Multidimensional Transonic Shocks and Free Boundary Problems for Nonlinear Equations of Mixed Type

Author: Gui-Qiang Chen and Mikhail Feldman

Title: Multidimensional Transonic Shocks and Free Boundary Problems for Nonlinear Equations of Mixed Type

Abstract
We establish the existence and stability of multidimensional transonic shocks for the Euler equations for steady potential fluids. The Euler equations, consisting of the conservation law of mass and the Bernoulli law for the velocity, can be written into a second-order, nonlinear equation of mixed elliptic-hyperbolic type for the velocity potential. The transonic shock problem can be formulated as the following free boundary problem: The free boundary is the location of the transonic shock which divides the two regions of smooth flow, and the equation is hyperbolic in the upstream region where the smooth perturbed flow is supersonic. We develop a nonlinear approach to deal with such a free boundary problem in order to solve the transonic shock problem. Our results indicate that there exists a unique solution of the free boundary problem such that the equation is always elliptic in the downstream region and the free boundary is smooth, provided that the hyperbolic phase is close to a uniform flow. We prove that the free boundary is stable under the steady perturbation of the hyperbolic phase. We also establish the existence and stability of multidimensional transonic shocks near spherical or circular transonic shocks.
This article has appeared in:
Journal of American Mathematical Society (JAMS) , Vol. 16, pages 461-494 (2003).
This paper is available in the following formats:
A closely related paper is Change me.
Author Address
    
    Department of Mathematics
    Northwestern University
    Evanston, IL 60208-2730
    gqchen@math.nwu.edu