
DECAY OF ENTROPY SOLUTIONS OF

NONLINEAR CONSERVATION LAWS

GUI-QIANG CHEN & HERMANO FRID

Dedicated to Peter D. Lax and Louis Nirenberg
On the Occasion of Their 70th Birthdays

1. Introduction

We are concerned with the asymptotic behavior of entropy solutions of nonlinear
conservation laws. The main objective of this paper is to present an analytical
approach and to explore its applications to studying the large-time behavior of
periodic entropy solutions of hyperbolic conservation laws.

The asymptotic decay of periodic solutions of nonlinear hyperbolic conserva-
tion laws is an important nonlinear phenomenon. It is observed that the genuine
nonlinearity of equations forces the waves of each characteristic family to interact
vigorously and to cancel each other. The insightful analysis of Glimm-Lax [GL],
for scalar equations and 2 × 2 systems, has indicated that the resultant mutual
cancellation of interacting shock and rarefaction waves of the same family induces
the decay of periodic solutions. Such a result was first shown by Lax [L1] in 1957
for one-dimensional convex scalar conservation laws. Dafermos [D1], applying his
uniform processes, proved the decay result for the case that the set of inflection
points of the flux does not have an accumulation point. The Glimm-Lax theory
[GL] indicates that, for 2× 2 strictly hyperbolic and genuinely nonlinear systems,
any periodic Glimm solution decays like O(1/t). This result was proved by using
the approximate characteristic method in the Glimm difference solutions, provided
that the oscillation of the corresponding initial data is small. Recently, using the
method of generalized characteristics, Dafermos [D3] showed that any periodic so-
lution with local bounded variation and small oscillation for 2 × 2 systems decays
asymptotically, with the same detailed structure pas found by Lax [L1] for the
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scalar case. Also see Engquist-E [E] for the decay of periodic solutions with local
bounded variation for the two-dimensional scalar conservation laws.

In this paper we develop an analytical approach and study the decay problem
for L∞ periodic solutions of hyperbolic conservation laws. The approach we de-
velop here is motivated by some essential features of the underlying conservation
laws, such as scale-invariance and compactness. The goal of this effort is to prove
the decay of L∞ periodic entropy solutions in any Lp norm, 1 ≤ p < ∞, in a
general framework for (a) any large L∞ periodic solutions without restrictions of
either small oscillation or local bounded variation and (b) more general nonlinear
hyperbolic systems, especially including hyperbolic systems with degeneracy and
multidimensional scalar conservation laws. Our main observation is that the com-
pactness of an L∞ solution operator in L1

loc coupling with the weak convergence of
the periodic initial data to its mean yields the decay of the L∞ periodic solution;
and, for hyperbolic systems endowed with a strictly convex entropy, the decay is
actually in any Lp norm, 1 ≤ p <∞.

In Section 3, we introduce an analytical approach to study the large-time behav-
ior of periodic entropy solutions and discuss the relation between the decay problem
and several main features of hyperbolic conservation laws such as scale-invariance
of equations and compactness of solution operators.

Then we apply this approach to the decay problem for largeL∞ periodic solutions
of multidimensional scalar conservation laws in Section 4 and for hyperbolic systems
of conservation laws in Section 5. In §5.1, we first consider 2× 2 strictly hyperbolic
and genuinely nonlinear systems and the equations of elasticity, a system with
reflection points of genuine nonlinearity. In particular, we prove that any periodic
solution of the equations of elasticity decays in any Lp norm, provided that the
stress-strain function σ is in C2, in contrast with the counterexample of Greenberg-
Rascle [GR] when σ is only allowed to be in C1. Then we study the decay problem
for the Euler equations for isentropic flow of compressible fluids, a prototype of
hyperbolic systems with parabolic degeneracy, in §5.2, and hyperbolic systems with
umbilic degeneracy, an example of hyperbolic systems with hyperbolic degeneracy,
in §5.3. In §5.4, we study the large-time behavior of entropy solutions of the 3 × 3
Euler system of thermoelasticity, an example of hyperbolic systems with linear
degeneracy. Our result indicates for such systems that, although periodic solutions
do not decay in general, some important quantities from the solutions, such as
velocity, pressure, and temperature, do asymptotically decay.

In Section 6, we consider the asymptotic decay of periodic solutions for hyper-
bolic conservation laws with relaxation. We show how to extend the approach and
techniques developed in Sections 3-5 to this type of systems. We then apply our
framework and the compactness results in [CL1,CL2] to establishing the asymptotic
decay of periodic solutions for three physical systems with relaxation.

The same decay results can be obtained for the corresponding conservation laws
with viscosity in a straightforward manner. The ideas and techniques developed
here have been applied to the asymptotic stability of Riemann solutions for con-
servation laws (cf. [CF2,CF3]). Some results of this paper were announced in
[CF1].
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2. Entropy and Periodic Solutions

In this section, we review some basic preliminaries for subsequent developments.
For more details, see [L2,Sm].

Consider the Cauchy problem for a hyperbolic system of conservation laws:

∂tu+∇x · f(u) = 0, u ∈ Rm, x ∈ Rn,(2.1)

u
∣∣
t=0 = u0(x),(2.2)

where f : Rm → (Rm)n is a nonlinear mapping. The condition of hyperbolicity
requires that, for any wave number ξ ∈ Sn−1, the matrix ξ · ∇f(u) have m real
eigenvalues and left (right) eigenvectors. For the one-dimensional case, system
(2.1) is called strictly hyperbolic if the Jacobian ∇f(u) of f has m real and distinct
eigenvalues, λ1(u) < · · · < λm(u), and thus has m linearly independent right and
left eigenvectors rj = rj(u) and lj = lj(u):

(2.3) ∇f(u)rj(u) = λj(u)rj(u), lj(u)∇f(u) = λj(u)lj(u).

The jth characteristic field is genuinely nonlinear or linearly degenerate in the sense
of Lax [L2] if

(2.4) rj · ∇λj 6= 0 or rj · ∇λj ≡ 0.

That is, the jth eigenvalue changes monotonically or remains constant along the
jth characteristic field for the genuinely nonlinear case or the linearly degenerate
case, respectively.

It is well known that the Cauchy problem (2.1)–(2.2) does not, in general, have
globally defined smooth solutions because the eigenvalues are nonlinear; hence only
discontinuous solutions may exist in the large. One of the main features of conser-
vation laws is that uniqueness is lost within the class of the discontinuous solutions
in the sense of distributions; many weak solutions may share the same initial data.
Thus, the problem arises of identifying an appropriate class of weak solutions, en-
tropy solutions, to single out physically relevant solutions.

Definition 2.1. A function η : Rm → R is called an entropy of (2.1) if there
exists q : Rm → Rn such that

(2.5) ∇qk(u) = ∇η(u)∇fk(u), k = 1, 2, · · · , n.

The function q(u) is called the entropy flux associated with the entropy η(u), and
the pair (η(u), q(u)) is called the entropy pair. The entropy η(u) is convex on the
domain K ⊂ Rm if the Hessian matrix ∇2η(u) ≥ 0, for u ∈ K. The entropy is
strictly convex on the domain K if ∇2η(u) > 0, for u ∈ K.

Consider a 2 × 2 strictly hyperbolic system with globally defined Riemann in-
variants wj , j = 1, 2. The Riemann invariants wj : R2 → R satisfy

∇wj(u)∇f(u) = λj(u)∇wj(u), j = 1, 2,
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and hence diagonalize system (2.1), for smooth solutions, into

∂twj + λj∂xwj = 0, j = 1, 2.

Lax’s theorem [L3] indicates for such a system that, given any bounded domain
K b R2, there exists a strictly convex entropy pair (η(u), q(u)) on the domain K.
That is,

∇2η(u) ≥ cK > 0, u ∈ K.

For m ≥ 3, system (2.5) is overdetermined, thereby generally preventing the ex-
istence of nontrivial entropies. Friedrichs-Lax [FL] observed that most of the sys-
tems of conservation laws that result from continuum mechanics are endowed with
a globally defined, strictly convex entropy. Systems endowed with a rich family of
entropies were described by Serre [S2].

Definition 2.2. A function u(x, t) ∈ L∞(Rn+1
+ ),Rn+1

+ ≡ Rn× [0,∞), is called
an entropy solution of (2.1)-(2.2), if, for any convex entropy pair (η, q) of (2.1)
and any nonnegative function φ(x, t) ∈ C1

0 (Rn+1
+ ),

(2.6)
∫ ∞

0

∫
Rn

{
η(u)φt + q(u) · ∇xφ

}
dxdt+

∫
Rn

η(u0(x))φ(x, 0) dx ≥ 0.

In particular,
∂tη(u) +∇x · q(u) ≤ 0

in the sense of distributions over R× (0,∞).

If we take η(u) = ±u, we see that any entropy solution satisfies

(2.7)
∫ ∞

0

∫
Rn

{
uφt + f(u) · ∇xφ

}
dxdt +

∫
Rn

u0(x)φ(x, 0) dx = 0,

for any function φ(x, t) ∈ C1
0 (Rn+1

+ ).

Definition 2.3. An entropy solution u(x, t) ∈ L∞(Rn+1
+ ; Rm) is called a peri-

odic solution of (2.1) in x ∈ Rn with period P = Πn
i=1[0, pi] if, in addition to (2.6),

for any continuous function h : Rm → R,

(2.8)
∫ ∞

0

∫
Rn

h(u(x+ piei, t))φ(x, t)dxdt =
∫ ∞

0

∫
Rn

h(u(x, t))φ(x, t)dxdt,

for any test function φ(x, t) ∈ C∞0 (Rn+1
+ ) and all i = 1, · · · , n, where ei is the ith

element of the canonical basis of Rn.

