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ABSTRACT. Some recent methods for solving second-order nonlinear partial
differential equations of divergence form and related nonlinear problems are
surveyed. These methods include entropy methods via the theory of divergence-
measure fields for hyperbolic conservation laws, kinetic methods via kinetic for-
mulations for degenerate parabolic-hyperbolic equations, and free-boundary
methods via free-boundary iterations for multidimensional transonic shocks
for nonlinear equation of mixed elliptic-hyperbolic type. Some recent trends
in this direction are also discussed.

1. INTRODUCTION

In this paper, we survey some methods, developed recently, for solving nonlinear
partial differential equations of divergence form—nonlinear conservation laws— and
related nonlinear problems. These equations take the following form:

(1.1) V- A(y,u,Du) + B(y,u, Du) =0, ueR™, yeR?,

where A : R* x R™ x R™*" — R™*" and B : R* x R™ x R™*" — R™ are given
mappings, and Du = (9y,u, . ..,0,u) € R™*™ for y = (y1,...,Yn)-

Although the form is very simple and easy to be written, many important non-
linear partial differential equations, arising from several areas of mathematics and
various sciences including physics, mechanics, chemistry, and engineering sciences
take this form.

Three of the most important classes of such partial differential equations are the

following:
(i) Hyperbolic Conservation Laws:
(1.2) du+Vy-flu)=0, uweR"y=(z)eR xR,

where f : R™® — R™*? is given. Examples of (1.2) include the Euler equations
for compressible fluids and various others models in fluid mechanics, geometry, and
dynamic systems [5, 20, 46, 47, 93, 101, 109).
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(ii) Degenerate Parabolic-Hyperbolic Equations:
(1.3) Ou + div, f(u) = divy (A(u)Dyu), uw€ER Yy = (t,z) € Ry x RY,

where f : R = R? and A : R — R¢X? are given. Such equations arise in multiphase
flows in porous media [28, 60], sedimentation and consolidation processes [21], and
numerical analysis [77, 78, 98].

(iii) Nonlinear Equations of Mized Elliptic-Hyperbolic Type:

(1.4) div(p(Du)Du) =0, u€Rz R,

where p : R? — R is given. The typical example is the Euler equations for steady
potential fluids, which consist of the conservation law of mass and the Bernoulli
law.

One of the main difficulties to solve these nonlinear partial differential equations
is the discontinuity of solutions. No matter how smooth the initial data and/or
the boundary data are, the solutions (u or Du) generally develop singularity and
become discontinuous functions in later time, which implies that the solutions are
not in the Sobolev spaces W*P, k = 1, or 2. In general, the solutions (u or Du) are
at most in BV, L*°, LP, and M, and should be understood to satisfy the equations
in the sense of distributions: For any ¢ € C§°(Q),

—/A(y,u,Du)-Dapdy+/ B(y,u, Du)pdy = 0.
Q Q

Across a discontinuity surface S of a weak solution, the solution and the surface
must satisfy the Rankine-Hugoniot condition:

[A(y,u, Du) - v]s = 0.

To ensure the uniqueness of solutions, one requires an additional entropy condition
to single out physical relevant solutions.

Other difficulties include concentration and cavitation which yield that solution
become measures, focusing and defocusing which exclude the boundedness of so-
lutions, and complex interactions among shock waves, rarefaction waves, contact
waves, vortices, boundaries, etc. which exhibit extremely complex behavior of so-
lutions.

Many traditional methods do not directly apply. New methods and ideas are
required in order to solve these difficulties.

In this paper, we will mainly discuss some methods, developed recently, for the
analysis of these major mathematical models. These methods include entropy meth-
ods via the theory of divergence-measure fields for hyperbolic conservation laws,
kinetic methods via kinetic formulations for degenerate parabolic-hyperbolic equa-
tions, and free-boundary methods via free-boundary iterations for multidimensional
transonic shocks for nonlinear equations of mixed elliptic-hyperbolic type. Most of
the materials we present in this paper are based on the results in Chen-Frid [33, 34],
Chen-Perthame [42], and Chen-Feldman [32].

This selection of topics is just an illustration of several examples of recent ac-
tivities and is by no means an exhaustive treatment of all the exciting progresses
that have been made in nonlinear partial differential equations of divergence form
in the recent period. Even for the methods that we describe here, much more could
be said about applications to other relevant problems.
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In Section 2, we discuss some entropy methods and related theory of divergence-
measure fields and present their applications to hyperbolic systems of conservation
laws. In Section 3, we present a kinetic method via kinetic formulations for non-
linear conservation laws through anisotropic degenerate parabolic-hyperbolic equa-
tions. In Section 4, we discuss a free boundary method via free boundary iterations
through a transonic shock problem. In Section 5, we discuss further methods and
current trends in nonlinear partial differential equations of divergence form.

2. ENTROPY METHODS AND DIVERGENCE-MEASURE FIELDS

In this section we discuss some entropy methods and related theory of divergence-
measure fields, developed recently in Chen-Frid [33], for hyperbolic systems of con-
servation laws and related nonlinear equations.

2.1. Hyperbolic Conservation Laws and Divergence-Measure Fields. One
of the simplest PDEs is perhaps the following transport equations:

(2.1) Op + 0y (vp) =0,

where v represents the velocity and p represents the density. Consider the Cauchy
problem:

(2.2) pli=o = po(x).

When v is a given constant velocity, then the solution of (2.1)—(2.2), p(t,x) =
po(x — vt), just transports the initial mass po(z) at the point x to the different
location x — vt at time t > 0, which keeps the same mass shape. However, when
v = v(t,x) is a given discontinuous function, then the solution of (2.1)—(2.2) may
become a unbounded discontinuous function or a measure, although the total mass
is always conserved.

Furthermore, in many physical situations, v = v(¢,x) is not a given function, it
is governed by some other equations. For example, in isentropic fluid dynamics,
the velocity v = v(t, z) is usually governed by the conservation law of momentum:

(2.3) B (pv) + 8z (pv* + po(p)) =0,

which, along with (2.1), forms the system of Euler equations for isentropic fluids.
When po(p) = 0, system (2.1) and (2.3) becomes the pressureless Euler equa-
tions. It has been shown that even the Riemann solutions of this system contain
d-measures, as the vanishing pressure limits (e.g. [15, 41, 58, 129]).
When po(p) = p? /7, there exist nonvacuum Riemann data such that the corre-
sponding Riemann solutions consist of two rarefaction waves and one intermediate
vacuum state. Under the Lagrangian coordinates (¢, y) with

yt(ta .’L') = p(ta IIS'), yw(ta .CL') = —(pU)(t, ZL"),
system (2.1) and (2.3) becomes
(2.4) O —0yv =0, Ow+0yp(r) =0, with p(r) =po(p), ™ =1/p.

