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Abstract

We continue to study hyperbolic systems of conservation laws with umbilic degeneracy.
We further extend our compactness framework established earlier to other canonical classes
of quadratic flux systems with an isolated umbilic point. With the aid of this compactness
framework, we establish the compactness of solution operators and the long-time behavior of
entropy solutions in L∞ with large initial data, and we prove the convergence of the viscosity
method, as well as the Lax-Friedrichs scheme and the Godnuov scheme, for a canonical class of
nonlinear hyperbolic systems with umbilic degeneracy.
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1. Introduction

We are concerned with the quadratic gradient systems

(1.1) ∂tU + ∂x(∇C(U)) = 0,

where

(1.2) C(U) =
1
2
(
1
3
au3 + bu2v + uv2),

and a and b are real parameters with a 6= 1 + b2.

These systems are nonstrictly hyperbolic, and the two eigenvalues of the systems coincide
at the isolated point U = 0 in the state space. Such points are referred to as umbilic (degen-
erate) points. An umbilic point is hyperbolic if the Hessian of C(U),∇2C(U), at the point is
diagonalizable. This class of systems is generic in the sense that all quadratic systems with
umbilic hyperbolic degeneracy can be transformed into systems in this class, while such qua-
dratic flux functions determine the local behavior of hyperbolic singularity near the umbilic
point. Moreover, for any general nonlinear system with umbilic hyperbolic degeneracy, at each
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umbilic degenerate point, the wave curves of each family of elementary waves are tangential to
the corresponding curves of one of the systems in (1.1) under a suitable linear transformation. In
fact, the quadratic flux system resulting from truncating the Taylor expansion of the nonlinear
flux function at any hyperbolic umbilic point can be transformed into a corresponding system
in (1.1) by a linear coordinate transformation.

Systems with umbilic degeneracy arise in magnetohydrodynamics, multiphase flows in porous
media, and elasticity. For systems in three space dimension, Lax [La1] showed that systems with
2 (mod 4) equations cannot be strictly hyperbolic in all spatial directions. The same conclusion
holds for the systems with ±2,±3,±4 (mod 8) equations (see [FR]). The study of plane waves for
such systems along degenerate directions then reduces to the study of degenerate systems in one
space dimension for which (1.1) is one of the simplest generic examples. The Riemann problem
for (1.1) has been of intense interests in recent years. Solutions of the Riemann problem require
the use of nonstandard shock waves, and the geometry of the elementary wave curves are ex-
tremely complex. This differs markedly from the classical strictly hyperbolic case. The nonlinear
stability of these nonstandard waves, their admissibility via the viscous profile criterion, and the
associated analytical issues such as the bifurcation of wave curves are also of obvious interests.
For detailed survey and references, we refer the readers to [CK1,GM,IMPT,IT,KSZ1,LZ,SSMP].
The initial boundary value problems for some of these quadratic systems are also discussed in
[KSZ1-2].

In [CK1], we developed a general compactness framework for the systems with general
fluxes with isolated umbilic points in the state space satisfying structural assumptions (H1) and
(H2) (see Theorem 2.1 of Section 2). Under this compactness theorem, any sequence of L∞

bounded approximate solutions, generated by the viscosity method, the Godunov scheme [Go],
or the Lax-Friedrichs scheme [La2], converges to a corresponding entropy solution of the system
when the viscosity or the mesh size goes to zero. A prototype of such systems is the quadratic
flux systems (1.1). In [CK1], the compactness framework was applied to a certain parameter
range (Region IV) of (1.1), and the strong convergence of approximate solutions and the global
existence of entropy solutions were obtained for large initial data in L∞.

In this paper, we continue our investigation of systems (1.1) in the other parameter ranges
(Regions I–IV). We study the analytical and geometrical properties of the elementary wave
curves. These provide a basic understanding of the classification of systems (1.1) and their
different behavior in the four regions of parameters a and b. Among other consequences, we
also obtain invariant domains for viscous and finite-difference approximate solutions to (1.1).
We then present a careful construction of the Riemann invariants, taking into account their
singular behavior and the fact that they are not uniquely defined, and make an optimal choice
maximizing certain analytical regularities of the coefficients of the entropy equation. Next, we
investigate the monotonicity of the wave speeds in Riemann coordinates. In contrast to the
strictly hyperbolic case, this monotonicity is not equivalent to the genuine nonlinearity of the
systems but depends upon subtle cancellations which are implicit in the choice of the Riemann
invariants. In fact, systems (1.1) are not always genuinely nonlinear. We then turn to the
study of the analytical regularity of the coefficients of the entropy equation. This involves very
detailed analyses and is crucial in verifying the structural assumptions (H1) and (H2) in the
L∞ Compactness Framework established in [CK1]. Finally, using this compactness framework
theorem, we establish the existence and qualitative behavior of entropy solutions. In particular,
we obtain the compactness of solution operators and large-time behavior of entropy solutions in
L∞ in one of the invariant domains of (1.1) for L∞ periodic initial data. To our best knowledge,
this seems to be the first demonstration of such compactness for systems with hyperbolic umbilic
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degeneracy. We also show the convergence of the viscosity method for canonical subclasses of
the quadratic flux systems (1.1).

This paper is organized as follows. In Section 2, we recall the L∞ Compactness Framework
in [CK1] for general systems with isolated umbilic points. We also present several theorems
characterizing the qualitative and structural behavior of the quadratic gradient systems (1.1)
in order to verify the requirements of the Compactness Framework. In Section 3, we study
the unsymmetric case in Region III. We analyze the rarefaction curves, construct Riemann
invariants, and study their singularities. We clarify the relationship between the choice of the
construction and analytical properties of the functions Γj ’s which are the ratios of Riemann
invariants. With these, we give detailed analyses of the monotonicity of the wave speeds in
Riemann coordinates and the analytic regularities of the coefficients of the entropy equation.
In Section 4, we give corresponding results for the symmetric case in Regions III and IV. The
statements of the results are similar to those in Section 3 but the technical proofs are different.
We indicate the essential differences in the technical details. In Section 5, we apply the results
in Sections 3 and 4 to verify the conditions in the L∞ Compactness Framework for general
Region III and the symmetric case in Region IV. We also obtain invariant domains for viscous
and finite-difference approximate solutions to (1.1) in Regions I–IV. We then proceed to obtain
the compactness of viscous and finite-difference approximate solutions, and the existence of
global entropy solutions in Regions III and IV. We also establish the compactness of solution
operators and the large-time asymptotics of entropy solutions in L∞ with periodic initial data.
In Section 6, we summarize briefly analyses of the structure of systems (1.1) in Regions I and
II, highlighting the differences in the technical proofs when compared to those in Sections 3 and
4. Finally, we conclude Section 6 by giving the asymptotic decay of periodic entropy solutions
in L∞ in these regions.

2. Quadratic Systems, Entropy, and Compactness Framework

2.1. Quadratic Systems

Consider a quadratic gradient system in (1.1). The eigenvalues of the system are

(2.1) λi =
1
2

(
(a + 1)u + bv + (−1)i

√
((a− 1)u + bv)2 + 4(bu + v)2

)
, i = 1, 2,

and the corresponding eigenvectors are

(2.2) ri ≡ (ri1, ri2)> = ((a− 1)u + bv + (−1)i
√

((a− 1)u + bv)2 + 4(bu + v)2 , 2(bu + v))>.

It is then obvious that, as long as a 6= 1 + b2, λ1 = λ2 ⇐⇒ (u, v) = (0, 0), so that (0, 0) is the
unique umbilic point.

The jth family of rarefaction curves Rj is defined as the family of integral curves of the
vector field given by rj . Therefore, Rj is defined by the following ordinary differential equation:

(2.3)
du

dv
=

(a− 1)u + bv + (−1)j
√

((a− 1)u + bv)2 + 4(bu + v)2

2(bu + v)
.

The change in convexity of the rarefaction wave curves in the (u, v)-plane depends on the location
and number of zeros of the cubic polynomial

h(α) = −bα3 + (a− 2)α2 + 2bα + 1, α =
u

v
.
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The discriminant of h(α) is given by ∆ = −32b4 + b2(27 + 36(a − 2) − 4(a − 2)2) + 4(a − 2)3.
Thus, ∆ = 0 gives a new boundary in the (a, b)-plane which distinguishes different wave-curve
geometries. This corresponds to the division between Region III and Region IV in [SS1]. When
∆ < 0, h(α) has three real zeros α0, α1, and α2. When ∆ > 0, h(α) has only one real zero,
which corresponds to Region IV. We refer the readers to [CK1] for the details of these analyses.

In this paper, for concreteness, we shall mainly restrict ourselves to the case b > 0, and

(u, v) ∈ I ≡ {(u, v) | v − 1
α0

u ≥ 0}.