3. Scale-Invariance, Compactness, and Decay of Solutions

In this section we introduce an analytical approach to study the asymptotic
decay of entropy solutions of hyperbolic conservation laws via scale-invariance and
compactness properties of the underlying equations (2.1).
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Let u(x, t) be an entropy solution of (2.1)-(2.2), periodic in x ∈ Rn, with period
P = Πn

i=1[0, pi] ⊂ Rn and periodic initial data:

(3.1) u0(x+ piei) = u0(x), i = 1, . . . , n.

3.1. Notion of Decay via Scale-Invariance

Consider the self-similar scaling sequence of the solution u(x, t):

(3.2) uT (x, t) = u(Tx, T t).

One of the main features of hyperbolic conservation laws (2.1) is the scale-invariance
in the sense that the self-similar scaling sequence uT (x, t) also satisfies (2.1).

Definition 3.1. The periodic solution u(x, t) of the Cauchy problem (2.1)-(2.2)
asymptotically decays to ū provided that

(3.3) ‖uT − ū‖Lp
loc

(Rn+1
+ ) → 0, when T →∞, for some p ∈ [1,∞).

Because of the self-similar structure of uT (x, t), the limit in Definition 3.1 can
be translated in terms of decay along the rays x/t = ξ, ξ ∈ Rn, emanating from
the origin in the (x, t)-plane. Actually, Definition 3.1 is equivalent to the following
notion (also see [CF1]).

Definition 3.2. The periodic solution u(x, t) = U(x/t, t) of the Cauchy problem
(2.1)-(2.2) with respect to the space variable x asymptotically decays to ū provided
that, for some p ∈ [1,∞),

(3.4)
1
T

∫ T

0
|U(ξ, t)− ū|pdt→ 0, in L1

loc(R
n
ξ ), when T →∞.

Therefore, the geometrical interpretation of Definition 3.1 is the decay of the
periodic solution u(x, t) along rays x/t = ξ, ξ ∈ Rn, in the sense of (3.4). The
equivalence between Definitions 3.1 and 3.2 may be seen from the following propo-
sition.

Proposition 3.1. The limit (3.4) is equivalent to

(3.5)
n+ 1
Tn+1

∫ T

0
|U(ξ, t)− ū|ptndt→ 0, in L1

loc(R
n
ξ ), when T →∞,

provided that there exists C > 0, independent of ξ, such that

(3.6) lim sup
T→∞

1
T

∫ T

0
|U(ξ, t)− ū|pdt ≤ C.
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Furthermore, (3.5) is equivalent to (3.3).

Proof. The limit (3.4) is clearly stronger than (3.5). It suffices to show that
the limit (3.4) is a corollary of (3.5)-(3.6). For any sufficiently large N ,

1
T

∫ T

0
|U(ξ, t)− ū|pdt =

1
T

∫ T
N

0
|U(ξ, t)− ū|pdt+

1
T

∫ T

T
N

|U(ξ, t)− ū|pdt

≤ 1
N

(
N

T

∫ T
N

0
|U(ξ, t)− ū|pdt

)
+

Nn

n+ 1

(
n+ 1
Tn+1

∫ T

0
|U(ξ, t)− ū|ptndt

)
.

Now, for any compact set K ⊂ Rn, using (3.5)-(3.6) and taking T →∞, we obtain

lim sup
T→∞

∫
K

(
1
T

∫ T

0
|U(ξ, t)− ū|pdt

)
dξ ≤ C|K|

N
,

for any sufficiently large N , where |K| denotes the measure of K. Then (3.4)
follows. The equivalence of (3.3) and (3.5) is obvious.

Under this notion of decay, if an L∞ periodic solution asymptotically decays
for some p0 ∈ [1,∞), it asymptotically decays for all p ∈ [1,∞). Definition 3.1 is
equivalent to 1

T

∫ T
0 ‖U(·, t)− ū‖p

Lp
loc

(Rn
ξ

)dt→ 0, when T →∞.

As we will show in this section, for systems endowed with a strictly convex
entropy, Definition 3.1 actually implies

esslim
t→∞

∫
P

|u(x, t)− ū|pdx = 0,

which is the classical sense of the asymptotic decay of periodic solutions for con-
servation laws.

Remark 3.1. Under this definition, the decay of periodic solutions is in the sense
of a long-time average. Set µT (t) = 1

T χ[0,T ](t)dt, which is a family of probability
measures. Then Definition 3.1 means that

(3.7) < µT , |U − ū|p > (ξ) −→ 0, in L1
loc(R

n
ξ ), when T →∞.

Such an average measure has been widely used to understand macroscopically the
asymptotic behavior of physical quantities in statistical mechanics, kinetic the-
ory, ergodic theory, and probability theory (see Boltzmann [Bo], Maxwell [Ma],
Birkhoff [Bi], Glimm-Jaffe [GJ], and Varadhan [Va]). We can extend these no-
tions to more general settings. A periodic solution asymptotically decays with a
family of probability measures µT (t) if the corresponding global entropy solution
u(x, t) = U(x/t, t), locally integrable in Rn+1

+ , satisfies∫ ∞
0
|U(ξ, t)− ū|pdµT (t)→ 0, in L1

loc(R
n
ξ ), when T →∞,
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for some p ∈ [1,∞), where the family of probability measures µT (t) satisfies

(3.8) supp µ(t) = {+∞},

for µ(t) = w − limµT (t) in the space of Radon measures over some compactifica-
tion for [0,+∞). It would be natural to develop such notions to understand the
asymptotic behavior of stochastic solutions of nonlinear conservation laws.

Remark 3.2. If the periodic solution is globally bounded in L∞, condition (3.6)
holds. In this case, the average measure sequence µT (t) = n+1

Tn+1χ[0,T ](t)tndt satisfies
(3.7)-(3.8).

Using the Dominated Convergence Theorem, we have

Remark 3.3. If any periodic solution u(x, t) = U(x/t, t) decays along almost
all rays x/t = ξ, ξ ∈ Rn, that is, 1

T

∫ T
0 |U(ξ, t) − ū|pdt → 0, a.e. ξ ∈ Rn, when

T →∞, then the periodic solution asymptotically decays in the sense of Definition
3.1.

3.2. Decay via Compactness
In this section we develop a general framework for the asymptotic decay of

periodic solutions of hyperbolic conservation laws. First we have the following
asymptotic decay theorem.

Theorem 3.1. Assume that u(x, t) ∈ L∞(Rn+1
+ ) is a periodic solution of (2.1)-

(2.2) and that its self-similar scaling sequence uT (x, t) is compact in L1
loc(R

n+1
+ ).

Then u(x, t) asymptotically decays to the mean of u0(x) over the period:

(3.9) ū ≡ 1
|P |

∫
P

u0(x)dx,

in the sense of Definition 3.1.

Proof. It suffices to show that the whole sequence uT (x, t) strongly converges
to ū in L1

loc(R
n+1
+ ). Since the self-similar scaling sequence uT (x, t) is compact in

L1
loc(R

n+1
+ ), then, for any subsequence of uT (x, t), there exists a further subsequence

uTk(x, t) converging to some function ū(x, t) ∈ L∞ ∩ L1
loc(R

n+1
+ ):

uTk(x, t)→ ū(x, t), in L1
loc(R

n+1
+ ), as k →∞.

Assertion 1. ū(x, t) = ū(t); that is, ū(x, t) does not depend on x.
It suffices to show that, for any y ∈ Rn,

(3.10) ū(x+ y, t) = ū(x, t),

for all (x, t) ∈ Rn+1
+ such that (x, t) and (x+ y, t) are both Lebesgue points of the

function ū. Indeed, in this case, given any two points (z, t) and (z′, t) at the same
time level such that both are Lebesgue points of ū, then ū(z, t) = ū(z′, t). Therefore,
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we can find a set of measure zero N ⊂ (0,∞) such that, for any t ∈ (0,∞)\N , the
function ū(·, t) is constant a.e. in Rn, and this is exactly the claim.

To prove (3.10), we first note that

Q = {l/Tk | l ∈ Z, k ∈N}n is dense in Rn.

It suffices to show that the set of the rational numbers { p/q | p, q ∈ Z } is a subset
of the closure of {l/Tk | l ∈ Z, k ∈ N}. Now, given p/q, q 6= 0, there exists rk,
|rk| < q, and integers mk such that Tk = mkq + rk. Pick lk = pmk. Then

lk/Tk −→ p/q, as k →∞.

Therefore, for any y ∈ Rn, there exist Tkj and yj = lj/Tkj ∈ Q such that

yj → y, uTkj (x+ yj , t) = uTkj (x, t), j →∞.

Then, for any test function φ(x, t), we have∫ ∞
0

∫
Rn

ū(x+ y, t)φ(x, t)dxdt =
∫ ∞

0

∫
Rn

ū(x, t)φ(x− y, t)dxdt

= lim
j→∞

∫ ∞
0

∫
Rn

uTkj (x, t)φ(x− yj , t)dxdt

= lim
j→∞

∫ ∞
0

∫
Rn

uTkj (x+ yj, t)φ(x, t)dxdt

= lim
j→∞

∫ ∞
0

∫
Rn

uTkj (x, t)φ(x, t)dxdt

=
∫ ∞

0

∫
Rn

ū(x, t)φ(x, t)dxdt,

where, in the fourth equality, we used the periodicity property as stated in Definition
2.3. This implies (3.10) for all (x, t) such that (x, t) and (x+y, t) are both Lebesgue
points of ū, which concludes Assertion 1.