Then the corresponding Riemann solutions of system (2.4) contain a weighted §-
measure concentrated at y = 0.

These simple examples of partial differential equations fit into the general frame-
work of hyperbolic systems of conservation laws (1.2).
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Definition 2.1. A function 5 : R™ — R is called an entropy of (1.2) if there exists
g :R™ — R? such that

(2.5) Var(u) = V)V fi(u), k=1,2,....d.

The function g(u) is called the entropy flux associated with the entropy n(u), and
the pair (n(u), g(u)) is called an entropy pair. The entropy pair (1(u), g(u)) is called
a convex entropy pair on the domain K C R™ if the Hessian matrix V?n(u) > 0,
for u € K. The entropy pair (n(u), q(u)) is called a strictly convex entropy pair on
the domain K if V2n(u) > 0 for u € K.

Friedrichs-Lax [68] observed that most of the systems of conservation laws that
result from continuum mechanics are endowed with a globally defined, strictly con-
vex entropy. Available existence theories show that solutions of (1.2) are generally
in the following class of entropy solutions.

Definition 2.2. A vector function u = u(¢, ) is called an entropy solution if
i) u(t,z) € MRy x R?), or LP(Ry. x R?),1 < p < oo;
ii) u(t, z) satisfies the Lax entropy inequality:

(26) 6t77(u(t7 '7:)) + V:c . q(u(t7 .’L')) S 0

in the sense of distributions for any convex entropy pair (1,q) : R — R x R? so
that n(u(t, z)) and ¢q(u(t,z)) are distributional functions.

Clearly, an entropy solution is a weak solution by choosing n(u) = +u in (2.6).

One of the main issues in conservation laws is to study the behavior of solutions
in this class to explore all possible information of solutions, including large-time
behavior, uniqueness, stability, and traces of solutions, among others. The Schwartz
lemma indicates from (2.6) that the distribution

om(u(t,z)) + Vg - q(u(t, z))

is in fact a Radon measure, that is, the field (n(u(t, z)), ¢(u(t, z))) is a divergence-
measure field:

(2.7) div(g,a) (n(u(t, ), g(u(t, ))) € M(Ry x RT).

It is clear that understanding more properties of divergence-measure fields can ad-
vance our understanding of the behavior of entropy solutions for hyperbolic conser-
vation laws and other related nonlinear equations by selecting appropriate entropy
pairs.

In general, divergence-measure fields (DM-fields, for short) are extended vec-
tor fields, including vector fields in LP and vector-valued Radon measures, whose
divergences are Radon measures. More precisely, we have

Definition 2.3. Let @ C R be open. For FF € LP(Q;RN), 1 < p < oo, or
F e M(;RY), set

|div () := sup{ (F, Vi) : 0 € CH(Q), lo(@)| <1, = € Q}.

For 1 < p < oo, we say that F' is an LP divergence-measure field over €, i.e.,
F e DM?P(Q), if

(2.8) ||F||DMP(Q) = ”F”LP(Q;RN) + |div F|(2) < oo.
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We say that F is an extended divergence-measure field over (2, i.e., F € DM*®®(Q),
if
(2.9) IF|lpages () = |F|(Q) + |div F|(2) < oo.

If F € DMP(Q) for any open set Q with @ € D C RV, we say F € DM?,_(D); and,
if F '€ DMe*t(Q) for any open set Q with Q € D C RN, we say F' € DM*(D).
We denote F' € DM(Q) either F € DMP(Q) or F € DM®**(Q). Here, for open
sets A, B C RN, the relation A € B means that the closure of A, A, is a compact

subset of B.

As we will see, these spaces under norms (2.8) and (2.9) are Banach spaces,
respectively. These spaces are larger than the space of vector fields of bounded
variation. The establishment of the Gauss-Green theorem, traces, and other prop-
erties of BV functions in the middle of last century (see Federer [64]) has advanced
significantly our understanding of solutions of nonlinear partial differential equa-
tions and nonlinear problems in calculus of variations, differential geometry, and
other areas. A natural question is whether the DM-fields have similar properties,
especially the traces and the Gauss-Green formula as for the BV functions. At a
first glance, it seems unclear.

First, observe that one cannot define the traces for each component of a DM
field over any Lipschitz boundary in general, as opposed to the case of BV fields.
This fact can be easily seen through the following example.

ExawmpLe 2.1: Clearly, F(z,y) = (sin(3%;),sin(z1;)) belongs to DM>®(R?). It
is impossible to define any reasonable notion of traces over the line x = y for the
component sin(;2)-

The following example indicates that the classical Gauss-Green theorem may
fail.

EXAMPLE 2.2: F(z,y) = (77, w2+y ») belongs to DM}, .(R?). As remarked in
Whitney [145], for Q = {(z,y) : 22 +y% < 1,y > 0},
/ divFdedy =0# [ F-vdH' =,
Q Gle!

if one understands F - v|sq in the classical sense.
ExamPLE 2.3: Let u € M. Then, for any bounded open interval I C R,
F(z,y) = (u(y),0) € DMH(I x R).
Some efforts for certain special cases have been made in generalizing the Gauss-

Green theorem, see [4, 6, 19, 125, 151, 152]. Also see [83, 84, 88, 116, 123, 134] for
related problems and references.

2.2. Basic Properties of Divergence-Measure Fields. Now we list some basic
properties of divergence-measure fields in the spaces DMP(2),1 < p < oo, and
DMet(Q).

Proposition 2.1. (i) Let {F};} be a sequence in DMP(QY) such that
(2.10) F;—~F L (GRY),  forl<p< oo,
(2.11) F; 5 F  L2(ORY), forp=cc.
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Then
IFlze(e) < limji_glgo I1F; e () |div F|(Q) < lim]_i_fgo |div F;|(Q2).

(ii) Let {F;} be a sequence in DM (Q) such that
F; —~F Mioe(RY).
Then
|[F|(Q) < limji_r}lgo |F;|(Q), |div F|(Q) < limjiilgo |div F;|(€).

This proposition immediately implies that the spaces DMP,1 < p < oo, and
DMe®t(Q) are Banach spaces under norms (2.8) and (2.9), respectively.

Proposition 2.2. Let {F};} be a sequence in DM(Q) satisfying
lim |div F};|(Q) = |div F|(£2)
j—oo

and one of the following three conditions:
F;—~F L? (GRY), for1<p< oo,
Fi5F  LE(%RY), forp=oo,
F; = F M (Q;RV).

Then, for every open set A C (Q,

(2.12) |div F|(AN Q) > lim sup |div F|(A N Q).

j—oo
In particular, if |div F|(0AN Q) =0, then
(2.13) |div F|(A) = lim |div F}|(A).
j—o0

We now use the so-called positive symmetric mollifiers w : RV — R satisfying
w(@) € C(RY), w(z) > 0, w(x) = w(lal), fyxw(z)ds = 1, supp w(x) C By =
{x e RN : |z| < 1}. We denote w.(z) = Nw(%) and F, = F * w,, that is,

(2.14) Fe(z) = N F(y)w(glc — y) dy = F(z +ey)w(y) dy.

