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ABSTRACT

We study the spectral viscosity (SV) method in the context of multidimensional

scalar conservation laws with periodic boundary conditions. We show that the spectral

viscosity, which is suÆciently small to retain the formal spectral accuracy of the under-

lying Fourier approximation, is large enough to enforce the correct amount of entropy

dissipation (which is otherwise missing in the standard Fourier method). Moreover,

we prove that because of the presence of the spectral viscosity, the truncation error in

this case becomes spectrally small, independent of whether the underlying solution is

smooth or not. Consequently, the SV approximation remains uniformly bounded and

converges to a measure-valued solution satisfying the entropy condition, that is, the

unique entropy solution. We also show that the SV solution has a bounded total vari-

ation, provided that the total variation of the initial data is bounded, thus con�rming

its strong convergence to the entropy solution. We obtain an L1 convergence rate of the

usual optimal order one-half.
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1. THE SPECTRAL VISCOSITY APPROXIMATION

We consider scalar conservation laws in several space dimensions d; d � 1,

(1:1a) @tu(x; t) + @x � f(u(x; t)) = 0; f(u) � (f 1(u); f 2(u); : : : ; f d(u));

subject to initial data

u(x; 0) � u0(x)�L
1(T d[0; 2�]);

and augmented with the entropy condition (cf. [La], [Sm])

(1:1b) @tU(u) + @x � F (u) � 0; 8U convex; F (u) �
Z u

U 0(w)f 0(w)dw:

The following abbreviations are used throughout the paper:

@t =
@

@t
; @j =

@

@xj
; @2jk =

@2

@xj@xk
; @sx = (@s1; @

s
2; : : : ; @

s
d):

We want to solve the 2�-periodic initial-value problem, (1.1a){(1.1b), by a spec-

tral method. To this end we approximate the spectral/pseudo-spectral projection of

the exact entropy solution, PNu(�; t), using an N -trigonometric polynomial, uN(x; t) =P
j�j�N û�(t)e

i��x, which is governed by the semi-discrete approximation

(1:2a) @tuN(x; t) + @x � PNf(uN(x; t)) = "N

dX
j;k=1

@2jkQ
j;k
N (x; t) � uN(x; t):

Together with one's favorite ODE solver, (1.2a) gives a fully discrete method for the

approximate solutions of (1.1a). Discussion of the numerical advantages and actual

implementation of this method will be made elsewhere. Our focus in this paper is on

the convergence theory.

The left-hand side of (1.2a) is the standard Fourier approximation of (1.1a). Al-

though this part of the approximation is spectrally accurate with the conservation law

(1.1a), it lacks entropy dissipation, which is inconsistent with the entropy condition

(1.1b). Consequently, the standard Fourier approximation of (1.1a) supports spurious

Gibbs oscillations (once shock discontinuities are formed), which prevent strong conver-

gence to the entropy solution of (1.1) (cf. [Ta1],[Ta2]). To suppress these oscillations,

without sacri�cing the overall spectral accuracy, we augment the standard Fourier ap-

proximation on the right-hand side of (1.2a) by spectral viscosity, which consists of the

following three ingredients:

� A vanishing viscosity amplitude, "N , of size
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(1:2b) "N � N��; � < 1:

� A viscosity-free spectrum of size mN >> 1,

(1:2c) mN � N
�
2

(logN)
d
2

; � < 1:

� A family of viscosity kernels, Qj;k
N (x; t) =

PN
j�j=mN

Q̂
j;k
� (t)ei��x; 1 � j; k � d,

activated only on high wavenumbers j�j � mN , which can be conveniently imple-

mented in the Fourier space as

"N

dX
j;k=1

@2jkQ
j;k
N �uN(x; t) � �"N

NX
j�j=mN

< Q̂��; � > û�(t)e
i��x; < Q̂��; � >�

dX
j;k=1

Q̂
j;k
� (t)�j�k:

