EXISTENCE THEORY FOR THE ISENTROPIC EULER EQUATIONS

Gul-QIANG CHEN! AND PHILIPPE G. LEFLOCH?

ABSTRACT. We establish an existence theorem for entropy solutions to the Euler equations modeling
isentropic compressible fluids. We develop a new approach for constructing mathematical entropies for the
Euler equations, which are singular near the vacuum. In particular, we identify the optimal assumption
required on the singular behavior on the pressure law at the vacuum in order to validate the two-term
asymptotic expansion of the entropy kernel proposed earlier by the authors. For more general pressure
laws, we introduce a new multiple-term expansion based on the Bessel functions with suitable exponents,
and we also identify the optimal assumption to valid the multiple-term expansion and to establish the
existence theory. Our results cover, as a special example, the density-pressure law p(p) = k1 p7! + k2 p72
where 1,72 € (1,3) and k1,k2 > 0 are arbitrary constants.

1. Introduction.

In this paper we establish an existence theory for the Euler equations modeling isentropic com-
pressible fluids:
atp + 6$(p1)) = 07

3 (pv) + 8u(pv® +p(p)) = 0,

where p > 0 denotes the density, v the velocity, and p(p) > 0 the pressure of the fluid. Under the
standard assumption

(1.1)

p'(p) >0  for p>0, (1.2)

the system (1.1) is strictly hyperbolic away from the vacuum p = 0 at least. Denoting the sound
speed by c(p) := 1/P'(p), the two wave speeds of the system, v — ¢(p) and v + ¢(p), are real and
distinct for p > 0. The partial differential equations (1.1) provide an example of particular interest
in the mathematical theory of nonlinear hyperbolic systems of conservation laws. Recall that the
main difficulties towards proving the existence of an (entropy) solution to (1.1) are as follows:

(1) Discontinuities may form in a later time even for initially smooth data and, therefore, (en-
tropy) solutions must be understood in the sense of distributions.

(2) Since the equations come from continuum physics modeling, we are interested in solutions
that are defined globally in time and start out from arbitrary large data at time ¢ = 0, and
should not impose any “smallness” condition on the solutions.
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(3) Additionally, the equations under consideration are “degenerate” near the vacuum, in the
sense that strict hyperbolicity of (1.1) fails at the vacuum: at p = 0, the two wave speeds
coincide if p’(0) = 0, which is satisfied by pressure laws arising in continuum physics and
will therefore be assumed from now on.

The existence of entropy solutions for the Cauchy problem associated with (1.1) was established,
in the case of polytropic perfect gases

p(p)=kp", K£>0,7>1, (1.3)

first by DiPerna [6], Ding, Chen, and Luo [5], and Chen [1] based on compensated compactness
arguments, and then, motivated by a kinetic formulation of hyperbolic conservation laws, by Lions,
Perthame, and Tadmor [8], and Lions, Perthame, and Souganidis [9]. General pressure laws p(p)
were covered first by Chen and LeFloch [2]; the existence of entropy flux-splittings was established
by Chen and LeFloch [3].
The purpose of this paper is to deal with more general pressure functions, especially including
the example
p(p) =K1 p" + K20, Y1,72 > 1, K1, k2 > 0. (1.4)

We refer to the statements (2.1) and (3.2) below for our precise assumption on the function p(p).
Recall that the results in [2] apply to (1.4) when 75 > 1+ ;. The “Green function approach”
introduced here turns out to be more accurate than the “energy estimate approach” we developed
earlier. It allows us to cover more general pressure functions and, in particular, to cover general
exponents v1, 2 in (1.4).

It was pointed out by DiPerna [6] that, in the case (1.3) for polytropic perfect gases, the mathemat-
ical entropies associated with the Euler equations admit an explicit formula, based on a fundamental
solution of the entropy equation. We refer to this fundamental solution as the entropy kernel. In [6,
5, 1, 8, 9], the explicit formula for the entropies associated with (1.3) enters in a central manner in
establishing the reduction of the Young measures governed by Tartar’s commutation equations. The
approach developed in [2] for general pressure laws p(p) requires less explicit calculations and solely
certain properties of the entropy kernel (singularities and cancellation). Studying the existence of
the entropy kernel and its regularity is delicate since the equation for entropies contains singular
coefficients near the vacuum.