RN 3 RN
Then F* € C®(A;RY) for any A € Q when ¢ is sufficiently small. We recall that,
for any f,g € L*(RN),

(2.15) fsgda::/ f9-dx.
RN RN

The following fact for DM fields is analogous to a well-known property of BV
functions.

Proposition 2.3. Let F € DM(). Let A € Q be open and |div F|(0A) = 0.
Then, for any p € C(Q; R),

lim {(div F*, pxa) =< div F, oxa > .
e—0

Furthermore, if F € DM®**(Q) and |F|(0A) = 0, then, for any ¢ € C(Q;RY),
lim < F*,oxa >=< F,oxa > .
e—0

Now we discuss some product rules for divergence-measure fields.
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Proposition 2.4. Let F = (Fy,...,Fn) € DM(Q). Let g € BV N L*(Q) be such
that 0,,9(x) is |F}j|-integrable, for each j =1,...,N, and the set of non-Lebesgue
points of Oy, 9(x) has |Fj|-measure zero; and g(x) is (|F| + |div F|)-integrable and
the set of non-Lebesgue points of g(x) has (|F|+ |div F|)-measure zero. Then gF €
DM(R) and

(2.16) div (gF) = gdivF + Vg - F.

In particular, if F € DM>(Q), gF € DM™>(Q) for any g € BV N L>®(); more-
over, if g is also Lipschitz over any compact set in (2,

(2.17) div(gF) =gdivF + F - Vg.

In fact, for F € DM™>(Q), one may refine the above result to yield that (2.17)
holds a.e. in a more general case, not only for local Lipschitz functions. In this
case, we must take the absolutely continuous part of Vg. For g € BV, let (Vg)ac
and (Vg)sing denote the absolutely continuous part and the singular part of the
Radon measure Vg, respectively. Then

Proposition 2.5. Given F' € DM>(Q) and g € BV (Q) N L>(Q), the identity
div(gF)=gdivF + F - Vg

holds in the sense of Radon measures in 2, where g is the limit of a mollified se-
quence for g through a positive symmetric mollifier, and F' - Vg is a Radon measure
absolutely continuous with respect to |Vg|, whose absolutely continuous part with
respect to the Lebesgue measure in Q coincides with F - (Vg)a. almost everywhere
in Q.

2.3. Normal Traces and the Gauss-Green Formula. We now discuss the gen-
eralized Gauss-Green theorem for D M-fields over Q C RY by introducing a suitable

definition of normal traces over the boundary 912 of a bounded open set with Lip-
schitz deformable boundary, established in [33].

Definition 2.4. Let Q C RV be an open bounded subset. We say that 99 is a
deformable Lipschitz boundary, provided that

(i) YV € 09Q, 37 > 0 and a Lipschitz map v : R¥N~! — R such that, after rotating
and relabeling coordinates if necessary,

Q ﬂQ(.’L‘,’f‘) = {y eRY : 7(:‘/15' - ayN—l) < yN}ﬂQ(x,r),
where Q(z,7) = {y € RY : |si —gs| <7, i=1,...,N};
(if) 3® : 90 x [0,1] — 2 such that ¥ is a homeomorphism bi-Lipschitz over its

image and ¥(w,0) = w for all w € 9. The map ¥ is called a Lipschitz deformation
of the boundary 0.

Denote 095 = T(90 x {s}), s € [0,1], and denote €25 the open subset of 2 whose
boundary is 9. We call ¥ a Lipschitz deformation of 9f2.

Remark 2.1. The domains with deformable Lipschitz boundaries clearly include
bounded domains with Lipschitz boundaries, the star-shaped domains, and the
domains whose boundaries satisfy the cone property. It is also clear that, if {2 is
the image through a bi-Lipschitz map of a domain Q with a Lipschitz deformable
boundary, then Q itself possesses a Lipschitz deformable boundary.

For DMP fields with 1 < p < oo, we have
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Theorem 2.1. Let F € DMP(Q), 1 < p < oo. Let @ C RN be a bounded
open set with Lipschitz deformable boundary. Then there exists a continuous linear
functional F - v|pq over Lip (0Q) such that, for any ¢ € Lip (RV),

(218) <F . I/|aQ,¢)aQ = <d1VF, ¢)Q +/QV¢ Fdx.

Moreover, let v : ¥(0Q x [0,1]) — RN be such that v(z) is the unit outer normal
to 0Qs at x € 09, defined for a.e. x € U(0Q x [0,1]). Let h: RY — R be the level
set function of 0, that is,

=

for xe RV —Q,
, for € Q—¥(0Q x[0,1]),
S, for € 0Q,,0<s<1.

h(z) =

[y

Then, for any ¥ € Lip (092),

(2.19) (F - voa, b)on = — lim - £(4) Vh - Fda,
520 S Jw(60x(0,s))
where E(1)) is any Lipschitz extension of 1 to all RV .
In the case p = 0o, the normal trace F - v|sq is a function in L>(0Q) satisfying
|F-v||pe(a0) < ClF||lL=(q), for some constant C independent of F'. Furthermore,
for any field F € DM>(Q),

(2:20) (F-v]oq, )on = esslim Yo U F.vdHNY,  for any ¢ € L}(Q).
§— BQS

Finally, for F € DMP(Q) with 1 < p < 00, F-v|aq can be extended to a continuous

linear functional over W'=1/P2(9Q) N L>°(8Q).

As indicated by Example 2.2, it is more delicate for fields in DM?! and DMe®*t,
Then we have to define the normal traces as functionals over the spaces Lip (v, 992)
with v > 1 (see Stein [137]). For 1 < v < 2, the elements of Lip (y,9) are
(N + 1)-components vectors, where the first component is the function itself, and
the other N components are its “first-order partial derivatives”. In particular, as
a functional over Lip (7y,0f)), the values of the normal trace of a field in DM!
or DM®® on 6N depend not only on the values of the respective functions over
00, but also on the values of their first-order derivatives over 0f2. To define the
normal traces for F € DM or DM?®*t, we resort to the properties of the Whitney
extensions of functions in Lip (7, Q) to Lip (7, RV ). We have the following analogue
of Theorem 2.1 which covers fields in DM' and DMe*t.

Theorem 2.2. Let F € DMY(Q) or DM (). Let Q@ C RN be a bounded
open set with Lipschitz deformable boundary. Then there exists a continuous linear
functional F-v|sq over Lip (v, 0%) for any v > 1 such that, for any ¢ € Lip (v, RY),
(2.21) (F - v]|oa, dloa = (div F, ¢)a + (F, Vd)q.