The viscosity kernels we deal with, Qj;k
N (x; t), are assumed to be spherically symmetric,

that is, Q̂j;k
� = Q̂j;k

p ; 8j�j = p, with monotonically increasing Fourier coeÆcients, Q̂j;k
p ,

that satisfy

(1:2d) jQ̂j;k
p � Æjkj � Const:

m2
N

p2
; 8p � mN :

The main purpose of the spectral viscosity is to achieve a compromise between two

conicting requirements. We recall (cf. [GO]) that the use of the spectral/pseudo-

spectral projections yields a spectrally small error in the sense that

(1:3) k(I � PN)f(uN)k � Const:N�sk@sxuNk; 8s � 0:

The additional spectral viscosity is also spectrally small, since

(1:4) "Nk
dX

j;k=1

@2jkQ
j;k
N � uN(�; t)k � Const:N� s�

2 k@sxuN(�; t)k; 8s � 2:

Thus, on the one hand the spectral viscosity is small enough to retain the formal spectral

accuracy of the overall approximation, while on the other hand the spectral viscosity is

suÆciently large to enforce the correct amount of entropy dissipation that is missing in

the standard Fourier method, that is, "N = 0 (see x2). In fact, the smallest scale of the

SV approximation (1.2a) is order "N . It follows that, because of the presence of the SV in

(1.2a), the spectral decay of the truncation error on the left of (1.3) is independent of the

smoothness of the underlying solution. In x3 we show that the SV, although spectrally

small, is only an Lp-bounded perturbation of the standard vanishing viscosity. This

fact enables us to show in x4 that the SV solution remains uniformly bounded and

that its weak limit is a measure-valued solution consistent with the entropy condition
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corresponding to (1.1b). Hence, DiPerna's uniqueness theorem [DP] combining with

the �niteness of propagation speed implies that uN converges to the unique entropy

solution of (1.1a){(1.1b). For the reduction theorems for the measure-valued solutions

to hyperbolic systems of conservation laws, we also refer the reader to [Ch1, Ch2, DP2,

Se]. An alternative, independent convergence proof of the SV method is derived in x5
from its total-variation boundedness, provided the total variation of the initial data is

bounded. We conclude in x6 with an L1-convergence rate estimate of the usual optimal

order one-half.

2. SPECTRALLY SMALL TRUNCATION ERROR

The SV method (1.2a) approximates the exact spatial uxes in (1.1a) by their

(pseudo)spectral projections. This approach leads to the truncation error

@x � (I�PN )f(uN). In this section we show that, because of the presence of the spectral

viscosity, the truncation error is spectrally small independent of whether the underlying

solution is smooth or not.

Our discussion proceeds in three steps; detailed proofs are left to x7.
Step 1: We begin with the following two facts.

� A straightforward a priori bound states that 8s � r � 0 then the followings holds:

(2:1) k@rx � (I � PN)f(uN)k =

0
@ X
j�j>N

j�j2rj df(uN)�j2
1
A

1

2

� 1

N s�r
k@sx � f(uN)k:

� Consider the right-hand side of (2.1). Here we claim (and prove in x7) that the
derivatives of a suÆciently smooth ux, f(u), are bounded above by the derivatives

of u. That is, there exist constants Ks (depending on juN jL1 � kuNkL1
loc

(x;t) and

jf jCk � k@kuf(u)kL1(
N ) where 
N = fu : juj � juN j1g), such that the following

estimate holds:

(2:2) k@sx � f(uN)k � Ksk@sxuNk; Ks �
sX

k=1

jf jCk � juN jk�1
L1 ; s = 1; 2; : : : :

Using (2.1) followed by (2.2), we conclude the �rst step with the estimate

(2:3) k@rx � (I � PN)f(uN)k �
Ks

N s�r
k@sxuNk; Ks �

sX
k=1

jf jCk � juN jk�1
L1 ; s � r � 0:

Step 2. The inequality (2.3) is the usual spectral accuracy estimate associated with

the (pseudo)spectral projections (see (1.3)). The inequality states that the truncation
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error (and its derivatives) decays as rapidly as the smoothness of uN permits. Of course,

the derivatives of an arbitrary N -trigonometric polynomial, @sxuN , may grow as fast as

N s, in which case nothing is gained from (2.3). In the present context, however, the

spatial derivatives of the SV approximation @sxuN grow at the slower rate of "�sN . This is

the content of the main a priori estimate of this section, whose proof is left for x7. We

summarize the estimate in the following theorem.