Assertion 2. ū(t) = ū; that is, ū(x, t) is a constant.
Notice that the self-similar scaling sequence uT (x, t) still satisfies (2.6), espe-

cially (2.7). Taking the limit Tk → ∞, we see that (2.7) also holds for ū(t). In
(2.7), we pick a test function φ(x, t) = α(t)ζ(x) with α(t) satisfying α(0) = 1 and
approximating the characteristic function χ[0,τ ], for any given τ > 0, which is a
Lebesgue point of the function ū(t). We then arrive at

ū(τ)
∫

Rn

ζ(x) dx = ū(0)
∫

Rn

ζ(x) dx,

for any such τ > 0. This implies that ū(t) = ū ≡ ū(0).
Since u0(x) is periodic, it is well known that

u0(Tx) ⇀
1
|P |

∫
P

u0(x)dx ≡ ū, weak star in L∞,
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which concludes the proof of (3.9).
Since the limit is unique, the whole sequence uT (x, t) strongly converges to ū:

uT (x, t)→ ū, L1
loc(R

n+1
+ ), T →∞.

This completes the proof of Theorem 3.1. �

Now we show that the asymptotic decay of a periodic solution in the sense of
Definition 3.1 coupled with an entropy inequality implies the asymptotic decay of
the periodic solution in any Lp norm, 1 ≤ p <∞.

Theorem 3.2. Let system (2.1) be endowed with a strictly convex entropy η∗.
Then the asymptotic decay of an L∞ periodic entropy solution u(x, t) of (2.1)-(2.2)
to the mean ū of u0(x) over the period P in the sense of Definition 3.1 implies its
asymptotic decay in Lp, 1 ≤ p <∞:

(3.11) esslim
t→∞

∫
P

|u(x, t)− ū|pdx = 0, for any 1 ≤ p <∞.

Proof. We assume that P = [0, 1]n for simplicity. The periodic entropy solution
u(x, t) satisfies the entropy inequality (2.6) for the strictly convex entropy pair
(η∗(u), q∗(u)). In (2.6), we use

η∗(u, ū) = η∗(u)− η∗(ū)−∇η∗(ū)(u− ū) ≥ 0,

q∗(u, ū) = q∗(u)− q∗(ū)−∇η∗(ū)(f(u)− f(ū)).

For simplicity of notation, we set η(u) = η∗(u, ū) and q(u) = q∗(u, ū). By Definition
2.3 for the periodicity of u(x, t) in x, given smooth functions ρ(t) ∈ C∞0 (R+),
ζ1(x1),· · · , ζn(xn) ∈ C∞0 (R), we have

(3.12)
∫ ∞

0

∫
Rn

q(u(x+ ei, t))ρ(t)ζ1(x1) · · · ζn(xn) dx1 · · · dxi · · ·dxndt

=
∫ ∞

0

∫
Rn

q(u(x, t))ρ(t)ζ1(x1) · · · ζn(xn) dx1 · · · dxi · · · dxndt.

We assume that ai is a Lebesgue point of the functions∫ ∞
0

∫
Rn−1

q(u(x+ ei, t))ρ(t)ζ1(x1) · · ·\ζi(xi) · · · ζn(xn) dx1 · · · d̂xi · · ·dxndt,

and ∫ ∞
0

∫
Rn−1

q(u(x, t))ρ(t)ζ1(x1) · · ·\ζi(xi) · · · ζn(xn) dx1 · · · d̂xi · · · dxndt,
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when ρ, ζ1, · · · , ζ̂i, · · · , ζn run through a countable dense subset of C1
0 (R), where

the sign ̂ indicates the omitted part. Equality (3.12) then implies∫ ∞
0

∫
xi=ai

q(u(x+ ei, t))ρ(t)ζ1(x1) · · ·\ζi(xi) · · · ζn(xn) dx1 · · · d̂xi · · · dxndt

=
∫ ∞

0

∫
xi=ai

q(u(x, t))ρ(t)ζ1(x1) · · ·\ζi(xi) · · · ζn(xn) dx1 · · · d̂xi · · · dxndt,

for such ai, i = 1, · · · , n. Now, in (2.6), we choose φ(x, t) = ρ(t)ζ1(x1) · · · ζn(xn),
with ρ(t) and ζi(xi) as above, and make ζi(xi) approach the characteristic function
χ[ai,ai+1], i = 1, · · · , n. We then obtain

−
∫ ∞

0

∫
a+P

η(u(x, t))ρ′(t) dxdt ≤
∫
a+P

η(u0(x))ρ(0) dx,

where a = (a1, · · · , an) for ai, i = 1, · · · , n, as above. Using the Dominated Conver-
gence Theorem, we obtain that the above inequality holds for any a ∈ Rn and any
ρ in the countable dense set mentioned above. Using the Dominated Convergence
Theorem again, we realize that it holds for any nonnegative function ρ ∈ C1

0 [0,∞).
Now, we assume that 0 ≤ τ1 < τ2 are Lebesgue points of the functions∫

a+P
η(u(x, t)) dx

when a runs through a countable dense subset of Rn. Then we make ρ(t) =
ατ2(t) − ατ1(t), with ατ (t) = 1 −

∫ t
0 α(s − τ) ds, where α(t) stands for a Dirac

sequence, to arrive at

(3.13)
∫
a+P

η(u(x, τ2)) dx ≤
∫
a+P

η(u(x, τ1)) dx,

for all 0 ≤ τ1 < τ2, τ1, τ2 ∈ T , where meas ((0,∞)− T ) = 0. Again the Dominated
Convergence Theorem immediately implies that (3.13) holds for all a ∈ R, for
τ1, τ2 ∈ T .

Given T > 0, T ∈ T , we take all the right n-prisms given by x ∈ a + P , for
a ∈ Zn, and t ∈ [[rT ]/(2r), T ], in the interior of the cone {|x| ≤ rt, 0 ≤ t ≤ T}.
The number of such prisms is greater than [rT ]n. Using the periodicity of u(x, t),
inequality (3.13) with τ2 = T , which holds for a.e. t = τ1 ∈ (0, T ) over the period
P , and the strict convexity of the entropy η, we obtain that there exists c0 > 0,
independent of T , such that

(3.14)

1
Tn+1

∫ T

0

∫
|x|≤rt

η∗(u(x, t), ū)dxdt ≥ [rT ]n

Tn+1

∫ T

[rT ]
2r

∫
P

η∗(u(x, t), ū)dxdt

≥ [rT ]n

Tn+1

∫ T

[rT ]
2r

∫
P

η∗(u(x, T ), ū)dxdt

≥ c0
Tn+1T

n+1
∫
P

|u(x, T )− ū|2dx,
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where we used [a] as the largest integer less than or equal a.
Noting the uniform boundedness of the periodic solution, we have

(3.15)
1

Tn+1

∫ T

0

∫
|x|≤rt

η∗(u(x, t), ū)dxdt ≤ C1
1

Tn+1

∫ T

0

∫
|x|≤rt

|u(x, t)− ū|2dxdt

≤ C2
n+ 1
Tn+1

∫ T

0

∫
|ξ|≤r

|U(ξ, t)− ū|2tndξdt

→ 0, T → +∞.

Combining (3.14) with (3.15), we obtain∫
P

|u(x, T )− ū|2dx→ 0, when T →∞, T ∈ T .

The boundedness of the periodic solution and the Hölder inequality yield (3.11) for
all p ∈ [1,∞). This completes the proof of Theorem 3.2. �

Remark 3.4. The first part of the above proof can be given in a simpler way
with the aid of the theory of divergence-measure fields (see [CF4]).

Remark 3.5. In Theorem 3.1, we assume that the self-similar scaling sequence
uT (x, t) is compact in L1

loc(R
n+1
+ ). Such a compactness can be achieved by the

compensated-compactness method and other analytical techniques. See §3.3.

Remark 3.6. In Theorem 3.1, we assume the existence of a periodic solution
of (2.1)-(2.2), with periodic initial data. Such existence theorems of the Cauchy
problem for (2.1) with L∞ periodic data can be proved by using the compensated-
compactness method and, in some cases, the Glimm scheme for genuinely nonlinear
systems (see §3.3).

Remark 3.7. In Theorems 3.1-3.2, the assumption u(x, t) ∈ L∞(Rn+1
+ ) can be

replaced by u(x, t) ∈ Lq(Rn+1
+ ), q > 2. Then the asymptotic decay of an Lq periodic

entropy solution u(x, t) of (2.1)-(2.2), with period P , in the sense of Definition 3.1
in the L2 norm implies (3.11) for any p ∈ [2, q).

3.3. Compactness of the Self-Similar Scaling Sequence

Now we explore possible ways to obtain the L1
loc-compactness of the self-similar

scaling sequence uT (x, t). We first introduce the following embedding lemmas.

Lemma 3.1. Let 1 < q ≤ p < r ≤ ∞. Then

(compact set of W−1,q
loc (Rk)) ∩ (bounded set of W−1,r

loc (Rk))

⊂ (compact set of W−1,p
loc (Rk)).
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Lemma 3.2. The embedding of the positive cone of W−1,q(Ω) in W−1,p(Ω) is
completely continuous for p < q, for any Ω b Rk.

The proof of Lemma 3.1 can be found in [C1,DC1]. Lemma 3.2 is Murat’s
lemma [Mu1]. Lemma 3.1 says that the compactness in W−1,q

loc (Rk) coupled with
boundedness in W−1,r

loc (Rk) yields compactness in W−1,p
loc (Rk) for 1 < q ≤ p < r ≤

∞. Lemma 3.2 is used later for p ∈ [1,∞) and q =∞.

Theorem 3.3. Consider a hyperbolic system of conservation laws (2.1) with a
strictly convex entropy pair (η∗, q∗). Assume that the uniformly bounded sequence
uT (x, t) ∈ L∞(Rn+1

+ ) satisfies

(3.16) ∂tη(uT ) +∇x · q(uT ) ≤ 0

in the sense of distributions for any convex entropy pair (η, q) ∈ Λ, where Λ is a
linear space of entropy pairs of (2.1) including (η∗, q∗). Then

(3.17) ∂tη(uT ) +∇x · q(uT ) is compact in W−1,p
loc (Rn+1

+ ), p ∈ (1,∞),

for any entropy pair (η, q) ∈ Λ satisfying |∇2η(u)| ≤ Cη∇2η∗(u) when u ∈ K b Rm

for some Cη depending only on η and the compact set K.