Moreover, let h : RY — R be the level set function as in Theorem 2.1; and, in
the case that F € DM (Q), we also assume that O, h is |F;|-measurable and
its set of non-Lebesgue points has |F;|-measure zero, i = 1,...,N. Then, for any
Y € Lip(v,09), v > 1,

1
(2.22) (F-v]aa,¥)oa = — ll_I}(l) g(F,g(iﬁ) Vh)w(s0x(0,s))»
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where (1) € Lip (v,RN) is the Whitney extension of 1) on 0Q to RV .

Remark 2.2. In general, for F € DM'(D) or DM®**(D), the normal traces
F - v|pq may be no longer functions. This can be seen in Example 2.2 for F' €
DM}, . (R?) with Q@ = {(z,y) : 2> +y* < 1,y > 0}, for which F - v|sq is a measure.

loc
As a corollary of the generalized Gauss-Green formula in DM we have

Proposition 2.6. Let Q C RN be a bounded open set with Lipschitz boundary and
F; € DM>(Q), F, € DM>®(RYN — Q). Then

(2:23) F(y) = {?E‘Zi e 6

belongs to DM (RY), and
I Fllpatee®ny < 1Fillpatse @) + | Fallppgo vy + 1 Fr-v—Fa vl poo sy KN~ (09).

Some entropy methods based on the theory of divergence-measure fields pre-
sented above have been developed and applied to solving various nonlinear problems
for conservation laws and related nonlinear equations. These problems especially
include (1) the stability of Riemann solutions, which may contain rarefaction waves,
contact discontinuities, and/or vacuum states, in the class of entropy solutions of
the Euler equations for gas dynamics in [34, 35, 44]; (2) the decay of periodic en-
tropy solutions for hyperbolic conservation laws in [34]; (3) Initial and boundary
layer problems for hyperbolic conservation laws in [43, 141]; (4) initial-boundary
value problems for hyperbolic conservation laws in [34]; and (5) nonlinear degener-
ate parabolic-hyperbolic equations in [22, 111].

One of the entropy methods is to identify Lyapunov-type functionals and employ
the Gauss-Green formula to establish the uniqueness and stability of entropy solu-
tions; see [34, 35, 44]. In this regard, some related Lyapunov-type functionals have
been identified for small BV solutions obtained by the Glimm scheme, the wave-
front tracking scheme, and the vanishing viscosity method; see Biachini-Bressan
[12], Bressan [17], Liu-Yang [107], LeFloch [96], and the references cited therein for
the details.

It would be interesting to apply the theory of divergence-measure fields to de-
velop more efficient entropy methods for solving more various problems in partial
differential equations and related areas whose solutions are only measures or LP
functions.

3. KINETIC METHODS AND KINETIC FORMULATIONS

In this section, we present a kinetic method, developed recently in Chen-Perthame
[42], for nonlinear conservation laws through anisotropic degenerate parabolic-
hyperbolic equations (1.3), that is,

Oru + divy f(u) = divy (A(u)Dyu), u€R,
where f: R — R? and A : R = R?*? with A(u)gxq > 0, symmetric, and hence

K
A(u) = (ai;(w)) = O oni(u)or; (u)).
k=1
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We assume
(3.1) f € Lip;, (R RY), op; € L5 (R; R).

Equation (1.3) and its variants model degenerate diffusion-convection motions
of ideal fluids and arise in a wide variety of important applications including two
phase flows in porous media and sedimentation-consolidation processes. There are
a large literature for the design and analysis of various numerical methods for such
equations. The well posedness for such equations has been in great demands not
only for the mathematical theory of degenerate parabolic equations, but also for
various applications.

When A(u) = 0, equation (1.3) is a scalar hyperbolic conservation law. The well
posedness in BV, L*°, and L' was established in [92, 93, 118, 142] and [55, 104].

When f(u) = 0, equation (1.3) is a degenerate parabolic equation. Many efforts
have been made, for example, see [18, 24, 51, 52] and the references cited therein.

When A(u) = o'(u)I,a'(u) > 0, the isotropic case, DiBenedetto [51] showed
the regularity of solutions, that is, a(u) € C. Only recently, the well-posedness
for the isotropic degenerate parabolic-hyperbolic equation was established for L*
solutions in bounded domain in [27] (also see [89]) and for unbounded solutions for
the Cauchy problem in [31]. Other early related references can been found in [73].

Similar to the argument in Section 2.1, we can derive the following entropy
inequality for v € L*: For any n(u),n" (u) > 0,

B n(u) + divy(q(u) — A(u)Den(u)) < —n"(u)(Dyu) " A(u)Deu <0,
which implies

—div(s.0) (1(w), q(w) — A(u)Dari(u)) = p € M.

Then the theory of divergence-measure fields and related entropy methods can nat-
urally be applied to studying solution behaviors of degenerate parabolic-hyperbolic
equations by using the nonnegativity of u.

The methods in Section 2 are based on the macroscopic setting for the macro-
scopic variables n(u) and g(u) — A(u)Dzn(u); the framework is very general and
can be applied to many important situations. However, in some cases, more de-
tailed information about the Radon measure p and the entropy pairs is very useful,
if available, for studying further behavior of solutions. In the last decade, kinetic
methods, along with kinetic formulations, have been developed for the hyperbolic
case, by exploring more information about the Radon measure and entropy pairs.
One of the basic ideas of kinetic methods is to explore some additional informa-
tion about the measure p, that is, microscopic or mescroscopic information, by
introducing an additional variable, usually the kinetic velocity variable. For the
hyperbolic case, see Lions-Perthame-Tadmor [104] and Perthame [121]. The main
motivation is that the Fuler equations for compressible fluids can be derived from
the Boltzmann equation.

Now we illustrate a kinetic method in Chen-Perthame [42] through establishing
the well-posedness in L! for (1.3) with

(3.2) uli=0 = up € LY(R?), z € R,

One of the main difficulties for the well-posedness problem is the coupling be-
tween convection and degenerate diffusions, that is, singularity against regularity.
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One requires a uniform approach that works for both the hyperbolic and parabolic
phases.

Introduce the kinetic function y on R2:

+1  for 0<é<uw,
x(&u)=¢ -1 for u<&<O,
0 otherwise.

Definition 3.1. A kinetic solution is a function u(t, ) € L* ([0, 0); L*(R?)) such
that
(i) The kinetic equation

(3:3) O x(&uw) + f(€) - Dox(§u) — diva (A(€) Dox(§u)) = O¢(m +n)(t, z, ),
holds in IV (Rt x R¥+1) with initial data
X (& u)|t=0 = x(&; uo0),

for some measures m(t,z,£) > 0 and n(t,z, &) > 0:
K
[t wie s = 3 (divap it o))
k=1

for any ¢ € C°(R) with ¢ > 0, where 8} (u) = [,' \/¥(w)or(w)dw € R? for
or(u) = (ok1(u), - - -, orka(u));
(ii) There exists u(§) € L™ with u(¢) — 0 as || — oo such that

[ mnes.gdea < o)
o Jre
(i) For any nonnegative 1 € C§°(R),
div,8Y (u) € L*([0,00) x RY), k=1,...,K;
(iv) For any nonnegative 91, 92 € C°(R),

Vo (u(t, z)) divefY (u(t, z)) = div, S0 (u(t, 7)), a.e.