THEOREM 2.1. Consider the SV approximation (1.2a) and (1.2d) with SV parameters

("N ; mN), which satisfy, in agreement with (1.2b)-(1.2c),

(2:4) "N >
2Ks+1

N
; and "N �m2

N (logN)d � Const:

Then there exists a constant Bs(�
sY

k=1

Kk for s � 1) such that the following estimate

holds:

(2:5) "sNk@sxuN(�; t)kL2(x) + "
s+ 1

2

N k@s+1
x uNkL2(x;[0;t]) � Bs + Const:"sNk@sxuN(�; 0)kL2(x):

REMARK. Theorem 2.1 with s = 0 is the usual a priori estimate on the entropy

production rate

(2:6) kuN(�; t)kL2(x) +
p
"Nk@sxuNkL2(x;[0;t]) � Const:kuN(�; 0)kL2(x):

Step 3. Assume that our data (the ux, f(u), and the initial conditions, uN(�; 0))
satisfy the following conditions:

� The ux f(u) is suÆciently smooth; that is, jf jCs <1 for suÆciently large s.

� The smallest scale of the initial condition is of order "N ; that is,

(2:7) "sNk@sxuN(�; 0)kL2(x) � Const:

Then, Theorem 2.1 shows that the smallest scale of the SV approximation uN(�; t)
remains of order "N . Together with (2.3), this implies that for 1

N"N
� N�(1��) = o(1),

the truncation error of the SV approximation is spectrally small, independent of whether

the underlying solution is smooth or not. This extends a similar one-dimensional result

of [Sc] and [MT]. For later reference, we state our �nal corollary.

Corollary 2.2. Let uN denote the SV solution of (1.2a)-(1.2d), with initial conditions

satisfying (2.7). Then the following spectral decay estimates of the truncation error hold:

(2:8a) k@rx � (I � PN)f(uN(�; t))kL2(x) � Const:BsN
�sr ; sr � (1� �)s� r;
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(2:8b) k@rx � (I � PN)f(uN)kL2(x;[0;t]) � Const:BsN
�(sr+

�
2
); 8s � 1:

REMARKS

1. Using the Sobolev inequality, one can convert this L2-type estimate (2.8) into a

spectral decay estimate in the uniform norm, for example,

(2:9) k@rx � (I � PN)f(uN)kL1(x;[0;t]) � Const:BsN
�sr+

d
2 :

2. Observe that the polynomial decay rate in (2.9), sr = (1� �)s � r, can be made

as large as the Cs-smoothness of f(u) permits. For example, we have

(2:10) k@x � (I � PN)f(uN)kL1(x;[0;t]) � Const:
Bs

N
; 8f 2 Cs; s � 2 + d

2(1� �)
:

The smoothness requirement on the right of (2.10) will be suÆcient for the esti-

mates derived throughout the rest of the paper.

3. The critical Sobolev exponents sr in (2.9) are not optimal; careful Lp-iterations

enable one to obtain (2.9) with s0 = (1��)s+1��� d
2
� 0. Thus, for example, in

the one-dimensional case, one may use the basic entropy production bound (2.6)

(corresponding to s = 0), in order to conclude that the truncation error tends

uniformly to zero with viscosity amplitude "N � N��; � < 1
2
(cf. [MT], [Ta3]).

3. SPECTRAL VISCOSITY VERSUS VANISHING VISCOSITY

In this section we show that the spectral viscosity "N
Pd

j;k=1 @
2
jkQ

j;k
N � uN|though

spectrally small according to (1.4)|is only an Lp-bounded perturbation of the standard

vanishing viscosity, "N�uN .