The symmetric case b = 0 for Regions I–IV is analyzed briefly in subsections by following the
discussion for the unsymmetric case of the corresponding regions.

2.2. Entropy

Consider a general 2×2 hyperbolic system for U = (u, v) with a general flux function F (U):

(2.4) ∂tU + ∂xF (U) = 0, F (U) = (f(U), g(U)).

A pair of scalar functions (η(u, v), q(u, v)) is called an entropy-entropy flux pair of (2.4) if

∂tη(u(x, t), v(x, t)) + ∂xq(u(x, t), v(x, t)) = 0,

for any smooth solution (u(x, t), v(x, t)) of (1.1). It is easy to check that this happens if and
only if η and q satisfy the compatibility condition

(2.5) ∇η∇F = ∇q.

Eliminating q, we get a second-order equation, the entropy equation,

(2.6) guηuu + (gv − fu)ηuv − fvηvv + (guu − fuv)ηu + (guv − fvv)ηv = 0.

Equation (2.6) is a linear hyperbolic equation whose characteristic variables turn out to be
the Riemann invariants. A simple calculation gives its characteristic form:

(2.7) ηw1w2 +
λ2w1

λ2 − λ1
ηw2 −

λ1w2

λ2 − λ1
ηw1 = 0.

The quadratic flux systems (1.1) admit entropy functions that are homogeneous polynomials
in the physical variables u and v of arbitrarily high degrees. We remark that the simple function
η∗(u, v) = u2 +v2 is a strictly convex entropy of (1.1) for all a and b with corresponding entropy
flux q∗. This function plays a special role in obtaining the H−1 compactness of the entropy
dissipation measures for approximate solution sequences.

Assume that the system under consideration has the following structure:

(H1) There exist Riemann coordinates (w1, w2) such that w1 ≤ 0 ≤ w2

and the umbilic point P = (0, 0) is in the coordinates;

(H2)
λiwj

λ2 − λ1
=
Ai(w2

w1
)

w2 − w1
=

Ãi(θ)
w2 − w1

, θ ∈ [
π

2
, π], i 6= j, i, j = 1, 2,

where tanθ =
w2

w1
, and Ãi(θ) is real analytic in θ ∈ (0,

3π

2
).
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Then, under the assumptions (H1) and (H2), the entropy equation for the quadratic flux
systems (1.1) takes the form

(2.8) ηw1w2 +
A2(w2

w1
)

w2 − w1
ηw2 −

A1(w2
w1

)
w2 − w1

ηw1 = 0,

in the domain w1 ≤ 0 ≤ w2, where Ãi(θ) = Ai(tanθ) are defined for θ ∈ [π
2 , π] and can be

analytically extended in θ ∈ (0, 3π
2 ).

2.3. L∞ Compactness Framework

Here, we recall the following L∞ Compactness Framework for general systems (2.4) satisfying
the structural assumptions (H1) and (H2) (see Theorem 6.2 in [CK1]).

Theorem 2.1. [CK1]. Let (2.4) satisfy the assumptions (H1) and (H2), and

(2.9) λiwi
6= 0.

Suppose that, given any nonnegative integers m,n, j, l with m ≥ j, n ≥ l, m + n ≤ 2,
any entropy functions satisfying the estimates

(2.10) ∂j
w1

∂l
w2

η = O(wm−j
1 wn−l

2 )

near the umbilic point, are C2 in (u, v). Assume that a sequence of measurable functions
U ε(x, t) satisfy that

(2.11) ||U ε||L∞ ≤ C,

and

(2.12) ∂tη(U ε) + ∂xq(U ε) is compact in H−1
loc ,

for any entropy pair (η, q) satisfying (2.10). Then

(w1(U ε(x, t)), w2(U ε(x, t))) → (w1(x, t), w2(x, t)), a.e. (x, t), as ε → 0.

In the following sections, we will prove that the quadratic systems and the viscous (or
finite-difference) approximate solutions satisfy the assumptions of the framework with large L∞

initial data. The fact that system (1.1) in different parameter regions satisfy the compactness
framework in Theorem 2.1 is checked via the following sequence of theorems characterizing
the qualitative and structural behavior of (1.1). Various analyses and estimates presented in
subsequent sections will provide the ingredients for proving these theorems. Theorems 2.2, 2.4,
and 2.5 hold for both the unsymmetric case (b 6= 0) and the symmetric case (b = 0), although
they require different analyses. Theorem 2.3 is concerned with the unsymmetric case (b 6= 0) of
(1.1); and similar results hold for the symmetric case (see Sections 4 and 6.2).

Theorem 2.2. Consider systems (1.1) in Regions I–III. Let J : (u, v) → (w1, w2)
denote the map from the state space to the plane of Riemann invariants. Suppose that
η is an entropy function satisfying (2.10) near the umbilic point in Theorem 2.1. Then

(2.13) η ◦ J ∈ C2(R2).
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Theorem 2.3. Consider systems (1.1) in the case b 6= 0 (the unsymmetric case).

(a) For Region III, i.e., a > 1 + b2 and ∆ < 0,

(2.14) λiwi
6= 0,

whenever (u, v) ∈ I − {(−1)iv > 0, u
v = α0}, or, equivalently, when (w1, w2) ∈ J (I) −

{(w1, w2) |wi = (−1)i∞}.

(b) For Region II, i.e. 3
4b2 < a < 1 + b2,

(2.15) λiwi
6= 0,

whenever ṽ ≥ 0 except possibly at the umbilic point (u, v) = (0, 0).

(c) For Region I, i.e. a < 3
4b2,

(2.16) λiwi
6= 0,

whenever (u, v) ∈ I−{(a−1)u+bv = 3b(a−3)±√D
6a (bu+v)} with D = 12(3

4b2−a)(a+3)2.

Theorem 2.4. Consider the quadratic flux systems (1.1) in Regions I–III in the case
b 6= 0. Then the coefficients Ai = Ãi(θ), i = 1, 2, of the entropy equation, which are well
defined for θ ∈ [π

2 , π], can be extended to be real analytic in θ ∈ (0, 3π
2 ).

Theorem 2.5. Consider the quadratic flux systems (1.1). The following domains for
the corresponding regions are convex invariant domains for the Riemann solutions and
the parabolic approximate solutions of (1.1).

(1) Region IV (∆ > 0): Ωc1c2 ≡ {(u, v) | c1 ≤ w1 ≤ 0 ≤ w2 ≤ c2}, and Ωc1c2 ∩ I, for
any pair of constants, c1 < 0 < c2.

(2) Region III: For any pair of constants, c3 < 0 < c4,

{(u, v) | c3 ≤ w1(u, v) ≤ 0 ≤ w2(u, v) ≤ c4, α0v ≤ u ≤ α2v, u ≥ 0},
{(u, v) | c3 ≤ w1(u, v) ≤ 0 ≤ w2(u, v) ≤ c4, α0v ≤ u ≤ α1v, u ≤ 0},

and
{(u, v) | c3 ≤ w1(u, v), w2(u, v) ≤ c4, α1v ≤ u ≤ α2v, v ≥ 0}.

(3) Regions I and II: Domains

{(u, v) |α0v ≤ u ≤ α2v, u ≥ 0} ∩ I, {(u, v) |α0v ≤ u ≤ α1v, u ≤ 0} ∩ I,

and
{(u, v) |α1v ≤ u ≤ α2v, v ≥ 0} ∩ I.

3. Unsymmetric Case for Region III

Consider a hyperbolic system of conservation laws with quadratic flux in (1.1). In this
section, we focus on Region III where ∆ < 0, b 6= 0. We study the Riemann invariants of the
system in (1.1). We also study the genuine nonlinearity and the monotonicity of λi, i = 1, 2, as
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a function of Riemann invariants wj , j = 1, 2, since the map J : (u, v) → (w1, w2) is neither C1

nor globally invertible in general.

3.1. Riemann Invariants, C2 Entropy, and Verification of (H1)

The Riemann invariants wj = wj(u, v), j = 1, 2, are defined as the functions that are
constants along any rarefaction wave curves of the ith family Ri where i 6= j. On the domains
where wj is differentiable, it is easy to check that ri ·∇wj = 0, i 6= j, since Ri curves are integral
curves of the vector field ri.

The jth family of rarefaction curves Rj is defined as the family of integral curves of the
vector field given by rj . Therefore, Rj defined by (2.3) can be rewritten in the form

du

dv
=

(a− 1)α + b + (−1)jsign(v)
√

((a− 1) + bα)2 + 4(b + α)2

2(bα + 1)
, v 6= 0,(3.1)

where α = u
v . Set ũ = u + 1

α0
v, ṽ = v − 1

α0
u, α̃ = ũ

ṽ , with α0 the smallest zero of h(α). Then
(3.1) becomes

du

dv
=

(a− 1)(α0α̃− 1) + b(α̃ + α0) + (−1)jsign(α0ṽ)
√

Q(α̃)
2(b(α0α̃− 1) + α̃ + α0)

,

where Q(α̃) = ((a− 1)(α0α̃− 1) + b(α0 + α̃))2 + 4 (b(α0α̃− 1) + α0 + α̃)2 .