Remark 3.1. This notion of kinetic solutions applies to more general situations,
especially when a solution u is only in L'. The advantage of this notion is that
the kinetic equation is well defined even though the macroscopic fluxes ¢(u) are not
locally integrable so that L! is a natural space on which kinetic solutions are posed.

Remark 3.2. Any bounded kinetic solution u € L satisfies the entropy inequal-
ity. This can be seen as follows: For any n € C? with n"(u) > 0, multiplying the
kinetic equation (3.3) by #'(£) and then integrating with respect to £ € R yield

om(u) + divy (q(u) — A(u)Dyn(u)) = — /Rn”(f)(m +n)(t,z,§)d§ <0
in the sense of distributions.

Remark 3.3. If uy € W2 N H' N L>®(R?), then it can be shown that there exists
a global kinetic solution v = u(t, z) of the Cauchy problem (1.3) and (3.2), via the
vanishing viscosity method.

Remark 3.4. For the isentropic case, A(u) = a'(u)I, condition (iv) in Definition
3.1 can be removed as a direct corollary of a standard chain rule (see [42]).
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For kinetic solutions, we have first the following stability theorem.

Theorem 3.1. Assume that (3.1) holds. Then
(i) For any kinetic solution u € L*([0,00); L'(R?)) with initial data uo € L',

llu(t) — vollL1(ray = O, when t — 0.

(ii) If u,v € L*([0,00); L} (R?)) are kinetic solutions to (1.3) and (3.2) with initial
data ug,vo € L', respectively, then

(3.4) llu(t) — v(®)llL1(re) < lluo = vollz1(ra)-

(iii) Furthermore, if u € L*([0,00) x RY), this kinetic solution is the entropy solu-
tion.

We now give a formal proof to present the kinetic method for establishing the
stability of kinetic solutions.

Formal Proof. Consider two solutions u(t,z) and v(t,z). Denote by m(t,z,&)
the kinetic defect measure and by

2

K d
(35) n(t,x,f) = 6(5 - U(t,l‘)) Z (Z 6Zi0-ik(u(t7 .’E))) )

k=1 \i=1

the parabolic defect measure, which are associated with u(¢,z); and by p(t,z, §)
the kinetic defect measure and by

2

K d
(3.6) a(t,z,€) = 6(6 —v(t,2)) D (Z s in (v (t, -’B))) ;

k=1 \i=1

the parabolic defect measure, which are associated with v(¢, z).
Then we use the following microscopic contraction functional introduced in [121]:

B.7) Q8 = |x(&ut, )| + [x(& vt 2))| — 2x(& ult, ) x(&0(t, ) 20,
which is useful for deriving a contraction principle since
| @tt.a.6)d = putt.2) — vit. o)l

Notice that

d
3l x (& ult,z))| + a(€) - Dolx(&ult,2))| = Y 854, (aii (§)X(& ult, 2))])

ij=1
= Sgn(g) 65 (m + TL) (t7 z, 6) )
which yields

%/RM Ix(&u(t,x))| dedé = _Z/Rd(m+n)(t’m’0)d$'

A similar identity holds for v(t, z).
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Furthermore, we obtain

G L (@t o) ot dode

+2 /]Rd+1 Z am 5’5 X E; ( )) m,X(&,'U(t,SU)) d.’lj'dé'

= /RM ((m + n)(t,2,6)(5( — v(t,z)) = 6(¢))
+(p+ q)(t, 2, 6)(3(€ — u(t,x)) — 4(€))) dz dE.

Then, we have

b Q2 ¢) du de

E Rd+1
- 4/Rd+1 ,Z: a” E X 57 ( )) Z'JX(é.:'U(t,-'L')) dl'dé'

—2 /RW ((m +n)(t,z,8)8(& —v(t,z)) + (p+ q) (¢, 2,€)(€ — u(t, x))) dz dE

d
4/ D aij(€) Bz,ult, o) By, 0(t, ) 6(€ — u(t, ) 6(¢ — v(t,2)) do dE
Rd+1 =1
_2/ (n(t,z,€)8(& —v(t,z)) + q(t, 2, €)8(€ — u(t, z))) dz dE,
Rd+1

since m(t,z,&) and p(t,z, &) are nonnegative.
Using (3.5) and (3.6) yields

[ (0,606 = v(t.2) + a(t,, 606 = ult, ) d
K

=3 [ dle~ ult.a)) 6(€ - vit. )
=1 Rd+1
d 2 d 2
x ((Z@ziaik(u(t,x))> + (Z amaik(v(t,x))> ) dx d¢
>2Z/ (€ = u(t,2)) 5( = v(t, 7))
d
X (Zaﬁm(u(t T ) (Zamja,k (t,z ) dz d¢

= 22 Z /M ¢ —u(t,z)) 5 — v(t, ) o (u(t, ) oju(v(t,z))

k=114,j=1
X Oy u(t, x) 0y,v(t,x) dr d
d
=2 Z /Rd+1 i (§) Op,u(t, x) Op;u(t, ) 6(€ — u(t,x)) (6 —v(t,x)) dr dE.
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Therefore, we end up with
d

dt Jga+1

which implies that ||u(t) — v(t)||11(r4) is non-increasing. This concludes the con-
traction property (3.4).

Remark 3.5. Employing Theorem 3.1, we can establish the existence of kinetic
solutions in L' for initial data uo € L'(R?). This can be achieved by approximating
ug by u§ € W2 N H' N L>°(R?) and by using the L' contraction property for the
corresponding kinetic solutions u¢ that yields the convergence of u€ in L' as € — 0.

Remark 3.6. Our uniqueness result implies that, if ug € L>® N L'(R?), then the
kinetic solution is the unique entropy solution and |u(t,z)| < [|ug||re. Therefore,
the two notions are equivalent for solutions in L*, although the notion of kinetic
solutions is more general.

Using this kinetic method, a general L'-framework for continuous dependence
and error estimates for quasilinear, anisotropic degenerate parabolic equations has
also been developed, and applications of our general L'-framework have been made
in establishing an explicit estimate for continuous dependence on the nonlineari-
ties and an optimal error estimate for the vanishing anisotropic viscosity method,
without the requirement of bounded variation of the approximate solutions, for
anisotropic degenerate parabolic equations. For more details, see Chen-Karlsen
[38].