We begin by taking a closer look at the SV operator on the right of (1.2a). We set

(3:1) R̂
j;k
� � R̂

j;k
� (t) =

8><
>:

Æjk; j�j � mN ;

Æjk � Q̂
j;k
� (t); j�j > mN ;

and note that the corresponding smoothing kernel, Rj;k
N � Pj�j�N R̂

j;k
� ei��x, complements

the SV kernel, Qj;k
N =

PN
j�j=mN

Q̂
j;k
� ei��x, to the full Laplacian, that is,

(3:2)
dX

j;k=1

@2jkQ
j;k
N �+

dX
j;k=1

@2jkR
j;k
N � � �:
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The following lemma provides us with an upper bound on the L1-size of the smoothing

kernel,
Pd

j;k=1 @
r
j@

s�r
k R

j;k
N (�; t).

Lemma 3.1. Consider the real, spherically symmetric SV kernels,

Q
j;k
N (x; t) =

NX
p�mN

Q̂j;k
p

X
j�j=p

ei��x with monotonically increasing Fourier coeÆcients, Q̂j;k
p ,

satisfying (1.2d). Then the following estimate holds:

(3:3) k
dX

j;k=1

@rj@
s�r
k R

j;k
N (�; t)kL1(x) � Const:ms

N (logN)d; 0 � r � s � 2:

REMARKS

1. Lemma 3.1, which is the multidimensional generalization of Lemma A.1 in [MT],

shows that derivatives of the smoothing kernel,
Pd

j;k=1R
j;k
N (�; t), grow like those of

a trigonometric polynomial of degree mN .

2. The extra logarithmic factor on the right of (3.3) can be avoided if the SV Fourier

coeÆcients, Q̂j;k
p , satisfy the concavity condition, Q̂j;k

p+1 � 2Q̂j;k
p + Q̂

j;k
p�1 � 0:

Proof. Let Dp(xi) =
sin(p+ 1

2
)xi

sin 1

2
xi

. Then we have

X
j�j=p

ei��x � IDp(x)� IDp�1(x);

where IDp(x) =
X
j�j�p

ei��x is the multidimensional Dirichlet kernel, IDp(x) =
Qd

i=1Dp(xi).

This fact enables us to write (with ID�1(x) � 0)

R
j;k
N (x; t) =

NX
p=0

R̂j;k
p (t)

X
j�j=p

ei��x =
NX
p=0

R̂j;k
p (t)[IDp(x)� IDp�1(x)]:

Setting R̂j;k
N+1 = 0, we use summation by parts of the right-hand side (recall that R̂j;k

p =

Æjk; p � mN ) to obtain

(3:4)

@rj@
s�r
k R

j;k
N (x; t) =

PN
p=0 R̂

j;k
p @rj@

s�r
k [IDp(x)� IDp�1(x)]

=
PN

p=mN
(R̂j;k

p � R̂
j;k
p+1)@

r
j@

s�r
k IDp(x):

Next, since

k ds

dxsi
Dp(xi)kL1 =

8><
>:
O(log p); s = 0;

O(ps); s = 1; 2; : : : ;
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we have k@rj@s�rk IDp(x)kL1 � Const:ps(log p)ds ; ds = d� 1 + (1� s)+. Using this and

the fact that R̂j;k
p are monotonically decreasing, we conclude from (3.4)

k@rj@s�rk R
j;k
N (�; t)kL1 � Const:

"
N�1X
p=mN

(R̂j;k
p � R̂

j;k
p+1)p

s(log p)ds + jR̂j;k
N j �N s(logN)ds

#
:

One more summation by parts on the right of the last inequality yields

k@rj@s�rk R
j;k
N (�; t)kL1 � Const:

"
NX

p=mN

R̂j;k
p

h
ps(log p)ds � (p� 1)s(log(p� 1))ds

i
+m2

N (logN)ds
#
:

Finally, since by (1.2d), R̂j;k
p � Æjk � Q̂j;k

p � m2
N

p2
, we conclude

k@rj@s�rk R
j;k
N (�; t)kL1 � Const:m2

N(logN)ds �
NX

p=mN

2

p3�s
� Const:ms

N (logN)d; 8s � 2:

The Young's inequality followed by Lemma 3.1 with (r; s) = (1; 2) implies our �nal

corollary, which con�rms the statement in the beginning of this section.