Our general strategy is as follows. We first apply the Fourier transform in the velocity variable
so that the linear hyperbolic equation governing the entropy kernel is transformed into a family of
second order differential equations with singular coefficients, in which the Fourier variable is as a
parameter. To determine the regularity of the entropy kernel, then we determine the asymptotic
behavior of the solutions in the Fourier variable, that is, to derive a suitable asymptotic expansion
which is based on the Bessel functions.

Our main results are as follows. In Section 2, we determine the optimal assumption on p(p) which
is required to validate the two-term expansion derived in [2]. For the example (1.4), that condition is
72 —1 > 3(y1 — 1)/2. However, the two-term expansion does not accurately describe the asymptotic
properties of the entropy kernel. A multiple-term expansion is derived in Section 3 for a large class
of pressure laws which, in particular, cover the example (1.4) for arbitrary exponents y;,v2 > 1.
Finally, in Section 4, relying on the convergence framework established by the authors in [2], we
arrive at the new existence theory for (1.1) with exponents in the physically relevant interval (1, 3).
Then, the compactness of the solution operator and the decay of periodic entropy solutions follow
as in [2].

Note in passing that the genuine nonlinearity assumption

pp”(p) +2p'(p) >0  forp>0 (1.5)
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is not needed for the proof of existence of the entropy kernel, but solely to establish that it remains
non-negative. We refer to [4] for other applications of the techniques and ideas developed here.

2. A Two-Term Asymptotic Expansion.

To begin with, we treat a class of pressure laws that includes, for instance, the example (1.4) for
large deviation between 7y; and 7, specifically for v, > (371 — 2)/2. In the present section only, we
assume that there exists an exponent v € (1,00), a smooth function P = P(p), and some real ¢ > 0

such that o1
p(p) = £ p7 (14 p°+9 P(p)), 21)
P(p) and p® P"'(p) are bounded as p — 0, .
where k := (y — 1)2/(4y) after normalization. Of course, the function P(p) may exhibit some

singularities at p = 0. In fact, (2.1) implies solely that p P’(p) and p? P"(p) remain bounded.
The following notation will be used:

P c(y) 7-1 3—1 1 1
k(p)= | 224 o="1—- r=—""7"_ s=r+-=_—.
(o= [ “Lay, T A3 YA 3o

Recall that the case v € (1,3) and € > —1 + 1/0 is treated in [2]. The entropy kernel solves the
following Cauchy problem associated with a linear hyperbolic equation (see [2]):

(a) Xpp — kI(P)2 Xvv = 0,
(b) x(0,v) =0, (2.2)
(C) Xp(oa U) = 0y=0-

The equation (2.2a) is a singular Euler-Poisson-Darboux equation, in which
K (p)2=0%p*V (1+0(p)) with2(0—1) € (=2,00).

Using the Fourier transform in the variable v and denoting by £ the Fourier variable in (2.2) yield

Thus, the problem reduces to a family of second order differential equations in the density variable
p, depending on some parameter £ € R.

In the particular case (1.3), it is not hard to check that the solution of (2.3) is closely related to
the Bessel function J, = J,(y) defined for all y > 0 by

1

Ju(y) = cony” / cos(yz) (1 - 22)" dz =: cony” Fr(y),
-1

-1
where the constant cg » is given by cg ) = ( f_ll (1- xz)A dw) . See for instance [7]. More precisely,

using that J, is a solution of the second order differential equation

dy> y dy

25, 1 dJ, 2
+(1- 2—2) J, =0, (24)
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one can check that the solution of (2.3) in the case p*(p) := k p? is exactly

X (p, &) = €7 pM? T, (€] p%).