4. FREE BOUNDARY METHODS AND FREE BOUNDARY ITERATIONS

Besides well-posedness problems for partial differential equations of divergence
form, many PDE problems arising from various areas are more specific and require
the behavior of specific solutions. Such problems include free-boundary problems
for partial differential equations of divergence form for two phase flows. In many
cases, given one phase u~ (x), we seek a surface S determined by some physical
laws and a solution determined by the partial differential equations for the other
phase. Such problems are called one-phase free boundary problems. In particular,
across a discontinuity surface S, a weak solution u(y) of (1.1) should satisfy the
Rankine-Hugoniot conditions:

(4.1) A(y,u,Du)-v|s =G(y,v) = A(y,u",Du") -v|g Lipschitz w.r.t. y,v,
(4.2) wu|s=u"]s,

which are the free boundary conditions, where v is the unit normal to S in the
direction of the unknown phase.

In this section we present a free boundary method via a free boundary itera-
tion developed in Chen-Feldman [32] through a multidimensional transonic shock
problem.

Consider inviscid steady potential fluid flows, which are governed by the Euler
equations consisting of the conservation law of mass and the Bernoulli law for the
velocity. Then the Euler equations for the velocity potential ¢ : 2 C R” — R can
be formulated into the form (1.4) with u = ¢, that is,

(4.3) div (p(|D¢l*) D) = 0,
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where the density function p(¢?) has the form:

1
(4.4) p(®) = (1-6¢%)*,
with § = 7771 and the adiabatic exponent v > 1.
The second order nonlinear equation (4.3) is elliptic at Dy with |Dep| = ¢ if

(4.5) p(d®) +24°p'(¢%) > 0,
and is hyperbolic if
(4.6) p(¢®) +2¢°0'(¢%) < 0.

The elliptic regions of equation (4.3) correspond to the subsonic flow, and the
hyperbolic regions to the supersonic flow. Shocks are jump discontinuities in the
velocity Dyp. We study weak solutions of (4.3) with transonic (hyperbolic-elliptic)
shocks. Classical linear models for the equations of mixed type include the Tricomi
equation and the Keldysh equation (see [11, 147, 148])

Shiffman [130], Bers [8], and Finn-Gilbarg [67] studied subsonic (elliptic) solu-
tions of (4.3) outside an obstacle; also see Dong [57]. Alt-Caffarelli-Friedman [3]
studied free boundary problems for subsonic flows.

Morawetz in [113] showed that the flows of (4.3) past an obstacle may contain
transonic shocks in general. One exception is that, when the obstacle forms a
wedge with small angle, the uniform outflow with supersonic speed may produce
a non-transonic shock (hyperbolic-hyperbolic shock); see [45, 99, 100, 127, 149].
Transonic shocks also arise in many other situations of physical importance. For
example, when a plane shock hits a wedge, a reflected flow may form a transonic
shock; see Glimm-Majda [76] and Morawetz [114]. Steady transonic shocks are also
very useful for solving some unsteady important problems; see Chen-Glimm [36].

Canic-Keyfitz-Lieberman [25] studied perturbations of steady transonic shocks
between two uniform flows for the two-dimensional transonic small-disturbance
(TSD) equation, which governs the behavior of the first non-trivial term in the
geometric optics expansion to (4.3) near a certain physical point. The TSD model
can be written as a second order nonlinear equation of mixed type with coefficients
depending only upon the unknown function itself, but independent of its gradient
as in (4.3). This feature is essential for the approach in [25] (also see [26]).

Majda [108] studied the existence and stability of multidimensional shock fronts,
locally in time, for the Euler equations for compressible fluids (also see Métivier
[112]).

We now discuss several recent results on the existence and stability of multidi-
mensional transonic shocks for (4.3) in unbounded domains and present a nonlinear
method in [32] for establishing these results.

4.1. Transonic Shocks. We first introduce multidimensional transonic shocks for
(4.3). A function ¢ € W () is a weak solution of (4.3) in an unbounded domain
Q if

(i) IDp(@)| <1/VE ae.

(ii) For any ¢ € C§°(9),

(4.7) | #1De)De - Dedz =0,
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We are interested in weak solutions with shocks. Let Q1 and Q~ be open subsets
of Q such that
QN =0, QtuQ-=10,
and S = 90T N Q. Let p € WH*(Q) be a weak solution of (4.3) and be in
C%(QF) N C(QF) so that Dy experiences a jump across S that is an (n — 1)-
dimensional smooth surface. Then the condition that ¢(z) is a weak solution of
(4.3) implies the continuity of p(z) across S:

(4.8) <,D+ =~ on S

and the following Rankine-Hugoniot condition on S:

(49) Dol D-] =0
s

where v is the unit normal to S in the direction of 0T, and the bracket denotes the
difference between the values of the function along S on the QF sides, respectively.
We can also write (4.9) as

(4.10) p(ID* ) Dt -v = p(|Dy~ [*)Dp~-v on S.
Let K > 0. Then the function
(4.11) Bx(p) = (K - 6p?)

defined for p € [O, VK[ 0] , satisfies

Nl"‘

“p,

(4.12) lim ®x(p)= lim_ ®x(p) =0,
p—0+ p—y/K/0—

(413) ®x(p) >0 for pe (0,1/K/6),
(414) 0< B(p) < K% on (0.p%,,) and Bc(p) <0 on (p,e V/ETB),

(4.15) ®%(p) <0 on (0,pK ;]

where

(4.16) Pronic = VE/(0 +1).

Suppose that ¢(z) is a solution satisfying

(417) in Q+a |D(P(x)| >p§onic in Q_;

1
Do(x)| < pl i = ———=
|De(2)| < Psonic i1
besides (4.8) and (4.9). Then ¢(x) is a transonic shock solution with transonic
shock S dividing ) into the subsonic region Ot and the supersonic region 0~ and
satisfying the physical entropy condition (see Courant-Friedrichs [47]; also see Lax
[93, 94]):

(4.18) p(|Do_|?) < p(|Dp4|?) and Dp*-v >0  along S,

that is, the density p increases across a shock in the flow direction. Note that the
equation (4.3) is elliptic in the subsonic region and hyperbolic in the supersonic
region.
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4.2. Multidimensional Transonic Shocks near Flat Shocks. Let (z',z,) be
the coordinates in R”, where ¢’ = (21,...,Zn1) € R" ! and z, € R

Let g, € (pi(mic,l/\/é) and @y () = gy zn- Then @y (x) is a supersonic

solution in Q. According to (4.12)—(4.14), there exists a unique ¢ € (0,p!,.;.)
such that

(4.19) (1-0()")> a5 = (1-0(55)")* a5 -
Define @7 (z) := gj z, in Q. Then the function
(4.20) vo(x) = min(py (z), vy (z))

is a plane transonic shock solution in Q, Qf and Qg := Q\ Qf are its subsonic and
supersonic regions, respectively, and Sy = {z, = 0} is a transonic shock.