For (u, v) ∈ I, by a simple calculation, (3.1) becomes

(3.2)
dα̃

dṽ
=

1
ṽ

(
− 1

α0 + α̃
+ Hj(α̃, sign(α0))

)−1

≡ H̄j(α̃, sign(α0))−1

with

Hj(α̃, sign(α0)) = − (1 + α2
0)Ej(α̃)

2(α0 + α̃)D(α̃)
,(3.3)

where

Ej(α̃) =− 2b(α0α̃− 1)2 + (a− 3)(α0 + α̃)(α0α̃− 1) + b(α0 + α̃)2

+ (−1)isign(α0)(α0 + α̃)
√

Q(α̃),

D(α̃) =− b(α0α̃− 1)3 + (a− 2)(α0 + α̃)(α0α̃− 1)2

+ 2b(α0 + α̃)2(α0α̃− 1) + (α0 + α̃)3.(3.4)

The Riemann invariants are of the form

wi(u, v) = (−1)iṽβ exp{−β

∫ α̃

0

H̄j(α̃, sign(α0))dα̃}

= (−1)iṽβ |α0 + α̃|βexp{−β

∫ α̃

0

Hj(α̃, sign(α0))dα̃}, i 6= j, i = 1, 2,(3.5)

for any constant β 6= 0.

We remark that the wj
′s are not uniquely defined and that care must be taken in the

definition to make sure that we have a single-valued function globally. We will also make the
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choice of β that guarantees the maximal regularity of certain quantities. We elaborate on this
below. The advantage of this choice becomes clear when we study the entropy functions.

Consider the polynomial h(α). When ∆ > 0 (Region IV), h(α) has one unique real zero
denoted as α0, which has been analyzed in detail in [CK1]. We now focus on the case of
Region III, where ∆ < 0 and a > 1 + b2. Since ∆ < 0, h(α) has three real zeros. Denote by
α0 ≤ α1 ≤ α2 the three real zeroes of h(α). We consider the local behavior of wj

wi
near the rays

α = αl, l = 0, 1, 2. For definiteness, we first focus on the ray α = α0 and {(u, v) |α = α0, u >

0} = {(u, v) | ṽ = 0, ũ > 0} from the side {(u, v) | ṽ ≥ 0}. The discussions for the other cases are
similar. Then

(3.6) wj

wi
= Γj(α̃, sign(α0)) = − exp{β

∫ α̃ (
H̄j(α̃, sign(α0))− H̄i(α̃, sign(α0))

)
dα̃}.

Notice that, for (u, v) ∈ I,

lim
|α̃|→+∞
(−1)kũ>0

α̃(H̄i(α̃, sign(α0))− H̄j(α̃, sign(α0)))

= (−1)j+ksign(α0)

√
((a− 1)α0 + b)2 + 4(bα0 + 1)2

h′(α0)
.(3.7)

Therefore, the local behavior of wj

wi
near {(u, v) |α = α0, (−1)ku > 0} is determined by

(3.8) |α− α0|(−1)j+ksign(α0)

√
((a−1)α0+b)2+4(bα0+1)2

h′(α0)
β
.

We conclude by similar analyses that the local behavior of wj

wi
near {(u, v) |α = αl}, l = 1, 2,

is determined by

(3.9) |α− αl|
(−1)jsign(α0)

√
((a−1)αl+b)2+4(bαl+1)2

h′(αl)
β
, i 6= j.

We have, in Region III,

−1
b

< α0 < α1 < 0 < α2.

Set

βl =
sign(α0)h′(αl)√

((a− 1)αl + b)2 + 4(bαl + 1)2
, l = 0, 1, 2.

Noting−1
b < α0 < α1 < 0 < α2 and h(±∞) = ∓∞, we have sign(h′(αl)) = (−1)lsign(h′(α0)), l =

1, 2, and, therefore, sign(βl) = (−1)lsign(β0).

Then, if we choose
β = β2,

the functions Γj(α̃,−1) are continuous in the domain I and real analytic on the subdomain
{(u, v)|ṽ ≥ 0, tan−1α0 < u

v ≤ tan−1α2} except on the rays α = α1, α2; if we choose

β = signβ2|β1|,
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the functions Γj(α̃,−1) are continuous in the domain I and real analytic in the subdomain
{(u, v) | ṽ > 0, π + tan−1α1 ≤ u

v ≤ π + tan−1α0} or {(u, v) | ṽ > 0, tan−1α2 < u
v ≤ π + tan−1α1}.

To investigate the regularity of entropies as functions of the state variables u and v, we need
to estimate the regularity of the Riemann invariants as functions of the state variables u and
v for Theorem 2.1. In many strictly hyperbolic systems, such as the system of elasticity, the
map J : (u, v) → (w1, w2) is C2. Therefore, C2 regularity of entropies in the (u, v)-coordinates
is a direct consequence of that in the w-coordinates. For nonstrictly hyperbolic systems, the
coincidence of eigenvalues λ1 and λ2 usually means that the geometry of the wave curves are very
singular at the umbilic point. Thus, J is usually not C2, and additional analysis is necessary
to get C2 regularity for η = η(u, v).

We are now ready to present a proof of Theorem 2.2 for Region III. To this end, we first
prove some estimates for the Riemann invariants and their derivatives.

Proposition 3.1. Consider (1.1) in Region III, i.e., ∆ < 0 and a > 1 + b2. Near
the umbilic point (u, v) = (0, 0), the derivatives of the Riemann invariants satisfy the
following estimates:

(3.10)
|wi| ≤ C| |α|+ 1

α− α0
||

β
β0
|, i = 1, 2,

|∂m
u ∂n

v wi| ≤ C
|wi|

|ṽ|m+n+δ|w1w2|(m+n)δ
|α− α0

1 + |α| |
m+(m+n)δ̄, 1 ≤ m + n ≤ 2,

where δ = max(|β1
β |, |

β2
β |, |

1
2β |) + 1 and δ̄ = | β

β0
|δ.

Proof. The proof is more complicated than the case in Region IV in [CK1] because, in Region
III, |w1w2| vanishes on α = α1, α2 and |w1w2| = ∞ on α = α0.

We have, from the local analyses of Γj following (3.7),

C−1ṽβ

∣∣∣∣α− α0

1 + |α|

∣∣∣∣
| β

β0
| ∣∣∣∣α− α1

1 + |α|

∣∣∣∣
| β

β1
| ∣∣∣∣α− α2

1 + |α|

∣∣∣∣
| β

β2
|
≤ |wi| ≤ C

∣∣∣∣1 + |α|
α− α0

∣∣∣∣
| β

β0
|
.

Now

∂ũwi =
wi

ṽ
M10(α, α0), ∂ṽwi =

wi

ṽ
(1 + α̃M10(α, α0)),

M10 =
2α0(bα + 1)− (a− 1)α− b− (−1)jsign(α0(α0 + α̃))

√
Q(α̃)

−2α(bα + 1) + (a− 1)α− b + (−1)jsign(α0(α0 + α̃))
√

Q(α̃)
α0 − α

α2
0 + 1

.

Since

|w1w2| ≤ ṽ2β

∣∣∣∣α− α0

1 + |α|

∣∣∣∣
−| β

β0
| ∣∣∣∣α− α1

1 + |α|

∣∣∣∣
| β

β1
| ∣∣∣∣α− α2

1 + |α|

∣∣∣∣
| β

β2
|

≤ C

[
ṽ

∣∣∣∣α− α1

1 + |α|

∣∣∣∣
∣∣∣∣α− α2

1 + |α|

∣∣∣∣
] 1

δ
∣∣∣∣α− α0

1 + |α|

∣∣∣∣
−| β

β0
|
,

we obtain

|M10| ≤ C
(1 + |α|)|α− α0|
|α− α1||α− α2|

≤ Cṽ−δ

∣∣∣∣α− α0

1 + |α|

∣∣∣∣
1−δ̄

|w1w2|−δ.
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Then we have

|∂ũwi| ≤ C
|wi|

ṽ1+δ|w1w2|δ

∣∣∣∣α− α0

1 + |α|

∣∣∣∣
1−δ̄

, |∂ṽwi| ≤ C
|wi|

ṽ1+δ|w1w2|δ

∣∣∣∣ α− α0

1 + αα0

∣∣∣∣
−δ̄

.