Corollary 3.2. Consider the real, spherically symmetric SV kernels,

Q
j;k
N (x; t) =

NX
p�mN

Q̂j;k
p

X
j�j=p

ei��x with monotonically increasing Fourier coeÆcients, Q̂j;k
p ,

satisfying (1.2d). Denote

(3:5) cN � "Nm
2
N (logN)d � Const:

Then the following estimate holds:

(3:6) "Nk
dX

j;k=1

@2jkR
j;k
N � uN(�; t)kLp � cNkuN(�; t)kLp; 8p � 1:

4. CONVERGENCE OF THE SV METHOD

In the �rst part of this section we prove that the SV approximation, (1.2a)-(1.2d),

is uniformly bounded.

Lemma 4.1 (L1-stability). There exists a constant such that

(4:1) kuN(�; t)kL1(x) � Const � kuN(�; 0)kL1(x); 8t � T:

In the second part of this section we show that the SV solution is consistent with the

entropy condition (1.1b) for all convex entropy pairs (U; F ).
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Lemma 4.2 (Entropy Consistency). There exists a vanishing sequence, eN , such that

(4:2) @tU(uN) + @x � F (uN) � eN ! 0; in D0:

The detailed proof of Lemma 4.1 and Lemma 4.2 is postponed to the end of this sec-

tion. Granted the L1-stability and the entropy consistency, we can combine DiPerna's

uniqueness result for measure-valued solutions [DP] with the �niteness of propagation

speed (see also [Sz] for the case of bounded domains) to conclude the following theorem.

THEOREM 4.3. Let uN be the solution of the SV approximation (1.2a)-(1.2d), subject

to bounded initial conditions satisfying

kuN(�; 0)kL1(x) + "sNk@sxuN(�; 0)kL2(x) � Const:

Then uN converges strongly to the unique entropy solution of (1.1a)-(1.1b).

We now turn to the promised proofs of the L1-stability and the entropy consistency.

Proof of Lemma 4.1. Using (3.2), we can rewrite the SV approximation (1.2a) in the

form

(4:3a) @tuN + @x � PNf(uN)� "N�uN = "N

dX
j;k=1

@2jkR
j;k
N � uN

or, equivalently,

(4:3b) @tuN + @x � f(uN)� "N�uN = "N

dX
j;k=1

@2jkR
j;k
N � uN + @x � (I � PN)f(uN):

Integrating against pu
p�1
N and letting p " 1, we are led to the maximum principle

associated with the parabolic left-hand side of (4.3b), which reads

(4:4)

d

dt
kuN(�; t)kL1(x) � k@x � (I � PN )f(uN(�; t))kL1(x) + "Nk

dX
j;k=1

@2jkR
j;k
N � uN(�; t)kL1(x):

It remains to obtain upper bounds for the two expressions on the right of (4.4).

We now �x s = 2+d
2(1��)

. Equation (2.10) in Corollary 2.2 implies that the �rst term

on the right of (4.4) does not exceed

k@x � (I � PN)f(uN(�; t))kL1(x) �
Bs

N
; Bs �

sY
k=1

Kk � Const:kuNk
s2

2

L1(x;[0;t]):
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By equation (3.6) with p =1, the second term on the right of (4.4) does not exceed

"Nk
dX

j;k=1

@2jkR
j;k
N � uN(�; t)kL1(x) � cNkuNkL1(x;[0;t]); cN � "Nm

2
N(logN)d � Const:

Equipped with the last two upper bounds, we return to the inequality (4.4), which tells

us that the growth of juN(t)j1 � kuNkL1(x;[0;t]) is governed by

d

dt
juN(t)j1 � cN juN(t)j1 +

Const:

N
juN(t)j

s2

2
1 ;

which in turn implies that

juN(t)j1 � ecN tjuN(0)j1 �
0
@1� (ecN tjuN(0)j1)

s2

2

NcN

1
A
� 2

s2

:

We conclude that for t � O(lnN), the SV solution remains bounded by

Const:ecN tjuN(0)j1:

We close this section with the following proof.