Let us review first some properties of Bessel functions, which motivate the forthcoming discussion.
First of all, we have the asymptotic expansions

Y + O(y'+1) when y — 0,
7.0 = {

2.5
c1ay Y2 cos (y—(A+1)7/2) + O(y=3/?)  when y — o, (2:5)

for some constant ¢; 5 > 0. On the other hand, the second Bessel function Y, =Y, (y) satisfies (after
normalization)

—y TV + Oyt h — 0,
Y, ( _{ Yy~ +O0(y™") when y (2.6)

N C2,A y~1/2 gin (y —(A+1) 7r/2) + O(y_3/2) when y — oo,

for some constant cz 5 > 0. Similar formulas are available for the derivatives J),(y) and Y (y).
To handle the above expansions, it is convenient to set, for y # 0,

ly[¥”  for |y| <1,
ly|=*/2  for |y| > 1.

Qzv(y) == {

From the asymptotic formula (2.5) we see that, for some C; > 0,

|7, W)| < C1Quy), y>0. (2.7)

Consider also the kernel K associated with the two Bessel functions (p,s > 0 and € € R):

K (p, 5:€) =Y, (Ek(p)) Ju(Ek(5)) — Ju (£ K(p)) Yo (€ K(s))-

Based on (2.5) and (2.6), one easily checks that, for some Cy > 0,

K (p, 5:€)] < CoQu (EE(p)) Qu (€ k() T R(EK(s)), 0<s<p, EER, (2.8)

where the function R is defined by

1 if ly| <1,
R(y) := { ]
Uyl if [yl > 1.

Finally, since J, and Y,, are two independent solutions of (2.4) with the expansions (2.5) and (2.6)
at 0, we see that their Wronskian is

w(p,§) : =Y, (Ek(p)) J,(Ek(p)) — T, (EK(p)) Yu(Ek(p))
1 2 (2.10)
~ EOk(p)  Ek(p)

For the general problem (2.3), we now prove the following theorem.
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Theorem 2.1. Suppose that the function p = p(p) satisfies the assumptions (1.2) (hyperbolicity)
and (2.1) (behavior near the vacuum) for some vy € (1,00) and some arbitrary € > 0. Then there
exists a solution of the problem (2.3), x = x(p,€), defined for p > 0 and £ € R. It is smooth for
p > 0, continuous when p — 0, and is given by the expansion

1/2

+r(p,§)), (2.11)

where )
N(p) := —c3 / k—,\—lk/—l/2(kA+1k/—1/2)” dr
0

for some constant c3 = (2A + D)o a/(4(A + L)coag1) = (4X% — 1)/(8A(X + 1)). The remainder

satisfies
s(EEk
0,01+ orst08) <€ 2O for some 0 >0, (212)

Note that, in fact, N = N(p) only depends on second order derivatives of the function k at most,
since

N = ey kAT (T g /p(k_’\—lk'_l/z)l(k’\ﬂk’_lﬂ)ldr.
0

Proof. To simplify the notation, we assume £ > 0 throughout the proof. The functions

1/2 1/2
0,0 = () T IEEI)L 0= (SO e o)

are two independent solutions of the “modified” equation (cf. (3.26) in [2]):

%o+ (K (0)2€2 = B(p) ¥ =0, (2.13)

where
1"

,8 — k—)\—l kll/2 (k/\+1 kl_1/2)

On the other hand, the remainder

1/2
0.8 = () 10

satisfies a non-homogeneous version of the same equation (cf. (3.30) in [2]). Indeed, we have

Fop+ (K(0)2€ = Blp)) 7 = H(p, &) — B(p) 7 (214)
with (cf. Section 3, Step 1, in [2] for an explicit expression of «;, ay, and A):

H(p,§): = —(QLI(P) + % aé’(ﬂ)) i (Ek(p)) =: A(p) g1 (€k(p))

Q) T (EK))
coart  [Ek(p) [P HT
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A tedious but straightforward calculation based on the assumption (2.1) shows that

/

k K3, 2 2 1 -2
=B = AN+ 1) = - SRR TR kTR
9:==Fp A+ -3 3 (2.15)

_ O(p_1+0(1+€)),

and

_ (9k(p) Y2 A(p) _ —14+6(1+¢)
50)= (5) ety =P (1)

Using that ﬁ and )Zg are two independent solutions of the homogeneous equation (2.13) and
relying on the method of variation of parameters, we easily arrive at the following integral formulation
for the solution of (2.14):