Proof. Since the sequence uT (x, t) is uniformly bounded in L∞(Rn+1
+ ), then

µT∗ ≡ −div t,x(η∗(uT ), q∗(uT )) is a bounded subset of W−1,∞
loc (Rn+1

+ ).

Then Murat’s lemma (Lemma 3.2) indicates that

µT∗ is compact in W−1,p
loc (Rn+1

+ ), p ∈ (1,∞).

Analogously, for any convex entropy pair (η, q) ∈ Λ, (3.17) holds.
Next, using an idea in [C4], for any (not necessarily convex) entropy pair (η(u),

q(u)) ∈ Λ, satisfying |∇2η(u)| ≤ Cη∇2η∗(u), we use the fact that (η+Cηη∗, q+Cηq∗)
is a convex entropy pair. Setting

µTη ≡ −div t,x(η(uT ), q(uT )),

we then get that µTη +Cηµ
T
∗ is compact in W−1,p

loc (Rn+1
+ ). By linearity, we conclude

that (3.17) holds. �

Theorem 3.3 is useful for proving the compactness of the self-similar scaling
sequence uT (x, t) in Theorem 3.1 for the asymptotic decay of periodic entropy
solutions in L∞(Rn+1

+ ) for (2.1).
As a corollary, we can obtain the existence of L∞ solutions for the Cauchy

problem with arbitrary L∞ initial data (without the L2(R) assumption).
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Theorem 3.4. Consider the Cauchy problem (2.1)–(2.2) in one dimension with
a strictly convex entropy (η∗, q∗). Let system (2.1) satisfy the following conditions.

(i) For any L∞ (or BV ) initial data u0(x) such that u0(x) − ū has compact
support, for some ū, there always exists an L∞ entropy solution u(x, t) such
that

‖u‖L∞ ≤ C‖u0‖L∞,
where C depends only on the flux function f(u).

(ii) There exists a certain class Λ of entropy pairs such that
(a). For any (η, q) ∈ Λ,

|∇2η(u)| ≤ Cη∇2η∗(u),

where u ∈ K b Rm, for some Cη depending on η and K.
(b). For any uniformly bounded sequence uT (x, t), the condition that

∂tη(uT ) + ∂xq(uT ) is compact in H−1
loc (R2

+), for all (η, q) ∈ Λ,

implies the compactness of uT (x, t) in L1
loc(R

2
+).

Then there exists a global entropy solution for any L∞ initial data u0(x).

Proof. For any L∞ initial data u0(x), there exists an approximate sequence of
L∞ or BV functions uε0(x) such that{

uε0(x)− ū have compact support,
uε0(x) −→ u0(x) a.e.

Assumption (i) indicates that there exist L∞ entropy solutions uε(x, t) with
corresponding initial data uε0(x) satisfying

|uε(x, t)| ≤ C, C independent of ε,

∂tη(uε) + ∂xq(uε) ≤ 0, for any convex (η, q) ∈ Λ.

Following the proof of Theorem 3.3, we conclude that, for any entropy pair
(η, q) ∈ Λ,

∂tη(uε) + ∂xq(uε) is compact in H−1
loc (R2

+).

Assumption (ii) implies the compactness of uε(x, t) in L1
loc(R

2
+). That is, there

exists a subsequence of uε(x, t) converging to an L∞ function u(x, t) almost every-
where. Using the standard procedures, one can verify that the limit function u(x, t)
is an entropy solution with L∞ initial data u0(x) of arbitrarily large oscillation. �

The compactness of the self-similar scaling sequence uT (x, t) satisfying (3.17) in
Theorem 3.3 and assumption (ii) of Theorem 3.4 are corollaries of the compactness
of solution operators of hyperbolic conservation laws. The compactness of solution
operators can be achieved by the compensated-compactness method, the averaging
lemma, and other analytical techniques. The compensated-compactness method,
first introduced by Tartar [T] and Murat [Mu2] and a related observation by Ball
[B], is one of the efficient methods to achieve this.
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Theorem 3.5 [T]. Suppose that uT : R2
+ → Rm is a sequence of bounded

measurable functions

(3.18) uT (x, t) ∈ K, a.e.

for a bounded set K ⊂ Rm and that, for function pairs (ηi, qi), i = 1, 2,

(3.19) ∂tηi(uT ) + ∂xqi(uT ) is compact in H−1
loc (R2

+).

Then there exist a subsequence (still labeled) uT and Young measures νx,t(ω) ∈
Prob.(Rm) such that

(i) for any continuous function g, w∗ − lim g(uT ) =< νx,t(ω), g(ω) >, and

(3.20) < νx,t, η1q2 − η2q1 >=< νx,t, η1 >< νx,t, q2 > − < νx,t, η2 >< νx,t, q1 >;

(ii) uT (x, t)→ u(x, t) a.e. if and only if νx,t is a Dirac mass:

νx,t = δu(x,t), for almost all (x, t).

This theorem provides a framework by which one can prove strong convergence of
the sequence uT (x, t) satisfying (3.18)-(3.19), by deducing νx,t(ω) = δu(x,t)(ω) from
the functional relation (3.20), where δv denotes the Dirac measure concentrated in
v and u(x, t) = w∗ − limuT (x, t).

Remark 3.8. With the aid of Theorem 3.4, some existence theorems, obtained
by the compensated-compactness method with initial assumption u0(x) ∈ L∞ ∩
L2(R) and by the Glimm method with BV initial assumption, for systems with
bounded invariant regions, can be extended to the corresponding existence theorems
without such initial assumptions. That is, the existence theorems also hold for any
L∞ initial data for some systems. This extension can be achieved by approximating
L∞ initial data u0(x) ∈ L∞(R) by L∞ ∩ L2(R) or L∞ ∩ BV (R) in the sense of
convergence almost everywhere.

Such existence theorems for systems include 2 × 2 strictly hyperbolic and gen-
uinely nonlinear systems as well as the equations of elasticity [Di1,Di2], the Euler
equations for isentropic flow (see [DC1,DC2] for γ = 3/2, [C1,C2] for 1 < γ ≤ 5/3,
[LP2] for γ ≥ 3, [LP3] for 5/3 < γ < 3, and [CL] for a general pressure law), hy-
perbolic systems with umbilic degeneracy [CK1,CK2], the chromatography system
[JP], and the 3× 3 Euler system of thermoelasticity [CD].

Remark 3.9. Similar frameworks can be established for the corresponding con-
servation laws with viscosity in a straightforward manner.

Remark 3.10. The approach and ideas we developed above have been applied
to studying the large-time behavior of entropy solutions of hyperbolic conservation
laws with general initial data. See [CF2,CF3] for the details.

4. Multidimensional Scalar Conservation Laws
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In this section we study the asymptotic decay of entropy solutions of multidi-
mensional scalar conservation laws with periodic initial data:

(4.1)

{
∂tu+∇x · f(u) = 0, x ∈ Rn, t > 0,

u
∣∣
t=0 = u0(x),

where u ∈ R and f(u) = (f1(u), · · · , fn(u)) is a vector function in C2(R; Rn), and
u0(x) ∈ L∞(Rn) is a periodic function with period P = Πn

i=1[0, pi].
The existence of global entropy solutions of (4.1) is well-known when u0 ∈

L∞(Rn), which was first proved by Kruzkov [Kr] by improving an earlier result
of Volpert [Vo] for u0 ∈ BV (Rn). We now apply the approach established in
Section 3 to analyze the asymptotic behavior of periodic solutions.

Theorem 4.1. Assume that the flux function f(u) satisfies

meas { v ∈ R | τ + f ′(v) · k = 0 } = 0,

for any (τ, k) ∈ R×Rn, with τ2 + |k|2 = 1.(4.2)

Then any L∞ entropy solution operator is compact in L1
loc(R

n × (0, T )).

This theorem is due to Lions-Perthame-Tadmor [LP1]. A direct proof can be
found in [CF3].

Remark 4.1. Condition (4.2) is implied by the following generalized genuine
nonlinearity condition:

(4.3) meas{ v ∈ R | k · f ′′(v) = 0 } = 0, for all |k| = 1.

This is a consequence of the fact that the derivative of τ + k · f ′(v), viewed as a
function of v, i.e., k · f ′′(v), equals 0 a.e. on the set where τ + k · f ′(v) = 0, from
a well-known result of real analysis (see, e.g., [Ev]). As a simple example, when
n = 2, one easily verifies that the function f(v) = (|v|p+2, |v|q+2), with p 6= q,
p, q > 0, satisfies condition (4.3) and hence (4.2).

We then have the following immediate corollary of Theorem 4.1.

Corollary 4.1. Let u(x, t) be the entropy solution of (4.1) in Rn+1
+ . Assume

that u0(x) is periodic and the flux function f(u) satisfies (4.2). Then the self-similar
scaling sequence uT (x, t) = u(Tx, T t) is compact in L1

loc(R
n × (0,∞)).

Proof. Since u(x, t) ∈ L∞(Rn+1
+ ), then

‖uT ‖L∞ ≤ C <∞,

where C is a constant, independent of T .
Since u(x, t) is a periodic entropy solution, it satisfies

∂tη(u) +∇x · q(u) ≤ 0
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in the sense of distributions, for any convex entropy pair (η, q). Thus uT also
satisfies

∂tη(uT ) +∇x · q(uT ) ≤ 0,

which implies that uT (x, t) is a sequence of entropy solutions of (4.1) in Rn+1
+ with

oscillatory initial data u0(Tx). Theorem 4.1 implies the result we expected. �

Corollary 4.1 together with Theorems 3.1-3.2 yields the following decay result.