Proof of Lemma 4.2. Multiplying (4.3b) by U 0(uN), we obtain

(4:5)
@tU(uN ) + @x � F (uN)

� "NU
0(uN)

dX
j;k=1

@2jkR
j;k
N � uN + U 0(uN)@x � (I � PN)f(uN)

=
dX

j;k=1

@j("NU
0(uN)R

j;k
N � @kuN)� "NU

00(uN)
dX

j;k=1

@juNR
j;k
N � @kuN

+ @x � (U 0(uN)(I � PN)f(uN))� U 00(uN)@xuN � (I � PN)f(uN)

�
dX

j;k=1

@j(Ijk(uN))� II(uN) + @x � III(uN)� IV (uN):

We claim that the four terms on the right of (4.5) tend to zero. Below, we abbreviate

kU 0kL1 = kU 0(u)kL1(
N ), etc.

� First, from (2.6) we have

kIjk(uN)kL2

loc
(x;t) � "NkU 0kL1 maxj�j�N jR̂j;k

� j � k@kuNkL2

loc
(x;t)

� "NkU 0kL1k@xuNkL2

loc
(x;t) � Const:

p
"N ! 0:
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� Next, since j < R̂��; � > j � Const:j�j2, we �nd

kII(uN)kL2

loc
(x;t) � "NkU 00kL1

0
@Z T

t=0

X
j�j�N

j < R̂�(t)�; � > j � jû�(t)j2dt
1
A

1

2

� Const:"NkU 00kL1k@xuNkL2

loc
(x;t) � Const:

p
"N ! 0:

� The inequality (2.8b) with (r; s) = (0; 1) implies

kIII(uN)kL2

loc
(x;t) � kU 0kL1 � k(I � PN)f(uN)kL2

loc
(x;t)

� kU 0kL1 � K1

N
k@xuNkL2

loc
(x;t) � Const:N�(1� �

2
) ! 0:

� Repeating the previous arguments, we conclude the proof of (4.2) with

kIV (uN)kL1

loc
(x;t) � kU 00kL1 � k@xuNkL2(x;[0;t]) � k(I � PN)f(uN)kL2(x;[0;t])

� K1

N
k@xuNk2L2

loc
(x;t)

� Const �N�(1��) ! 0:

5. TOTAL-VARIATION BOUNDEDNESS

Consider the SV approximation (4.3b)

(5:1) @tuN + @x � f(uN)� "N�uN = @x � (I � PN )f(uN) + "N

dX
j;k=1

R
j;k
N � @2jkuN :

On the left we have the usual L1-stable viscosity approximation of (1.1a){(1.1b). The

�rst and second terms on the right represent, respectively, the spectrally small truncation

error and, by Corollary 3.2, the Lp-bounded perturbation of the SV operator. It follows

that the SV approximation shares the L1-stability and, consequently, the total-variation

boundedness of the usual viscosity approximation. Details of the one-dimensional case

can be found in [Ta4]. To demonstrate the above claims in the multidimensional case,

we now turn to a direct proof of the latter total-variation bound.

Spatial di�erentiation of (5.1) yields

@t@iuN + @x � (f 0(uN)@iuN)� "N�@iuN = @i@x � (I � PN)f(uN) + "N

dX
j;k=1

@2jkR
j;k
N � @iuN :

Integrating this against sign@iuN and using (3:6) with p = 1, we obtain

d

dt
k@iuN(�; t)kL1(x) � Const:k@2x � (I � PN)f(uN)kL1(x) + cNk@iuN(�; t)kL1(x):

10



Integration of the last inequality implies that the total variation of the SV solution,

kuN(�; t)kBV (x) �
Pd

i=1 k@iuNkL1(x), does not exceed

kuN(�; t)kBV (x) � ecN t
h
kuN(�; 0)kBV (x) + k@2x � (I � PN)f(uN)kL1(x;[0;t])

i
:

By taking into account the spectral decay of the truncation error (2.8a), we conclude

the following theorem.