.0 = (BD)T [P KOS (RN (g, g pirne) s @)

where the kernel K was defined earlier and the Wronskian W is

W(p,€) := (X} Xby — X1s X5) (0,€)
= ¢ 0k(p) (Ju(fk(p» Y1(Ek(p) — T, (Ek(p)) Yu(§k<p)))
=L 0k(p) w(p,§) =1,

thanks to (2.10). Hence, (2.17) becomes

0.9 =0 [ Kloos€) (B6) L 4 05,00 s (2.18)

Introduce now the notation

G(p,€) := /pR(g k(s)) s71H00+9) g,

0

Clearly, for p within any given bounded set, we have

G(p, )| <C, p>0,{€R. (2.19)
On the other hand, setting
1 for |y| <1,
S0 ={ 1.z
1/y*  for Jy| > 1
and using the assumption (2.1), it is not hard to check that, for some C3 > 0,
" S(ek(s) s OO o< P 2.20
0 (f (S))S §= gmin(2,14e) (2.20)

We will also use below that

Q, ' (y) R(y) |1, (y)| < S(y)  for y > 0. (2.21)
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We now apply a fixed point procedure to (2.18), defining a sequence of functions r, by ro = 0
and, for n > 0,

Juy1(Ek(s))
£k (s)

In view of (2.8) and, by (2.15), |g(p)| < C3 p~1T¢ for some C3 > 0, we have for all n > 1

a0, =0 [ K(p.536) (B +ra(s,€)g(s)) ds.

‘Tn-l-l(pa é-) - Tn(paé)‘

< 002/0 Qo (EK(p)) Qu(E k() T  R(EK(5)) |rn(r ) — rn_1(s,€)| lg(s)| ds

< 0020 /Op Qu(EK(P) Qu(ER(9)) ™" R(ER(S)) |ra(s,€) — ra(s,€)] s1+00+) ds
=00:GQuekR) [ QuErE) ™ Ira(s:6) = raa(5.6)] Golos ) s

In other words,

Qu(EE(P) ™ [ras1(p,€) — ra(p, )]

p ., (2.22)
<004 / Qu(€R(3) ™ [r(5,€) — " 1(5,€)| G, (5,€) ds.

On the other hand, we estimate 7 as follows. Using (2.8), then (2.7), (2.21), and |B(p)| <
Cy p~t190+€) for some C4 > 0 thanks to (2.16) yields

1 g . To+1(€k(s))
.0l <0 [ K56 By =S s
P -1 1/+1( (S))
v J(Ek k d
<0, [ Qulek() Qu(eke) ™ RlER) [T (Bl ds )
<0C1CxC4 Q. (EK(p)) /P S(Ek(s)) s 1+6(1+e) g
0
Qv (§k(p) Qv (§k(p)
< 001020304 fml(n 2,1 e)) : C fml(n 2 1+6))
where we used (2.20) for the last inequality.
By induction on n, it follows from (2.21) and (2.23) that
v(Ek Cs G(p,€))"
|7‘n+1 (paf) —Tn (pa £)| <Cs ?mi(rlé;2,1(fz)) ( S ,,Sjlp 5)) ; (224)

where Cg := 0C1C3. We deduce from (2.24) that {r,} is a Cauchy sequence on the space of
uniformly bounded and continuous functions on each compact subset in p and that

(0, ) <) |rnsa(0,6) — rn(p: 6|
n=0
Qu (k) = (Co G(0,0)" _ k) o),

5min(2,1+6) B

< Cs n! 5m1n(2 1+e)

n=0
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Since, by (2.19), the function G is uniformly bounded and the first part of (2.12) is now established.
Finally, differentiating (2.18), we observe that the derivative r, satisfies

Tp(pag) = 9 /Op Kp(p,S;f) (B(S) %ﬁf)(s))

which has the same form as the formula satisfied by r. It is straightforward to check from (2.5) and
(2.6) that, instead of (2.8), we now have the bound

k' (p)
k(p)

By a direct estimate, we arrive at (2.12) for r,. O

+7(5,) 9(5)) d,

K,y (py5:6)| < C =2 Q, (€k(0)) Qu(€k(s) " R(ER(s) for 0<s<p, E€R.