Theorem 4.2. Let u(x, t) be an entropy solution of (4.1) in Rn+1
+ with periodic

data u0(x). Assume that condition (4.2) holds. Then

esslim
t→∞

‖u(·, t)− 1
|P |

∫
P

u0(x)dx‖Lp(P ) = 0, for 1 ≤ p <∞.

5. Hyperbolic Systems of Conservation Laws

In this section, we study the asymptotic behavior of periodic entropy solutions
of hyperbolic systems (2.1) using the approach we developed in Section 3.

5.1. 2× 2 Strictly Hyperbolic Systems
Consider a 2× 2 strictly hyperbolic and genuinely nonlinear system of conserva-

tion laws

(5.1) ∂tu+ ∂xf(u) = 0, u ∈ R2,

with periodic initial data

(5.2) u|t=0 = u0(x) ∈ L∞(R).

We will show that any L∞ periodic entropy solution of such a system asymptot-
ically decays in Lp, 1 ≤ p < ∞. We will assume neither the small oscillation and
the local bounded variation of the periodic solution nor further conditions on the
system.

Theorem 5.1. Let u(x, t) ∈ L∞(R2
+) be a periodic entropy solution of (5.1)-

(5.2) with period P . Then u(x, t) asymptotically decays to ū = 1
|P |
∫
P
u0(x)dx in

Lp, 1 ≤ p <∞, in the sense of (3.11).

Proof. From Theorems 3.1-3.2, it suffices to prove that the corresponding self-
similar scaling sequence uT (x, t) = u(Tx, T t) is compact in L1

loc(R
2
+). As in the

arguments in the proof of Corollary 4.1, the sequence uT (x, t) satisfies

(5.3) ‖uT ‖L∞ ≤ C <∞,

for a constant C, independent of T , and

(5.4) ∂tη(uT ) + ∂xq(uT ) ≤ 0
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in the sense of distributions for any convex entropy pair (η, q).
Lax’s theorem [L3] indicates that, for any 2×2 strictly hyperbolic and genuinely

nonlinear system, on any bounded domain in the u-plane, there exists a strictly
convex entropy pair (η∗, q∗). Then (5.3)-(5.4) imply that

∂tη(uT ) + ∂xq(uT ) is compact in H−1
loc (R2

+),

for any C2 entropy pair (η, q) from Theorem 3.4. Then DiPerna’s theorem [Di1]
and Theorem 3.5 imply the L1

loc-compactness of the self-similar scaling sequence
uT (x, t). This completes the proof with the aid of Theorems 3.1-3.2. �

The genuine nonlinearity condition of system (5.1) can be relaxed to allow some
reflection points. A typical example is given by the equations of elasticity:

(5.5)
{

∂tτ − ∂xv = 0,
∂tv − ∂xσ(τ) = 0, σ(τ) ∈ C2.

System (5.5) is strictly hyperbolic provided that σ′(τ) > 0. However, the genuine
nonlinearity is typically precluded by the fact that the medium in question can
sustain discontinuities in both the compressive and expansive phases of the motion.
In the simplest model for common rubber, one postulates that the stress σ as a
function of the strain τ switches from concave in the compressive mode τ < 0 to
convex in the expansive mode τ > 0, that is, sign(τσ′′(τ)) > 0, τ 6= 0. For this case,
DiPerna’s existence theorem [Di1] implies the existence of an L∞(R2

+) periodic en-
tropy solution (τ(x, t), v(x, t)) with L∞ periodic initial data (τ0(x), v0(x)), following
the arguments in §3.3. Employing similar arguments in the proof of Theorem 5.1,
we have

Theorem 5.2. Let (τ(x, t), v(x, t)) ∈ L∞(R2
+) be a periodic entropy solution of

the equations of elasticity (5.5) with period P . Then (τ(x, t), v(x, t)) asymptotically
decays to (τ̄ , v̄) = ( 1

|P |
∫
P
τ0(x)dx, 1

|P |
∫
P
v0(x)dx) in Lp, 1 ≤ p < ∞, in the sense

of (3.11) with u(x, t) = (τ(x, t), v(x, t)).

Remark 5.1. For system (5.5) with σ(τ) /∈ C2, Greenberg-Rascle [GR] con-
structed a counterexample that the periodic solution (τ(x, t), v(x, t)) does not asymp-
totically decay in Lp, 1 ≤ p <∞. This fact indicates that the asymptotic behavior
of entropy solutions is sensitive to the regularity of the flux function of the corre-
sponding system.

5.2. Isentropic Euler Equations
Consider the Euler equations for isentropic flow of compressible fluids:

(5.6)

{
∂tρ+ ∂xm = 0,

∂tm+ ∂x(m
2

ρ + p(ρ)) = 0,

where ρ,m, and p are the density, the momentum, and the pressure, respectively. In
the non-vacuum state (ρ 6= 0), v = m/ρ is the velocity. The pressure p(ρ) is a given
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function of the density ρ depending on the compressible fluids under consideration.
For the polytropic case, p(ρ) = k2ργ , γ > 1.

Consider the Cauchy problem for (5.6) with the initial data

(5.7) (ρ,m)|t=0 = (ρ0(x),m0(x)), 0 ≤ ρ0(x) ≤ C0, |
m0(x)
ρ0(x)

| ≤ C0 <∞.

The main difficulty of this system is that strict hyperbolicity fails, the eigenvalues
coalesce, and the flux function is only Lipschitz continuous on the vacuum ρ = 0,
which cannot be avoided in general. This degeneracy is parabolic: ∇f(ρ,m) is not
diagonalizable. Nevertheless, a similar compactness theorem has been established
by using only weak entropy pairs, a subspace of entropy pairs, consisting of those
η vanishing on the vacuum ρ = 0 for any fixed m/ρ ∈ (−∞,∞). For example, the
mechanical energy-energy flux pair

(5.8) η∗ =
1
2
m2

ρ
+ ρ

∫ ρ

0

p(s)
s2 ds, q∗ = m

(
1
2
m2

ρ2 + ρ

∫ ρ

0

p′(s)
s

ds

)
is a convex weak entropy pair. One can prove that, for 0 ≤ ρ ≤ C, |m/ρ| ≤ C,

(5.9) |∇η(u)| ≤ Cη, |∇2η(u)| ≤ Cη∇2η∗(u),

for any weak entropy η, where the constant Cη is independent of u. For this system,
we have the following theorem.

Theorem 5.3. (a) There exists a global solution u(x, t) = (ρ(x, t),m(x, t)) of
the Cauchy problem (5.6)-(5.7), satisfying 0 ≤ ρ(x, t) ≤ C, |m(x, t)/ρ(x, t)| ≤ C,
for some C depending only on C0 and p, and

(5.10) ∂tη(u) + ∂xq(u) ≤ 0

in the sense of distributions for any convex weak entropy pairs (η, q).
(b) Suppose that the sequence uT = (ρT ,mT ) satisfies the following.
(1) There is a constant C > 0 such that

(5.11) 0 ≤ ρT (x, t) ≤ C,
∣∣mT (x, t)/ρT (x, t)

∣∣ ≤ C.
(2) For all weak entropy pairs (η, q), the measure sequence

(5.12) ∂tη(uT ) + ∂xq(uT ) is compact in H−1
loc (R2

+).

Then the sequence (ρT (x, t),mT (x, t)) is compact in L1
loc(R

2
+).

This theorem was proved by DiPerna [Di2] for the case γ = 1 + 1
2m+1 ,m ≥ 2 an

integer, for L2∩L∞(R) initial data, by Ding-Chen-Luo [DC1] for the case γ = 3/2,
and by Chen [C2] for the general case 1 < γ ≤ 5/3 for usual gases with general L∞

initial data. This theorem was also proved for the case γ ≥ 3 by Lions-Perthame-
Tadmor [LP2] and for the case 5/3 < γ < 3 by Lions-Perthame-Souganidis [LP3].
Recently, this theorem was further proved by Chen-LeFloch [CL] for a general
pressure law p(ρ). With the aid of this theorem, we conclude the following.



DECAY OF ENTROPY SOLUTIONS OF NONLINEAR CONSERVATION LAWS 19

Theorem 5.4. Let (ρ(x, t),m(x, t)), 0 ≤ ρ(x, t) ≤ C, |m(x, t)/ρ(x, t)| ≤ C, be
a periodic entropy solution of (5.6)-(5.7) with period P . Then (ρ(x, t),m(x, t))
asymptotically decays to 1

|P |
∫
P

(ρ0(x),m0(x))dx in the sense of (3.11).

Proof. It suffices to prove that the corresponding self-similar scaling sequence
(ρT (x, t),mT (x, t)) = (ρ(Tx, T t),m(Tx, T t)) satisfies (5.11) and (5.12).

Condition (5.11) is trivial. From (5.10), we have that (ρT ,mT ) satisfy

∂tη(ρT ,mT ) + ∂xq(ρT ,mT ) ≤ 0

in the sense of distributions, for any convex weak entropy pair (η, q). Then, using
(5.9) and Theorem 3.3, we conclude that uT (x, t) satisfies (5.12). �

Remark 5.2. The same analysis can be applied to proving the asymptotic decay
of periodic solutions for the viscous system of isentropic gas dynamics:{

∂tρ+ ∂xm = ∂xxρ,

∂tm+ ∂x
(
m2

ρ + p(ρ)
)

= ∂xxm.

In this system the flux function is only Lipschitz continuous near the vacuum. The
standard energy estimates can not be used to obtain the results we expected for the
viscous case because the density is not uniformly bounded away from the vacuum
for t ∈ [0,∞). This case can be handled in the same fashion as the hyperbolic case
with the aid of our approach without further difficulty.

Remark 5.3. The same decay result is true for the chromatography system,
considered by James-Peng-Perthame [JP] with the same type of parabolic degener-
acy, by using our approach.