THEOREM 5.1. Let uN be the solution of the SV approximation (1.2a)-(1.2d), subject

to initial conditions (2.7). Then uN has a bounded variation, and the following estimate

holds:

(5:2) kuN(�; t)kBV (x) � ecN t
h
kuN(�; 0)kBV (x) +O(

p
tN�s2)

i
; s2 = (1� �)s� 2 > 0:

6. CONVERGENCE REVISITED WITH ERROR ESTIMATE

In this section we revisit the question of convergence of the SV approximation to

the unique entropy solution of (1.1a){(1.1b). An aÆrmative answer to this question was

already given in x4, where we used the L1-bound together with the entropy consistency

of the SV approximation. Alternatively, one may use the L1-bound together with

the total-variation boundedness to conclude the convergence of the SV approximation.

Moreover, in this section we show how one can use the total-variation boundedness to

obtain an L1-convergence rate estimate of the usual optimal order one-half. We proceed

along the lines of the one-dimensional argument in [Sc].

It is well known that the solution of the usual viscosity approximation

(6:1) @tv
"N + @x � f(v"N ) = "N�v

"N ;

satis�es an L1-convergence rate estimate of order one-half (cf. [Ku], [CM], [Sa]):

(6:2) kv"N (�; t)� u(�; t)kL1(x) � Const:
p
"N ; 0 � t � T:

We claim that the L1-error between the SV approximation, uN , and the viscosity ap-

proximation, v"N , is of the same order O(p"N). Indeed, subtracting (6.1) from the SV

approximation (4.3b), we �nd

(6:3)
@t(uN � v"N ) + @x � (f(uN)� f(v"N )) � "N�(uN � v"N )

= "N
Pd

j;k=1 @jR
j;k
N � @kuN + @x � (I � PN)f(uN):

11



Integrated against sign(uN � v"N ), the last equality gives us

(6:4)

d

dt
kuN(�; t)� v"N (�; t)kL1(x) � "Nk

Pd
j;k=1 @jR

j;k
N (�; t) � @kuN(�; t)kL1(x)

+ k@x � (I � PN )f(uN(�; t))kL1(x):

Using (3.3) with r = s = 1, we have that the �rst term on the right does not exceed

(6:5)

"Nk
Pd

j;k=1 @jR
j;k
N (�; t) � @kuN(�; t)kL1(x)

� "Nk
Pd

j;k=1 @jR
j;k
N (�; t)kL1(x) � k@kuN(�; t)kL1(x)

� Const:"NmN (logN)d � kuN(�; t)kBV (x) � Const:
p
"N :

With this in mind, we can integrate (6.4) to obtain

(6:6) kuN(�; t)� v"N (�; t)kL1(x) � Const:
p
"N +

p
2�tk@x � (I � PN)f(uN)kL2(x;[0;t]):

According to (2.8b), the second term on the right is the spectrally small truncation error

(6:7) k@x � (I � PN)f(uN)kL2(x;[0;t]) � Const:KsN
�(s1+

�
2
); s1 = (1� �)s� 1;

which does not exceed O(p"N) for s large enough (s > 1
1��

).

We summarize what we have shown in (6.2), (6.6), and (6.7), stating the following

theorem.

THEOREM 6.1. Let uN be the SV solution of (1.2a){(1.2d), subject to the initial

conditions (2.7). Then uN converges to the unique entropy solution of (1.1a){(1.1b),

and the following error estimate holds:

(6:8) kuN(�; t)� u(�; t)kL1(x) � Const:
p
"N ; 0 � t � T:

7. PROOFS OF MAIN A PRIORI ESTIMATES

In this section we collect the promised proofs for the main a priori estimates associ-

ated with the SV approximation (1.2a), which we rewrite as

(7:1) @tuN + @x � f(uN)� "N�uN = "N

dX
j;k=1

R
j;k
N � @2jkuN + @x � (I � PN)f(uN):

An upper bound on the �rst term on the right was provided in x3. We now turn to

estimate the second term on the right of (7.1). Here, we �rst prepare the proof of (2.2),

which we state as follows.