We first focus on an infinite cylinder (0,a)" ! x (—o0,00). Since it is not nec-
essary to require that the supersonic perturbation ¢~ (z) be defined in the whole
infinite cylinder, we introduce a finite subcylinder €; := (0,a)""! x (=1,1) and
focus on the cylinder domain Q := (0,a)"! x (—1,00) without loss of generality.
Then our multidimensional transonic shock problem can be formulated into the
following form:

Multidimensional Transonic Shock Problem (MTS). Given
a supersonic weak solution ¢~ (x) of (4.3) in Q;, which is a C1®
perturbation of ¢g (x), for some a € (0,1):

(4.21) e =gl <o
with ¢ > 0 small, and

(4.22) v, =0 on 9(0,a)" ! x[-1,1],

find a transonic shock solution ¢(z) in Q such that Q~ := Q\ Q+ =
{z€Q : |[Dp(x)| > Pyonic} C U, 9 =¢ inQ,and

(4.23) C=Q, Pz, =@, on (0,a)" ! x {-1},
(4.24) 0, =0 ond0,a)" ! x[-1,00),
(4.25) o(-, Tn) —wy = 0 uniformly on (0,a)"! as z,, = oo,

for some constant w € (0, p},,;.) which is not prescribed.

In order to deal with the multidimensional transonic shock problem in the un-
bounded domain 2, we define the following weighted Holder semi-norms and norms
in a domain D C R": Let z — d, be a given non-negative function defined on D.
Let 4z, := min(d,,d,) for x,y € D. For k € R, a € (0,1), and m € N (the set of
nonnegative integers), we define

W'p = Y sup (67 *|Du(z)))

|;3\=m zeD
o DBu(z) — DBy y
(4.26) W = sup (%,J + [D7ul2) - ( N);
|5\:m z,y€D,z#y |$ - yl
m
k k k k k
ul®p =3 Wl 5 ull®) p = ull®p + ],

=0
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where DP = 981 ...90~, B = (B1,...,Br) is a multi-index with 8; > 0,8; € N,
|B] = B1+ -+ + Bn, and the weight function

0 = 14 |25].
We denote by ||u||m,q,p the standard (non-weighted) Holder norms in a domain D,

i.e., the norms defined as above with 6, = 0, = 1.
Then we have

Theorem 4.1. Let gf € (0,pl, ;) and g5 € (piomc,l/\/g) satisfy (4.19), and
let po(x) be the plane transonic shock solution (4.20). Then there exist oo > 0
and Cy depending only on n, a, «, vy, and qf such that, for every o € (0,00) and
any supersonic solution ¢~ (x) of (4.3) satisfying the conditions stated in Problem
(MTS), the following hold:

(i) There ezists g+ € (0,pl,,,;.) that is the unique solution of the equation
p((@*)*)a" = Q*F
with

1 _ -
am @t=g [ D@ D, D
0,(1 n—1

and satisfies
(4.28) l¢* — ¢d | < Coo,

such that, for any solution ¢(x) of Problem (MTS) with the subsonic region
QF(p):={z€Q : |Dy(z)| <plni.} of the form:

(429) QF(p) = {zn > f(&)}NQ with fe CH*([0,a]" "), Dfls0,ayn-1 =0,

the constant w in (4.25) must be q*:

(4.30) w=gq".
(ii) There exists a solution @(x) of Problem (MTS) satisfying
(4.31) le = @i @all{ ity () < Coo,
and
(4.32) o(zn) —qto, =0 uniformly on (0,a)"~! when x, — oco.
This solution also satisfies (4.29) with
(4.33) 1 f1I1,a,[0,a—1 < Coo,
and, for every k =1,2,...,
k
(4.34) llp — q+$nl|§;i;g+(¢) < Cyo,

where C}, depends only on k, n, a, v, and q(f. That is, when x, — 00,
p(x) uniformly converges to the linear function q*xz, with respect to &' €
(0,a)""! at a rate faster than any algebraic order.

(iii) If o= € C?%(), in addition to the previous assumptions, then ¢ €

C**(Q+(p)) and f € C>*([0,a]* "), and

(435) ||l)2f||0,oz,[0,a,]"—1 S C(na a,a,”, qa_a g, ||D2(10_||0,04791) < o0,
k —
(4.36) ID?0)169 i () < C(n,0,0,7, 63,0, 1D ¢ 0,001, k) < 00,
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for k =1,2,.... Moreover, if ||¢~ — gy Znll2;a;0, < Co, then a solution
satisfying (4.31) and (4.32) is unique.

Remark 4.1. Theorem 4.1 indicates that, given any supersonic solution ¢~ (x)
in the upstream region, the necessary and sufficient condition for the existence of
a transonic shock solution in an infinite cylinder €2 is that the uniform velocity
state wvg,vg = (0,...,0,1), at infinity in the downstream direction must be g,
determined uniquely by ¢~ (z). This means that, for this problem, one can apriori
prescribe the uniformity condition of the flow, but can not prescribe a velocity
state, at infinity in the downstream direction in general; otherwise the problem is
overdetermined.

Furthermore, as a consequence of the uniqueness, non-degeneracy, and regularity
of solutions of Problem (MTS), we have the following stability theorem.

Theorem 4.2. There exist a nonnegative function ¥ € C([0, 00)) satisfying ¥(0) =
0 and o9 > 0 depending only upon n,a,a,y, and q(‘)Ir such that, if 0 < 09, ¢~ (x
and ¢~ () satisfies ||~ — @q |l2,0,0. < 0 and

(4.37) le™ =& [haa <&,

with k < o, then the unique solutions p(x) and $(x) of Problem (MTS) for ¢~ (x)
and @~ (x), respectively, satisfy

(4.38) 7o = folli,an0,an-1 < ¥(K),

where f,(x') and fy(x') are the free boundary functions in (4.29) with p(x) and
p(x), respectively.

Similarly, we can establish the existence and stability of multidimensional tran-
sonic shocks near flat shocks in the whole space and near spherical transonic shocks
in R*,n > 3.

4.3. Free Boundary Iterations for the Transonic Shock Problem (MTS).
The transonic shock problems can be formulated into a one-phase free boundary
problem for a nonlinear elliptic equation: Given ¢~ € C1*(Q), find a function ¢(z)
that is continuous in Q and satisfies

(4.39) p <@~ in Q;

the nonlinear equation (4.3) and the ellipticity condition (4.5) in the non-coincidence
set

QO ={p<y k
the free boundary condition (4.10) on the boundary S = Q7 NQ; and the prescribed
conditions (4.23)—(4.25) on the fixed boundary 90 and at infinity.