We now translate the above result into the original velocity variable. Because of the hyperbolic
nature of the problem (2.1), the support of the entropy kernel should be the domain of dependence

K:={(p,v) : p>0, |v] <k(p)}.

Furthermore, since the initial data is singular, the entropy kernel is not smooth but its derivatives
contains some singularities localized on the boundary

oK = {(p,v) : v+ k(p) =0}.
The expansion derived now for the entropy kernel is based on the two functions
(p,v) = [k(p)® — ’Uz]i for py = A A+ 1.

Theorem 2.2. Assume that the pressure function p = p(p) satisfies (1.2) (hyperbolicity) and (2.1)
(behavior near the vacuum) for some v € (1,00) and € > 0. Then the problem (2.1) admits a
solution x = x(p,v), supported in the set K and smooth in its interior. For each p < A, the function

[k(p)? — 'v2]+“ x(p,v) is Holder continuous in (p,v) with

3 ([h(p)? = v*] 7" x) | < Ch(p)? . (2.25)

More precisely, the entropy kernel admits the expansion

X(p:v) = d(p) [k(p)? —v*] +a () [K(p)? —v*] ;" +e(p,v), (2.26)
where ) o) )
at = e kB E Y2 with e _1(1 — ) dy (2.27)
and . p "
& = —Wil) k‘A‘lk’_l/z/O pA-L gL/ (/&“ k’_1/2) ds. (2.28)

The remainder e = e(p,v) is such that 04e is Hélder continuous in (p,v) for p > 0 for all p with
—14+min(2,14+¢€) < p < A+ min(2,1+ ¢€) and, for all 0 < B < p,

|05 e(p,v)| < C pmHI+FO+A=0/2 [ ()2 — 2" 7P, (2.29)
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Furthermore, if the genuine nonlinearity condition (1.6) holds, the function x is positive in the
interior of its support.

We point out that, when 6 € (0,1), that is, v € (1,3) (which is the interval of interest in Theorem
1.1 and in [2]), the derivative 9;"1e(p,v) of the remainder is Holder continuous up to the boundary
p = 0. For instance, in the estimate (2.29) with the exponent (1 — )/2 > 0, we see that the factor
p~HO+B0+(1-0)/2 yanishes as p — 0 when 8 = X + 1, provided one chooses p sufficiently close to
A+ 1

As a corollary, the family of weak entropies for the Euler equations is described by the formula

n(p,v) = /R x(py0 — 5)9(s) ds,

where ¢ : R — R is arbitrary.

Proof of Theorem 2.2. In Theorem 2.1, we established the existence of the solution ¥ = x(p,&) of
the problem (2.2), given by the expansion (2.11). According to (2.12), the following estimate holds
for the remainder:

C |¢|~min@1+9) £ k(p)|” for k(p) ¢ < 1,

. _ (2.30)
C e[~ min@1+e) ¢ k(o) T? for k(p) €] > 1.

Ir(p, )| < {

Considering the expansion (2.11), one sees that the remainder 7(p, £) decays at infinity like

|§‘ —(1/2)—min(2,1+¢€)

and therefore faster than the second term J, 1 (£k(p))/€ which is solely |£|73/2 according to (2.5).
This allows us to treat r(p, &) as a higher-order term.

Using the relation between J, and fA and observing that the corresponding function f is closely
related to the function [k(p)*—v?] :‘_, we now apply the inverse Fourier transform to (2.11). Referring

to [2] for the details, we find exactly (2.26) in which e(p, v) is determined from the remainder r(p, &)
by

1/2
(o) =C () [ cosle) o)1 e (2.31)

up to some multiplicative constant C' > 0. Given some y > 0, by the definition of fractional
derivatives we have