Further differentiation yields

|∂2
ũwi| = |M10

ṽ
∂ũwi +

wi

ṽ2
∂α̃M10|

≤C(
|wi|

ṽ1+δ|w1w2|δ

∣∣∣∣α− α0

1 + |α|

∣∣∣∣
1−δ̄

)(
1

ṽ1+δ|w1w2|δ

∣∣∣∣α− α0

1 + |α|

∣∣∣∣
1−δ̄

) + C
|wi|
ṽ2
O(

(α− α0)2

|α− α1||α− α2|
)

≤C(
|wi|

ṽ2+2δ|w1w2|2δ

∣∣∣∣α− α0

1 + |α|

∣∣∣∣
2−2δ̄

.

We also have

|∂ũ∂ṽwi| =|
−wi

ṽ2

M10

ṽ
∂ṽwi +

wi

ṽ

−α̃

ṽ
∂α̃M10|,

≤C
|wi|
ṽ2

1
ṽδ|w1w2|δ

∣∣∣∣α− α0

1 + |α|

∣∣∣∣
1−δ̄

) + C
|wi|

ṽ2+2δ|w1w2|2δ

∣∣∣∣α− α0

1 + |α|

∣∣∣∣
1−2δ̄

)

+ C|α̃| |wi|
ṽ2+2δ|w1w2|δ

∣∣∣∣α− α0

1 + |α|

∣∣∣∣
2−δ̄

≤C
|wi|

ṽ2+2δ|w1w2|2δ

∣∣∣∣α− α0

1 + |α|

∣∣∣∣
1−2δ̄

.

Finally, we have

|∂2
ṽwi| =| −

wi

ṽ2
(1 + α̃M10) +

1
ṽ
(1 + α̃M10)(

wi

ṽ
)(1 + α̃M10) +

wi

ṽ
(
−α̃

ṽ
)(M10 + α̃∂α̃M10)|

≤C
|wi|
ṽ2

α̃

ṽδ|w1w2|δ

∣∣∣∣α− α0

1 + |α|

∣∣∣∣
1−δ̄

+ C
|α̃|2wi

ṽ2+2δ|w1w2|2δ

∣∣∣∣α− α0

1 + |α|

∣∣∣∣
2−2δ̄

+ C
|α̃|wi

ṽ2

[
1

ṽδ|w1w2|δ

∣∣∣∣α− α0

1 + |α|

∣∣∣∣
1−δ̄

+
|α̃|

ṽ2δ|w1w2|δ

∣∣∣∣α− α0

1 + |α|

∣∣∣∣
2−δ̄

]

≤C
|wi|

ṽ2+2δ|w1w2|2δ

∣∣∣∣α− α0

1 + |α|

∣∣∣∣
−2δ̄

.

The analysis is similar for higher values of m and n. We omit the details. This completes the
proof of Proposition 3.1.

Now, using Proposition 3.1 and the chain rule, we easily prove (2.13). This completes the
proof of Theorem 2.2.

3.2. Genuine Nonlinearity

We now turn to the investigation of the genuine nonlinearity in the sense of Lax [La3] for
the quadratic systems (1.1). It turns out that genuine nonlinearity allows a breakdown of the
case a < 1 + b2 into two subcases. By definition, a system in (1.1) is genuinely nonlinear in the
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jth characteristic field at a point (u, v) if rj · ∇λj 6= 0, i 6= j, at (u, v). A calculation by using
(2.1) and (2.2) shows that

(3.11) rj · ∇λj = hj(ζ, y) ≡ aζ + 3by + (−1)j aζ2 + 3byζ + 2(a + 3)y2√
ζ2 + 4y2

,

where ζ = (a− 1)u + bv and y = bu + v.

By careful analyses, we find that all possible points of rj · ∇λj = 0 are on the lines

(3.12)




y = 0, a > 3
4b2,

y = 0, ζ = b(a−3)
2a y, a = 3

4b2,

y = 0, ζ = 3b(a−3)±√D
6a y, a < 3

4b2.

This shows that the curve a = 3
4b2 divides the region {(a, b) | a < 1 + b2} into two subregions

according to a global change in loci of loss of genuine nonlinearity. This corresponds to the
division between Region I and Region II in [SS1]. For the details of these analyses, see [CK1].

We now investigate the monotonicity of the wave speed λi in the variable wi, which is the
content of Theorem 2.3, part (a). This is important in the verification of condition (2.9) in the
Compactness Framework (Theorem 2.1).

Using wiv

wiu
= − rj1

rj2
, we compute to get

(3.13) λiwi
=

(−1)i

w1uw2v − w2vw1u
(λiuwjv − λivwju) =

(
ri · ∇λi

ri2

)
vwi

.

Now we carefully compute vwi
in terms of (ũ, ṽ) to obtain

(3.14) vwi
= − α0

1 + α2
0

1 + (α0 + α̃)H̄i

βṽβ−1(H̄1 − H̄2)
exp{β

∫ α̃

0

H̄j(α̃, sign(α0))dα̃}.

Then further detailed computations give the important formula:

λiwi
=(−1)iα0

ṽ

wi
× g(α)√

((a− 1)α + b)2 + 4(bα + 1)2
×

×
ri·∇λi

v

−2α(bα + 1) + (a− 1)α + b + (−1)isign(v)
√

((a− 1)α + b)2 + 4(bα + 1)2
.(3.15)

We are now ready to prove part (a) of Theorem 2.3.

The proof is similar to that of the case in Region IV by using (3.15). The essential new
feature is that λiwi

can vanish on α = α0, because there is a factor of wi in the denominator in
(3.15), and wi becomes unbounded on a half-line of α = α0 in Region III. Consider

ki(α, sign(v)) = −2α(bα + 1) + (a− 1)α + b + (−1)isign(v)
√

((a− 1)α + b)2 + 4(bα + 1)2.

Since (a− 1)αk + b = (α2
k − 1) bαk+1

αk
, from h(αk) = 0, k = 0, 1, 2, we have

−2αk(bαk + 1) + (a− 1)αk + b = −(1 + α2
k)

bαk + 1
αk

{
> 0, k = 0, 1,

< 0, k = 2,
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and

((a− 1)α + b)|α=− 1
b

= −a− 1− b2

b
< 0.

Therefore, ki(α, sign(v)) has zeros{
α0, α1, when (−1)isign(v) < 0,

− 1
b , α2, when (−1)isign(v) > 0.

The function g(α) has no zero. The only zero of ri · ∇λi is α = −1
b and is of first-order. The

denominator

−2α(bα + 1) + (a− 1)α + b + (−1)isign(v)
√

((a− 1)α + b)2 + 4(bα + 1)2

also has the first-order zero α = −1
b and therefore they cancel. Finally, when ṽ = 0 (i.e.

α− α0 = 0), either wi or

−2α(bα + 1) + (a− 1)α + b + (−1)isign(v)
√

((a− 1)α + b)2 + 4(bα + 1)2

vanishes to the same order. Thus, we conclude that λiwi
never vanishes except possibly at the

umbilic point (0, 0). This completes the proof of part (a) of Theorem 2.3.

3.3. Coefficients of the Entropy Equation and Verification of (H2)

In this section, we study the analytical properties of the coefficients in the entropy equation
(2.7). A direct consequence of these analyses will be the verification of the structural assumptions
(H2) in the Compactness Framework (Theorem 2.1). We treat Regions I–IV together in this
section.

Notice that

(3.16) λjwi
=

ri · ∇λj

ri2
vwi

,

and

(3.17) ri · ∇λj = ζ − by + +
(−1)i√
ζ2 + 4y2

(ζ2 − 3byζ + 2(a− 1)y2), i 6= j.

Therefore,

(3.18)
λjwi

λ2 − λ1
=

ri · ∇λj

2ri2

√
ζ2 + 4y2

vwi
≡ Tj(α̃)

wi
,

where Tj(α̃) = α−α0
2β

ri·∇λj

ζ2+4y2
g(α)

kj(α,sign(α−α0))
.

Proposition 3.2. The coefficients of the entropy equation of systems (1.1) defined by

Ai = Ti(α̃)
w2 − w1

wj
, i 6= j, i = 1, 2,

are real analytic in α̃ ∈ R ∪ {±∞}.

Proof: Notice that

Aj = Tj(α̃)
w2 − w1

wi
= (−1)iTj(α̃)(1− Γj(α̃)).
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Therefore, it suffices to prove that Tj and TjΓj are both real analytic in α̃ ∈ R ∪ {±∞}.

To show the desired real analyticity, we need only check that the functions Tj(α̃) has no
singularities in any finite domain, nor at infinity.

In Regions I and II, the factor kj(α, sign(v)) has zeros{ − 1
b , α1, when (−1)jsign(v) < 0,

α0, α2, when (−1)jsign(v) > 0.