12



Lemma 7.1. The following estimate holds:

(7:2) k@sx � f(uN)k � Ksk@sxuNk; Ks �
sX

k=1

jf jCk � juN jk�1
L1 s = 1; 2; : : : :

Proof. By the chain rule we have

@sjf(u) =
X

f�;�>0 j ���=sg

c�(@
�1

j u)�1(@�2

j u)�2 : : : (@�dj u)�d; c� � @ruf(u); r =
dX

k=1

�k:

The H�older inequality followed by the Gagliardo-Nirenberg inequality implies that a

typical term on the right does not exceed

k(@�1

j u)�1(@�2

j u)�2 : : : (@�dj u)�dk �

(with �k �
s

�k�k
: : : ) �

dY
k=1

k@�kj uk�k
L2�k�k

(with �k =
�k

s
: : : ) � Const:

dY
k=1

kuk(1��k)�kL1 � k@sjuk�k�k

� Const:jujr�1
L1 � k@sjuk; r =

dX
k=1

�k � s;

and hence (7.2) follows with Ks �
sX

r=1

jf jCk � jujr�1
L1 :

Equipped with Lemma 7.1, we are now ready for the proof of the main result of x2,
claiming that the smallest scale of the SV approximation is of order "N ,

(7:3) "sNk@sxuN(�; t)kL2(x) + "
s+ 1

2

N k@s+1
x uNkL2(x;[0;t]) � Bs + "sNk@sxuN(�; 0)kL2(x):

Proof of Theorem 2.1. Spatial integration of (7.1) against uN(x; t) yields

1

2

d

dt
kuNk2+"Nk@xuNk2 � kuNk �"Nk

dX
j;k=1

@2jkR
j;k
N �uNk+

dX
j=1

k@juNk �k(I�PN )f
j(uN)k:

Using (3.6) with p = 2 for the �rst term on the right, and (2.3) with (r; s) = (0; 1) for

the second term, we �nd

1

2

d

dt
kuNk2 + ("N �

K1

N
)k@xuNk2 � cNkuNk2; cN � "N �m2

N(logN)d � Const:

Hence, (7.3) follows for s = 0 (with K0 = 0).
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The general case follows by induction on s. Spatial integration of (4.3a) against

@2sx uN(x; t) yields

(7:4)

1

2

d

dt
k@sxuNk2 + "Nk@s+1

x uNk2 � k@sxuNk � "Nk
dX

j;k=1

@2jkR
j;k
N � @sxuNk

+k@s+1
x uNk � k@s�1

x @x � PNf(uN)k:

Using (3.6) again and the Cauchy-Schwartz inequality to upper bound, respectively, the

�rst and second terms on the right of (7.4), we end up with

(7:5)
d

dt
k@sxuNk2 +

"N

2
k@s+1

x uNk2 � Const:k@sxuNk2 +
1

2"N
k@sx � PNf(uN)k2:

It remains to estimate the spatial derivatives of PNf(uN). To this end we use (2.2) and

(2.3) to obtain

k@sx � PNf(uN)k � k@sx � f(uN)k+ k@sx � (I � PN)f(uN)k � Ksk@sxuNk+
Ks+1

N
k@s+1

x uNk:

Together with (7.5), we �nd

d

dt
k@sxuNk2 + (

"N

2
� K2

s+1

N2"N
)k@s+1

x uNk2 � (Const:+
K2
s

"N
)k@sxuNk2:

In view of the SV parameterization in (2.4), temporal integration of the last inequality

yields

k@sxuN(�; t)k2 +
1

4
"Nk@s+1

x uNk2L2(x;[0;t]) �
K2
s

"N
k@sxuNk2L2(x;[0;t]) + k@sxuN(�; 0)k2;

and the result (7.3) follows by induction on s:
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