The free boundary is the location of the shock, and the free boundary condition
(4.10) is the Rankine-Hugoniot condition (4.9). Note that condition (4.39) is moti-
vated by the similar properties (4.20) of non-perturbed shocks; and, locally on the
shock, (4.39) is equivalent to the entropy condition (4.18). Condition (4.39) trans-
forms the transonic shock problem, in which the subsonic region Q7 is determined
by the gradient condition |Dp(z)| < pl,,.;., into a free boundary problem, in which
Q7 is the non-coincidence set.

In order to solve this free boundary problem, we first modify equation (4.3) to
make it uniformly elliptic and, correspondingly, modify the free boundary condition
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(4.10). Then we solve this modified free boundary problem. Since ¢~ (z) is a small
C"® perturbation of ¢, (z), we show that the solution ((z) of the free boundary
problem is a small C1'® perturbation of the given subsonic shock solution g ()
in Q. In particular, the gradient estimate implies that ¢(z) in fact satisfies the
original free boundary problem, hence the transonic shock problem.

The modified free boundary problem does not directly fit into the variational
framework of Alt-Caffarelli [1] and Alt-Caffarelli-Friedman [2] and the regulariza-
tion framework of Berestycki-Caffarelli-Nirenberg [9] via the penalty method. Also,
the nonlinearity of (4.40) makes it difficult to apply the Harnack inequality approach
of Caffarelli [23]. In particular, a boundary comparison principle for positive so-
lutions of nonlinear elliptic equations in Lipschitz domains is unavailable yet for
the equations that are not homogeneous with respect to D?u, Du, and u, which
however is our case.

The free boundary method we develop is an iteration scheme based on the non-
degeneracy of the free boundary condition: the jump of the normal derivative of a
solution across the free boundary has a strictly positive lower bound. Our iteration
process is as follows: We start with Qf and Sp = 0 \ 99. Suppose the domain
Qff is given so that S := 0 \0Q is C+*. We solve the oblique derivative problem
in Qf obtained by rewriting the (modified) equation (4.3) and the free boundary
condition (4.10) in terms of the function u := ¢ — ¢f". Then the problem has the
following form:

(4.40) div A(z, Du) = F(x) in QF :={u>0}nQ,
' A(z,Du)-v=G(z,v) on S:=09f\0Q,

in addition to the fixed boundary conditions on BQ;{ N 0N and the conditions at
infinity. The equation is quasilinear, uniformly elliptic, A(z,0) = 0, while G(z,v)
has a certain structure. Let uy € C1*(Q) be the solution of (4.40). We estimate
that ||ugl| cre@f) is small if the perturbation is small, where we use appropriate
weighted Holder norms in the unbounded domains. Then we extend the function
ok = o + uy, from Qf to Q so that the C1® norm of ¢y, — ¢ in Q is controlled
by [luglcre. We define Qf | :={z € Q : () < ¢ (x)} for the next step. Note
that, since [|¢or — ¢f [[cra(o) and [|¢~ — ¢g |lc1.a(q) are small, we have |[Dp~| —
|Dgi| > 6 > 0 in Q, and this nondegeneracy implies that Ski1 = 0}, \ 9 is
CY® and its norm is estimated in terms of the data of the problem.

The fixed point QF of this process determines a solution of the free boundary
problem since the corresponding solution ¢p(z) satisfies QT = {¢ < ¢~} and the
Rankine-Hugoniot condition (4.10) holds on S := 9Q* N Q.

On the other hand, the elliptic estimates alone are not sufficient to get the
existence of a fixed point, because the right-hand side of the boundary condition
in problem (4.40) depends on the unit normal v of the free boundary. We use the
following feature of the flat or spherical shocks:

(4.41) p(IDeg 1)) Dypg = p(|Dg ) Dipy  in Q
to obtain better estimates for the iteration and to prove the existence of a fixed

point. Note that this is a vector identity, and the Rankine-Hugoniot condition
(4.10) is the normal part of (4.41) on the non-perturbed free boundary Sy.
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We remark in passing that the method we described above is mainly for han-
dling the nonlinear free boundary problems in some bounded domains with ap-
propriate fixed boundary conditions. For a unbounded domain, say the infinite
cylinder (0,a)"! x (—o0, 00), we first use the free boundary method to construct
the approximate solutions of the free boundary problem in appropriate bounded
approximate domains, then make some uniform estimates of the solutions indepen-
dent of the size of the approximate domains, and finally prove that the approximate
solutions strongly converge to a solution of the original free boundary problem in
the unbounded domain.

The uniqueness and stability of solutions for the transonic shock problem is
obtained by using the regularity and nondegeneracy of solutions.

For more details, see Chen-Feldman [32].

5. FURTHER METHODS AND TRENDS

In Sections 2-4, we have discussed some of selected recent methods to deal
with nonlinear partial differential equations of divergence form. These methods
are only samples and do not reflect fully the scope of nonlinear partial differential
equations of divergence form. For example, some recent methods for nonlinear
dispersive equations and Navier-Stokes equations were not covered; see [95, 91, 13],
[85, 101, 140, 65, 66], and references cited therein. It will also be emphasized that
some current trends go far beyond the materials discussed here. It is important to
develop further the methods; some of them have briefly been mentioned above.

We would like to conclude with a few more examples of such developments, which
are not covered above.

Compensated compactness methods have still great potential to be further de-
veloped to solve various important nonlinear partial differential equations, for ex-
ample, some recent results on the existence and compactness of entropy solutions
of the Euler equations with general pressure laws in [39] and for isothermal fluids
in [87], and a new understanding of the relation between the large-time behavior of
entropy solutions and the compactness of solution operators for hyperbolic conser-
vation laws in [34] (also see [30, 37]). The theory of divergence-measure fields was
motivated by the ideas of compensated compactness. The averaging compactness
methods have similar connections [79, 80, 81, 122]. Other related methods include
H-measures of Tartar [139] and Gérard [69] and the related Wigner measures by
Lions-Paul [102] and Gérard [70]; also see Gérard-Markowich-Mauser-Poupaud [71].

Test function methods have become more important to handle with solutions
of partial differential equations of divergence form that are not continuous. The
doubling variables techniques were first developed by Kruzhkov [92] to establish
the well posedness in L for scalar hyperbolic conservation laws; see [16, 31, 38,
27, 89, 63] for recent developments and applications. The perturbed test function
method, which entails various modifications of the test functions by lower order
correctors; applications include homogenization for elliptic PDEs of divergence form
and approximations of quasilinear parabolic PDEs by systems of Hamilton-Jacobi
equations; see Evans [61] for the details. The Holmgren method and the Haar’s
method have been applied to solve the uniqueness and stability of weak entropy
solutions for hyperbolic conservation laws; see [50, 86, 97, 105, 126, 128, 118, 119]
and the references cited therein.
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