On the other hand, (α−α0)(ri·∇λj)
ζ2+4y2 has at least two zeros:{ − 1

b , when (−1)isign(v)((a− 1)α + b)|α=− 1
b

< 0,

α0, always,

and g(α) has always two zeros α1 and α2. Thus, since a < 1 + b2 in Regions I-II, the zeros in
the denominator are cancelled by those in the numerator and Tj has no singularities in α in any
finite domain.

In Region III, kj(α, sign(v)) has zeros{ − 1
b , α2, when (−1)jsign(v) > 0,

α0, α1, when (−1)jsign(v) < 0.

Since now a > 1 + b2 in Region III, we still obtain the same cancellations and Tj(α) has no
singularity in α in any finite domain.

In Region IV, the zeros α1, α2 do not exist, and kj(α, sign(v)) has zeros{ −1
b , when (−1)jsign(v) > 0,

α0, when (−1)jsign(v) < 0.

The same cancellations occur.

Finally, we observed from the formula for Tj that it is easy to check that Tj remains bounded
as α → ±∞. We also note that Tj is a ratio of sums and products of polynomials and radicals
in α. We conclude that Tj is real analytic in α for all α ∈ R ∪ {±∞}.

It remains to consider TjΓj . Since ΓjΓi ≡ 1 whenever i 6= j, we have

Tj(α̃)Γj(α̃) =
α− α0

2β

ri · ∇λj

ζ2 + 4y2

g(α)
kj(α, sign(α− α0))

Γj(α̃).

Using an analysis similar to the above, we conclude that TjΓj is real analytic in α for all
α ∈ R ∪ {±∞}. This completes the proof of Proposition 3.2.

We will now use Proposition 3.2 to prove Theorem 2.4 in the unsymmetric case in Regions
I–IV.

Using Proposition 3.2, we know that Aj = (−1)iTj(1 − Γj), i 6= j, are real analytic in
α ∈ R ∪ {±∞}.

We first assume that (u, v) are restricted to one of the invariant domains, described in
Theorem 2.5. The first step of the proof of Theorem 2.4 in this case is to obtain an analytic
inversion of Γ2. We have

∂αΓ2(α, signα0) = βΓ2
(1 + α2

0)
√

Q(α̃)
D(α̃)

6= 0,
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for all α̃ corresponding to the interior of the invariant domain under consideration as long as all
the |βi|′s in the invariant domain have the same value. The coincidence of the |βi|′s ensure that
Γ2 has possibly only first-order zeros at α̃1 and α̃2, which are cancelled by the zeros of D(α̃).
Therefore, we can invert to get α̃ as an analytic function in w2

w1
in the appropriate range and

then substitute into Ai, which is analytic in α̃ ∈ R.

It remains to show that Ai can be extended as an analytic function in θ across the boundary
of the invariant domains. The argument is similar to the proof of Theorem 4.1 in [CK1]. The
extension across α̃ = ±∞ is identical to that in [CK1] and we omit the details. To extend across
α̃l, l = 1, 2, we use the fact that β is chosen such that all |βi|′s are identical to write

Γ2 =
w2

w1
= tanθ = |α̃− α̃l|f(α̃− α̃l),

where f(s) is real analytic near s = 0. We then extend tanθ analytically as a function of α̃− α̃l

across the point α̃ = α̃l as follows:

tanθ = (α̃− α̃l)f(α̃− α̃l) = Γ̄2(α̃− α̃l) ≡
{

Γ2(α̃− α̃l), α̃− α̃l < 0,

−Γ2(α̃l − α̃), α̃− α̃l ≥ 0.

Then tanθ is analytic near α̃ − α̃l = 0. Finally, we check explicitly that ∂α̃−α̃l
Γ̄2 6= 0 near

α̃ − α̃l = 0. Thus, Ãi(θ) can be analytically extended across θ = π
2 , π. We refer the readers to

[CK1] for more details. This completes the proof of Theorem 2.4.

We now discuss the possibility of the equality of the three quantities |β0|, |β1|, |β2|. Such a
consideration is important in determining the maximal domain of analyticity of Γj given any
particular choice of β. We recall that

|βl| =
|h′(αl)|√

[(a− 1)αl + b]2 + 4(bαl + 1)2
, h(α) = −bα3 + (a− 2)α2 + 2bα + 1.

For definiteness, we concentrate on |β1| and |β2|. After careful algebraic manipulations, we
find the following compatibility condition for the equality |β1| = |β2|:

0 = (a + 1)3(5− a)− (a + 1)(a2 + 11a + 20)b2 + (2a2 + a− 5)b4; b 6= 0, a 6= −1.

For b = 0, |β1| = |β2| but the above argument does not apply (see the next section for details).

Finally, we consider the example a = 3
2 . In this case, an explicit computation gives

h(α) = (2bα + 1)(1− 1
2
α2), β0 =

1 + 8b2

1 + b2
, β1,2 =

2(±2
√

2b− 1)
3(1∓

√
2b)

.

Therefore, in general, |β0| 6= |β1| 6= |β2| for b 6= 0, and β1 = β2 for b = 0.

4. Symmetric Case in Regions III and IV

Consider the symmetric case b = 0 of (1.1), i.e. the flux takes the form:

(4.1) F (U) = ∇C(U) =
1
2
(au2 + v2, 2uv)>.
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The unsymmetric case in Region IV (∆ > 0, b 6= 0) was treated in [CK1]. In this section we
analyze the symmetric case in Regions III and IV. We will study the Riemann invariants of (1.1)
for this case. We will also study the genuine nonlinearity and the monotonicity of λi, i = 1, 2,
as a function of Riemann invariants wj , j = 1, 2. For simplicity, we restrict ourselves to the
half-plane domain

I ≡ {(u, v) | v ≥ 0}.

This domain is also an invariant domain for the viscous and finite-difference approximate solu-
tions of (1.1) (see Section 5). For the other half-plane, the situation is very similar.

4.1. Riemann Invariants, C2 Entropy, and Verification of (H1)

In this case, the Riemann invariants are of the form

(4.3) wi(u, v) = (−1)ivβ exp{−2β

∫ α

0

dα

(a− 3)α + (−1)j
√

(a− 1)2α2 + 4
}, i = 1, 2, i 6= j,

for any constant β 6= 0.

We consider and summarize below the local behavior of wj

wi
, i 6= j, i, j = 1, 2. Using (4.3),

wj

wi
= Γj(α) = − exp{(−1)jβ

∫ α

0

√
(a− 1)2α2 + 4
(a− 2)α2 + 1

dα}.(4.4)

Region IV (a > 2): wj

wi
are analytic in |α| ∈ [0,∞], and |α| is analytic in wj

wi
in their defined

domains.

It is easy to check that Γj(α) are analytic in α ∈ (−∞,∞). Now we check that Γj(α) are
locally analytic near α ∼ ±∞, or σ = 1

α ∼ 0. Notice that

Γj(α) ∼ |σ|(−1)i+kβ a−1
a−2 , as (−1)ku > 0,

near σ ∼ 0. Choose β = a−2
a−1 . We have

wj

wi
= Cexp{(−1)iβ

∫ σ

0

sign(σ)
σ

√
(a− 1)2 + 4σ2

a− 2 + σ2
dσ} ≡ |σ|sign(σ)iG(|σ|; sign(σ)),

near σ ∼ 0 and v ≥ 0, where C is some constant. Here the functions G(τ ;±1) are real analytic
near τ = 0.

Furthermoe, we have

∂αΓj(α) = (−1)j a− 2
a− 1

√
(a− 1)2α2 + 4
(a− 2)α2 + 1

Γj(α) 6= 0, for all α ∈ R.

Therefore, we have α = Λj(Γj) = Λj(
wj

wi
), where Λj(τ) is real analytic in τ ∈ Γj(R) = (−∞, 0).

Region III (1 < a < 2): In this case,

wj

wi
= − exp{(−1)jβ

∫ α
√

(a− 1)2α2 + 4
(1 +

√
2− aα)(1−

√
2− aα)

dα}.
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Near α = 1√
2−a

,
wj

wi
∼ |α− 1√

2− a
|(−1)j+1β 3−a

2(2−a) .

If we choose β = β1 = 2(2−a)
3−a , then the ray {α = 1√

2−a
, v > 0} corresponds to w1 = 0.

Similarly, near α = − 1√
2−a

,

wj

wi
∼ |α− 1√

2− a
|(−1)jβ 3−a

2(2−a) .

If we choose β = β2 = 2(2−a)
3−a ≡ β1, then the ray {α = − 1√

2−a
, v > 0} corresponds to w2 = 0.