9k<p)>”2 -
otelpn)] < [l o)l .
eo)| <O ( Ty ) [ I Ire8)l
Then, a straightforward calculation based on (2.30) yields the Holder bound

|04 e(p,v)| < Cp=072, (2:32)
provided —1 + min(2,¢/0) < p < A + min(2,¢/0). Similarly, from (2.12), we can also obtain

p|8,08e(p,v)| < C o102

By a standard embedding theorem W,» C C*, we conclude that d%e are Holder continuous in
(p,v)-
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Finally, introducing the variable z := v/k(p), we see that the function [1 — 22], is positive on the
support of . We have

|02 e(p,v)| = k(p)* |de(p,v)| < C pr#+A=02,

The function e = e(p,v) is Holder continuous with exponent p and vanishes outside K. Therefore,

we have )
ep.v)] < C sup|ote(p,o)|[1 - 224

o
—puf+(1-6)/2 2 _ 21k
< Gy =02 [k(p)2 = 2],
which gives (2.29) for § = 0. More generally, for 8 < u, we obtain
|0 e(p,v)| < C p* sup|dte(p,v)| 1 — 247
z

<0 p—50+u0+(1—0)/2 [k(p)2 . Uz]u—ﬁ

which gives (2.29). This completes the proof of Theorem 2.2. [
3. A Multiple-Term Expansion.

We now turn to the general situation of a pressure function p = p(p) satisfying the following:
There exists a sequence of exponents
<y =m<y<...<wWw<By-1)/2<yn+1 (3.1)
and a sufficiently smooth function P = P(p) such that

N
p(p) =Y kin p7" + p"V+ P(p),

n=1

P(p) and p® P"”'(p) are bounded as p — 0,

(3.2)

for some coefficients k,, € R, where r; := (y — 1)?/(4) after normalization. From the exponent
we also define 0, A, and v as in Section 2, so that the reminder in (3.2) takes the same form as we
had in (2.1).

The two-term expansion derived in Section 2 is no longer valid when, besides the singularity with
exponent vy, the pressure contains singularities with exponents strictly less than (3y—1)/2. Instead,
we must introduce the Bessel functions of exponents v;, i = 1,..., I, ordered in increasing order and
determined in the following way. Set

{,ul,,u2, ...,,uI} =[0,6) N {en (Yo —711) + em(Ym —71) : en,em = 0,1, }

and then
=N = A+ = for 1=1,...,1. (3.3)

Clearly, 41 = 0 and
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But, it is important to notice that the coefficients v; are not associated with the coeflicients ~;
directly by the same formulas as in Section 2. Finally, we denote by p711 the smallest of e, (7, —
Y1) + €m(¥m — 1) which is greater or equal to 6, and we set

pr+1 =0 (1+e).

To motivate the introduction of the exponents p;, we point out that (3.2) implies that, for instance,

I
c(p) = p’ (Z q P+ pHr Q(p)> :

=1

where ¢;, 1 < ¢ < I, are constants and () is a more regular function. The function k£ defined as

before by
? ¢y
W)= [ ay
o Y

admits a completely similar expansion.
We now prove the following theorem.

Theorem 3.1. Suppose that the function p = p(p) satisfies the assumption (3.2) for some sequence
of exponents satisfying (3.1). Then there exists a solution of the problem (2.2), x = x(p,&), defined
for p>0 and £ € R. It is smooth for p > 0, continuous as p — 0, and is given by the expansion

2,6 = (‘jf(())) (ZK v |'§|"“( ))+N(p)%+r(p,€)>, (3.4)

where the function N = N(p) was already defined in Theorem 2.1, and the constants K; are deter-
mined in the proof below with K1 = 1. The remainder also satisfies the estimate (2.12) in Theorem
2.1.

Proof. We follow the same strategy as in the proof of Theorem 2.1. As before, we take £ > 0. Now,

the remainder )
o (0K
T(p’g) T (kl(p) ) ’l"(p, 6)

satisfies

Tpp + (k'(p)2 £ — IB(p)) F=—B(p)7F+ H— (8,,,, + K (p)? 52) EI:KZ (9 k(p)>1/2 I (1€ k(p))

7 K (p) BE
e (KON o o Tu(ELR ()
= —Blo)7+H — 55 > K Bi(p) = i

=2

where the functions ; = (8;(p) are defined by

17
By i= kN1 12 (k’\i“ k’_l/z) . (3.6)
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We now rely on the expression of the function H in the proof of Section 2. Using the assumption

