū)w(t, x) .

Taking ε goes to zero in the equality (5.65), we finally have that the limit
function (w(t, x), z(t, x)) satisfies

z(t, x) = e′(ū)w(t, x),

r̄v
(
∂tw + λ̄′∂x

( 1
2w

2))+ λ̄−λ̄+∂xxw = 0 .

This completes the proof of Theorem 5.3.
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