5.3. Hyperbolic Systems with Umbilic Degeneracy
Now we study the asymptotic behavior of entropy solutions for hyperbolic sys-

tems of conservation laws with hyperbolic degeneracy, that is, the Jacobian ∇f(u)
is diagonalizable. A typical example is the class of quadratic systems with umbilic
degeneracy:

(5.13) ∂tu+ ∂x(∇C(u)) = 0, u = (u1, u2) ∈ R2,

where

(5.14) C(u) =
1
2

(
1
3
au3

1 + bu2
1u2 + u1u

2
2),

and a and b are real parameters with a 6= 1 + b2.
This class of systems is generic in the following sense. Consider a hyperbolic

system of conservation laws ∂tu + ∂xf(u) = 0, u ∈ R2, with an isolated umbilic
point u0. That is, ∇f(u0) is diagonalizable, and there is a neighborhood N of u0
such that ∇fT (u) has distinct eigenvalues for all u ∈ N − u0, where

(5.15) ∇fT (u) = f(u0) +∇f(u0)(u− u0) +
1
2

(u− u0)>∇2f(u0)(u− u0).
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Take the Taylor expansion for f(u) around u = u0:

f(u) = ∇fT (u) + h.o.t.,

where h.o.t. represents the remainder. The flux function ∇fT (u) determines the
local behavior of the hyperbolic singularity near the umbilic point u0. Since ∇f(u0)
is diagonalizable, we can make a coordinate transformation to eliminate the linear
term from (5.15) and relabel u− u0 as u to obtain

(5.16) ∂tu+ ∂xQ(u) = 0,

where Q(u) = 1
2u
>∇2f(u0)u. From the normal form theorem in [SS], there is a

nonsingular linear coordinate transformation to transform system (5.16) into (5.13)-
(5.14) in which a and b are real parameters with a 6= 1 + b2.

It is easy to check that, as long as a 6= 1 + b2, λ1 = λ2 if and only if u = (0, 0)
so that (0, 0) is the unique umbilic point with hyperbolic degeneracy for (5.13)-
(5.14). Even so, a compactness theorem has been established by Chen-Kan [CK1]
by using C2 entropy pairs, especially at the umbilic point. A special entropy is
η∗(u) = u2

1+u2
2. In general, the entropy function η(u) may not be in C2 (see [CK1]).

However, anyC2 entropy can be controlled by η∗(u), that is, |∇2η(u)| ≤ Cη∇2η∗(u),
for any C2 entropy η.

More precisely, we consider the Cauchy problem (5.13)-(5.14) for the case a >
1 + b2:

(5.17) u|t=0 = u0(x), u0(x) ∈ R2
+ ≡ {u | u2 ≥ 0}, |u0(x)| ≤ C0 <∞.

Then we have the following theorem.

Theorem 5.5. (a) There exists a global solution u(x, t) of the Cauchy problem
(5.13) and (5.17) satisfying

(5.18) u(x, t) ∈ R2
+, |u(x, t)| ≤ C,

for some C depending only on C0, a, and b.
(b) The solution operator u(·, t) = Stu0(·), defined by (a), is compact in L1

loc(R×
(0,∞)).

This theorem is proved by Chen-Kan [CK1]. Using our approach and this com-
pactness theorem, we immediately have the following theorem.

Theorem 5.6. Let u(x, t) be a periodic entropy solution of (5.13) and (5.17),
a > 1 + b2, with period P satisfying (5.18). Then u(x, t) asymptotically decays to
ū = 1

|P |
∫
P
u0(x)dx in Lp, 1 ≤ p <∞.

Remark 5.4. The decay result is also true for system (5.13) with a ≤ 1 + b2.
For more details, see Chen-Kan [CK2].

Remark 5.5. Similarly, Theorem 5.6 can include the systems of the conjugate
type in Frid-Santos [FS1] and Rubino [Ru].
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Remark 5.6. The decay in Lp, 1 ≤ p < 2, in the sense of Definition 3.1, of
periodic entropy solutions of the system zt − (z̄γ)x = 0, with 1 ≤ γ < 2, which
approximate the complex Burgers’ equation with zero viscosity, zt− (z̄2)x = 0, can
be obtained from the compactness theorem established in [FS2] (see also [Fr1]).

5.4. 3× 3 Euler Equations in Thermoelasticity
We now consider hyperbolic systems of conservation laws with linear degener-

acy, that is, systems in which at least one characteristic field of the systems is
linearly degenerate. A typical example is the 3 × 3 system of Euler equations in
thermoelasticity:

(5.19)


∂tτ − ∂xv = 0,
∂tv + ∂xp = 0,
∂t(e+ 1

2v
2) + ∂x(vp) = 0,

where τ, v, p, and e denote respectively the deformation gradient (the specific vol-
ume for fluids, the strain for solids), the velocity, the pressure, and the internal
energy. Other relevant fields are the entropy s and the temperature θ. System
(5.19) is complemented by the Clausius inequality

(5.20) ∂ts ≥ 0,

which expresses the second law of thermodynamics.
We consider the following class of constitutive relations for the new state vector

(w, v, s) with the form

(5.21) τ = w + αs, p = h(w), e = −
∫ w

h(ω)dω + βs, θ = αh(w) + β,

where h is a smooth function with h′(w) < 0 satisfying

(5.22) h′′(w)− 4
αh′(w)2

αh(w) + β

{
> 0, if w < ŵ,

< 0, if w > ŵ,

and α and β are positive constants. Observe that equations (5.21) are compatible
with the thermodynamic relation

θ ds = de+ p dv.

The model (5.21) can be regarded as a “first-order correction” to the general con-
stitutive equations (see Chen-Dafermos [CD] for the details).

Consider the Cauchy problem for (5.19) with periodic initial data

(5.23) (w, v, s)|t=0 = (w0(x), v0(x), s0(x)),

satisfying

(5.24) |w0(x)| ≤ C0, |v0(x)| ≤ C0, s0(x) ∈Mloc(R),

and

(5.25) (w0(x), v0(x)) ∈ ΣC1 ≡ {(w, v) | − C1 ≤ v ±
∫ w

ŵ

√
−h′(ω)dω ≤ C1},

which contains only physically admissible states. In particular, if (w, v) ∈ ΣC1 ,
then θ = αh(w) + β > 0.



22 DECAY OF ENTROPY SOLUTIONS OF NONLINEAR CONSERVATION LAWS

Theorem 5.7. (a) There exists a global periodic distributional solution (w(x, t),
v(x, t), s(x, t)) for the Cauchy problem (5.19) and (5.23)-(5.25), satisfying

(w, v) ∈ L∞(R2
+), (s, st) ∈Mloc(R2

+), θ(w(x, t)) ≥ 0,(5.26)

|s|{[−cT0, cT0]× [0, T0]} ≤ CT 2
0 ,(5.27)

for any c > 0, T0 > 0, with C > 0 independent of T0, where |s| denotes the variation
measure associated with the signed measure s. Moreover, (w(x, t), v(x, t), s(x, t))
satisfies the entropy condition:

(5.28) ∂tη(w, v) + ∂xq(w, v) ≤ 0, st ≥ 0,

in the sense of distributions for any C2 entropy pair (η(v, w), q(v, w)) of the proto-
typical system

(5.29) ∂tw − ∂xv = 0, ∂tv + ∂xh(w) = 0,

for which the strong convexity condition holds:
(5.30)
θηww −αh′(w)ηw ≥ 0, θηvv +αηw ≥ 0, (θηww −αh′(w)ηw)(θηvv +αηw)− η2

wv ≥ 0.

(b) Assume that the sequence (wT (x, t), vT (x, t)) satisfies the following:

(1) There exists a constant C > 0 such that

(5.31) ‖(wT , vT )‖L∞ ≤ C.

(2) The sequence

(5.32) ∂tη(wT , vT ) + ∂xq(wT , vT ) ≤ 0 in the sense of distributions,

for any C2 convex entropy pair (η(w, v), q(w, v)) of system (5.29) satisfying
(5.30).

Then the sequence (wT (x, t), vT (x, t)) is compact in L1
loc(R

2
+).

This theorem was proved by Chen-Dafermos [CD] by using the vanishing viscos-
ity method and the arguments as in Section 3. Condition (5.30) is a strong version
of the convexity of entropy functions. In particular, the pair

η∗(w, v) =
1
2
v2 −

∫ w

h(ω)dω, q∗ = vh(w)

is a convex entropy pair satisfying (5.30).
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Theorem 5.8. Let (τ(x, t), v(x, t), s(x, t)), |v(x, t)| + |τ(x, t) − αs(x, t)| ≤ C,
be a periodic entropy solution of (5.19) and (5.23)-(5.25) with period P satisfying
(5.26)-(5.27). Then the velocity v(x, t) asymptotically decays to v̄ = 1

|P |
∫
P
v0(x)dx

in Lp, 1 ≤ p <∞. Moreover, the pressure p(w(x, t)) and the temperature θ(w(x, t))
decay to

p̃ = p

(
Θ−1(

1
|P |

∫
P

Θ(w0(x))dx)
)
, and θ̃ = θ

(
Θ−1(

1
|P |

∫
P

Θ(w0(x))dx)
)
,

in Lp, 1 ≤ p <∞, respectively, where Θ(w) = βw + α
∫ w

0 h(ω)dω.

Proof. Let (τT (x, t), vT (x, t), sT (x, t)) be the scaling sequence associated with
the periodic solution (τ(x, t), v(x, t), s(x, t)), where now the scaling of s(x, t) must
be taken in the sense of distributions. By using rescaling arguments, it is not
difficult to verify that (τT , vT , sT ) are also periodic solutions of (5.19) satisfying
(5.31)–(5.32). Using Theorem 5.7, we conclude that

(wT (x, t), vT (x, t)) is compact in L1
loc(R

2
+).

From the uniform boundedness of (wT , vT ), we have that there exists a subsequence
{Tk}∞k=1, Tk →∞ as k →∞, such that

(wTk (x, t), vTk(x, t))→ (w(x, t), v(x, t)), a.e. as k→∞.