(3.2), we have
I

A(p) = " qip" ™+ PP Q(p) (3.7)

i=1
for some ¢; and Q. Since, by (2.5), all of J5(|£|k(p))/\k(p)§|5 are equivalent to 1 as p — 0, the
behavior of the function H (p, &) near the vacuum is given by

A (8RN P&,
Bp) = 20 (k,(p)) > Kl )

I
_ A(ﬂ) o 01/2 ZKZ (k)\i-i-l kl—l/Z)I/'
Co, 41 i—2

Now, again using the assumption (3.2), we find

I
" ~
(k’\i“ k'_1/2> _ pexi+(0—3)/2 Zﬁj P+ phr Q(p) (3.8)
j=1
for some constants §; and some regular function Q, with in particular §, = 6~1/2 (9)\1- + (6 —

1)/2) (6X; + (0 — 3)/2) # 0. Furthermore, by our definition (3.3), we have exactly
0N +(0—3)/2=p; — 1.

That is, the exponents in the expansion (3.7) coincide with the principal exponent arising in (3.8)
for + = 1,...,I. This implies that, by a suitable choice of the constants K;, we can remove all of
the singularities in the function E so that

E(p) = O(ptr+71). (3.9)
Returning to the function H, we conclude that

Cprrr=t for [k(p)€| < 1,

3.10
O k()E¥2  for [k(p)e] > 1. (3.10)

(5, )| < {

The rest of the proof follows as in Section 2, by using the following integral formulation for the
solution of (2.14):

(R [P K(p,5:€) ([ 0k(s)
T(p’f)_<k'(p)> o W(s8) (k’(S)

where the kernel K was defined earlier. In other words, we have

)1/2 (A1(5.6) - B(s)7(5,8) ) ds,

(0.9 =0 [ K(p) (1 .9 +1(5.9(5) ds. (3.11)

The only new feature is the treatment of the term r;. We now use (3.10) and, in fact, arrive at
exactly the same estimate. This completes the proof of Theorem 3.1. O

From Theorem 3.1, we deduce the existence of the entropy kernel.
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Theorem 3.2. Assume that the pressure-function p = p(p) satisfies (1.2) (hyperbolicity) and (3.1)—-
(3.2) (behavior near the vacuum). Then the problem (2.2) admits a solution x = x(p,v), supported

in the set K and smooth in its interior. For each p < X, the function [k(p)? —v?] " x(p,v) is Holder
continuous in (p,v) with

X ([k(p)* = 0*) " x) | < Ch(p)? . (3.12)

More precisely, the entropy kernel admits the expansion

I
X(p,v) = 3" ak(p) [K(p)? = v?] + @ (p) [k(p)? = v*] 11 + e(p,v), (3.13)

=1

where "
af (p) == K; k(p) ™™ K/ (p) (3.14)
and al’(p) was defined in Theorem 2.2. Furthermore, all of the reqularity properties stated in Theorem
2.2 hold.
Finally, we can also study the entropy kernel.
Theorem 3.3. Under the assumption of Theorem 3.2, there exists an entropy flur kernel o =
o(p,v), supported in the set K and smooth in its interior. For each p < X, the function [k(p)2 -

1)2];“ a(p,v) is Holder continuous in (p,v) with

) ([k()? = 0?7 x) | < Ch(p)? O, (3.15)

More precisely, the entropy kernel admits the expansion

o(p,v) = vx(pv) = 3 b (p) [k(p)® - ]} + 0 (p) [k(p)2 — 2] + f(p,w), (3.16)
where ¥ (o)
Pk (p

bi(p) = ai(p) oy (3.17)

and b* = b’ (p) is some function of p. Furthermore, the reqularity results stated in Theorem 2.2 for
the entropy kernel carry over to the entropy flux kernel.

4. Existence theory.
Our main existence result is the following.

Theorem 4.1. Consider the isentropic Euler equations (1.1) under the assumptions (1.2) (hyper-
bolicity), (3.1)—(3.2) (behavior near the vacuum), and (1.7) (genuinely nonlinearity) with v € (1,3).
Then, given any measurable and bounded initial data (po,vo) at time t = 0, there exists a correspond-
ing entropy solution (p,m) = (p, pv) of the Cauchy problem associated with (1.1), globally defined in
time, such that 0 < p(z,t) < C and |m(z,t)| < C p(z,t) for some constant C > 0 and for almost
every (z,t).