Near α = ±∞, that is, σ = 1
α = 0,

wj

wi
= − exp{(−1)jβ

∫ σ

(− 1
σ2

)

√
(a− 1)2 1

σ2 + 4

1− (2− a) 1
σ2

dσ} ∼ |σ|(−1)i+kβ a−1
a−2 , when (−1)kσ > 0.

If we choose β = β0 ≡ 2−a
a−1 , then the ray {v = 0, u > 0} corresponds to w2 = 0. This is so

because

wi ∼ (−1)ivβ |σ|
β

2−a , when (−1)ju > 0,

∼ (−1)i|u|
β

2−a v−1, when (−1)ju > 0.

We now check that wj = (−1)j∞ on the half-ray {v = 0, (−1)j+1u > 0} with the choice
β = β1 = β2 = 2(2−a)

3−a . Indeed,

wi(u, v) ∼
{

(−1)ivβ |σ|−
β

2−a , (−1)jsign(σ) > 0,

(−1)i|u|β , (−1)jsign(σ) < 0.

A careful analysis using (4.3) now yields

Proposition 4.1. Consider a symmetric system in (1.1) in Regions III and IV. Suppose
that (u, v) ∈ I. Near the umbilic point (u, v) = (0, 0), the derivatives of the Riemann
invariants satisfy the following estimates:

wi =O(1), i = 1, 2,

|∂m
u ∂n

v wi| ≤




C( |wi|
|ṽ|m+n|α− (−1)j√

2−a
)
|, a < 2,

C( |wi|
|ṽ|m+n ), a > 2,

1 ≤ m + n ≤ 2.

Combining Proposition 4.1 with the chain rule, we conclude Theorem 2.2 for the symmetric
case.

4.2. Genuine Nonlinearity

We now turn to the investigation of the genuine nonlinearity in the sense of Lax [La3] for
the symmetric quadratic systems (1.1).
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We find that all possible points of rj · ∇λj = 0 are

(4.5)

{
v = 0, a ≥ 0,

v = 0, v = ± (1−a)
√−3a

|3+a| , a < 0.

On the line v = 0, rj · ∇λj = 0 if and only if (−1)j(a − 1)u < 0; on the line v = ± (1−a)
√−3a

|3+a|
for the case a < 0, rj · ∇λj = 0 if and only if ±(−1)ja(a − 1)(a2 − 9)u < 0. The point a = 0
divides the interval −∞ < a < 1 into two subregions according to a global change in loci of
loss of genuine nonlinearity. This corresponds to the division between Region I and Region II
in [SS1].

We are now concerned with the monotonicity of the wave speed λi in the variable wi. This
is important in the verification of the structural assumptions (H1) and (H2). Using (4.3) and
(3.13), we obtain

λiwi
=
−2vwj

w1w2

(−1)j((a− 2)α2 + 1)
(a− 3)α + (−1)i

√
(a− 1)2α2 + 4

× a(a− 1)α
√

(a− 1)2α2 + 4 + (−1)i(a(a− 1)2α2 + 2(a + 3))
β(

√
(a− 1)2α2 + 4)2

.

Using this formula, it can be checked that

For Region IV (a > 2), we have

λiwi

{ 6= 0, for all |α| < ∞, and α = (−1)i∞,

= O( 1
α ), α → (−1)j∞.

Therefore,
λiwi

6= 0, for all (w1, w2) ∈ J (I)− {wi = 0}.

For Region III (1 < a < 2), we have

1 +
√

2− aα

(a− 3)α−
√

(a− 1)2α2 + 4
6= 0,

a(a− 1)α
√

(a− 1)2α2 + 4 + (−1)i(a(a− 1)2α2 + 2(a + 3))
β(

√
(a− 1)2α2 + 4)2

=
{ O(1), α → (−1)i∞,

O( 1
α2 ), α → (−1)j∞,

and
v(1−

√
2− aα)

wi
6= 0,

for all (w1, w2) ∈ J (I)− {wi = (−1)i∞}, or (u, v) ∈ I − {v = 0, (−1)iu < 0}. Therefore,

λiwi
6= 0, for all (w1, w2) ∈ J (I)− {wi = (−1)i∞, or wi = 0}.

4.3. Coefficients of the Entropy Equation and Verification of (H2)

Notice that

(4.16) ri · ∇λj = (a− 1)u +
(−1)j√

(a− 1)2α2 + 4

(
(a− 1)2u2 + 2(a− 1)v2

)
, i 6= j.
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Therefore, from (4.6) and (3.6), we have

Ai(
w2

w1
) =

λjwi

λ2 − λ1
(w2 − w1) =

ri · ∇λj

2
√

(a− 1)2u2 + 4v2

vwi
(w2 − w1)

v

= (−1)i+j(1− Γj(α))
(a− 1)α + (−1)i(a−1)((a−1)α2+2)√

(a−1)2α2+4

2β
(
(a− 3)α + (−1)i

√
(a− 1)2α2 + 4

)
≡ Ti(α)(1− Γj(α)), i 6= j.

We know that Γj(α) is real analytic in α ∈ R. Moreover, the denominator of Ti has no zero
in the range |α| < ∞. Therefore, Ai is real analytic in α ∈ R.

Now we have
Γj(α) = O(|α|−sign(α)i), i 6= j, as α →∞,

and

Ti(α) ∼
−(a− 1)

(
(a− 1)α|α|(1 + 2

(a−1)2α2 +O( 1
α4 )) + (−1)i(a− 1)α2

)
2β(a− 1)|α| ((a− 3)α + (−1)i(a− 1)|α|) , as |α| → ∞

∼
{ O(1), α → (−1)i∞,

O( 1
α2 ), α → (−1)j∞, i 6= j.

Therefore, for i 6= j, TiΓj is real analytic in α ∈ R ∪ {±∞}. Thus, we have shown that Ai is
real analytic in α ∈ R ∪ {±∞}.

After arriving at this conclusion, an argument similar to the unsymmetric case yields The-
orem 2.4 for the symmetric case.

5. Existence and Qualitative Behavior of Entropy Solutions

We first consider the behavior of entropy solutions in L∞.

5.1. Compactness and Large-Time Asymptotics of Entropy Solutions

First we have

Theorem 5.1. Any bounded entropy solution operator StU0(·) = U(·, t) with U0(x) in
any invariant domain, described in Theorem 2.5, is compact in L1

loc for t > 0. In other
words, the initial oscillations instantaneously cancel as time evolves.

Given any uniformly bounded oscillatory initial data sequence U ε
0(x) in any invariant domain

described in Theorem 2.5, we denote U ε(x, t) as the corresponding bounded entropy solution
sequence, which is also in the same invariant domain. It suffices to show that the sequence
U ε(x, t) is compact in L1

loc for t > 0.

By the definition of entropy solutions, U ε(x, t) satisfies that

µε ≡ ∂tη(U ε) + ∂xq(U ε) ≤ 0,

in the sense of distributions for any convex entropy pair (η, q). Also

µε is a bounded subset of W−1,∞
loc (R2

+).
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Murat’s lemma [Mu] indicates that

µε is compact in H−1
loc (R2

+).

In particular,
µε
∗ ≡ ∂tη∗(U ε) + ∂xq∗(U ε) is compact in H−1

loc (R2
+),

with η∗(U) = u2 + v2.

Following an idea in [Ch], for any (not necessarily convex) C2 entropy pair (η, q), we use the
fact that (η+Cηη∗, q+Cηq∗) is a convex entropy for some Cη > 0. Then we find that µε

η +Cηµε
∗

is compact in H−1
loc (R2

+). By linearity, we conclude that

µε is compact in H−1
loc (R2

+).

Then, combining our analyses in Sections 2-4 with Theorem 2.1, we conclude the compact-
ness of U ε(x, t) in L1

loc for t > 0. This concludes Theorem 5.1.

Remark 5.1. Theorem 5.1 shows that the nonstrictly hyperbolic degeneracy of the systems
does not affect the compactness of solution operators.

Furthermore, we have

Theorem 5.2. Let U(x, t) be any periodic entropy solution with period P = [0, a]. Then
U(x, t) asymptotically decays to the average of the initial data over the period P :

ess lim
t→∞

∫ a

0

|U(x, t)− Ū |dx = 0, with Ū =
1
a

∫ a

0

U0(x)dx.

This can be achieved by combining Theorem 5.1 above with the arguments in Chen-Frid
[CF] as follows.

1. Set U ε(x, t) = U(x/ε, t/ε). Then U ε(x, t) is a sequence of entropy solutions with oscillating
initial data. Theorem 5.1 implies the compactness of Uε(x, t) in L1

loc(R
2
+) (see the arguments

for Theorem 5.1 above). Therefore there exists a subsequence (still denoted) U ε(x, t) converging
to some function U(x, t) ∈ L∞(R2

+) in L1
loc(R

2
+). We conclude that U(x, t) = U(t) from the

periodicity of U ε(x, t).

