Steady Transonic Shocks and Free Boundary Problems in Infinite Cylinders for the Euler Equations

Author: Gui-Qiang Chen and Mikhail Feldman

Title: Steady Transonic Shocks and Free Boundary Problems in Infinite Cylinders for the Euler Equations

Abstract
We establish the existence and stability of multidimensional transonic shocks (hyperbolic-elliptic shocks) for the Euler equations for steady compressible potential fluids in infinite cylinders. The Euler equations, consisting of the conservation law of mass and the Bernoulli law for velocity, can be written as a second order nonlinear equation of mixed elliptic-hyperbolic type for the velocity potential. The transonic shock problem in an infinite cylinder can be formulated into the following free boundary problem: The free boundary is the location of the multidimensional transonic shock which divides two regions of $C^{1,\alpha}$ flow in the infinite cylinder, and the equation is hyperbolic in the upstream region where the $C^{1,\alpha}$ perturbed flow is supersonic. We develop a nonlinear approach to deal with such a free boundary problem in order to solve the transonic shock problem in unbounded domains. Our results indicate that there exists a solution of the free boundary problem such that the equation is always elliptic in the unbounded downstream region, the uniform velocity state at infinity in the downstream direction is uniquely determined by the given hyperbolic phase, and the free boundary is $C^{1,\alpha}$, provided that the hyperbolic phase is close in $C^{1,\alpha}$ to a uniform flow. We further prove that, if the steady perturbation of the hyperbolic phase is $C^{2,\alpha}$, the free boundary is $C^{2,\alpha}$ and stable under the steady perturbation. \end{abstract}
This article has appeared in:
Communications on Pure and Applied Mathematics , Vol. ?, pages ?? (2004).
This paper is available in the following formats:
A closely related paper is Change me.
Author Address
    
    Department of Mathematics
    Northwestern University
    Evanston, IL 60208-2730
    gqchen@math.nwu.edu