Recall that (2.1) is just a special case of (3.1)—(3.2). Note also that the condition y < 3 is assumed
in this section only.
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Proof. Most of the arguments in [2] carry over with the more general expansion discovered in Section
3. Thus, we only need here to discuss some new observations required in the central part of the
proof, i.e., the reduction of the Young measures. Denote by v = v(,;)(p,v) a Young measure
associated with the sequence of approximate solutions to (1.1). It is known that v satisfies Tartar’s
commutation relations (at almost every point (z,t)):

<V, M1q2 — N2 CI1> = <Va 771> <V, Q2> - <Va 772> <V, CI1> (4.1)

for any two weak entropy pairs (71, ¢1) and (72, ¢2) of (1.1). The objective is to deduce from (4.1)
that the support of v in the (p,v)-plane is either a single point or a subset of the vacuum line
{p = O}. To this end, the cancellation properties stated in Lemmas 4.2 and 4.3 in [2] play the
central role and will be reconsidered here.

Using the notation in [2], in particular,

G, (p0) = [k(p)? = v?], (4.1)

We now reconsider the distribution in the variables (p, v, s1, s2, s3):

A+1 A+1 A+1 A+1
E 2282+ X283+ g3 —83+ X382+ 02

=% x2 03" (03 —vx3) — BV xa B (02 — v x2)

I I
:8;‘_'—1 (Z CL?G}\“2 + CLbG)\+1,2 + gz) 8?“ ((83 — ’U) (Z bgGM,g + bbGA+1,3) + h3>

I I
— 03 (D aiGrs + @ Gagrs +g3) 5 ((82 —0) (Q_bGr 2+ VGarr2) + h2)a
where for instance x1 := x(p,v — $1),.... Thus, we have

I I
E=() a3 Gy 2+ "3 Grsr2 + 031 o) ((33 —v) (O bR Gy 5+ 0BT Grrrs)

I
+ R hs + (A+1) > bO3GH 3+ (A +1) bb(??GHlﬁ)
=1

I I
+ (D a3t G 3+ 0T Crga s + 03 gs) ((52 —v) QO HRTCr 2+ VR Gt )

I
£+ Ok 1) Y B0 + (A 1) P0G )
=1

=: Bl + BT 4+ BT

To decompose E, we rely on the crucial observation that, by (3.17), the ratios bg / ag are independent
of the index i. We define

I I
ET = (s3 — 89 ana)\-HG)\- 2 b} 8;Gx, 3
172 i i 73 K

i=1 i=1
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I I
B =% aioyt a2 ((33 —0) B0 Grs + (A + 1) Zbgae),‘G,\i,:a)

=1 =1

I I
_ Z al 921G, 5 ((32 —0) PO Gy + (A + 1) Z bga;c;w)
i=1 i=1

I
+a’ ) b (3§+1GA1-+1,2(83 —0) B3 G — BT Gagra(s2 — ) 39"+1GA,2>,
=1

and ET!! ig the remainder.

We must determine the limit of the first two terms as s5,s3 — s in the sense of distributions.
Dealing with ET!! is easy since it involves only products of Holder continuous functions by measures
or more regular products. By symmetry, one gets

EIII -0 as S9,83 — S1 (42)

weakly in the sense of distributions, uniformly in (p,v).
On the other hand, ET contains the favorable factor sy — s3. Therefore, by the arguments
developed in [2], we have again
Ef =0 as Sz, 83 — S1 (4.3)

weakly in the sense of distributions and uniformly in (p,v).

Finally, the term E’! contains products of functions of bounded variation by bounded measures.
However, it is not hard to see that only the specific product treated in [2] generates a non-trivial
contribution. The reason is that the terms containing G, for ¢ # 1 are more regular than those
associated with the first term G, = G,. This completes the proof of Lemma 4.3 in [2] for the
multiple-term expansion and, in turn, this establishes that the reduction theorem for Young mea-
sures. Relying on the framework developed in [2], this also completes the proof of Theorem 4.1.
O
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