Using the same arguments as in the proof of Theorem 3.1, we conclude that
the function (w(x, t), v(x, t)) depends only on t. Then, using the conservation of
momentum

∂tv + ∂xh(w) = 0

in the sense of distributions, we conclude that

v = v̄ ≡ 1
|P |

∫
P

v0(x)dx,

following the arguments in the proof of Theorem 3.1.
We now return to the equations in (5.19). For the limits in the sense of distri-

butions of (τT , pT , eT ), (τ̄ , p̄, ē), we get

∂tτ̄ = 0, ∂xp̄ = 0, ∂tē = 0.

This implies that
∂t(βw − αH(w)) = ∂t(βτ̄ − αē) = 0

in the sense of distributions, where H(w) = −
∫ w

0 h(w) dw. Hence, the function
Θ(w(x, t)) ≡ βw(x, t) − αH(w(x, t)) does not depend on t either. As in the proof
of Theorem 3.1, we obtain

Θ(w(x, t)) ≡ 1
|P |

∫
P

Θ(w0(x))dx.



24 DECAY OF ENTROPY SOLUTIONS OF NONLINEAR CONSERVATION LAWS

Since Θ′(w) = θ(w) > 0, Θ(w) is a monotone function. Therefore, w(x, t) also does
not depend on t. In fact, we have

w(x, t) = w̃ ≡ Θ−1(
1
|P |

∫
P

Θ(w0(x))dx).

Hence the same procedure as used in the proof of Theorem 3.2 yields

esslim
t→∞

∫
P

|(v(x, t) − v̄, w(x, t) − w̃)|pdx = 0, for any 1 ≤ p <∞.

The decay of p(w) and θ(w) follows from that of w. This completes the proof.

Remark. For the hyperbolic systems with symmetry, which are linearly degen-
erate, considered in [C3,C4], the decay of the quantity

√
u2

1(x, t) + · · ·+ u2
m(x, t)

can be achieved by using similar arguments as in the above proof.

6. Hyperbolic Conservation Laws with Relaxation

We are now concerned with the asymptotic behavior of entropy solutions of hy-
perbolic systems of conservation laws with relaxation mechanism, which is provided
by zero-order stiff terms with respect to a small parameter ε, the relaxation time:

∂tu+ ∂xf1(u, v) = 0,(6.1)

∂tv + ∂xf2(u, v) +
1
ε
r(u, v) = 0,(6.2)

where u ∈ Rm, v ∈ Rk, f1(u, v) ∈ Rm, and f2(u, v), r(u, v) ∈ Rk. Denote U =
(u, v), F = (f1, f2), and R = (0, r). Then system (6.1)–(6.2) may be rewritten as

∂tU + ∂xF (U) +
1
ε
R(U) = 0.

Intuitively, when the relaxation time ε goes to 0, equation (6.2) reduces to r(u, v) =
0, which can be solved as v = e(u). Then equation (6.1) becomes the following
conservation laws:

(6.3) ∂tu+ ∂xf(u) = 0, f(u) = f1(u, e(u)).

The main goal of this section is to develop the approach in Section 3 to study the
large-time behavior of solutions of (6.1)–(6.2).

Consider the Cauchy problem for system (6.1)–(6.2):

(6.4) (u, v)
∣∣
t=0 = (u0(x), v0(x)).

System (6.1)–(6.2) has the general form of nonhomogeneous systems of conservation
laws. Therefore, the concept of entropy and entropy flux for (6.1)–(6.2) is the same
as that of the homogeneous case: R ≡ 0. The difference here is that we are
interested in the existence of entropy functions that not only are convex but also
satisfy a dissipation condition. Specifically, if (Φ,Ψ) is a convex entropy pair for
(6.1)-(6.2), the dissipation condition is

(6.5) ∇Φ(U)R(U) ≥ c0(v − e(u))2,

for a certain constant c0 > 0.
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Definition 6.1. A bounded measurable function U(x, t) is called an entropy
solution of (6.1)–(6.2) and (6.4) if, for every convex entropy pair (Φ,Ψ) of (6.1)–
(6.2) and for any nonnegative φ ∈ C1

0 (R2
+), U(x, t) satisfies

(6.6)∫ ∞
0

∫ ∞
−∞
{Φ(U)φt+Ψ(U)φx−

1
ε
∇Φ(U)R(U)φ} dxdt+

∫ ∞
−∞

Φ(U0(x))φ(x, 0) dx ≥ 0.

If there exists a convex entropy satisfying the dissipation condition (6.5), on any
bounded domain Ω ⊂ R2

+, then one obtains

(6.7)
∫∫

Ω
(v − e(u))2 dxdt ≤ Cε,

by choosing an appropriate sequence of test functions in (6.6) converging to the
characteristic function of a suitable rectangle containing Ω, where C ≡ C(Ω, ‖U‖∞)
is independent of the parameter ε. In particular, this implies that, if a sequence
of entropy solutions (uε(x, t), vε(x, t)) of (6.1)–(6.2) and (6.4) is such that uε(x, t)
converges to some function u(x, t) in L1

loc when ε → 0, then vε(x, t) converges to
e(u(x, t)) in L2

loc, which means that u(x, t) is a weak solution of the Cauchy problem
for (6.3) with initial data u0(x), in the sense that

(6.8)
∫∫

ΠT
{u(x, t)φt + f(u(x, t))φx} dxdt+

∫ ∞
−∞

u0(x)φ(0, x) dx = 0,

for any φ ∈ C1
0 (R2

+). Equality (6.8) does not guarantee that u is an entropy
solution, which is what one needs to prove. The latter could be easily achieved from
the L1

loc–compactness of uε(x, t) and vε(x, t), if one proves that any convex entropy
η(u) for (6.3) could be extended, in a neighborhood of the equilibrium surface,
v = e(u), to an entropy Φ(u, v) for (6.1)–(6.2) in the sense that Φ(u, e(u)) = η(u)
such that

(6.9) ∇Φ(U)R(U) ≥ 0.

The problem of the local extendibility of convex entropy functions for (6.3) to
convex entropy functions of (6.1)–(6.2) satisfying (6.9) has been solved in [CL2] in
the case m = k = 1 under the assumption that (6.1) is strictly hyperbolic and its
eigenvalues λ1(U) and λ2(U) satisfy the stability condition:

(6.10) λ1(u, e(u)) < f ′(u) < λ2(u, e(u)), on v = e(u),

where f ′(u) = d
duf1(u, e(u)) = ∂uf1(u, e(u)) +∂vf1(u, e(u))e′(u). Another observa-

tion about (6.9) is that it also depends on the form of the relaxation term r(u, v).
A typical example is given by r(u, v) = v − e(u). For this particular example in
the case k = 1, it is then clear that the field −R(U) points toward the equilibrium
surface v = e(u) for all U outside this surface, as one would require for the stability
of the equilibrium surface with respect to the flow of

(6.11)
dU

dt
= −1

ε
R(U).



26 DECAY OF ENTROPY SOLUTIONS OF NONLINEAR CONSERVATION LAWS

The local stability of the equilibrium v = e(u) with respect to the flow generated
by (6.11) would be guaranteed for more general r(U) under the assumptions that
r(u, e(u)) = 0 and ∂vr(u, e(u)) > 0.

6.1. Frameworks
We now discuss how the frameworks, established in Sections 3-4, are developed

to study the large-time behavior of entropy solutions of (6.1)-(6.2). Our first ob-
servation is that, if (u(x, t), v(x, t)) is an L∞ solution of (6.1)–(6.2) and (6.4), the
self-similar scaling functions (uT (x, t), vT (x, t)) are L∞ solutions of the Cauchy
problems: {

∂tu
T + ∂xf1(uT , vT ) = 0,

∂tv
T + ∂xf2(uT , vT ) + T

ε r(u
T , vT ) = 0,

(6.12)

(uT , vT )
∣∣
t=0= (u0(Tx), v0(Tx)).(6.13)

The notion of asymptotic decay of periodic solutions of (6.1)–(6.2) under a per-
turbation evolved by the relaxation system (6.1)–(6.2) is a direct adaptation of the
notion for hyperbolic conservation laws.

Definition 6.2. We say that an L∞ periodic solution of (6.1)–(6.2) and (6.4)
with period P asymptotically decays to the equilibrium (ū, e(ū)) with ū = 1

|P |
∫
P
u0(x) dx,

if

(6.14) ‖(uT − ū, vT − e(ū))‖Lp
loc

(R2
+) → 0, as T →∞.

The limit (6.14) is equivalent to

(6.15)
1
T

∫ T

0
{|u(ξt, t)− ū|+ |v(ξt, t)− e(ū)|} dt→ 0, in L1

loc(Rξ) as T →∞.

Then, we have an analogous version of Theorem 3.1.

Theorem 6.1. Assume that (u(x, t), v(x, t)) ∈ L∞(R2
+) is a periodic solution

of (6.1)-(6.2) assuming periodic data (6.4), and that its self-similar scaling se-
quence (uT (x, t), vT (x, t)) is compact in L1

loc(R
2
+). Suppose also that there exists

a convex entropy for (6.1)-(6.2) satisfying the dissipation condition (6.5). Then
(u(x, t), v(x, t)) asymptotically decays to (ū, e(ū)) in the sense of Definition 6.2.

The proof is the same as that of Theorem 3.1. The only fact to be added is that
the existence of a convex entropy for (6.1)–(6.2) satisfying the dissipation condition
(6.5) guarantees the convergence of vT (x, t) to e(ū) in L1

loc. Once we prove the
convergence of uT (x, t) to ū in L1

loc, the proof follows from that for Theorem 3.1.
In the same way, we also obtain an analogous version of Theorem 3.2.