Now, writing the equation of U ε(x, t) in the weak integral form and setting ε → 0, we
can check that ∂tU(t) = 0 in the weak sense. This implies that U(t) = U = 1

a

∫ a

0
U0(x)dx =

w∗ − limU0(x/ε), since U0(x) is periodic.

Since the limit is unique, the whole sequence U ε(x, t) strongly converges to U in L1
loc(R

2
+)

when ε → 0. Therefore, we have

(5.1)
∫ 1

0

∫
|x|≤rt

|U ε(x, t)− U |dxdt → 0, when ε → 0.

2. Denote U = (u, v) and Ū = (ū, v̄). Using the special strictly convex entropy η∗, we find that
the periodic entropy solution U(x, t) satisfies the entropy inequality

(5.2) ∂tη](U) + ∂xq](U) ≤ 0,
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where

η] ≡ |U(x, t)− U |2, q] ≡ 2(
au3

3
+ bu2v + uv2)− u(au2 + 2buv + v2)− v(bu2 + 2uv).

Then we can deduce that, for any α ∈ R,

(5.3)
∫ α+a

α

|U(x, t2)− U |2dx ≤
∫ α+a

α

|U(x, t1)− U |2dx,

for all 0 ≤ t1 < t2, t1, t2 ∈ (0,∞)− T , where meas(T ) = 0.

3. Given T > 0, T ∈ (0,∞)−T , we take all the rectangles given by x ∈ [α, α + a], for α integer,
and t ∈ [[rT ]/(2r), T ], in the interior of the cone {|x| ≤ rt | 0 ≤ t ≤ T}, where [α] denotes the
largest integer less than or equal α. The number of such rectangles is larger than [rT ]. Using
the periodicity of U(x, t), inequality (5.3) with t2 = T , which holds for a.e. t1 = t ∈ (0, T ) over
the period P , and the strict convexity of the entropy η], we find that there exists c0 > 0, C > 0,
independent of T , such that

(5.4)

∫ a

0

|U(x, T )− Ū |2dx ≤ c0
[rT ]
T 2

∫ T

[rT ]
2r

∫ a

0

|U(x, T )− Ū |2dxdt

≤ c0
[rT ]
T 2

∫ T

[rT ]
2r

∫ a

0

|U(x, t)− Ū |2dxdt

≤ c0
1

T 2

∫ T

0

∫
|x|≤rt

|U(x, t)− Ū |2dxdt

≤ c0(|U |L∞ + |Ū |L∞)
1

T 2

∫ T

0

∫
|x|≤rt

|U(x, t)− Ū |dxdt

≤ C

∫ 1

0

∫
|x|≤rt

|U ε(x, t)− Ū |dxdt → 0, ε = 1/T → 0.

Then (5.4) implies the result of Theorem 5.2.

Remark 5.2. In Theorem 5.2, the assumption U(x, t) ∈ L∞(R2
+) can be replaced by U(x, t) ∈

Lp(R2
+), p ≥ 3. This can been easily seen in the arguments above for Theorem 5.2.

Remark 5.3. Although the uniqueness of entropy solutions is still unknown, we show in The-
orem 5.2 that periodic solutions asymptotically decay to the unique constant state, determined
solely by the initial data.

5.2. Convergence of Approximate Solutions and Existence of Entropy Solutions

To establish the existence of solution operators, i.e. entropy solutions in Theorems 5.1-5.2,
we use the vanishing viscosity method. The analysis also works for the convergence of the
Lax-Friedrichs scheme [La3] and the Godunov scheme [Go].

Consider the parabolic approximate solutions U ε(x, t) governed by the associated parabolic
system

(5.6)
{

∂tU
ε + ∂x(∇C(U ε)) = ε∆U ε,

U ε(x, 0) = U0(x).
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We are concerned with the convergence of U ε to an entropy solution U of (1.1) with the same
initial data in any invariant domain described in Theorem 2.5 as ε → 0+. Since η∗ = u2 + v2 is
a C2 strictly convex entropy for (1.1), and U0(x) tends to a constant state Ū as |x| → ∞ and
U0−Ū ∈ L2∩L∞, we multiply (5.6) by ∇η∗(U ε)−∇η∗(Ū), a standard argument of integration
by parts gives the estimate

ε

∫ ∞

0

∫ ∞

−∞
|U ε

x|2 dx dt ≤ C,

where C depends only upon U0.

Consider any C2 entropy-entropy flux pair (η, q) constructed in Theorem 2.2 for the system.
Multiplying (5.6) by ∇η(U ε), and integrating by parts, we find, after using the L∞ bound on
U ε, the boundedness of ∇2η on compact sets, a standard application of Murat’s Lemma [Mu],
and a weak compactness estimate for the dissipation measures, that

(5.7) ∂tη(U ε) + ∂xq(U ε) is compact in H−1
loc .

Applying the compactness framework (Theorem 2.1) to (1.1) with ∆ < 0, we can show
the strong convergence of viscosity approximate solutions to entropy solutions of (1.1) with
large initial data for all positive time. As a corollary, we obtain the global existence of entropy
solutions of the Cauchy problem of (1.1) with arbitrary large data in any invariant domain,
described in Theorem 2.5.

We first verify L∞ apriori estimates for these approximate solutions. We then apply the
compactness framework (Theorem 2.1) together with Theorems 2.3 and 2.4 to achieve our results.
To this end, invariant domains will be used for the viscosity approximate solutions.

Using the convexity properties of the Rj curves or the explicit form of wi, we immediately
conclude part (1) and (2) of Theorem 2.5, which yields an L∞ apriori bound for viscosity
solutions U ε for (1.1) in Regions III and IV.

Theorem 5.3. Consider the Cauchy problem (1.1) in Regions III and IV with the
Cauchy data in one of the invariant domains. Then, for any ε > 0, U ε(x, t) is well
defined for all (x, t) and, moreover, |U ε(x, t)| ≤ C||U0||L∞ , for some C < ∞.

Combining Theorems 2.2–2.5 and 5.3 with the Compactness Framework (Theorem 2.1), we
obtain

Theorem 5.4. Consider the viscosity approximation {U ε}ε>0 of the Cauchy problem
(1.1) in Regions III and IV with the Cauchy data U0 in one of the invariant domains,
described in Theorem 2.5. Suppose that there is a constant Ū such that

(5.8) U0 − Ū ∈ L2(R) ∩ L∞(R).

Then, as ε → 0+, there exists a subsequence of U ε(x, t) that converges a.e. (x, t) to
U(x, t), a global entropy solution of (1.1).

The strong convergence of a subsequence of the viscosity approximations {U ε}ε>0 follows
directly from Theorem 5.3 and the verification of the assumptions of Theorem 2.1 in Sections 3
and 4, and the one-to-one correspondence between one of the invariant domains in the U -plane
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and {w |w1 ≤ 0 ≤ w2} in the w-plane. It is standard to show that U(x, t) is an entropy solution,
that is, U(x, t) satisfies the entropy inequality.

Remark 5.4. Similarly, following the arguments in [DCL,Di,CL] for the Lax-Friedrichs or
Godunov approximate solutions {U ε}ε>0 of the Cauchy problem (1.1) in Regions III and IV
with the Cauchy data U0(x) in one of the invariant domains, described in Theorem 2.5, we can
show that, as ε → 0+, there exists a subsequence of U ε(x, t) that converges a.e. (x, t) to a global
entropy solution of (1.1).

Remark 5.5. Condition (5.8) can be removed. In particular, if the Cauchy data are periodic,
there exists a global periodic entropy solution. For the finite-difference approximate solutions,
the requirement that the data be in L2 in condition (5.8) is not needed because finite-difference
approximate solutions keep the main feature of hyperbolic equations: the finiteness of propa-
gation speeds, which is the main advantage of the finite-difference methods over the viscosity
method.

Theorem 5.5. Given any bounded Cauchy data U0(x) in one of the invariant domains,
described in Theorem 2.5, there always exists a global entropy solution for the Cauchy
problem for (1.1) with the Cauchy data U0(x), which defines a solution operator for the
Cauchy problem. Moreover, if the Cauchy data U0(x) are periodic in x with period P ,
then there exists a global entropy solution that is periodic in x with the same period.

6. Regions I and II

We now summarize analytical results about the structure of the quadratic systems (1.1) in
the case a < 1 + b2, which include Regions I and II. Many of the results will be similar to those
in Regions III and IV. Their proofs, however, are not the same. We will briefly highlight the
essential differences.