Theorem 6.2. Suppose that there exists a strictly convex entropy Φ(U) for
(6.1)–(6.2) satisfying (6.9) and

(6.16) ∂vΦ(u, e(u)) = 0, for any u ∈ Rm.
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Then the decay of an L∞ periodic entropy solution (u(x, t), v(x, t)) of (6.1)–(6.2)
and (6.4) with period P to (ū, e(ū)), in the sense of Definition 6.2, implies its decay
in Lp, 1 ≤ p <∞:

(6.17) esslim
t→∞

∫
P

{|u(x, t)− ū|p + |v(x, t) − e(ū)|p}dx = 0.

Proof. We notice that, given any strictly convex entropy for (6.1)–(6.2) sat-
isfying (6.9) and (6.16), we may define the quadratic function Φ(U, Ū) = Φ(U) −
Φ(Ū)−∇Φ(Ū )(U− Ū), which is also an entropy for (6.1) and satisfies (6.9) because
of (6.16), where Ū = (ū, e(ū)) is a certain equilibrium state. Furthermore, we have

C1|U − Ū |2 ≤ Φ(U, Ū) ≤ C2|U − Ū |2,

for certain positive constants C1 and C2. The proof then follows identically from
that of Theorem 3.2. �

To prove the compactness assumptions in Theorems 6.1-6.2 in the applications,
the compensated-compactness method is again one of the efficient methods. The
compactness results that we will use in these applications have been proved in
[CL1,CL2]; the L2(R) requirement on the initial data made in those papers can be
easily replaced by an L2

loc(R) requirement.

6.2. Applications
We focus on the case m = k = 1 so that (6.1)-(6.2) are 2× 2 systems and (6.3)

are one-dimensional scalar conservation laws.
6.2.1. p-System

We first consider the Cauchy problem for a model studied in [CL2]:

(6.18)
{

∂tu+ ∂xv = 0,
∂tv + ∂xp(u) + 1

ε (v − f(u)) = 0,

and

(6.19) (u, v)
∣∣
t=0 = (u0(x), v0(x)) ∈ O ⊂ R2.

We assume that p(u) is a C2 function satisfying p′(u) > 0, for any u ∈ R; p′′(u)u >
0, if u 6= 0; and f(u) is a C1 function satisfying meas{u| f ′′(u) = 0} = 0 and the
stability condition:

p′(u)− (f ′(u))2 ≥ 0.

We also assume that the functions p and f satisfy the following conditions.
(i) There exists an invariant region, containing O, under the flow given by the

parabolic regularization for (6.18) for any δ > 0,

(6.20)
{

∂tu+ ∂xv = δ∂2
xxu,

∂tv + ∂xp(u) + 1
ε (v − f(u)) = δ∂2

xxv.

(ii) There exists a strictly convex entropy of (6.18) satisfying Φv|v=f(u) = 0,
which is an extension of a convex entropy η(u) = Φ(u, f(u)) for the scalar
equation (6.3).
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Remark 6.1. Condition (6.20) holds, in particular, if p and f satisfy f(−u) =
f(u) and p(−u) = −p(u). Part (ii) is proved by using the extension result in [CL2],
which provides a neighborhood of the graph of f where one can define such a strictly
convex entropy possessing the required properties. Part (i) is proved by taking a
symmetric diamond-shape invariant region for the homogeneous parabolic system
((6.20) without the relaxation term), such that a symmetric pair of its vertices lies
on the graph of f . Its center of symmetry can be made the new origin by Galilean
invariance. The existence of an invariant region like that, for the homogeneous
(and, by construction, for the nonhomogeneous) parabolic system, is a well-known
fact. We choose such an invariant region so that its closure is contained in the
neighborhood given by the cited extension result. The stability condition ensures
the possibility of this construction.

Thus, as in [CL2], we first prove the existence of an L∞ solution of (6.18)-
(6.19) by showing the convergence of a subsequence of solutions of (6.18)-(6.19) in
L1

loc(R
2
+) with the aid of the compactness theorem in [Di1]. Moreover, using the

existence of the above mentioned convex entropy satisfying (6.5) exactly as that in
[CL2], we obtain the following compactness result.

Theorem 6.3. Let (u(x, t), v(x, t)) be an L∞ solution of (6.18)-(6.19), taking
values in a small region O around the origin obtained as above. Then the scaling
sequence (uT (x, t), vT (x, t)) is compact in L1

loc(R
2
+).

Now, from Theorems 6.1-6.3, we arrive at

Theorem 6.4. Let (u(x, t), v(x, t)) be an L∞ periodic solution of (6.18)–(6.19),
with periodic initial data in the neighborhood of the origin O obtained as above.
Then (u(x, t), v(x, t)) asymptotically decays to (ū, e(ū)), ū = 1

|P |
∫
P
u0(x) dx, in

any Lp norm, 1 ≤ p <∞.

6.2.2. Model for Viscoelasticity
Consider the following model for viscoelasticity studied in [CL1]:

(6.21)
{

∂tu+ ∂x(f(u)− v) = 0,
∂tv + 1

ε

(
v − (1− µ)f(u)

)
= 0,

where µ is a constant satisfying 0 < µ < 1. We assume that u and f(u) represent
nonnegative physical quantities and the function f is in C2[0,∞) satisfying

f(0) = 0, f ′(u) > 0, and (u− u∗)f ′′(u) > 0, for u 6= u∗,

for some u∗ > 0. For initial data (u0(x), v0(x)) in L∞(R) with u0(x) ≥ 0, one
can construct an entropy solution of (6.21) and (6.4) using the vanishing viscosity
method. One can check that the regions

ΣC = { (u, v) | 0 ≤ v ≤ C, f−1(v) ≤ u ≤ f−1(v + µC) }, C > (1− µ)f(u∗),

are invariant for system (6.21).
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To prove the L1
loc-compactness of the scaling sequence (uT (x, t), vT (x, t)), one

uses the compensated-compactness method as in [CL1]. Another important ingre-
dient in the proof of the L1

loc-compactness of the vanishing relaxation sequence of
solutions of (6.21) and (6.4) is the fact that, given any convex entropy for the scalar
conservation law obtained by setting v = (1−µ)f(u) in the first equation of (6.21),
one can always define a convex entropy for (6.21) that satisfies the dissipation con-
dition (6.5) and coincides with that entropy when v = (1 − µ)f(u), as shown in
[CL1]. From the compactness result proved in [CL1], one immediately obtains the
following theorem.

Theorem 6.5. Let (u(x, t), v(x, t)) be an L∞ solution of (6.21) and (6.4) tak-
ing its values in a region ΣC for sufficiently large C. Then the scaling sequence
(uT (x, t), vT (x, t)) is compact in L1

loc(R
2
+).

Applying Theorems 6.1-6.2 and 6.5, we obtain

Theorem 6.6. Let (u(x, t), v(x, t)) be an L∞ periodic solution of (6.21) and
(6.4) with initial data taking their values in a region ΣC for sufficiently large C.
Then (u(x, t), v(x, t)) asymptotically decays to (ū, e(ū)), ū = 1

|P |
∫
P u0(x) dx, in

Lp, 1 ≤ p <∞, where e(u) = (1− µ)f(u).

6.2.3. Model for Phase Transitions

When the stability condition (6.11) is not satisfied, the study of the zero relax-
ation limit becomes much more difficult. This is the case of the following simple
model for phase transitions studied in [CL1]:{

∂tu+ ∂x
(1+(µ−1)v

u

)2 = 0,

∂tv + 1
ε (v − e(u)) = 0.

Here, u represents a nonnegative physical quantity, v represents a physical quantity
satisfying 0 ≤ v ≤ 1, µ is a constant satisfying µ > 1, and e(u) is given by

e(u) =


0, for 0 < u < 1,
(u− 1)/(µ− 1), for 1 < u < µ,

1, for µ < u.

We can easily verify that the stability condition (6.11) is no longer valid; instead
we have the weaker condition λ1(u, e(u)) ≤ f ′(u) ≤ λ2(u, e(u)), where f(u) =
(1+(µ−1)e(u))/u. One way to compensate for the loss of stability in the vanishing
relaxation process caused by this marginal failure of condition (6.11) is to introduce
an artificial viscosity that is comparable to the relaxation parameter. This leads us
to the system

(6.22)

{
∂tu+ ∂x

(1+(µ−1)v
u

)2 = ε∂xxu,

∂tv + 1
ε (v − e(u)) = ε∂xxv.
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An important point concerning the parabolic system (6.22) is the existence of
bounded invariant regions. Specifically, one can easily verify that the regions

ΣC1,C2 = { (u, v) | 0 ≤ v ≤ 1, C1(1 + (µ− 1)v) ≤ u ≤ C2(1 + (µ− 1)v) },

with 0 < C1 < 1 < C2 < ∞, are invariant for (6.22), according to the principle
of invariant regions (see [Sm]). In particular, given initial data in ΣC1,C2 for some
C1 and C2 satisfying the above inequalities, one can find a solution of the Cauchy
problem (6.22) and (6.4) taking its values in ΣC1,C2 . The solution is smooth as
soon as t > 0. One then poses the question about the asymptotic decay of solutions
with periodic initial data under the perturbation evolved by the viscous-relaxation
system (6.22). As above, using the L1

loc-compactness of the vanishing relaxation-
dissipation sequence, proved in [CL1], and the results in §6.1, one obtains the
following results.

Theorem 6.7. Let (u(x, t), v(x, t)) ∈ ΣC1,C2 be a smooth solution of (6.22) and
(6.4). Then the scaling sequence (uT (x, t), vT (x, t)) is compact in L1

loc(R
2
+).

Theorem 6.8. Let (u(x, t), v(x, t)) be a smooth periodic solution of (6.22) and
(6.4) with initial data in a region ΣC1,C2. Then (u(x, t), v(x, t)) asymptotically
decays to (ū, e(ū)), ū = 1

|P |
∫
P u0(x) dx, in Lp, 1 ≤ p <∞.
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