6.1. Structure of the Systems: Unsymmetric Case

First, we discuss the unsymmetric case when b 6= 0. Recall that, for (u, v) ∈ I, the Riemann
invariants are of the form

wi(u, v) = (−1)iṽβ exp{−β

∫ α̃

0

H̄j(α̃, sign(α0))dα̃}, i 6= j,(6.1)

for any constant β 6= 0.

Consider the polynomial h(α). Denote by α0 ≤ α1 ≤ α2, the three real zeros of h(α) when
∆ ≤ 0 (Regions I–III). We consider the local behavior of wj

wi
near the rays α = αl, l = 0, 1, 2.

For definiteness, we focus on the ray α = α0 and {(u, v) |α = α0, u > 0} = {(u, v) | ṽ = 0, ũ > 0}
from the side {(u, v) | ṽ ≥ 0}. The discussions for the other cases are much the same.

When (u, v) ∈ I, for Regions I and II, similar to Region III, near α = αl, ṽ > 0,

wj

wi
= Γj(α̃, sign(α0)) = − exp{β

∫ α̃ (
H̄j(α̃, sign(α0))− H̄i(α̃, sign(α0))

)
dα̃} ∼ |α̃− α̃l|E ,

where

E = lim
α̃→α̃l

{(−1)jβsign(α0)(1 + α2
0)

√
Q(α̃)

( D(α̃)
α̃−α̃l

)
} = (−1)jβsign(α0)

√
((a− 1)αl + b)2 + 4(bαl + 1)2

h′(αl)
.
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Set

βl =
sign(α0)h′(αl)√

((a− 1)αl + b)2 + 4(bαl + 1)2
, l = 0, 1, 2.

Noting α0 < − 1
b < α1 < 0 ≤ α2 and h(α = ±∞) = ∓∞, we have sign(h′(αl)) = (−1)lsign(h′(α0)),

l = 1, 2, and, therefore, sign(βl) = (−1)lsign(β0). Then, if we choose

β = β2,

the function Γj(α̃,−1) are continuous in the domain I and real analytical on the subdomain
{(u, v)|ṽ ≥ 0, tan−1α0 < u

v ≤ tan−1α2} except on the ray α = α1, α2; if we choose

β = signβ2|β1|,

the function Γj(α̃,−1) are continuous in the domain I and real analytical in the subdomain
{(u, v)|ṽ > 0, π + tan−1α1 ≤ u

v ≤ π + tan−1α0} or {(u, v)|ṽ > 0, tan−1α2 < u
v ≤ π + tan−1α1}.

We now collect a number of Propositions describing analytical properties of the Riemann
invariants, the coefficients of the entropy equations, and the monotonicity of wave speeds in the
nonsymmetric Regions I-II. Most of the proofs are omitted. They can be carried out similar to
the cases in Regions III and IV although the technical details are different.

Proposition 6.1. Consider Regions I and II, i.e., ∆ < 0 and a < 1 + b2, b 6= 0. Near
the umbilic point (u, v) = (0, 0), the derivatives of the Riemann invariants satisfy the
following estimates:

(6.3)
wi = O(1), i = 1, 2,

|∂m
u ∂n

v wi| ≤ C(
|wi|

|ṽ|m+n+2γ |w1w2|2γ
), 1 ≤ m + n ≤ 2,

where γ = max(| β
β1
|, | β

β2
|, | 1

2β |) + 1.

The proof is similar to the case in Region IV. We remark that the estimates here are different
because, in Regions I and II, |w1w2| vanishes on α = α1, α2. In fact,

(6.4) |w1w2| ≤ Cṽ2β

∣∣∣∣α− α0

1 + |α|

∣∣∣∣
| β

β0
| ∣∣∣∣α− α1

1 + |α|

∣∣∣∣
| β

β1
| ∣∣∣∣α− α2

1 + |α|

∣∣∣∣
| β

β2
|
.

We are now ready to briefly discuss the proof of Theorem 2.3, parts (b) and (c) which are
concerned with the monotonicity of the wave speeds. The proof is similar to those for Regions
III and IV and uses (3.13). In Regions I and II, wi is bounded on the line α = α0. Therefore,
λiwi

remains nonzero there. In Region I, there is an additional zero in the term ri · ∇λi in the
numerator in (3.13). Therefore, λiwi

vanishes on the half of the line {(u, v) | (a − 1)u + bv =
3b(a−3)±√D

6a (bu + v)}.

6.2. Structure of the Systems: Symmetric Case

Next, we consider the symmetric case in Regions I and II, i.e., b = 0, a < 1. For simplicity,
we restrict ourselves to the following half-plane domain I ≡ {(u, v) | v ≥ 0}. This domain is
also an invariant domain for the parabolic, the Lax-Friedrichs, and the Godunov approximate
solutions for (1.1). For the other half-plane, the situation is very similar.
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Now we have

(6.5) wi(u, v) = (−1)ivβ exp{−β

∫ α

0

2dα

(a− 3)α + (−1)j
√

(a− 1)2α2 + 4
}, i = 1, 2, i 6= j,

for any constant β 6= 0, and

(6.6) Γj(α) =
wj

wi
= − exp{(−1)jβ

∫ α

0

√
(a− 1)2α2 + 4
(a− 2)α2 + 1

dα}.

Similar to the case of Region III, we choose β1 = β2 = 2(2−a)
3−a to guarantee the one side

analyticity of wj

wi
near the rays α = ± 1√

2−a
.

Now we check that the correspondence between the rays {(u, v)|v = 0, u > 0, or v =
−
√

2− a} and w2 = 0 and between the rays {(u, v)|v = 0, u < 0, or v =
√

2− a} and w1 = 0;
and the boundedness of wj near these rays. In fact, near σ = 0,

wi(u, v) = (−1)ivβ exp{2β

∫ σ 1
a− 3 + (−1)jsign(σ)

√
(a− 1)2 + 4σ2

dσ

σ
}

∼
{

(−1)ivβ |σ|−β = (−1)i|u|β , (−1)jsign(σ) > 0,

(−1)ivβ |σ|
β

a−2 = (−1)ivβ 1−a
2−a |u|

β
2−a , (−1)jsign(σ) < 0.

It can be similarly confirmed near the rays {(u, v) | v = ±
√

2− a}. We omit the details.

Recall that all possible points of rj · ∇λj = 0 are

(6.7)

{
v = 0, a ≥ 0,

v = 0, v = ± (1−a)
√−3a

|3+a| , a < 0.

On the line v = 0, rj · ∇λj = 0 if and only if (−1)j(a− 1)u < 0; on the line v = ± (1−a)
√−3a

|3+a| for
the case a < 0, rj · ∇λj = 0 if and only if ±(−1)ja(a− 1)(a2 − 9)u < 0. Recall that, for i 6= j,

λiwi
=
−2vwj

w1w2

(−1)j((a− 2)α2 + 1)
(a− 3)α + (−1)i

√
(a− 1)2α2 + 4

× a(a− 1)α
√

(a− 1)2α2 + 4 + (−1)i(a(a− 1)2α2 + 2(a + 3))
β(

√
(a− 1)2α2 + 4)2

,

Proposition 6.2. (a) Consider the symmetric systems in (1.1) (b = 0, a < 1). Suppose
that (u, v) ∈ I. Near the umbilic point (u, v) = (0, 0), the derivatives of the Riemann
invariants satisfy the following estimates:

wi =O(1), i = 1, 2,

|∂m
u ∂n

v wi| ≤




C |wi|
|ṽ|m+n|α− (−1)j√

2−a
|
|, a < 2,

C |wi|
|ṽ|m+n , a > 2,

1 ≤ m + n ≤ 2.

(b) For Region II (0 < a < 1),

λiwi
6= 0, for all (w1, w2) ∈ J (I)− {(0, 0)};
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For Region I (a < 0),

λiwi
6= 0, for all (w1, w2) ∈ J (I − {v = (−1)i (a− 1)

√
−3a

a + 3
}).

6.3. Qualitative Behaviors of L∞ Weak Entropy Solutions

Using the properties of the systems discussed above, the arguments as in Section 5.1, and
the Compactness Framework (Theorem 2.1), we have

Theorem 6.1. Let U(x, t) be a bounded entropy solution of (1.1) in Regions I-II with
the Cauchy data in one of the invariant domains (see Theorem 2.5). Set UT (x, t) =
U(Tx, T t) its self similar scaling sequence. Then UT (x, t) is compact in L1

loc for t > 0.

Combining Theorem 6.1 with Theorems 3.1 and 3.2 of Chen-Frid [CF], we conclude

Theorem 6.2. Let U(x, t) be any bounded periodic entropy solution in one of the invari-
ant domains with period P = [0, a]. Then U(x, t) asymptotically decays to the average
of the initial data over the period P :

ess lim
t→∞

∫ a

0

|U(x, t)− Ū |dx = 0, with Ū =
1
a

∫ a

0

U0(x)dx.
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